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Abstract

Hrag Karakachian for Master of Science
Major: Physics

Title: Tuning Surface Phonon Polaritons

The growing need for the development of nanophotonic devices has led
to challenges in describing and manipulating energy transport in sub- diffraction
length scales. Low- loss Surface Phonon Polariton (SPhP) modes supported at
the surface of polar materials are promising candidates for realizing this task.
These surface waves are evanescent electromagnetic waves localized at the sur-
face of dielectric crystals. They result from the coupling between photons and
optical phonons. In the present thesis, we provide a thorough explanation of
SPhP modes, and then introduce various methods for tuning the different prop-
erties of such a near– field radiation. The effect of free carrier concentration on
the temporal coherence of surface polaritons is investigated, showing a practical
method for enhancing the temporal coherence of infrared light– emitting nano–
sources. Changing the surface symmetry of a dielectric crystal is shown to be a
pragmatic technique for tuning the region of existence of SPhP modes. Finally, it
is observed that the shape of the nanosized crystal plays a major role in determin-
ing the dispersion relation of these surface modes. The results highlighted in the
present thesis are obtained from a rigorous analysis of reflectivity measurements
using the conventional Kramers– Kronig conversion technique corrected on the
basis of Fresnel equations for reflectivity.
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Chapter 1

Surface Phonon Polariton:
Principles And Applications

1.1 What Are Surface Phonon Polaritons

Surface Phonon Polariton (SPhP) is a result of the coupling between elec-

tromagnetic modes (photons) and lattice vibrational modes (optical phonons) at

the surface of polar materials. The nature of this pseudo-particle can be better

understood if we spend some time investigating its core constituents: the photon

and the optical phonon. The light- matter interaction being discussed also exists

in the bulk of the material, therefore a clear distinction between bulk and surface

phonon polaritons will be made.

1.1.1 Constituents of SPhP Modes

a. Phonons

In lattice dynamics problems, crystalline solids are defined as periodic arrays

in which the repeated units of the crystal are symmetrically arranged, known

as unit cells. The units themselves can be single atoms, groups of atoms, ions,

molecules, etc. The periodicity of the crystal provides the lattice with a transla-
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tional symmetry, highlighting the fact that the equations of motion of all units

are identical. This essentially reduces the problem of the dynamics of all the

atoms in the crystal, to the dynamics of the atoms in a single unit cell, where

the equations of motion are solved within the harmonic approximation.

The harmonic approximation takes into account two– body interactions where

the interacting entities are weakly displaced. Most often, nearest neighbor inter-

actions are considered within the atoms, which can be visualized as atoms joined

by harmonic springs vibrating about their equilibrium point. In this assumption

the lattice dynamics can be analyzed in terms of linear combinations of 3N (N

being the number of atoms) normal modes of vibration. A normal mode of vibra-

tion can be described as a travelling wave having the form Aeqr−ωt where q is the

wavevector specifying the direction of propagation, ω is the angular frequency

of the travelling wave and A is the amplitude of the vibration. The quantum

mechanical treatment of the harmonic oscillators allows us to write the energies

of the modes in the form (n + 1/2)~ω(q) with n = 0, 1, 2... Hence, the quantum

of energy ~ω(q) represents an elementary excitation of crystal vibration known

as phonon. [2]

Figure 1.1: Monatomic linear chain connected by springs of force constant α.
Neighboring atoms are separated by a distance ‘a’.

The simplest method for solving the dynamical problem is to consider a
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monatomic linear chain (Figure 1.1) of an infinitely large number, N , of atoms

separated by a distance a. Considering nearest neighbor interaction and applying

periodic boundary conditions, the equation of motion of each atom will be

Mü = −α
[
2u(na)− u([n+ 1]a)− u([n− 1]a)], (1.1)

where α is the spring constant between two ions and u is the displacement of each

ion about its equilibrium position.We seek a solution to the equation of motion

having the form of a travelling wave u(na, t) ∝ eqna−ωt.Substituting the solution

back into the equation of motion, the dispersion relation ω(q) can be found

ω(q) = 2

√
α

M

∣∣∣∣sinqa2
∣∣∣∣. (1.2)

As can be seen, in the case of monatomic linear chain (Figure 1.2),the phonon

Figure 1.2: Dispersion relation of a monatomic linear chain considering only
nearest neighbor interactions.
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dispersion curves show only one branch defined as the acoustic phonon branch.

Acoustic phonons are the sound carriers inside a material, hence the word ”acous-

tic”. They play a major role in determining the thermal conductivity of the ma-

terial, however they are unable to interact with an incident electromagnetic field.

A light– matter interaction is observed when a polyatomic crystal is exposed

to radiation. To evaluate the phonon dispersion relation of such crystals, we

consider a diatomic linear chain with two different ions (having masses M1 and

M2) inside a unit cell (Figure 1.3). Let a be the distance between two unit cells

Figure 1.3: Diatomic linear chain with two different masses M1 and M2 in a single
unit cell, connected by springs of alternating strengths α and β. The unit cells
are separated by a distance ‘a’. The interatomic distance in a single unit cell is
‘d’. The equilibrium positions of the atoms are‘na’ and ‘na + d’.

and d the distance between ions of the same unit cell. We also define α as the

spring constant between ions in different unit cells, and β the force constant

between ions of the same unit cell. Therefore the equations of motion in this

approximation will be given by

M1ü1(na) = −α
[
u1(na)− u2(na)]− β

[
u1(na)− u2((n− 1)a)], (1.3)
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and

M2ü2(na) = −α
[
u2(na)− u1(na)]− β

[
u2(na)− u1((n+ 1)a)]. (1.4)

Seeking solutions of the form u1(na) = A1e
i(qna−ωt) and u2(na) = A2e

i(qna−ωt) we

find the dispersion relations of the diatomic chain model to be

ω2 =
α + β

2µ
± 1

2

[
(α + β)2

µ2
− 8αβ

M1M2

(1− cos qa)

]1/2

, (1.5)

where µ = M1M2

M1+M2
is defined as the reduced mass. Unlike the monatomic case, the

dispersion relations of the diatomic chain display two phonon branches (Figure

Figure 1.4: Dispersion relation of the diatomic linear chain. The lower branch
is the same acoustic branch observed in a monatomic linear chain. The upper
branch is the optical branch.

1.4): the optical phonon branch is obtained when ions are vibrating out of phase

(determined by the plus sign in equation 1.5) and the acoustic phonon branch
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is obtained when ions are vibrating in phase (determined by the minus sign in

equation 1.5). The optical branch, as the name suggest, describes the phonons

that interact with incident electric fields and determine the optical properties of

the material. They stand as the core constituents of the SPhP modes.

b. Photons

Let us now investigate the behavior of the second constituent of SPhP modes

(i.e. photons) inside a polar material. Our development here will show how the

electromagnetic behavior can be related to the dielectric function ε(ω) which

describes the response of optical phonons to an incident electromagnetic field.

We start by solving Maxwells equations in a dielectric medium (in SI units) [3]

∇×H = j +
∂D

∂t
(1.6)

∇× E = −∂B

∂t
(1.7)

∇.D = ρ (1.8)

∇.B = 0 (1.9)

where H is the magnetic field strength, j is the current density, D is the dis-

placement vector, E is the electric field, and ρ is the free carrier charge density.

Unlike free space, a solid contains both free and bound charges. The bound

charges produce a dipole moment per unit volume, giving rise to a polarization

P. The polarization vector can be related to the electric field in the following way

P = χε0E, where χ(ω) is called the susceptibility indicating the degree of polar-

izability of a dielectric material in response to an applied electric field. Having

the polarization as a function of the electric field we can express the displacement
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vector in terms of the electric field only

D = ε0E + P = ε0(1 + χ)E = εlat(ω)ε0E (1.10)

where εlat(ω) is the dielectric function describing the polarization.

On the other hand, the mobile free charges determine the electrical conduc-

tivity of the sample. They give rise to a current density j inside the material

which can be related to the electric field using Ohms law

j = σ(ω)E (1.11)

where σ(ω) is the frequency dependent electrical conductivity. Substituting equa-

tions (1.10) and (1.11) in Maxwells equations and taking the curl of equation (1.7)

we find

∇×∇× E = ∇2E−∇(∇.E) = εlat(ω)ε0µ0
∂2E

∂2t
+ σ(ω)µ0

∂E

∂t
(1.12)

where µ0 is the magnetic permeability of the material. Assuming a plane wave

solution propagating in the z-direction E = E0e
i(qz−ωt) and substituting it back

in equation (1.12) we find

q2E− q(q.E) = ω2ε(ω)ε0µ0E (1.13)

with ε(ω) being the total dielectric function defined as ε(ω) = εlat(ω) + iσ(ω)
ε0ω

.

Unlike free space where the electric field is always transverse, the presence of the

charge density in equation (1.8) forces the electric field to acquire a longitudinal

character in addition to its transverse component. Therefore the electric field can

7



be written as a sum of transverse and longitudinal components,

E = Ett̂+ Eq q̂. (1.14)

Finally, the dispersion relation of photons inside a dielectric material can be found

by substituting equation (1.14) in equation (1.13) and defining the constant speed

of light c as the inverse of ε0µ0,

[(
ω

c

)2

ε(ω)− q2

]
Ett̂+

(
ω

c

)2

ε(ω)Eq q̂ = 0. (1.15)

Equation (1.15) is satisfied only if the coefficients of both the transverse and

longitudinal components are zero.

q2 =

(
ω

c

)2

ε(ω) (1.16)

is the dispersion relation of transverse waves in a solid of total dielectric function

ε(ω) and

ε(ω) = 0 (1.17)

is the condition for longitudinal modes to exist. As we can see in equations (1.16)

and (1.17) the behavior of electromagnetic waves is influenced by the response

function ε(ω). In the terahertz (THz) regime, the response function will be

described by the interaction of zone center optical phonons with the incident

infrared (IR) radiation. This means that in the IR region of the spectrum, the

presence of ε(ω) in the dispersion relation will highlight the coupling of photon-

phonon modes. Hence the presence of IR electromagnetic waves inside a material

will be affected by the vibrational modes giving rise to a single wave whose
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quantum of energy is called phonon-polariton.

1.1.2 Surface Phonon Polariton

As described earlier, polaritons are electromagnetic modes; hence their dis-

persion relation at the surface of a material can be calculated by solving Maxwell’s

equations and applying the necessary boundary conditions at the interface be-

tween two different media. These surface electromagnetic waves are TM (trans-

verse magnetic) waves having transverse and longitudinal electric fields and a

transverse magnetic field. The equations describing such waves are thoroughly

explained in Ref. [4]. Assuming an interface between two different dielectric me-

dia with ε1 and ε2, we can write the expressions of the electromagnetic waves in

the following way,

Figure 1.5: Surface diagram: region 1 represents the dielectric, region 2 represents
the air
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Region 1:

E1
z = A1e

p1x (1.18)

E1
x =

iq

p1

A1e
p1x (1.19)

H1
y =

iωε1
p1

A1e
p1x (1.20)

where A1 is an arbitrary constant that determines the amplitude of these waves,

p2
1 = q2 − k2

1 with k2
1 = ω2µ0ε1.

Region 2:

E2
z = A2e

p2x (1.21)

E2
x = − iq

p2

A2e
p2x (1.22)

H2
y = −iωε2

p2

A2e
p2x (1.23)

with A2 an arbitrary constant that determines the amplitude of the waves, p2
2 =

q2 − k2
2 and k2

2 = ω2µ0ε2. Matching the tangential fields at the surface (x = 0)

yields,

A1 = A2 (1.24)

and

iωε1
p1

A1 = −iωε2
p2

A2 (1.25)

Replacing p1 and p2 by their appropriate expressions in equation (1.25) the dis-

persion relation of the surface waves can be found

(cq)2 =
ε1ε2
ε1 + ε2

ω2. (1.26)
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Usually one of the media in equation (1.26) is assumed to be non– dispersive with

a constant dielectric function ε2. Similarly to bulk polaritons, the properties of

the surface modes are mainly dependent on the response function ε1 determined

by the zone center optical phonons. Therefore the dispersion relation (1.26)

describes the coupling between photons and zone center optical phonons at the

surface of a polar material. In other words, it describes the behavior of surface

phonon polariton (SPhP) modes.

1.1.3 Region of Existence of SPhP Modes

As mentioned earlier, the dielectric function is described by the response of

zone center optical phonons to an incident radiation in the IR regime. At finite

temperatures, all phonon modes are subject to decay and can be visualized as

damped harmonic oscillators. Due to optical phonon decay, the dielectric function

becomes a complex function. To find the region of existence of the SPhP modes,

we go back and express the parameters p1 and p2 in terms of complex dielectric

functions

p1 =
ω

c

√
−ε21

ε0(ε1 + ε2)
(1.27)

and

p2 =
ω

c

√
−ε22

ε0(ε1 + ε2)
(1.28)

We consider having a polar material with complex dielectric function ε1 in contact

with a medium having a real and positive response function ε2 such as air. Writing

the dielectric function in a complex form

ε1
ε0

= εr1 − iεi1 (1.29)
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we can express the dispersion relation (equation 1.26) in terms of the real εr1 and

imaginary εi1 parts of the complex dielectric function [4]

q =
ω

c

[
(εr1 − iεi1)ε2

(ε2 + εr1)− iεi1

]1/2

=
ω

c
a(1− ib), (1.30)

where

a =

[
ε2
εr1(ε2 + εr1) + ε2i1
(ε2 + εr1)2 + ε2i1

]1/2

(1.31)

and

b =
ε2εi1

εr1(ε2 + εr1) + ε2i1
(1.32)

Equation (1.30) simplifies if we consider the following cases:

• If |b| � 1

q ≈ ω

c
a

(
1− ib

2

)
(1.33)

• If |b| � 1

q ≈ ω

c
a

(
b

2

)1/2

(1− i) (1.34)

• If |b| ≈ 1

q ≈ ω

c
a
(
1 + b2

)1/2
[

cos

(
tan−1 b

2

)
− i sin

(
tan−1 b

2

)]
. (1.35)

Making use of equations (1.30) to (1.35) we notice in equations (1.26) and (1.28)

that when |εi1| < |εr1| and εr1 < 0, then Re(q) 6= 0 indicating a propagating

wave, moreover Re(p1) and Re(p2) will be > 0 indicating decaying fields away

from the interface. When these conditions are satisfied, localized SPhP modes

can propagate at the surface of materials.
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1.2 Application of Surface Phonon Polaritons

“There’s plenty of room at the bottom” was an invitation by the famous

physicist Richard Feynman, back in 1959, to enter a new field of science: the

field of nanotechnology. Nanotechnology is considered to be the manipulation of

matter with at least one dimension sized from 1 to 100 nanometers. Since then,

we started living in an age of “nano-mania”. Everything nano is considered to be

exciting and worthwhile. In the last few decades many countries have initiated

research in the field of nanotechnology and its practical applications are seen

today in different areas of the industrialized world. For example, our communi-

cation system has been advanced over the years because having a large number

of transistors in smaller and denser integrated circuits was made possible by nan-

otechnology. The manipulation of matter in low dimensions has also provided the

possibility of delivering drugs to specific cells using nanoparticles, improving the

techniques used for curing different diseases. As a result, the sub-branches of nan-

otechnology such as nanomedicine, nanobiotechnology, nanoelectronics, nanoart,

etc. have now become independent areas for active scientific research.

A sub– field of nanotechnology that has attracted wide scientific interest over

the last couple of decades is the field of nanophotonics. Nanophotonics deals with

the interaction of light with matter on a nanometer size scale, which conceptually

can be divided into three different parts. One way of generating light– matter

interaction is to confine light in dimensions much smaller than the wavelength of

the radiation itself. This happens by coupling light with elementary excitations

of the material such as phonons explained in section 1.1, and it will be the focus

of our work in the coming chapters. Another approach of inducing light– matter

interaction is to confine matter in nanometer size hence limiting interactions in

13



nanoscopic dimensions. This paves the way for the development of nanomaterials.

The last way is to induce photochemistry or a light induced phase change in the

nanoscale, which provides methods for manufacturing photonic structures and

functional units. Nanophotonics is considered to be a relatively new field that has

great potential of creating opportunities for the development of new technologies.

Figure 1.6: Two semi- infinite planes at two different temperatures T1 and T2

separated by a distance z.

As mentioned earlier the primary focus of our work is to study the confine-

ment of light in sub diffraction limits in the form of SPhP waves. It has been

demonstrated that localized radiation such as surface polaritons play a major

role in describing the transfer of heat in low dimensions. A classical description

of heat transfer in the form of radiation was introduced by Planck in 1900. Every
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object at a given temperature emits thermal energy in the form of electromag-

netic radiation whose intensity is determined by the temperature of the object.

Considering two different materials at two different temperatures (figure 1.6), the

exchange in radiation energy contributes to the transfer of heat between them.

In an ideal case, this radiation will be described by Planck’s blackbody radia-

Figure 1.7: Planck’s blackbody radiation presented at different temperatures.

tion (Figure 1.7). The wavelength at which the highest intensity is observed is

called the peak wavelength. However, what happens if the distance between the

two materials becomes smaller than the peak wavelength of the radiated energy?

Does Planck’s blackbody radiation still hold as an accurate description?

As is the case in many systems, different behaviors emerge in microscopic
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scales. Recently, Sebastian Volz [1] calculated the energy density emitted by a

silicon oxide (SiO2) sample as a function of distance away from its surface at

room temperature (300K). (Figure 1.8). The peak wavelength of SiO2 at 300K

Figure 1.8: Energy density of SiO2 calculated at 3 different heights at a temper-
ature of 300 K. The energy density increases due to contributions from the near
field radiation. [1]

is about 3µ. At distances larger than 3 µm, Planck’s distribution is still valid.

This is because the distance at which the energy density is evaluated is larger than
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the peak wavelength being emitted. The system is considered to be in the far-

field. The measured distribution is not exactly the same as Planck’s distribution

since the sample used is SiO2 which is not a perfect blackbody. At distances

comparable to 3 µm, the emitted energy density exceeds that of the blackbody

radiation. This is due to the presence of localized electromagnetic fields such as

SPhP that start having their own contribution to the radiated energy density.

Being localized waves, they acquire an evanescent character as they move away

from the surface and cannot be detected in the far field. However at distances

smaller than the peak wavelength, they can transfer energy from one sample to

another by tunneling effects. This is known as near field radiation. Finally as we

can see in (Figure 1.8), in the nanoscale regime the energy transfer due to surface

waves is orders of magnitude larger than that of Planck’s radiation. Therefore,

the heat transfer can be significantly enhanced by bringing close two samples

at distances much smaller than the wavelength, where the contribution due to

localized surface waves is dominant.

1.2.1 Monochromatic and Coherent Light– Emitting Ther-

mal Sources

Unlike lasers that are highly monochromatic and coherent light sources, ther-

mal sources such as black bodies, are often presented as incoherent sources emit-

ting light over a wide range of frequencies. The frequency spectrum emitted by

a thermal source is described by Planck’s radiation explained earlier. However in

the near- field regime, the electromagnetic radiation emitted by a polar material

becomes almost monochromatic. As we can see in (figure 1.8) the energy density

emitted at a distance of 100 nm presents a narrow peak around 95 THz. This
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is due to the fact that surface waves exist within a narrow range of frequencies

(where the real part of dielectric function is negative, as explained in section

1.1.3) giving them a monochromatic character.

Surface polaritons are nonradiative localized surface waves by nature. They

cannot be detected over distances larger than the wavelength. However it was

Figure 1.9: Grating introduced on the surface a polar material having a period-
icity 2d and height h.

demonstrated [5] that by introducing a periodic structure (Figure 1.9) on the

surface of polar materials, surface polaritons can be emitted into the far- field. In

the presence of a grating, SPhP modes become radiative upon interaction with

the periodic profile of the surface. In order to understand the physical mechanism

governing the emission of the surface waves we have to study the effect of the

grating on the dispersion relations of these waves. In (Figure 1.10) we show

the dispersion relations of SPhP waves in aluminum nitride (AlN) crystals. The

region of existence of the SPhP modes is within the frequency range of 612 cm−1

to 840 cm−1 (this will be explained in more detail in chapter 4). As we can see, the

dispersion relation of the SPhP modes (blue curve, Figure 1.10) lies outside the

cone of light (red curve, Figure 1.10) and therefore cannot be radiated. However

when a grating is introduced on the surface of the crystal, the wavevctor of

the SPhP wave will interact with the periodicity of the grating which results in

folding the dispersion relation into the cone of light (Figure 1.11). The portion of
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Figure 1.10: Dispersion relation of SPhP in AlN crystal (blue curve). Cone of
light (red curve).

Figure 1.11: Dispersion relation of SPhP on a grating. Blue curve represents
the folded dispersion relation due to the interaction of SPhP waves with the
periodicity of the grating. The period of the grating is 23 µm. The red curve
represents the cone of light. The portion of the dispersion relation that lies in
the cone of light can be radiated in the far- field.

the dispersion relation that lies in the cone of light (Figure 1.11) represents the

SPhP modes that can be radiated into the far-field. We also notice that these

modes span over a narrow range of frequencies (around 810 cm−1 to 840 cm−1) in

the cone of light. Therefore a monochromatic light can be emitted by thermally
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exciting the SPhP modes upon coupling to a periodic grating.

In addition, it has been demonstrated (Greffet) that the SPhP modes present

a certain degree of temporal coherence when radiated into the far- field. Temporal

coherence is a measure of the average correlation of an electromagnetic wave with

itself after a certain time delay. In other words, it tells us how monochromatic a

source is. It is known that the width of the emission spectrum is inversely pro-

portional to coherence time. Comparing the width of the energy density emitted

by the SPhP modes to that of Planck’s radiation in (Figure 1.8) we can clearly

see that SPhP modes present a much longer temporal coherence when radiated

as compared to the black body radiation. In a black body radiation, atoms are

randomly excited by thermal energy and an incoherent light is emitted due to

that randomness. However in a polar material, thermal energy leads to the collec-

tive coherent excitation of the atoms giving rise to optical phonons. Since SPhP

modes are the result of the coupling between optical phonons and electromag-

netic waves, the electromagnetic energy emitted by the SPhP modes will receive

the coherence of the phonons to some extent. Therefore thermal nanosources can

be developed to emit monochromatic and coherent infrared radiation in the far-

field.

1.2.2 Cancer Treatment

In parallel to the emission of SPhP waves and its potential applications in the

field of nanophotonics, the absorption of incident radiation by surface excitations

can also play a significant role in various technological applications. A form of

surface excitation that has attracted wide scientific interest over the last few

decades is the surface plasmon polariton (SPP). Similarly to SPhP modes, SPP

modes result from the coupling of collective electronic oscillations (plasmons)
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with electromagnetic modes (photons) at the surface of metals. SPP modes can

absorb radiation in the visible and infrared regions of the light spectrum which

shows great potential for the development of useful medical devices. In this

section we will first discuss the role that SPP modes play in cancer treatment

nowadays, and then introduce a SPhP based model promising a more efficient

way of targeting harmful cells.

Hyperthermia, which is the localized elevation of temperature, is a very old

method for treating different types of diseases. This approach was used for cen-

turies for the treatment of breast cancer.[6] One of the methods employed was to

put the tumor in contact with a piece of metal heated at high temperatures in or-

der to kill the cancerous cells. Another approach was to immerse the whole body

in hot water and elevate the body temperature. All of these techniques seem to be

primitive. However due to the presence of nanoparticles nowadays; hyperthermia

is one of the most promising methods for cancer treatment alongside radiother-

apy, chemotherapy and surgery. In fact, hyperthermia using nanoparticles can be

made very selective in targeting only malignant cells, and leaving the healthy cells

unaffected which is not the case for radiotherapy and chemotherapy. Cancerous

cells are more sensitive to temperature changes and there are essentially two ways

for applying hyperthermia: heating the tumor up to 42-45 ◦C for few hours which

leads to apoptosis (cell suicide) or heating up to 50 ◦C (thermoablation) for few

minutes and directly killing the cells under consideration.

Thermoablation poses many problems because high temperatures close to 50

◦C can damage healthy cells and lead to negative side effects.[7] Hyperthermia at

moderate temperatures is preferable even if it requires the coupling of nanoparti-

cles to external radiations.[6, 7] The use of nanoparticles has two main objectives:

one is to target only malignant cells and second to precisely control the temper-
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ature in the vicinity of the cancerous cells. By attaching specific antibodies or

Figure 1.12: Fixing nanoparticles on cancerous cells with the help of specific
antibodies.

other biological molecules to the nanoparticle, the latter can be fixed on the ma-

lignant cells (Figure 1.12).[8] These nanoparticles having sizes of tens or hundreds

of nanometers in diameter are made out of gold. They show a high absorption

in the IR regime due to coupling of incident light with surface plasmon oscil-

lations as mentioned earlier.[8, 9] Once the body of the patient is radiated by

infrared light, the radiation will be absorbed by the nanoparticles and will be

dissipated in the form of heat. This results in highly localized temperature el-

evation surrounding the nanoparticles, and consequently the destruction of the

cancerous cells. However, infrared radiation penetrates the skin not more than a

few millimeters. This poses limitations on the use of gold nanoparticles that can
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be effective only if the tumor is very close to the skin (at a distance that can be

reached by the incident IR radiation). Therefore an alternative method is needed

for treating cancer tumors deep inside the body.

A more promising technique for curing cancerous cells follows the same method-

ology of hyperthermia with two major modifications. The first modification is

the replacement of the incident infrared radiation with an alternating magnetic

field. Unlike infrared radiation, the incident magnetic field is not bounded by any

penetration depth. The second modification is the replacement of gold nanoparti-

cles with polar nano– materials doped with free charge carriers such as electrons.

When exposed to an incident alternating magnetic field, the charge carriers start

to rotate and as a result generate heat inside the polar samples. This will excite

coherent and monochromatic SPhP modes at the surface of the nanoparticles.

Thus, by accurately matching the frequency of the near field radiation (i.e. the

SPhP modes) to the natural vibrational frequency of the cancer tumor, the latter

can absorb the energy density radiated in the near field and can be destroyed by

resonance.

The challenging part of this technique is to find the right material that can

support a SPhP mode with the desired frequency that resonates with the tumor.

Moreover, a healthy cell in the vicinity of the tumor having a natural frequency

close to that of the tumor, can be damaged if the frequency of the near field

radiation is not finely tuned. Therefore a precise tuning of the SPhP modes is

crucial for accurately targeting only malignant cells while keeping healthy cells

unaffected. In this thesis work we will provide three different methods for tuning

various properties of SPhP modes.
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1.3 Experimental Detection of SPhP Waves

The coupling of SPhP modes with the periodicity of a grating introduced

on the surface of a material allows the surface polaritons to be emitted in the

far– field as described earlier. Apart from this particular case, SPhP modes

are localized electromagnetic modes at the surface of a material that acquire an

evanescent character away from the surface. Due to the non– radiative nature

of those surface waves it is challenging to observe them experimentally. We will

present in this section some of the techniques developed for detecting the SPhP

modes.

1.3.1 Attenuated Total Reflection (ATR)

The ATR technique is widely used for detecting surface waves such as SPhP

modes, surface plasmon polaritons and others.[10, 11, 12] The ATR configuration

consists of a dielectric material (supporting SPhP waves) and a prism separated

by a certain distance d (Figure 1.13). Considering an incident beam in the prism

with an angle of incidence φ, such that sin−1
(
n2

n1

)
< φ < π

2
, a total internal

reflection will be observed. An important side effect of the internal reflection

is the appearance of an evanescent wave at the prism/ air boundary having a

wavevector qprism =
ω
√
ε3
c

sin(φ). Upon coupling these surface waves with SPhP

modes at the air/ dielectric boundary, energy will be transferred from the prism

to the polar sample and a dip in the reflected intensity will be observed (Figure

1.14). This will indicate the existence of SPhP modes at the air/ dielectric

interface.

Evidently the dispersion curves of the SPhP waves can be obtained by varying

the angle of incidence (i.e. the wavevector) and the frequency and detecting the
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Figure 1.13: A diagram showing the ATR setup. Region 3 is the prism, region 2
is air and region 1 is the polar material where SPhP waves are excited.

dip in the reflected intensity. The complex dielectric function of the polar sample

requires the wavevector or the frequency to be complex. When the angle of

incidence is fixed and the frequency is varied, the minimum of the reflectance is

measured at a real wavevector and a complex frequency. The position of the dip

determines the real frequency and the width of the dip determines the imaginary

part of the complex frequency. Similarly, when the frequency is fixed and the

angle of incidence is varied, the minimum will be measured at a real frequency

and a complex wavevector. In this case the width of the minimum will determine

the imaginary part of the complex wavevector.
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Figure 1.14: A dip in the reflected intensity is observed due to coupling of surface
waves at the prism with SPhP modes. Reflectivity curves of arbitrary units
are shown for two different dielectric materials. Each sample shows a dip in
reflectivity at different incident angles. This means that SPhP modes of different
energies are excited at the surface of the two different dielectric materials.

1.3.2 Scanning Near Field Optical Microscopy (SNOM)

A second method for detecting SPhP modes consists of an atomic force

microscope (AFM) with a small modification in its use. This technique relies

on the diffraction of near field radiation by bringing a dipole moment very close

to the dielectric surface where SPhP modes exist. The surface wave excites the

dipole moment which in turn radiates electromagnetic energy proportional to

that of the surface wave (Figure 1.15). The tip of the atomic force microscope

plays the role of the dipole moment in the experiment, which is made of a metallic
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Figure 1.15: The concept of SNOM: Diffraction of near field radiation into the
far field, making use of a dipole excitation.

material having a radius in the order of 20 to 30 nm. The AFM is set at tapping

mode meaning that the tip oscillates on top of the sample (with a frequency F),

periodically being in contact with the surface. [13, 14, 15, 16]

Huber et al. demonstrated a method for optically exciting SPhP waves. A

metallic thin film is deposited on the Dielectric substrate as shown in (Figure

1.16). SPhP waves are excited by diffracting the radiation incident from a laser

at the border of the metallic film. The longitudinal component of the incident

field at the border of the thin film can be written as

E0 = Eie
−ik cos(α)x, (1.36)

where Ei is the amplitude of the incident field, k is the wavevector of the incident

field and α is the angle between the surface and the incident wave. The electric
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Figure 1.16: Experimental setup of SNOM: the tip diffracts the near field and
reflects the incident field. The interference of the two waves is used to measure
the SPhP. The near field is excited by the diffraction of the incident radiation at
the border of the metallic thin film.

field of the SPhP can be related to E0 in the following way:

ESPhP = f0e
i(qx+φ0)−p|z|E0, (1.37)

with f0 being the ratio of the SPhP and incident field amplitudes

(
f0 = ESPhP (x=0,z=0)

Ei

)
,

φ0 is the excitation phase at the origin, q and p are the longitudinal and trans-

verse components of the near field wave. The incident wave illuminates both the

metallic surface and the tip of the AFM, therefore the electric field at the tip can

be written as the sum of the incident field and the near field

Etip(x, z) =
[
1 + f0e

−ik cos(α)xei(qx+φ0)−p|z|
]
Ei. (1.38)
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The electric field re-emitted by the tip will be expressed as

E = αeffEtip, (1.39)

where αeff is the effective polarizability describing the coupling between the near

field and the dipole at the tip. The problem is that the detector measures the

field radiated by the tip but also the reflected laser beam whose amplitude is

much larger as compared to that coming from the tip. Since the AFM is set

at tapping mode with some frequency F , the amplitude of the field diffracted

by the tip will generate an alternating signal having a frequency F , while the

reflected laser beam will be unaffected by the oscillation of the tip (generating a

dc signal). A modulating detector set at a frequency nF (n being an integer) can

be used to amplify the alternating signal. This allows the measurement of the

field emitted only by the tip, and as a result detecting the SPhP modes. Therefore

SNOM presents an alternative method to ATR for experimentally determining

the dispersion curves of SPhP modes.
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Chapter 2

Measurement Technique and

Analysis

It was demonstrated in chapter 1 that the dispersion relations of SPhP waves

depend on the complex dielectric function of the polar material. The dielectric

function is the response describing the degree of polarization of the material

when exposed to an incident electromagnetic radiation. Thus, the knowledge

of the response function is crucial for investigating the properties of the SPhP

modes. The quantity that is accessible experimentally is the reflectivity spectrum

which is completely determined by the response function. In this chapter we will

describe the technique used for measuring the reflectivity spectra (FTIR) and

explain the mathematical method for deducing the complex dielectric function

(Kramers- Kronig).
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2.1 Fourier Transform Infrared Spectroscopy

Surface polaritons result from the coupling of infrared radiation with zone

center optical phonon modes. In the infrared regime the complex dielectric func-

tion is highly due to the response of optical phonons to the incident radiation.

Therefore measuring the reflectivity spectrum will give us enough information to

study the behavior of optical phonons and accordingly deduce the properties of

SPhP modes. The most common way of measuring an infrared spectrum is known

as the Fourier Transform Infrared Spectroscopy (FTIR). The main component of

an FTIR spectrometer is an interferometer based on the original design by Michel-

son in 1891.[17] Thus, we will explain briefly the concept behind the Michelson

interferometer when a monochromatic light is used, then we will demonstrate

how a reflectivity spectrum can be obtained over a certain range of frequencies.

2.1.1 Michelson Interferometer

For simplicity we consider a source S of monochromatic radiation (having

some wavelength λ) entering the interferometer (Figure 2.1). The incident ray

strikes a beam splitter which is coated with a material that makes it half re-

flecting (ray 1) and half transmitting (ray 2). Ray 1 gets reflected back into the

beam splitter and eventually into the detector by a movable mirror M1. Ray 2 on

the other hand will be reflected by a fixed mirror M2, and guided back into the

detector upon reflection at the beam splitter. The two rays will travel different

paths before reaching the detector with a certain path difference δ. The path

difference between the two rays can be varied by changing the position of the

movable mirror M1. If δ = 0, λ, 2λ, ... then the two rays will interfere construc-

tively at the detector. However when δ = λ/2, 3λ/2, 5λ/2, ... then a destructive
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Figure 2.1: Michelson interferometer having a monochromatic source S, a trans-
lating mirror M1, a fixed mirror M2, a beam splitter and a detector.

interference will be measured. Therefore by smoothly varying the path difference

δ the intensity I(δ) detected will change like a cosine function given by

I(δ) = B(σ) cos(2πσδ), (2.1)

where σ is the inverse of the wavelength also known as the wavenumber, and

B(σ) is the intensity of the source at a given wavenumber σ.

2.1.2 Reflectivity Spectrum

In a more usual setting, the source will contain a white light in order to

obtain a spectrum of light within a wide range of wavenumbers. The reflectivity

of a material is measured by exposing the sample to a polychromatic infrared

radiation, and the light reflected by the sample will be used as the source in the

FTIR spectroscopy. Unlike the monochromatic source, the intensity detected in

this case will be a combination of many cosine functions as described in equation
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(2.1). Therefore the total detected intensity I(δ) can be written as an integral

over all wavenumbers

I(δ) =

∫ +∞

−∞
B(σ) cos(2πσδ)dσ. (2.2)

Using a Fourier transform technique, which is a mathematical transformation,

the intensity of the source for each wavenumber can be evaluated

B(σ) = 2

∫ +∞

0

I(δ) cos(2πσδ)dδ. (2.3)

As mentioned earlier, the source used is an infrared light reflected by the

sample under consideration. Therefore a plot of B(σ) against σ will describe

the reflectivity spectrum of the sample. It is assumed in equation (2.3) that the

movable mirror can be displaced over an infinite distance, which is surely not the

case. In reality, the path difference will be bounded by a maximum value δmax,

which implies that the integral in equation (2.3) will be taken over a finite range

of path differences. This determines the resolution of the measured spectrum

defined as ∆σmax = 1/δmax . Once the reflectivity spectrum is obtained, the

response function of the material can be calculated using the Kramers- Kronig

conversion technique.
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2.2 Kramers– Kronig Conversion Technique

2.2.1 Relationship between the complex dielectric func-

tion and reflectivity

The reflectivity spectra obtained by FTIR measurement can be described by

Fresnel equations of reflectivity. The Fresnel coefficient of reflectivity is defined

as the ratio of reflected electric field (Er) to incident electric field (Ei) and is

related to the complex response function in the following way

r(ω) =
Er
Ei

=

√
ε(ω)− 1√
ε(ω) + 1

. (2.4)

The Fresnel coefficient of reflectivity is a complex function itself which can be

written as

r(ω) = ρ(ω)eiθ(ω) (2.5)

where ρ(ω) is the amplitude and θ(ω) is the phase. The quantity being mea-

sured is the reflectivity which is defined as the complex conjugate of the Fresnel

coefficient of reflectivity

R(ω) = rr∗ = ρ(ω)2. (2.6)

Unlike the amplitude ρ(ω) which is a real quantity, the phase θ(ω) cannot be

directly measured because it is an imaginary quantity. However it is possible to

determine θ(ω) using a Kramers– Kronig conversion technique if the reflectivity

R(ω) is known for all frequencies.
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2.2.2 Kramers– Kronig Relations

The Kramers– Kronig conversion technique is a mathematical tool that al-

lows the evaluation of the real part of the dielectric function if the imaginary part

is known for all frequencies and vice versa. The complex response function of a

system of damped harmonic oscillators can be written as

ε(ω) = ε1(ω) + iε2(ω) =
∑
j

fj
ω2
j − ω2 − iΓjω

=
∑
j

fj
ω2
j − ω2 + iΓjω

(ω2
j − ω2)2 + ω2Γ2

j

(2.7)

where the constants fj and the dampings Γj are positive. A more detailed deriva-

tion of the complex dielectric function will be presented in the following chapters.

In order to apply the Kramers– Kronig relations, a function must satisfy the fol-

lowing conditions:

1. The poles of ε(ω) must be below the real axis.

2. The integral of ε(ω)/ω taken over an infinite semi- circle in the upper region

of the complex plane must tend to zero. In other words, ε(ω) → 0 as

|ω| → ∞.

3. The real part ε1(ω) should be an even function while the imaginary part

ε2(ω) an odd function with respect to the real variable ω.

We consider now the following Cauchy integral:

ε(ω) =
1

iπ
P

∫ +∞

−∞

ε(Ω)

Ω− ω
dΩ = ε1(ω) + iε2(ω) (2.8)

where P is the main part of the integral. As we saw in condition (2) this integral

equals to zero when taken over an infinite semi- circle in the upper region of the
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complex plane. Therefore by equating the real parts in equation (2.8) we find

ε1(ω) =
1

π
P

∫ +∞

−∞

ε2(Ω)

Ω− ω
dΩ =

1

π
P

[ ∫ +∞

0

ε2(Ω)

Ω− ω
dΩ +

∫ 0

−∞

ε2(λ)

λ− ω
dλ

]
(2.9)

Replacing λ by −Ω and using the fact that ε2(−Ω) = −ε2(ω) we arrive at

ε1(ω) =
2

π
P

∫ +∞

0

Ωε2(Ω)

Ω2 − ω2
dΩ (2.10)

Therefore by knowing the imaginary part for all frequencies, the real part of the

dielectric function can be evaluated. Equating the imaginary parts in equation

(2.8) and using the fact that the real part is an even function, an expression for

the imaginary part of the response function can be found,

ε2(ω) = −2ω

π
P

∫ +∞

0

ε1(Ω)

Ω2 − ω2
dΩ (2.11)

Similarly, the imaginary part of the dielectric function can be calculated if the

real part is known for all frequencies.

2.2.3 Application of the Kramers– Kronig Relations to

the Reflectivity

In order to apply the Kramers– Kronig relations to the reflectivity, we take

the logarithm of the Fresnel coefficient of reflectivity

ln r(ω) = lnR(ω)1/2 + iθ(ω). (2.12)

From FTIR reflectivity measurements R(ω) will be determined for a certain range

of frequencies. Consequently the phase θ(ω) can be evaluated using the Kramers–
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Kronig relations

θ(ω) = −ω
π
P

∫ +∞

0

lnR(Ω)

Ω2 − ω2
dΩ (2.13)

Integrating equation (2.13) by parts we express the phase in the following way

θ(ω) = − 1

2π

∫ +∞

0

ln

∣∣∣∣Ω + ω

Ω− ω

∣∣∣∣d lnR(Ω)

dΩ
dΩ (2.14)

Once the amplitude ρ(ω) and the phase θ(ω) are known, we can go back to

equations (2.4) and (2.5) to evaluate the real and imaginary parts of the complex

dielectric function. The Kramers– Kronig relations require an integration of the

reflectivity spectrum from zero to infinity. However, the experimental measure-

ment of the reflectivity is always within a finite range of frequencies. This appears

to be a source of error when evaluating the complex dielectric function. A method

for correcting the results obtained from the Kramers– Kronig conversion will be

introduced in chapter 3.
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Chapter 3

Dependence of Surface

Plasmon-Phonon-Polariton in

4H-SiC on Free Carrier

Concentration

In the last few decades, nanophotonics emerged as a frontier research to

exploit the interaction of nanoscale phenomena with electromagnetic waves and

the nanoscale confinement and guidance of these waves.[18, 19, 20, 21, 22] Ex-

tensive research has been conducted to exploit in particular, the confinement and

guidance of electromagnetic energy at the surface of a material. [23, 24, 25] The

confinement and guidance of electromagnetic energy on the surface of metals in

the form of surface plasmon waves have attracted wide interest, but unfortunately,

losses due to plasmon waves scattering are significant, making light confinement

and guidance at the surface somehow problematic. [26, 27, 28]

In a polar material, the frequencies of the zone center optical phonon modes
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are split into longitudinal optical and transverse optical components by the in-

ternal macroscopic electric field. This macroscopic electric field serves to stiffen

the force constant of the phonon and thereby raise the frequency of the longitudi-

nal optical phonon (ωLO) over that of the transverse optical phonon (ωTO). The

frequency range bounded by ωTO and ωLO is known as the Reststrahlen band.

Within the Reststrahlen band, the real part of the material response to an elec-

tromagnetic excitation Ree is negative. This has the consequence that within the

Reststrahlen band, electromagnetic plane waves acquire an evanescent character

giving rise to modes confined at the surface. These surface modes are known as

the surface phonon-polariton (SPhP) modes. Hence, the SPhP can be regarded

as surface electromagnetic waves arising from the coupling of electromagnetic

modes (photons) with lattice vibration modes (optical phonons) in polar dielec-

tric materials. [26, 29, 30] Relevant research works suggested that the lifetime

of SPhP is orders of magnitude larger than that of surface plasmon. [31] This

makes SPhP a potential candidate for enhancing the lifetime of electromagnetic

energy confined at the surface, contributing to many technological applications

in the field of nanophotonics. As such, it has been demonstrated that the SPhP

modes are the dominant energy carriers in the near-field and their diffraction by

gratings introduced on the material surface produces coherent infrared emission

in the far-field.[32, 33, 34, 35, 36]

In an n-doped polar material, the presence of free carriers in the volume of

the material results in plasmon electronic longitudinal oscillation modes. Due to

their longitudinal nature, these plasmon electronic oscillation modes can couple

to only longitudinal optical phonon modes to give rise to a mixed character

longitudinal modes of frequencies higher than those of the original longitudinal

optical phonon modes.[37, 38] These modes are known as the LOPC modes. On
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the surface, however, the plasmon electronic oscillation modes acquire transverse

components and hence can couple to transverse surface optical modes.

Indeed, it is highly desirable to examine the interaction and coupling of inci-

dent electromagnetic modes with phonon-plasmon mixed character modes both

on the surface and in the volume because understanding the underlying mecha-

nisms governing the characteristics of the resultant waves, which will be referred

to as the plasmon-phononpolariton (PPhP) modes, can help to rationally design

systems for numerous technological applications in nanophotonics.

Phonon-plasmon interactions have been observed by infrared (IR) spectro-

scopic ellipsometry upon understanding the physical origins of the Berremann-

effect. [37, 38] The mechanisms involved in coupling these two different modes

have also been explained in the literature. [39, 40] In this chapter, we tackle

the particular issue of the coupling between incident electromagnetic modes with

phonon-plasmon mixed character modes and present a detailed description on

how the free carrier concentration in the crystal affects the characteristics (life-

time, mean-propagation-length, and, most importantly, temporal coherence) of

the resultant plasmon-phonon-polariton (PPhP) modes both in the volume and

on the surface of the crystal. One of the key developments presented in this paper

is that the response functions of the samples investigated are obtained without

the use of any physical models or assumptions. They are obtained by correcting

the values found from the Kramers-Kronig conversion technique with reference

to Fresnel equations for reflectivity.[41]

The material being used to investigate the characteristics of the volume and

surface PPhP modes is 4H-SiC. The choice of 4H-SiC is beneficial due to the

availability of large area highly crystalline 4H-SiC epilayers, the availability of

techniques for doping and controlling the free carrier concentration in SiC, and
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due to the fact that the Reststrahlen band of 4H-SiC lies in the spectral range

where the response of the commonly used infrared detectors is linear. [26] How-

ever, we believe that the fundamental physics outlined in this chapter is applicable

in all n-type polar semiconductors.

3.1 Experiments

The experiments were carried out on three c-oriented 4H-SiC epilayers (8◦

off-axis) deposited on unintentionally n-doped 500 µm thick 4H-SiC substrates.

The epilayers were 3 µm thick and of 2 × 1015cm−3 initial free carrier concen-

tration. Two of the investigated samples were implanted with different doses of

N-ions. [42] The energy of the implantation of the N-ions was decreased from 5.5

MeV to zero systematically in 60 steps in order to ensure uniform distribution of

N-ions over the thickness of the implanted epilayer. The implanted samples were

then encapsulated with a C cap. The C capping layer was formed by thermal

conversion during annealing at 750 ◦C for 30 min of a spin-coated AZ5214E pho-

toresist layer deposited on the SiC implanted epilayers in a conventional quartz

tube furnace under N flux. Then, in order to remedy, as much as possible, the

defects formed by ion implantation and activate the N dopants, the implanted

samples were annealed at 1650 ◦C in an RF-induction furnace under Ar atmo-

sphere during 45 minutes with a heating ramp-up at 40 ◦C/s. Lastly, the capping

layer was removed by O2 plasma in an Alcatel Nextral NE110 RIE reactor. These

annealing conditions have been optimized to preserve the root-mean-square sur-

face roughness and lead to a good activation of the N dopants. Hall effect (in

standard Van der Pauw geometry) measurements were employed to measure the

carrier concentration and mobility in the implanted epilayers. The free carrier
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concentration and mobility were measured to be 1017cm−3 and 620cm2V −1s−1

in the slightly implanted epilayer, and 1019cm−3and105cm2V −1s−1 in the heavily

implanted epilayer. The low carrier mobility in the heavily implanted sample

suggests that the adopted annealing process does not remedy all the defects

generated by the ion implantation. However, as will be shown below, the ion

implantation does not alter the frequency of the transverse phonons. This clearly

demonstrates that the ion implantation did not cause extended defects or poly-

morphism change, and the defects formed are most likely point-like defects that

do not alter macroscopic properties such as the dielectric function. Hence, the

carrier concentration, which determines the plasmon electronic oscillation fre-

quency, is taken as the only parameter in our work.

Far-field infrared reflectivity measurements were performed on the samples

described above. The irradiation of the sample with infrared light and the col-

lection of the reflected infrared light are schematically depicted in Figure 3.1.

The incident beam was p-polarized and at 45◦ from the normal to the sample

surface. The incident beam was first expanded and then focused on the surface

of the sample, and the reflected light was collected using an integrating sphere

in order to record reflectivity spectra averaged over a wide range of incidence

angles. The collected light was then collimated and the reflectivity spectrum

was obtained using the standard Michelson interferometry technique. A DTGS

detector and a KBr beamsplitter were used, and spectra were recorded in the

400− 3500cm−1 frequency range. The reflectivity of each sample was compared

to that of a gold coated mirror, and the reproducibility of the measurements was

checked by measuring each spectrum twice. The two recorded data from each

sample were identical within the experimental error, i.e. within 1% reflectivity.
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Figure 3.1: Experimental configuration for recording reflectivity spectra averaged
over a wide range of incidence angles.

3.2 Analysis of Reflectivity Spectra and Dielec-

tric Spectra by a Corrected Kramers– Kro-

nig Conversion Technique

Reflectivity measurements were carried out in order to deduce from measure-

ments the effective complex dielectric functions of the samples investigated for

p-polarized incident light. The usual way of deducing the complex dielectric func-

tion from a reflectivity spectrum is to determine the frequency-dependent ampli-
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tude ρ(ω) and phase θ(ω) separately using Kramers-Kronig conversion technique,

and then the complex dielectric function, or alternatively, the real and imaginary

parts of the complex refractive index N(ω) = n(ω)+ ik(ω). This conversion tech-

nique requires an integration of the reflectivity spectrum from zero to infinity.

The experimental data, however, is always obtained within a finite range of fre-

quency (in our case between 400 cm−1 and 3500 cm−1). The common way out of

this problem is to artificially extrapolate the values at hand to zero and infinity

despite the fact that this leads to high margin of error in the results especially

at the boundaries of the measured frequency range. [36, 43] Therefore, we pro-

ceed by correcting the solutions for n(ω) and k(ω) obtained from Kramers-Kronig

integral.

3.2.1 Method for Correcting the Kramers– Kronig Con-

version

To determine the dielectric properties of the epilayers investigated, we need

to determine the dielectric properties of the substrate on which they are de-

posited. To determine the dielectric properties of the substrate, we first measure

the reflectivity spectrum of the substrate (the reflectivity spectrum from the

back side of the sample) and deduce its complex refractive index by using the

Kramers-Kronig integral.

According to the Kramers-Kronig theorem, the phase equation can be written

as

θ(ω) = −1

2

∫ +∞

0

ln

∣∣∣∣Ω + ω

Ω− ω

∣∣∣∣d lnR(Ω)

dΩ
dΩ (3.1)

where ω is the measured frequency and Ω is the integration variable. In order to
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implement equation (3.1), we write it in the form

θ(ω) = −1

2



∫ Ω0

0
ln

∣∣∣∣Ω+ω
Ω−ω

∣∣∣∣d lnR(Ω)
dΩ

dΩ

+
∫ +Ωf

Ω0
ln

∣∣∣∣Ω+ω
Ω−ω

∣∣∣∣d lnR(Ω)
dΩ

dΩ

+
∫ +∞

Ωf
ln

∣∣∣∣Ω+ω
Ω−ω

∣∣∣∣d lnR(Ω)
dΩ

dΩ

 , (3.2)

where Ω0 and Ωf determine the low and high frequency ends of the measured

spectrum. We determine R(Ω) in the first integral of equation (3.2) by extrapo-

lating the measured reflectivity spectrum to zero using the Lorentz-Drude model.

Then, the first integral in the phase equation can be readily solved. To solve the

second integral, we write it in the form

∫ Ω1

Ω0

dΩ +

∫ Ω2

Ω1

dΩ +

∫ Ωi

Ωi−1

dΩ +

∫ Ωf

Ωf−1

dΩ (3.3)

and in each interval [Ωi−1,Ωi] (which determines the experimental spectral res-

olution), we approximate the reflectivity with a linear fit. Then, we obtain the

value of the second integral by solving each elementary integral numerically and

summing over all the individual integrals. We determine the analytical expression

of R(ω) in the third integral by extrapolating the reflectivity spectrum to infinity

using pure mathematical functions and then we solve the third integral numeri-

cally. We believe that the arbitrary extrapolation of the reflectivity in the third

integral can be a source of error in the determination of the phase. The error on

the overall phase depends on the variation of the reflectivity spectrum beyond

the measured frequency range. If the reflectivity spectrum saturates beyond the

measured frequency range, the contribution of the third integral to the overall

phase is nil, and the phase obtained by the Kramers-Kronig conversion technique
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is highly accurate. However, if the reflectivity spectrum beyond the measured

frequency range varies, the contribution of the third integral to the overall phase

in the measured frequency range is an angle that slowly increases as we move

towards the high frequency end of the measured spectrum. We present below

the procedure we follow for correcting the dielectric properties obtained from the

Kramers-Kronig integral.

Let us denote the substrate complex refractive index obtained from Kramers-

Kronig by N ′s(ω) = n′s(ω) + ik′s(ω). Since the thickness of the substrate is much

greater than its skin depth, we can consider the substrate as a semi-infinite

medium. In that limit, the Fresnel coefficient of reflectivity can be written as

[44]

r‖s =
E‖r
E‖i

=
−Ns cos θi + cos θt
Ns cos θi + cos θt

, (3.4)

for an incident and reflected electric field in the plane of incidence, and

r⊥s =
E⊥r
E⊥i

=
cos θi −Ns cos θt
cos θi +Ns cos θt

(3.5)

for an incident and reflected electric field perpendicular to the plane of incidence.

Here, E‖i and E‖r are the incident and reflected electric fields in the plane of

incidence, E⊥i and E⊥r are the incident and reflected electric fields perpendicular

to the plane of incidence, θi and θt are the angle of incidence and the angle of

refraction, and Ns = Ns(ω) = ns(ω) + iks(ω) is the exact complex refractive

index of the substrate. The angles θi and θt are related according to Snell’s law

θt = sin−1(sin θi/Ns). In the case where both the incident electric field Ei and

reflected electric filed Er are unpolarized, the Fresnel coefficient of reflectivity

takes the general form

rs =
Er
Ei
. (3.6)
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Now, if we consider that ϕ is the angle between the incident electric field and the

plane of incidence, and χ the angle between the reflected electric field and the

plane of incidence equation 3.6 can be written as

rs =
Er
Ei

=
E‖r
E‖i
× cosϕ

cosχ
=
E⊥r
E⊥i
× sinϕ

sinχ
(3.7)

Upon substituting Eq. 3.4 and Eq. 3.5 in Eq. 3.7 we can write

χ = tan−1

(
tanϕ

r⊥s
r‖s

)
(3.8)

Thus, according to Eq. 3.8, if the incident light is p-polarized (i.e., the incident

electric field is polarized in the plane of incidence), the reflected light is also p-

polarized, and the measured reflectivity should satisfy the condition R− r‖sr∗‖s =

0. Since the measurements in the present work were carried out with p-polarized

incident light and the recorded spectra represent average reflectivity spectra over

all angles of incidence, the measured reflectivity of the substrate should satisfy

the equation

R(ω)− 2

π

∫ π/2

0

r‖s(θi, ω)r∗‖s(θi, ω)dθi = 0. (3.9)

In order to determine the exact complex refractive index of the substrate

Ns(ω) = ns(ω) + iks(ω) , we give a range of possible values for ns(ω) and ks(ω)

in the vicinity of n′s(ω) and k′s(ω) (which are previously obtained from Kramers-

Kronig integral). For instance, we take a range of values for ns(ω) where the

maximum is 50% greater than n′s(ω) and the minimum is 50% smaller than

n′s(ω) with small steps of 0.001. We also define a range for ks(ω) using the same

approach. Then, we take ns(ω) as a row vector and ks(ω) as a column vector to

form a mesh with cells corresponding to all possible combinations of ns(ω) and
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ks(ω) in the vicinity of the values obtained from Kramers-Kronig integral. We

solve Eq. 3.9 for each cell of the mesh. The combination of ns(ω) and ks(ω) that

gives the best solution to Eq. 3.9 will serve as the actual value of the substrate

complex refractive index Ns(ω) . We repeat this procedure at each measured

frequency to obtain ns(ω) and ks(ω) spectra.

Once the exact refractive index of the substrate Ns(ω) is obtained, we deduce

the exact complex refractive index of the epilayer N(ω) = n(ω) + ik(ω) by using

the following method. We measure the reflectivity spectrum from the surface of

the epilayer. In our case, this reflectivity spectrum is largely determined by the

epilayer. This is because the refractive index of the 4H-SiC substrate is very close

to that of the lowest doped 4H-SiC epilayer (which drastically decreases the prob-

ability of light reflection at the interface between the epilayer and the substrate)

and the plasmon electron oscillation in the doped epilayers damps the light rapidly

and reduces significantly the skin depth in the epilayers (which make the contri-

bution of the substrate to the overall reflectivity spectrum unlikely). Hence, the

Kramers-Kronig conversion of the reflectivity spectrum from the epilayer surface

provides an approximated complex refractive index of the epilayer. We denote

this approximated epilayer complex refractive index by N ′(ω) = n′(ω) + ik′(ω).

On the other hand, upon using the transfer matrix method, it can be shown that

the Fresnel coefficient of reflectivity from the epilayer-substrate system for an

p-polarized incident light can be written as [44]

r‖ =

(
m11 + 1

p3
m12

)
−
(
m21 + 1

p3
m22

)
p1(

m11 + 1
p3
m12

)
+
(
m21 + 1

p3
m22

)
p1

, (3.10)

where pi = cos θi/(Ni/µc) is the impedance of the ith surface in the air/epilayer/substrate

system with Ni being the complex index of refraction of the ith medium, µ
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the magnetic permeability, c the speed of light in vacuum, and θi the angle

of incidence in the ith medium. The angles of incidence in the three media

(air/epilayer/substrate) are related to each other according to Snells law. The

mij in Eq. 3.10 are the elements of the interference matrix

M =

 cosφ2 −ip2 sinφ2

−ip2 sinφ2 cosφ2

 (3.11)

where φ2 = ωNd cos θ2/c, with ω being the angular frequency, N the complex

index of refraction of the epilayer, and d the epilayer thickness. The measured

reflectivity from the epilayer-substrate system should satisfy the equation

R(ω)− 2

π

∫ π/2

0

r‖(θi, ω)r∗‖(θi, ω)dθi = 0. (3.12)

Since the complex index of refraction of the substrate Ns (or N3 ) is known,

the only unknown parameter in Eq. 3.12 is the exact complex index of refraction

of the epilayer N(ω) = n(ω)+ik(ω) . In order to determine N(ω) , we give a range

of possible values for n(ω) and k(ω) in the vicinity of n′(ω) and k′(ω) (which are

obtained by converting the reflectivity from the epilayer surface using Kramers-

Kronig integral). Then, we take n(ω) as a row vector and k(ω) as a column vector

to form a mesh with cells corresponding to all possible combinations of n(ω)

and k(ω) in the vicinity of the values obtained from Kramers-Kronig integral.

We solve Eq. 3.12 for each cell of the mesh. The combination of n(ω) and

k(ω) that gives the best solution to Eq. 3.12 will serve as the actual value of

the epilayer complex refractive index N(ω). We repeat this procedure at each

measured frequency to obtain n(ω) and k(ω) spectra. From the knowledge of

n(ω) and k(ω), the real and imaginary parts of the complex dielectric function
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of the epilayer can be readily obtained.

3.2.2 Complex refractive indices of the samples investi-

gated obtained from the corrected Kramers-Kronig

technique.

The measured reflectivity spectra and the complex refractive indices of the

samples investigated, as obtained from the corrected Kramers-Kronig technique

described above, are shown in Figure 3.2. The real and imaginary parts of the

complex refractive index of the lowest doped sample obtained from a standard

Kramers-Kronig conversion (KK) are also plotted in Figure 3.2 for the sake of

comparison. As can be noticed, a significant effect of free carrier concentration on

both the real and imaginary part of the complex refractive index is observed at

the resonance. Furthermore, the discrepancy between the curves obtained from

the corrected Kramers-Kronig technique and those obtained from the standard

Kramers-Kronig technique is intensified as the carrier concentration is increased

in the sample.

In order to verify the reliability of the corrected Kramers-Kronig technique

used in this work to obtain the dielectric properties of the samples investigated,

we back calculated the reflectivity spectra using the obtained complex refractive

indices of the epilayers and substrates. The back calculated reflectivity spectra of

the samples investigated are plotted together with the measured ones. The excel-

lent agreement between the curves demonstrates the reliability of the conversion

technique being used.

Finally, it is worth noting that the widely used Lorentz-Drude model offers a

simplified description of the complex dielectric function. In that model, random
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Figure 3.2: Reflectivity spectra and real and imaginary parts of the complex
refractive indices of the samples investigated. Solid lines: Real and imaginary
parts of the refractive indices obtained by using the Kramers-Kronig technique
corrected with reference to Fresnel equations for reflectivity. Dashed lines: Real
and imaginary parts of the refractive index of the lowest doped sample obtained
by using the conventional Kramers-Kronig conversion technique. The reflectivity
spectra are back calculated using the real and imaginary parts of the refractive
indices obtained from the corrected Kramers-Kronig technique. The measured
reflectivity spectra are plotted with symbols. The back calculated reflectivity
spectra are plotted with solid lines.
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values are usually taken for the phonon and free carriers damping rates and they

assumed to be constant over the entire frequency spectrum. [45] This rather

crude simplification is proven to be inaccurate in the literature. [46] Thus, the

method used in the present work to deduce the dielectric properties of the samples

investigated has the advantage of providing a better description to the material

response function, which stands as the primary component in understanding the

plasmon-phonon-polariton coupling.

3.3 Results and Discussion

As described earlier, surface and volume PPhP modes result from the in-

teraction and coupling of free carriers collective oscillation modes, zone center

optical phonon modes, and incident electromagnetic modes, meaning that their

properties depend highly on the characteristics of the zone center optical phonon

modes in the material. Therefore, in order to investigate the effect of free carrier

concentration on the PPhP modes, it is highly advantageous to understand first

their effect on these optical phonon modes.

3.3.1 The effect of plasmon electronic oscillation on the

zone center optical phonons

The real (ε1) and imaginary (ε2) parts of the dielectric functions and the

energy loss functions

(
Imag

(
− 1/(ε1 + iε2)

))
of the epilayers investigated are

shown in Figure 3.3. The frequencies and lifetimes of the zone center transverse

optical phonon modes and longitudinal LOPC mixed character modes are the

principal determinants of these functions. The peak of the imaginary part of

the dielectric function is directly related to the absorption of infrared light by
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Figure 3.3: The dielectric properties of the samples investigated obtained from
the corrected the Kramers-Kronig technique.

transverse optical phonon modes. It occurs at the frequency of the transverse

optical phonon and its width is related to the transverse optical phonon lifetime

according to Heisenberg uncertainty principle. [47, 48] It can be seen from Fig-

ure 3.3 that both the resonance frequency and lifetime of the transverse optical

phonon are almost unaffected by the presence of plasmon electronic oscillation
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modes in the sample. We found that the lifetime of the zone center transverse

optical phonon in the lowest doped sample is 1.40 ps, reduced to 1.23 ps and 1.10

ps as the carrier concentration is increased. The independence of the resonance

frequency and lifetime of the transverse optical phonon on free carrier concentra-

tion is due to the fact that the transverse optical phonon modes do not couple to

plasmon electronic oscillation modes. The small lifetime decay is basically due

to optical phonon scattering by point-defects induced by the implantation of the

N-ions in the 4H-SiC epilayers.

The peak of the energy loss function of the epilayer is determined by the

frequency and lifetime of the LOPC modes in the epilayer. [47, 48] Its position

occurs at the resonance frequency of the LOPC mode and its width describes the

lifetime of the LOPC mode. Unlike the transverse optical phonon, the lifetime

of the LOPC mode is a strong function of carrier concentration. We observe a

lifetime of about 2.25 ps in the lowest doped sample, which strongly decays as

the carrier concentration is increased. These results are in good agreement with

previously observed Raman spectra broadenings in n-type 4H-SiC free standing

crystals. [49, 50, 51, 52, 53, 54] The fact that the coupling of the longitudinal

optical phonon to the plasmon electronic oscillation is clearly mirrored in the

dielectric functions in Figure 3.3 adds a strong support to the reliability of the

technique used to deduce the dielectric functions of the samples investigated from

reflectivity measurements.

It is worth noting that the LOPC mixed character modes are usually observed

in Raman spectra, and their lifetimes are usually estimated from the Raman

line shape and position. However, in the case of homoepitaxial multi-layered

systems, Raman spectroscopy loses some accuracy as the Raman signal from the

substrate superposes to that from the epilayer. In that case, infrared spectroscopy
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can be more quantitative than Raman spectroscopy because, the homoepitaxial

multi-layered system linear response to an infrared wavelength excitation can be

described by a simple theory and the deconvolution of the substrate response and

epilayer response can be carried out precisely to yield quantitative results.

3.3.2 Bulk Plasmon– Phonon– Polariton

The observed reduction in the intensity of the reflectivity and dielectric spec-

tra as the free carrier concentration increases is due to the absorptive nature of the

plasmon electronic oscillation in the volume of the crystal. Thus, these spectra

can be used to see how the plasmon electronic oscillation affects the electro-

magnetic wave propagating in the volume of an n-doped polar crystal. In other

words, these spectra can be used to investigate the PPhP wave in the volume

of the crystal as a function of free carrier concentration. The general dispersion

relations of such an electromagnetic wave are given by [55]

(cq)2 = ε(ω)ω2, (3.13)

where ω and q are the angular frequency and wavevector (oriented parallel to

the surface) of the PPhP wave propagating in the crystal, is the speed of light

in vacuum, and ε(ω) is the complex dielectric function of the crystal under con-

sideration. In order to determine the lifetime of the resultant bulk PPhP, we

consider a real wavevector and a complex frequency ω = ω′ + iω′′ and solve

Eq. 3.13 numerically. The function ω′(q) determines the dispersion of the bulk

PPhP, and the inverse of the function ω′′(q) gives the lifetime of each bulk PPhP

mode. Thus, the dispersion curves and modes lifetimes have an implicit depen-

dence on the characteristics of the optical phonon modes and plasmon electronic
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oscillations modes through ε(ω).

The computed PPhP dispersion curves and the modes lifetimes in the 4H-SiC

epilayers investigated are illustrated in Figure 3.4. We found that the lowest

Figure 3.4: Dispersion relations, lifetime, and mean-propagation length of the
bulk plasmon-phonon-polariton in the samples investigated.

doped epilayer exhibits a peak lifetime value of 0.3ps at around 998cm−1, and

the N-implanted samples exhibit a peak lifetime value 70% lower than the lowest

doped epilayer at around 1060cm−1. This demonstrates that the effects of free

carrier concentration on the longest living bulk PPhP mode and LOPC mode

are similar. In fact, the frequency of the plasmon electronic oscillation mode

is directly proportional to the free carrier concentration, and generally exceeds

that of the zone center longitudinal optical phonon mode. Hence, when a plasmon
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electronic oscillation mode couples with a zone center longitudinal optical phonon

mode (due to the macroscopic polarization field associated with both excitations)

the resultant LOPC mode frequency broadens (i.e. its lifetime decreases) and

shifts towards higher frequencies as the free carrier concentration increases. Thus,

these observations clearly demonstrate the strong dependence of the longest living

bulk PPhP mode on the free carrier concentration and LOPC mixed character

mode frequency.

The mean-propagation-length of the bulk PPhP as a function of free carrier

concentration can be determined by considering in Eq. 3.13 a real frequency

ω and a complex wavevector q = q′ + iq′′. The inverse of the function q′′(ω)

describes the frequency-dependent mean-propagation-length. The curves of the

mean-propagation-length in Figure 3.4 show analogous features to those of the

lifetime curves. The peak mean-propagation-length value of the PPhP modes

in the slightly implanted epilayer is almost 65% smaller than that of the PPhP

modes in the un-implanted epilayer. It is worth noting that unlike the lifetime,

the mean-propagation-length of the bulk PPhP in the crystal having the highest

carrier concentration is slightly larger than that of the bulk PPhP in the two other

crystals away from the resonance peak. This is due to the speed at which the bulk

PPhP propagates in the crystal. Comparing the slopes of the dispersion curves

of the three crystals investigated, we notice that the PPhP modes in the crystal

having the highest carrier concentration propagate the fastest, hence having a

larger mean-propagation-length. The reason behind this is the fact that the real

part of the refractive index decreases as the carrier concentration increases in the

sample (see Figure 3.2).
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3.3.3 Surface Plasmon– Phonon– Polariton

Let us now use the deduced complex dielectric functions of the three mea-

sured crystals to investigate the effect of the carrier concentration on the char-

acteristics of the surface PPhP, which are surface modes created upon coupling

between the incident electromagnetic field, the zone center optical phonon modes,

and the free carriers collective oscillation modes. After solving Maxwells equa-

tions both inside and outside of an isotropic parallelepiped-like crystalline ma-

terial, and applying proper boundary conditions, one can write the dispersion

relations of this surface wave in the form [56]

(cq)2 =
ε(ω)

ε(ω) + 1
ω2, (3.14)

Likewise to bulk PPhP, solving Eq 3.14 with considering complex ω leads to de-

termining the surface modes lifetimes, and solving Eq. 3.14 with considering com-

plex q leads to determining the mean-propagation-length of the surface modes.

The dispersion curves, frequency-dependent lifetime, and frequency-dependent

mean-propagation-length of the surface PPhP modes are plotted together in Fig-

ure 3.5 for the three measured crystals. The surface modes are excited only in

the frequency range where the real part of the complex dielectric function is neg-

ative. This range, which is known as the Reststrahlen band, is bounded by the

zone center transverse and longitudinal optical modes frequencies. Furthermore,

a typical dispersion curve of surface modes presents a frequency gap. This gap

is revealed by a discontinuity in the dispersion curve if the damping rates of the

LOPC modes are weak, and by a negative slope if the damping rates of the LOPC

modes are relatively high.

It can be seen from Figure 3.5 that the free carrier concentration also has a
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Figure 3.5: Dispersion relations, lifetime, and mean-propagation length of the
surface plasmon-phonon-polariton in the samples investigated. Inset: zoom in
the region of existence of the surface plasmon-phonon-polariton.

significant effect on the surface PPhP characteristics. However, the effect of free

carrier concentration on the surface PPhP is different than that on the bulk PPhP.

The lifetime of the longest living surface PPhP mode decreases as the free carrier

concentration is increased in the crystal, but the frequency of the longest living

surface PPhP mode is independent of the free carrier concentration. Therefore,

it appears that the frequency of the longest living surface PPhP depends of the

frequency of the zone center transverse optical phonon modes whose frequencies

are independent of the free carrier concentration in the volume.

In the lowest doped epilayer, the surface PPhP presents a peak lifetime value
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of 4.9ps in its range of existence, which is much longer than the lifetime of pure

surface plasmon modes, reaching up to 500 fs in their prime conditions, as re-

ported by Woessner et al. [57] The surface PPhP lifetime is dropped by almost

98% as the free carrier concentration is increased, taking a value of 0.1ps for the

epilayer in which the carrier concentration is about 1019cm−1. Furthermore, ex-

amining the dispersion relation curves, we can notice that these waves propagate

on the surface with a speed that is weakly affected by the free carrier concen-

tration. For that reason, the plots of mean-propagation-length show the same

dependence on free carrier concentration as those of the lifetime. Accordingly, the

surface PPhP waves propagating on the surface of the lowest doped sample show

a peak mean-propagation-length value of 227.6µm, which is dropped by almost

98% as the free carrier concentration is increased, taking the value of 4.8µm.

3.3.4 Comparison between bulk and surface plasmon-phonon-

polariton modes

Comparing the results obtained for bulk and surface PPhP, we see that the

lifetimes and mean-propagation-lengths of the surface PPhP modes are much

longer than those of the bulk PPhP modes. Moreover, the surface PPhP waves

travel at a faster rate than the bulk PPhP waves. In Figure 3.6 we plot the

dispersion curves of both bulk and surface PPhP in the lowest doped sample to

illustrate the difference in group velocities of these two waves. The bulk PPhP

modes travel about 2.4 times slower than their surface counterparts, which is in

agreement with the value of the real part of the refractive index obtained by the

corrected Kramers-Kronig technique (see Figure 3.2, Re(N) ' 2.4 away from

resonance). However, the lifetimes of the surface PPhP modes are a stronger
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Figure 3.6: Comparison between the surface plasmon-phonon-polariton (blue
line) and bulk plasmon-phonon-polariton (red line) in the lowest doped 4H-SiC
epilayer. The light lines in air (black) and in 4H-SiC (green) are also plotted.

function of carrier concentration. As mentioned earlier, the surface PPhP modes

lifetime exhibit about 98% decay while bulk PPhP exhibit only about 70% decay

as the free carrier concentration is increased. This can be understood if we realize

that, unlike volume plasmon modes, surface plasmon modes also possess trans-

verse electric field components. This makes the PPhP coupling on the surface

stronger than that in the volume, and consequently enhance the damping rate of

the surface PPhP over that of the bulk PPhP.
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3.3.5 Temporal coherence of the surface plasmon-phonon

polariton modes

In the last couple of decades, surface phonon-polariton have captured re-

markable interests because they showed unanticipated behavior. [21, 31] It was

demonstrated that the energy density of these waves is almost monochromatic.

They also appear to have a long coherence time and a special coherence over dis-

tances much longer than their wavelengths. Therefore, it would be of particular

interest to use the results presented above to draw a conclusion in respect of the

effect of the free carrier concentration on the coherence of the surface plasmon-

phonon-polariton waves. The width of the light spectrum is a measure of the

temporal coherence of the emitting source. However, the width of the light spec-

trum is directly proportional to the width of the modes lifetimes spectrum. Hence,

the width of the surface PPhP lifetime peak that occurs in the Reststrahlen band

(the region of existence of the surface phonon modes) is also a measure of tem-

poral coherence of the surface PPhP. In the lowest doped crystal, the coherence

time of the longest living mode takes the value of 0.75ps (according to Heisen-

berg uncertainty principle), but the increase in the free carrier concentration

leads to unanticipated results. As shown in Figure 3.5, as the carrier concentra-

tion is raised to 1017cm−3, the coherence time is increased by 125% (narrower

bandwidth) taking the value of 1.67ps. Raising the free carrier concentration to

1019cm−3, however, leads to an extremely high decay rate of surface PPhP modes,

so that the surface PPhP modes barely survive in such a highly doped crystal

and their coherence becomes undetectable. These results suggest the following.

The surface plasmon modes, similarly to the surface phonon-polariton modes,

have some degree of temporal coherence. Thus, although the coupling of the free

62



carrier collective oscillation modes with the longitudinal optical phonon modes

has a negative impact on the lifetime of the resultant surface PPhP modes, it

can considerably enhance the temporal coherence of these resultant surface wave

modes. Consequently, surface PPhP modes can be employed for the development

of highly temporal coherent thermal sources, either completely new or through

doping of existing ones.

3.4 Conclusion

In summary, we have investigated in this chapter the dependence of the dis-

persion relations, lifetime, mean-propagation-length, and temporal coherence of

the surface plasmon-phonon-polariton modes on the free carrier concentration in

4H-SiC. Fourier transform of p-polarized reflectivity spectra averaged over a wide

incidence angle range were collected from 4H-SiC epilayers of different carrier con-

centrations and used to precisely deduce the complex dielectric properties of the

measured samples. The analysis of the measured reflectivity spectra consists in

first deducing the complex dielectric functions of the measured samples using

Kramers-Kronig conversion method, then correcting the effects of the substrate

response and artificial extrapolation of the measured reflectivity to zero and in-

finity using a numerical technique involving Fresnel equations for reflectivity from

a multilayer system. We have found that, when the free carrier concentration is

low in the sample, the lifetimes of the surface plasmon-phonon-polariton modes

exceed by an order of magnitude the lifetimes of pure surface plasmon modes.

However, they decrease rapidly as the free carrier concentration is increased in

the sample. We have also shown that the coupling between the free carriers

collective oscillation, the zone center longitudinal optical phonon, and an inci-
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dent electromagnetic wave leads to a highly temporal coherent surface plasmon-

phonon-polariton wave. It is found that the temporal coherence of that resultant

surface wave can be further enhanced by increasing the free carrier concentration

in the sample. We believe that the outcomes of this work may open horizons in

the field of nanophotonics where plasmon-phonon-polariton modes will be used

as the main actors for controlling and manipulating light in the nanoscale regime.
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Chapter 4

AlN– Based Tunable Near– Field

Infrared Sources

The coupling of electromagnetic wave carrying energy with elementary ex-

citations in a material is the primary approach of confining and guiding light in

subdiffraction dimensions. A form of light-matter interaction that has attracted

a great deal of scientific interest over the last couple of decades is the surface-

plasmon-polariton (SPP). It results from the coupling of photons with collective

electronic oscillations at the surface of metallic structures. [58, 59, 60, 61] The dis-

covery of the SPP modes laid the foundations for the fields of nanophotonics and

metamaterials.[62] Nevertheless, optical losses due to plasmon waves scattering

significantly reduce the lifetime of SPP modes, limiting the performance of metals

surfaces as carriers of electromagnetic energy in low dimensions.[27, 28, 63, 64, 65]

Therefore, the search for alternative methods of light confinement is of crucial

importance for the advancement of nanophotonics applications.

In polar materials, the frequency of the transverse (ωTO) and the frequency of

the longitudinal (ωLO) zone center optical phonon modes are not equal. [66] The
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presence of a macroscopic field in these materials alters the electrostatic restoring

forces experienced by the transverse and longitudinal modes, hence raising the

frequency of the longitudinal mode over that of the transverse mode. [67] The

frequency range bounded by ωTO and ωLO is known as the Reststrahlen band. In

this frequency range, the real part of the material response to an electromagnetic

excitation is negative, and plane waves acquire an evanescent character giving rise

to highly localized electromagnetic modes at the surface of the material known

as Surface Phonon Polaritons (SPhP). [26, 68] Relevant research works suggested

that the lifetime of SPhP reaching up to time-scales of picoseconds is orders

of magnitude larger than that of surface plasmon.[31] This makes SPhP more

efficient in confining electromagnetic energy at the surfaces of materials.

Tuning the SPhP modes is indeed of great importance for the development

of nanophotonic devices. These surface waves demonstrated to have some degree

of temporal and spatial coherence as well as a high energy density in a narrow

spectral range, and can be radiated by introducing a grating on the surface of

the sample. Hence, controlling the spectral region of existence of SPhP modes

can lead to the emission of monochromatic waves of high intensity at desired

frequencies. In the previous chapter, we have demonstrated that varying the car-

rier concentration inside a material plays a significant role in tuning the lifetime

and the temporal coherence of SPhP waves. [69] However its ability to tune the

frequencies at which SPhP modes are allowed to exist on the sample surface is

somewhat limited.

In most cases, phonon-related properties and materials dielectric function,

which determines the materials response to electromagnetic infrared excitations,

shows strong dependence on the surface orienation.[45, 47, 70, 71] Hence, by

varying the crystal surface orientation, the frequencies of the transverse and lon-
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gitudinal optical phonons change, modifying the dielectric function and shifting

the Reststrahlen band, i.e. shifting the region of existence of the SPhP modes.

A mere change in the symmetry direction can be used as a mechanism for tuning

the frequencies at which electromagnetic energy can be carried in the form of

SPhP modes. In this work, we demonstrate that self-nucleated single crystals

can be grown with several differently oriented facets supporting SPhP modes of

completely different characteristics. Hence, the SPhP properties can be tuned on

these crystals by selecting the crystal facet supporting the SPhP modes having

the desired characteristics. In other words, we demonstrate that these crystals

can be used to tune the properties of the SPhP modes over a wide spectral range.

The excitation of optical phonons is essential for the existence of SPhP modes

in a material, and the relaxation time of the excited optical phonon is essential

for the survival of SPhP modes. Therefore, we first examine the effect of surface

orientation on the harmonicity and anharmonicity of optical phonons, from which

we deduce the dependence of the properties of SPhP waves on the crystal surface

orientation. We base our investigation on one-dimensional lattice dynamics mod-

els and on the analysis of reflectivity spectra using Kramers-Kronig conversion

integrals corrected with reference to Fresnel equations for reflectivity.[43, 69]

The material being used in this work is wurtzite AlN. The choice of wurtzite

AlN is beneficial due to the availability of processes for preparing self-nucleated

wurtzite AlN single crystals exhibiting well-developed facets of different orienta-

tions, and because AlN is known for having high acoustic phonon group velocity,

hence low optical phonon decay rates, [72, 73, 2] which may result in SPhP of

high group velocity and long lifetime. However, we believe that the fundamental

physics outlined in this paper is applicable for all polar semiconductor materials

crystallizing in anisotropic structures.
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4.1 Experiments

The self-nucleated AlN single crystal investigated in this work was collected

on the crucible wall of a sublimation reactor.[74] It was grown with minimal con-

tact with the crucible wall or other crystals. Therefore, it exhibits natural growth

habit of AlN with many well-developed facets. It measures 7.5 × 7.5 × 5.5mm2

on the sides. The crystallographic orientations of the observed facets were deter-

mined using X-Ray texture measurements. These measurements indicated that

the observed facets belong to the {10− 10} {10− 12} {10− 13} {10− 14} and

{0001} crystallographic classes.

The X-Ray texture measurements were carried out by using an X-Ray diffrac-

tometer comprising a cradle having approximately 37×44×34cm3 (W ×H×D)-

like dimensions and five motorized movements: phi rotation (ϕ), psi tilt (ψ), and

x-y-z manipulation. The measurements were therefore taken at a fixed 2-theta

value and two movements realized the facet orientation measurement: the phi ro-

tation axis, which is around the surface normal, and the psi rotation axis, which

lies in the surface and in the diffraction plane.

Unpolarized infrared reflectivity spectra were taken from well-developed facets

of different orientations. The focusing of the incident light and the collection

of the reflected light was made by means of a confocal microscope. A DTGS

detector and a KBr beamsplitter were used, and spectra were recorded in the

600− 3500cm−1 frequency range. The reflectivity from each measured facet was

compared to the reflectivity from a gold-coated mirror, and the reproducibility

of the measurements was checked by measuring each spectrum twice. The two

recorded data from each facet were identical within the experimental error, i.e.,

within 1% reflectivity.
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4.2 Results and Discussion

Figure 4.1: Reflectivity spectra from the measured facets. Symbols: Experimen-
tal measurements. Solid lines: Model.

Measurements of reflectivity spectra from facets belonging to different

crystallographic classes are shown in Figure 4.1 by symbols. A clear variation in

the shape of the reflectivity spectrum can be noticed as the surface orientation

is changed. A peak around 900 cm−1 slowly disappears and a hump around 610

cm−1 starts to appear as the normal to the surface deviates from the crystal

optical axis (or the c-axis). These observations suggest that the AlN complex

dielectric function, which is the principal determinant of the SPhP, is a strong

function of surface orientation. In order to determine the dependence of the

complex dielectric function on the surface orientation, a model for reflectivity of

unpolarized infrared light is vitally important.
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4.2.1 A General Model for Infrared Reflectivity

Using the linear diatomic chain model for a binary semiconductor with

Maxwells equations, we can express the complex dielectric function of the lat-

tice as [75]

εlat(ω) = (n+ ik)2 = ε∞ +
Sω2

TO

ω2
TO − ω2 − iΓω

(4.1)

where n and k are the refraction index and extinction coefficient, respectively, ω

is the frequency of the applied electric field, and Γ is the strength of the frictional

term that describes the damping of the excited optical phonon. The constant

εinfty is the high frequency limit of the lattice dielectric function and S is the

oscillator strength having the form S = ε0 − ε∞, being the low frequency limit

of the lattice dielectric function given by the generalized Lydanne-Sachs-Teller

equation,

ε0 = ε∞
ω2
LO + Γ2

4

ω2
TO + Γ2

4

. (4.2)

However, the AlN wurtzite structure has the C4
6v symmetry with four atoms

per unit cell, leading to two pure infrared active phonon branches. A branch

corresponding to phonon polarization along the c-axis (known as theA1 symmetry

branch) and a branch corresponding to phonon polarization in the isotropic basal

plane (known as the E1 symmetry branch).[48, 54, 76, 77, 78] The anisotropy of

the force constants in this structure makes the energies of the phonon modes of

A1 symmetry different from the energies of the phonon modes of E1 symmetry.

This has the consequence that the dielectric function parallel to the c-axis is

different from the dielectric function perpendicular to the c-axis. It follows that

the dielectric function parallel (ε‖) and perpendicular (ε⊥) to the normal of a

surface of random orientation are certainly different. We express these dielectric
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functions as

ε‖ = ε∞‖ +
S‖ω

2
TO‖

ω2
TO‖ − ω2 − iΓ‖ω

(4.3)

and

ε⊥ = ε∞⊥ +
S⊥ω

2
TO⊥

ω2
TO⊥ − ω2 − iΓ⊥ω

(4.4)

where ωTO‖(⊥)
is the frequency of the transverse phonon mode parallel (perpen-

dicular) to the surface normal. If the surface is randomly oriented, the excited

transverse and longitudinal phonons are of mixed E1 and A1 symmetry. Their

frequencies can be obtained from the knowledge of the frequencies of the pure

symmetry phonons (A1 and E1 symmetry phonons) according to the generalized

Loudon equations [79]

ω2
TO(LO)‖ = ω2

TO(LO)A cos2(θ′ − θ) + ω2
TO(LO)E sin2(θ′ − θ) (4.5)

and

ω2
TO(LO)⊥ = ω2

TO(LO)A sin2(θ′ − θ) + ω2
TO(LO)E cos2(θ′ − θ) (4.6)

where ωTO(LO)A is the frequency of the transverse (longitudinal) optical phonon

in the direction of the c-axis, ωTO(LO)E is the frequency of the transverse (longi-

tudinal) optical phonon in the isotopic basal plane, and θ′ is the angle between

the c-axis and the normal to the surface. If the light is incident with a nonzero

angle of incidence θ , the dielectric function becomes a combination of ε‖ and ε⊥

given by[45]

ε(ω, θ) =
ε⊥(ω)ε‖(ω)

ε⊥(ω) sin2(θ) + ε‖(ω) cos2(θ)
(4.7)

On the other hand, the Fresnel coefficient of reflectivity r = Er/Ei is defined as

the ratio of the reflected electric field to incident electric field. Since the applied
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electric field is unpolarized, we can consider that it is the sum of a field compo-

nent parallel to the plane of incidence (Ep) and a field component perpendicular

to the plane of incidence (Es). We define Ei,p = Ei cosϕ as the projection of

the incident electric field parallel to the plane of incidence, and Er,p = Er cosχ

as the projection of the reflected electric field parallel to the plane of incidence,

where ϕ(χ) is the angle between the plane of incidence and the incident (re-

flected) electric field. The projections of the incident and reflected electric fields

perpendicular to the plane of incidence will thus be given by Ei,s = Ei sinϕ and

Er,s = Er sinχ. Evaluating the complex conjugate of the Fresnel coefficient of

reflectivity and making use of all the projections introduced earlier, we end up

with the following expression for the total reflectivity

R = rr∗ = Rp
cos2 ϕ

cos2 χ
= Rs

sin2 ϕ

sin2 χ
. (4.8)

Using Eq. 4.8 we can express the angle χ as a function of ϕ as χ = tan−1
(√

Rs/Rp tanϕ
)
.

Applying the trigonometric property cos(tan−1 x) = 1/
√

1 + x2 and substituting

the expression for χ in Eq 4.8, we can write the total reflectivity as a function of

only ϕ in the form

R = Rp cos2 ϕ+Rs sin2 ϕ. (4.9)

Since a microscope objective was used in the measurements to focus the incident

light and collect the reflected light, the recorded spectra represent average reflec-

tivity spectra over the set of all angles less than the objective angular aperture.

The measured reflectivity should thus satisfy the equation

R =
1

α0

∫ α0

0

(
Rp cos2 ϕ+Rs sin2 ϕ

)
dθ, (4.10)
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where α0 is the one-half angular aperture of the microscope objective.

The infrared reflectivity is determined by the infrared dielectric response of

the crystal (Eqs. 4.3, 4.4 and 4.7). Because the basal plane of the wurtzite

structure is isotropic, we can always consider that the c-axis lies in the plane of

incidence. It follows that the component of the electric field parallel to the plane

of incidence Ei,p interacts with optical phonons of mixed E1 and A1 symmetry,

and thus the partial reflectivity Rp results from the angle-dependent dielectric

function described in Eq. 4.7. The component of the electric field perpendicu-

lar to the plane of incidence Ei,s is thus always perpendicular to the c-axis and

interacts with pure E1 symmetry optical phonons. Consequently, the partial

reflectivity Rs results from the dielectric function εE whose parameters are de-

termined by the harmonicity and anharmonicity of zone center optical phonon of

pure E1 symmetry. Therefore, the partial reflectivity components Rp and Rs can

be written in terms of the dielectric functions expressed in Eqs. 4.3, 4.4 and 4.7

as

Rp =

∣∣∣∣∣
√
ε(ω, θ)− 1√
ε(ω, θ) + 1

∣∣∣∣∣
2

, (4.11)

and

Rs =

∣∣∣∣∣
√
εE(ω)− 1√
εE(ω) + 1

∣∣∣∣∣
2

. (4.12)

In what follows we determine the parameters of ε(ω, θ) and εE(ω) as a function

of the crystal surface orientation. Then, we retrieve ε(ω, θ) and εE(ω) of the

measured facets by fitting the reflectivity model outlined above to the reflec-

tivity measurements. Finally, from the knowledge of ε(ω, θ) , we compute the

characteristics of SPhP on each facet.
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4.2.2 Determination of the Harmonicity Parameters in

the Expressions of the Dielectric Functions

Assuming that the total potential energy of the crystal is the sum of inter-

atomic potentials, and considering nearest neighbor interactions, the potential

energy acquires a minimum at a given equilibrium point x0. Then, expanding

the potential energy around x0 in a Taylor series up to the quadratic term and

neglecting higher order terms, we obtain an expression for the total potential en-

ergy within the harmonic approximation. The second derivative of the harmonic

potential evaluated at x0 represents the harmonic interatomic force constants.

However, in polar materials such as AlN, the interatomic forces are accompanied

by long-range electrostatic forces due to the presence of a macroscopic electric

field in the crystal. Therefore, the expression of the potential energy must in-

clude a term describing the long-range Coulomb interaction. The total potential

energy takes thus the form

Uij =
eiej
x

+ Uharm(x). (4.13)

On the right hand side of Eq. 4.13, the second term represents the interatomic

potential, while the first term represents the Coulomb interaction potential, with

ei and ej being the charges of different atoms. The indices i and j in Eq. 4.13

run over all the atoms of the crystal. Evaluating the second derivative of the

potential energy expressed in Eq. 4.13 at equilibrium provides an additional

term representing the force constant due to long-range Coulomb interactions.

Since the Coulomb force is long ranged, describing an interaction with all the

atoms of the crystal, we can reasonably assume that the additional contribution

of the Coulomb interactions to the force constant is a constant value (σ) at all
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the points of the crystal.

In order to derive expressions determining the harmonicity parameters in

the dielectric functions of AlN, we consider a diatomic linear chain with two

different masses and two different spring constants. Let M1 and M2 be the

masses of the aluminum ion and nitrogen ion, respectively, K = α + σ the force

constant between two identical ions in adjacent unit cells, and G = β + σ the

force constant between different ions in the same unit cell. Here, α and β are the

harmonic short-range interatomic force constants. Considering the expressions

of the force constants K and G in a linear diatomic chain model and solving for

the eigenfrequency of the longitudinal zone center optical phonon, we find

ω2
LO =

α + β + 2σ

µ
. (4.14)

The macroscopic electric field inside the crystal raises the frequency of the lon-

gitudinal phonon mode over that of the transverse phonon mode at the center

of the Brillouin zone. The local longitudinal and transverse components of the

electric field can be approximated by [67]

Elocal
L = −8πP

3
(4.15)

and

Elocal
T =

4πP

3
(4.16)

where P is the polarization density. Since the Coulomb force constant σ is the

result of the presence of the long-range electrostatic force, the difference between

the local longitudinal and transverse components of the electric field should mirror

the difference between the force constant of the transverse mode and that of the
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longitudinal mode. Equating the relative difference of the two local electric fields

to the relative difference of the transverse and longitudinal zone center optical

phonon frequencies, we find

ω2
TO =

α + β − σ
µ

. (4.17)

We thus end up with expressions determining the harmonic parameters in the

dielectric functions of AlN in terms of the harmonic force constants.

4.2.3 Determination of the Anharmonicity Parameters in

the Expressions of the Dielectric Functions

The harmonic approximation gives the picture of only non-interacting phonon

modes in a crystal. In order to describe the anharmonicity of the lattice modes,

one should go beyond the quadratic term in the Taylor series expansion of the po-

tential energy.[80] The rate at which optical phonon decays into other phonons of

lower energy (which is defined as the inverse of the lifetime of the optical phonon

mode) can be calculated by considering the terms higher than the quadratic term

in the Taylor series expansion of the potential energy as perturbations to the har-

monic Hamiltonian. The decay rate of the excited zone center optical phonon

determines the damping parameter (Γ) in the expressions of the dielectric func-

tions.

At the center of the Brillouin zone, optical phonons have a near-zero wavevec-

tor (q ≈ 0). Lets consider that the frequency of the zone center optical phonon

under consideration is ω0. At moderate temperatures, the zone center optical

phonon decays into two acoustic phonons of wavevectors q′ and q′′ and energies

ω′ and ω′′ due to the anharmonic cubic term of the potential energy. Conser-
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vation of energy requires that ω0 = ω′ + ω′′ . Near the center of the Brillouin

zone, the Umklapp processes should be unlikely, and thus the momentum should

remain conserved. It follows that q = q′+q′′ . Furthermore, due the fact that the

dynamical matrix satisfies the symmetry of an even function, the created acoustic

phonons will likely have equal momenta with opposite directions q′ = −q′′ and

energies of equal magnitudes ω′ = ω′′ = ω0/2 . Using first order perturbation

theory, Klemens derived the following expression for the rate at which optical

phonon decays into two acoustic phonons[72, 73, 2]

Γ =
2.5γ2

π

~ω2
0

µv2

(
1 + 2n

(
ω0

2

))
, (4.18)

where γ is the Grüneisen parameter, v is the acoustic phonon group velocity near

the zone center, and n is the Bose-Einstein equilibrium distribution function.

However, in the derivation of the phonon decay rate, one should take into account

that the anharmonicity of the lattice imposes a strain field on the acoustic phonon

mode q′ modifying its energy. This induced strain, being a mechanical effect,

should affect the force constants α and β but not σ. Therefore, we write the

modified short-range interatomic harmonic force constants as

α′ = α(1 + 2γη) (4.19)

and

β′ = β(1 + 2γη) (4.20)

where η denotes the induced strain. The change in energy due to the presence of

the strain alters the phonon damping function given by Eq. 4.18. Substituting

Eqs. 4.19 and 4.20 in the expression giving the eigenfrequency of the zone center
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transverse optical phonon (Eq. 4.17), we obtain the ratio

δω′2

ω′2
=

2√
3

(
α− β

α + β − σ

)
γη. (4.21)

The strain reduces the optical phonon decay rate in Eq. 4.18 by the square of

the coefficient of the strain in Eq. 4.21. [72, 73, 2]

The possible channels for the decay of a zone center optical phonon can be

deduced by looking at the detailed phonon dispersion curves of wurtzite AlN. [80,

81] The acoustic phonons that satisfy the condition ω′ = ω0/2 are the longitudinal

and transverse acoustic phonon branches along the Γ − K direction, and the

longitudinal branch along the Γ−M direction. Each channel has its own decay

function given by Eq. 4.18. Therefore, the total rate at which the optical phonon

decays can be written as the sum of four equiprobable decay channels as

Γ =
2.5

π

~ω2
0

µ



×

[
4
3

(
α−β

α+β−σ

)2]

×

[(
γKL
vKL

)2

+

(
γKT1
vKT1

)2

+

(
γKT2
vKT2

)2

+

(
γML
vML

)2]
×
(

1 + 2n

(
ω0

2

))


, (4.22)

where the subscripts indicate the phonon branch polarization and the super-

scripts K and M indicate the crystallographic directions Γ −K and Γ −M . In

order to determine the transverse and longitudinal acoustic phonon group veloc-

ities involved in the expression of the rate at which the optical phonon decays,

we assume linear dispersion relations for the acoustic branches and solve Green

Christoffel equation ρω2uα =
∑

β

∑
γ,λCαγβλqγqλuβ. [82, 83] In Green-Christoffel

equation ρ is the material density, α, β, γ, and λ are Cartesian coordinates, Cαγβλ

are the elements of the (6× 6) elasticity matrix, u is the displacement vector and
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q is a unit vector parallel to the Γ−K or Γ−M direction. We note here that such

linearized dispersion relations give accurate description of the acoustic phonon

group velocity near the center of the Brillouin zone.

vL(m/s) γL vL(m/s) γT1 vT2(m/s) γT2

Γ−K 11223 0.8099 6332 0.8306 6197 0.8311
Γ−M 11223 0.8099 - - - -

Table 4.1: Calculated phonon group velocities and Grüneisen parameters in ΓK
and ΓM directions.

In order to determine the acoustic phonon mode Grüneisen parameters in-

volved in the expression of the rate at which the optical phonon decays, we con-

sider the crystal as a continuum medium and adopt the calculation method de-

scribed in Ref. [83]. In table 4.1, we present the obtained acoustic phonon group

velocities and Grüneisen parameters in the crystallographic directions Γ−K and

Γ−M . It can be clearly noticed from Eq. 4.22 that the anharmonic parameters of

the dielectric functions can be expressed, like the harmonic parameters, in terms

of the harmonic force constants.

4.2.4 Determination of the dielectric functions for ′p′ and

′s′ polarizations by fitting the model for reflectivity

to the measured reflectivity spectra

After having expressed the harmonic and anharmonic parameters in the ex-

pressions of the dielectric functions in terms of the harmonic force constants,

we present in this subsection the procedure we followed to retrieve the dielectric

functions of the measured facets for ′p′ and ′s′ polarizations.

As mentioned above, the reflectivity measurements were carried out on facets
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belonging to the {10 − 10}{10 − 12}{10 − 13}{10 − 14} and {0001} crystallo-

graphic classes developed on of a self-nucleated wurtzite AlN single crystal. First,

Kramers-Kronig conversion of reflectivity spectra taken from facets belonging to

the {0001} and {10− 10} crystallographic classes was carried out (with the ap-

propriate care to account for the error that may arise from integration over a

finite frequency range [69]) to retrieve the effective normal incidence dielectric

functions determined by the zone center optical phonons of pure E1 symmetry

and pure A1 symmetry. This allowed us to obtain the frequencies of the zone

center optical phonons of pure E1 and A1 symmetry as well as the static and

high frequency dielectric constants (ε0) and ε∞) along the c-axis and in the basal

isotropic basal plane. The maxima of the imaginary parts of the obtained dielec-

tric functions indicated that the frequency of the zone center transverse optical

phonon of E1 symmetry is ωTE = 667 cm−1 and that of the zone center transverse

optical phonon of A1 symmetry is ωTA = 612 cm−1. The maxima of the energy

loss functions (Im(−1/ε)) indicated that the frequency of the zone center optical

longitudinal phonon of pure E1 symmetry is ωLE = 916 cm−1 and that of the

zone center longitudinal optical phonon of A1 symmetry is ωLA = 890 cm−1. The

static and high frequency dielectric constants along the c-axis and in the basal

isotropic plane are deduced by extrapolating the real parts of the obtained dielec-

tric functions to zero and infinity. Then, upon using the derived expressions for

the orientation-dependent harmonicity and anharmonicity parameters, the gener-

alized Lydanne-Sachs-Teller equation (Eq. 4.2), Loudon equations (Eqs. 4.5 and

4.6), and the expression of the angle-dependent dielectric function (Eq. 4.7), we

find that the harmonic force constants (α) , (β), (σ) and the angle between the

incident electric field and the plane of incidence (ϕ) are the only unknowns in the

expression of the total reflectivity (Eq. 4.10). Moreover, the number of unknowns
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in the expression of the total reflectivity can be reduced further if we realize that

the force constants β and σ can be expressed in terms of using Eqs. 4.14 and

4.17. Thus, the only independent adjustable parameters in the reflectivity model

are α and ϕ . It is worth noting that the model adjustable parameters α and ϕ

are not entangled. The angle ϕ affects the positions of the main features in the

reflectivity spectrum (maxima and minima), while the force constant α affects

their strengths.

{0001} {10− 14} {10− 13} {10− 12} {10− 10}
ϕ(◦) 0.90 28.44 31.68 35.10 39.78

α(N/m) 5.193 5.382 5.364 5.337 5.283
a(A◦) 3.11 0.68 0.83 1.04 1.39

ΓE(cm−1) 5.3648 7.3712 7.1838 6.9929 6.3704
Γ⊥(cm−1) 5.8983 7.3773 7.1853 7.0286 14.2439
Γ‖(cm

−1) 11.9172 16.1211 15.8142 15.1395 6.3704

Table 4.2: Model parameters. Only α and ϕ were used as independent adjustable
parameters to fit the reflectivity model to the measured reflectivity spectra.

The best fitting reflectivity curves to the measured reflectivity spectra are

shown in Figure 4.1 using solid lines, and the values of α and ϕ obtained by fitting

the model to the experimental data are given in Table 4.2. We also provide in

Table 4.2 the interplanar spacing in each crystallographic direction. It can be

clearly noticed that as the planes come closer to one another, the force constant

α increases.

From the knowledge of the dependence of the force constants on the crystal-

lographic direction and by using Eq. 4.22, we can evaluate the dependence of the

zone center optical phonon damping parameter (or the rate at which the zone

center optical phonon decays) on the crystallographic direction. The direction-

dependent phonon damping parameters are presented in Table 4.2. Comparing

the values of the phonon damping parameters, we notice that mixed symmetry
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zone center optical phonons have higher rates of decay (shorter lifetimes) than

zone center optical phonons of pure symmetry.

Figure 4.2: The real and imaginary parts of the normal incidence dielectric func-
tions of the measured facets for a p-polarized light.

After having determined the force constants, all the harmonicity and anhar-

monicity parameters of the dielectric function for s– polarization εE(ω) and the

direction-dependent dielectric function for p– polarization ε(ω, θ) can be deter-

mined. Consequently, the calculation of εE(ω) and ε(ω, θ) in every measured facet

is made possible. Since the TM nature of SPhP forces it to be coupled to the

p– polarized component of the electric filed, the properties of SPhP modes are

determined by only the dielectric function for TM polarization ε(ω, θ) . In Figure

4.2, we show the normal incidence dielectric function of each of the measured
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facets for TM polarization.

4.2.5 Dependence of SPhP on Surface Orientation

After solving Maxwells equations both inside and outside a semi-infinite

crystalline material, and applying proper boundary conditions, one can write the

dispersion relations of SPhP wave in the form [56]

(ck‖)
2 =

ε(ω, θ)

1 + ε(ω, θ)
ω2, (4.23)

where ω and k‖ are the angular frequency and wavevector (oriented parallel to

the surface) of SPhP wave and c is the speed of light in vacuum. The component

of the wavevector of the incident radiation parallel to the surface of the sample

is the one that interacts with surface modes and is given by [5]

k‖ =
ω

c
sin θ. (4.24)

On the other hand, the response of the material ε(ω, θ) is a function of the

angle of incidence (θ), which makes the excitation of SPhP modes angle depen-

dent. Equating the wavevectors in Eqs. 4.23 and 4.24, we can find the angle of

incidence required to excite a SPhP mode of angular frequency ω. Thus, for each

frequency ω , a specific angle θ should be invoked in the expression of ε(ω, θ)

(Eq. 4.7). In order to evaluate the dispersion curves and lifetimes of SPhP on

the measured facets, we consider a real wavevector k and a complex frequency

ω(k) = ω′(k) + iω′′(k) and solve Eq. 4.23 numerically. The functions ω′(k) deter-

mine the dispersions of the SPhP modes, while the inverse of the function ω′′(k)
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Figure 4.3: The dispersions of the SPhP waves on the measured facets.

determine their lifetimes. The numerically derived SPhP dispersions are plotted

in Figure 4.3. It is clear that the facet orientation has a weak effect on the dis-

persion of SPhP. The slopes of the dispersion curves are almost unaffected by

the facet orientation, which demonstrates that the SPhP modes travel with the

same group velocity on all the measured facets. Nevertheless, since ωT and ωL

bound the spectral region where the SPhP modes exist (the Reststrahlen band),

and since both ωT and ωL depend on the facet orientation, AlN facets of different

orientations support SPhP modes of different energies. Hence, the differently

oriented facets of the self-nucleated AlN single crystal investigated in the work

allow tuning the frequencies of SPhP modes.

The numerically derived SPhP lifetimes are plotted in Figure 4.4. As can be

84



Figure 4.4: The lifetimes of the SPhP modes on the measured facets

noticed, the facet orientation plays a major role in determining the lifetime of

the SPhP modes. It is shown above that zone center optical phonons of pure

A1 character have the highest lifetimes, whereas phonons of mixed symmetry

experience shorter lifetimes (see Table 4.2). The SPhP modes follow the same

trend of the zone center optical phonons. The SPhP modes propagating on the

facets belonging to the {10−10} crystallographic class exhibit the longest lifetime.

Comparing the lifetimes of SPhP modes in Figure 4.4, we can see that SPhP

modes resulting from coupling of incident electric field with pure A1 symmetry

phonons experience the longest lifetimes (50 ps in the region of existence), whereas

a 50 % drop in lifetime is observed for SPhP modes resulting from coupling of

incident electric field with mixed symmetry phonons. Thus, changing the facet
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orientation leads to a change in the symmetry of optical phonon (pure E1, pure

A1, or mixed) that couples to the incident electromagnetic field, which in turn

affects the lifetime of the SPhP mode. In Figure 4.5, we sketch the frequencies

Figure 4.5: On the left: The spectral regions of existence of the SPhP modes
on the measured facets. On the right: the lifetimes of the SPhP modes in their
spectral regions of existence.

and lifetimes of the SPhP on each of the measured facets. It can be clearly seen

that by changing the facet exposed to the incident electric field, one can tune

the frequencies of the SPhP modes and modify their lifetimes. Consequently, the

self-nucleated single crystal investigated in this work offers the opportunity of

developing tunable near-field infrared sources.
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4.3 Conclusion

A self-nucleated wurtzite AlN single crystal was grown with minimal contact

with the crucible wall or other crystals. It was found that the grown crystal

exhibits natural growth habit of AlN with many well-developed facets. X-ray

texture measurements demonstrated that the developed facets belong to the {10−

10} {10−12} {10−13} {10−14} and {0001} crystallographic classes. Unpolarized

reflectivity measurements were carried out on the developed facets. The measured

spectra were analyzed using a general model for unpolarized reflectivity involving

the dependence of the surface orientation on the harmonicity and anharmonicity

of the excited zone center optical phonon. The harmonicity and anharmonicity

parameters of the model obtained by fitting the model to the measured spectra

were used to determine the dielectric function for s– polarization and the angle-

dependent dielectric function for p– polarization of the measured facets. The

dispersions of SPhP and their lifetimes on the measured facets were computed

using the derived dielectric functions. It was found that both the lifetime of the

SPhP modes and the spectral region in which the SPhP modes exist markedly

depend on the facet orientation. This makes self-nucleated AlN crystals suitable

for the development of near-field infrared sources tunable over a wide spectral

range.
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Chapter 5

Surface Phonon Polaritons on

cylindrical structures

We have seen thus far two different methods for tuning the SPhP modes.

Changing the surface symmetry of a given sample had its effect on the lifetime

of optical phonons. It was also used as a mechanism to shift the resonance

frequencies at which transverse and longitudinal optical phonons were excited.

Consequently, the lifetime and the region of existence of SPhP modes were shown

to be tunable. Another method was to change the carrier concentration inside a

sample, and study its effect on the SPhP modes. It was found that this was a

proper technique for tuning the lifetime and the temporal coherence of the SPhP

waves. Both of these methods were investigated on flat surfaces. In order to have

a full understanding about the behavior of SPhP waves and the tools required

for manipulating them, we now proceed to study the effect of the shape of the

sample on the properties of the surface waves.

Let us consider SPhP waves propagating along a circular cylindrical structure

as shown in Figure 5.1. There are three distinct regions, each described by a
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Figure 5.1: Geometry of the cylindrical structure.

certain dielectric function. The propagation direction is taken along z (out of

the page), with r = a and r = b being the radii of the inner and outer circles

respectively. Since the symmetry of the problem is different than that of the

flat surface, the solutions to Maxwells equations will be modified. The field

components of the TM SPhP waves tangential to the cylindrical surfaces are the

following: [4]

Region 1:

E(1)
z = A1I0(p1r), (5.1)

H
(1)
θ =

iωε1
p1

A1I
′
0(p1r), (5.2)
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where

p2
1 = q2 − k2

1, (5.3)

k2
1 = ω2µ0ε1. (5.4)

Similar equations are found in regions 2 and 3.

Region 2:

E(2)
z =

[
A2I0(p2r) + A3K0(p3r)

]
, (5.5)

H
(2)
θ =

iωε2
p2

[
A2I

′
0(p2r) + A3K

′
0(p3r)

]
, (5.6)

p2
2 = q2 − k2

2, (5.7)

k2
2 = ω2µ0ε2. (5.8)

Region 3:

E(3)
z = A4K0(p3r), (5.9)

H
(2)
θ =

iωε2
p2

A4K
′
0(p3r), (5.10)

p2
3 = q2 − k2

3, (5.11)

k2
3 = ω2µ0ε3. (5.12)

Here A1, A2, A3 and A4 are the amplitudes of the propagating waves in different

regions. I0 and K0 are the modified Bessel functions of order zero, and the prime

on these functions represent the derivative of the functions with respect to their

arguments.

Matching the tangential electric and magnetic fields at the boundaries r = a
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and r = b we find

A1I0(p1a) = A2I0(p2a) + A3K0(p2a), (5.13)

iωε1
p1

A1I
′
0(p1a) =

iωε2
p2

[
A2I

′
0(p2a) + A3K

′
0(p2a)

]
, (5.14)

A2I0(p2b) + A3K0(p2b) = A4K0(p3b), (5.15)

iωε2
p2

[A2I
′
0(p2b) + A3K

′
0(p2b)] =

iωε3
p3

A4K
′
0(p3b), (5.16)

We are interested in investigating the properties of SPhP modes on a polar ma-

terial in the form of a nanowire surrounded by air. Therefore we take the limit

of b → ∞ that will describe the region containing air. Region 1 on the other

hand will represent the nanowire of radius a with a complex dielectric function

ε1. Solving equations (5.13) to (5.16) by taking the limits of the Bessel functions

as b→∞ we can find the dispersion relation of the SPhP modes propagating at

the surface of a cylindrical polar material.

K0(p2a)

I0(p1a)
− ε2p1

ε1p2

K ′0(p2a)

I ′0(p1a)
= 0 (5.17)

We notice that in the limit of very large a, the problem reduces to the flat surface

situation. Taking the limit a → ∞ in equation (5.17) the dispersion relation of

SPhP waves traveling on a flat surface can be obtained

1 +
ε2p1

ε1p2

= 0. (5.18)

This is the same dispersion relation found in chapter 1.

In order to determine the dispersion relation of the nanowire, we consider

a real frequency ω and a complex wavevector q = q′ + iq′′ and solve equation

(5.17) numerically. As explained earlier ω(q′) will describe the dispersion relation
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and the inverse of the function ω(q′′) will give the frequency dependent mean-

propagation- length of the SPhP modes. The complex dielectric function of the

nanowire can be described by Drudes model introduced in chapter 4. The material

is considered to be SiC with a radius of 50nm. At radii smaller than 50nm, the

volume of the nanowire becomes so small, that surface effects become significant.

Consequently, the Drude model describing the behavior of phonons in the bulk of

the material loses its accuracy. A larger value for the radius was not considered

simply because the objective is to observe a significant change in the properties

of surface waves when assuming a cylindrical structure. As we have seen earlier

the nanowire problem reduces to the basic flat surface situation for large radii.

Figure 5.2: Comparing the disperion relation of SPhP modes supported by SiC
samples of different shapes. Blue color is used to represent the nanowire and red
curve is used to represent the flat surface

Comparing the dispersion relation of the SiC nanowire (Figure 5.2) to that

of the lowest doped SiC sample found in chapter 3, we notice that the nanowire

curve extends to much larger values of wavevector q. In other words, changing

the shape of a sample results in increasing the number of SPhP modes supported

by the material. Consequently, when coupled to a periodic structure such as a
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grating, cylindrical structures will emit more SPhP modes in more directions as

compared to that emitted by parallelepiped- like structures.
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Chapter 6

Conclusion

In the present thesis work, different methods for tuning the surface phonon

polariton modes are investigated. These waves are the primary contributors to

energy transport in sub– diffraction limits known as the near field. As is the case

for many systems, unanticipated behaviors emerge in low dimensions. Unlike

the conventional description of radiation presented by Planck, the near– field

radiation maintains a very high energy density, concentrated in a narrow range of

frequencies. In other words, SPhP modes show a monochromatic and a coherent

behavior to some extent. This has attracted wide scientific interest in the past

couple of decades and initiated a new area of active research in nanophotonics.

Many SPhP– based applications have been suggested over the years ranging from

the development of coherent infrared light– emitting thermal nano– sources to the

treatment of various chronic diseases. Thus the ability to tune and manipulate

the properties of SPhP modes has proven itself to be crucial for the advancement

of useful technologies.

In chapter 1 a general introduction to the principles of SPhP modes is pro-

vided. Surface phonon polaritons result from the coupling between electromag-
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netic modes (photons) and lattice vibrational modes (optical phonons) at the

surface of polar materials. In most materials, a photon- phonon interaction is

observed in the THz regime. Thus, SPhP modes are infrared electromagnetic

modes localized at the surface of dielectric materials. The experimental detec-

tion of these waves is not a trivial task, since they acquire an evanescent character

as they move away from the surface. But fortunately, practical techniques such as

ATR and SNOM have been developed over the years, enabling the experimental

detection of the SPhP modes.

The measurement and analysis techniques used for investigating the proper-

ties of SPhP modes are covered in chapter 2. SPhP modes are a form of light-

matter interaction. Thus an accurate knowledge of the complex dielectric func-

tion describing the response of the material to an incident radiation is a key

factor in understanding the behavior of SPhP waves. It is shown in this chapter

that the response function of a given material can be obtained from a rigorous

analysis of reflectivity measurements using the Kramers- Kronig (KK) conversion

technique. The experimental setup used is a Fourier Transform Infrared (FTIR)

spectroscopy whose main component is an interferometer based on the original

design by Michelson.

In chapter 3 the properties of surface polariton modes are investigated as a

function of carrier concentration in 4H– SiC crystals. P– polarized FTIR reflec-

tivity measurements are performed on three different 4H– SiC samples having dif-

ferent carrier concentrations. The response function of each sample is determined

by using the KK conversion technique. The KK conversion technique is a math-

ematical tool involving some assumptions that cannot be fully satisfied experi-

mentally. Thus the results obtained from the KK conversion are prone to minor

inaccuracies which are corrected on the basis of Fresnel equations of reflectivity.
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The lifetime and mean– propagation– length of the coupled plasmon- phonon-

polariton (PPhP) modes are deduced. A strong decay in lifetime and mean–

propagation– length is observed as the carrier concentration is increased. How-

ever it is shown that the temporal coherence of the coupled plasmon– phonon–

polaiton mode is enhanced as a function of carrier concentration. Thus varying

the carrier concentration can be used as a mechanism for developing coherent

infrared light– emitting thermal nanosources.

The dependence of SPhP properties as a function of surface symmetry direc-

tion is studied in chapter 4. The sample under consideration is a self- nucleated

wurtzite AlN crystal. Unpolarized FTIR reflectivity measurements are performed

on the {10-10} {10-12} {10-13} {10-14} and {0001} facets. Due to the anisotropy

of the wurtzie structure, the response function of each high symmetry direction

is different, consequently different reflectivity spectra are observed for each facet.

Taking into account the angular dependence of the complex dielectric function, a

reflectivity model is developed, explaining the different spectra observed exper-

imentally. Upon fitting the experimental data with the theoretical model, the

response function for each high symmetry direction is deduced and the SPhP

properties are calculated. It is demonstrated that both the lifetime and region of

existence of SPhP waves are a function of surface symmetry direction. Therefore

changing the surface symmetry of a material can be used as an efficient technique

to control the frequencies at which SPhP waves are excited. This provides the

means to accurately tune the emission of thermal nano- sources.

Finally, the behavior of SPhP modes is investigated in chapter 5 as a function

of the shape of the material. The previous two mechanisms were studied on

flat surfaces. In this chapter we derive the dispersion relation of SPhP waves

for cylindrical structures. Since the symmetry of the problem is different than
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that of flat surfaces, the SPhP characteristics change significantly. It has been

shown that cylindrical structures have the capacity to support a much higher

number of SPhP modes as compared to flat surfaces. In fact, in a given material

SPhP modes can be added or eliminated by simply changing the geometry of the

sample.

Thus, we investigated three different methods for tuning the properties of

SPhP modes. Each method is proven to be efficient for a particular task. Varying

the carrier concentration is used as a tool for enhancing the temporal coherence

of SPhP waves. Changing the surface symmetry of a sample provides the means

for tuning the frequencies at which SPhP waves are excited. While changing the

shape of the sample is used to control the number of SPhP modes supported by

the sample. We believe that the outcomes of this work may open new horizons

in the field of nanophotonics where the tuning of SPhP modes will stand as the

basis for the development of useful technologies.
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Appendix A

Fresnel Equations for Reflectivity

The Fresnel equations derived by Augustin Jean- Fresnel describe the behav-

ior of light propagating between media of different refractive indices. When an

incident electromagnetic field strikes the interface between two different media,

both reflection and transmission occur (Figure A.1). As can be seen in Figure

A.1, more than one transmitted or reflected wave is present in each medium. To

simplify the problem, a technique known as the transfer matrix method is used

to combine all the waves in each medium (both forward and backward) into a

single wave.[44] . In this approach the electric and magnetic fields at different

points can be related by an interference matrix M (Figure A.2).

Considering a TM wave, the x- component of the electric field and the y-

component of the magnetic field can be written as a function of the distance z:

Ex(z) = cos(θ2)E+eiϕ(z) + cos(θ2)E−e−iϕ(z) (A.1)

and

Hy(z) =
n2

µc

[
E+eiϕ(z) − E−e−iϕ(z)

]
(A.2)
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Figure A.1: Reflection and transmission occur when light moves from a medium
of a given refractive index to another.

where E+ and E− are the amplitudes of the forward and backward propagating

electric fields, θ2 is the angle between the wavevector and the z- direction and

ϕ(z) =
ωn2z cos θ2

c
. (A.3)

In the above equations the terms e−iωt and e−qxx are dropped since they will

eventually get cancelled when boundary conditions are applied.

The objective is to relate the electric and magnetic fields at a random location

z to the fields at the origin z = 0. Substituting z = 0 in equations (A.1) and

(A.2) eliminating the amplitudes E+ and E−, the fields at a location z are found
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Figure A.2: The transfer matrix method: All reflected and transmitted waves in
each medium are presented by a single wave. The amplitudes of the electric and
magnetic fields at different points are related by an interference matrix M.

to be

Ex(z) = Ex(0) cosϕ(z) + ip2Hy(0) sinϕ(z) (A.4)

and

Ey(z) =
i

p2

Ex(0) sinϕ(z) +Hy(0) cosϕ(z) (A.5)

where p2 =
[

cos θ2/n2/µc
]

is the surface impedance for a TM wave. The above

equations can be represented in a matrix form

Ex(z)

Hy(z)

 =

 cosϕ(z) ip2 sinϕ(z)

i
p2

sinϕ(z) cosϕ(z)


Ex(0)

Hy(0)

 . (A.6)
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Taking z = d the fields at the two interfaces can be related

Ex(0)

Hy(0)

 =

 cosϕ2 −ip2 sinϕ2

− i
p2

sinϕ2 cosϕ2


Ex(d)

Hy(d)

 = M

Ex(d)

Hy(d)

 (A.7)

where ϕ2 = ϕ(d) and M is the interference matrix introduced earlier.

Equation (A.7) relates the electric and magnetic fields at the two boundaries

of the film. To find the reflectivity, the fields inside the sample described by

the refractive index n2, should be related to the fields outside the sample (in

regions described by n1 and n3). The continuity of the tangential fields at a given

boundary implies that the electric and magnetic fields at the origin will be related

to the incident and reflected waves in the region described by n1 (Figure A.1).

Combining all the reflected fields into a single reflected field Er, the boundary

condition can be written in the following way

Ex(0) = Ei cos θi + Er cos θr = Eix + Erx (A.8)

and

Hy(0) =
n1

µc

(
Ei − Er

)
=

1

p1

(
Eix − Erx

)
(A.9)

where p1 =
[

cos θi/n1/µc
]
. Combining all the transmitted waves into a single

wave Et the boundary condition at z = d can be written as

Ex(d) = Et cos θt = Etx (A.10)

and

Hy(d) =
n3

µc
Et =

1

p3

Etx (A.11)
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where p3 =
[

cos θt/n3/µc
]
. Expressing equations (A.8) to (A.11) in a matrix form

and substituting them in equation (A.7), the incident, reflected and transmitted

waves can be related by

 1 1

1
p1

− 1
p1


Eix
Erx

 =

m11 m12

m21 m22


 1

1
p3

Etx (A.12)

where mij are the elements of the interference matrix M . Inverting the matrix

of the left hand side in equation (A.12) and multiplying it with the two matrices

on the right hand side gives

Eix
Erx

 =
1

2

(m11 + 1
p3
m12

)
+
(
m21 + 1

p3
m22

)
p1(

m11 + 1
p3
m12

)
−
(
m21 + 1

p3
m22

)
p1

Etx (A.13)

From equation (A.13) the Fresnel coefficient for reflectivity can be deduced

r =
Er
Ei

=
Erx

Eix
=

(
m11 + 1

p3
m12

)
+
(
m21 + 1

p3
m22

)
p1(

m11 + 1
p3
m12

)
−
(
m21 + 1

p3
m22

)
p1

. (A.14)

Having an expression for the Fresnel coefficient of reflection, the reflectivity spec-

trum can be calculated.
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