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AN ABSTRACT OF THE THESIS OF

Farah Kanbar for Master of Science
Major: Mathematics

Title: Central Scheme for Systems of Shallow Water Equations with wet and Dry States

In this thesis we present a new well-balanced, non-oscillatory, second-order accurate central
scheme for the numerical solution of the two-dimensional shallow water equations (SWE) with
wet and dry states. The numerical scheme is a central scheme that follows a classical Riemann-
free finite volume method and that evolves the numerical solution on a single Cartesian grid.
Most numerical schemes generate numerical instabilities, such as negative water heights, when
considered with wet and dry regions. The developed well-balanced numerical scheme is capable
of maintaing, when necessary, the steady state requirement of SWE systems, along with a
proper and clean interaction between wet and dry states whenever water run-ups are present.
The developed scheme is then validated and the numerical solution of recent two-dimensional
SWE problems is reported.
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Chapter 1

Introduction

Central schemes are considered simple and efficient tools for the numerical solution of systems

of hyperbolic conservation laws. Lax-Friedrichs scheme is a numerical method for the solution

of hyperbolic partial differential equations. Based on this scheme, Nessyahu and Tadmor

introduced a central scheme that evolves a piecewise linear numerical solution on two staggered

grids in 1990 [1]. Later on, extensions of the NT scheme were developed [29-31]. These schemes

were used to solve problems arising in aerodynamics and magnetohydrodynamics. In 1998,

Jiang et al presented an unstaggered adaptation of the NT scheme [27]. A two-dimensional

extension of this scheme is then presented in [28]. In this thesis we develop a new well-balanced

unstaggered central scheme for the numerical solution of systems of two-dimensional shallow

water equations with wet and dry states. The shallow water equations (SWE) system is a set

of hyperbolic partial differential equations that describes the flow of a free surface fluid under

gravity over variable bottom topography. The equations are derived by depth-integrating the

Navier–Stokes equations in the case where the horizontal length scale is much greater than

the vertical length scale. The system can be used to model waves in the atmosphere, rivers,

lakes and oceans. It is also used to simulate tsunamis, dam breaches and others. The SWE
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system, written in its conservative from, is given by:

∂

∂t


h

hu

hv


+

∂

∂x


hu

hu2 + 1
2
gh2

huv


+

∂

∂y


hv

huv

hv2 + 1
2
gh2


=


0

−gh ∂z
∂x

−gh ∂z
∂y


Where t is the time variable, x and y are the two spatial variables, (u, v) are the velocities

in the x-direction and y-direction respectively, h is the water height function h(x, y), z is the

water bed function z(x, y) and g is the gravitational constant.

Many Papers were recently published for the numerical solution of the shallow water equations

using Riemann solvers [5,7-18]. Accurate numerical schemes were developed by balancing

between the source term and the flux divergence [12,13]. A one-dimensional well-balanced

scheme is derived in [4], where the discretization of the source term and the flux divergence

were taken properly. The one-dimensional well-balanced scheme, derived in [4], was extended

to a two-dimensional one in [6]. The scheme features the well-balancing of the source term

with the flux divergence and the proper discretization of the water height function according

to the surface gradient method discussed in [5].

Solving steady state problems is one of the main challenges in the simulation of the SWE

problems. For this reason, new well-balanced central schemes for the shallow water equations

were developed [4,6,13,19] to solve steady state problems. Another challenge is the develop-

ment of well-balanced schemes that treat problems with wet and dry states. The appearance

of such states usually result from the way the initial water height is defined or from the flow

of water across the computational domain. So, we may have wet areas where h > 0 and dry

areas where h = 0. Most numerical schemes break down when they are considered with wet

and dry regions and generate negative water heights in the forward and the backward projec-

tion steps due to the steep gradient of the interpolant which performs a negative interpolated

water height (i.e below the water bed). Therefore, our aim is to propose a treatment that

yields clean forward and backward steps, and also maintain the conservation of water across

the computational domain as well as the well-balanced property of the developed scheme. A



list of numerical schemes were developed in [20-26] to satisfy both the lake at rest and the wet

and dry constrain.

A new unstaggered, well-balanced, non-oscillatory, and second-order accurate central scheme

for the one-dimensional system of shallow water equations with wet and dry treatment was

proposed in [4]. The scheme is capable of handling lake at rest problems at the discrete level

by the aid of the surface gradient method. Simultaneously, the scheme treats the numerical

instabilities resulting from the wet and dry interactions by correcting the slope of the water

height interpolant in the forward and backward projection steps.

In this thesis we develop a new well-balanced, non-oscillatory, and second order accurate cen-

tral scheme for the two-dimensional system of shallow water equations on variable bottom

topography with wet and dry states. It is an extension of the one-dimensional scheme pre-

sented in [4]. The extended scheme ensures the water conservation across the computational

domain and maintain the positivity requirement of the water height function. Our numeri-

cal experiments confirm that the well-balanced property at the discrete level together with

the surface gradient method is able to handle lake at rest problems. Besides, it is able to

handle problems with wet and dry interactions. The good agreement between our numerical

results and the ones proposed in the recent literature as well as the comparison with the one-

dimensional experiments prove the efficiency of the developed scheme. The paper is organized

as follows: In chapter 2, we present the one-dimensional well-balanced scheme that solves lake

at rest problems by the aid of the surface gradient method as well as problems with wet and

dry regions with a specific treatment. In chapter 3, we present the two-dimensional extension

of the scheme in section 1-2. Furthermore, we develop a treatment of wet and dry states

for the two-dimensional scheme in section 3 followed by numerical experiments to test the

efficiency of the developed scheme. In chapter 4, we conclude with important remarks and

future work.



Chapter 2

One-dimensional

Well-balanced Central Scheme

In this section we present an overview of the previously developed one-dimensional central

scheme and a list of experiments on which the well-balanced scheme is applied.

2.1 Well-balanced Central Scheme for the One-dimensional

Shallow Water Equations

In the one-dimensional case, the SWE system is given by
∂tu+ ∂xf(u) = S(u, x), u = u(x, t), x ∈ Ω ⊂ R, t > 0

u(x, 0) = u0(x)

We will apply the central NT scheme [1] to the shallow water equations:

∂

∂t

 h

hv

+
∂

∂x

 hv

hv2 + 1
2
gh2

 =

 0

−gh ∂z
∂x


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Where h(x, t) denotes the water height, v(x, t) is the velocity in the x-direction, g is the grav-

itational constant, and z(x) denotes the bottom topography function.

The computational domain Ω is an interval of the real line divided into control cells defined

by Ci =
[
xi−1/2, xi+1/2

]
of equal width ∆x = xi+1/2 − xi−1/2 and centered at xi. We also

define the dual cells Di+ 1
2

= [xi, xi+1] with centers xi+1/2 = xi + ∆x
2

. The time step will be

denoted by ∆t, and for a positive integer n we set tn+1 = n∆t.

We assume that the solution uni at time tn is known at the nodes xi where uni = u(xi, t
n),

and is defined as a piecewise linear function over Ci. Our aim is to compute the solution un+1
i

at time tn+1 = tn + ∆t.

We start by integrating ut + f(u)x = S(u, x) over the domain Rn
i+ 1

2
= Di+ 1

2
× [tn, tn+1]

∫∫
Rn

i+1/2

[ut + fx(u)]dR =

∫∫
Rn

i+1/2

S(u, x)dR (2.1)

then we apply Green’s formula to the double integral on the left-hand side of equation (2.1),

which allows us to change the double integral into a line integral by the following formula:

∫∫
R

(
∂Q

∂x
− ∂P

∂y
)dxdy =

∮
R

(Pdx+Qdy) (2.2)

After applying this formula with ∂Q
∂x

= f(u)x and ∂P
∂y

= −ut, Eq.(1.1) becomes:

∮
∂Rn

i+1/2

(f(u)dt− udx) =

∫ tn+1

tn

∫ xi+1

xi

S(u, x)dxdt (2.3)

where the boundary of the squared region Rni+1/2 is as follows:

∂Rni+1/2 = [xi, xi+1] ∪ [tn, tn+1] ∪ [xi+1, xi] ∪ [tn+1, tn]



Dividing the line integral over the four segments, we get:

∫ xi+1

xi

[f(u(x, tn))dt− u(x, tn)dx] +

∫ tn+1

tn
[f(u(xi+1, t))dt− u(xi+1, t)dx]

+

∫ xi

xi+1

[f(u(x, tn+1))dt− u(x, tn+1)dx] +

∫ tn

tn+1

[f(u(xi, t))dt− u(xi, t)dx]

=

∫ tn+1

tn

∫ xi+1

xi

S(u, x)dxdt

Splitting the integrals and rearranging them simplifies the equation to:

−
∫ xi+1

xi
u(x, tn)dx+

∫ tn+1

tn
f(u(xi+1, t))dt+

∫ xi+1

xi
u(x, tn+1)dx−

∫ tn+1

tn
f(u(xi, t))dt

=

∫ tn+1

tn

∫ xi+1

xi

S(u, x)dxdt (2.4)

Next, we apply the Mean-Value theorem for integrals of the function u(x, t), note that the

theorem is applicable because the function is piecewise linear at the cell centers.

The integrals become:

∫ xi+1

xi
u(x, tn+1)dx = ∆xun+1

i+ 1
2∫ xi+1

xi
u(x, tn)dx = ∆xun

i+ 1
2

For flux integrals we apply the midpoint quadrature rule.

The integrals become:

∫ tn+1

tn
f(u(xi, t))dt ≈ f(u

n+ 1
2

i ).∆t

∫ tn+1

tn
f(u(xi+1, t))dt ≈ f(u

n+ 1
2

i+1 ).∆t

We Substitute these 4 integrals in Eq.(1.4) and we divide by ∆x to obtain:

un+1

i+ 1
2

= uni+ 1
2
− ∆t

∆x
[f(u

n+ 1
2

i+1 )− f(u
n+ 1

2
i )] +

1

∆x

∫ tn+1

tn

∫ xi+1

xi

S(u, x)dxdt. (2.5)

where u
n+ 1

2
i are the predicted values at the intermediate time tn+ 1

2 and they are approximated

using a first-order Taylor expansion in time:

u(x, t) = u(x, a) + ut(x, a)(t− a) for any a and t.

u(xi, t) = u(xi, a) + ut(xi, a)(t− a)

Let a = tn,



u(xi, t) = u(xi, t
n) + ut(xi, t

n)(t− tn)

Let t = tn+ 1
2

u(xi, t
n+ 1

2 ) = u(xi, t
n) + ut(xi, t

n)( ∆t
2

)

u
n+ 1

2
i = uni + ∆t

2
(ut)

n
i

u
n+ 1

2
i = uni + ∆t

2
[−fx(uni ) + S(uni , xi)]

But the partial derivatives of the flux are calculated using the chain rule, Then:

u
n+ 1

2
i = uni + ∆t

2∆x
[−f ′ + Sni .∆x]

The integral of the source term is being discretized using the midpoint quadrature rule with

respect to time and space:

∫ tn+1

tn

∫ xi+1

xi

S(u(x, t), x)dxdt =

∫ xi+1

xi

∆tS(u(x, tn+ 1
2 ), x)dx

=
∆x∆t

2

[
S(u(xi+1, t

n+ 1
2 ), xi+1) + S(u(xi, t

n+ 1
2 ), xi)

]
=

∆x∆t

2

[
S(u

n+ 1
2

i+1 , xi+1) + S(u
n+ 1

2
i , xi)

]

=
∆t∆x

2


 0

−ghn+ 1
2

i+1 ( ∂z
∂x

)i+1

+

 0

−ghn+ 1
2

i ( ∂z
∂x

)i




=
∆t∆x

2

 0

−g
[
h
n+ 1

2
i+1 ( ∂z

∂x
)i+1 + h

n+ 1
2

i ( ∂z
∂x

)i

]


= ∆t∆x

 0

−g h
n+ 1

2
i+1 +h

n+ 1
2

i

2
(
zi+1+zi

∆x
)


So,

∫ tn+1

tn

∫ xi+1

xi

S(u(x, t), x)dxdt ≈ ∆t∆xS(u
n+ 1

2
i , u

n+ 1
2

i+1 )

with

S(u
n+ 1

2
i , u

n+ 1
2

i+1 ) =

 0

−g h
n+ 1

2
i+1 +h

n+ 1
2

i

2
(
zi+1+zi

∆x
)

 (2.6)



Discritization of the source term:

we define the sensor function si as follows:

si =



−1, if h
′
i = θ

hn
i −h

n
i−1

∆x

1, if h
′
i = θ

hn
i+1−h

n
i

∆x

0, if h
′
i = 0

2, if h
′
i =

hn
i+1−h

n
i−1

2∆x

where 1 ≤ θ ≤ 2 is the MC-θ parameter used in the gradients limiting. This parameter will

force the discretization of dz/dx in the source term to follow the discretization of dh/dx.

Then, the source term is discretized as follows:

Sni = Sni,L + Sni,R + Sni,C

where

Si,L = s2
i

1− si
6

(2− si)

 0

−ghni θ
zi−zi−1

∆x



Si,R = s2
i

1 + si
2

(2− si)

 0

−ghni θ
zi+1−zi

∆x



Si,C = si
(si + 1)(si − 1)

6
(2− si)

 0

−ghni
zi+1−zi−1

2∆x





The source term is then given by:

Si =




0

−ghni θ
zi−zi−1

∆x

, if si = −1


0

−ghni θ
zi+1−zi

∆x

, if si = 1

0, if si = 0
0

−ghni
zi+1−zi−1

2∆x

, if si = 2

To sum up, the steps of the numerical scheme can be summarized as follows:

• Calculate the predicted values u
n+ 1

2
i using the following equation:

u
n+ 1

2
i = uni +

∆t

2∆x
[−f ′ + Sni .∆x]

• Calculate the forward projected values un
i+ 1

2
using Taylor expansion of u(x, tn) in space

uni+ 1
2

=
1

2
(uni + uni+1) +

∆x

8
((uni )

′
− (uni+1)

′
) (2.7)

where (uni )
′

is the derivative of u(xi, t
n) calculated using the MC-θ limiter defined in

[5].

• Calculate the solution at time tn+1 on the staggered dual cells using this formula:

un+1

i+ 1
2

= uni+ 1
2
− ∆t

∆x
[f(u

n+ 1
2

i+1 )− f(u
n+ 1

2
i )] + ∆tS(u

n+ 1
2

i , u
n+ 1

2
i ) (2.8)

• Project the solution un+1

i+ 1
2

back into the original grid using Taylor expansions in space:

un+1
i =

1

2
(un+1

i− 1
2

+ un+1

i+ 1
2
) +

∆x

8
((un+1

i− 1
2
)
′
− (un+1

i+ 1
2
)
′
). (2.9)

The Steady State:

Where the surface of the liquid is initially at rest corresponding to initial velocity zero.(i.e.

h+ z = cst)



In this case the variable, the flux, and the source term vector reduce to

u =

 h

0

 f =

 0

1
2
gh2

 S =

 0

−gh ∂z
∂x



The solution for the steady state problems of the shallow water equations at time tn+1 should

be equal to that at time tn and the equality hi + zi = cst should be satisfied at each time step

and at every node in the computational domain.

We will prove now that in the steady state case the following equalities hold:

• u
n+ 1

2
i = uni

• un+1

i+ 1
2

= un
i+ 1

2

Proof of the first equality:

u
n+ 1

2
i = uni + ∆t

2∆x
(−(f ′)ni + Sni .∆x)

Consider the case where h′i = θ
hi−hi+1

∆x
(Similar proof for the remaining cases)

by the definition of the sensors si, the source will be defined as:

Sni =

 0

−ghni θ
zi−zi−1

∆x


and

F ′i =

 0

ghih
′
i


The equation becomes:

u
n+ 1

2
i =uni +

∆t

2∆x

[ 0

−ghni (h′)ni − ghni θ(zi − zi−1)


]

= uni +
∆t

2∆x

[ 0

−ghni [(h′)ni + θ(zi − zi−1)]


]

= uni +
∆t

2∆x

[ 0

−ghni [θ(hni + zi)− θ(hni−1 + zi−1)]


]



but we’re given that hni + zi = cst over all the computational domain.

hence,

u
n+ 1

2
i = uni

proof of the second equality:

un+1

i+ 1
2

= uni+ 1
2
− ∆t

∆x
[f(u

n+ 1
2

i+1 )− f(u
n+ 1

2
i )] + ∆tS(u

n+ 1
2

i , u
n+ 1

2
i )

where,

S(u
n+ 1

2
i , u

n+ 1
2

i+1 ) =

 0

−g h
n+ 1

2
i +h

n+ 1
2

i+1

2

(
zi+1−zi

∆x

)


Then we get,

un+1

i+ 1
2

= uni+ 1
2
− ∆t

∆x

[ 0

1
2
g[h

n+ 1
2

i + h
n+ 1

2
i+1 ][(h

n+ 1
2

i+1 + zi+1)− (h
n+ 1

2
i + zi)]


]

Again, h+ z = cst and from 1. we have u
n+ 1

2
i = uni

this leads to

(h
n+ 1

2
i + zi)− (h

n+ 1
2

i+1 + zi+1) = (hni + zi)− (hni+1 + zi+1) = 0

Therefore,

un+1

i+ 1
2

= uni+ 1
2

In this section we presented the derivations of the well-balanced scheme. In general, the well-

balanced scheme fails to solve lake at problems as we will show in the numerical experiments

section. Therefore, a new reformulation of the scheme is needed to remedy this situation as

we will present in the next section.



2.2 The Surface Gradient Method for the One-dimensional

Shallow Water Equations System

In order for the developed scheme to satisfy the steady state requirement i.e (h+z = c, v = 0),

some reformulations on the well-balanced central scheme is to be applied.

As proved in the previous section, the following equalities:
u
n+ 1

2
i = uni

un+1

i+ 1
2

= un
i+ 1

2

hold at every node of the computational domain. Therefore a proper reformulation of the

scheme is to be done for this equality un+1
i = uni to hold at every node xi in the original cells.

We will follow the surface gradient method discussed in [4] and calculate the numerical deriva-

tive of the water height component in terms of the water level function H(x, t) = h(x, t)+z(x).

The surface gradient method can be summarized by the following steps:

First, we define the bottom topography function z(x) at the centers of the dual cells, i.e, zi+ 1
2

then we find its values on the centers of the control cells using linear interpolations:

z(x) = zi +
1

∆x
(zi+ 1

2
− zi− 1

2
)(x− xi)

At xi, we define

zi =
1

2
(zi+ 1

2
+ zi− 1

2
)

We linearize the water level function H(x) and then use the relation h(x) = H(x) − z(x) to

linearize the water height function. So,

h
′
i = H

′
i − z

′
i

where H
′
i is calculated using MC-θ limiter and z

′
i is calculated using central difference.

Then,

h
′
i = H

′
i −

1

∆x
(zi+ 1

2
− zi− 1

2
) (2.10)



Substituting h
′
i by its value in Eq. (2.7), we get:

hni+ 1
2

=
1

2
(hni + hni+1) +

∆x

8
[(H ′i −

zi+ 1
2
− zi− 1

2

∆x
)− (H ′i+1 −

zi+ 3
2
− zi+ 1

2

∆x
)] (2.11)

It is essential to mention that in the steady state H(x) is constant and H
′

= 0. Moreover,

zi+ 1
2
− zi− 1

2
= 2(zi+ 1

2
− zi) and zi+ 3

2
− zi+ 1

2
= 2(zi+1 − zi− 1

2
)

This reduces Eq.(2.11) to:

hni+ 1
2

=
1

2
(hni + hni+1) +

1

2
(zi+ 1

2
− zi + zi+1

2
) (2.12)

Similar reformulations is to be applied on the backward projection step Eq.(2.9)

We have the relation Hi = hi + zi over the control cells Ci =
[
xi−1/2, xi+1/2

]
. Similarly, we

have:

H̃n+1

i+ 1
2

= hn+1

i+ 1
2

+ z̃i+ 1
2
. (2.13)

where z̃i+ 1
2

is defined by the following formula due to the fact that the bottom topography

function is linear inside the control cells Ci, but not on the dual cells Di+ 1
2

= [xi, xi+1]:

z̃i+ 1
2

= zi+ 1
2
− 1

2
(zi+ 1

2
− zi + zi+1

2
) (2.14)

Then,

(hn+1

i+ 1
2
)′ = (H̃n+1

i+ 1
2

)′ − 1

∆x
(zi+1 − zi). (2.15)

Substituting Eq.(2.15) in Eq.(2.9), we obtain:

hn+1
i =

1

2
(hn+1

i− 1
2

+ hn+1

i+ 1
2
) +

∆x

8
(H
′

i− 1
2
− zi − zi−1

∆x
−H

′

i+ 1
2

+
zi+1 − zi

∆x
) (2.16)

By applying the surface gradient method we end our reformulations of the well-balanced

scheme.

Now, let’s prove that steady state is conserved after applying the described reformulations,

i.e, un+1
i = uni .

We have proved that it is conserved on the staggered values (un+1

i+ 1
2

= un
i+ 1

2
). That means, it

is enough to prove that projecting the staggered values to the nonstaggered ones returns the



same values we started with. In the case of steady state the velocity is zero so we will only

consider the first component h. Because Hi is constant, then H
′
i = 0 and Eq. (2.11) becomes:

hni+ 1
2

=
1

2
(hni + hni+1) +

∆x

8
[(H ′i −

zi+ 1
2
− zi− 1

2

∆x
)− (H ′i+1 −

zi+ 3
2
− zi+ 1

2

∆x
)]

=
1

2
(hn+1

i− 1
2

+ hn+1

i+ 1
2
)− 1

2
(zi+ 1

2
− zi + zi+1

2
)

using the relations zi+ 1
2
− zi− 1

2
= 2(zi+ 1

2
− zi) and zi+ 3

2
− zi+ 1

2
= 2(zi+1 − zi+ 1

2
) and

substituting hn
i+ 1

2
by its value in Eq. (2.13), we get that H̃n+1

i+ 1
2

is constant and so (H̃n+1

i+ 1
2

)
′

= 0.

Now,

hn+1
i =

1

2
(hn+1

i− 1
2

+ hn+1

i+ 1
2
) +

∆x

8
(H
′

i− 1
2
− zi − zi−1

∆x
−H

′

i+ 1
2

+
zi+1 − zi

∆x
)

By taking into account the values hn
i+ 1

2
and the fact that H

′

i+ 1
2

= 0, we get hn+1
i = hni . In

this way we end our proof and the steady state is preserved at the centers of the original cells.



2.3 Treatment of Wet and Dry States

The proposed well-balanced scheme leads to numerical instabilities such as negative water

heights when SWE problems with wet and dry rejoins are considered. The appearance of

such instabilities is due to the gradient limiters that give an interpolated numerical solution

falling below the water bed on the dual cells in the forward projection step Eq.(2.7), or an

interpolated water height lying below the water bed function on the original cells in the

backward projection step Eq.(2.9). Therefore, additional treatment is required to remedy this

situation.

The water height interpolant at time tn on the cell Ci is defined by

ηni (x) = hni + (x− xi)(hni )
′

In situations where the water height is positive or zero, the slope (hni )
′

of this interpolant may

lead to negative water height hn
i+ 1

2

Let us consider a case where hi+1 = 0 and hi and hi−1 are strictly positive.

On a wet cell ηni (x) ≈ h(x, tn) for x∈ Ci and ηni (xi) = hni > 0.

On a dry cell we set ηni (x) = 0 ∀x ∈ Ci.

If for example ηni (xi+ 1
4
) < 0, then hi+ 1

2
= 1

2
(ηni (xi+ 1

4
) + ηni (xi+ 3

4
)) < 0 because ηni (xi+ 3

4
) <

|ηni (xi+ 1
4
|.

Hence, the idea is to correct this slope in order to make sure that the forward projection step

is not executing a negative water height.

If the forward projection step hn
i+ 1

2
leads to negative water heights, we set it to be zero and

correct the slopes of the water height interpolants in the cells Ci and Ci+1 to ensure water

conservation across the computational domain. In addition, we extend the definition of the

sensor function as well as the discretization of the source term in order to maintain the well-

balanced property of the developed scheme.

The treatment can be summarized by the following steps:

• If hn
i+ 1

2
< 0, we set it 0.



• Correct the slope of the water height interpolants in the cells Ci and Ci+1, two cases

arise:

1. If hni > ε we re-linearize the water height function and update the definition of

the sensor functions,

(hni )
′

= − hn
i

dx
4

and si = −4

Otherwise hni = 0 and (hni )
′

= 0 and si = 0.

2. If hni+1 > ε we re-linearize the water height function and update the definition

of the sensor functions,

(hni+1)
′

=
hn
i+1
dx
4

and si = 4

Otherwise hni+1 = 0 and (hni+1)
′

= 0 and si = 0.

• Update the discretization of the source term:

Si =




0

−ghni θ
zi−zi−1

dx

, if si = −1


0

−ghni θ
zi+1−zi

dx

, if si = 1

0, if si = 0
0

−ghni θ
zi+1−zi−1

2dx

, if si = 2


0

−ghni
zi+1/2−zi

dx
2

, if si = −4


0

−ghni
zi+1−zi+1/2

dx
2

, if si = 4



Similar treatment is to be applied on the backward projection step:

If hn+1
i < 0 we set it 0.

The proposed treatment ensures non-negative water height values in the forward and the

backward projection steps, and maintain the well-balanced property of the scheme as well as

the conservation of water across the computational domain.

Remarks:

1.

∆t = CFL ∗ ∆x

max(max(|L1|, |L2|))

• L1 and L2 are two vectors containing the eigenvalues of ∂f
∂u

at each node.

• CFL is considered 0.485 in all computations.

2. All simulations have been done using MATLAB.



2.4 Numerical Experiments

Numerical experiments are carried out to test the efficiency of the developed scheme. The

gravitational constant for all experiments is g = 9.8m/s2.

Note that the surface gradient method (sec 2.2) cannot be applied in the experiments with

Wet/Dry interactions(sec.2.1). In these cases we stick to the well-balanced scheme.

2.4.1 Lake at rest over variable bottom topography

In the first experiment we consider lake at rest over variable bottom topography defined as:

z(x) =



0 x < 0.25

1 + x 0.25 < x < 0.5

1− x 0.5 < x < 0.75

0 x > 0.75

we discretize the computational domain [0,1] using 100 grid points. The initial conditions

are h(x, 0) + z(x) = 5 and v(x, 0) = 0 ∀x ∈ [0, 1]. Figure 2.1 illustrates the water level at

time t=0.07 where we compare the water level obtained with (solid line) and without (dashed

line) applying the surface gradient method to the numerical base scheme. When applying the

surface gradient method, the oscillations disappear and the lake remains at rest. This confirm

the well-balanced property of the developed scheme. Table 2.1 report the L1 error together

with its order using 100, 200 and 400 grids.
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Figure 2.1: One-dimensional lake at rest problem: water level obtained using

the well-balanced scheme at time t=0.07 with (solid line) and without (dashed

line) SG.

2.4.2 Dam break over rectangular bump

For our second experiment we consider a dam break problem over a rectangular bump. The

waterbed function is given by

z(x) =


5 |x− 1500

2
| < 1500/4

0 otherwise

The water level function is initially

H(x) =


20 x < 1500

2

15 otherwise

h(x, 0) = H(x) − z(x) and v(x, 0) = 0. The computational domain [0,1500] is discretized

using 600 grid points. Figure 2.2 describes the profile of the water level at time t=10 after

applying the well-balanced scheme with (solid line) and without (dashed line) applying the



Table 2.1: L1 error of convergence for the lake at rest problem using different

grids N with respect to N=600.

N L1 error order

100 0.42 ×10−2

200 1.7 ×10−3 1.31

400 4.16 ×10−4 2.03

surface gradient method (SG).

2.4.3 Two symmetric dam break problems

Symmetric dam break problem over triangular bottom topography is considered in this ex-

periment. The computational domain is [-2,2] which is discretized using 100 grid points. The

water bed function is defined as:

z(x) =



1 x < −1

2 + x −1 ≤ x ≤ 0

2− x 0 ≤ x ≤ 1

1 x > 1

the water height is initially defined as:

h(x) =



2 x < −1

0 −1 ≤ x ≤ 1

2 x > 1

and the initial velocity is zero. The results are presented in figure 2.3 where we apply the

proposed scheme. Reflecting boundary conditions are applied on both sides of the domain.
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Figure 2.2: Dam break problem: water level obtained at time t=10 using the

well-balanced scheme with (dashed line) and without (solid line) SG.

2.4.4 Parabolic bowl

In this test case we consider a parabolic bottom topography and initial water height functions

defined as: z(x) = h0(x
a

)2 and h(x, 0) = h0 − B2

2g
− Bx

2a

√
8h0
g
− z(x). h0 = 10, a = 3000, B = 5

are constants. The computational domain is the interval [-5000,5000] and is discretized using

200 grid points. The water is located between the two points x1 = −a − Bωa2

2gh0
cos(ωt) and

x2 = a−Bωa2

2gh0
cos(ωt) where ω =

√
2gh0
a

. Results are reported in figure 2.4 where the computed

water height (green circles) is in perfect match with the analytic water height function (red

line) of equation:

h(x, t) = h0 − B2

4g
cos(2ωt)− B2

4g
− Bx

2a

√
8h0
g

cos(ωt)− z(x).

2.4.5 V-shape

we consider the V-shape problem mentioned in [24] where the water is released from the left

part of the V-shape bottom topography.



The water bed is given by the following formula:

z(x) =
1√
3
|x− 1|

The water has initially a parabolic profile together with a zero velocity:

h(x, 0) = max(0,−1.5(x− 0.3)(x− 0.7))

v(x, 0) = 0

the computational domain is the interval [0,2] which is partitioned using 400 grid points. The

results are reported in the figure 2.5 where we see the water propagates across the domain

and reaches the right side of the bottom at the final time t=0.7.
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(a) water height at t=0
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(b) water height at t=0.15
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(c) water height at t=0.25
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(d) water height at t=0.49
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(e) water height at t=0.82
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(f) water height at t=1.5

Figure 2.3: Two symmetric dam break problems over triangular bump
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(a) water height at t=1000
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(b) water height at t=2000
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(d) water height at t=4000

Figure 2.4: Water height over parabolic bottom topography
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Figure 2.5: Water profile at t=0(up) and t=0.7(down)



Chapter 3

Two-dimensional

Well-balanced Central Scheme

3.1 Well-balanced Central Scheme for the Two-dimensional

Shallow Water Equations System

The one-dimensional scheme we developed in chapter 2 will be extended to the two-dimensional

case. The SWE system is given by:


∂tU + ∂xF (U) + ∂yG(U) = S(U, x, y), (x, y) ∈ Ω ⊂ R× R, t > 0

U(x, 0) = U0(x)

we will apply the central scheme mentioned in [7] to this system

∂

∂t


h

hu

hv


+

∂

∂x


hu

hu2 + 1
2
gh2

huv


+

∂

∂y


hv

huv

hv2 + 1
2
gh2


=


0

−gh ∂z
∂x

−gh ∂z
∂y


28



(xi− 1
2
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2
)
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Figure 3.1: Ci,j(blue cell) and Di− 1
2
,j− 1

2
(green cell)

Where t is the time variable, x and y are the two spatial variables, (u,v) are the velocities in

the x-direction and y-direction respectively, h is the water height function h(x, y, t), z is the

water bed function z(x, y) and g is the gravitational constant.

We divide the computational domain Ω into cells Ci,j =
[
xi−1/2, xi+1/2

]
×
[
yi−1/2, yi+1/2

]
centered at (xi, yj) We also define the staggered cells

Di+ 1
2
,j+ 1

2
= [xi, xi+1] × [yi, yi+1] centered at (xi+1/2, yi+1/2) where xi+1/2 = xi + ∆x

2
and

yi+1/2 = yi + ∆y
2
.

We assume that the solution Uni,j at time tn is known at the nodes (xi, yj). We want to

compute the solution Un+1
i,j at time tn+1 = tn + ∆t. The solution will be obtained first at the

staggered cells and projected back to the original cell to avoid Riemann problems arising at

the cell interfaces.

We integrate ∂tU + ∂xF (U) + ∂yG(U) = S(U, x, y) over the domain Rn
i+ 1

2
,j+ 1

2
= Di+ 1

2
,j+ 1

2
×

[tn, tn+1]

∫∫∫
R

i+ 1
2
,j+ 1

2

[∂tU + ∂xF (U) + ∂yG(U)]dR =

∫∫∫
R

i+ 1
2
,j+ 1

2

S(U, x, y)dR.

∫∫∫
R

i+ 1
2
,j+ 1

2

∂tU +

∫∫∫
R

i+ 1
2
,j+ 1

2

∂xF (U) + ∂yG(U)]dR =

∫∫∫
R

i+ 1
2
,j+ 1

2

S(U, x, y)dR.

The integral
∫∫∫

R
i+ 1

2
,j+ 1

2

∂tU can be reduced to:



∫ yj+1

yj

∫ xi+1

xi
(Un+1 − Un)dxdy

Next we apply the Mean-Value Theorem for integrals, taking into account that U(x, y, t) is

assumed to be a piecewise linear function defined at the cell centers:

∫ yj+1

yj

∫ xi+1

xi
Un+1dxdy ≈ ∆x∆yUn+1

i+ 1
2
,j+ 1

2

.

∫ yj+1

yj

∫ xi+1

xi
Undxdy ≈ ∆x∆yUn

i+ 1
2
,j+ 1

2
.

Then we have:

∆x∆yUn+1

i+ 1
2
,j+ 1

2
= ∆x∆yUni+ 1

2
,j+ 1

2

−
∫∫∫

R
i+ 1

2
,j+ 1

2

∂xF (U) + ∂yG(U)]dR

+

∫∫∫
R

i+ 1
2
,j+ 1

2

S(U, x, y)dR

(3.1)

For the flux integrals we apply the divergence theorem that changes the volume integral into

surface integral.Equation (3.1) becomes then:

∆x∆yUn+1

i+ 1
2
,j+ 1

2
= ∆x∆yUni+ 1

2
,j+ 1

2
−
∫ tn+1

tn

∫
∂Rxy

F (U).nxdAdt

−
∫ tn+1

tn

∫
∂Rxy

G(U).nydAdt+

∫∫∫
R

i+ 1
2
,j+ 1

2

S(U, x, y)dR

(3.2)

where Rxy = [xi, xi+1]×[yi, yi+1] and nx, ny are the unit normal vectors to ∂Rxy(the boundary

of Rxy).

Dividing both sides of equation (3.2) by ∆x∆y we get:

Un+1

i+ 1
2
,j+ 1

2
= Uni+ 1

2
,j+ 1

2
− 1

∆x∆y

∫ tn+1

tn

∫
∂Rxy

F (U).nxdxdydt

− 1

∆x∆y

∫ tn+1

tn

∫
∂Rxy

G(U).nydxdydt+
1

∆x∆y

∫∫∫
R

i+ 1
2
,j+ 1

2

S(U, x, y)dR

(3.3)

Next, we approximate the integrals I =
∫ tn+1

tn

∫
∂Rxy

F (U).nxdxdydt and J =
∫ tn+1

tn

∫
∂Rxy

G(U).nydxdydt



(xi, yj) (xi+1, yj)

(xi+1, yj+1)(xi, yj+1)

n2

n4

n1n3

I =

∫ tn+1

tn

∫
∂Rxy

F (U).nxdxdydt

=

∫ tn+1

tn

∫ yj+1

yj

F (U(xi+1, y, t)).(1, 0, 0)dy

+

∫ tn+1

tn

∫ xi

xi+1

F (U(x, yj+1, t)).(0, 1, 0)dx

+

∫ tn+1

tn

∫ yj

yj+1

F (U(xi, y, t)).(−1, 0, 0)dy

+

∫ tn+1

tn

∫ xi+1

xi

F (U(x, yj , t)).(0,−1, 0)dx

An approximation of each integral using the midpoint rule leads to:

I = ∆t∆y[
F (U(xi+1,yj ,t

n+ 1
2 ))+F (U(xi+1,yj+1,t

n+ 1
2 ))

2
]−∆t∆y[

F (U(xi,yj ,t
n+ 1

2 ))+F (U(xi,yj+1,t
n+ 1

2 ))

2
]

I = ∆t∆y[
F (U

n+ 1
2

i+1,j)+F (U
n+ 1

2
i+1,j+1)−F (U

n+ 1
2

i,j )−F (U
n+ 1

2
i,j+1)

2
]

Similar approximation for J implies:

J =
∫ tn+1

tn

∫
∂Rxy

G(U).nydxdydt

J = ∆t∆x[
G(U

n+ 1
2

i,j+1)+G(U
n+ 1

2
i+1,j+1)−G(U

n+ 1
2

i,j )−G(U
n+ 1

2
i+1,j)

2
]

Hence equation (3.2) becomes:



Un+1

i+ 1
2
,j+ 1

2
= Uni+ 1

2
,j+ 1

2

− ∆t

2∆x
[F (U

n+ 1
2

i+1,j) + F (U
n+ 1

2
i+1,j+1)− F (U

n+ 1
2

i,j )− F (U
n+ 1

2
i,j+1)]

− ∆t

2∆y
[G(U

n+ 1
2

i,j+1) +G(U
n+ 1

2
i+1,j+1)−G(U

n+ 1
2

i,j )−G(U
n+ 1

2
i+1,j)]

+
1

∆x∆y

∫∫∫
R

i+ 1
2
,j+ 1

2

S(U, x, y)dR

(3.4)

where U
n+ 1

2
i,j are the predicted values at the time tn+ 1

2 and they are approximated using

Taylor’s expansion:

U
n+ 1

2
i,j = Uni,j +

∆t

2
(Ut)

n
i,j (3.5)

now substitute ∂tU = −∂xF (U)− ∂yG(U) + S(U, x, y) in Eq.(3.5):

U
n+ 1

2
i,j = Uni,j + ∆t

2
[−∂xF (Ui,j)− ∂yG(Ui,j) + S(Ui,j , xi, yj)]

then we calculate the flux partial derivatives using the chain rule as follows:

• ∂xF (Uni,j) = ( ∂F
∂U

)ni,j .
∂δni,j
∂x

with
δni,j
∆x

approximates the partial derivative of U with respect

to x.

• ∂xG(Uni,j) = ( ∂G
∂U

)ni,j .
∂σn

i,j

∂y
with

σn
i,j

∆y
approximates the partial derivative of U with re-

spect to y.

Eq.(3.5) becomes:

U
n+ 1

2
i,j = Uni,j + ∆t

2
[−F

′
i,j

∆x
− G′i,j

∆y
+ Sni,j ] with F ′i,j = ∂F

∂U
.
δi,j
∆x

and G′i,j = ∂G
∂U
.
σi,j
∆y

.

The integral of the source term is being discretized using the midpoint quadrature rule with

respect to time and space:

∫∫∫
R

i+ 1
2
,j+ 1

2

S(U, x, y)dR ≈ ∆t∆x∆yS(U
n+ 1

2
i,j , U

n+ 1
2

i+1,j , U
n+ 1

2
i,j+1, U

n+ 1
2

i+1,j+1)

with S(U
n+ 1

2
i,j , U

n+ 1
2

i+1,j , U
n+ 1

2
i,j+1, U

n+ 1
2

i+1,j+1) =

1
2


0

−g
h
n+ 1

2
i+1,j+h

n+ 1
2

i,j

2
(
zi+1,j−zi,j

∆x
)− g

h
n+ 1

2
i+1,j+1+h

n+ 1
2

i,j+1

2
(
zi+1,j+1−zi,j+1

∆x
)

−g
h
n+ 1

2
i,j+1+h

n+ 1
2

i,j

2
(
zi,j+1−zi,j

∆y
)− g

h
n+ 1

2
i+1,j+1+h

n+ 1
2

i+1,j

2
(
zi+1,j+1−zi+1,j

∆y
)





Eq.(3.4) becomes:

Un+1

i+ 1
2
,j+ 1

2
= Uni+ 1

2
,j+ 1

2

− ∆t

2∆x
[F (U

n+ 1
2

i+1,j) + F (U
n+ 1

2
i+1,j+1)− F (U

n+ 1
2

i,j )− F (U
n+ 1

2
i,j+1)]

− ∆t

2∆y
[G(U

n+ 1
2

i,j+1) +G(U
n+ 1

2
i+1,j+1)−G(U

n+ 1
2

i,j )−G(U
n+ 1

2
i+1,j)]

+ ∆t.S(U
n+ 1

2
i,j , U

n+ 1
2

i+1,j , U
n+ 1

2
i,j+1, U

n+ 1
2

i+1,j+1)

(3.6)

Discritization of the source term:

As in the one-dimensional case we define the two sensor functions si and tj as follows:

si =



−1 hx = θ
hn
i,j−h

n
i−1,j

∆x

1 hx = θ
hn
i+1,j−h

n
i,j

∆x

0 hx = 0

2 hx =
hn
i+1,j−h

n
i−1,j

2∆x

tj =



−1 hy = θ
hn
i,j−h

n
i,j−1

∆y

1 hy = θ
hn
i,j+1−h

n
i,j

∆y

0 hy = 0

2 hy =
hn
i,j+1−h

n
i,j−1

2∆y

These parameters will force the discretization of ∂z
∂x

and ∂z
∂y

in the source term to follow

the discretization of ∂h
∂x

and ∂h
∂y

respectively.(1 ≤ θ ≤ 2).

Then the source term is given by:

Sni,j =


0

−ghni,j ∂z∂x

−ghni,j ∂z∂y


=


S1

S2

S3


S1 = 0

S2 = Sn2,L + Sn2,R + Sn2,C

where

S2,L = s2
i

1− si
6

(2− si)
(
−ghni,jθ

zi,j − zi−1,j

∆x

)
S2,R = s2

i
1 + si

2
(2− si)

(
−ghni,jθ

zi+1,j − zi,j
∆x

)
S2,C = si

(si + 1)(si − 1)

6
(2− si)

(
−ghni,j

zi+1,j − zi−1,j

2∆x

)



Hence,

S2 =



−ghni,jθ
zi,j−zi−1,j

∆x
si = −1

−ghni,jθ
zi+1,j−zi,j

∆x
si = 1

0 si = 0

−ghni,jθ
zi+1,j−zi−1,j

2∆x
si = 2

and S3 = Sn3,L + Sn3,R + Sn3,C

S3,L = t2j
1− tj

6
(2− tj)

(
−ghni,jθ

zi,j − zi,j−1

∆y

)

S3,R = t2j
1 + tj

2
(2− tj)

(
−ghni,jθ

zi,j+1 − zi,j
∆y

)

S3,C = tj
(tj + 1)(tj − 1)

6
(2− tj)

(
−ghni,j

zi,j+1 − zi,j−1

2∆y

)

Hence,

S3 =



−ghni,jθ
zi,j−zi,j−1

∆y
tj = −1

−ghni,jθ
zi,j+1−zi,j

∆y
tj = 1

0 tj = 0

−ghni,jθ
zi,j+1−zi,j−1

2∆y
tj = 2

Now, the forward projection step Un
i+ 1

2
,j+ 1

2
is being calculated using linear interpolations in

2D:

Notice that the linear approximation in 2D is given by the following equation:

f(x, y) = f(a, b) + ∂f
∂x (a,b)

.(x− a) + ∂f
∂y (a,b)

.(y − b)

So, for every (x, y) ∈ Ci,j

UCi,j (x, y) = Uni,j + (x− xi)
δi,j
∆x

+ (y − yj)
σi,j
∆y

(3.7)



Using Linear interpolations the forward projection step is defined as follows:

Uni+ 1
2
,j+ 1

2
=

1

4
UCi,j (xi +

1

4
∆x, yj +

1

4
∆y, tn)

+
1

4
UCi+1,j (xi+1 −

1

4
∆x, yj +

1

4
∆y, tn)

+
1

4
UCi,j+1(xi +

1

4
∆x, yj+1 −

1

4
∆y, tn)

+
1

4
UCi+1,j+1(xi+1 −

1

4
∆x, yj −

1

4
∆y, tn)

(3.8)

Using Eq.(3.7), we get:

UCi,j (xi +
1

4
∆x, yj +

1

4
∆y, tn) =UnCi,j

(xi +
1

4
∆x, yj +

1

4
∆y)

= Uni,j + (xi +
1

4
∆x− xi)

δi,j
∆x

+ (yj +
1

4
∆y − yj)

σi, j

∆y

= Uni,j +
1

4
δi,j +

1

4
σi,j

(3.9)

In the same way we calculate,

UCi+1,j (xi+1 − 1
4
∆x, yj + 1

4
∆y, tn) = Uni+1,j − 1

4
δi,j + 1

4
σi+1,j .

UCi,j+1(xi + 1
4
∆x, yj+1 − 1

4
∆y, tn) = Uni,j+1 + 1

4
δi,j+1 − 1

4
σi,j+1.

UCi+1,j+1(xi+1 − 1
4
∆x, yj+1 − β∆y, tn) = Uni+1,j+1 − 1

4
δi+1,j+1 − 1

4
σi+1,j+1.

Replacing and rearranging the previous equations in Eq.(3.8) we get,

Uni+ 1
2
,j+ 1

2
=

1

4
(Uni,j + Uni+1,j + Uni,j+1 + Uni+1,j+1)

+
1

16
(δi,j + δi,j+1 − δi+1,j − δi+1,j+1)

+
1

16
(σi,j − σi,j+1 + σi+ 1, j − σi+1j+1)

(3.10)

Similarly, we derive the backward projection step.

Therefore, the numerical scheme can be summarized by the following steps:

• Start with Uni,j .

• Find the predicted values as time tn+ 1
2 using the derived formula:

U
n+ 1

2
i,j = Uni,j +

∆t

2
[−
F ′i,j
∆x
−
G′i,j
∆y

+ Sni,j ] (3.11)



• Find the forward projection step:

Uni+ 1
2
,j+ 1

2
=

1

4
(Uni,j + Uni+1,j + Uni,j+1 + Uni+1,j+1)

+
1

16
(δi,j + δi,j+1 − δi+1,j − δi+1,j+1)

+
1

16
(σi,j − σi,j+1 + σi+1,j − σi+1,j+1)

(3.12)

• Find the solution at time n+1:

Un+1

i+ 1
2
,j+ 1

2
= Uni+ 1

2
,j+ 1

2

− ∆t

2∆x
[F (U

n+ 1
2

i+1,j) + F (U
n+ 1

2
i+1,j+1)− F (U

n+ 1
2

i,j )− F (U
n+ 1

2
i,j+1)]

− ∆t

2∆x
[G(U

n+ 1
2

i,j+1) +G(U
n+ 1

2
i+1,j+1)−G(U

n+ 1
2

i,j )−G(U
n+ 1

2
i+1,j)]

+ ∆t.S(U
n+ 1

2
i,j , U

n+ 1
2

i+1,j , U
n+ 1

2
i,j+1, U

n+ 1
2

i+1,j+1)

(3.13)

• Find the backward projection step using the following equation:

Un+1
i,j =

1

4
(Un+1

i− 1
2
,j− 1

2
+ Un+1

i+ 1
2
,j− 1

2
+ Un+1

i− 1
2
,j+ 1

2
+ Un+1

i+ 1
2
,j+ 1

2
)

+
1

16
(δi− 1

2
,j− 1

2
+ δi− 1

2
,j+ 1

2
− δi+ 1

2
,j− 1

2
− δi+ 1

2
,j+ 1

2
)

+
1

16
(σi− 1

2
,j− 1

2
− σi− 1

2
,j+ 1

2
+ σi+ 1

2
,j− 1

2
− σi+ 1

2
,j+ 1

2
)

(3.14)

Notice that the way we’re discretizing the source gives the following two relations:

• U
n+ 1

2
i,j = Uni,j

• Un+1

i+ 1
2
,j+ 1

2

= Un
i+ 1

2
,j+ 1

2

see proof in [6]. But it is not the case on the original cells i.e Un+1
i,j 6= Uni,j .

As in 1D, the numerical scheme fails to satisfy the lake at rest constrain unless we apply the

surface gradient method which will be described in the following section.



3.2 The Surface Gradient Method for the Two-dimensional

Shallow Water Equations

As mentioned above, the well-balanced 2D scheme does not satisfy the steady state require-

ment i.e(h+ z = c, u = 0, v = 0) that was initially imposed. So, as we did in 1D, the surface

gradient method described in [6] will be applied for the two-dimensional well-balanced scheme.

The first step in the surface gradient method is to define the bottom topography function on

the staggered cells and not on the original ones. Then, we find its values on the centers of the

original cells using linear interpolations:

zi,j =
zi− 1

2
,j− 1

2
+ zi− 1

2
,j+ 1

2
+ zi+ 1

2
,j− 1

2
+ zi+ 1

2
,j+ 1

2

4

Using the 2D unstaggered central scheme, the water height h and the bottom topography

function are considered to be linear on each original cell Ci,j . So, we first linearize the water

level function H(x, y) and the water height function using the relation h(x, y) = H(x, y) −

z(x, y).

Then, the partial derivatives of the water height h in the forward and the backward projection

steps will be calculated from the partial derivatives of the water level function H(x, y). Now,

hni,j = Hn
i,j − zi,j for all i, j

Then,

hx|ni,j = Hx|ni,j − zx|i,j hy|ni,j = Hy|ni,j − zy|i,j

where Hx and Hy being calculated using MC-Θ limiter and zx , zy are obtained using central

differences.

Hence,

hx|ni,j = Hx|ni,j −
1

∆x
(
zi,j + zi+1,j

2
− zi−1,j + zi,j

2
) (3.15)

hy|ni,j = Hy|ni,j −
1

∆y
(
zi,j + zi,j+1

2
− zi,j−1 + zi,j

2
) (3.16)



Substituting these two equations in the first component of the forward projection step (Eq.(3.10))

i.e hi+ 1
2
,j+ 1

2
, we get:

hni+ 1
2
,j+ 1

2
=

1

4
(hni,j + hni+1,j + hni,j+1 + hni+1,j+1)

+
∆x

16

[
Hx|ni,j −

z
i+ 1

2
,j− 1

2
+z

i+ 1
2
,j+ 1

2
2

−
z
i− 1

2
,j− 1

2
+z

i− 1
2
,j+ 1

2
2

∆x

]

+
∆x

16

[
Hx|ni,j+1 −

z
i+ 1

2
,j+ 1

2
+z

i+ 1
2
,j+ 3

2
2

−
z
i− 1

2
,j+ 1

2
+z

i− 1
2
,j+ 3

2
2

∆x

]

− ∆x

16

[
Hx|ni+1,j −

z
i+ 3

2
,j− 1

2
+z

i+ 3
2
,j+ 1

2
2

−
z
i+ 1

2
,j− 1

2
+z

i+ 1
2
,j+ 1

2
2

∆x

]

− ∆x

16

[
Hx|ni+1,j+1 −

z
i+ 3

2
,j+ 1

2
+z

i+ 3
2
,j+ 3

2
2

−
z
i+ 1

2
,j+ 1

2
+z

i+ 1
2
,j+ 3

2
2

∆x

]

+
∆y

16

[
Hy|ni,j −

z
i− 1

2
,j+ 1

2
+z

i+ 1
2
,j+ 1

2
2

−
z
i− 1

2
,j− 1

2
+z

i+ 1
2
,j− 1

2
2

∆y

]

+
∆y

16

[
Hy|ni+1,j −

z
i+ 1

2
,j+ 1

2
+z

i+ 3
2
,j+ 1

2
2

−
z
i+ 1

2
,j− 1

2
+z

i+ 3
2
,j− 1

2
2

∆y

]

− ∆y

16

[
Hy|ni,j+1 −

z
i− 1

2
,j+ 3

2
+z

i+ 1
2
,j+ 3

2
2

−
z
i− 1

2
,j+ 1

2
+z

i+ 1
2
,j+ 1

2
2

∆y

]

− ∆y

16

[
Hy|ni+1,j+1 −

z
i+ 1

2
,j+ 3

2
+z

i+ 3
2
,j+ 3

2
2

−
z
i+ 1

2
,j+ 1

2
+z

i+ 3
2
,j+ 1

2
2

∆y

]

(3.17)

A similar reformulation is to be applied to the first component of the backward projection

step hn+1
i,j .

For each (xi, yj), we have Hi,j = hi,j + zi,j we will redefine the bottom topography function

on the staggered nodes because z(x,y) is linear ∀(x, y) ∈ Ci,j but not in Di+ 1
2
,j+ 1

2
. Hence,

z̃i+ 1
2
,j+ 1

2
= zi+ 1

2
,j+ 1

2
− 1

2

(
zi+ 1

2
,j+ 1

2
− zi,j + zi+1,j + zi,j+1 + zi+1,j+1

4

)
(3.18)

The water height function on the staggered cells is then defined as:

hn+1

i+ 1
2
,j+ 1

2
= H̃n+1

i+ 1
2
,j+ 1

2
− z̃i+ 1

2
,j+ 1

2

The partial derivatives of the water height function will be calculated from that of the water

level function.

hx|i+ 1
2
,j+ 1

2
= Hx|i+ 1

2
,j+ 1

2
−

[ z
i+ 1

2
,j− 1

2
+z

i+ 1
2
,j+ 1

2
2

−
z
i− 1

2
,j− 1

2
+z

i− 1
2
,j+ 1

2
2

∆x

]
(3.19)



hy|i+ 1
2
,j+ 1

2
= Hy|i+ 1

2
,j+ 1

2
−

[ z
i− 1

2
,j+ 1

2
+z

i+ 1
2
,j+ 1

2
2

−
z
i− 1

2
,j− 1

2
+z

i+ 1
2
,j− 1

2
2

∆y

]
(3.20)

Finally, we substitute these two formulas in hn+1
i,j ’s formula to get:

hn+1
i,j =

1

4
(hn+1

i− 1
2
,j− 1

2
+ hn+1

i+ 1
2
,j− 1

2
+ hn+1

i− 1
2
,j− 1

2
+ hn+1

i+ 1
2
,j+ 1

2
)

+
∆x

16

[
Hx|n+1

i− 1
2
,j− 1

2
−

z
i− 1

2
,j− 1

2
+z

i+ 1
2
,j− 1

2
2

−
z
i− 3

2
,j− 1

2
+z

i− 1
2
,j− 1

2
2

∆x

]

+
∆x

16

[
Hx|n+1

i− 1
2
,j+ 1

2
−

z
i− 1

2
,j+ 1

2
+z

i+ 1
2
,j+ 1

2
2

−
z
i− 3

2
,j+ 1

2
+z

i− 1
2
,j+ 1

2
2

∆x

]

− ∆x

16

[
Hx|n+1

i+ 1
2
,j− 1

2
−

z
i+ 1

2
,j− 1

2
+z

i+ 3
2
,j− 1

2
2

−
z
i− 1

2
,j− 1

2
+z

i+ 1
2
,j− 1

2
2

∆x

]

− ∆x

16

[
Hx|n+1

i+ 1
2
,j+ 1

2
−

z
i+ 1

2
,j+ 1

2
+z

i+ 3
2
,j+ 1

2
2

−
z
i− 1

2
,j+ 1

2
+z

i+ 1
2
,j+ 1

2
2

∆x

]

+
∆y

16

[
Hy|n+1

i− 1
2
,j− 1

2
−

z
i− 1

2
,j− 1

2
+z

i− 1
2
,j+ 1

2
2

−
z
i− 1

2
,j− 3

2
+z

i− 1
2
,j− 1

2
2

∆y

]

+
∆y

16

[
Hy|n+1

i+ 1
2
,j− 1

2
−

z
i+ 1

2
,j− 1

2
+z

i+ 1
2
,j+ 1

2
2

−
z
i+ 1

2
,j− 3

2
+z

i+ 1
2
,j− 1

2
2

∆y

]

− ∆y

16

[
Hy|n+1

i− 1
2
,j+ 1

2
−

z
i− 1

2
,j+ 1

2
+z

i− 1
2
,j+ 3

2
2

−
z
i− 1

2
,j− 1

2
+z

i− 1
2
,j+ 1

2
2

∆y

]

− ∆y

16

[
Hy|n+1

i+ 1
2
,j+ 1

2
−

z
i+ 1

2
,j+ 1

2
+z

i+ 1
2
,j+ 3

2
2

−
z
i+ 1

2
,j− 1

2
+z

i+ 1
2
,j+ 1

2
2

∆y

]
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These reformulations on the forward and the backward projection steps complete the

well-balanced numerical scheme and solve the steady state problem. As one can look for the

proof in [6] where the equality Un+1
i,j = Uni,j is obtained for all (xi, yj) in the computational

domain.



3.3 Treatment of Wet and Dry States

As in the one-dimensional case, when the developed well-balanced unstaggered central scheme

is considered with wet and dry regions, numerical instabilities may arise. These instabilities

appear as negative water heights in the forward and the backward projection steps.

Going back to the way we are calculating the forward and the backward projection steps:

Forward projection step:

Uni+ 1
2
,j+ 1

2
=

1

4
(Uni,j + Uni+1,j + Uni,j+1 + Uni+1,j+1)

+
1

16
(δi,j + δi,j+1 − δi+1,j − δi+1,j+1)

+
1

16
(σi,j − σi,j+1 + σi+1,j − σi+1,j+1)

(3.22)

Backward projection step:

Un+1
i,j =

1

4
(Un+1

i− 1
2
,j− 1

2
+ Un+1

i+ 1
2
,j− 1

2
+ Un+1

i− 1
2
,j+ 1

2
+ Un+1

i+ 1
2
,j+ 1

2
)

+
1

16
(δi− 1

2
,j− 1

2
+ δi− 1

2
,j+ 1

2
− δi+ 1

2
,j− 1

2
− δi+ 1

2
,j+ 1

2
)

+
1

16
(σi− 1

2
,j− 1

2
− σi− 1

2
,j+ 1

2
+ σi+ 1

2
,j− 1

2
− σi+ 1

2
,j+ 1

2
)

(3.23)

The water height interpolant on the cell Ci,j at time tn is defined as:

ηni,j = hni,j + (x− xi)(hx|ni ) + (y − yj)((hy|nj ), (x, y) ∈ Ci,j

any negative water height in the forward or the backward projection step is due to the steep

gradient of the interpolant which performs a negative interpolated water height (i.e below

the water bed). Therefore, our aim is to propose a treatment that yields clean forward and

backward steps, and also maintain the conservation of water across the computational domain

as well as the well-balanced property of the developed scheme. Consider the case where hni,j

is such that hnk,l > 0 for k∈ {i, i− 1} and l∈ {j, j − 1}.

The interpolant ηni,j approximates the water height h(x, y) at time tn for every couple

(xi, yj) ∈ Ci,j (the wet cell in our case). For the dry cells we will simply set ηni,j = 0.

In this case the forward projection step may execute a negative water height value hn
i+ 1

2
if the

interpolant has steep gradient.

for example, when ηni,j(x) is too steep so that ηn
i+ 1

4
,j+ 1

4
< 0 and
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Figure 3.2: The four cells Ci,j , Ci+1,j , Ci,j+1, Ci+1,j+1 in the case Ci,j is a wet

cell and the rest are dry.
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Figure 3.3: The forward projection step leading to negative hn
i+ 1

2

(red plane)

and the corrected one leading to hn
i+ 1

2

=0 (green plane).



ηni+ 3
4
,j+ 1

4
< |ηni+ 1

4
,j+ 1

4
|

ηni+ 1
4
,j+ 3

4
< |ηni+ 1

4
,j+ 1

4
|

ηni+ 3
4
,j+ 3

4
< |ηni+ 1

4
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4
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Then,

hni+ 1
2
,j+ 1

2
=

1

4
(ηni+ 1

4
,j+ 1

4
+ ηni+ 3

4
,j+ 1

4
+ ηni+ 1

4
,j+ 3

4
+ ηni+ 3

4
,j+ 3

4
) < 0

The treatment we impose on the well-balanced scheme can be summarized by the follow-

ing steps:

• If hi+ 1
2
,j+ 1

2
< 0, we set it to 0.

• Correct the gradient of the water height interpolants in the cells Ci,j , Ci+1,j , Ci,j+1, Ci+1,j+1,

four cases arise:

1. If hni,j ≥ ε we re-linearize the water height function and update the definition of

the sensor functions,

hx|ni,j = −
hni,j
∆x
4

, si = 3

and

hy|ni,j = −
hni,j
∆y
4

, tj = 3

Otherwise, we set hni,j = 0 and hx|ni,j = hy|ni,j = 0, si = tj = 0

2. If hni+1,j ≥ ε we re-linearize the water height function and extend the definition

of the sensor functions,

hx|ni+1,j =
hni+1,j

∆x
4

, si = 4



and

hy|ni,j = −
hni+1,j

∆y
4

, tj = 4

Otherwise, we set hni+1,j = 0 and hx|ni+1,j = hy|ni+1,j = 0, si = tj = 0

3. If hni,j+1 ≥ ε we re-linearize the water height function and update the definition

of the sensor functions,

hx|ni,j+1 = −
hni,j+1

∆x
4

, si = 5

and

hy|ni,j+1 =
hni,j+1

∆y
4

, tj = 5

Otherwise, we set hni,j+1 = 0 and hx|ni,j+1 = hy|ni,j+1 = 0, si = tj = 0

4. If hni+1,j+1 ≥ ε we re-linearize the water height function and update the definition

of the sensor functions,

hx|ni+1,j+1 =
hn
i+1,j+1

∆x
4

, si = 6

and

hy|ni+1,j+1 =
hn
i+1,j+1

∆y
4

, tj = 6

Otherwise, we set hni+1,j+1 = 0 and hx|ni+1,j+1 = hy|ni+1,j+1 = 0, si = tj = 0

• Update the discretization of the source term accordingly:

S1 = 0



S2 =



−ghni,jθ
zi,j−zi−1,j

∆x
if si = −1

−ghni,jθ
zi+1,j−zi,j

∆x
if si = 1

0 if si = 0

−ghni,jθ
zi+1,j−zi−1,j

2∆x
if si = 2

−ghni,j
z
i+ 1

2
,j+ 1

2
−zi,j

2∆x
if si = 3

−ghni,j
zi,j+1−zi+ 1

2
,j+ 1

2
2∆x

if si = 4

−ghni,j
z
i+ 1

2
,j+ 1

2
−zi+1,j

2∆x
if si = 5

−ghni,j
zi+1,j+1−zi+ 1

2
,j+ 1

2
2∆x

if si = 6



S3 =



−ghni,jθ
zi,j−zi,j−1

∆y
if tj = −1

−ghni,jθ
zi,j+1−zi,j

∆y
if tj = 1

0 if tj = 0

−ghni,jθ
zi,j+1−zi,j−1

2∆y
if tj = 2

−ghni,j
z
i+ 1

2
,j+ 1

2
−zi,j

2∆y
if tj = 3

−ghni,j
z
i+ 1

2
,j+ 1

2
−zi,j+1

2∆y
if tj = 4

−ghni,j
zi+1,j−zi+ 1

2
,j+ 1

2
2∆y

if tj = 5

−ghni,j
zi+1,j+1−zi+ 1

2
,j+ 1

2
2∆y

if tj = 6

A similar treatment is to be applied for the backward projection step:

If hni,j < 0 we set to 0.

The proposed treatment will lead to clean forward and backward projection steps with pos-

itive water heights. In addition, it maintains the well-balanced property of the unstaggered

numerical scheme by updating the source term as we mentioned above. The scheme will also

ensure the conservation of water across the computational domain as we prove in the numer-

ical experiment’s section.

Remarks:

1.

∆t = min(∆t1,∆t2).

• ∆t1 = CFL ∗ ∆x
max(max(LF)

where LF is the matrix containing the eigenvalues of



∂F
∂U

.

• ∆t2 = CFL ∗ ∆y
max(max(LG)

where LG is the matrix containing the eigenvalues of

∂G
∂U

.

• CFL is considered 0.485 in all computations.

2. All simulations have been done using MATLAB.



3.4 Numerical Experiments

In this section we test the designed well-balanced scheme on several problems. The gravita-

tional constant is g = 9.8m/s2.

3.4.1 Dam break over a rectangular bump

In this experiment, we consider a dam break over a rectangular water bed [6] over the com-

putational domain [0,1500]× [0,1500] which is discretized using 600 grid points on the x-axis

and 11 on the y-axis. The initial velocity components are zero. The water bed is given by

this equation:

z(x, y) =


8 if, |x− 1500

2
| < 1500

4

0 otherwise.

The water level function at t = 0,

H(x, y, 0) =


20, if x < 1500

2

15, otherwise.

After applying the well-balanced scheme together with the surface gradient method,the water

is propagating across the domain without any oscillations. Figure 3.4 shows the water profile

at the final time.

3.4.2 Circular dam-break problem

In this section, we test our scheme on a circular dam break over flat bottom topography. Our

computational domain is [-100,100]× [-100,100]and it is partitioned into 100×100 cells.The

dam has a cylindrical profile defined as:

h(x, y, 0) =


10, if x2 + y2 ≤ 602

0, otherwise.
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Figure 3.4: Dam break problem: water level obtained at time t = 10, using

600×11 grid points.

The velocity components are initially zero.

Figure 3.5 presents the water level surface and the contours at the final time t = 1.75 where

we see a symmetric solution with no oscillations that agrees with the solution presented in

[25].

3.4.3 Oscillating lake

We consider the two dimensional oscillating lake tested in [26]. The computational domain is

[-2,2]×[-2,2] and the exact water height is given by this formula:

h(x, y, t) = max(0,
σh0

a2
(2x cos(ωt) + 2y sin(ωt)− σ) + h0 − b)
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Figure 3.5: Circular Dam-Break: water level surface (left) and contours of the

surface (right) at time t = 1.75.

and the parabolic topography by this formula,

z(x, y) = h0
x2 + y2

a2

where ω is the frequency ω =
√

2gh0
a

, a=1, σ = 0.5 and h0 = 0.1.

The initial velocities are zero and the initial water height is obtained for t=0. We impose

reflecting boundary conditions throughout the boundaries. The solution is computed and

compared to the exact solution until the final time T= 2π
ω

.Figure 3.6 illustrates a comparison

between contours of the numerical and the analytic solution at two different times where we

see a good agreement between them. In figure 3.7, we draw the contours of the water height

error between the exact and the numerical solution at time t = T
2

.

3.4.4 Two symmetric dam break problems

An extension of the one-dimensional experiment tested in [4] is to be tested here. The bottom

topography and the initial water height are defined as:
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Figure 3.6: Oscillating lake: numerical solution (up) vs exact solution (down)

z(x, y) =



1 x < −1

2 + x −1 ≤ x ≤ 0

2− x 0 ≤ x ≤ 1

1 x > 1
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Figure 3.7: Oscillating Lake: contours of the water height error at time t = T
2 .

h(x, y, 0) =



2 x < −1

0 −1 ≤ x ≤ 1

2 x > 1

the water will flow along the x-axis. The initial velocity is zero. The domain is the rectangle

[−2, 2] × [−2, 2] and is discritized over 100 points. Reflecting boundary conditions are im-

plemented on the two sides of the x-axis. The results are reported in figure 3.8, where the

water profile match the one-dimensional experiment. A cross section of the 2D profile is to

be compared with a 1D profile in figure 3.9 at time t=1.0179 where we see the perfect match.

Moreover, the water is conserved across the computational domain as shown in figure 3.10,

where we compute the water volume c(t) and divide it by the initial water volume c0.The ratio

c(t)/c0 is plotted at each time step until the final time t = 6 using 50,100,200 grid points.



3.4.5 Dam break over a plane

Again an extension of the one-dimensional experiment mentioned in [4] will be used to test

the validity of the numerical scheme. We will consider the dam break over 3 inclined planes.

The bottom topography is

z(x, y) = x tanα

with α = 0, π
60

, and −π
60

representing the three planes.The computational domain is [-15,15]×[-

15,15] discretized using 200 grid points. The initial velocity components are zero and the initial

water height is defined as: 
1− z(x, y), if x ≤ 0

0, otherwise.

The water level is represented at the final time t = 2 in figure 3.11. In figure 3.12 we

plot on the same graph the water level and the velocity in the x-direction obtained from a

two-dimensional cross section where they are compared to the ones obtained from the one-

dimensionl experiment at the final time tf = 2 (left column). On the right column of the

figure we compare the front position obtained from a two dimensional cross section to the one

obtained form the one-dimensional experiment and also to the exact front position given by

the following formula:

xf (t) = 2t
√
g cos(α)− 0.5gt2 tan(α)

while the numerical front position is the first cell-center where the water level exceeds the

value ε = 10−9.

Moreover, we consider a dam break on the y-axis. The result is reported in figure 3.13 that

illustrates the perfect agreement between the cross section along the x-axis and the cross

section along the y-axis for α = 0 at the final time tf=2.
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2
1

0
-1

-2-2

-1

0

1

2.5

2

1.5

1
2
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Figure 3.8: Two symmetric dam break problems over triangular bump.
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Figure 3.9: Two Symmetric Dam Break Problems: comparison between gen-

erated water level in the one-dimensional experiment and a cross section from

the two dimensional experiment at time t=1.0179.
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Figure 3.10: Two Symmetric Dam Break Problems: graph of the curve c(t)/c0

on the time interval [0,6], obtained using 50, 100, and 200 grid points.
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Figure 3.11: Dam Break over a plane: water level h + z at t = 0 (left) and

tf = 2 (right).
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Figure 3.12: Dam Break over a plane: comparison between the one-dimensional

water height and velocity with a two-dimensional cross section (left), compar-

ison between the one-dimensional front positions with a two-dimensional cross

section (right).
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Figure 3.13: Dam break over plane: comparison between cross section along

the x-axis and cross section along the y-axis..



Chapter 4

Conclusion

In this thesis, we present a well-balanced central scheme for systems of two-dimensional shal-

low water equations that treats wet and dry states and maintains the steady state requirement

of the SWE systems when needed. In chapter 2 we present the one-dimensional well-balanced

central scheme discussed in [4]. The one-dimensional system is first solved using the well-

balanced scheme with the aid of the surface gradient method that introduce a new discretiza-

tion of the water height function by first linearizing the water level function. In this case the

steady state is successfully preserved. We then apply this scheme on several numerical exper-

iments. An extension of the one-dimensional well-balanced scheme is presented in chapter 3

which was developed in [6]. As in the one-dimensional case, the scheme has the well-balanced

property. This property results from discretizing the source term according to the flux di-

vergence using sensor functions that force the discretization of the partial derivatives of the

water bed function in the source term to follow that of the water height function. The two-

dimensional well-balanced scheme is capable of maintaining a proper and clean interaction

between wet and dry states whenever water run-ups are present. The negative water heights

executed by the forward and the backward projection steps in this case are corrected by re-

defining the gradient components of the water height interpolant. Classical shallow water
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equations problems are solved with wet and dry states using the developed scheme. The pro-

posed scheme is then validated in the numerical experiments’ section. A very good agreement

between our results and and the corresponding ones appearing in the literature. For future

work, one may develop a new scheme for the two-dimensional SWEs that solves steady state

problems with wet and dry interactions while preserving the well-balanced property of the

numerical scheme.
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