AMERICAN UNIVERSITY OF BEIRUT
 UNDERGRADUATE CAPSTONE PROJECT
 IN
 LANDSCAPE ARCHITECTURE
 SUBMITTAL FORM

LIFELANE

by

LIE ZEINOUN

LDEM 242 - Advanced Design - 6 Credits
 Spring 2015-2016
 Capstone Project Coordinator: Yaser Abunnasr

Primary Advisor:
Tehran Madani
Secondary Advisors
Yaser Abunnasr, Imad Gemayel

Approved by:

Dr.Yaser Abunnasr, Assistant Professor
Department of Landscape Design and Ecosystem Management

AMERICAN UNIVERSITY OF BEIRUT

THESIS, DISSERTATION, PROJECT RELEASE FORM

Student Name:

Master's Thesis
Master's Project
Doctoral Dissertation
Cap stone Project
Х I authorize the American University of Beirut to: (a) reproduce hard or electronic copies of my thesis, dissertation, or project; (b) include such copies in the archives and digital repositories of the University; and (c) make freely available such copies to third parties for research or educational purposes.

I authorize the American University of Beirut, three years after the date of submitting my thesis, dissertation, or project, to: (a) reproduce hard or electronic copies of it; (b) include such copies in the archives and digital repositories of the University; and (c) make freely available such copies to third parties for research or educational purposes.

Signature

-
Date

This form is signed when submitting the thesis, dissertation, or project to the University Libraries

Lifelane

FYP Report - Elie Zeinoun

Table of contents

Introduction6
II. Problem and project statement 6
III. Landscape infrastructure 7
IV. Warm up exercise 8-15
V. Case studies 16-251. Chongae canal restoration project2. Velenje city center pedestrian zone promenada
3. High line4. Low line5. Confronting the Present: Towards a Civic Realm on Beirut's Urban Fringe
VI. Context analysis 26-29

1. Location analysis
2. Watershed analysisVII. Site analysis30-69
3. History analysis
4. Base map and sections
a. Base map
b. Sections
5. Vehicular and pedestrian analysis
a. Lanes per road
b. Traffic
c. Safe crossings
d. Sidewalk infrastructure
e. Sidewalk obstructionsPedestrian trails
6. People analysis
a. Demographics
b. Activities
7. Building analysis
a. Building use
b. Attractive facade
8. Open space analysi
VIII. Canal analysis 70-83
a. Canal coverage \& shade
b. Open space inside canal
9. Water analysis
a. Canal water inlets
b. Water speed
c. Smell analysis

3. Flora \& Fauna analysis

IX. Concept development

1. Preliminary Concept Diagrams
a. Green corridor
b. Linear park
c. Social nodes
d. Concepts survey
2. Final Concept Diagrams
a. Lifelane
b. Elements
c. Canal Sidewalk
d. Expansion joints
e. Piezzoelectric bumps
f. Water diagrams
X. Design Development
3. Masterplan
4. Site plans
a. Estuary
b. Amphitheater
c. Gardens
d. Wetland
5. Sections
6. Perspectives

Table of figures

Figure1	Canal site entrance plan	
Figure2	Perspective A - View from entrance	
Figure3	Perspective B - View from stairs.	10
Figure4	Perspective C-View from overpass	12
Figure5	Perspective D - View towards pond.	14
Figure6	Organic central river flow	17
Figure7	Linear outer tree arrangement	17
Figure8	Variable walkable width	17
Figure9	Amphitheater from both sides.	19
Figure10	Centered river - seasonal flow	19
Figure11	People distribution	19
Figure12	Accessibility- Stairs \& Elevators	21
Figure13	Vegetation on sides.	21
Figure14	People distribution	21
Figure15	Pedestrian flow - linear \& organic	23
Figure16	Lighting system	23
Figure17	Preservation of existing poles	23
Figure18	People distribution	25
Figure19	Softscape layers.	25
Figure20	Platforms	25
Figure21	Lebanon map context	26
Figure22	Context in greater Beirut	26
Figure23	Water color	27
Figure24	Rock layers	27
Figure25	Stream orders	28
Figure26	Urbanization	28
Figure27	Affected streams	29
Figure28	Watershed model \& topography	29
Figure29	1859:River in its natural state with few settlements around.	30
Figure30	1962 : River in channelized state with urbanization around	31
Figure31	2004: City mall opening --> Increased attraction to site	31
Figure32	2006: Metn highway opening --> Vehicular flow from mountains	32
Figure33	2011 : Overpass opening --> Vehicular flow from main highway	33
Figure34	Municipality boundaries. .	34
Figure35	Base map	34
Figure36	Section A-A	36
Figure37	Section D-D	36
Figure38	Section B-B.	38
Figure39	Section D-D	38
Figure40	Section C-C.	40
Figure41	Section E-E	40
Figure42	Lanes per road.	42
Figure43	Traffic	44
Figure44	Safe crossings	46
Figure45	Sidewalk infrastructure.	48
Figure46	Sidewalk obstructions.	50
Figure47	Safe sidewalk	52
Figure48	Safe pedestrian network.	54
Figure49	Pedestrian trails.	56
Figure50	Trail 1	58
Figure51	Trail 2	58

Figure52	Trail in canal	
Figure53	Overpass 1	59
Figure54	Overpass 2	59
Figure55	Demographics.	60
Figure56	Activities	62
Figure57	Building use.	64
Figure58	Attractive facades	66
Figure59	Open spaces	68
Figure60	Canal coverage \& shade.	70
Figure61	Open space inside canal	72
Figure62	Canal water inlets	74
Figure63	Water speed	76
Figure64	Smell analysis	78
Figure65	Flora analysis	80
Figure66	Fauna analysis.	82
Figure67	Green corridor sketch	84
Figure68	Green corridor diagram	85
Figure69	Linear park sketch	86
Figure70	Linear park diagram	87
Figure71	Social nodes sketch	88
Figure72	Social nodes diagram	89
Figure73	Concepts pictorial survey map	90
Figure74	Final concept diagram_Lifelane.	92
Figure75	Elements diagram.	94
Figure76	Urban river concept	96
Figure77	Canal sidewalk	96
Figure78	Expansion joints	98
Figure79	Piezzoelectric bumps	100
Figure80	Water filtration system	102
Figure81	Inner canal transformation	102
Figure82	Terraces color gradation	102
Figure83	Elements table	104
Figure84	Masterplan	104
Figure85	Estuary_Rendered	106
Figure86	Amphitheater_Rendered	108
Figure87	Amphitheater_Hardscape	110
Figure88	Amphitheater_Softscape.	112
Figure89	Amphitheater_Lighting	114
Figure90	Gardens_Rendered	116
Figure91	Gardens_Hardscape.	118
Figure92	Gardens_Softscape.	120
Figure93	Gardens_Lighting	122
Figure94	Wetland_Rendered	124
Figure95	Section A-A	126
Figure96	Section B-B	126
Figure97	Section C-C	126
Figure98	Perspective_Running track	128
Figure99	Perspective_Aromatic gardens .	130
Figure100	Perspective_Water feature	132
Figure101	Perspective_Amphitheater	134

Introduction

The project presented here is the work done during the first semester of my FYP. The semester started with a one week warm-up exercise where we had to fully design one part of our site to understand the mood we were heading towards. After that, the semester mainly consisted of analyzing thoroughly our site and its context to finally come up with a preliminary schematic diagram for our design after proposing three concept diagrams alternatives.

The site I chose is Nahr el Mot's river, precisely the 2 km long canalized stretch that ends at the estuary. The fact that I pass by this site every day from my way home to university opened my eyes to the ecological threat that it is facing and made me chose this canal as my FYP to restore its wasted potential and bring back life to its surrounding

The softwares and tools used during this semester were the following:
-Photography
-Hand sketch
-Google earth
-Sketchup
-Autocad
-Photoshop
-Illustrator
-Rhinoceros
-3ds Max + Corona

Problem and project statement

The location of Nahr el Mot in an urbanized setting and industrial zone exposes it a diversity of threats. The canalized section of the river, which is my site of intervention is acting as a barrier between the East and West banks. Not only is it socially dividing between the five different municipalities on its sides, it is also facing many ecological problems.

One of the biggest issues is the release of liquid waste by the nearby industries into the canal itself causing public health problems for the area around it as well as threatening biodiversity inside of the concrete canal. However one can't deal with the site specific issues without looking at the broader context. By looking at the upper natural part of the watershed, one can see the dumping of solid waste at the banks of the seasonal River that started since the summer garbage crisis in Lebanon.

The project will be dealing with these issues by transforming a grey infrastructure into a landscape infrastructure turning a dead line into a lifelane. The canal will be transformed into a linear park where several natural filtration on situ will mitigate the pollution caused from the Industrial inlets and different activities will be held along this reinvigorated corridor

Landscape infrastructure

Traditional city infrastructure generally incorporates transportation and communications systems, as well as water and power lines, and other utilities and structures. It often places a premium on through-put and efficiency. Landscape Infrastructure is a methodology that expands the performance parameters of a designed landscape to a multi-functional, high performance system, including those systems originally ascribed to traditional infrastructure. Similarly, traditional urban design is oriented towards building massing and grids. Urban design based on principles of Landscape Infrastructure is focused on landscape-based integration of the built and natural environments-seeking out innovative opportunities for building nature and public amenities into the infrastructure of a city. Thinking in terms of Landscape Infrastructure adds multiple additional benefits to traditional infrastructure: city beautification and re-vegetation/forestation; water and energy conservation; natural systems restoration; storm water management; energy farming; wildlife habitat expansion; favored pedestrian use; and expanded park land and open space built in neglected segments of existing urban infrastructure. Landscape Infrastructure can transform urban blight into urban destination.
It can help to create an iconic identity for a city based on the city's latent natural and cultural features.
Thinking in terms of Landscape Infrastructure adds multiple additional benefits to traditional infrastructure

- City beautification and re-vegetation/forestation

Water and energy conservation

- Natural systems restoration

Storm water management

- Energy farming
- Wildlife habitat expansion
- Expanded parkland and open space built in neglected segments of existing urban infrastructure
- Recreational opportunities

Health and wellness

- Increased pedestrian activity
- Community programming

Source: http://swacdn.s3.amazonaws.com/1/d281f914_swadesignbriefing-landscapeinfrastructure.pdf

| Warm up exercise

At the beginning of the semester, we were asked to pick up an area in our site and develop its design from scratch in only one week. The section I chose to develop is the beginning of the canal. The way I envisioned is with a wide stair entrance that stretches through the width of the canal. A biking ramp also cuts through the stairs and continues as a bike lane throughout the canal with benches integrated on its edges. The water element will be meandering in some parts in a narrow canal and flowing more widely forming swamps at other times. Rocks will be brought from the nearby quarries to serve both as a statement to stop this abomination against nature o provide an or-

break
the rigidity of the
canal. Last but not least,
the section at the entrance of the

I Warm up exercise

Figure4 Perspective C- View from overpass

general information

Location: Central Seoul, Korea
Landscape architect: Mikyoung Kim Design Completion: 2007
Owner/Client: Seoul Metropolitan Government Materials: Granite, Water, Fiber Optic Lighting Budget: 24M USD
Dimensions: 91000 sq. m, 11km distance

BRIEF SUMMARY

This design was the winning project in an international competition in which the major requirement was to highlight the future reunification of North and South Korea.

PROBLEMATIC \& STRATEGY

The goal was to restore this highly polluted and covered water-way with the demolition of at grade and elevated highway infrastructure that divided the city.

DESIGN APPROACH

The project symbolizes this political effort through the use of donated local stone from each of the eight provinces of North and South Korea. The individual stones act to frame the urban plaza and the eight source points where runoff is daylighted and represents the unified effort in the transformation of this urban center.
The creation of a pedestrian focused zone from this former vehicular access way that brings people to the historic ChonGae River while mitigating flooding and improving water quality. In addition to the environmental restoration effort, this urban open space has become a central gathering place for the city which is in dire need of more public landscapes. During specialized events such as the traditional New Year's festivals, political rallies, fashion shows and rock concerts both the plaza and the Water Source area get redefined in inventive ways.

Organic meandering river

Underwater lighting - crossing bridge

Busy night activities - waterfall

Close contact with water

Figure6 Organic central river flow

Figure7 Linear outer tree arrangement

Figure8 Variable walkable width

| Case studies

GENERAL INFORMATION

Location: Velenje, Slovenia
Landscape architect: Enota Completion: 2014
Owner/Client: Velenje Municipality
Materials: Concrete, Water, Wood, Sand, Plants Budget: 3M USD
Dimensions: 17020 m2

BRIEF SUMMARY

The Velenje "Promenada" is an important city space and a vital city thoroughfare. It is one of the central axes of the centre of Velenje. More greenery and more program are still needed.

PROBLEMATIC \& STRATEGY

The existing promenade was created by closing the erstwhile traffic road almost thirty years ago. Even though it was re-paved, the promenade retained the character of a road, remaining too wide and rather dull due to the lack of content.

DESIGN APPROACH

The wide straight connection with a clearly delineated beginning and termination underwent a transformation into a sequence of micro-ambients, slowing down the users and provides focus, framing the space for the additional program content to take place. In the initial phase, all these new-ly-formed public spaces are simply and cost-effectively laid out as sand or grass surfaces. The river Paka is a torrential river, which means that its watercourse swells up significantly a few times a year, but remains relatively shallow at all other times making it deep and unnoticed. By creating an amphitheatre, which slowly slopes down towards the river surface, the contact between the people and the river is recovered.
With the transformation, the Promenada is turning into a main event axis of the city.

Project Overview

Figure9 Amphitheater from both sides

Figure10 Centered river - seasonal flow

Figure11 People distribution

High line

| Case studies

GENERAL INFORMATION
Location: New York city, US
Landscape architect: James Corner field operations Completion: 2011
Owner/Client: The city of New York \& Friends of the high line
Budget: \$152.3 million
Dimensions: 1.6 km distance

BRIEF SUMMARY

The High Line is an elevated railroad reclaimed as an extraordinary public space, a connector of neighborhoods and a new model for the 'greening' of the urban environment. It is creating a new way of seeing the city, is recognized as an icon for innovative design and sustainability

PROBLEMATIC \& STRATEGY

Left unused since 1980, the line was considered an eyesore in the neighborhood

DESIGN APPROACH

This project touches people. It enhances human health, controls stormwater, and restores natural habitats.
Over 300 species were carefully selected to produce a primarily native landscape working with specific environmental conditions. Green-roof technologies along with open joint pavement enhance water retention, drainage and aeration and minimize irrigation requirements. Recycled materials are promoted including reclaimed wood, recycled steel and local aggregate for precast concrete. The park is lit with energy-efficient LED lighting. It is a consistent transect through a varied city landscape. The mix of building types and how they meet the High Line. High Line provides a unique urban experience; where one is both a part of the City and removed from the City at the same time.

Linearity vs organicity

Overlooking extruding platforms

Figure12 Accessibility- Stairs \& Elevators

| Case studies

GENERAL INFORMATION
Location: New York city, US Landscape architect: Dan Barasch Owner/Client: The city of New York Materials: Wood, Water, Solar panels, Plants Dimensions: 4000 m2

BRIEF SUMMARY

The Lowline is a plan to use innovative solar technology to illuminate an historic trolley terminal. Our vision is an underground park, providing a beautiful respite and a cultural attraction in one of the world's most dense, exciting urban environments.

PROBLEMATIC \& STRATEGY

The site was opened in 1908 for trolley passengers, but has been unused since 1948 when trolley service was discontinued. The space still retains some incredible features. It is also directly adjacent to the existing JMZ subway track so park visitors and subway riders would interact daily. This hidden historic site is located in one of the least green areas of New York City - presenting a unique opportunity to reclaim unused space for public good.

DESIGN APPROACH

The Lowline aims to build a new kind of public space - one that highlights the historic elements of a former trolley terminal while introducing cut-ting-edge solar technology and design, enabling plants and trees to grow underground. Through a "remote skylight" technology, sunlight passes through a glass shield above the parabolic collector, and is reflected and gathered at one focal point, and directed underground. Sunlight is transmitted onto a reflective surface on the distributor dish underground, transmitting that sunlight into the space. This technology would transmit the necessary wavelengths of light to support photosynthesis, enabling plants and trees to grow.

Figure16 Lighting system

Figure17 Preservation of existing poles

GENERAL INFORMATION
Location: Nahr Beirut, Lebanon Landscape architect: Logan Littlefield Owner/Client: Beirut Municipality Materials: Concrete, Pines \& Vines, Football net

BRIEF SUMMARY

Two veins for the design approach: One was about method, an inventory of designated and spontaneous public space types in Beirut, and the other involved site selection and a rationale for civic space in more unlikely places. The peri-urban Beirut River, a seasonal river fed by snowmelt, is an ideal testing ground for a new idea of civic space

PROBLEMATIC \& STRATEGY

Areas of natural, cultural, and civic heritage co-opted by private luxury development, preventing them from serving as potential devices to foster social cohesion and civic identity.

DESIGN APPROACH

The proposed design prototype responds to the evolving transformation of the Beirut river. In a transition from biophysical system to hydrologic and transportation infrastructure; from a seasonally flooding estuary with an ever changing course to an increasingly restrained and finally channelized riverbed, the next iteration becomes a new urban ground ; a constructed topography of civic space infrastructure to meet the needs of the surrounding neighborhoods.
This is done by drawing upon, deploying, and hybridizing formal and spontaneous public space types to create a series of platforms. These platforms are linear strips with varying degrees of program that as a whole, produce a transverse connection across the infrastructural landscape, acting as both a connection and a destination in it's own right.

Public space analysis

Figure18 People distribution

Perspective collages

Figure20 Platforms

Nahr El Mot is located at proximity from the capital Beirut between the rivers of Nahr Beirut and Nahr Antelias. The length and drainage basin of Nahr El mot is much smaller than the two other rivers around it However, despite the fact that it has a smal catchment of 10 km squared, the stream order of the river is still as high as Nahr Beirut's river, that being an order of 5 . The two main branches of the river join into one at the point of canalization and the difference in the geological rock layers uphill are clearly seen at the entrance of the canal after a heavy rain.
When one looks at the heavy urbanization that's happening along the watershed, we notice that it mainly happens on the ridge due to the nice view that this high point provides or on the lower and flatter part of the river. And if we overlay it with the streams, one can note the streams that are being directly affected by this urbanization.

Figure21 Lebanon map context
Scale 1:2500000

Figure24 Rock layers Scale 1:50000

V

Figure23 Water color

Figure25 Stream orders - Scale 1:50000

Figure26 Urbanization - Scale 1:50000

Figure28 Watershed model \& topography

Figure27 Affected streams - Scale 1:50000

It is true that one can't tackle the details without looking at the big picture, especially when dealing with water as the whole watershed is one linked system of water. But now that we've given a small overview about the watershed, let's zoom in to the actual site of intervention which is the canalized part of the river Before starting to analyze the immediate entourage of the canal, one has to look at the history of the site and how it ended up being that urbanized as it is right now. Back in 1859, the river was still in its natural state, free flowing with few scattered settlements along its bank. Around 1962, the river was already canalized as it was the most common solution back then to respond to the increasing urbanization around the river. In 2004, an important landmark, City Mall known as Géant back then opened its doors which made the site heard of from the Lebanese that live in the outskirts. This huge attraction to the site because of that mall increased even more two years later when the Metn highway was created and linked several mountains like Broummana, Bifkaya, Baabdat to the main highway passing by Nahr el Mot as a final step. Last but not least, in addition to the urbanization that was gradually increasing through these years, the creation of the overpass enhanced the accessibility to Nahr el Mot from the main highway.

The current situation is a densely urbanized site with five municipalities around the river, Amaret Chalhoub, Zalka \& Biakout on the East side and Jdeideh and Sed El Baouchrieh on the West side. However, despite the fact that five municipalities circle the site, the river belongs to the Governement of Water \& Energy and not to any of them.

History analysis |

Figure30 1962 : River in channelized state with urbanization around Scale 1:17000

Figure31 2004: City mall opening --> Increased attraction to site Scale 1:17000

Figure32 2006: Metn highway opening --> Vehicular flow from mountains Scale 1:17000

Figure33 2011 : Overpass opening --> Vehicular flow from main highway Scale 1:17000

| Site analysis

Scale 1:5000
Figure35 Base map
| Site analysis

Figure37 Section A-A
Scale 1:200

Figure36 Section D-D Scale 1:400
230 m distance from canal to

| Site analysis

Figure38 Section B-B Scale 1:200
3lane highway towards Jounieh

Figure40 Section C-C Scale 1:200 Inner canal disappears, water flows wider and slower

Figure41 Section E-E Scale 1:200
| Site analysis

Figure42 Lanes per road $(\bigcirc$

Traffic gravity calculation

By looking at the lanes per road map, an identification and sortage of the 1 to 2 lanes per road has been made as these are much easier to cross than wider roads and the vehicular speed is usually slower on these. Then the main traffic nodes depicted by the red circles in the traffic map has been overlayed with the 1 to 2 lanes roads in order to obtain the safe crossing shown in this map.

Figure44 Safe crossings
Scale 1:5000

Legend

- Shrine
- Street hardware
- Cars occupation
- Broken sidewalk

Figure46 Sidewalk obstructions (1)

By looking at the sidewalk infrastructure in itself, one can notice the discontinuities throughout. However the real discontinuities appear when analyzing all the sidewalk obstructions like the many street hardware placed right in the middle of it at different occasions. Not only the obstructions cause the problem for the pedestrian ease of flow, it is also the many cars that are parked right on the sidewalk occupying the space. By overlaying the sidewalk infrastructure with the numerous obstructions and occupations that happen along, the very discontinuou remaining safe sidewalk can be extracted.

Last but not least regarding the pedestrian flow, a safe pedestrian network map has been made. This was done by overlaying the safe crossings map obtained earlier with the safe sidewalk map. This map shows the safe crossings in order to be able to plan accordingly the safest entry points from the immediate entourage to the canal itself. In addition it shows the very discontinuous safe sidewalk, which backs up the need for a safer alternative for the pedestrian flow, inside the canal itself.

After having analyzed the vehicular and pedestrian networks, I have moved to look at how the pedestrian would interact with those infrastructures. To do so, I have simlulated two possible trails one would talk if he was to go from the industrial area at the beggining of the canal to the waterfront at its very end.

Figure52 Trail 1

Figure51 Trail 2

Figure50 Trail in canal

If one looks at the two shortest paths one has to take to go from the beginning on the canal to the sea, one has to cross thirteen to sixteen times the road without taking into consideration the many times one has to walk out of the sidewalk because of the obstructions or sidewalk occupation. In addition, to those crossings being an issue of safety, they are also a waste of time as one tend to wait between ten seconds if crossing a laneway up to sixty seconds and above if crossing a fast three lane road. Instead of wasting around 7 min in both paths on crossings, one would only have to wait one minute to get inside the canal and safely walk without having to cross or be interrupted. The total walk time, including the waiting time on crossings will be much less, a mere 27 minutes instead of respectively 38 minutes and 42 minutes on the two other existing paths.

Having looked at how the people would go from the beginning of the canal to its estuary, the next step is to understand better the demographics of the people along the canal banks. Are they mainly males or females? Children, adolescents, adults or elderly?
After having mapped the people's location with their demographics, one can notice straight away that the main users of this space are male adults. Another striking factor is that the distribution is not equally done throughout with the biggest cluster of people on the southern side of the highway.

Legend

-	- 0-6	Δ Males
-	- 6-18	O Females
\triangle	- 19-30	
A	- 31-65	
-	- 65+	

Age distribution

Gender Distribution

- Male $\|_{\text {Female }}$

(1)

Scale 1:5000

After mapping the people's demographics, it is also important to see what are those people doing in that space, which brings us to mapping their activities. Technicians as well as sales persons formed the majority as there were many garages and shops along the banks of the canal. There were also many passerby crossing from a side to the other or simply walking along to reach another destination.
When one analyzes these activities, one can notice that almost all of them are of a necessary nature, purely functional activities that one has to do in their every day life no matter what Only very few social activities were observed were a friend would just visit his friend and si with him at his shop. There were absolutely no optional activities at all which points to a de graded quality of this space, not catering for anything beyond the regular functional activities

Legend
Street beggar Security guard Peddler Technician Salesperson Passerby

Grocer
, Otional, and Social Activity. Gehi distinguishes between necessanytional activ-
es, optional/recreational activities and social activities in public spaces. While necessary activities ake place regardless of the quality of the physical environment, optional activities depend to a sig nificant degree on what the place has to offer and how it makes people behave and feel about it. tivity is the fruit of the quality and length of the other types of activities, because it occurs spontaneously when people meet in a particular place. Social activities include children's play, greeting nd conversations, communal activities of various kinds, and simply seeing and hearing other people. Communal spaces in cities and residential areas become meaningful and attractive whe ell activities of all types occur in combination and feed off each other.
\bigcirc
Scale 1:5000

Looking at the building use, one can clearly see a reflection of the activities that were happening along the canal with a dominance of technicians and salespersons due to the dominance of commercial and industrial buildings on the banks of the canal. The main industrial zone being at the beginning of the canal as well as the petroleum factory at is estuary. The commercial are scattered throughout along its banks with the prominent City Mall being the main hub fo commercial activities. The residential on the other hand, mainly spreads from one block away from the canal outwards and is quite dense. This can be seen as an advantage to draw resi dents towards the canal once optional activities would be offered for them to benefit from

Then taking a closer look to the buildings, one sees that some have interesting multi purpose facades. Those facades generate a wider range of street level activities and enhance the feeling of security around them by providing passive watch over from the inside for the pedestri ans. These attractive facades are mainly on the commercial or mixed used buildings and no on the industrial ones.

In this densely urbanized area, only few open spaces remain with very bad pedestrian connection between them. The most prominent one is the canal itself however it is a lost space as it's completely inaccessible.
| Canal analysis

Figure61 Open space inside canal
(1)

Scale 1:5000

By analyzing the water inlets in the canal, specifically the gray and black water that is being dumped from the nearby industries, one can have a rough estimate of the smell being located around these sewage inlets. However for more accuracy, the water speed has been overlayed with the sewage inlets, where slower and stagnant water led to stronger smell nodes than where water was rapidly flowing. These nodes will help in determining in which locations a bigger treatment will be required.

Looking at the vegetation wildly growing in the canal, one can see that the biggest concentrations happen at the beginning and end of the canal where the water is slower. This caused settling of the sediments creating a substrate for the vegetation to grow in. One also notices that the biodiversity is quite limited in that canal due to the inappropriate conditions as well as the abundance of invasive species like Arundo donax and Ailanthus altissima. Not only does one observe this abundance of invasive species but also a good presence of poisonous species like Ricinus communis for instance.

Legend

\qquad Invasive species
\qquad Poisonous species

It is of no surprise that the fauna coincides with the flora with the highest concentration being at the beginning and end of the canal. The majority of the animals are ones that are unpleasant to sight, living in this degraded environment like stray dogs and rats. Only few birds are seen where lush vegetation exist and seagulls on the estuary-that rich interface with the sea

Three concept diagrams were proposed for the design of the canal. The first one, the green corridor, focuses mainly on the ecological aspect by transforming all of the canalized stretch into a green vein lush with native vegetation. This will also act as a corridor for animals who want to pass safely from the natural area uphill to the sea. In addition to the canal being a protected buffered zone for both fauna and flora, several platforms will be designed throughout the canal where people can come into close contact with nature without disturbing it as these would be elevated platforms.

The second concept, linear park, is more about an uninterrupted corridor for people this time. The main driver behind this idea of a continuous pedestrian strip comes from the poor pedestrian infrastructure outside the canal and the difficulty to move from a place to another efficiently and safely. This will mainly be an attraction for the immediate entourage, whenever they have lunch break for instance or feel like doing a morning jog or something from this genre.

The third concept, social nodes, is mainly about different areas along the canal designed for crowd gathering and public events while the rest stays green and natural. This option will primarily attract people from the different municipalities around the canal and potentially from other regions in Lebanon to assist to these public events.
The three options were drawn in both a conceptual plan and a small sketch. These drawings were then used for a pictorial survey of different people along the site surrounding. After explaining the main ideas behind each concept, each person voted for what they think lacks most in the region and what will best fit their own needs. The majority voted for the second option, the linear park followed by the first one, the green corridor with only one person out of the thirteen electing the third option, social nodes.

Following the pictorial survey, I decided to develop a fourth option called lifelane that is based on the people's first choice, the linear park. In addition, it merges . ideas of the green corridor with the first section being transformed into an observatory only and sev eral in-situ filtration happening along the canal. This final proposal, in addition to the discontinuous bike lane from beginning to end, offers several activities at different locations responding to the immediate context's needs. Some of these activities will be public events like in the third option proposed previously like the amphitheater and the stone exposition.

Concept Diagram \& Project Statement

The project will be transforming a grey infrastructure into a landscape infrastructure turning the Dead River into a lifelane. The canal will be divided into three sections as a response to its surrounding

The first section upstream will be the ecological restoration part. As it's surrounded by industries on both of its banks that dump their wastewater into the canal, this INDUSTRIAL section is in urgent need of filtration and remediation. In addition to the fact that the water is being treated and people shouldn't get into contact with it, the buildings beyond the industries are elevated and isolated, further reinforcing the fact that people wouldn't even access this part. Therefore, in that section, several stream rehabilitation techniques will take place, treating the polluted water as well as restoring biodiversity

The second section will be the pocket gardens. The neighboring context being mainly high rise RESIDENTIAL and due to the lack of private gardens in this concrete jungle, the canal will provide the residents with pocket gardens where they could escape from the noisy city life and enjoy a relaxing moment. In addition, some of these gardens will be orchards and vegetable ots reflecting the abundant present of agricultural fields in the area as well.

The third section where most of the COMMERCIAL activity and people density happens, will be divided nto two sub sections: the public park and the public beach. They will both cater for many public activities that will bring people from different regions across ebanon, especially thanks to the big attraction at its western bank, City Mall.

The project effect will reverberate beyond the canal walls, boosting the economy of the whole region, dealing with public health issues, pedestrian circulation problems, enhancing the living experience of the surrounding... Lifelane will become the living artery of the region pumping life into its surrounding in many forms, be it ecologically, socially or even economically.

2-Pocket gardens
1-Ecological section
People
Vegetation $-x_{0}=$ Water |и| $=$
(

Urban river concept

$+$

ural River

\qquad
Urban River
Figure76 Urban river

As mentioned previsouly, the canal will be divided into three sections according to its surrounding. The three lane roads on each side f the canal will be transformed into two lane roads after having analyzed the car volume and verified that no traffic will be generated by doing so.

The reduction in road lanes will provide an additional 3.5 m expansion of the sidewalk in the industrial and residential sections and of the canal space itself in the commercial strip.

In the industrial section, the extra sidewalk space along the edges of the canal will be transformed into bioswales that will treat surface runoff before entering the canal in this highly sloped ecological section.

In the residential section, the sidewalk will become a planted buffer area in order to provide sound and visual buffering for the aromatic gardens inside the canal.

Last but no least, the extension of the canal space itself in the commercial section will allow for additional space for public activities.

The design lines of the extended sidewalk as well as the water, vegetation and people elements previously mentioned will follow the urban river concept, bringing the urban and the rural together, expressed through diagonal angular shapes.

1 Carpasses on Piezoelectric speed bumps

2 weight of the car creates pressure

3
Pressure generates energy

4 Energy is converted into light

5 Lights light up the underground tunnel

Figure80 Water filtration system

Figure82 Terraces color gradation

At the Estuary, an ecological observatory will be elevated two meters above ground to separate the people from the seagulls and the other wildlife that flourish at this meeting point between freshwater and saltwater.
This section will be buffered from the people on both edges by Pinus marittima and Juniperus aurea to create this mini reserve from the wildlife Benches will also be integrated into the observatory to rest while enjoying the spectacle.

Then a ramp will lead to the public beach from the ecological observatory. Beyond the beach, bioswales will emerge and form a river delta shape alongside with wooden decks and fishing decks at the elevated section from the sea.

In this part of the industrial section, we can see some of the water filtration system. The wetland on the extreme right acts as the secondary step in the system coming after the sedimentation ponds and before the aerated lagoon

The reed beds that are seen in the pictures that deal with the point source pollution treating directlyt the industrial waste that is being emptied in the cana are located after the wetland. Therefore they will be elevated on the canal walls so that a channel will slope down from them towards the weland through gravity only in order for the industrial waste to be treated in the wetland before proceeding to the last step, the aerated lagoon.

In addition, the extension joints at this point will be transformed into riffles made of loose basalt stone that will allow for some alteration in the water speed restoring its natural flow.

On the upper level, bioswales will deal with the nonpoint source pollution coming from all the surface runoff in this highly sloped section before entering the canal.

Last but not least, people will be able to observe these processes and learn about the filtration methods without disturbing nature or coming into contact with the polluted water. This will be possible through wooden bridges as well as glass platforms.

Figure98 Perspective_Running track

Figure99 Perspective_Aromatic gardens

Stage

