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AN ABSTRACT OF THE THESIS OF

Dana Almaalouf for Master of Science
Major: Mathematics

Title: A new Simulation Model for the Hasegawa-Mima Plasma Equation

A nonlinear evolution of the drift-wave instability are investigated by means of numerical sim-
ulations based on a model equation derived from a two-fluid approximation that reduces to the
Hasegawa-Mima equation. Although it was originally derived by Akira Hasegawa and Kunioki
Mima in [2], it can be extended [5][4] and put as:

(∆− I)ut + {u,∆u}+ kuy = 0 (1)

We intent to first formulate the Hasegawa-Mima equation as a coupled system and then per-
form a new numerical simulation with the adequate boundary conditions and initial conditions.
Experiments will be done to study the Modon steadiness solution for the nonlinear Hasegawa-
Mima equation and to test the Periodic Boundary Conditions using finite element method.
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Chapter 1

Introduction

1.1 Hasegawa-Mima (HM) Model for magne-

tized Plasma Physics

Confinement of magnetic plasma physics holds great potential in offering a clean source of

energy in the future, thus diminishing the dependency on fossil fuels as a source of energy. This

is a strong indicator of the importance and the strategic position of this type of research for

the future.

Throughout this thesis, we focus on the numerical tools to simulate plasma turbulence using

Hasegawa-Mima (HM) equation. We consider a new mathematical setting [19] to establish a

numerical simulation for the two-dimensional (HM) model which is our main contribution in

this thesis.
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The (HM) was introduced by authors Hasegawa and Mima in 1977 [2] and can stated as follows:

Let Ω = (0, L)× (0, L) an open bounded square domain with boundary Γ = ∂Ω.

Seek u : Ω× [0, T ] −→ R such that:

(HM)



(∆− I)ut + {u,∆u}+ kuy = 0, on Ω× [0,T]

u(x, y, 0) = u0(x, y), on Ω

u and ∇u satisfies periodic boundary conditions

(1.1)

where:

• u(x, y, t) describes the electrostatic fluctuations of the potential

• ∆ is the Laplacian operator

• n0 is the background particle density that depends only on the x-direction

• k = ∂xln
n0

wci

• wci is the ion cyclotron frequency that depends only on the initial magnetic field

Periodic boundary are imposed, in general, for modeling the physical interaction of a wave (in

our case, plasma drift waves) with the boundary of its medium and can be expressed as follows:

(PBC)


v(0, y) = v(L, y) and vx(0, y) = vx(L, y) ∀y ∈ (0, L)

v(x, 0) = v(x, L) and vy(x, 0) = vy(y, L) ∀x ∈ (0, L)

(1.2)

1.2 Review of the Literature

1. Existence and Uniqueness of Solutions

There are some existing results to the (HM) in the case where Ω = R2, but there has

2



been no clear results regarding the existence and uniqueness of the solution to the two-

dimensional Hasegawa-Mima equation with periodic boundary conditions. Nevertheless,

Lionel Paumond [9] worked on the perturbed Hasegawa-Mima equation and also for-

mulated it as a semilinear abstract Cauchy problem and uses fractional powers of the

perturbing operator. It proves local existence and uniqueness for u0 ∈ H4(R2),whose

global existence still remains open. It also proves global existence of a weak solution for

u0 ∈ H2(R2), whose uniqueness still remains open.

In fact, H.Karakazian, in his Master’s thesis [6], showed that for a smooth enough given

initial condition u0 ∈ H4
P (Ω), the problem (HM) with (PBC) above has a unique local

C∞,2 solution on (0, T ∗)× Ω where T ∗ > 0 is a temporal value depending only on u0.

2. Numerical Simulations

A computer model was designed in F.Hariri’s thesis [5] for solving the two-dimensional

Hasegawa- Mima equation based on a finite difference (FD) approach with the integration

in time being carried out with a Euler explicit scheme that constraints the time-step size

which limit the size of the time interval. Hence, such method is not well suited for

periodic boundary conditions, has a major difficulty in discretizing the Poisson-bracket

term, and not applicable for computations on long time intervals.

1.3 Outline of this thesis

There are five Chapters in this thesis.

In Chapter 2, we present a new mathematical model consisting of a coupled Poisson
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Wave equation and summarize the theoretical results obtained by H.Karkazian-N.Nassif

in their recent work [19].

In Chapter 3, based on the method used in Chapter 2 to obtain existence of solutions, we

set a finite element approach using P1 elements to approximate solutions of the coupled

Elliptic-Hyperbolic system.

In Chapter 4, we present results of our First numerical simulations.

Concluding in Chapter 5 in general remarks.
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Chapter 2

Formulation of the

Hasegawa-Mima Equation as a

Coupled System of Partial

Differential Equations

2.1 The Formulation

Given a time T > 0, we consider the Hasegawa-Mima problem on a square domain Ω =

(0, L)× (0;L) with boundary Γ = ∂Ω: Seek u : Ω× [0, T ]→ R such that:

(HM)



(∆− I)ut + {u,∆u}+ kuy = 0, on Ω× (0,T]

u(x, y, 0) = u0(x, y), on Ω

u and ∇u satisfies periodic boundary condition

(2.1)
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where {u, v} := uxvy − uyvx is the Poisson bracket.

Since handling the non-linearity of the Poisson bracket is both theoretically and computationally

expensive, we formulate (HM) as a coupled system of linear equations as follows.

Introduce the variable w = −∆u+ u, then the Hasegawa-Mima equation becomes:

∂tw = {u, u− w}+ kuy

= {u, u}+ {u,−w}+ kuy

As {u, u} = uxuy − uyux = 0, then one has

∂tw = {w, u}+ kuy

= wxuy − wyux + kuy

Now define the divergence free vector field
−→
V (u) =

(−uy
ux

)
, then

∂tw +
−→
V (u).5 w = kuy

At this point, we formulate the (HM) problem as the following Elliptic-Hyperbolic coupled

system problem where one Seeks {u,w} : Ω× [0, T ]→ R2 such that

(HM)



u−∆u = w, on Ω× (0,T]

∂tw +
−→
V (u).5 w = kuy, on Ω× (0,T]

u and ∇u satisfy the periodic boundary condition

u(x, y, 0) = u0(x, y), on Ω

(2.2)

Before putting (HM) in varational form, we introduce Periodic Sobolev space.

2.2 The periodic Sobolev spaces H1
p(Ω) and H2

p(Ω)

In this section, we review the construction of a two-dimensional Periodic Sobolev space H1
p (Ω)

and study its properties[6]. We start by defining the Sobolev space H1(Ω).
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Definition 2.1. We Define C∞0 = {f ∈ C∞ /f is compactly supported in Ω}.

A function f ∈ L2Ω is said to have a weak derivative Dwf ∈ L2Ω iff ∀Ψ ∈ C∞0 (Ω), < f,Ψ′ >=

− < Dwf,Ψ >.

L2(Ω) = {f/
∫

Ω
dx <∞}

Definition 2.2. The Sobolev spaces H1(Ω) and H2(Ω) are defined as follows:

H1(Ω) = {f ∈ L2(Ω)/D1
wf ∈ L2(Ω)}

H2(Ω) = {f ∈ L2(Ω)/Dα
wf ∈ L2(Ω), α = {1, 2}}

We define v to satisfy the periodic boundary conditions PBCk of order k if and only if

For k ≥ 0 :

(PBCk)


(PBCkx): ∂kxv(0, y) = ∂kxv(L, y) ∀y ∈ (0, L)

(PBCky): ∂kyv(x, 0) = ∂kyv(x, L) ∀x ∈ (0, L)

(2.3)

where ∂kx and ∂ky denote the differential operators
∂k

∂x
and

∂k

∂y
, respectively, for short.
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Definition 2.3. Define the Periodic Sobolev space of order 1 and 2 as

H1
P (Ω) = {v ∈ H1(Ω) : v satisfies PBC0}

H2
P (Ω) = {v ∈ H2(Ω) : v satisfies PBC0 and PBC1}

Properties of H1
P (Ω):

• For v ∈ H1
P (Ω) its trace Tr(v) on Γ is well-defined as the extension of

Tr0 : C∞ −→ L2(Γ)

given that C∞0 is dense in H1(Ω).

• Furthermore, Tr : H1(Ω) −→ L2(Γ) is continuous, i.e it satisfies :

‖Tr(v)‖L2(Γ) ≤ C‖v‖H1(Ω)

2.3 Variational Formulation of (HM) equation

as a coupled system

We intend to derive weak formulations of (2.2) that are well suited for deriving weak solutions

to (HM) equation and also to obtain simple simulation models.

2.3.1 Variational Formulation of the Poisson Elliptic equa-

tion

We start with the Variational formulations of the Poisson Elliptic equation with periodic bound-

ary condition.
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This is now a well-known procedure based on Green’s Formula.

Using a set of test functions this formulation generalizes the one dimensional integration by

parts. To illustrate this, let us start with the formulation of a one-dimensional Poisson’s equa-

tion: 
−u′′ + u = w u ∈ Ω× (0, T ]

u(0) = u(L) and u′(0) = u′(L)

(2.4)

Let v ∈ C1
P (0, L) = {v ∈ C1 / v(0) = v(L)}, then

−
∫ L

0

u′′(x)v(x)dx+

∫ L

0

u(x)v(x)dx =

∫ L

0

w(x)v(x)dx

−[u′(x)v(x)]L0 +

∫ L

0

u′(x)v(x)dx+

∫ L

0

u(x)v′(x)dx =

∫ L

0

w(x)v(x)dx

−u′(L)v(L) + u′(0)v(0) +

∫ L

0

u′(x)v′(x)dx+

∫ L

0

u(x)v(x)dx =

∫ L

0

w(x)v(x)dx

But since u′(0) = u′(L) and by choosing v(x) such that v(0) = v(L)⇒ −u′(L)v(L)+u′(0)v(0) =

0

Define now:

a(u, v) =

∫ L

0

u′(x)v′(x)dx+

∫ L

0

u(x)v(x)dx

f(v) =

∫ L

0

w(x)v(x)dx

Then if u(x) ∈ C1
P (0, L) solves (2.4) then it is also solution to:

a(u, v) = f(v) ∀v ∈ C1
P (0, L) (2.5)
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Obviously, (2.5) can be generalized if we replace C1(0, L) byH1(0, L), and C1
P (0, L) byH1

P (0, L).

The above can be extended to the two-dimensional Periodic Poisson’s equation in (HM) with

Ω = (0, L)× (0, L).

It uses Green’s formula (Divergence form) which states the following in two dimensions:

∀~V ∈ (C1(Ω) ∩ C(Ω))2 and ∀v ∈ C1(Ω) ∩ C(Ω)

∫
Ω

(div(~V ))vdxdy =

∫
Γ

vν.~V dxdy −
∫

Ω

∇v~V dxdy

When applied to:
−∆u+ u = w u ∈ Ω× (0, T ]

u satisfies (PBC0) and (PBC1)

(2.6)

Let v ∈ C1
P (Ω) = {v ∈ C1(Ω) / v ∈ (PBC0)}, then

−
∫

Ω

∆u.vdxdy +

∫
Ω

uvdµ =

∫
Ω

wvdxdy

Green’s Formula (2D) with ∆u = div(∇u) and Γ is the boundary of Ω

∫
Ω

(div(∇u))vdxdy =

∫
Γ

vν.∇udxdy −
∫

Ω

∇v∇udxdy

−
∫

Γ

vν.∇udxdy +

∫
Ω

∇v∇udxdy +

∫
Ω

uvdxdy =

∫
Ω

wvdxdy

But since ∇u(x, y) satisfies (PBC)1 since u ∈ C1
P (Ω) and by choosing v(x, y) ∈ C1

P (Ω)

⇒
∫

Γ
vν.∇u = 0

Define now:
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a(u, v) =

∫
Ω

∇v∇udxdy +

∫
Ω

uvdxdy =< ∇v,∇u > + < u, v > (2.7)

f(v) =

∫
Ω

wvdxdy =< w, v > (2.8)

Then if u(x) ∈ C1
P (Ω) solves 2.6 then it is also solution to:

a(u, v) = f(v) ∀v ∈ C1
P (Ω) (2.9)

Obviously, (2.9) can be generalized if we replace C1(Ω) by H1(Ω), and C1
P (Ω) by H1

P (Ω).

a : H1
P (Ω) ×H1

P (Ω) −→ R defined in 2.7 is a bilinear form that is coercive and bicontinuous.

In addition, f : H1
P (Ω) −→ R from 2.8 is a continuous linear operator. Hence a and f satisfy

Lax-Milgram conditions that prove the existence of a unique solution u satisfying (2.9).

Proposition 2.4. For w ∈ L2(Ω), u ∈ H1
P (Ω) ∩H2(Ω), with

‖u‖H2(Ω) ≤ C‖w‖L2(Ω) and T : w −→ u is a compact map.

Note that, the variational formulation does not necessitate that the solution u(x, y) that belongs

to the Test space satisfies (PBC1)

2.3.2 The Variational Formulation of the Hyperbolic part

of the Coupled System

The Variational formulations of the two dimensional Hyperbolic part is carried out in the same

way as for the Poisson’s equation with w(x, y, t) satisfying:

12




∂tw +

−→
V (u).∇w = kuy

w(x, y, 0) = w0(x, y) = −∆u0 + u0

(2.10)

For the initial condition, the least regularity that is required is u0 ∈ H2(Ω), w0 ∈ H1(Ω) which

is sufficient for numerical simulation.

However, a stronger regularity condition may be a necessary when demonstrating existence of

solutions to the coupled system. Following [19] we consider the following formulations for the

hyperbolic system:

Given u ∈ H1
P (Ω) ∩H2(Ω) one seeks w : [0, T ] −→ H1

P (Ω) such that: ∂tw : [0, T ] −→ L2(Ω)
< ∂tw, v > + <

−→
V (u).∇w, v >=< kuy, v > ∀v ∈ L2(Ω)

w0(x, y) = −∆u0 + u0 w0 ∈ L2(Ω)

(2.11)

This is obtained simply by multiplying the equation in 2.11 by v ∈ L2(Ω) and integrating over

Ω.

For our computational model, we use an integral form of 2.11, obtained by integration from 0

to ∆t.

Given u ∈ H1(Ω), and w0 ∈ L2(Ω), one seeks w : [0, T ] −→ H1
P (Ω) such that:

{
< w(∆t), v > +

∫∆t

0
<
−→
V (u).∇w, v > ds =

∫∆t

0
< kuy, v > ds+ < wo, v > ∀v ∈ L2(Ω)

(2.12)

Or more generally from t to t+ ∆t.

Given w(t) ∈ H1(Ω), one seeks w : [t, t+ ∆t] −→ H1
P (Ω) such that:

{
< w(t+ ∆t), v > +

∫ t+∆t

t
<
−→
V (u).∇w, v > ds =

∫ t+∆t

t
< kuy, v > ds+ < w(t), v > ∀v ∈ L2(Ω)

13



(2.13)

However, in view of the results obtained in [19], we may consider a formulation where we take

u0 ∈ H3(Ω) ∩H1
P (Ω) and u ∈ H1

P (Ω) and seek: w : [0, T ] −→ H1
P (Ω) such that:

{
< w(t+ ∆t), v > −

∫ t+∆t

t
<
−→
V (u).∇v, w > ds =

∫ t+∆t

t
< kuy, v > ds+ < w(t), v > ∀v ∈ H1

P (Ω)

(2.14)

This is obtained by performing Green’s Formula on the term <
−→
V (u).∇v, w > ds with

−→
V (u) =(−uy

ux

)
:

∫
Ω

−→
V (u).∇wvdxdy =

∫
Γ

wv
−→
V (u).µds−

∫
Ω

−→
V (u).∇vwds

=

∫
Γ1

wv(−1 , 0)
(−uy
ux

)
ds+

∫
Γ2

wv(1 , 0)
(−uy
ux

)
ds

+

∫
Γ3

wv
(−uy
ux

)
(0 , − 1)ds+

∫
Γ4

wv(0, 1)
(−uy
ux

)
ds−

∫
Ω

−→
V (u).∇vwds

=

∫
Γ1

wvuyds+

∫
Γ2

wv(−uy)ds

+

∫
Γ3

wv(−ux)ds+

∫
Γ4

wvuxds−
∫

Ω

−→
V (u).∇vwds

With Γ1 and Γ2 are the two opposite vertical sides of the square (0, L) × (0.L) and by the

periodicity of u:

=⇒
∫

Γ1
wvuyds+

∫
Γ2
wv(−uy)ds = 0

Moreover, Γ3 and Γ4 are the two opposite horizontal sides of the square (0, L)× (0.L) and by

the periodicity of u:

=⇒
∫

Γ3
wv(−ux)ds+

∫
Γ4
wvuxds = 0

Remark: Formulation 2.13 has the weakest form and will be used for computations.
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2.3.3 Varitional formulation used in this thesis

From this section onward, the { , } will represent the couple of unknowns instead of the poisson

Bracket.

We seek the pair {u,w} ∈ L2(0, T,H2(Ω)∩H1
P (Ω))×H1

P (0, T, L2(Ω)) where we use the notation

u(t) = u(x, y, t) and w(t) = w(x, y, t) such that:



a(u(t), v) =< w(t), v > ∀v ∈ H1
P (Ω), ∀t ∈ (0, T ]

< w(∆t), v >= −
∫∆t

0
(<
−→
V (u).∇w(t), v > ds+ < kuy, v >)ds+ < wo, v > ∀v ∈ L2, 0 ≤ t ≤ T

u(0) = u0 u0 ∈ H2(Ω)

w(0) = w0 w0 ∈ L2(Ω)

(2.15)

Or more generally given {u(t), w(t)} we obtain {u(s), w(s)} ∀s ∈ (t, t+ ∆t] by solving:

a(u(s), v) =< w(s), v > ∀s ∈ (t, t+ ∆t]

< w(t+ ∆t), v >= −
∫ t+∆t

t
(<
−→
V (u).∇w(t), v > + < kuy, v >)ds+ < w(t), v > ∀v ∈ L2(Ω)

∀s ∈ (t, t+ ∆t]

(2.16)

Remark:

Note that (2.16) may be replaced by seeking w(t) ∈ H1
P (Ω).
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

a(u(s), v) =< w(s), v > ∀s ∈ (t, t+ ∆t]

< w(t+ ∆t), v >= −
∫ t+∆t

t
(<
−→
V (u).∇w(t), v > + < kuy, v >)ds+ < w(t), v > ∀v ∈ H1

P (Ω)

∀s ∈ (t, t+ ∆t]

(2.17)

Both 2.16 and 2.17 lead to the same finite element discrete system.

2.4 Recent theoretical results of Karakazian and

Nassif[19]

In their research, Karakazian and Nassif consider first a Hilbert basis {φi}∞i=1 ∈ H1
P (Ω) consist-

ing of the eigenfunctions of the periodic Laplacian operator with non-decreasing eigenvalues,

set EN = span{φ1, · · · , φN} ⊂ H1
P (Ω), and formulate a Petrov-Galerkin approximation of the

coupled system as a fixed point problem on C(0, T ;EN )×C(0, T ;EN ). They then obtain a se-

quence {uN , wN} of approximate solutions to the coupled system which are uniformly bounded

in L∞(0, T ;H1
P (Ω) ∩ H2(Ω)) × L∞(0, T ;H1

P (Ω)). Finally, they extract a weakly convergent

subsequence to construct a weak solution {u,w} ∈ L2(0, T ;H2
P (Ω)) × L2(0, T ;L2(Ω)). Below

is their main theorem whose corollary validates our FEM scheme.

Theorem 2.5. Given 0 < T < (CE |k|+ 1)−1 and u0 ∈ H2(Ω), there exist

u ∈ L2(0, T ; (Ω) ∩H2(Ω)) and ut ∈ L2(0, T ;H1
p (Ω) ∩H2(Ω)) (2.18)
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such that
ut = P (I −∆)−1uQu−Q(I −∆)−1uPu+ k(1−∆)−1uy in L2(0, T ;H2

p (Ω))∗

u(0) = u0, on Ω

(2.19)

Where: P = ∂2
x − ∂2

y

Q = ∂xy

Remark. Statement (2.18) implies that u ∈ C(0, T ;L2(Ω)).

Corollary 2.6. Further if u ∈ L2(0, T ;H3
P (Ω)), then

(I −∆)ut = {u,∆u}+ kuy in L2(0, T ;H2
p (Ω))∗

u(0) = u0, on Ω

(2.20)

or equivalently {u,w} ∈ L2(0, T ;H3
P (Ω))× L2(0, T ;H1

P (Ω)) is a solution to the coupled system

satisfying

∫ T
0
< −∆u+ u, v > dt =

∫ T
0
< w, v > dt a.e. on Ω

∫ T
0
< wt, v > dt+

∫ T
0
< ~V (u) · ∇w, v > dt =

∫ T
0
< kuy, v > dt ∀v ∈ L2(0, T ;H2

P (Ω))

u(0) = u0, on Ω

(2.21)
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Chapter 3

Finite Element Discretization of

the coupled Hasegawa-Mima

system

Our approach is to solve the coupled Hasegawa-Mima equation using for each of the PDE’s

a Finite Element approach. The main reason for choosing this approach is to handle the

Periodic Boundary Conditions that are suitable to a variational formulation in which we force

the approximate solution to satisfy (PBC0) and to avoid (PBC1) in contrary to was done in

[5] where the Finite difference method lead to major difficulties handling (PBC1). Our starting

point is the variational formulation derived in Chapter 2.

18



Find {u,w} ∈ L2(0, T,H2(Ω) ∩H1
P (Ω))×H1

P (0, T, L2(Ω)) such that:

a(u(s), v) =< w(s), v > ∀s ∈ (t, t+ ∆t]

< w(t+ ∆t), v >

= −
∫ t+∆t

t
(<
−→
V (u).∇w(t), v > + < kuy, v >)ds+ < w(t), v > ∀v ∈ L2(Ω) ∀s ∈ (t, t+ ∆t]

(3.1)

In [19], the above formulation was used to obtain existence of solutions proved in Chapter 2

Section 2.3.1 using Petrov-Galerkin approximations on spaces generated by the spectral eigen-

functions that satisfy:

−∆Φn + Φn = λnΦn

with Φn ∈ (PBC1), n = (n1, n2) and Φn(x, y) = ϕn1
(x)ϕn2

(y) with ϕn1
(x) and ϕn2

(y) being

trigonometric functions.

In our case, Finite Element subspaces will be used, although spectral methods based on {Φn}

should be also investigated in the future.

3.1 P1 - Finite Elements on Triangles

Conformal meshing is obtained using the built-in MATLAB function Delaunay.

The set of triangles E ={Ti|1 ≤ i ≤M} that is obtained is such that:
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Figure 3.1: A conformal finite element meshing of the rectangle

Ti ∩ Tj =



Triangle itself when i=j.

vertex

one side

φ

(3.2)

In addition, Ω = ∪Mi=1Ti, See figure (3.1)

3.1.1 Definition of S1(E)

Definition 3.1. The space of P1−finite elements on E is defined as follows:

S1(E) = {Φ ∈ C(Ω)|Φ|T ∈ P1}

Where P1 is the set of polynomials of degree 1, in x and y.

Specifically, let x = (x, y) ∈T, then for Φ ∈ S1(E):

Φ(x) = bT + aT
1x+ aT

2y
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Figure 3.2: Right angle triangle in E

On every triangle, Φ is defined on the basis of 3 parameters {Φ(P1),Φ(P2),Φ(P3)}, then

Φ(x, y) = Φ(P1)ψ1,T (x, y) + Φ(P2)ψ2,T (x, y) + Φ(P3)ψ3,T (x, y)

where

ψi,T (x, y) = αix+ βiy + γi, with ψi,T (Pj) = δij and δij being the kronecker delta.

Since all triangles in E are right angles (see figure (3.2)), then ψi,T can be written as:

ψi,T (x, y) = 1− ci(x−xPi)− di(y − yPi)
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Definition 3.2. Let ℵ be the set of nodes associated with the conformal triangulation E. For

every P ∈ ℵ, let EP = {T ∈ E|P is a vertex of T} be the set of triangles from E having P as a

vertex. Then, S1(E) = span{ψP (x, y)/P ∈ ℵ}, where ψP (x, y) is the basis function associated

with node P.

One notes that Supp(ψP ) = EP , i.e
ψP (x, y) = 0 (x, y) /∈ EP

ψP (x, y) 6= 0 (x, y) ∈ EP

Hence for Φ ∈ S1(E), and ℵ being the set of nodes of E. One writes

Φ(x, y) =
∑
P∈ℵ

Φ(P )ψP (x, y)

And therefore to any Φ ∈ S1(E) one associate uniquely

V =

 Φ(P1)

.

.

.
Φ(PN2 )

 ∈ RN
2

This implies that finding a function Φ ∈ S1 reduces to finding its values at the nodes of E. Thus

given a triangulation E = {Ti|1 ≤ i ≤M} that covers Ω in a conformal way, implementing the

finite element method requires two basic data structures: Nodes and Elements.

These auxiliary structure are needed to generate discrete systems used to obtain the pair

{uN , wN} of finite element approximations to the coupled Elliptic-Hyperbolic system (3.1).

Theorem 3.3 (The Basic approximation result for finite-elements subspaces). [20] ∀v ∈

H2(Ω)∃vN ∈ S1(E) such that

‖v − vN‖H1(Ω) ≤
C

N
‖v‖H2(Ω) (3.3)
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3.1.2 Definition of S1
P (E)

Definition 3.4. Define the S1,P as follows:

S1,P = {v ∈ S1(E)/v ∈ (PBC) on Γ}

To find a basis for S1,P (E), we proceed as follows:

For each I or J belonging to the the boundary Γ = ∂Ω with y(I) = 1 or x(J) = 1 (I and

J ∈ PERIODIC1), corresponding nodes K and L ∈ PERIODIC2 respectively such that

y(K) = 0 or x(L) = 0.

Therefore our work is reduced into solving N2 − (2N − 1) = N1 equations instead of a N2

equations, where N2 is the total number of nodes.

uN =
∑

I∈INTERIOR
UIψI +

∑
I∈PERIODIC1

UIψI +
∑

I′∈PERIODIC2

UI′ψI′

uN =
∑

I∈INTERIOR
UIψI +

∑
I∈PERIODIC1∪PERIODIC2

UI(ψI + ψI′)

uN =
∑

I∈INTERIOR
UIψI +

∑
I∈PERIODIC1

UI ˜(ψI)

Define: {ϕI , 1 ≤ I ≤ N1} = {ψI , I interior node} ∪ {ψ̃I , I ∈ PERIODIC1}

and SN,P = span{ϕI , 1 ≤ I ≤ N1}

Hence the approximation property:

∀v ∈ H1
P (Ω),∃vN ∈ SN,P : limN→∞‖v − vN‖H = 0 (3.4)

3.2 Finite Element Discretization of the equa-

tions in the coupled system

The Poisson’s part is discretized by seeking

23



uN (s) ∈ S1
P (Ω) a(uN (s), v) =< w(s), v >, ∀s ∈ (0, T ], ∀v ∈ S1,P (Ω)

with uN (s) =
∑N
j=1 Uj(s)ϕj ∈ S1,P (E)

For the Hyperbolic part Starting with the variational formulation written in integral form

(2.16):

Given w(t) ∈ SN,P such that: < w(t + ∆t), v >= −
∫ t+∆t

t
(<
−→
V (u).∇w(t), v > + < kuy, v >

)ds+ < w(t), v >

∀v ∈ L2(Ω) and ∀s ∈ (t, t+ ∆t]

One defines then the Finite element discrete system for such equation, where as given wN (t)

one seeks ∀s ∈ (t, t+ ∆t] : wN (s) =
∑N1

i=1 wi(s)ϕi

< wN (t+ ∆t), v >=< wN (t), v > −
∫ t+∆t

t

(V (uN (s))∇wN − kuN,y)vds, ∀v ∈ SN,P

3.3 Finite Element method for the coupled (HM)

system

The method is formulated through a Petrov-Galerkin procedure on (3.1).

Given {uN (t), wN (t)}, we seek {uN , wN} : (t, t+ ∆t] −→ SN,P × SN,P

(HMd)


a(uN (s), v) =< wN (s), v > ∀s ∈ [t, t+ ∆t], ∀v ∈ SN,P

< wN (t+ ∆t), v >=< wN (t), v > −
∫ t+∆t

t
(V (uN (s))∇wN − kuN,y)vds ∀v ∈ SN,P

(3.5)
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This system can be written in matrix form as:
AU(s) = MW (s) t ≤ s ≤ t+ ∆t

MW (t+ ∆t) = MW (t)−
∫ t+∆t

t
P (U(s))W (s)ds+

∫ t+∆t

t
RU(s) t ≤ s ≤ t+ ∆t

(3.6)

Where we have to generate these matrices with A,M , P (U(Ω)) being finite-element sparse ma-

trices N1 ×N1 defined as follows:

A = {< ϕi, ϕj > + < ∇ϕi,∇ϕj > /i, j = 1..N1} is the stiffness matrix

M = {< ϕi, ϕj > /i, j = 1..N1} is the mass matrix (symmetric positive definite).

P (uN ) = {<
−→
V (u).∇ϕi, ϕj > /i, j = N1} is the skew-symmetric matrix. R = {< kϕiy, ϕj >

/i, j = 1..N1}

With A, M and R constant matrices over the time, while P (uN ) changes with time.

The coupled system obtained in (3.6) (highly implicit and non linear) is used to advance the pair

{U(s),W(s)} by computing successively {U(∆t),W (∆t)}, {U(2∆t),W (2∆t)}...{U(m∆t),W (m∆t)}.

3.4 Predictor-Corrector Scheme

We advance the solution in time from {U(t),W (t)} to {U(t+ ∆t),W (t+ ∆t)} at time (t+ ∆t)

by letting {U(t + ∆t),W (t + ∆t)} = {Y, Z}. Specifically, assume {U,W} = {U(t),W (t)} is

given, we obtain {Y,Z} = {U(t+ ∆t),W (t+ ∆t)} by replacing
∫ t+∆t

t
using and a second order

Trapezoidal rule and then targeting to solve the implicit system:

Given {U,W}, find {Y,Z}
AY = MZ

MZ = MW − ∆t
2 [P (Y )Z + P (U)W ] +R∆t

2 (U + Y )

(3.7)
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(3.7) is a Crank-Nicolson type implicit system that is solved by predictor-corrector scheme.

Implicit-Predictor Corrector:

One define the sequence {Y k, Zk} in the following way: starting Y 0 = U,Z0 = W in the

following way:


(M + ∆t

2 P (Y k))Zk+1 = (M − ∆t
2 P (U))W + ∆t

2 RU + ∆t
2 RY

k

AY k+1 = MZk+1

(3.8)

Theorem 3.5. (M + ∆t
2 P (Y k)) is positive definite which implies that (M + ∆t

2 P (Y k)) is

invertible.

Proof. vT (M+ ∆t
2 P (Y k))v = vTMv+vT ∆t

2 P (Y k)v Note that M is symmetric positive definite

hence vTMv ≥ 0 and P is skew symmetric, i.e PT = −P which can be proved easily then

vT ∆t
2 P (Y k)v = 0 Hence vT (M + ∆t

2 P (Y k))v ≥ 0 and so Positive definite.

P (Y K) changes at each correction step. Thus meshing this correction steps is highly expensive

as one has to perform an LU decomposition at each time. Instead, we replace (M + ∆t
2 P (Y k))

by (M+ ∆t
2 P (U)) thus performing one LU decomposition at the prediction and using it at each

correction.


(M + ∆t

2 P (U))Zk+1 = (M − ∆t
2 P (U))W + ∆t

2 RU + ∆t
2 RY

k

AY k+1 = MZk+1

(3.9)

Where our skew-symmetric matrix P(U) remains constant while the Prediction-Correction

steps.

Note that, using this semi-implicit method we can choose ∆t = ∆x avoiding the explicit meth-

ods [5] that forces to take small ∆t steps.
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Remark: Explicit methods are obtained by a first order rectangular rule.

∫ t+∆t

t

P (uN )W (s)ds ≈ ∆tP (uN (t))W (t)

3.5 Implementation aspects

There are essentially related to generating the matrices A,M,R, P (U) using the MATLAB sparse

command. For that purpose one has to compute local coefficients of these matrices, in the table

of triangles. In what follows we will illustrate the procedures. Given the data of table Nodes

and Elements relative to the nodes, the local matrix and vector elements can be all computed.

a(ϕI , ϕJ) =
∑
T∈E

aT (ϕI , ϕJ)

F (ϕJ) =
∑
T∈E

FT (ϕJ)

P1 P2 P3

P1 aT (ϕI , ϕI) aT (ϕI , ϕJ) aT (ψI , ϕK)

P2 aT (ϕJ , ϕI) aT (ϕJ , ϕJ) aT (ϕJ , ϕK)

P3 aT (ϕK , ϕI) aT (ϕK , ϕJ) aT (ϕK , ϕK)

INDEX P1 P2 P3 9 components of Local Matrix 3 components of Local Vector

1 − − − − −

2 − − − − −

...
...

...
...

...
...

M − − − − −
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3.5.1 Poisson’s Local matrices

The integration of
∫
Tk
ϕIϕJdxdy and

∫
Tk
∇ϕI∇ϕJdxdy are done using the formula

∫
Tk
f(x, y)dxdy ≈

Area(Tk)
3

∑
P∈ℵ(T ) f(P )

which is based on linear interpolation of ϕIϕJ and ∇ϕI∇ϕJ at each element (triangle) vertices,

say I, J and L respectively.

∫
Tk

ϕIϕJdxdy ≈
1

3
Area(T)

∑
P=I,J,L

ϕI(P )ϕJ(P )

Notice that since ϕK is a P1-function then ∇ϕK is a constant. Hence:

∫
Tk

∇ϕJ∇ϕJdxdy ≈ Area(T) ∇ϕJ∇ϕJ

∫
Tk
ϕJwdxdy ≈

1

3
Area(T)

∑
P=I,J,L ϕI(P )w(P ).

3.5.2 Hyperbolic equation’s Local matrices

To compute the local stiffness matrix M, one needs to compute

MT (ϕI , ϕJ) =

∫
T

ϕIϕJdµ

Next, to compute P (uN )T = {<
−→
V (u).∇ϕi, ϕj > \i, j = 1..N} with

−→
V (u) the vector field(−ux

uy

)
.

Then P (uN )T (ϕI , ϕJ) = −
∫
T
uy∇ϕIϕJdµ+

∫
T
ux∇ϕIϕJdµ

With ux and uy are computed using finite difference on the matrix solution u.

We ran into difficulties dealing with such matrix depending on uN (x, y, t), since the coefficients

of this matrix are varying at each time step resulting into slow computations.
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Finally, to compute R(uN ) =< kuN,y, ϕj > with k = ∂xln
n0

wci
with ln

n0

wci
not depending on y

and its derivative with respect to x is the constant k, then

aR,T (ϕI , ϕJ) = k

∫
T

(ϕI)yϕJdµ

Note that, all the previous integrations are treated by the same rule used in (3.5.1).
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Chapter 4

Numerical Simulations

In Chapter 2, we studied the Hasegawa-Mima equation as a coupled system. In Chapter 3,

we discussed the finite element formulation of the problem and the resulting discrete scheme.

We present in this chapter simulations done by solving this equation. We aim at conducting a

numerical test based on turbulence theory.

4.1 Nonlinear Solution for the HM Equation

A modon is the simplest member of the family of solutions of the HM equation.

If the Hasegawa-Mima equation is to have any exact solutions, then they must either be station-

ary, or moving at a constant velocity. The reason for this is the constraint of the conservation

of the density function. [5] Thus, we are lead to look for stationary solutions.
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Figure 4.1: Initial potential profile for the modon dipole vortex solution with

a = 2, c = 10 and γ = 4 : 0914.

4.1.1 Test for Stationarity and Conservation of Energy

and Enstrophy

We aim at verifying that our Finite Element code preserves the steadiness of the solution as

a function of time. Figure 4.1 a plot of the modon which will be used for this test as initial

function. The continuity constant should be chosen carefully so as not to induce discontinuities

in u. The code is run for 500 s with a time step = ∆x. We use contour plots to show the time

evolution of the simulated solution. It is striking that no modification is detected even after

such a long period of time. We deduce that our code preserves the stationarity condition.
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4.2 Test for the Periodic Boundary Conditions

An exponential initial profile for n0 is used with gradient in the y-direction, we show its shape

in figure 4.3, together with a First order derivative of a Gaussian (figure 4.1) as an initial profile

to test its behavior after passing a boundary.

The gradient of log(n0) induces a convective motion perpendicular to its direction, that is, in

the x-direction. Additionally, Φ0 is rather close to the modon solution, hence, we expect this

initial condition not only to travel in the direction perpendicular to the density gradient but

also to have an evolution as it is not the exact solution for the non-linear HM equation. [5]

As it is clearly illustrated in Fig (4.5), the solution satisfy the periodic boundary conditions

even when advancing in time and using a relatively big time step ∆t.

Hence the period boundary conditions work fine in our Matlab code.
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(a) 50s (b) 100s

(c) 150s (d) 200s

(e) 250s (f) 300s

Figure 4.2: Plots of the electrostatic potential of the modon taken at different

times t, with a time step ∆t = ∆x =
20

64
, on a 64× 64 grid.
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Figure 4.3: Plot of log(n0) where n0 is the initial density profile
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(a) 10s (b) 20s

(c) 30s (d) 40s

(e) 50s (f) 60s

(g) 70s (h) 80s

Figure 4.4: The time evolution of the spatial structure of the potential, with a

time step ∆t = ∆x =
20

64
s on a 64× 64 grid.
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(a) 20s (b) 40s

(c) 60s (d) 80s

Figure 4.5: The time evolution of the spatial structure of the potential, with a

time step ∆t = ∆x =
20

64
s on a 64× 64 grid.
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Chapter 5

Conclusion

In this work, we present a new Simulation Model for the Hasegawa-Mima Plasma Equation.

The derivations are given for the two-dimensional equation where we focus on discretizing

the coupled Hasegawa-Mima system introduced in Chapter 2 using Finite Element method for

spacial discretization and implicit Crank-Nicolson scheme for time discretization with predictor-

corrector implementation discussed in Chapter 3.

First tests of the method have been conducted in Chapter 4. The code appear to be robust

and flexible when it comes to the choice of ∆t.

Such tests needs to be pursued in the future in view of validating this approach.
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