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Title: Detection of 5-hydroxymethylfurfural and furfural in aerosols of electronic cigarette 

 

The flavorant variety expansion in electronic cigarette market has heavily served in 

promoting youth vaping. Among various flavorants, sweetness has been identified as an 

important factor for the choice of e-liquids. Sugar compounds imparting the sweet flavoring 

might be intentionally added by manufactures or delivered from tobacco leaves during 

extraction processes. These compounds can thermally degrade into 5-hydroxymethylfurfural 

(HMF) and furfural (FA); a class of furnaic compounds that have raised potential health 

concerns. 

 

In this work HMF and FA formation in electronic cigarettes aerosol was 

systematically studied by varying sugar type and concentration, battery input and puff 

duration. Specifically, PG/VG standard solutions containing sucrose, glucose and fructose 

were vaped using a customized puffing machine operating at (4.3 and 10.8) W power and (4 

and 8) sec puff duration. Generated aerosols were collected on filter pads, extracted and then 

analyzed according to an optimized SPE-GC-MS method. It has been found that e-liquids 

with sucrose and glucose content > 0.02% (0.38 mg/mL) are considered potential sources of 

HMF and FA when vaped. Unlike puff duration, battery input and sugar concentration have 

significant influence on furanic yields.  

 

Additionally, a LC-ESI-MS method with minimal sample handling was designed to 

assess sucrose, glucose and fructose compounds in e-liquid solutions. Sugar compounds were 

detected in e-liquids flavored with Carnival Cotton Candy, Creme Anglaise and Welsh Taffi. 

 

It has been found that under certain conditions the presence of sugar compounds 

expose ECIG users to potentially harmful compounds. 
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CHAPTER I 

INTRODUCTION 

 

This work explores the potential impact of integrating sugar in e-liquid formulation. 

Chapter II describes the optimization and validation of SPE-GC-MS, chapter III ascertains 

FA and HMF generated from three different types of sugar (Glucose, sucrose and sorbitol) 

prepared in PG/VG .Solutions were vaped under two battery output (4.3 W and 10.8 W) and 

two puff durations (4 s and 8 s). In addition to that, the effect of sucrose concentration was 

studied under 4.3 W and 4s. Chapter IV presents the optimized LC-ESI-MS method and its 

implementation on sixteen flavored e-liquids
 

Over the past decades, tobacco industry has manipulated a vast array of strategies to 

achieve high volume sales.
1 ,2

 The inclusion of variety of additives has served as a basic 

gateway towards emerging more competitive and profitable tobacco products.
1 ,3-6

 Beside the 

prime addictive constituent nicotine, sugar and ammonia among many other compounds have 

been used for addiction and attractiveness enhancement.
7 ,8

 Recently, manufactures have 

excessively exploited this tactic to advertise electronic nicotine delivery system (ENDs), a 

new emerging class of products.
9-11

 After studying the adoption of additives in conventional 

tobacco products for years, the scientific community has started exploring the influence of 

additives in ENDs. 

 

A. Additives in Tobacco Products 

According to World Health Organization (WHO), additives are substances added to 

tobacco products during the course of manufacturing for wide range of purposes.
12

 Typical 

additives include humectants to keep tobacco moist i.e. glycerol, propylene glycol and 

sorbitol, flavorants to impart unique aroma and taste i.e. sugar and menthol, casing materials 
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to improve smoking quality i.e. sugar and fruit extracts, in addition to nicotine delivery 

regulators to control nicotine delivery and harshness i.e. ammonia and lactic acid.
1 ,12-14

 

Tobacco industry in the United States (U.S.) has acknowledged the use of 599 cigarette 

additives and attributed about 10% by weight of U.S. style cigarettes to sugar, glycerol, 

propylene glycol and ammonia compounds.
1 ,15

 Acting as flavorant, humectant and casing 

material, sugar has proved successful as one of the basic tobacco additives to promote and 

advertise cigarette smoking particularly among youth.
7
 Concurrent with the considerable use 

of sugar by five major tobacco companies, the tobacco industry has not addressed the safety 

concerns associated with this additive.
7 ,15

 In an effort to fill this gap, scientists have 

undertaken thorough studies to explore the contribution of cigarette sugar content to smoking 

behavior.
16-22

  

 

A. Sugars in tobacco products: Amount, Function and Fate 

Sugar including mono-di and polysaccharides are natural tobacco constituents present 

in levels up to 20% w/w (20 mg per g tobacco).
1
 However; during processing and curing, 

tobacco leaves are prone to lose some of their sugar content. Manufactures have replenished 

this probable loss by adding sugar to a percent that can reach up to16% w/w.
8 ,14 ,23

 Added in 

a variety of forms, sugar compounds can be divided into four main groups: 

monosaccharaides, disaccharides, sugar alcohol, and high intensify sweeteners as shown in 

Figure I 1. 

The chemical analysis of several tobacco products has recognized glucose, fructose 

and sucrose as major sugar additives.
8 ,18 ,22 ,24

 In 58 different brands of cigarette, Jansen et al. 

25
 have detected glucose, fructose and sucrose in average amounts of 52.3, 87.6 and 34.5 % 

w/w tobacco, respectively. Additionally, Clarke et al.
26

 have reported the sum of the three 

sugar compounds in both combustible (cigarette and cigar) and smokeless (snuff and chewing 
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gum) class of products The range of total sugar content of around ten samples from each type 

was found to be: cigarette (6.667-12.285 % w/w), cigar (0.002 -1.023% w/w), snuff (0-

0.19%w/w) and chewing gum (5.963 and 40.710% w/w). The discrepancy in sugar profile 

has been associated mainly with tobacco curing and treatment methods.
23

 While some 

methods incorporate enzymes resulting in lower sugar content, others enrich the sugar profile 

by applying sugar containing additives i.e. honey, corn syrup and fruit juice.
26

 This practice 

has been employed in the preparation of water-pipe tobacco where the main additive, 

molasses and sugarcane juice, are predominantly rich in sucrose.
27
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Figure I 1-Four main groups of sugar compounds used in tobacco processing 

 

To understand the substantial interest of using sugar in cigarette products, scientists 

have studied the effect of sugar decomposition on smoke composition.
24 ,28-31

 Using a 

smoking machine that mimics a burning cigarette, smoke from tobacco content was 

generated, collected and analyzed. Among various pyrolytic products, scientists have 

emphasized on the production of organic acids i.e. acetic acid and 3-methylbutanoic acid, 

furanic compounds i.e. furfural (FA) and 5-hydroxymethylfurfural (HMF) and aldehydes i.e. 
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formaldehyde and acetaldehyde. These byproducts have shown to contribute in masking 

smoke harshness, increasing tobacco attractiveness and promoting nicotine addiction.
32

 
33

 

The smoothness of the smoke has been attributed to the acids, since at low pH there is 

a decrease in the level of free-base nicotine, the source of the bitter taste. The sweet aroma 

increasing the acceptability of smoking has been induced by furan derivatives having caramel 

flavoring. On another hand, the pro-addictive property has been associated with the formation 

of acetaldehyde. Animal research models have demonstrated that acetaldehyde can enhance 

addiction effects by inhibiting the act of monoamine oxidase, an enzyme responsible for 

degrading dopamine neutotransmitter.
1 ,15 ,34

 More importantly, acetaldehyde along with other 

potential byproducts have exhibited toxicological concerns. 

According to International Agency for Research on Cancer (IARC) formaldehyde is 

classified as a human carcinogen (Group 1)
35

 while acetaldehyde as possibly carcinogenic 

(Group 2B).
36

 FA has exhibited histopathological changes in the respiratory epithelium of 

mice in addition to pulmonary irritations in rat lungs.
37 ,38

 In addition to that, HMF 

biotransformation into 5-sulfoxymethylfurfural has been associated with potential 

genotoxicity.
39-41

  

All of these findings have raised questions regarding the safety of incorporating 

additives and called for urgent regulatory actions. 

 

B. Regulations and Guidelines 

Tobacco companies have never complied by the requirements of disclosing full 

description of the added ingredients nor provided inhalation toxicity studies to confirm the 

safety of the additives when burned.
42

 Their justification was the use of food additives 

certified as safe by Flavors Extracts Manufacturers Association (FEMA).
43

 However; food 

additives have been recognized as safe for oral administration without considering the effect 
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of their pyrolytic products.
44 ,45

 Another essential point that has raised deeper concerns is the 

proliferation of flavored tobacco market especially among young people.
46-50

 Studies have 

shown that youth between the ages of 12 and 24 have commenced smoking for the substantial 

interest in flavorants.
46 ,51-55

 

In the absence of enough studies to evaluate the safety of additives and because their 

presence has begun to create new generations of smokers, a legislation to ban additives that 

can induce youth experimentation has been enacted by the parliament of Canada in 2009.
56

 

Similarly U.S. Food and Drug Administration (U.S. FDA) has prohibited the use of any 

natural or artificial additives other than tobacco and menthol.
57

 Besides providing guidelines, 

the regulatory bodies join efforts with public health organizations to spread awareness about 

smoking health consequences.
12

 

In a comprehensive report about smoking related diseases, U.S. Department of Health 

and Human Services has emphasized that smokers are at a greater risk to develop lung 

cancer, heart stroke and cardiovascular diseases.
58

 Another public health warning has been 

issued by WHO revealing the annual death of nearly six million smokers.
59

 In response to this 

alarming health threat pharmacological companies have proposed numerous cessation aids. 

The need for a novel method has led to the emerging of new class of products –electronic 

nicotine delivery systems-(ENDs) by most commonly called electronic cigarette (ECIG). 

 

C. Electronic Cigarette (ECIG): Design and Operation 

ECIG is a battery power device that uses a heating coil to aerosolize a solution (e-

liquid) composed of varying ratios of propylene glycol (PG), vegetable glycerin (VG), water, 

nicotine and other additives, including flavorants.
60 ,61

 The emerging of ECIG can be traced to 

Herbert A. Gilbert who has filed the first patent of smokeless non-tobacco product in 1963.
62
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Nevertheless, this invention has been ignored until 2003 when Hon Lik has introduced the 

modern version of ECIG to China market.
61

  

The first ECIG model has resembled the conventional cigarette (Figure I 2). Upon 

activating ECIG either by air flow sensor or the use of control button, a power flow is 

prompted to the atomizer to start heating the e-liquid stored in the cartridge. The atomizer 

consists of a coil encircled around a wicking material that draws e-liquid content into it. 

When the user draws a puff, the generated vapors will be carried across the cylindrical 

cartridge into the mouthpiece. While flowing, the vapors begin to cool down and condense 

to form aerosols.
63-65

 The act of inhaling and exhaling aerosols has been known as vaping.  
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Figure I 2-Anatomy of ECIG first generation 

 

After entering Europe and U.S. markets in 2007, ECIG has evolved in shape, design, 

and engineering characteristics while maintaining the three basic components: battery, 

heating element and e-liquid reservoir (Figure I 3). The new generations of ECIG have come 

with rechargeable batteries of higher capacity and newly designed atomizers combining 

wick/coil assembly with the cartridge. This combination has innovated two models of e-

liquid reservoir: refillable (tank-clearomizer) and disposable (cartomizer). All of these 

features has allowed the user to customize e-liquid formulations, control battery output 

voltage (V= 3 V - 6 V) and heating element resistance (R= 1.0 Ω - 6.5 Ω).
66 ,67

 

Lithium Battery Cartridge 

Wick 

Cotton  

Sheath  

Coil 

Atomizer 
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Figure I 3-Variety in ECIG configurations 

 

The applied voltage (V) and resistance(R) determine the battery power input (P) 

according to P=V
2
/R which in turn is a critical indication for the temperature of the heating 

coil. Higher battery output voltage and lower resistance of heating coil have shown to achieve 

high temperatures that sometimes can reach 340 ºC.
60 60 ,68

 Besides the impact of engineering 

characteristics, heating coil can experience a sudden increase in temperature when wick-
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liquid supply is poor. This phenomenon is known as dry puff.
69

 Scientists have reported that 

dry puff occurrence can potentially increase toxicant emission. Accordingly, they have 

associated the variances in some repeated measurements to the occasional occurrence of dry 

puffs.
70 ,71

 
60

 An ECIG user cannot control the occurrence of dry puffs even by changing his 

puffing topographies. Nevertheless, by manipulating puffing topography he can adjust 

nicotine intake It has been indicated that users tend to take long puff duration to increase 

nicotine yield. This has been attributed to activating heating coil for longer time at a constant 

temperature dependent on device features.
65

 Another important factor that can impact 

nicotine exposure is e-liquid composition. 

E-liquids contain varying concentrations of nicotine (0-48 mg/ml) that has been 

proven to allow users self-titrate their nicotine intake.
65

 Besides nicotine, additives have been 

extensively exploited to expand e-liquid market. Manufactures have released nicotine free 

solutions composed of flavorants in PG and VG solvents to promote ECIG to children.
72

 In 

the light of the rapid growth of flavored ECIG especially among youth, the use of additives 

has raised considerable concerns. 

 

1. Additives in CIG: Amount, function and fate 

In the last two years much research has been devoted to study nicotine and few 

publications have addressed the issue of flavorants.
73

 Comprehensive internet searches 

reported on 2014 more than 7000 unique flavorants.
74

 For simplicity Zhu et al.
74

 have 

categorized flavorants into eight main groups: Tobacco, Menthol, Tobacco-Menthol, Fruit, 

Dessert/Candy, Alcohol/Drinks, Snacks/Meals and Others. Since manufacturers do not 

disclose the chemical compositions and levels of flavorants, the classification is based on 

flavorant entitled names for example sugar-tooth, honey and chocolate are categorized under 

sweet group.
74
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The main investigation into chemical composition of e-liquids has been carried out by 

Hutzler et al.
75

 By scanning 28 different e-liquids, they have identified 141 chemicals among 

which flavorants i.e. linalool, ethyl maltol, vanillin have been detected. This qualitative 

identification has been followed with quantitative measurement conducted by Tierney et al.
76

. 

In their study they have revealed that the level of flavorants in ECIG ranges between 1 and 

4% (10–40 mg/mL). On another hand, more attention has been devoted to explore the 

toxicological effect of flavorants. Bahl et al.
77 

 and Sherwood et al.
78 

 have shown that 

flavored e-liquids have induced cytotoxicity in both human embryonic stem cells and airway 

epithelial cells. Similarly, Leigh et al.
11

 have reported that aerosol generated from menthol, 

coffee and strawberry flavored e-liquids have reduced the viability and metabolic activity of 

human bronchial epithelial cells. In addition to this, e-liquids containing benzaldehyde, 

diacetyl (DA), acetyl propionyl (AP) and cinnamaldehyde have caused respiratory problems 

when inhaled. Kosmider et al.
79

 have detected benzaldehyde in the aerosols of 108 flavored e-

liquids with the highest yield from cherry flavored products. Farsalino et al.
80

 have found that 

47% of sweet flavored e-liquids produce DA and AP at levels higher than safety limits. 

Similar concern was raised by Allen et al.
81

 who detected DA and AP in the aerosols of 

flavored e-liquids (Fruit, Candy and Cocktail). The Detection of benzaldehyde, DA, AP and 

cinnamaldehyde has highlighted the influence of using food additives in tobacco products. 

Benzaldehyde, DA and AP compounds are recognized as safe by FEMA for ingestion use but 

have exhibited health problems when inhaled.
79 ,82-85

 

The availability and variability of flavorants have promoted the dual use of ECIG and 

cigarette and initiated vaping among nonsmokers. This reflects a major gap in the utility of 

ECIG as cessation aid and questions the presence of countless number of flavorants.
9 ,10 ,86-89

 

A survey conducted among middle and high school students have showed that 70% of 

students have preferred the sweet-flavored e-liquids.
90

 Sweetness has shown to be a vital 
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factor to enhance sensation and increase the satisfaction of the user. Kim et al.
10

 have adopted 

a psychophysical method in which participants are asked to use two measurement scales: The 

labeled hedonic scale to measure liking/disliking of ECIG and the labeled magnitude scale to 

measure the perceived intensity of flavorant (sweetness, bitterness and coolness). The results 

have reinforced that liking of ECIG has been associated with the sweet flavorants. In 

response, Kubica et al.
91

 have scanned e-liquids for their sugar content. Sucrose has been 

detected in different flavored e-liquids (i.e. menthol, cherry and chocolate) with 

concentrations ranging from 0.56 to 72.93 (μg/g ). 

 

2. Regulations and Guidelines  

In the absence of enough scientific evidences to prove its efficiency as cessation aid 

device, ECIG has been recognized as a tobacco product and was placed under the regulatory 

authority of U.S. FDA.
92,60

 Nowadays much work has been carried out on the potential effect 

of additives to present critical implications for future regulations. Because the sweet 

perception has a critical role in attracting users, this work aims to evaluate systematically the 

impact of sugar in ECIG.  

 

3. Sugar in ECIG  

Scientists have established precursor-product relationships based on kinetic and 

thermodynamic studies to analyze the fate of sugar in cigarette.
93-97

 A similar approach 

should be employed for ECIG. Nevertheless cigarette and ECIG differ in composition, 

design, and operation therefore any extrapolation between the two systems might not be 

valid. A cigarette typically consists of shredded tobacco, a plant material composed of 3800 

constituents including hydrocarbons, amino acids, ketones, phenols and sugar.
98

 When 

burned, cigarette is divided into two regions (1) exothermic combustion zone: located at the 
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tip of the cigarette lit, produces carbon monoxide, carbon dioxide and water and reaches a 

temperature up to 950ºC. (2) endothermic pyrolysis/distillation zone: allocated immediately 

downstream the combustion zone, generates most of smoke products and the temperature 

ranges between 200 and 600 ºC.
95 ,98

 Researches have described two main pathways for sugar 

decomposition inside burning cigarette: (1) Maillard reaction: sugar interacts with amino acid 

to decompose into aldehydes (2) Caramelisation: sugar breaks down into mixture of acids, 

aldehydes and furan derivatives in the absence of amino acids.
7 ,99

 

Alternatively, e-liquid is composed of relatively simple matrix (nicotine, PG,VG, 

water and additives).This mixture is electrically heated to produce aerosol.
60

 The temperature 

of the heating coil depends on many factors particularly the electronic features.
60

 Talih et al.
68

 

have reported a heating temperature ranging from 130 to 350ºC. In the absence of amino 

acids, caramelisation is the plausible pathway for sugar decomposition inside ECIG.  

 

D. Glucose thermal transformations 

Sugar transformation has gained a significant attention for its potential use in food 

applications, biofuel production and cigarette smoke formulation.
100-104

 One of the basic 

transformation route is caramelisation: a non-enzymatic browning reaction occurring when 

sugar is subjected to heat (> 120 ºC) in the absence of amino acids.
99

 Scientists have selected 

glucose, the simplest unit of carbohydrates, to elucidate the transformation pathways. This is 

of considerate interest because glucose is one of the important food additives that tobacco 

manufactures claim to use. 

The most abundant form of glucose (99%) is the cyclic six-member glucopyranose 

designated as β or α according to the OH direction at the anomeric carbon. Other minor 

conformations include the cyclic five-membered glucofuranose and open chain forms.
105 ,106

 

Glucose possesses six oxygenated groups as presented in Figure I 4. These activation sites 
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initiate multiple decomposition pathways when subjected to heat. Studies have identified 

many products including anhydrous glucose molecules, acids and aldehydes and furan 

derivatives.
107-110

 Because these products arise from many parallel side reactions, the 

comprehensive degradation mechanism remains unclear. 

1,6-anhydroglucose compound, also known as levoglucosan, has shown to be 

obtained from the intra-molecular dehydration of one water molecule between C1 and C2.
100

 

There has been a number of studies pertaining to the production of levoglucosan.
111-115

 Sasaki 

et al.
116

 have reported good yields of levoglucosan (up to 32%) when glucose solution is 

exposed to high temperature steam (300-400 ºC) under 7MPa. Alternatively, Kabyemela et al. 

112
 have detected negligible amounts of levoglucosan when glucose is dehydrated in sub- and 

supercritical water ( 300-400 °C ,25-40 MPa). This discrepancy is attributed to the dominant 

production of other products including erythrose (A) and glycolaldehyde (B). These 

compounds are found to be obtained from retro-aldol condensation of glucose.
112 ,117-119

 Their 

further degradation will produce organic acids.
119 ,120

 Saito et al.
121

 have identified formic 

acid (C) and acetic acid (D) from glucose decomposition at 200-240 ºC and 15-20 MPa. In 

addition to these routes, sugar degradation into furan derivatives including HMF (E) and FA 

(F) has come under intense focus.
104 ,122-129

 Scientists have conducted kinetic and theoretical 

studies to examine this degradation pathway under variety of conditions: 

aqueous/organic/ionic solutions, with/without catalysts, under different temperature and 

pressure.
109 ,112 ,122 ,130-133

 A medium similar to e-liquid content was studied by Kuster et al.
134

 

who reported fructose decomposition into HMF in propylene glycol/water mixture (v:v = 

70:30 ) at 95 ºC.  
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Figure I 4-Glucose potential thermal decomposition pathways. A=Erythrose, 

B=Glycolaldehyde, C= Formic acid, D= Acetic acid 

 

The formation of furan derivatives and aldehydes is of particular concern due to their 

potential health risk. Aldehyde formation has been the center of studies throughout the past 

years.
70 ,135-138

 Scientists have shown that thermal degradation and oxidation of PG and VG 

generate carbonyl compounds.
70

 PG and VG are the carrier solvents so they represent around 

70 to 80% of e-liquid composition.
137

 The production of aldehydes from PG and VG is 

expected to surpass that from sugar. Therefore, it is interesting to study the formation of new 

family of group which is furan and particularly HMF and FA for their potential health effects. 
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E. Analytical method for HMF and FA assessment  

 This work presents a systematic study to assess the effect of sugar on aerosol 

composition and highlight its potential toxicity. A principal requirement for the analysis of 

HMF and FA is reviewing existing methods to define sample preparation strategies and 

measurement techniques. Table I 1represents the most utilized analytical techniques to study 

HMF and FA with brief explanation on sample preparation methods. Besides water-pipe and 

cigarette smoke, the majority of methods specific for HMF and FA detection have been 

reported notably in food. Historically, scientists have been interested in measuring HMF and 

FA to evaluate the quality of food processing and storage. However; over the past years the 

significant attention towards assessing HMF and FA has been attributed to their potential 

health concern. 

 

Table I 1-The most applicable methods for HMF and FA analysis 

                                                 
 

Matrix  Preparation Method 
Analytical 

Method
1
 

Reference 

Water-pipe 

smoke 

 

Glass fiber  filter, on which the smoke 

was collected, was spiked with 5-Chloro-

2 furaldehyde as internal standard, 

extracted by methanol/water (50:50, v/v)  

and agitated on a shaker 

 

 

RP-HPLC-

DAD 

 

Schubert et 

al. 
27

 

Cigarette 

Smoke 

 

Glass fiber filter, on which the smoke 

was collected, was spiked with ethyl 

laurate as internal standard, extracted by 

dichloromethane and agitated. 

 

    GC-FID 
Matsushima 

et al.
139

  

Honey 

Citrus Juice 

 

Sample was diluted, homogenized, 

filtered, derivatized with 2,4-

dinitrophenylhydrazine and concentrated 

using rotary evaporator. 

 

HPLC-

UV/Vis 

Coco et 

al.
140
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1
 RP-HPLC = Reversed Phase High Performance Liquid Chromatography, DAD = Diode Array Detector, 

GC = Gas Chromatography, FID=Flame Ionization Detector, UV/Vis= ultraviolet/visible Spectroscopic, 

MS=Mass Spectrometry, DHS= Dynamic Head Space, TDU= Thermal Desorption Unit 

 

 

Initially, scientists have based their work on classical spectrophotometric techniques 

in which HMF and FA absorbance were measured at 285 and 275 nm, respectively.
143 ,144

  

However, spectrophotometric procedures remain unspecific and time consuming. Instead 

scientists have adopted chromatographic techniques that allow more selective, reproducible 

and reliable analysis. Reversed phase-high performance liquid chromatography (RP-HPLC) 

coupled with ultraviolet/visible spectroscopic (UV/Vis) or diode array detector (DAD) has 

been commonly used.
145

 This method was utilized to detect HMF and FA among other 

furanic compounds in water-pipe smoke. On the other hand; some researches have reported 

that HMF quantification especially at low concentrations has been problematic due to 

interferences from compounds absorbing at the same working wavelength.
141

 Consequently, 

to improve the sensitivity and selectivity of RP-HPLC-DAD/UV method, a derivitization step 

with 2,4-dinitrophenylhydrazine was integrated to form FA and HMF derivative compounds 

with higher UV absorbance (375-365 nm).
140 ,146-148

 Moreover, mass spectrometry (MS) 

Food samples 

(i.e.  biscuits 

and jam) 

 

Sample was ground, homogenized, 

purified via solid-phase extraction and 

spiked with acrylamide-d3 as internal 

standard 

 

HPLC-

MS/MS 

Teixid´o et 

al.
127

  

Food samples 

(i.e.  biscuits 

and jam) 

 

Sample was ground, homogenized, 

purified via solid-phase extraction, 

derivatised with 

N,O-bis-trimethylsilyltrifluoroacetamide 

and spiked with furan-3-etinil-

trimethylsilane as internal standard. 

 

GC-MS 
Teixido et 

al.
141

  

Vinegar 

 

Sample was extracted via dynamic 

headspace purging, trapped on tenax 

tube, and thermally desorbed into column 

injector. 

 

DHS–

TDU–

GC/MS 

Manzini et 

al. 
142
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detector has been proposed for its sensitivity and most importantly structure identification 

potential.
141 ,149 ,150

 Scientists have coupled MS detector with both HPLC and gas 

chromatography (GC).
142 ,151 ,152

 The semi volatility and thermal stability of HMF and FA 

have permitted their analysis using GC. According to a comparison study conducted by 

Teixido et al.
127 ,141

, GC-MS can attain lower detection limit (12 ng g
−1

) than HPLC-MS/MS 

(133 ng g
−1

). In addition to MS, flame ionization detector (FID) coupled with GC has been 

utilized by Matsushima et al.
139

 to assess HMF and FA in cigarette smoke.  

Based on this literature review we decided to adopt GC-MS owing to its specificity, 

selectivity and sensitivity. The analysis of HMF and FA has encountered interferences from 

PG and VG peaks necessitating the development of solid phase extraction procedure. To the 

best of our knowledge, this is the first work to present a clean-up method for PG/VG matrix. 

Only one study has reported challenges associated with a broad peak of VG in ECIG aerosol. 

However no purification method was adopted because PG and VG did not co-elute with the 

analytes of interest.
153

 

 

F. Effects of e-liquid content and puffing topography on aerosol composition 

Scientists have hypothesized that e-liquid content, product design, and puffing 

topography can influence toxicant emissions.
60 ,154 ,155

 Talih et al.
65

 have reported a positive 

relation between nicotine e-liquid concentration and nicotine yield. Moreover, Kosmider et 

al.
137

 have shown that PG-based e-liquid and high battery input have generated higher yields 

of aldehydes compared to VG based e-liquid and low battery input.
137

  

Consequently, understanding how e-liquid composition and ECIG operation affect the 

production of HMF and FA is necessary to evaluate their potential impact.  
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G. Sucrose, fructose and glucose assessment  

The analysis of sugar has been carried out for years in a wide range of food items.
156-

163
 This has been extended to tobacco products to assess the impact of sugar compounds.

18 ,25 

,26
 Because the presence of sugar has shown to affect the sensory and chemical characteristics 

of both food and tobacco matrices, numerous analytical methods including GC and HPLC 

have been developed for the separation and quantification of different sugar compounds.
16 ,18 

,25 ,156 ,164-167
 The major drawback to adopting GC is the need to prepare volatile sugar 

derivatives because of the low volatility of sugar compounds. On another hand, HPLC 

generally entails simple sample preparation rendering it widely utilized.
 

The existing HPLC methods have incorporated several detection modes including 

refractive index (RI), evaporative light scattering detector (ELSD) and MS.
20 ,91 ,158 ,165 ,168 ,169

 

The use of RI and ELSD have revealed major limitations. RI demands control over 

chromatographic conditions because it is highly susceptible to changes in temperature, flow- 

rate and mobile-phase composition resulting in baseline instability.
170

 On another hand, 

ELSD shows poor linearity response to analyte concentration.
171

 Most importantly, both RI 

and ELSD are not selective and provide high minimum detectable limits.
172

 As a result, 

scientists have adopted the use of MS detector. Owing to its structure identification 

capabilities, robustness and sensitivity, MS has succeeded in addressing RI and ELSD 

limitations.
166 ,172 ,173

 Taking the advantage of MS, we introduce an HPLC method coupled 

with electrospray ionization mass spectrometry ESI-MS for the assessment of sucrose, 

glucose and fructose. The method is partially inspired by the work of Wan et al.
172

 with major 

variations in the choice of column and mode of ionization. Having optimized the method a 

number of commercial e-liquids were scanned for their sugar content. 
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CHAPTER II 

ANALYTICAL METHOD OPTIMIZATION AND 

VALIDATION 

 

In this chapter we elaborate the optimization of analytical procedure for HMF and 

FA assessment. When studying analytes in aerosols, a considerable attention is paid to three 

crucial stages: Aerosol generation and collection, sample extraction and purification and 

instrumental analysis. Aerosol generation and sampling were performed using customized 

puffing machine, sample preparation involved filter extraction, solid phase extraction 

procedure (SPE) and sample concentration and finally analysis was carried out via GC-MS 

method. 

 

A. Sampling 

A customized puffing machine at the American University of Beirut (AUB) was 

employed (Figure II 1). The machine is equipped with DC power supply and connected to a 

computer. The software program is used to control topography conditions. ECIG with a tank 

system is adopted because in this model the wick is short and the fluid easily accessible, and 

most importantly all the parts are easily disassembled which facilitated replacing liquids and 

cleaning the device between experimental conditions. The heating coil assembly of this ECIG 

model is typical of those found on the market, with overall coil dimensions of 1.8 mm 

diameter, 3.2 mm length, and 6 coil windings. Downstream the mouthpiece of the ECIG a 

quartz filter is placed in a filter holder to trap generated aerosols.  
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Figure II 1-A custom-designed digital puff production machine at AUB 

 

 

B. Sample Preparation 

1. Materials  

SPE cartridges (1000 mg/6 mL HyperSep SI) and quartz filters (Advantec, QR-100, 

47 mm) were procured from Thermo Scientific and Whatman International, respectively. 

HPLC-grade ethyl acetate, hexane, chloroform and acetonitrile, PG (99.5%), VG (99 - 

101%), and HMF analytical standard were obtained from Sigma Aldrich. FA and internal 

standard (5-chloro-2-furfural) were obtained from Absolute Standards. Glucose, sorbitol and 

sucrose were food grade products provided by the Faculty of Agricultural and Food Sciences 

at AUB. 

Method optimization is based on a systematic evaluation of all experimental 

conditions that can affect the recovery of the analyte. In every step, multiple variables were 

examined and optimum condition was determined based on recovery yields. The recovery 

was assessed using standard solutions of concentrations covering the lower limit of the 
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calibration curve (0.6-12 µg/mL) and by adding a constant amount of internal standard (4 

µg/mL). It was found that the recovery of IS was lower than that of HMF and FA, and as 

such it was excluded from the sample preparation procedure and added before GC-MS runs. 

For the quantification analysis, the correction for analytes loss during sample extraction and 

purification was counted for by adopting an extracted calibration curve. 

 

2. Filter Extraction 

An extraction procedure was developed by optimizing three parameters: choice of 

solvent, extraction volume and extraction time. HMF and FA are semi polar compounds and 

soluble in many solvents among which ethyl acetate and chloroform are common, have 

similar polarity to HMF and FA and are compatible with GC-MS.
174 ,175

 To evaluate the 

extraction efficiency, a quartz filter was placed in a glass vial (4 mL), spiked with HMF and 

FA standard solution (2 µg/mL) and extracted with 2 mL ethyl acetate or chloroform. The 

solution was sonicated for 30 min and finally injected into GC-MS. The recoveries of ethyl 

acetate and chloroform were 91% for HMF and 85 % for FA and 70 % for HMF and 50 % for 

FA, respectively. Ethyl acetate was chosen for its higher recovery yields. A volume of 2 mL 

was found to be sufficient to extract HMF and FA without causing an excessive dilution. 

Moreover, 30 min sonication was implemented because the recoveries of HMF and FA were 

comparable at three tested durations (30, 60 and 90 min). 

 

3. Sample Concentration 

Sample concentration is a critical requirement to increase HMF and FA 

concentrations. Our aim is to concentrate the sample down to 0.5 mL. Nitrogen evaporator 

was employed and both flow rate and temperature of evaporation were investigated. The 

vapor pressures at 25 ºC of HMF, FA and ethyl acetate are 5.28X10
-3

, 2.21 and 93.2 mm Hg, 
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respectively. Consequently, sample concentration was carried out at atmospheric room 

temperature where HMF and FA are relatively less volatile than ethyl acetate. 

To determine the optimal flow rates, standard solutions (0.5 µg/mL) were prepared in 

2 mL ethyl acetate and concentrated down to 0.5 mL at 15 and 5 L/min. The recovery at 15 

L/min was found to be less than 60% for both compounds compared to 100 and 90 % for 

HMF and FA, respectively, at 5 L/min. Consequently; the slowest flow rate of 5 L/min was 

selected.  

 

4.  Solid phase extraction procedure  

In the initial stage of the sample preparation, we evaluated the severity of the matrix 

and tested for interferences from PG and VG. Aerosol generated from glucose standard 

solution prepared in PG/VG matrix were collected on a filter, extracted and injected into GC-

MS. The chromatogram was saturated with two broad peaks of PG and VG overlapping with 

HMF and FA. Therefore minimizing the matrix interference necessitates developing a novel 

sample purification procedure. There are different types of clean-up techniques among which 

solid-phase extraction is the most applicable. 

The general procedure starts by conditioning the SPE cartridge, loading the sample 

and then eluting analytes of interest. The conditioning step was performed by washing the 

cartridge with 10 mL hexane. This step is recommended by manufacturer‘s instructions to 

activate the functional groups on silica surfaces. Subsequently sample (0.5 mL) was loaded 

onto the SPE cartridge. Elution was performed using a suitable mobile phase composition 

that was investigated starting with ethyl acetate, the solvent used for filter extraction. 

Ethyl acetate (10 mL) was tested on an SPE cartridge loaded with HMF and FA 

standard solutions which were prepared in PG/VG (70/30 v/v) solution. This ratio is selected 

for its prevalence in ECIG e-liquids. Subsequently, the collected sample was injected into 
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GC-MS. A major defect in using ethyl acetate is its tendency to dissolve the silica material. 

Other solvents were tested and only chloroform was found to be suitable. Nevertheless, a 

recovery in a range of 50-70 % was obtained by chloroform in filter extraction procedure. 

Thus to improve the recovery, a mixture of chloroform and acetonitrile was assessed.  

It is important to ensure that acetonitrile volume is properly configured to enhance the 

elution recovery of HMF and HA without eluting PG and VG. Three different mixtures were 

prepared (chloroform: acetonitrile): 9:1, 8.5:1.5, and 8:2 mL. Standard solutions were 

transferred into conditioned SPEs and eluted using assigned mixtures. The recovery yields for 

(9:1), (8.5:1.5), (8:2) mixtures were 69, 92 and 87 % for HMF and 30, 70 and 65 % for FA, 

respectively. The highest yield was obtained by chloroform: acetonitrile mixture (8.5:1.5).  

Further, the capacity of SPE cartridge was tested. The capacity of SPE refers to the 

amount of interfering compounds (PG and VG in this case) that can be retained by the SPE 

without breakthrough. To mimic experimental conditions, the capacity of the SPE was tested 

in relation to the amount of aerosols trapped on quartz filters which is in turn proportional to 

the PG/VG content of the aerosol. As such, glucose solution prepared in PG/VG was vaped 

and filters with different aerosol loadings (gravimetrically measured) were produced. The 

filters were extracted, purified and injected into GC-MS. It was noticed that PG/VG 

interference was removed by the SPE cartridges when the filter load was equal or below 100 

mg. At higher filter loads, PG/VG interference started to appear.  

Taken together, conditioning was performed using 10 mL hexane, elution was carried 

out by chloroform: acetonitrile mixture (8.5:1.5) and filter load was up to 100 mg. 

 

5. Sample concentration 

After completing SPE procedure a nitrogen evaporation step is essential to 

concentrate the sample down to 0.5 mL. This step is crucial because HMF and FA are 
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expected to be present at low amounts in the aerosol of ECIG. The evaporation was set at 

room temperature under a nitrogen flow of 5 L/min. Standard solutions were prepared in 10 

mL chloroform: acetonitrile (8.5:1.5) and concentrated down to 0.5 mL. The recovery yields 

were 98 and 90% for HMF and FA, respectively. 

Having optimized all the sample preparation procedure, the sample is ready for GC-

MS analysis. 

 

C. Instrumental analysis 

The analysis of HMF and FA was accomplished by Thermo-Finnigan Trace GC-Ultra 

Polaris ITQ 900 MS coupled with AS 3000 II autosampler. Chromatographic separation 

occurred on a TG-5MS column (30m × 0.25 mm, 0.25 μm film thicknesses). Electron impact 

ionization (EI) with nominal electron energy of 70 eV was used. The carrier gas was helium 

of 99.999% purity with 1 mL/min flow rate. Injection mode was splitless and set at 200 ˚C. 

The oven program was as follows: initial temperature of 40 ˚C was held for 1 min, ramped at 

30 ˚C/min to 80 ˚C, ramped at15 ˚C/min to 150 ˚C, and then ramped at 20 ˚C/min to 250 ˚C. 

The analytes were identified by their mass spectrum in which HMF, FA and IS have a 

relatively intense molecular ion with mass-to-charge ratio (m/z) of 97, 96 and 129, 

respectively. The linearity was evaluated by building an 8-point calibration curve in the range 

from 0.6 to 12 µg/mL, good linearity was observed with correlation coefficients (R
2
) >0.997 

for both HMF and FA. 

As the application of GC-MS will prone the sample to high temperatures, it is 

necessary to investigate the stability of sugar compounds under the optimized temperature 

profile. Glucose and sucrose solutions, the potential sources of HMF and FA, were injected. 

No detectable amounts of HMF and FA were observed ensuring the absence of interference 

and that these sugars will not produce HMF and FA inside the GC. 
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D. Method validation 

Validation is an integral part of quality control (QC) and quality assurance (QA) 

practices to judge the reliability, consistency and accuracy of the method. The key criteria for 

this evaluation are: linearity, limit of detection, limit of quantification, recovery and 

repeatability. Because QC and QA measure the effectiveness of sample preparation, all the 

standard solutions are prepared in PG/VG (70/30) to mimic the actual sample. 

 

1. Linearity 

Linearity evaluation verifies that HMF and FA are found in a range where their 

response is linearly proportional to their concentration. It is commonly judged by examining 

the correlation coefficient of calibration curve. In this study an extracted calibration curve is 

used, as opposed to the direct calibration curve, to correct for the possible loss of analytes 

during extraction. This step is necessary because the IS used failed to have similar extraction 

recoveries to HMF and FA and was thus spiked into the sample just prior to GC analysis.  

Practically, quartz filters spiked by different amounts of HMF and FA standard 

solutions were extracted, purified and blown down under nitrogen flow to yield an extract 

concentration ranging between 0.5 and 40µg/mL. These extracts were analyzed using GC-MS 

after addition of IS at a constant amount (4µg/mL). 

The relationship between the ratio of the analytes signal to the IS signal and analyte 

standard concentrations was found to be linear for the whole examined range with correlation 

coefficient >0.99 for HMF and FA as shown in Figure II 2. 
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Figure II 2-Extracted calibration curves of FA and HMF 

 

2.  Limit of detection 

Limit of detection (LOD) is the lowest concentration of analyte that can be detected 

but not necessary quantified. Based on the standard deviation response and slope, LOD is 

expressed as following: 

    
  

 
  

Where σ is the standard deviation of the ratio of the analytes signal to the IS signal of seven 

replicates of analytes prepared at a low concentration and s is the slope of the extracted 

calibration curve. LOD analysis was carried out using seven replicate extractions of 2 µg/mL 

HMF and FA. The results have shown that detection limits of HMF and FA are 0.05 and 0.2 

µg/mL, respectively. 

 

3. Limit of quantification 

Limit of quantification (LOQ) is the lowest concentration of analyte that can be 

measured with an acceptable level of accuracy and precision. Based on the standard deviation 

response and slope, LOQ is expressed as following: 
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The quantification limits of HMF and FA were analyzed using seven replicate extractions (2 

µg/mL). The results have shown that LOQ is equal to 0.1 for HMF and 0.7 µg/mL for FA. 

 

4. Repeatability 

Repeatability describes the closeness of agreement between a series of measurements 

obtained under the same operating conditions (one operator, same equipment and on the same 

day). It is expressed by the percent relative standard deviation (%RSD) of analytical results 

obtained from a minimum of five measurements at three different concentrations (low, 

medium and high). The acceptance criteria are based on type of analysis, complexity of 

matrix and the level of tested concentration.  

The results of six replicate standards per three concentrations (2, 5 and 40 µg/mL) 

revealed %RSD ˂10 % for FA and <15% for HMF. 

 

5. Recovery 

 High recovery of HMF and FA from PG/VG matrix is an important characteristic of 

sample preparation procedure. The recovery is the ratio of extracted concentration obtained 

from sample treated according to the whole extraction procedure to that of a sample of same 

concentration directly analyzed on GC-MS . It is assessed using six extraction measurements 

over two concentration levels covering the working range: 5 and 40 µg/mL. The recovery 

was found to be equal to 90% for HMF and 60% for FA. 

Consequently, all the QC and QA requirements are fulfilled and the method is ready 

for measuring HMF and FA in the aerosol of ECIG. 
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CHAPTER III 

DETECTION OF HMF AND FA IN AEROSOL OF 

ELECTRONIC CIGARETTE 

 

Exposure to HMF and FA raises several health concerns. The potential mutagenic 

activity of HMF is attributed to one of its major toxin metabolite known as 5-

sulfoxymethylfurfural.
40 ,65

 As for FA, clear evidence for carcinogenic activity and 

histopathological changes in the respiratory epithelium of mice have been reported.
37 ,176

 

Because HMF and FA are pyrolytic products of sugar compounds we were interested in 

investigating their formation upon vaping flavored solutions. 

Tobacco manufactures have never fully or accurately disclosed the name and 

concentration of each additive. To suppress regulatory legislation and public pressure, they 

claim the use of additives approved as safe by U.S. FDA and FEMA. However, this safety 

approval argument is misleading because the certification is provided for ingredients never 

intended to be burnt.
7 ,177

 The rise of ECIG in an environment almost free of regulations has 

facilitated the rapid release of high number of flavored e-liquids. This has made the research 

difficult because by the time the work is complete, the studied product might become 

obsolete.
76 ,178

 The situation has become more challenging in the presence of ECIG with an 

open system that allows the user to add any component to the e-liquid i.e. marijuana and 

fructose syrup.
179-182

 Nevertheless, we have learned that major tobacco companies used to add 

glucose, fructose and sucrose in the production processes of conventional tobacco products.
7
 

In addition to that, kubica et al.
91

 have reported the presence of sucrose in various flavored e-

liquids including chocolate, tobacco, cherry and grape. They have suggested that sugar 

compounds can be intentionally added as additives or extracted along with nicotine as they 
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are naturally found in tobacco leaves. Accordingly, in this work we prepared standard 

solutions of glucose, sucrose and sorbitol in PG/VG to assess the formation HMF and FA 

under various battery input and puffing topographies.  

 

A. Materials and methods 

Glucose, sorbitol and sucrose used are food grade products provided by the Faculty of 

Agricultural and Food Sciences at AUB.  

 

B. Liquid Preparation 

Stock solutions of sucrose, glucose and sorbitol in distilled water were prepared with 

345, 442 and 243 (mg/mL) concentrations, respectively. Subsequently, 0.5 mL of each stock 

solution was added to 10 mL of the PG/VG mixture (70/30). The percentage of sugar in the 

prepared liquids (1.01-1.91% by mass, equivalent to 11-21 mg/ml) was chosen to be in the 

range of reported concentrations found in commercial liquids (1-4% by mass).
76

 Four e-

liquids concentrations of 0.03, 0.25, 0.63, 1.23 % by mass were prepared. All the prepared 

liquids were sonicated for 2 h to ensure homogeneity before being used for aerosol 

generation. 

 

C. Aerosol Generation and Sampling 

Aerosols were generated from a custom-designed digital puff production machine at 

AUB.
65

 A commercially available ECIG (VaporFi PLATINUM II Tank (VP)) was used.
183

 

To investigate potential effects of power level, aerosols were generated at 4.3 and 10.8 W, 

representing a typical and higher than average power input (the manufacturer lists an 

operating range of 3 to 15 W for this device).
184

 In addition to the power, the effect of puff 

duration was assessed by applying two puff durations (4 or 8 s). Moreover, the effect of 



 

31 

sucrose concentration was studied at constant power of 4.3 W during two puff durations (4 or 

8 s). The electrical resistances of the ECIG atomizers, which were measured before and after 

each use using a standard laboratory ohmmeter at 22 °C were found to be 2.3 ± 0.11 Ω.  

The aerosols were generated at a constant puff velocity of 1 L/min and an inter puff 

interval of 10 s. The produced aerosols were drawn from the mouth end of the ECIG device, 

and collected on a quartz fiber filter (Advantec, QR-100, 47mm). To control for potential 

interactions with ECIG age and ECIG manufacturing variability, three ECIG devices of the 

same manufacturer and model were used in this study, and the experimental condition orders 

were randomized. Every experimental condition was conducted with each of the ECIG 

devices, and the results of the three atomizers were averaged for a given experimental 

condition.  

 

D. Analytical Procedure 

1. Filter Extraction 

The quartz filter loaded with ECIG aerosols was transferred to a glass vial (4mL) and 

subsequently extracted with 2 mL of ethyl acetate after 30 min sonication. The filter was 

removed and the extract was concentrated at room temperature under nitrogen flow (5 L/min) 

to 0.5 mL. 

 

2. SPE Clean-up Operating Procedure 

The clean-up method was carried out using the optimized SPE procedure. The 

concentrated sample was loaded on the conditioned SPE cartridge. The elution was achieved 

using a mixture of chloroform /acetonitrile : 8.5/1.5 mL. Subsequently, the collected solution 

was concentrated down from 10 mL to 0.5 mL under nitrogen flow (5 L/min). Prior to GC-

MS system injection, the sample was spiked with IS (4 µg/mL). 
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3. Gas Chromatography-Mass Spectrometry (GC-MS) conditions 

The GC-MS analysis was achieved according to the optimized temperature profile. 

The initial temperature was 40 ˚C, held for 1 min, ramped at 30 ˚C/min to 80 ˚C, then at 15 

˚C/min to 150 ˚C, and finally at 20 ˚C/min to 220 ˚C. The quantitative analysis was done 

using selected ion mass (m/z = 97, 96 and 129 for HMF, FA, and IS, respectively). 

 

E. Quality Control and Quality Assurance 

Validating the analytical method is fully elaborated in chapter II. The maximum 

%RSD of each of the following concentrations: 5, 40 and 120 µg/mL was 15 and 3% for 

HMF and FA, respectively. In addition, the recovery of the method at 5 and 40 µg/mL was 

90% for HMF and 60% for FA. LOD was 0.05 and 0.2 µg/mL for HMF and FA, respectively. 

LOQ was 0.1 and 0.7 µg/mL for HMF and FA, respectively. The quantitative analysis was 

carried out using extracted calibration curve. The linearity is obtained in the range of 0.1-100 

µg/mL for HMF and 0.8-20 µg/mL for FA. The corresponding regression coefficients are 

higher than 0.995 every time the extracted calibration curve is prepared. In addition to that, to 

validate the method on a commercial ECIG matrix, a flavored Vapor Fi was selected and 

spiked with known concentration of sucrose (13 mg/mL equivalents to 1.23%) comparable to 

one of the prepared standard solution. Three replicates solutions were vaped at 5.0 W during 

4 s puff duration.  

 

F. Results 

The effect of the power, puff duration, and sugar concentration on HMF and FA 

yields was assessed by a two tailed distribution and heteroscedastic t-test. 

Both HMF and FA were reliably detected in the generated aerosols. Figure III 1 and 

Figure III 2 show the average levels of HMF and FA per mg of total particulate matter 
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(TPM). FA yields were considerably lower than HMF under all conditions. Prior to vaping, 

all liquids showed no detectable quantities of furans. Battery power output has revealed a 

significant effect on the TPM normalized yields of HMF generated from sucrose (p <0.01) 

and glucose (p <0.02). In particular, 4.3 W generated higher HMF concentrations than 10.8 

W. FA concentrations appear to show an opposite trend, with greater power resulting in 

larger yields; however the large variances in repeated measures rendered the differences 

statistically insignificant, except for the glucose condition with 8 s puff duration at 10.8 W.  

 

 

Figure III 1-Average HMF yield normalised by TPM (µg/mg) in aerosols generated 

from laboratory-prepared sucrose, glucose and sorbitol liquids vaped at 4.3 W (a) and 10.8 W 

(b) and at 8 and 4 s. * and ** indicate significant difference from the unflavoured liquid at  

p<0.05 and p<0.01, respectively. N=3 measurements for each condition. Error bars represent 

standard deviation of three different measurements. FA, furfural; HMF, 5-

hydroxymethylfurfural; PG, propylene glycol; TPM, total particulate matter; VG, glycerin 
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Figure III 2-Average FA yield normalised by TPM (µg/mg) in aerosols generated 

using sucrose, glucose and sorbitol-containing liquids vaped at 4.3 W (a) and 10.8 W (b). * 

indicates significant difference from theunflavoured liquid at p<0.05. N=3 measurements for 

each condition. Error bars represent standard deviation of three different measurements 

FA,furfural; HMF, 5-hydroxymethylfurfural; PG, propylene glycol; TPM, total particulate 

matter; VG, glycerin 

 

Relative to the unflavored solution (PG/VG), sucrose and glucose solutions had 

greater HMF and FA yields, while the sorbitol solution showed similar yields to the 

unflavored solution. At 4.3 W (Figure III 1a), the differences in HMF of sucrose and glucose 

when compared to the unflavored solution are significant, while those for sorbitol are not. 

Similar trends were observed at 10.8 W (Figure III 1b), however HMF yields for the sucrose 

solution are not significantly different (p>0.05) than the unflavored condition due to the large 

variance in repeated measures. In a similar comparison, sorbitol has produced no significant 

change in FA (Figure III 2), while the sucrose and glucose conditions appear to have greater 

yields. Only the glucose solution vaped at 8 s puff duration and 10.8 W exhibited a 

statistically significant difference from the unflavored solution. Unlike power, vaping at two 

puff durations (4 s and 8 s) have generated similar levels of furans., Furthermore, HMF and 

FA yields in ECIG aerosol were tested in relation to varying sucrose content (0 – 1.49%) at 

the two puff durations (4 and 8 s) both HMF and FA yields show a significant correlation 
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with sucrose concentration at both puff durations (p < 0.01 and p < 0.001 at 4 s, and p <0.01 

and p <0.001 at 8 s for HMF and FA, respectively) (Figure III 3). 

 

 

Figure III 3-Average level (µg/mg) of HMF (a) and FA (b) in the aerosol generated 

from different concentrations of sucrose in the e-liquid. Error bars represent standard 

deviation of three different measurements- 

 

Chromatograms of the spiked commercial e-liquid showed no interferences 

preventing the detection and quantification of furan compounds. In addition to that, aerosols 

average concentrations (ng/mg) of HMF (4.26 ± 1.15) and FA (191.47 ± 62.55) were 

comparable to what was reported for the standard solutions.  

 

G. Discussions 

The thermal degradation of saccharide molecules has been the center of focus for 

years owing to its application in food science and renewable energy production.
125 ,185 ,186

 To 

gain insights on reaction pathways, glucose molecule is chosen as a representative because 

sucrose hydrolyzes into glucose and fructofuranosyl cation which in turn thermally 

decompose into furanic derivatives.
186

 The theories that have been proposed to explain the 

decomposition reactions can be grouped into two schools: (1) the acyclic conversions (Figure 

III 4)and (2) the ring system transformations (Figure III 5).
122 ,185 ,187 ,188
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Figure III 4- Glucose thermal degradation into HMF via open chain transformation 
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Figure III 5- Glucose thermal degradation into HMF via cyclic chain transformation 

 

At first, the open chain mechanism has generally been adopted as presented in Figure 

III 4. The decomposition pathway includes the loss of three water molecules passing through 

3-deoxyglycosulose intermediate.
123 ,124 ,189-191

 Recent studies, however , have shown that 

glucose molecules are dominantly present in their cyclic conformations owing to the high 

stability of ring structures.
104 ,108

 Figure III 5 shows dehydration of glucose molecule 

proceeding with intact ring structures through the formation of fructofuranose 

intermediate.
133 ,192 ,193

 Besides open chain and cyclic presentation; the reaction pathways of 

HMF and FA have been thoroughly discussed. Saccharide molecules possess multiple 

hydroxyl groups that drive many degradation pathways.
107 ,109 ,194

 It has shown that thermal 

decomposition of saccharides produce more than 37 analytes coming from many side 

reactions.
107 ,109 ,110 ,192-197

 Consequently, driving a definite reaction pathway for HMF and FA 

formation is very complex.  
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Scientists have proposed that protonation of C2-OH favors the formation of stable 5-

member ring intermediate that leads to HMF (Figure III 6).
198

 Protonation of other activation 

sites has shown to form products of condensation (Figure III 7) and mutarotation (Figure III 

8). Since fructose also thermally decomposes into HMF, there is another reaction pathway 

that includes glucose isomerization into fructose (Figure III 9). 

FA formation has been reported to take place via two mechanisms. The degradation of 

HMF and the degradation of glucose (hexose) into arabinose (pentose) as rate determining 

step for FA formation (Figure III 10).
199

 
133

 The two reaction pathways are proven to be 

temperature dependent.
125 ,199 ,200
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Figure III 6-Cyclic mechanism for glucose conversion into HMF 
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Figure III 7-Glucose condensation into cellobiose 
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Figure III 8-Glucose mutarotation conversion 
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Figure III 9-Cyclic mechanism of glucose into HMF through fructose isomerization 
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Figure III 10-Cyclic mechanism of glucose into FA 

 

 

Our results show that HMF and FA are formed when sucrose and glucose containing 

e-liquids are vaped. Minimal amounts, however, were produced with sorbitol-containing 

liquid. Compared to glucose and sucrose, sorbitol is a sugar alcohol that lacks the carbonyl 

functional group therefore when thermally decomposed, sorbitol produces sorbitan.
201

 (Figure 

III 11).  
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Figure III 11- Thermal decomposition of sorbitol 

 

High concentrations of HMF were produced at lower battery power. Kinetic studies 

have shown that at temperature exceeding 200 ºC HMF yields decreases. Since high battery 

power is related to high temperature, glucose at 10.8 W is further decomposing into 

secondary products. Interestingly, this finding complicates the commonly held notion that 

lower power output leads to lower heating filament temperatures, and therefore lower 

emissions of toxicants which are formed by thermal degradation, such as volatile aldehydes. 

65 ,137
 Regarding FA, minimal amounts were produced at low power; this favors the formation 

of FA via HMF degradation. 

Variances in repeated measures of HMF and FA were far greater at higher power 

conditions. Such variability may have been induced by occurrence of hot spots (dry puff) on 

the heating element where contact with the liquid-supplying wick was poor. These variations 

are comparable to those previously observed with aldehydes in ECIG aerosols.
70,71 ,202-204

 

HMF and FA yields were also dependent on the initial sucrose concentration. 

However, the non-linear correlation between sucrose and the furan products (HMF and FA) 

indicates that the mechanism of formation of furans is complex.
200

 So, in addition to the 

initial sucrose concentration, the degradation of sugar might be influenced by factors like the 

condition of the coil, the maximum temperature reached during its activation, and the 

multistep mechanism of furan formation. 

Considering the full range of the aerosol furan content independent of the power, the 

puff duration, and the sugar type and concentration, the exposure level per puff of ECIG was 
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compared to the aerosol levels in tobacco cigarette and water pipe as shown in Table III 1. It 

is found that ECIG users are exposed to HMF and FA levels similar to the ones reported for 

combustible cigarette and to the lower limits of water-pipe smoke.  

 

Table III 1-The range of HMF and FA aerosol concentrations per puff in ECIG, tobacco 

cigarette and water pipe 

ECIG= electronic cigarette, CIG=cigarette, WPS=waterpipes 

 

This chapter focuses on assessing the emission of toxic furans from sweet flavored 

ECIG solutions. Vaped under different conditions, the levels of furans have been found to be 

significantly different from the PG/VG base solutions and correlated with battery power 

output and sugar concentration. Surprisingly, no significant difference in yields was observed 

between the 4 s and 8 s puff durations. Per-puff emissions of HMF and FA from ECIGs using 

sweetened solutions were comparable to those found in cigarette and water-pipe smoke, 

suggesting that sugar based additives in ECIG solutions be regulated. 

 

. 

 

 

  

 ECIG CIG WPS References 

Sugar content (% by mass) 0.03-1.91 0.21-22.09 50-70 

 

   This study, 
27

 

 

HMF (µg/puff) 0.07-19.1 0.0-11 14.1-364.3 

 

   This study, 
27 ,139

 

FA (µg/puff) 
 

0.01-2.6 

 

0.0-2.9 

 

0.2-2.3 

 

This study, 
27 ,139
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CHAPTER IV 

ASSESSMENT OF SUGAR IN E-LIQUIDS 

 

Traditionally, sugar analysis has received significant attention in food industry to 

evaluate sensory and chemical characteristics of food products along with providing the 

customer with nutritional information of sugar intake.
205,156

 Although numerous analytical 

approaches have been proposed, scientists have continued to design new methods that can be 

easily adapted for sugar routine analysis.
159 ,167 ,206

 Most of the established methods are based 

on HPLC separation.
156

 However, the main drawbacks of using HPLC reside in the low 

sensitivity of the generally adapted detectors i.e. RI and ELSD.
173

 While MS is more 

powerful, reproducible and sensitive detector, few studies have found to couple HPLC with 

MS.
91 ,166

 In this work we present an optimized LC-ESI-MS method for the rapid examination 

of sucrose, glucose and fructose. LC-ESI-MS is the first time to the best of our knowledge to 

be applied on commercial flavored e-liquids. Sixteen samples were tested for their sugar 

content and subsequently those containing sugar compounds were vaped to evaluate HMF 

and FA formation. The analysis of furanic compounds was completed according to SPE-GC-

MS method. 

 

A. Method Optimization and Validation 

1. Chemicals 

Sucrose, glucose and fructose are food grade provided by the Faculty of Agricultural 

and Food Sciences. Salicylic acid (internal standard) and ammonium acetate were obtained 

from chemistry department at AUB. HPLC grade Methanol was purchased from Sigma 

Aldrich. 
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2. Sample Preparation 

This method entails minimal sample preparation. Because PG and VG eluted before 

sugar compounds we switched the effluent at the beginning of the run into the waste. 

Subsequently after discarding PG and VG, the effluent from the column was directed into MS 

.This has allowed the protection of detector from high concentrations of solvent.  

 

3. HPLC-MS Conditions 

The LC system consisted of a four-channel binary pump, autosampler and 

temperature-controlled column compartment from the Agilent 1100 series. Analysis was 

performed with MS (ESQUIRE 3000 PLUS,  Bruker, Germany) equipped with ESI source 

operating in the negative mode. High purity nitrogen was employed for nebulization. 

Chromatographic separation was obtained on Aminex HPX-87H (300 × 7.8 mm) column 

operating at 40ºC and isocratically at 0.3 mL/min. The selection of mobile phase is critical to 

ionize the analytes. A combination of 20% ammonium acetate (10mM), 8 % methanol and 

72% water was found to initiate the ionization of sugar compounds. The injection volume 

was 20 µl. The optimal MS settings were as follows: temperature; 350 °C, nebulizer nitrogen 

gas pressure; 30 psi and flow; 8 L/min. Under those conditions, well resolved peaks of IS, 

sucrose, glucose and fructose were obtained as shown in Figure IV 1. Because glucose and 

fructose are diastereomers and sucrose is a combination of the two, they have shared the same 

pseudo-molecular and fragmentation ions. Therefore peaks identification was based on the 

difference in retention time. 
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Figure IV 1-Total ion chromatogram of (1) internal standard, (2) sucrose, (3) glucose 

and (4) fructose 

 

4. Standard Solutions 

Stock solutions with 50 μg/mL concentrations were prepared by dissolving 

appropriate amounts of sucrose, glucose and fructose. Calibration solutions were established 

in PG/VG matrix to obtain concentrations within the range of 5-38 μg/mL. The internal 

standard was kept at 5 µg/mL. Solutions were sonicated for homogeneity and every week 

new solutions were prepared. 

 

B. Quality Control and Quality Assurance 

1. Linearity 

Linearity evaluation verifies that sugar compounds are found in a range where their 

response is linearly proportional to their concentration. It is judged by examining the 

correlation coefficient of calibration curve. In this study a direct calibration curve is used 

where IS is added before injection to correct for the possible loss of analytes during HPLC 

run.  

A six-point calibration curve was constructed using sugar standard solutions. The 

relationship between the ratio of the analytes signal to the IS signal and analyte standard 

concentrations was found to be linear for the whole examined range with correlation 

coefficient >0.996 for all analytes as seen in Figures IV 2, 3,4 
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Figure IV 2-Calibration curve of sucrose 

 

 

 

Figure IV 3-Calibration curve of glucose 

 

 

 

Figure IV 4-Calibration curve of fructose 
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2. Limit of detection 

Limit of detection (LOD) is the lowest concentration of analyte that can be detected 

but not necessary quantified. Based on the standard deviation response and slope, LOD is 

expressed as following: 

    
  

 
  

Where σ is the standard deviation of the ratio of the analytes signal to the IS signal of 

seven replicates of analytes prepared at a low concentration and s is the slope of the extracted 

calibration curve. LOD analysis was carried out using seven replicate extractions of standard 

solutions in PG/VG matrix (10 µg/mL). The results have shown that a detection limit of sugar 

is 1.5 µg/mL. 

 

3. Limit of quantification 

Limit of quantification (LOQ) is the lowest concentration of analyte that can be 

measured with an acceptable level of accuracy and precision. Based on the standard deviation 

response and slope, LOQ is expressed as following: 

    
   

 
 

The quantification limit of sugar was analyzed using seven replicate extractions (10 µg/mL). 

The results have shown that LOQ is equal to 5 µg/mL. 

 

4. Repeatability 

Repeatability describes the closeness of agreement between a series of measurements 

obtained under the same operating conditions (one operator, same equipment and on the same 

day). It is expressed by the percent relative standard deviation (%RSD) of analytical results 
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obtained from a minimum of five measurements at three different concentrations (low, 

medium and high). The acceptance criteria are based on type of analysis, complexity of 

matrix and the level of tested concentration.  

Within-day precision was estimated by replicate (n=6) analysis of standards at three 

concentrations (5, 10 and 20 μg/mL). %RSD obtained was ˂4 % at all three concentrations. 

 

C. Sample Analysis 

Sixteen commercial e-liquids categorized under sweet flavorings were procured from 

different brands Table IV 1. No information regarding the sugar content was found. All e-

liquids were analyzed at a 20-fold dilution in deionized water.  

  



 

52 

Table IV 1-List of commercial sweet flavored e-liquids analyzed for sugar content 

 

 

 

 

 

 

 

 

 

 

 

 

D. Result and Discussion 

An HPLC-ESI-MS method was optimized to ascertain the sugar content of sixteen 

sweet flavored e-liquids. Ionization of sugar compounds was achieved on aminex HPX-87H 

column using a combination of 20% ammonium acetate (10mM), 8 % methanol and 72% 

water as an optimized mobile phase. 

Results have revealed that out of the sixteen studied samples Carnival Cotton Candy 

flavorant has shown to contain 320 µg/mL glucose and 380 µg/mL fructose while Creme 

Anglaise and Welsh Taffi have shown detectable amounts of glucose.   

Cotton candy flavored e-liquid was further analyzed for the formation of HMF and 

FA under variable battery input (4.3 and 10.8 W) and at constant puff duration (4 s). Filters 

loaded with collected aerosols were extracted, purified and analyzed according to the SPE-

GC-MS method. HMF and FA were detected but not quantified. This further proves that e-

liquids containing sugar can produce HMF and FA when vaped. The latter were only detected 

Name Brand 

Welsh Taffi Decadent Vapours 

Charon Liquorice MEDUSA Juice 

Honey Bee E-Juice Juishy 

Swedish Fish Emporium Vapour 

Coffee with Cream & Sugar E-Liquid the alchemist scupboard 

Sweet Tooth AVAIL 

Fruit Sweetener Vapor fi 

Flavor enhancer Vapor fi 

Havana Rum Vapor fi 

Root Beer Vapor fi 

Carnival cotton candy Vapor fi 

Marshmallow Vapor fi 

Double Espresso Vapor fi 

Energy drink Vapor fi 

Creme Anglaise Decadent Vapours 

NomNom CarpeDiemVapor 
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and not quantified in the case of cotton candy because the percentage of sugar in cotton candy 

(0.02%) is at the lower limit of the investigated sugar range in this study (0.03-1.26 %).  

This work has presented LC-ESI-MS method for the rapid assessment of sugar 

compounds in e-liquids.  Sucrose, glucose and fructose were successfully separated without 

interferences from PG/VG matrix. The evaluation of limited number of samples has 

hypothesized that the addition of sugar compounds in e-liquids might be a common practice 

as has been in conventional tobacco products. It is important to note that a complete 

screening of all sweet flavors for sugar content and the latter analysis for HMF and FA 

production was not possible because of the huge number of flavor varieties available. Of the 

16 analyzed flavors, sugar was present in three products. The latter emphasizes the need for 

tobacco companies to clearly label the ingredients of the additives used. 
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CHAPTER V 

CONCLUSIONS 

 

In this study we were concerned about the influence of sugar compounds on aerosol 

content and plausible toxicity. Sugar compounds might be intentionally added as additives or 

derived from the extraction process of nicotine. The thermal degradation of sugar into HMF 

and FA has gained our interest due to their potential toxicological impact. We have optimized 

and validated two analytical methods: SPE-GC-MS and LC-ESI-MS for furanic and sugar 

compounds analysis, respectively. The assessment of HMF and FA has been undertaken in a 

systematic approach to understand the effect of variable factors including various vaping 

topographies (battery input and puffing topography) and different type and concentration of 

sugar compounds. To isolate the effect of design features, three atomizers of the same type 

were used. Manipulating these parameters is critical to understand to what extent e-liquid 

ingredients contribute to the aerosol. Similar systematic approach has been so far applied 

only to nicotine and aldehydes. Unlike nicotine, HMF and FA yields were not influenced by 

puff duration. Additionally, studying the effect of battery input has revealed that the positive 

relation between power and toxicant yield is not always valid. Low level of HMF was 

observed at high power compared to that at low power. On another hand, this finding has 

supported the fact that at high battery input, more heat is produced favoring the further 

decomposition of HMF into FA. With respect to the effect of e-liquid precursor, it was found 

that the choice of sorbitol does not raise health concern compared to sucrose and glucose. 

Moreover, adding sugar compounds in a percentage ˂ 0.02% is recommended where 

negligible amounts of HMF and FA are formed.  

Inclusion of additives is part of an overall marketing strategy that has heavily served 

to promote youth initiation. The scientific community has acknowledged the potential health 
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risk associated with the presence of additives and has been working on providing regulatory 

bodies with enough scientific evidence.  
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