
AMERICAN UNIVERSITY OF BEIRUT

SEMANTIC MODELS FOR PRECONCEIVED
NOTIONS FOR OPINION MINING IN

ARABIC

by

RAMY GEORGES BALY

A dissertation
submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy
to the Department of Electrical and Computer Engineering

of the Faculty of Engineering and Architecture
at the American University of Beirut

Beirut, Lebanon
November 2016

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor Prof. Hazem
Hajj for his motivation, knowledge, and continuous support, both at the academic
and personal level, since day one of my graduate school marathon. His guidance
was of immense help for me throughout this venture, and was crucial to the
realization of this thesis. I could not have imagined having a better advisor and
mentor for my PhD.

I have also been fortunate to work under the supervision of outstanding schol-
ars: Prof. Nizar Habash (New York Abu Dhabi), Prof. Wassim El-Hajj (AUB)
and Prof. Khaled Shaban (Qatar University) who were generous to provide me
with guidance and insightful comments that incited me to widen my research
from various perspectives. I am also thankful to all former and present mem-
bers in the OMA research team who helped me a lot through collaborations and
discussions.

Finally, and most importantly, I would like to thank my beloved wife Ruby
for her support, encouragement, patience and tolerance, especially in patches of
rough times. Her unwavering love was the bedrock upon which the past seven
years of my life have been built. I also thank my parents, Georges and Caroline,
for their moral support and their faith in me and allowing me to be as ambitious
as I wanted.

v

An Abstract of the Dissertation of

Ramy Georges Baly for Doctor of Philosophy
Major: Electrical and Computer Engineering

Title: Semantic Models for Preconceived Notions for Opinion Mining in Arabic

Opinion mining (OM), or sentiment analysis (SA), is the process of hav-
ing computing machines automatically understand and interpret text to identify
opinions expressed on certain subjects. OM has become interesting given the
abundance of user-generated opinionated data on the Web, especially on social
media websites (Facebook, Twitter, LinkedIn, etc.). OM has significant applica-
tions in Politics, Social Media, and Business. Providing insights into the public
opinion shapes critical decisions in these fields such as influencing voters’ direc-
tions in the currently active US elections, or having a business decide on a new
product launch.

OM belongs to a multi-disciplinary research intersecting the fields of machine
learning, psychology, social media, and natural language processing (NLP), with
NLP presenting the most significant challenge in having machines automatically
understand the semantics in text. In this thesis, we explore solutions for opinion
mining in Arabic (OMA) due to Arabic’s importance as the 5th most-spoken
language worldwide, and that recently became a key source of internet content
with a 6,600% growth in number of users compared to the year 2000.

OMA’s challenges include Arabic’s lexical sparsity and ambiguity due to its
rich morphology, where Arabic words are packed with significant amounts of in-
formation through complex concatenative and inflectional systems. Arabic has
also a wide range of dialectal variations, as well as ambiguity caused by optional
diacritization in Arabic scripts. Additionally, Arabic suffers from the lack of reli-
able large-scale sentiment lexical resources that can help training and evaluating
accurate machine learning models.

To address these challenges, we present solutions inspired from Psychology
and Neuroscience. We present a meta-framework to automate the human cog-
nitive processes while reading and interpreting sentiment. Furthermore, for the
inference step, we develop new deep learning methods for OMA, inspired from

vi

neuroscience and state-of-the-art neural network algorithms that aim at repre-
senting the brain’s neurons and their activations. Experiments with state of the
art methods in English and Arabic show the superiority of our methods.

Contents

Acknowledgements v

Abstract vi

Contents viii

List of Figures x

List of Tables xi

1 Introduction 1

2 Related Work 6
2.1 Opinion Mining in English . 6

2.1.1 Feature Engineering-based Models 6
2.1.2 Deep Learning-based Models 8

2.2 Opinion Mining in Arabic . 10

3 Challenges and Objectives 13
3.1 Challenges Related to Opinion Mining Meta-Framework 13
3.2 Challenges in OMA . 14

3.2.1 Overview of Arabic Morphology 14
3.2.2 Arabic-specific Challenges 15

3.3 Objectives . 18

4 Human Reading for Opinion Mining 20
4.1 Models of Human Reading . 20
4.2 Research gaps with respect to HRS 23
4.3 Applications of the HRS Meta-Framework 26

4.3.1 HRS with Feature Engineering: FRN as Case Study 26
4.3.2 HRS with Deep Learning: GRNN as Case Study 31

4.4 Experiments and Results . 35
4.4.1 Datasets and Evaluation 35
4.4.2 Evaluating FRN with HRS 36

viii

4.4.3 Evaluating GRNN with HRS 39

5 Recursive Auto Encoders for OMA 43
5.1 RAE for Opinion Mining . 43
5.2 RAE for Opinion Mining in Arabic 46

5.2.1 Tokenization to address Sparsity and Ambiguity 46
5.2.2 Sentiment Embedding to improve Word Embeddings . . . 47
5.2.3 Syntactic Parsing to improve Composition 50

5.3 Experiments and Results . 50
5.3.1 Datasets and Experimental setup 50
5.3.2 Ablation Analysis . 52
5.3.3 Results Benchmarking . 55

6 Morphologically-Enriched Recursive Deep Models 58
6.1 RNTN for Opinion Mining . 58
6.2 Addressing Rich Morphology & Ambiguity 60
6.3 The Arabic Sentiment Treebank 61

6.3.1 System Architecture . 61
6.3.2 Description and Intrinsic Evaluation 63

6.4 Experiments and Results . 66
6.4.1 Experimental Setting . 67
6.4.2 Results . 67

7 Conclusion 75

A Tools and Software 77

Bibliography 80

List of Figures

4.1 The human reading process. 22
4.2 Application of the HRS meta-framework to the FRN method. . . 27
4.3 The architecture of GRNN with and without HRS. (a) shows the

original GRNN framework. (b) shows the modified GRNN frame-
work with the modeling of the “situation model of interpretation” 34

4.4 Evaluating different sizes of the domain lexicon. 37
4.5 Evaluating the impact of synonymy when introducing SYN-phrases

vs. phrases under different sizes of the domain lexicon. Figure (a)
shows the accuracies, while Figure (b) shows the F1 scores. 38

4.6 Evaluating the FRN method with and without HRS under different
sizes of reduced features. (a) shows results on the IMDB corpus.
(b) shows results on the YELP corpus. 40

5.1 The framework of RAE, which we refer to as baseline RAE. . . . 44
5.2 The structure of the AE (parameters, inputs and outputs). 45
5.3 The framework of RAE for opinion mining in Arabic, with solu-

tions highlighted in blue. 47
5.4 The architecture of the C&W embedding model, extended with

pre-training stage. 49

6.1 Sketch of RNTN applied to predict sentiment in a three-word phrase. 59
6.2 Architecture of the system to develop ArSenTB. 62
6.3 The different morphological features provided in ArSenTB . . . 64
6.4 Normalized distribution of aggregated sentiment labels at each

level of n-gram in ArSenTB. 65

x

List of Tables

1.1 Impact of Arabic complex morphology on sentiment. 4

4.1 Qualitative analysis of document-level sentiment analysis models
against aspects of human reading. 25

4.2 Characteristics of datasets used in experiments. 36

4.3 Results obtained on both datasets (YELP with 5 classes and IMDB
with 2 classes) using GRNN with and without HRS. 41

4.4 Summary of all results obtained by applying HRS to FRN and
GRNN approaches on the IMDB corpus (5 classes) and the YELP
corpus (5 classes) . 42

5.1 Characteristics of the different evaluation corpora. 51

5.2 Impact of each solution evaluated on the ATB corpus. 53

5.3 Impact of each solution evaluated on the QALB corpus. 53

5.4 Impact of each solution, evaluated on the Tweets corpus. 54

5.5 Impact of different tree structures on the performance of RAE for
opinion mining in Arabic. 55

5.6 Results of benchmarking the performance of RAE for OMA against
sentiment models from the literature. 57

6.1 Sentiment distribution in ArSenTB 65

6.2 Different types of sentiment compositions observed in ArSenTB 66

6.3 Evaluation splits of ArSenTB 67

6.4 The impact of adding orthographic features on the performance of
baseline RNTN for five-way classification. 68

6.5 The impact of adding orthographic features on the performance of
baseline RNTN for three-way classification. 69

6.6 Performance of the different RNTN models, and comparison to a
variety of SVM classifiers. 70

6.7 The impact of adding morphological features on RNTN perfor-
mance in English. 71

6.8 A qualitative analysis of the recursive deep models for OMA against
aspects of human reading. 73

xi

A.1 Software and tools required to train and evaluate the applicability
of the HRS meta-framework to the “FRN” opinion model 77

A.2 Software and tools required to train and evaluate the applicability
of the HRS meta-framework to the “GRNN” opinion model 78

A.3 Software and tools required to train and evaluate the “RAE” model
for OMA . 78

A.4 Software and tools required to train and evaluate the “RAE” model
for OMA . 79

Chapter 1

Introduction

Opinion mining (OM), or sentiment analysis (SA), are used interchangeably to
refer to the task of the automatic identification and extraction of opinions or sen-
timents expressed towards targets (individuals, organizations, events or topics)
in textual data. With the rapid growth of the Web, huge amounts of opinion-
ated data are flooding the Internet in social media websites (Facebook, Twitter,
Instagram, etc.), forums, blogs and reviews websites [1]. For instance, Facebook
servers handle more than 30 Petabytes of data including text, images and videos.
Also, more than 230 million tweets are tweeted on a daily basis 1.

Developing opinion mining models that are capable of analyzing and under-
standing the subjective content of the Web has become a valuable asset for busi-
ness intelligence, marketing, politics and a wide range of domains. It provides
companies with insights into costumers’ opinions about their services, and also
provides individuals with summarized reviews and opinions about items they
would like to buy. It can be used to predict stock market prices, and also to
model the people’s behavior during major events. For example, the death of
Steve Jobs caused a sad sentiment spike on Twitter [2]. It was also used at the
onset of the 2012 US presidential elections to track public popularity [3]. The
diversity of sentiment-related applications and the benefits of getting access into
people’s opinions have fueled research on sentiment analysis over the last two
decades.

Sentiment analysis encompasses several sub-tasks [4]. Sentiment classification
is one of the most researched sentiment-related tasks [5] that aims to determine
the overall sentiment polarity of text ranging from single words to full documents.
It is particularly useful for analyzing customer reviews, which usually target a
single entity (item, product or service). Aspect-based sentiment classification
aims to identify the different sentiments expressed towards aspects of target enti-
ties, providing richer and deeper results [6]. Aspect-based opinion summarization
aims to provide a comprehensive and summarized representation for a large num-

1http://www.ibmbigdatahub.com

1

ber of opinions and sentiments according to the different aspects that are being
evaluated [7]. Identifying implied sentiment is a challenging sentiment analysis
task that aims to analyze objective sentences that are used to express subjective
opinions. This task requires common-sense and knowledge of the application do-
main [8]. At last, co-reference resolution aims to discover mentions of entities
and aspects of these entities, and relate them to each other [9]. This dissertation
is primarily focused on developing accurate models for sentiment classification,
where given a text segment, the aim is to predict its overall sentiment (whether
it is positive, negative or neutral) and the strength of that sentiment.

In this dissertation, we target two objectives. The first is to develop a meta-
framework for opinion mining that mimic the human’s reading process. The
second is to advance state-of-the-art inference models for opinion mining in Ara-
bic.

Research in opinion mining has been driven by the need to improve the ac-
curacy performance of existing models. Although models have already achieved
sate-of-the-art performances in English, we conjecture that best accuracies can
still be achieved by models that come closest to the human reading. Therefore, we
take a fundamental approach in attempting to match the human reading process
for the purpose of sentiment classification. This approach builds its foundations
from the field of psychology by understanding and automating the cognitive pro-
cess that humans follow to read and interpret sentiment from text.

Based on the human reading theory in psychology [10], we formulate sen-
timent analysis in a human-like “meta-framework”, and we refer to it as the
“Human Reading for Sentiment” (HRS). A central idea to HRS is the capture of
notions that include both textual representations and sentiment polarities [11].
We provide a comprehensive coverage of the “notion” concept by including an
expanded definition and proposing additional human-related features such as the
working memory and the notions synonyms. The resulting HRS meta-framework
enables the development of opinion mining models that are complete in their
representation of the human reading process. It can be used to extend existing
models, or as a reference when developing new models from scratch.

In this dissertation, we use HRS to extend two state-of-the-art methods for
document classification, originating from two schools of machine learning. The
first method is based on feature engineering and uses feature relation networks
(FRN) to reduce a rich set of heterogeneous n-gram features [12]. The second
method is based on deep learning and uses Gated Recurrent Neural Networks
(GRNN) [13]. Although both models already achieve very high accuracies on dif-
ferent reviews datasets, experimental results showed that extending these models
according to the HRS yields further improvements.

Towards the objective of advancing inference models for opinion mining, a
wide range of models were previously developed based on feature engineering,
where different types of features were extracted to train machine learning mod-
els. Each type of features aims to capture a specific characteristic of the text,

2

including the shallow surface of words and their context [14,15], the syntactic rules
that define the structure of the text and the relations between its words [16–18],
and the semantics of the text including meanings and sentiments of words or
phrases it contains [12, 19, 20]. The extraction of these features uses advanced
natural language processing (NLP) tools such as parsers, stemmers, and taggers,
as well as large-scale lexical resources such as sentiment lexicons [21] and semantic
thesauri [22].

Current state-of-the-art models for opinion mining are based on deep learn-
ing techniques. These models have achieved high performances coupled with
eliminating the need for labor-intensive feature engineering. Deep learning has
recently emerged as a major advance in machine learning and artificial intelli-
gence. This class of models aims to simulate the way the human brain works
by mimicking activities in several layers of neurons, where each of these layers
extracts some latent feature or aspect of the task they are trained for, using raw
unlabeled datasets [23]. This technology has become possible due to the current
increase in computational and processing capabilities, as well as the abundance
of raw unlabeled datasets such as the Wikipedia textual corpus [24] and the Im-
ageNet database [25]. As a result, deep learning was successfully used in a wide
range of applications such as image recognition [26], machine translation [27] and
text and sound generation [28,29]. Most deep learning models for opinion mining
are based on the concept of compositionality [30]. To perform semantic composi-
tion, neural language models (NLM) are used to generate word embeddings that
capture distributional semantic and syntactic aspects of each word [31]. These
embeddings are then combined together, through some composition function, to
derive an overall representation (or embedding) of the text that is used to predict
its sentiment. Semantic composition models can be categorized into sequential
models that cumulate the information through the text [13, 32] and recursive
models that propagate the information up a parse tree [33,34]. Overall, recursive
models have proved more effective, mainly because the meaning in a language is
also constructed recursively [35].

In this thesis, we place special focus on developing inference models for opinion
mining in Arabic (OMA) since Arabic language is the 5th most-spoken language
in the world [36], and has recently become a major source of the Internet content
with a 6,600% growth in number of users compared to the year 2000 [37]. Per-
forming OMA is a timely and intriguing application that is worth investigating.

Research on OMA has been following the footsteps of opinion mining re-
search in English, mainly focusing on feature engineering to train machine learn-
ing models [38–40]. However, it is faced with several challenges related to the
language complexity, the relative recency of Arabic NLP, and the limited seman-
tic resources. Arabic is a morphologically-rich language (MRL), where words
contain many morphemes and are packed with significant amount of informa-
tion through a complex concatenative and inflectional system, leading to lexical
sparsity. Furthermore, the fact that diacritization is optional in Arabic scripts

3

leads to lexical ambiguity. Table 1.1 shows an example of how an Arabic token

can have different tokenizations and diacritics (ÉJ
º
�

�
�
�Ë @

�
HA

�
ÓC

�
«), producing dif-

ferent words with different meanings and sentiments. This example also shows
the “information-packing” aspect, where a single Arabic word corresponds to dif-
ferent multi-word English phrases. Furthermore, OMA was mostly performed at
the level of sentences and documents, whereas opinion is often expressed in more
subtle manners and needs to be modeled at lower levels of granularity including
words and phrases. Research in this direction is held back by the lack of cor-
pora with fine-grained annotations, which are expensive and time-consuming to
create. Moreover, despite the recent release of several lexical resources including
sentiment lexicons [41, 42] and annotated corpora [38, 39], the number and di-
versity of these resources are still small compared to those developed in English.
Finally, a large number of non-standardized dialectal variants exist for Arabic
and are excessively used by Internet users instead of Modern Standard Arabic
(MSA). This adds to the complexity of Arabic NLP tools that are needed to pro-
cess and analyze colloquial text. Recent efforts have been achieved for Egyptian
dialect [43,44].

Surface AëQå
�
��. ð wb$rhA

Tokenization
Aë+Qå

�
��.+ð Aë+Qå

�
�+K.+ð Aë+Qå

�
��.+ð

w+b$r+hA w+b+$r+hA w+b$r+hA

Diacritics
A
�
ë �Qå

��
�
�
�
�.

�
ð A

�
ë

��Qå
�
�
��.�

�
ð A

�
ëQ

�
å
�
�
�
�
�.

�
ð

waba$∼arahaA wabi$ar∼ihaA waba$arihaA

Gloss ‘and he told her good news’ ‘and with her evil’ ‘and her people’

Sentiment Positive Negative Neutral

Table 1.1: Impact of Arabic complex morphology on sentiment.

To address the above-mentioned challenges in Arabic, we propose to use deep
learning, which has not yet been explored for OMA. Deep learning models used
in English can not be directly applied to Arabic due to several reasons. 1) The
ability of deep learning to capture syntactic and semantic aspects of the words
from raw text will be affected by the morphological complexity and ambiguity of
Arabic language. 2) Given Arabic’s rich concatenative morphology, raw words
usually contain several morphemes and can be tokenized into different levels of
morphological detail. Therefore, training recursive deep models with raw words
will neglect the morpheme-level semantic interactions that may contribute to the
overall meaning. 3) The composition models are trained using word embeddings

4

that do not capture sentiment aspects of the words. This affects the ability of
the composed embeddings to predict the sentiment of the text.

To overcome these limitations in Arabic, we propose 1) to improve the word
embeddings by incorporating sentiment into the word vectors, 2) to improve path
of recursion of composition by using syntactic rules of the language, and 3) to
enrich the composition models with morphological and orthographic features in
order to abstract away from the sparse raw words and reduce ambiguity. Further-
more, we present ArSenTB the first Arabic sentiment treebank that supports
recursive deep models for Arabic sentiment analysis at different levels of text
starting from the word-level. The resulting enhanced models achieved significant
performance improvements of around 10% in both accuracy and F1-score, on
several datasets, compared to the baseline models. They also outperformed well-
known classifiers trained with similar morphological considerations, highlighting
the advantage of using deep learning for opinion mining.

The remaining of this dissertation is organized as follows. Chapter 2 describes
previous efforts done for opinion mining in both English and Arabic languages.
Chapter 3 describes the main challenges associated with OMA, and summarizes
the thesis objectives. Chapter 4 presents the psychological foundation of the
“human reading for sentiment” (HRS) meta-framework, describes the proposed
steps for HRS automation, and shows improvements over several state-of-the-art
models. Chapters 5 and 6 describe the solution models to advance inference
models for opinion mining in Arabic, with focus on using recursive deep models.
Finally, conclusions are presented in Chapter 7.

5

Chapter 2

Related Work

In this chapter, we provide an overview of previous opinion mining methods. Since
significant efforts have been made for English language, We start by describing
methods proposed for English opinion mining, since research on OM has been
established for that language. Then, we describe previous models proposed for
Arabic language.

2.1 Opinion Mining in English

Methods for opinion mining in English can be categorized into in two groups.
The first group is based on feature engineering to train classical machine learning
models. The second is based on recent advances in deep learning.

2.1.1 Feature Engineering-based Models

Given the availability of advanced NLP tools as well as large-scale semantic and
sentiment resources, a wide range of feature types were made available through
feature engineering to train machine learning models for opinion mining, achiev-
ing high accuracies. These features vary in the complexity of the information
they capture, ranging from shallow surface, to syntactic and deeper semantics.

Surface features (bag-of-words (BoW) or word n-grams) were the earliest fea-
tures to be explored for sentiment classification. Word n-grams were used to
train several classifiers such as Support Vector Machines (SVM), Näıve Bayes
(NB) and Expectation Maximization (EM) to perform opinion mining in movie
reviews [14]. They were also used to identify hidden sentiment factors that helped
improving product sales prediction [45]. Results in [15] showed that extracting
the word n-gram features from the subjective parts of the document only achieved
better performances. In general, surface features provide a shallow insufficient
representation of the text semantics.

Research in NLP has led to the development of tools that can accurately

6

apply tokenization, stemming, lemmatization, part-of-speech (POS) tagging, de-
pendency and constituency parsing, and many other NLP tasks. Examples of
such tools include the Stanford CoreNLP [46] and the Natural Language Toolkit
(NLTK) [47]. Such NLP advancements have made it possible to incorporate syn-
tactic information that reflect the principles by which language is constructed as
additional features to train the sentiment analysis models.

Predefined POS tag patterns were used to extract subjective phrases from
text. Then each phrase was assigned a sentiment score using its point-wise mu-
tual information (PMI) with highly-subjective keywords, and scores are used
to perform unsupervised sentiment classification in consumer reviews [16]. Stem-
ming was used to generalize and reduce sparsity of the Multi-Perspective Question
Answering (MPQA) and the appraisal lexicons [48, 49], which are then used to
perform unsupervised sentiment classification in different reviews datasets [50].
Modification relations extracted from dependency parse trees were used along
with POS tags for phrase-level sentiment classification [17]. A collection of syn-
tactic (word and POS n-grams) and stylistic features (letter frequencies, char-
acter and digits n-grams, function words, and word length) achieved high sen-
timent classification accuracies in web forum content, after being reduced by
the Entropy-weighted genetic algorithm (EWGA) [18]. Experiments showed that
syntactic features achieved better performance than stylistic features, and that
the union of both achieved the highest performance.

A deeper understanding of the text semantics was incorporated into the mod-
els through the development of several semantic and sentiment lexical resources.
Sentiment lexicons are dictionaries of words or phrases associated with sentiment
indicators (either scores or labels), and are developed through manually [48],
automatically [51] or semi-supervisedly [21] Examples of sentiment lexicons in-
clude the General Inquirer (GI) [52], MPQA [48], Bing Lu lexicon [7], Senti-
WordNet [21], NRC-hashtag [53] and Sentiment140 [54]. Other lexical resources
include databases of words and phrases with richer semantic information such as
synonyms, hypernyms, hyponyms, Is-A, assertions and affect. Examples of such
resources include WordNet [22], ConceptNet [55] and the Dictionary of Affect
in Language (DAL) [56]. As a result, the above-mentioned resources allowed to
extract a variety of semantic and sentiment features. Most of these features are
centered around the word-level sentiment, and are used either alone or with other
features to train sentiment analysis models.

Word-level sentiment polarities, extracted from the GI lexicon and extended
by the WordNet synonym relations, were used with dependency relations for sen-
timent classification at the phrase-level [19]. Word-level sentiment scores were
calculated from the dictionary of affect (DAL), along with BoW and syntactic
features, were also used for phrase-level sentiment classification [57]. Subjective
words from the MPQA lexicon were used to identify the subjective syntactic
sub-structures in parse trees, from which BoW features were extracted to per-
form sentiment classifiers in movie reviews [58]. The SentiWordNet lexicon has

7

a special structure, where each synset in WordNet is assigned three scores in-
dicating the positivity, negativity and neutrality of words in that synset [21].
SentiWordNet was used to extract sentiment sore n-grams [20], and also to ex-
tract sentence-level aggregate features such as the number, type and polarity
score of words and phrases [59]. WordNet was used to generalize the semantics of
word n-grams, by replacing each word with its synset label. These features were
extracted as part of a rich set of heterogeneous features including surface features
(character and word n-grams) and syntactic features (POS, word-POS n-grams
and subjective phrase patterns). Due to the huge size of the proposed feature set
is huge in size, with many redundant or irrelevant features, feature relation net-
works (FRN) was proposed to produce a smaller and more representative feature
set that was able to achieve high sentiment classification accuracies on product
and movie reviews [12]. Several sentiment lexicons were combined to increase the
coverage of extracting word-level sentiment scores, that were used along with a
set of hand-crafted stylistic features (count of all-caps words, emoticons and loca-
tion, frequency of elongated words, count of negations, punctuation, etc.) to train
the ‘NRC’ model that won the SemEval-2014 shared task on contextual polarity
classification [53]. Concatenating these features with sentiment-specific word vec-
tor representations (embeddings) achieved further performance improvement [60].
Finally, a preprocessing framework that includes normalization, spelling correc-
tion, POS tagging, word sense disambiguation and negation detection was used
to extract character and word n-grams, word-level scores from sentiment lexicons,
and the different senses for each word. The resulting model was the winner of
the SemEval-2014 shared task on message-level sentiment classification [61].

2.1.2 Deep Learning-based Models

Deep learning has recently emerged as a major advance in machine learning. It
aims to simulate the highly-complex neural structure of the human brain by using
several layers of neurons to model complex non-linearities that help accomplishing
complex tasks [23].

Although features extracted using feature engineering can be used as input
to deep learning models, this is not recommended due to their suffering from
high-dimensionality, high degree of sparsity, and assume independence among
features with lack of word order, which affect the model’s ability to infer useful
patterns from the input data. Alternatively, deep learning models are trained
using input word vectors (or word embeddings) that are derived using vector space
models (VSM). Common VSMs are based on matrix factorization techniques
such as Latent Semantic Analysis (LSA) [62] and Latent Dirichlet Allocation
(LDA) [63]. Currently, neural language models (NLM) are used to generate the
word embeddings using deep neural networks that take random word vectors as
input and fine-tunes them by back-propagating the error of predicting their local
context in a large unlabeled corpus. The resulting vectors capture distributional

8

semantic and syntactic aspects of each word, based on its co-occurrence statistics
information in a large corpus [31]. Currently-used NLMs include the validity-
based C&W model and the probabilistic Word2vec model [64] that utilizes the
skip-gram or the continuous bag-of-words (CBOW) architectures.

Following their success in NLP, several deep learning approaches were suc-
cessfully used to perform sentiment analysis, by learning embedded semantic
representations of the text that can be used to perform accurate sentiment clas-
sification. Stacked Denoising Auto Encoders were trained using word n-gram
features for sentiment prediction in a large corpus of Amazon reviews [65]. A
neural language model (NLM) was extended to derive embeddings of longer span
of text (up to paragraphs), such that the resulting vectors capture the semantics
distributed over all words in that text [66]. This approach achieved high results
when used to classify sentiment in movie reviews. Current state-of-the-art deep
learning models for sentiment are based on the concept of compositionality; the
meaning of a compound text can be described as a function of 1) the meanings of
its parts (constituents) and 2) the rules by which these parts are combined [30].
Compositionality was mainly used to derive the meaning of sentences, and there-
fore composition models can be seen as a function that transforms a sequence
of word embeddings into a sentence embedding that captures the semantic and
syntactic interactions among its words, and that is used to train the sentiment
classifier, which is usually a logistic regression “softmax” layer. Several composi-
tion models have been proposed, and these can be categorized into sequential and
recursive. Sequential models accumulate information over each sentence sequen-
tially. At each iteration of composition, the model derives an embedding that
captures interactions between the current word and all preceding words in the
sentence. This process continues until the model reaches the end of the sentence.
Examples of sequential models include Recurrent Neural Networks (RNN) [32]
and Convolutional Neural Networks (CNN) [67,68]. On the other hand, recursive
models propagate the information up a binary parse tree. At each iteration of
composition, the model derives an embedding that captures interactions between
two constituents (words or multi-word phrases) selected based on the structure
of a parse tree. This process continues until the model reaches the root node of
the tree. Examples of recursive models include Deep Recursive Neural Networks
(DRNN) [69], Recursive Auto Encoders (RAE) [33], Recursive Neural Tensor
Networks [34] and Tree-structured Long Short Term Memory (LSTM) [70]. Most
of the aforementioned deep models perform composition in a totally unsupervised
way, and sentiment classification that takes place on top of the composition is
the only supervised task in the model. Overall, recursive models proved more
effective than sequential models, mainly because the meaning in a language is
also constructed recursively [35]. Recursive models can also perform sentiment
classification at the word and the phrase-level. Results in [34] proved that using
fine-grained sentiment to model composition was able to improve the accuracy of
sentiment classification at the sentence-level. However, this requires a sentiment

9

treebank; a collection of parse trees annotated for sentiment at all levels of con-
stituency. The only such treebank that exists so far is the “Stanford Sentiment
Treebank” [34]. For document sentiment classification, a document composition
function was added on top of the existing sentence composition. This function
derives a document-level embedding that captures relations and interactions be-
tween its sentences. Gated Recurrent Neural Networks (GRNN) were proposed
for document composition due to their ability to model long-distance dependen-
cies between sentences [13].

2.2 Opinion Mining in Arabic

Methods for OMA are mostly based on feature engineering to train machine
learning models. The feature space that has been explored in Arabic is similar
to that in English, except for features proposed to address Arabic-specific issues,
such as the morphological complexity of the language.

Surface features, represented by word n-grams, were extensively evaluated
under different settings including different lengths of context n, different pre-
processing (raw words vs. stemming) and different feature representation scores
(presence, term frequency ‘TF’ and term frequency inverse document frequency
‘TFiDF’). Word bi-grams and tri-grams achieved best results when used to train
Support Vector Machines (SVM) [38, 71–73]. Näıve Bayes (NB), on the other
hand, achieved competitive performances [74,75], and ensemble classifiers achieved
further improvements [76]. Stylistic features (letter and digit n-grams, word
length, etc.) were proposed with surface features, and achieved high performances
after being reduced using the Entropy-Weighted Genetic Algorithm (EWGA) [18]

Arabic is well-known for its morphological richness and complexity. Hence,
it is of high importance to incorporate syntactic and morphological information
of the language into the sentiment models. One of the earliest grammatical
approaches proposed to generalize verbal and nominal phrases into one form based
on ‘actors’ and ‘actions’, and then to train SVM using the following features:
actors, actions, adjectives, nouns, syntactic type of sentence, conjunction with
previous sentence, and word sentiment polarity [77]. Most of this information
was manually labeled due to the lack of Arabic NLP tools at the time. Results
are considered as a “proof of concept” of the importance of incorporating syntactic
information into the model.

The recent establishment of advanced Arabic NLP tools and resources al-
lowed the automatic extraction of syntactic and morphological features that aim
to mitigate the impact of complex morphology on sentiment. Examples of such
resources include the Arabic Treebank (ATB) [78], SAMA for morphological anal-
ysis [79], MADAMIRA for morphological analysis and disambiguation [43]. For
instance, adding word-level inflectional morphology (gender, number, voice, ...)
to basic surface features improved the performance when applied to data written

10

in MSA [80]. However, these features caused performance degradation when ap-
plied to tweets [81]. The main reason for this observation is that most Arabic NLP
tools are trained on MSA data, whereas Twitter data contain significant amounts
of dialects and misspellings, causing the extraction of inaccurate features. Us-
ing stem and lemma n-grams achieved better results than using word n-grams,
reflecting their ability to generalize lexical variations of Arabic words [40, 80].
However, it is not clear, which feature is better to use. The impact of adding
part-of-speech (POS) tags to lemma n-grams was evaluated for both subjectivity
and sentiment analysis tasks, where subjectivity analysis determines whether a
text is subjective or objective [40]. Adding POS information did not improve
sentiment classification, while it slightly improved subjectivity classification.

In addition to syntax, it is crucial to equip sentiment models with deeper
insight into the text semantics. This kind of information was made possible af-
ter the development of several sentiment lexicons, that we briefly describe next.
ArabSenti contains 3,982 adjectives extracted from 400 documents belonging
to the ATB Part 1 V3.0 [78]. These adjectives were manually labeled as posi-
tive, negative or neutral [80]. ArSeLEX is an automatically-generated lexicon
that contains 5,244 adjectives that are expanded from a gold set of 400 adjec-
tives [82]. ArSenL is a large-scale sentiment lexicon that contains 28,760 en-
tries, represented by their lemmas, each associated with three scores indicating
the positivity, negativity and neutrality of the corresponding entry [42]. This
lexicon was created by linking between different lexical resources including the
English WordNet [22], the Arabic WordNet [83], SentiWordNet [21] and the Stan-
dard Arabic Morphological Analyzer (SAMA) [79]. Standard Arabic Sentiment
Lexicon (SLSA) contains 34,821 entries, and was created following the same ap-
proach used to create ArSenL, with additional heuristics and back-off strategies
to increase coverage [84]. Finally, SANA contains nearly 240K entries that cover
words in both standard and dialectal Arabic [41]. It is composed of different lexi-
cons, some were annotated manually, while others were automatically-translated
from English lexicons such as SentiWordNet [21], the General Inquirer [52], the
Affect Control Theory (ACT) lexicon [85], in addition to frequent terms in the
Youtube dataset [86].

These and many other sentiment lexicons were used to support unsupervised
sentiment analysis models that aggregate word-level sentiments to determine the
overall sentiment of a sentence [87,88]. They also helped training machine learn-
ing models with different types of semantic features. For instance, word-level
sentiment scores extracted from ArSenL were averaged across all words of a sen-
tence, and then used to train sentiment classification models [42, 89, 90]. Arab-
Senti and SANA were used to create binary features that indicate the pres-
ence of subjective, positive and negative adjectives in the text. These features
helped improving classification performance, even when added to complex fea-
ture sets [41,80–82]. Sentiment score uni-grams were used with word n-grams and
POS tags for sentence-level classification [91]. Experimental results indicate that

11

extracting the scores from ArabSenti, extended through graph reinforcement,
achieved similar performances to extracting scores from a translated version of
the English MPQA lexicon.

Given that extensive work have been already done for sentiment analysis
in English, and has achieved high levels of accuracy, machine translation (MT)
was explored to perform sentiment analysis in less-researched language, including
Arabic. In this framework, text from the original language is automatically trans-
lated to English, and then state-of-the-art English sentiment models are directly
applied to the translated text. Several efforts were spent to explore the impact
of translation on sentiment analysis in Arabic. Applying the ‘NRC’ model [54] to
English translation of Arabic text achieved less accuracies than applying its “ap-
proximate” Arabic implementation to the original Arabic text [92]. Furthermore,
applying the RNTN model [34] to English translation of Arabic text led to slight
accuracy degradation compared to several baseline classifiers applied directly to
Arabic text [93]. Despite the loss in accuracy due to inevitable translation errors,
MT-based approaches are considered efficient alternatives to building sentiment
models and resources in complex low-resource languages.

In summary, we can observe that most Arabic sentiment models depend on
atomic and sparse bag-of-features, that result in fragile and non-robust systems.
Also, previous efforts did not fully tackle the morphological complexity of the lan-
guage, with one effort coming close to this scope by evaluating stem and lemma
features, but without covering the full space of Arabic morphology [40]. We can
also observe that most Arabic sentiment models were evaluated at the sentence
and the document levels, despite the fact that sentiment is usually expressed
in subtle manners and should be modeled at lower levels including words and
phrases. Research on this direction is held back by the lack of lexical resources
with fine-grained sentiment annotations that are required to train sentiment mod-
els at finer levels of granularity. At last, and to the best of our knowledge, state-
of-the-art deep sentiment models were not explored for Arabic sentiment analysis.
Therefore, an interesting task is to explore how they would perform if applied to
Arabic text.

12

Chapter 3

Challenges and Objectives

In this chapter, we describe the challenges related to developing a meta-framework
for opinion mining. We also describe the challenges associated with OMA, with
a focus on relevance to recursive deep models. Finally, we conclude with the list
of objectives that are accomplished in this dissertation.

3.1 Challenges Related to Opinion Mining Meta-

Framework

Research in opinion mining has been driven by the need to improve the accuracy
performance of existing models. In this dissertation, we conjecture that best ac-
curacies can be achieved by models that come closest to the human reading. To
the best of our knowledge, there have not been attempts to take a fundamental
approach in matching the human process of extracting opinion from text. There-
fore, a framework that builds its foundations from the field of psychology must
be developed to determine aspects of the human reading process that need to be
automated for opinion mining.

We expect that existing opinion models would exhibit one or more gaps with
respect to the identified aspects of human reading. Therefore, approaches to
automate the missing aspects and fuse them with the opinion model need to be
designed carefully, taking into consideration the underlying learning structure
of the model in hand. As a result, it is important to introduce an approach
that qualitatively evaluates opinion models with respect to aspects of the human
reading process, and that automates missing aspects and integrates them into
these models to boost their performance

13

3.2 Challenges in OMA

3.2.1 Overview of Arabic Morphology

We start with a brief review of Arabic morphology, based on [94], to motivate the
discussion to follow. Morphology, in any language, is concerned with the internal
structure of the word. Arabic language is known for its rich morphology that
interacts with both the orthography and the syntax of the language. Furthermore,
Arabic morphology can be divided into two types: form-based and functional
morphology [95].

1 Form-based morphology: Describes the form of the units that make
up a word [94]. The central unit is the morpheme, which is the small-
est meaningful unit in a language. Arabic language has different types of
morphemes: concatenative and templatic morphemes.

– Concatenative morphology: Words are formed by sequentially concate-
nating three types of morphemes: 1) stems that are necessary for
each word, 2) affixes that are directly-attached to stems, and 3) clitics
that attach to stems after affixes. For example, the word 	

àðQå�
�
J
	
J�
�ð

w+s+y-ntSr-wn ‘and they will win’ is formed by attaching the clitics
+ð w+ and +� s+, and the affixes +ø

y+ and 	

àð+ +wn to the stem

Qå�
�
J
	
K @ AntSr.

– Templatic morphology: Stems are formed using three types of tem-
platic morphemes. 1) the root: a sequence of three, (sometimes four
or five) consonants that describes an abstract meaning such as P-�-
	
à n-S-r ‘winning-related’, that is shared by all its derivations such

as Qå�
�
J
	
K @ AntSr ‘he won’, Qå�

�
J
	
JÓ mntSr ‘winner’, etc. 2) the pattern:

an abstract template that is applied to roots and vocalisms, and is
commonly represented by a string of numbers indicating the radicals’
positions and special symbols indicating the vocalisms’ positions (e.g.,

V). For example, the pattern ‘tV1V22VlV’ corresponds to
�

É
��
ª

�	
®

��
K, where

the second radical is doubled. 3) the vocalism: specifies the short vow-
els (ÉJ
º

�
�

�
�, diacritics) in the pattern. For example, the stem Qå��

��
J
	
J
�
Ó

muntaSir ‘winner’ is composed of the pattern ‘mV1tV2V3’ that is ap-
plied to the root P-�- 	

à and the vocalism uai

2 Functional morphology: Describes the function of the units that make
up a word, and how these units affect the word’s syntactic and semantic
behaviour [94]. Arabic morphology has three types of functional operations:

14

– Derivational: Applied to create new words from other words, such
that the core meaning of the original words is modified according to

well-defined relations such as actor (É«A
�	
¯ Õæ� @) and actee (Èñª

	
®Ó Õæ�@).

Derivation typically involves a change in both pattern and part-of-
speech. For example, the adjective lk

.�
A
�	
K naAjiH ‘successful’ with pat-

tern ‘1A2i3’ derives from the verb
�

i
�
m.
�

�	
' najaHa ‘he passed’ with pattern

‘1a2a3a’.

– Inflectional: Applied to create new words from other words by mod-
ifying the values of a set of inflectional features. The core meaning
and the part-of-speech are not altered. Inflectional features include
(person, gender, number, voice, mood, aspect, case and state). For
example, the verb �

H�Qå
�
�

��
J
	
K @ AntaSarat ‘she won’, is an inflected form of

verb �Qå
�
�

��
J
	
K @ AntaSara ‘he won’, with the “gender” feature being modi-

fied.

– Cliticization: Closely-related to inflectional morphology, but is op-
tional and is only expressed using concatenative morphology. Clitics
can come before the word (proclitics) such as the conjunction +ð w+

‘and’, and can also come after the word (enclitics) such as the object
pronoun Ñë+ +hm ‘them’.

3.2.2 Arabic-specific Challenges

In this section, we describe the different challenges associated with sentiment
analysis in Arabic. These challenges can be Arabic-specific, originating from the
complexity of Arabic language. They can also be language-independent, relating
to the structure of the recursive deep models.

Lexical Sparsity

As described in subsection 3.2.1, Arabic is a morphologically-rich language (MRL),
in which multiple affixes and clitics can be attached in different ways to the
words they modify. This leads to a higher degree of lexical sparsity than other
non-MRLs such as English.

Using a large Arabic-English parallel corpus, it was observed that 1) the num-
ber of unique Arabic word forms is two times greater than that in English, and
that 2) the number ‘whitespace-separated’ tokens in Arabic is 20% less than
that in English [96]. The first observation is an implication of the complex mor-
phological operations in Arabic, as modifying one or more inflectional/clitic fea-
tures in a word produces a totally-new words. The second observation relates to
the rich concatenative morphology in Arabic, where words usually contain many

15

morphemes, and hence are packed with significant amount of information. An
example of this case is the word A

�
î
�	
Eð �Qå�� A

�	
J
�
�

�
�

�
ð wa+sa+yu-nASir-uwna+hA, which

corresponds to the multi-word phrase: ‘and they will support her’, and includes
two proclitics, one enclitic, a prefix and a suffix, and the stem nASir. Moreover,
the word-to-morpheme ratio in Arabic is two times greater than that in English,
as observed in large corpora [97].

Arabic words are said to be an inflected form of the lemmas, which themselves
are derived from the roots. Arabic has a relatively-small number of roots that
derive a large number of lemmas, which inflect into a larger number of words.
We combine in the sense of word inflection, both orthographic cliticization and
inflectional morphology. In the context of sentiment analysis, we expect that
inflectional variants sharing the same lemma or stem will maintain the same core
meaning and sentiment, such as �Qå

�
�A

�	
K naASara ‘he supported’, Qå�� A

�	
JK
 yunaASir

‘he supports’, Qå�� A
�	
J
�
�

�
� sayunaASir ‘he will support’, and so on. It is not necessary

apparent that derivational variants sharing the same root will carry the same
sentiment, however. Regardless, machine learning models that are trained using
raw words will suffer from the high sparsity of the language, leading to poor
generalization capabilities. For instance, a model that has learned the semantics
of the word Qå��

��
J
	
�
�
K
 yantaSir ‘he wins’ cannot re-use this knowledge to understand

new unseen words such as 	
à@ �Qå��

��
J
	
�
�
K
 yantaSiraAn ‘they [dual] win’, although they

share the same core sentiment.

Lexical Ambiguity

In Arabic orthography, diacritics (ÉJ
º
�

�
�
�Ë @

�
HA

�
ÓC

�
«) are optional despite their key

role at disambiguation by marking short vowels, nunation and gemination. This
is the primary cause of Arabic’s notoriously high ambiguity rate, where SAMA
morphological analyzer produces an average of 12.8 analyzes and 2.7 lemmas per
word, out-of-context [98].

In many cases, words with identical forms can express different meanings and
even different sentiments. For example, the undiacritized word H.

	
Y« E∗b can

be interpreted as �
H.

��	
Y

�
« Ea∗ ∼aba ‘he tortured’, and also as H.

	
Y

�
« Ea∗obo ‘sweet’.

Another example that involves different interpretations of word tokenization com-
plicated by dropped diacritics is the word Qå

�
��. b$r, which can be interpreted as

Qå
�
�
�
�
�. ba$ar ‘human’ (neutral), �Qå

��
�
�
�
�. ba$∼ara ‘he delivered good news’ (positive),

and
��Qå

�
�
��.�

bi+$ar∼K ‘with evil’ (negative).

Lexical ambiguity can also be a consequence of the idiosyncratic semantics of
Arabic roots, whose meanings depend on the context in which they are used [94].
Therefore, words that are derived from the same roots can express different mean-

16

ings. For example,
�
é
�
J. �
��

�
Ó muSiybap is derived from H. -ø

-� S-y-b ‘target-related’

can have a positive meaning as in ‘she is right’ or a negative meaning as in ‘a
disaster’.

Based on this discussion, machine learning models trained using raw Ara-
bic words will not be able to distinguish the different meanings the words may
express. Although deep learning relies on word embedding to capture the distri-
butional semantics of each word, these embeddings may have limited capabilities
in face of extreme semantic variations of Arabic words that involve a change in
sentiment polarity.

Inaccurate Word Embeddings

NLP deep learning models use shared-task learning, where word embeddings are
derived using a neural language model (NLM) and are then shared to perform
different NLP tasks [99]. These embeddings are fine-tuned to the task in hand;
sentiment classification in our case. According to [33], using pre-trained word
embeddings achieved only marginal improvements compared to the case of using
randomly-initialized vectors. This means that the fine-tuning process was able
to produce representative word embeddings for the task in hand.

Although shared-task learning has proven successful in many NLP tasks such
as POS tagging, Named Entity Recognition (NER) and Chunking [99], we sus-
pect that these embeddings are not a good fit for sentiment analysis, and that
better embeddings should be generated and used instead. This is mainly because
NLMs use co-occurrence statistics in large corpora to derive the word embeddings
that will consequently reflect latent aspects of the words, mostly related to their
syntactics and semantics, but not their sentiment. Furthermore, NLMs are likely
to derive similar embeddings to words with opposite sentiments, as long these
words have similar usage in text. Examples include the pair of words ‘good/bad’,
which usually appear in similar contexts; ‘the movie was good/bad’, ‘a good/bad
weather’, etc.

Using word embeddings that are inaccurate in the sense of capturing the
words’ sentiments will affect the outcome of compositionality, leading to sentence
or document embeddings that are unable to capture the correct sentiment content
of the text.

Sub-optimal Path of Composition

Recursive deep models propagate the information up a binary parse tree in order
to derive an overall embedding that captures the overall semantics and sentiment
of the text. At each level of composition, the model combines two constituents
that are selected based on the structure of a parse tree.

Several approaches exist to generate parse trees, among which stands the
unsupervised “greedy” algorithm proposed by [33]. This algorithm discovers the

17

tree structure jointly while training the Recursive Auto Encoder (RAE) composi-
tion model. Although the resulting trees do not necessarily abide by the syntactic
constraints of the language, this algorithm outperformed CKY-like beam search
algorithms [100,101] in both accuracy and speed.

Given the rich concatenative morphology of Arabic, several levels of mor-
phological tokenization exist, starting from raw words (no tokenization) to full
tokenization where words are split into their basic morphemes (stems, affixes and
clitics). Therefore, it is important to understand which tokenization level is better
for composition. In other words, we need to determine whether morpheme-level
interactions improve semantic composition, as opposed to raw word-level inter-
actions.

On the other hand, given morphologically-tokenized text, the parse trees that
are used to guide the composition should correctly link clitics and affixes to the
stems they are attached to, which is not guaranteed by the greedy algorithm.
As a result, it is important to use parse trees that combine, at each step, the
constituents that are semantically and syntactically-related, to reflect the natural
order in which words combine to express meaning in text.

Lack of Fine-grained Sentiment Resources

Despite the fact that several corpora have been released with sentiment annota-
tions in Arabic, there is still no corpus with fine-grained annotations at all levels
of constituency. This is mainly due to the time, cost, and complex processing
that are required. However, the availability of such resources will allow recursive
deep models to incorporate sentiment information into the composition model,
which has proved to yield significant improvements [34]. They will also open the
way for more research on sentiment analysis in Arabic at different levels of text
granularity (words, phrases, etc.).

3.3 Objectives

Based on the previous discussion, we define the objectives that are accomplished
in this dissertation. At the high-level, we aim to:

1 Develop a meta-framework that helps designing and/or extending sentiment
models by matching the human reading process

2 Improve Opinion Inference models with focus on Arabic. This objectives
encompasses the following sub-objectives:

– Provide input features with accurate capture of sentiment

– Improve the order of composition for sentiment analysis

18

– Overcome morphological complexity of Arabic and reduce their impact
on sentiment analysis

– Mitigate the impact of lexical ambiguity on sentiment analysis

– Develop sentiment lexical resources to support recursive deep models
at granular levels of text

Towards this objective, we intend to use recursive deep models as the learn-
ing algorithm. This will become the first deep learning-based solution for
OMA.

19

Chapter 4

Human Reading for Opinion
Mining

In this chapter, we take a fundamental approach in attempt to match the human
reading process for opinion mining. We formulate opinion mining in a meta-
framework that mimics the human reading process, and that can be used to
either extend existing opinion mining models, or as a reference to develop new
ones from scratch. This meta-framework is referred to as the Human Reading for
Sentiment (HRS), and is considered one minute step towards bringing machines
closer to the human-level performance. To the best of our knowledge, this is
the first attempt to combine research from both opinion mining and cognitive
psychology.

This chapter is organized as follows. In section 4.1, we provide a background
on modeling the human reading in the field of cognitive psychology. In section 4.2,
we motivate the need for HRS by identifying existing gaps in state-of-the-art opin-
ion models with respect to human reading. Section 4.3 describes the application
of HRS to extend existing state-of-the-art opinion models. Finally, experiments
and results are presented in section 4.4.

4.1 Models of Human Reading

Despite significant advances in artificial intelligence (AI), humans are still better
than machines at performing subjective tasks such as reading comprehension
and information retrieval. Extensive studies in cognitive psychology have been
carried out to model human reading comprehension. Some of these models try to
describe the cognitive processes underlying the human reading process and how
humans infer semantics. We are interested to use such models as a foundation
for automatic interpretation of sentiment content in text.

Connectionist models represent a category of approaches that describe the
cognitive processes behind mental phenomena in the form of cooperative and

20

competitive interactions among a larger number of simpler units. An example of
such approaches is the Incremental Construction of Associative Network (ICAN)
model [102], which regards reading as a process of sequential perceptions over
time. Within this process, the human mind builds mental images and inferences
that keep reinforced, updated or discarded, and when readers reaches the end of
text, they use the resulting image to summarize, classify or infer meaning. In
another connectionist model, human readers comprehend a text and access its
semantics, through a direct mapping from orthography to semantics by way of
visual access, or through a mediated mapping through phonology. Based on the
“triangle framework” [103], reading comprehension was regarded as a joint coop-
erative division of labor that depends on factors such as homophony and visual
similarity [104]. Connectionist models have also been used to model different
reading-related tasks including reading aloud and word recognition [105–107].

The Direct and Inferential Mediation (DIME) model of reading comprehen-
sion is another model that attempted to study the human reading process. DIME
hypothesizes relations among five predictors of comprehension: word visual read-
ing, vocabulary, background knowledge, inference and comprehension strategy,
and describes the direct and indirect effects of these components on comprehen-
sion [108]. The landscape model (LM) [109] considers reading a balancing act
between the readers limited working memory (WM) and the need for coherence.
Attention is influenced by the availability of WM and relevant background knowl-
edge. Limitations in WM capacity, and the necessity of simultaneous activation
to infer relations, make the readers attention allocation of great importance for
reading comprehension. Finally, the model proposed by [10] assumes that humans
perform two types of cognitive processes during reading. At the lower-level, they
use their syntactic knowledge to come up with textual representations of con-
cepts or ideas, and at the higher-level they use their background knowledge and
working memory to infer the overall meaning of the text.

Automating the human reading process is equivalent to machine reading
(MR), which refers to the task of “understanding text” by automatically forming a
coherent set of beliefs based on a textual corpus and a background theory [110].
Although the humans’ ability to grasp complicated nuances from text greatly
surpasses that of a machine, MR still has several strengths; it is fast and can
leverage statistics from large-scale corpora [110]. MR includes sub-problems such
as information extraction, question-answering, text summarization and sentiment
analysis. Different tools have been developed for MR such as KnowItAll [111],
TextRunner [112] and Kylin [113] for open-domain information extraction, Mul-
der [114] for web-scale question answering and HOLMES [115] for inference.

It can be observed that most of the described reading models share similar
concepts, mainly the importance of background information, working memory,
and the retaining of relevant notions. Our interest was to use such models as a
foundation for automatic interpretation of sentiment content in text. We chose to
automate the reading model proposed by [10] because it also regards the reading

21

process from a linguistic point-of-view, and describes how humans use their gram-
matical and syntactic knowledge towards inference, which is often downplayed by
other models. Furthermore, this model provides a clear description of the human
reading using a sequence of steps (processes), as illustrated in Figure 4.1, which
makes it more straightforward to automate.

Figure 4.1: The human reading process.

At the low-level processes, readers process the document at granular levels.
They first perform lexical parsing, which is the process of converting a sequence
of characters into a sequence of tokens. The next step involves syntactic parsing
based on the grammatical rules by which sentences are constructed. Finally,
readers develop a semantic proposition which bases itself on lexical and syntactic
parsing to form sub-sentence structures called clauses, each representing a certain
idea or concept.

At the high-level processes, readers build an understanding of the individual
clauses and the document as a whole. First, readers use the purpose of read-
ing with their background knowledge to decide which clauses can represent the
document. Clauses that do not fit the purpose of reading are discarded, and the
remaining clauses form the “text model of comprehension” which is the parts of
the text that are of interest to the readers. Based on the readers’ background
knowledge and preconceived notions on the topic, the “text model of compre-
hension” is transformed to the “situation model of reader interpretation”. This
is equivalent to assigning a sentiment label to each clause in the “text model of
comprehension”. As a result, notions correspond to ideas represented by the com-
bination of textual clause representation and their equivalent sentiment. Once

22

readers have inferred notions from tassigned sentiment labels to each clause, they
can consequently infer the sentiment orientation of the document as a whole.
Inference takes several steps in the human cognition, and is an important factor
that reflects how humans reach to conclusions through reading [116]. To infer the
overall meaning of a document, readers must have certain facts or evidence in
their memory when reaching the end of the text. Several models were proposed
to describe the impact of the working memory on inference. According to [117],
the reading task requires maintaining significant amount of memory much more
than the capacity of the working memory. Once the working memory is full, it
becomes difficult to understand the complex relations between notions. There-
fore, humans store most of what they read in their long-term memory and link
them together through retrieval structures. Consequently, the working memory
holds only a few concepts that serve as cues to retrieve related information via
retrieval structures. As a result, the retaining of facts is part of the working
memory (WM) that combines the most recent information stored in the short-
term memory (temporary storage) with information manipulation during reading
comprehension to make sense out of the text [118]. The working memory directly
affects reading comprehension, where humans with low working memory capacity
face difficulties in comprehension [119]. For instance, while a child with low WM
is working hard to decode written words, he may lose track of the overall purpose
of the text.

We use the above-mentioned model as the foundation to develop the HRS
meta-framework for automating the human reading process for sentiment in-
ference. The conforming framework must accurately capture the low-level and
high-level cognitive processes illustrated in Figure 4.1. In this dissertation, we
use the HRS to extend and improve existing sentiment analysis models following
a two-step approach. We focus on document-level senitment analysis in order to
highlight the impact of working memory on inference. First, a qualitative analysis
of the model under consideration is performed against the human reading steps
to identify potential gaps (discussed later subsection 4.2). Then, approaches to
address the identified gaps are developed and integrated into the model. These
approaches vary depending on the underlying learning scheme. For instance,
and at the high-level, addressing gaps in feature engineering-based models can
be done by proposing new features or by modifying the classifier, whereas ad-
dressing these gaps in deep learning-based models can be done by modifying the
network’s architecture or its raw input data.

4.2 Research gaps with respect to HRS

In this section, we go deeper into the state-of-the-art models on document-level
sentiment analysis, and provide a qualitative analysis to highlight the human
reading-specific gaps, with the aim of highlighting gaps that need to be addressed

23

by HRS. The objective is to evaluate how well each method captures each of the
different human reading steps mentioned in section 4.1, namely (1) syntactic
parsing (the use of the language grammar), (2) semantic proposition (the use
of constructs that match concepts or ideas), (3) text model of comprehension
(the retaining of relevant ideas), (4) situation model of interpretation (the use of
sentiment to label ideas) and (5) inference and proper modeling of memory.

Results of the qualitative analysis are summarized in Table 4.1, where columns
of the table reflect the different aspects of the human reading process, and rows list
the most relevant models proposed for doument-level sentiment analysis. For ex-
ample, [120] proposed to predict document-level sentiment while jointly selecting
the key sentences in every document. This method clearly captures and optimizes
the “text model of comprehension”, but misses to model the remaining aspects.
The method proposed by [58] assumes that documents must be represented by
selected subjective clauses, which is consistent with the “semantic proposition
formation” and the “text model of comprehension”. However, the model does
not incorporate sentiment in these clauses, hence fails to capture the “situation
model of interpretation”. Another example is the method proposed by [66], which
is based on deep learning. This model proposes a document embedding that is
inspired by word embedding techniques, with the purpose of creating a document
vector representation that captures the semantics and context of all words in that
document. This model incorporates information from all words and sentences,
with equal considerations, into the document vector, hence the method does not
meet the “text model of comprehension” aspect, which assumes that some parts of
the document are more important than others. Additionally, the resulting docu-
ment representation reflects the syntactics and semantics of its composite words,
not their sentiments, hence it does not capture the “situation model of interpre-
tation” aspect. Other methods in Table 4.1 exhibit different gaps in comparison
with the targeted HRS. These results indeed confirm that previous methods that
were developed to improve document-level sentiment analysis handle some as-
pects of the human reading process, but not all. The proposed HRS provides a
unifying meta-framework to address the human-reading gaps with any existing
method.

The design and structure of HRS depend on the underlying learning scheme.
The details of adjusting different sentiment analysis methods to HRS are pre-
sented in the next section. Furthermore, the effectiveness of HRS is quantita-
tively evaluated in Section 4.4 on two selected state-of-the-art methods, namely
FRN [12] and GRNN [13]. FRN was selected as a representative of machine
learning models that are based on feature engineering, and GRNN [13] was se-
lected as a recent state-of-the-art technique that represents the latest advances
in deep learning, and that achieved highest performances on different benchmark
datasets.

24

Syntactic
Parsing

Semantic
proposition
formation

Text model of
comprehen-
sion

Situation
model of
interpreta-
tion

Inference and
Memory

[120]
N/A N/A (classify

based on uni-
grams)

Optimized solu-
tion to deter-
mine important
sentences in a
review

N/A Classify reviews
using uni-grams
in identified im-
portant sentences

[12]
Use POS tag
n-grams and
word-POS tag
n-grams

Represented
by n-grams

FRN keeps
only relevant
features after
reduction

N/A (cap-
ture seman-
tics, not
sentiment)

SVM trained
with relevant
n-grams (equally-
important)

[58]
Perform syn-
tactic parsing
to repre-
sent reviews’
sentences

Identify sub-
structures
(clauses) from
parse trees

Assume re-
views must be
represented
by selected
subjective
clauses

N/A SVM trained
with subjective
clauses repre-
sented by trees
kernels (equally-
weighted)

[66]
Word-level
syntactic prop-
erties captured
via embedding

N/A (derive
document
vector using
word vectors)

N/A (used all
words to derive
the document
vector)

N/A (word
embedding
captures se-
mantics, not
sentiment)

Softmax trained
with derived
document vectors

[65]
Word-level
syntactic prop-
erties captured
via embedding

Derive docu-
ment vector
using 1- and
2-grams

N/A (used all
words to derive
document vec-
tor with stacked
denoising AE)

N/A SVM trained
with document
vectors derived
using SDA

[121]
Word-level
syntactic prop-
erties captured
via embedding

Use CNN
with multiple
filters to cap-
ture n-grams
semantic

N/A N/A Softmax trained
with document
vectors (avg. sen-
tence vectors) and
author/product
features

[13]
Word-level
syntactic prop-
erties captured
via embedding

Use CNN
with multiple
filters to cap-
ture n-grams
semantic

Weights opti-
mized in CNN
to select which
n-grams to use
for modeling

N/A GRNN derives
document embed-
dings and models
the impact of
each sentence

Table 4.1: Qualitative analysis of document-level sentiment analysis models
against aspects of human reading.

25

4.3 Applications of the HRS Meta-Framework

In this section, we describe the proposed HRS meta-framework to automate hu-
man reading with primary focus on understanding sentiment instead of the full
semantics of the text. To demonstrate the effectiveness of HRS, we apply it to
two state-of-the-art methods. The first method, FRN [12], is chosen to represent
methods that take a two-step approach, the first step being feature engineer-
ing and the second step being classification or inference. On the other hand,
GRNN [13] is chosen to represent deep learning approaches that derive semantic
features from raw data without going through feature engineering. It is worth
mentioning that frameworks resulting from the HRS meta-framework must be
consistent with the learning method being used. Consequently, HRS steps for
feature engineering-based methods would be different than HRS steps for deep
learning-based methods. Next, we describe the proposed application of HRS to
FRN and GRNN sentiment analysis methods.

4.3.1 HRS with Feature Engineering: FRN as Case Study

[12] explored a wide range of surface, stylistic syntactic and semantic features,
and proposed the Feature Relation Network (FRN) algorithm to retain only the
relevant and non-redundant ones. FRN ranks the features using semantic in-
formation about the subjectivity of each feature. It also derives a score that
represents the discriminating power with respect to the different classes. Then,
every feature is assigned a weight that is equal to the sum of both semantic and
discriminating scores. These weights are then used by the subsumption and par-
allel relations to remove redundant or irrelevant features that do not convey any
extra information to the classification process. The resulting feature subset is
then used to train an SVM classification model. Further details of the approach
are available in [12]

First, we perform a macro-level analysis to identify gaps in FRN with respect
to the human reading process. FRN uses a wide range of features and captures
well low-level processes through the NLP task of extracting shallow text fea-
tures. To automate “lexical and syntactic parsing”, FRN uses a syntactic base
created through tokenization and POS tagging. However, it partially captures
the “semantic proposition formation” by extracting n-grams instead of phrases.
It also fails at modeling the high-level processes of “semantic proposition for-
mation”, “situation model of interpretation” and “working memory”. In other
words, FRN captures most of the low-level processes, but misses the high-level
processes.

The second step in the method is to address the identified HRS-related gaps
in FRN. Figure 4.2 illustrates the framework that is proposed to incorporate the
missing HRS aspects, highlighted in gray. Instead of using n-grams to model
the “semantic proposition formation”, we perform phrase extraction by splitting

26

sentences according to the presence of coordinate and subordinate conjunctions
(but, for, etc.) and punctuation [122]. To address gaps in the high-level pro-
cesses, we propose to extract the “notions” features. This stage of semantic
analysis requires the development of: (1) a domain lexicon that contains frequent
keywords relevant to the domain, to model the “text model of comprehension”, (2)
a background knowledge database of notions; assigns sentiment scores to selected
phrases, to model the “situation model of interpretation”, and (3) a weighting
scheme that assigns a memory score to each notion based on its location in the
document, to emulate the impact of the “working memory”. At last, inference is
achieved through a classification model that determines the sentiment polarity of
the document. This classifier is trained using the proposed notions features, in
addition to the syntactic and semantic features obtained from FRN.

Figure 4.2: Application of the HRS meta-framework to the FRN method.

Below, we describe the details of the resulting HRS framework that is proposed
to address the human reading gaps in FRN. In particular, we describe the feature
set that is reduced by FRN [12] to model the low-level processes in the human
reading. We also describe the proposed approach to extract the notions features
to model the high-level aspects of the human reading process.

27

Syntactic and Semantic Features (for low-level processing)

The FRN method [12] uses a rich set of syntactic and semantic n-gram features.
We will refer to these features as the ‘FRN’ features. The following is a brief
description of the different features.

• n-words and n-characters: Sequences of characters and words of different
lengths n ranging from 1 to 3.

• n-POS tags: Sequences of POS tags of different lengths n from 1 to 3.

• n-POSwords: Sequences of words and POS tags of different lengths n from
1 to 3.

• n-legomena: Consist of normal n-word features, with the difference that
words occurring only once are replaced with the word “HAPAX”, and words
occurring only twice in the corpus are replaced with the word “DIS”.

• n-semantic: These are n-words where words that belong to some synonym
group in WordNet are replaced by their group label. The label becomes a
unique ID identifying the specific synonym group.

• Information Extraction Patterns: A set of syntactic templates that indicate
subjective content (e.g., passive-verb: “was destroyed”) [123].

This feature set is huge, reaching millions of features for moderate-size cor-
pora. Hence, it is necessary to perform feature reduction in order to keep the rele-
vant ones for later use in the HRS model. Many feature selection algorithms have
been proposed for sentiment analysis and text categorization including Entropy-
weighted genetic algorithm (EWGA) [18], feature relation networks (FRN) [12],
and feature ranking using different measures such as proportional difference of
SentiWordNet scores [124], information gain, χ2, document frequency [125], and
standard deviation [126]. We decided to use the FRN reduction approach, which
already achieved high performance when used to reduce the FRN features set.

Notion Features and Background Knowledge

These features are proposed to capture the following human reading aspects: the
“semantic proposition formation”, the “text model of comprehension” and the
“situation model of interpretation”. In general, the human’s preconceived no-
tions enable a person to decide whether a text has positive, negative or neutral
sentiment. We define the equivalent of a human’s preconceived notions on a topic
as the combination of the pairs of: {topic textual characteristic, sentiment score
according to the human subject}. For example, {low battery consumption, (+)
score} and {low resolution, (-) score} represent positive and negative notions in

28

someone’s mind, respectively. To define the notions’ textual characteristics, we
assume that the smallest text unit that contains a notion is a phrase that is com-
posed of adjectives, adverbs, nouns and verbs. Phrases are identified in sentences
based on the presence of known coordinate and subordinate conjunctions (and,
but, for, etc.) as well as punctuation including commas and periods.

However, not all phrases can be considered as notions in a particular domain,
as some could present ideas that are general or irrelevant in building the set of
domain-specific notions. A domain lexicon is developed to evaluate the relevance
of a phrase to become a notion. The domain lexicon contains common nouns
and verbs that appear frequently in a particular domain. It is used to check
whether each phrase contains any domain-related nouns or verbs, which would
have an impact on the overall sentiment of the document. Consequently, the
notions database is formed by going through the documents and storing phrases
that contain at least one domain word, be it noun or verb.

Each phrase (the notion’s textual representation) needs to be associated with
a sentiment score that indicates the degree of negativity to positivity expressed by
the phrase. This score is automatically obtained for each phrase by calculating
the difference in point-wise mutual information between that phrase and the
sentiment classes [54], as illustrated in Equation (4.1).

Sentiment score of phrase p = PMIp,pos − PMIp,neg

= log2

(
freq(p, pos)× freq(neg)

freq(p, neg)× freq(pos)

)
(4.1)

where freq(p, pos) is the number of times phrase p occurs in positive doc-
uments, freq(p, neg) is the number of times it occurs in negative documents,
freq(pos) and freq(neg) are the count of positive and negative documents in
the corpus, respectively. The sentiment scores are then normalized to fall in the
range between [+1,−1]. The resulting background knowledge database consists
of phrase notions related to a particular domain. When a new phrase is encoun-
tered, it is compared against the background knowledge database to match with
the textual characteristics of the notions it contains. The matched notions then
make up the document’s notion features which are used to infer the document-
level sentiment.

It is worth mentioning that the background knowledge database is in a way
similar to sentiment lexicons with the following distinctions. (1) It consists of
phrases while most current sentiment lexicons consist of words or word n-grams.
(2) Its entries pertain to a particular domain rather than being generic, which al-
lows it to model the humans’ notions on a particular topic. (3) It is automatically
generated and does not involve manual annotation.

29

Notions Synonyms (for improved generalization)

When classifying new text, the proposed algorithm tries to recognize notions
that are previously stored in the background knowledge database. For training,
the matches help in grouping similar notions together in the notions database.
For classification, the matches help assess the sentiment polarity by measuring
similarity to a previously stored notion. However, the algorithm would not detect
matches between variations of the same notion carrying the same meaning. In
language arts, different people may express the same idea through different words,
hence a limited set of notions expressions without synonymous notions would limit
the matching process. For this reason, it is important to store the notions in a
way that allows generalization of notions, supporting proper semantic matching
of notions with either exact word matches or synonymous semantically-related
words.

WordNet [22] has been widely used in sentiment analysis systems as a rich
source of semantic relations between words, providing generalization capabilities.
For instance, words were replaced by the set of their hypernyms in WordNet in
the task of subjective expression identification [127]. Uni-grams were replaced by
their equivalent synonym sets (synset) labels to create a set of semantic features
[128]. Synsets were also used to create semantic categories by clustering words
based on the number of common items in their synsets [129]. Every new word is
added to the cluster with the highest percentage of common synonyms.

We propose to use WordNet synsets to create a database of notions’ synonyms.
The textual characteristics of existing notions are replaced by synonymous gen-
eralized text, which are combined with the sentiment scores from the original
notions to create the notions’ synonyms (SYN notions). For instance, notions
with the following textual characteristics: “passion movie” and “love movie” are
synonymous since they convey the same meaning. According to WordNet, the
words passion and love belong to the same synset whose label is 40. Therefore,
when creating the SYN notions, each of these words is replaced by their synset
label in WordNet, i.e., 40. As a result, the textual characteristics of both notions
are now represented by “SYN40 movie”.

Human Working Memory (for improved inference)

The goal of modeling the working memory is to bring the automation process
closer to the way a human reader processes, analyzes and draws conclusions from
a document. As readers progress through text, they are more likely to remember
later sentences which are stored in short-term memory [118]. Consequently, we
propose to assign each notion in a document a weight that models the impact of
the human working memory. The weighting scheme assigns weights depending
on the notion’s position within the document; weights are low for notions that
appear at the beginning, and become higher for notions that appear at later

30

parts. This weighting scheme is illustrated in Equation (4.2).

working memory weight of notion p =

np∑
i=1

loci

n∑
i=1

loci

 (4.2)

where np is the frequency of notion p in the document, loci is location of the ith

occurrence of notion p in the document, and n is the count of all notions in the
document. Then, each notion is represented by the product of its sentiment score
and its memory weight to reflect the fact that a reader’s sentiment interpretation
would be affected by what they read at the end more than what they read at the
beginning.

Several previous works evaluated the importance of later sentences based on
the hypothesis that authors tend to summarize their ideas and opinions at the
end of the text [15,130]. It also confirms the necessity of the working memory for
sentiment comprehension. According to [130], by reading only the last sentence
of a review, human readers were able to predict the reviews’ sentiment polar-
ity with performance that is comparable to the case when they read the whole
review. Excluding objective sentences prior to sentiment analysis was proposed
by [15]. Among the top-ranked objectivity filters was the one that keeps the last
N sentences assuming their importance in summarizing the text sentiment.

The proposed working memory weights differ from previous work on weighting
ideas in the following aspects. First, it is applied at the notion or phrase-level
rather than the whole sentence-level. Second, it assigns gradual weights instead
of a crisp decision of whether or not to include certain notions into the sentiment
analysis model, hence it takes into consideration all notions in the document, with
varying weights. This somehow remedies the issue that arises when analyzing
documents with no concluding statements. At last, it is worth mentioning that
the proposed working memory feature is expected to work best with a particular
genre of text that contains a conclusion in the last sentences. Consumer reviews
constitute a major portion of this genre.

4.3.2 HRS with Deep Learning: GRNN as Case Study

HRS Applicability to Deep Learning

Deep Learning (DL) covers a wide range of models with different architectures
and different capabilities of capturing psychological aspects of the human read-
ing, including the low-level processes (“lexical access”, “syntactic parsing” and
“semantic proposition formation”) and the high-level processes (“text model of
comprehension”, “situation model of interpretation” and “inference” including
impact of working memory).

31

DL models capture the low-level processes as they perform “lexical access” by
being applied at the word-level, and recently at the character-level. They indi-
rectly incorporate grammatical knowledge via word embeddings, which capture
distributional syntactic and semantic information of the words and are also used
to train DL models. The “semantic composition formation” is also captured in
recursive DL models that use composition functions to derive the meanings of
phrases (concepts or ideas), which are later used to derive the sentiment of the
text.

Regarding the high-level processes, most DL models do not capture the “text
model of comprehension”, as they do not select phrases ideas, based on their rel-
evance to the purpose of reading. The “situation model of interpretation” aspect
is captured by many DL models that capture sentiment in the word and phrase
representations, which in turn become equivalent to notions (or a combination
of a textual representation and a sentiment indicator). The RNTN model we
used in this thesis is an example of DL models that capture this aspect. Finally,
DL models model the “Inference” aspect by modeling semantic compositionality,
where words and phrases are combined together, recursively or sequentially, in
order to derive the overall meaning and sentiment of the text. Compositional-
ity is a more realistic approach, that comes closer to the way humans perform
inference than training classical machine learning models with n-gram features
and different choices of feature engineering. Furthermore, the “working mem-
ory” can take part of the inference process as recent advances in DL, namely the
Long Short-Term Memory (LSTM), allow to capture long-distance dependences
between phrases and decide when should a phrase be remembered or forgotten
while inferring the overall meaning or sentiment. Recent results in English have
shown that LSTM achieve significant improvements compared to models that
do not model the memory aspect. Recurrent models also capture the impact of
memory, as they try to incrementally, or sequentially, develop the meaning of the
text, where at each point of reading, they combine the current word with the
representation of all its preceding words that were read.

HRS Applicability to GRNN

The GRNN [13] is a deep learning model that extracts sentiment from raw data
using dense, continuous and low-dimensional input word vectors, referred to as
word embeddings, that capture latent syntactic and semantic aspects of the
words [64]. The GRNN has a hierarchical architecture of three stages. First,
Convolutional Neural Networks (CNN) [131] are used to perform semantic com-
position by transforming the sequence of the sentence’s word vectors into a single
vector representation that embeds the overall semantics of the sentence. Then,
recurrent Long Short-Term Memory (LSTM) is used to derive a vector repre-
sentation of the overall document using its sentence vectors that are obtained in
the first stage. At last, the resulting document representation is used to train a

32

logistic regression “Softmax” classification layer to predict the sentiment polarity
of the document. To extend and improve the GRNN according to the HRS meta-
framework, we follow the same strategy of identifying the human reading-specific
gaps in GRNN, and then proposing approaches to address these gaps.

According to the qualitative analysis presented in Table 4.1, the GRNN cap-
tures several aspects of the human reading process. For instance, the word em-
bedding is responsible for lexical access and syntactic parsing. The CNN model
uses three convolution filters that span over windows of 1, 2 and 3 words to en-
code the semantics of n-grams. This is equivalent to the “semantic proposition
formation” step, with the phrase length being limited to tri-grams. The recurrent
LSTM model that is used in the second stage of the hierarchy learns long and
short-term events by including a “forget” gate acting as a switch that erases or
keeps the dependency between the current sentence and past ones. Hence, the
network learns a model that acts similar to the working memory, where human
readers develop their understanding of text by continuously retrieving or discard-
ing previous information, based on their contribution to the text semantics. The
main gap that can be observed in GRNN is the lack of modeling the “situation
model of interpretation”, where the intermediate phrase and sentence represen-
tations do not capture sentiment information. Another limitation is the inability
to perform “semantic proposition formation” and capture ideas represented by
phrases longer than three words, due to the restricted size of the CNN filters. We
focus on addressing the “situation model of interpretation” gap, as the other issue
does not represent a major obstacle towards incorporating HRS with GRNN.

Figure 4.3 illustrates the GRNN architecture with and without HRS. We
propose to address the “situation model of interpretation” gap by developing a
word-level sentiment embedding block to derive word vectors that capture the
sentiment polarity of each word. After obtaining the word “sentiment” vec-
tors, each word is then represented by concatenating both its traditional and
sentiment embedding vector. The resulting word vector representations would
then capture syntactic, semantic and sentiment aspects of each word. Then, the
CNN maps this information to higher-level constituents, or phrases, to derive the
sentence-level vector representations. These phrases, along with their embedded
sentiments, are equivalent to the notions limited to three words in length.

To perform word sentiment embedding, we propose a neural network archi-
tecture that is trained with the objective of (1) predicting the sentiment polarity
of the individual words, each represented by a d-dimensional vector, and (2)
fine-tuning the words’ vectors to capture their sentiment polarities.

The input layer contains d neurons, where d is the dimensionality of the
word vector, and is a hyper-parameter that is either user-defined or tuned during
model development The output layer contains three neurons, each with a “soft-
max” activation function, to predict the sentiment polarity of the word, whether
it is positive, negative or neutral. Typically, the output layer generates, for each
word, a sentiment distribution y ∈ R3, which indicates the probability of each

33

Figure 4.3: The architecture of GRNN with and without HRS. (a) shows the
original GRNN framework. (b) shows the modified GRNN framework with the
modeling of the “situation model of interpretation”

sentiment given that word. The network’s parameters are updated to minimize
the cost function J corresponds to the error between the words target and pre-
dicted sentiment distributions, as shown in Equation (4.3).

J = min
V∑
i=1

(ti − yi)
2 (4.3)

where V is the size of our vocabulary (i.e., the words for which we want to learn
sentiment embeddings), ti and yi are the target (gold) and predicted sentiment
distributions of the ith word, respectively. For our experiments, we trained the
sentiment embedding network using words extracted from the SentiWordNet [21];
a sentiment lexicon that assigns to each word three sentiment scores indicating
its degree of positivity, negativity and neutrality.

In addition to learning the network’s parameters, we also fine-tune the d-

34

dimensional input word vectors so they become representative of the sentiment
of these words. Fine-tuning the word vectors is equivalent to performing an
additional step in the back-propagation algorithm to update the activation values
of the neurons in the input layer. The desired output of this sentiment embedding
block is the set of fine-tuned word vectors that can be represented using a matrix,
or a look-up table, L ∈ RV×d, where V is the size of the vocabulary and d is the
size of the embedding vectors. L can also be regarded as a fully-connected network
of V input words, and d output neurons. The output of this network is equivalent
to the input of the sentiment embedding network. Given an input word wi, we
get its equivalent vector using the lookup operation shown in Equation (4.4).

xi = ei · L (4.4)

where xi ∈ Rd is the vector of the ith word, ei ∈ RV is the one-hot encoding
vector whose elements are all zeros, except for the ith element that activates only
the ith word in the vocabulary. After each complete round of feed-forward and
back-propagation, the look-up table is updated with the new word vector.

4.4 Experiments and Results

In this section, we apply the HRS meta-framework to two state-of-the-art meth-
ods in document-level sentiment analysis. We show that applying HRS to each
method yields improvement even when performance is already high without HRS.
The analysis focuses on two approaches, FRN and GRNN, representing machine
learning approaches with focus on feature engineering and deep learning, respec-
tively. The datasets used with each method are consistent with the choices made
by the respective papers, enabling performance comparison for HRS versus these
previous methods as standalone. Subsection 4.4.1 describes the datasets used in
the experiments and the evaluation methods and measures. Subsections 4.4.2
and 4.4.3 illustrate the impact of incorporating HRS with FRN and GRNN mod-
els, respectively.

4.4.1 Datasets and Evaluation

Two datasets are used for the quantitative analysis; IMDB movie reviews and
YELP restaurant reviews. The IMDB dataset is used by FRN and contains 2,000
reviews equally-distributed across positive and negative sentiment classes [14].
The YELP dataset contains 10,000 restaurant reviews selected from the YELP
dataset 1, which was also the source data for GRNN. Reviews in this dataset
come with human-based ratings on a scale of 1 to 5. Table 4.2 highlights the
characteristics of these datasets.

1from the 2013 YELP dataset challenge, www.yelp.com/dataset_challenge

35

Corpus Size & Domain Class Distribution
Splits

Train Dev Test

IMDB 2K movie reviews
50% - 50%

70% 10% 20%
(positive vs. negative)

YELP
10K restaurant 9% - 9% - 14% - 33% - 35%

80% 10% 10%
reviews (very neg, neg, neut, pos, very pos)

Table 4.2: Characteristics of datasets used in experiments.

For evaluation, the IMDB dataset was randomly divided into a train set (70%),
a development set (10%), and a test set (20%). As for YELP, the splits had the
following sizes (80%-10%-10%) for train, development and test, respectively. To
tune the classifier’s parameters, the train and development sets were used. Then,
for final model evaluation, the train and test sets are used with the parameters
that achieved highest performance during tuning. Results are reported in terms
of classification accuracy and F1-score as applied on the unseen test splits.

Software and tools that were used to conduct the required experiments are
mentioned in Appendix A.

4.4.2 Evaluating FRN with HRS

As previously discussed, FRN does not model each of the “semantic proposi-
tion formation”, the “situation model of interpretation” and the “working mem-
ory”. To model these aspects with FRN, the HRS steps consist of (1) extracting
phrases, (2) retaining domain-relevant phrases using domain lexicon, and (3) as-
signing each phrase a sentiment score and a working memory weight. Notion
features are then fused with the set of syntactic and semantic features to train
a sentiment classification model. In the experiments, nonlinear SVM with radial
basis function kernel is used for classification.

Evaluating Text Model of Comprehension

To evaluate the text model of comprehension, we consider different parts of the
domain lexicon, and study the effect on overall performance. We simultaneously
use this experiment to get the tuning parameter for the determination of the
size of the domain lexicon. This lexicon contains frequent nouns and verbs that
pertain to the domain being discussed. To determine the frequency thresholds
that should be used to develop the domain lexicon, we performed a set of tun-
ing experiments by training SVM using domain-relevant phrases with different
possible thresholds. Thresholds are determined as follows: after removing stop-

36

words, nouns (or verbs) are ranked based on their frequency, and the frequency
threshold is identified as the one that allows retaining the most frequent nouns
(or verbs) that constitute X% of the total count. In these tuning experiments,
the choices of X thresholds are set at 100%, 90%, 80%, 70% and 60%. Also,
both the domain lexicon entries and the phrases are extracted from the training
set, to avoid overfitting. Results in Figure 4.4 show that using a domain lexicon
whose entries constitute 80% of the total count of nouns and verbs in the cor-
pus yields the highest performance as measured in both accuracy and F1-score.
This observation confirms the concept of the “text model of comprehension” in
the human reading framework, which states that only domain-relevant phrases
should be used. It can be observed that using X = 100% does not yield the best
performance given that many phrases can be domain-irrelevant. Also, reducing
X down to 60% decreases performance as many domain-relevant phrases are ex-
cluded from the model. These results are consistent with the classic bias-variance
tradeoffs in prediction problems, with 80% achieving the best tradeoff between
using enough of the data to improve performance, but not too much to avoid
over-fitting.

Percentage of Domain Lexicon (%)
100 90 80 70 60

P
er

fo
rm

an
ce

 M
ea

su
re

 (
%

)

65

66

67

68

69

70

71

72

73

74

75

Accuracy
F1-score

Figure 4.4: Evaluating different sizes of the domain lexicon.

Evaluation of Synonyms

For the purpose of evaluating the impact of synonyms, two SVM classifiers are
trained separately with either phrases or SYN-phrases that are extracted from
the training set. This experiment is repeated for different sizes of the domain
lexicon, similar to the previous experiments. Results in Figure 4.5 show that
using SYN-phrases yields better results, in both Accuracy and F1, compared to
using normal phrases. This is due to the improvement in generalization, which

37

takes place when synonymous phrases sharing similar meanings are collapsed
together. It can also be observed that, using a domain lexicon whose entries
constitute 80% of the total count of nouns and verbs in the corpus yields highest
results regardless of the type of phrases being used. The 80% threshold provides
results that are consistent with the previous experiment, and hence will be used
later when evaluating FRN with the full HRS model.

Percentage of Domain Lexicon (%)
100 90 80 70 60

A
cc

ur
ac

y
(%

)

65

70

75

80

Phrases
SYN-phrases

(a)

Percentage of Domain Lexicon (%)
100 90 80 70 60

F
1-

sc
or

e
(%

)

65

70

75

80

Phrases
SYN-Phrases

(b)

Figure 4.5: Evaluating the impact of synonymy when introducing SYN-phrases
vs. phrases under different sizes of the domain lexicon. Figure (a) shows the
accuracies, while Figure (b) shows the F1 scores.

Comparison between FRN Standalone versus “FRN+HRS”

We evaluate the FRN method with and without the proposed HRS. First, we
extract the different types of semantic and syntactic FRN features from the train
set as follows:

• n-word and n-characters: kfNgram [132] was used to extract 1, 2, 3-grams.

• n-POS features: After POS tagging the reviews using Stanford tagger [133],
kfNgram was used to extract 1, 2, and 3-tags.

• n-POSword features: To extract these features, the tagged reviews were fed
as input to kfNgram. Each tag and its corresponding word were considered
as a single token. Sequences of consecutive 1, 2, and 3-POSwords were then
extracted.

• n-legomena features: The n-grams extracted in the step above were used by
replacing any once- and twice-occurring words by “HAPAX” and “DIS”,

38

respectively. For example, if the word Titanic is only found once in the
entire corpus, and an extracted 2-gram was Titanic rocks, the word Titanic
is then replaced by “HAPAX” to form the 2-legomena feature HAPAX
rocks.

• n-semantic features: After replacing all words in the n-gram features by
their corresponding synonym group (SYN#) semantic labels, kfNgram was
used to generate the counts for each synonym group.

• Information Extraction Patterns (IEP): extracted using the Sundance pack-
age [123].

Second, we develop the proposed notions features as follows. After developing
the domain lexicon with size of 80%, and selecting SYN-phrases to represent the
textual characteristics of the notions, we proceed to develop the notions database
by assigning a sentiment score to each SYN-phrase. The sentiment score of a
SYN-phrase is defined as the difference in PMI scores calculated between that
phrase and each of the sentiment classes, as illustrated in Equation (4.1). A score
greater than 0 implies that the notion has a positive sentiment, otherwise it is
negative. Once the notions database is developed, each notion in a review is
assigned a working memory weight that is based on its location in that review,
as shown in Equation (4.2).

To reproduce FRN experiments, the FRN algorithm is first applied to re-
duce the extracted FRN features. The algorithm is set to output several reduced
feature sets. For the IMDB corpus, the size of the reduced feature sets ranged
between 10K and 100K features. For the YELP corpus, the sizes ranged between
50K and 500K since the corpus is bigger than IMDB with many more features to
be extracted. The top-ranked selected features are then used to train the SVM
model. To evaluate FRN with the proposed HRS model, we fuse the notions fea-
tures with the different sets of reduced FRN features. Each notion is represented
by the product of its sentiment score and its working memory weight in every
document. The sentiment classification results in Figure 4.6 show that applying
HRS with the notions features, introduces consistent improvements in accuracy
on both datasets. On IMDB, and despite the existing high accuracy with FRN
standalone close to 90%, HRS pushed the accuracy even higher with an average
of 1%. Similarly on YELP, HRS improved the accuracy by 1.07% on average.
It is worth mentioning that these performances can be further improved with
optimization of each of the added HRS steps.

4.4.3 Evaluating GRNN with HRS

In this subsection, we evaluate the impact of applying the HRS model to GRNN.
As shown in subsection 4.3.2, GRNN does not model the “situation model of in-
terpretation”. To address this gap with HRS, we proposed a sentiment embedding

39

Size of reduced FRN feature set (x10K)
1 2 3 4 5 6 7 8 9

A
cc

ur
ac

y
(%

)

80

85

90

95

FRN
FRN with HRS

(a)

Size of reduced FRN feature set (x10K)
5 10 15 20 15 30 35 40 45 50

A
cc

ur
ac

y
(%

)

52.5

53

53.5

54

54.5

55

55.5

56

56.5

57

FRN
FRN with HRS

(b)

Figure 4.6: Evaluating the FRN method with and without HRS under different
sizes of reduced features. (a) shows results on the IMDB corpus. (b) shows results
on the YELP corpus.

technique to model this aspect by deriving word embeddings that encode senti-
ment information, and use them along with traditional embeddings that capture
syntactics and semantics.

In the original GRNN model, words are represented with 200-dimensional
embedding vectors derived using word2vec [64]. In the proposed setup with HRS,
each word will be represented using the concatenation of two 100-dimensional
embedding vectors. The first part is derived using word2vec to capture syntactic
and semantic properties of the word, and the other part is derived using the
proposed sentiment embedding to encode the word’s sentiment. Both vectors are

40

obtained using the training set only to avoid overfitting.
We used SentiWordNet lexicon [21] as the source of word-level sentiment in-

formation to pre-train the sentiment vectors. In order to derive sentiment vectors
for as many words as possible, the lexicon is extended by including stopwords,
punctuation, digits and out-of-vocabulary (OOV) words. Stopwords, punctuation
and digits are assigned an objectivity score equal to 1 and positivity/negativity
scores equal to 0. On the other hand, each OOV word is assigned scores that are
equal to the average scores of all SentiWordNet words that co-exist with it in the
same sentence.

After tuning the GRNN parameters using the training and the development
sets, as done in [13], each model is evaluated on the test set. To minimize bias in
the results, the experiments are repeated 50 times with different random choices
of initialization weights. Accuracies and class-level F1 scores are averaged over
the 50 rounds and are illustrated in Table 4.3.

Corpus Approach Accuracy
F1-score

very neg neg neut pos very pos avg.

YELP
GRNN 57.7 65.5 36.7 36.0 71.1 30.6 48.0

GRNN+HRS 60.2 67.9 39.2 39.3 73.2 34.9 50.9

IMDB
GRNN 90.8 – 90.9 – 90.8 – 90.8

GRNN+HRS 92.0 – 92.3 – 91.2 – 92.1

Table 4.3: Results obtained on both datasets (YELP with 5 classes and IMDB
with 2 classes) using GRNN with and without HRS.

Results illustrated in Table 4.3 show that applying HRS to GRNN results
in performance improvement on both datasets. On YELP, adding HRS intro-
duced 4.74% relative improvement in accuracy and 5.8% relative improvement
in average F1 score. These are significant improvements given the challenge of
5-way sentiment classification. On IMDB, adding HRS introduced 1.31% relative
improvement in accuracy and 1.43% relative improvement in average F1 score.

Table 4.4 summarizes the results for comparison of the HRS success with FRN
versus GRNN to evaluate the impact of the HRS meta-framework on machine
learning approaches based on feature engineering versus deep learning, respec-
tively. For FRN-related experiments, we report the average performance over
different sizes of reduced feature sets. For GRNN-related experiments, we report
the average performance across different rounds with different choices of weight
initialization. Results in Table 4.4 show that the HRS frameworks resulting from
each method yield improvement compared to the methods without HRS. It can
also be observed that HRS produced more improvement to GRNN in comparison

41

to FRN. One reason for this observation is that we relied on feature engineering
with some heuristics, such as notions sentiment scoring and memory weighting
scheme, to address the HRS-related gaps in FRN. On the other hand, in GRNN,
optimization formulations were used to embed sentiment information and assign
memory weights. It is important to note that, even with sub-optimal approaches
to address HRS gaps in FRN, the resulting framework achieved a better perfor-
mance.

Approach
IMDB YELP

Accuracy Avg. F1-score Accuracy Avg. F1-score

FRN 87.9 87.8 54.2 40.9

FRN+HRS 88.7 88.6 55.3 41.6

GRNN 90.8 90.8 57.7 48.0

FRN+HRS 92.0 92.1 60.2 50.9

Table 4.4: Summary of all results obtained by applying HRS to FRN and GRNN
approaches on the IMDB corpus (5 classes) and the YELP corpus (5 classes)

In the next two chapters, we present particular solutions to improve the in-
ference step of the meta-framework, with special focus on applicability to Arabic
language.

42

Chapter 5

Recursive Auto Encoders for
OMA

In this chapter, we explore the use of the Recursive Auto Encoder (RAE) [33]
for opinion mining in Arabic, with focus on addressing challenges presented by:
1) lexical sparsity and ambiguity of Arabic, 2) inaccurate word embeddings, and
3) sub-optimal order of composition. To address these limitations with RAE, we
train the model with morphologically-tokenized text to reduce language sparsity
We derive word sentiment embeddings to improve the model’s input. Finally,
we use automatically-generated syntactic trees to improve composition. We de-
scribe the baseline RAE model for opinion mining in section 5.1, and then present
solutions to address each of the above-mentioned challenges in section 5.2. Ex-
perimental results are presented in section 5.3 and show that each of the proposed
solutions introduces significant performance improvements compared to the base-
line RAE model.

5.1 RAE for Opinion Mining

The Recursive Auto Encoder (RAE) model that was proposed for sentence-level
opinion mining [33] is composed of two stages, as illustrated in Figure 5.1. The
first stage is unsupervised; it derives a vector (embedding) for each sentence by
applying an auto encoder (AE) to its constituents, to at a time, in a recursive
manner. The second stage is supervised; it uses the derived sentence embeddings
to train a logistic regression (softmax) sentiment classification.

The AE is trained one sentence at a time, and each word in the sentence
is represented by a d-dimensional vector that is derived using some neural lan-
guage model (NLM). The word vectors are dense and low-dimensional, compared
to the commonly-used BoW, thus eliminating sparsity issues. Raw words are
transformed into word vectors using a lookup table L ∈ Rd×V that contains a
d-dimensional vector for each word in the language vocabulary of size V . Results

43

Figure 5.1: The framework of RAE, which we refer to as baseline RAE.

reported by [33] indicate that using randomly-initialized word vectors achieved
very similar performances to the case of using word vectors that are pre-trained
using the C&W model [99].

RAE performs composition recursively following the structure of a binary
parse tree, in which leaf nodes correspond to words, non-terminal nodes corre-
spond to intermediate constituents, and the root node corresponds to the full
sentence. At each step of recursion, the AE takes two input vectors x1, x2 ∈ Rd

and produces an output ‘parent’ vector o, as shown in Equation (5.1), where f is
an element-wise nonlinearity function (usually ‘tanh’) The output o is fed again
to the AE block along with the vector of the next node in the tree. It is also used
to reconstruct the input vectors x′1, x

′
2,∈ Rd, as shown in Equation (5.2). This

process continues, for each sentence, until an output vector o∗ is produced at the
root node, corresponding to the sentence embedding.

p = f
(
W T

1 [x1;x2]
)

(5.1)

[x′1;x
′
2] = f

(
W T

2 o
)

(5.2)

Figure 5.2 illustrates the structure of the AE along with its parameters.
The AE parameters θ = {W1,W2} are updated to optimize its ability to

reconstruct its input word vectors, or equivalently to minimize the reconstruction
error Erec shown in Equation (5.3).

44

Figure 5.2: The structure of the AE (parameters, inputs and outputs).

Erec =‖ [x1;x2]− [x′1;x
′
2] ‖2 (5.3)

The objective of training the AE is to obtain the parameters θ∗ that minimize
the reconstruction error for all sentences. The reconstruction error Erec is calcu-
lated at every step in the sentence, and the model’s parameters are updated to
minimize the overall reconstruction error, shown in Equation (5.4), where (`− 1)
is the number of parsing steps for a sentence of length `. The solution is derived
using stochastic gradient descent (SGD), and the overall Erec is back-propagated
down to the input layer in order to fine-tune the word vectors.

ψ∗ = arg min
ψ

`−1∑
i=1

Erec, i (5.4)

The structure of the parse tree is discovered using an unsupervised “greedy”
algorithm. For each sentence, given its word vectors X = {x1, · · · , x`}, this
algorithm applies the AE to all adjacent word vector pairs [xi;xi+1], ∀xi ∈ X.
The pair with the minimum Erec is added to the parse tree, and is replaced
in the word list X by is AE output o. This process repeats until the whole
input sequence is traversed and the sentence tree structure is obtained. Once
all sentences are parsed, the AE parameters are updated to minimize the overall
Erec as shown in Equation (5.4). The final AE model is obtained after processing
all sentences in the training set.

Sentence embeddings o∗ are then used to train a supervised softmax layer to
predict the class distribution for each sentence. Given K sentiment classes, the
softmax layer produces, for each sentence, a K-dimensional multinomial distri-
bution y ∈ RK as shown in Equation (5.5).

y =
1

1 + exp (−W>
s o
∗)

(5.5)

where o∗ ∈ Rd is the sentence embedding, and Ws ∈ Rd×K is the set of softmax
parameters. The kth element in y is interpreted as the conditional probability

45

of the kth class given the sentence representation. The set of parameters Ws are
obtained by minimizing the cross-entropy error, shown in Equation (5.6), using
SGD. This is the only supervised learning step in the RAE sentiment model.

Ece (o∗, y;Ws) = −
K∑
k=1

tk log yk (5.6)

where tk is the gold conditional probability of the kth class given sentence rep-
resentation o∗. For binary classification, t ∈ R2 is [1, 0] for class 1 and [0, 1] for
class 2.

5.2 RAE for Opinion Mining in Arabic

In this section, we present a framework that uses RAE to model composition,
and that addresses the following challenges to improve opinion mining in Ara-
bic: 1) lexical sparsity and ambiguity of Arabic, 2) inaccurate word embeddings,
and 3) sub-optimal order of composition. This framework is illustrated in Fig-
ure 5.3, with solutions highlighted in blue color. In particular, we perform mor-
phological tokenization to overcome morphological richness and lexical sparsity
and ambiguity. We use a neural network architecture to derive embeddings that
capture word-level sentiment aspects. Finally, we use syntactic parsers to gener-
ate grammatically-motivated trees to improve composition. These solutions are
described with further details in the following subsections.

5.2.1 Tokenization to address Sparsity and Ambiguity

Arabic is characterized by morphological richness leading to lexical sparsity,
where inflectional variations of the same word share the same core meaning, but
have different forms. This affects the ability of machine learning models to gener-
alize to new, unseen text. Furthermore, the rich concatenative morphology leads
to lexical ambiguity, where words of the same form have different morphology
leading, in some cases, to different meanings and sentiments.

To overcome these challenges, we train the recursive deep models using input
text that is morphologically-tokenized, where words are further split into more
basic morphemes. We perform tokenization following the ATB scheme [134],
where all clitics except for the definite article È@ Al ‘the’ are separated from the

stem.
Reducing words to their basic morphemes improves the ability of the model

to generalize to new, unseen morphological variations of the training instances,
as such variants tend to share the same base words identified by tokenization.
For example, models trained to learn the semantics of Qå��

��
J
	
�
�
J
Ë� liyantaSir ‘to win’,

can use this knowledge to understand a new word Qå��

��
J
	
J
�
�

�
�

�
ð wasayantaSir ‘and he

46

Figure 5.3: The framework of RAE for opinion mining in Arabic, with solutions
highlighted in blue.

will win’ because both words share the same base Qå�
�
J
	
�K
 yntSr that is identified

via tokenization. Furthermore, tokenization disambiguate words that share the
same form form but differ in their morphology, such as A

�
ë+

��Qå
�
�
�+H.�

bi+$ar∼i+haA

‘by her evil’ and A
�
ë+ �Qå

��
�
�
�
�. ba$∼ra+haA ‘told her good news’.

5.2.2 Sentiment Embedding to improve Word Embeddings

Word embeddings that are generated using existing NLMs do not capture senti-
ment aspects of the word, and hence composition models will produce sentence
embeddings that do not capture the sentiment content of the text. Moreover,
the approach to derive the word embeddings is based on co-occurrence statistics,
thus similar embeddings are derived to words that occur in similar contexts, even
if they express different sentiments. Using such embeddings to train composition
models will generate inaccurate sentence representations that affect sentiment
classification performance.

To overcome this problem, we propose to derive embeddings that capture

47

a broader range of the words’ semantics, with sentiment included. Inspired by
the C&W embedding model [99], we present a model to perform word sentiment
embedding, leveraging existing sentiment lexicons. The combination of semantic
embeddings (C&W) and sentiment embeddings are then used to derive sentence
embeddings that are more complete in their representation.

Semantic Embedding

The C&W model generates word vectors via supervised training of a n-gram va-
lidity classifier over a large unlabeled corpus. N-grams are automatically labeled
as follows; n-grams that exists in the corpus are considered ‘valid’, and by ran-
domly changing one of the n-gram’s words, we obtain an ‘invalid’ n-gram. Word
n-grams are then transformed into vector n-grams using a randomly-initialized
lookup table L, and are used to train a softmax classifier to discriminate between
valid and invalid n-grams. Classification errors are back-propagated to the input
layer to update the word vectors in L. The resulting vectors capture semantic
and syntactic aspects of the words [99]. For simplicity, we refer to this process as
“semantic embedding”.

In this dissertation, we introduce an unsupervised stage to pre-train the
lookup table L before using it for validity classification. This stage is shown
as “Stage 1” in Figure 5.4. Word n-grams in the corpus are transformed into vec-
tor n-grams using a randomly-initialized lookup table L, and are used to train a
Deep Belief Network (DBN) generative model by stacking Restricted Boltzmann
Machines (RBM). During this stage of pre-training, the reconstruction error is
back-propagated to the input layer in order to fine-tune the word vectors in L. At
the end of pre-training, the updated vectors in L are used to initialize the lookup
table for use in the validity supervised learning (Stage 2 in Figure 5.4). Such ini-
tialization should improve validity classification by providing word vectors that
reflect their local context in the n-grams.

Sentiment Embedding

We adopt the same two-stage semantic embedding approach to capture sentiment-
related information in the word vectors. The main difference lies in the objective
of the supervised learning (stage 2); instead of predicting the validity of word
n-grams, we predict the sentiment polarity of individual words. To train the
classifier towards this objective, we use examples extracted from existing senti-
ment lexicons. In particular, we use the large-scale Arabic Sentiment Lexicon
(ArSenL) [42] to obtain the words’ sentiment polarities. Consequently, the con-
structed lookup table L contains vectors reflecting word-level sentiment aspects.

48

Figure 5.4: The architecture of the C&W embedding model, extended with pre-
training stage.

Fusing Sentiment and Semantic Embeddings

To fuse both types of the acquired word embeddings, the RAE composition model
is used, independently, to generate two sentence representations, o∗sem and o∗senti,
using the semantic and the sentiment word embeddings, respectively. Then,
the “complete” sentence embedding, o∗complete, is formed by concatenating both
representations, and used to train the softmax sentiment classifier. Given K
sentiment classes, the softmax layer produces a probability distribution y ∈ RK ,
in which the kth element corresponds to the conditional probability of the kth

class given o∗complete. This probability can be modeled as a Bayes Network as
shown in Equation (5.7).

p
(
k|o∗complete

)
= p (k|o∗sem, o∗senti) =

p (o∗sem, o
∗
senti|k) p (k)

p (o∗sem, o
∗
senti)

(5.7)

Since the sentence representations for each type of embedding were generated
independently, then Equation (5.7) can be simplified as follows:

p
(
k|o∗complete

)
=
p (o∗sem|k) · p (o∗senti|k) · p (yk)

p (o∗sem) · p (o∗senti)
=
O (k|o∗sem) · p (k|o∗senti)

p (k)
(5.8)

where the term p (k) can be regarded as a normalization factor that can be
easily obtained for the sentiment distribution in the annotated training data.
Each of the remaining terms can be obtained by training the model with the
corresponding type of word embeddings.

It is worth mentioning that the word embeddings are derived according to
the tokenization scheme being experimented with. In other words, if raw input

49

is used, then embeddings are learned for the raw words. Similarly, if input is
morphologically-tokenized, then embeddings are learned for the tokenized words.

5.2.3 Syntactic Parsing to improve Composition

The greedy parsing algorithm does not capture information about the language
syntax and its grammatical structure. Hence, generated trees are not optimal
in the context of combining semantically and syntactically-related constituents,
which affects the ability of the recursive deep models to capture compositional
semantics in text.

To overcome this limitation, we use syntactic parse trees that reflect the phrase
structure of the sentence. We utilize the Stanford lexicalized parser [135] to au-
tomatically generate the syntactic parse trees, over which the AE will be recur-
sively trained. The parser requires the input text to be morphologically-tokenized
according to the ATB scheme [134], which is consistent with our choice of tok-
enization described in subsection 5.2.1 to address sparsity and ambiguity issues.
Using syntactic parse trees to define the order of composition should improve the
derived sentence embeddings, since the path for AE recursion is now consistent
with the grammatical rules, and reflects the natural order in which constituents
are combined to express the overall meaning of the sentence.

It is worth mentioning that syntactic parse trees are not necessarily binary,
and therefore cannot be used to train recursive models that require inputs and
outputs with consistent dimensionalities. Therefore, we transform the grammar
of the obtained parse trees’ to the Chomsky Normal Form (CNF) [136] using
left-factoring, where the choice of left (vs. right) was made such that the model’s
recursion is consistent with the direction readers follow to combine words while
reading Arabic text. The CNF grammar contains only unary and binary pro-
duction rules. By collapsing the unary productions, we obtain binary parse trees
that can be used to train recursive models.

5.3 Experiments and Results

In this section, we evaluate the different solutions, separately and combined,
against the baseline RAE model [33]. We also compare the full RAE frame-
work (with all solutions combined) against several well-known Arabic sentiment
models from the literature. We focus on the common task of binary sentiment
classification, where the sentiment class can be either positive or negative.

5.3.1 Datasets and Experimental setup

Evaluation is conducted using three Arabic corpora that represent different genres
and that use different Arabic writing styles. Table 5.1 illustrates the size and

50

sentiment distribution for these corpora.

The first corpus was developed by [80]. It consists of newswire articles written
in MSA, extracted from the ATB Part 1 V 3.0, and annotated at the sentence-level
with one of the following classes: positive, negative, neutral and objective. Out
of 2,855 sentences, we only used 1,180 sentences with either positive or negative
sentiments. We refer to this corpus as ATB.

The second corpus is a set of tweets collected and annotated by [137]. Tweets
usually combine different writing styles including MSA, a wide variation of di-
alects, URLs, images and significant amounts of misspellings due to the tweet
length restriction. Similar to ATB, we only used 2,311 tweets with either positive
or negative sentiments, and we refer to this corpus as Tweets.

The third corpus is composed of Initially, 1,177 comments that were initially
extracted by [138] from the Qatar Arabic Language Bank (QALB) [139] to create
a corpus for opinion target identification. Comments are written in MSA, but also
contain misspellings and dialectal Arabic (DA). We annotated this corpus at the
phrase and the comment-level using CrowdFlower, where each text was assigned
one of five sentiment labels: very negative, negative, neutral, positive and very
positive. We only used comment-level annotations, selecting only those (1,133
comments) with either positive or negative sentiments, ignoring the sentiment
intensity. We refer to this corpus as QALB.

Dataset Corpus size Positive (%) Negative (%)

ATB 1,180 sentences 68.7% 31.3%

Tweets 2,311 tweets 58.4% 41.6%

QALB 1,133 comments 34.8% 65.2%

Table 5.1: Characteristics of the different evaluation corpora.

Each corpus was preprocessed with the purpose of cleaning and improving
the representation of the input data. Preprocessing included: 1) removing non-
Arabic words, 2) segmentation by separating punctuation and digits from words,
and 3) normalization. The main purpose of normalization is to improve the qual-
ity and coverage of the word embeddings, and to provide proper input to the
parser for accurate parsing. We applied normalization to characters by normaliz-
ing repeated characters in elongated words, to emoticons by replacing emoticons
with global ‘happy/sad’ special tokens using a manually-compiled list of emoticon
shortcuts, and to parentheses by normalizing the different forms of parentheses
into one form (square brackets). To evaluate the impact of normalization, we
trained several baseline RAE models using different versions of the inputs, each
reflecting a specific type of normalization. We used the Tweets dataset for this

51

experiment as it contains significant amounts of elongated words and emoticons,
compared to the other corpora. Results indicate that applying character, emoti-
con and parenthesis normalization improved the classification accuracy by 0.7%,
0.8% and 0.8%, respectively, compared to the case of “no normalization”. Fur-
thermore, the combination of all types of normalization improved accuracy by
2.2%, and thus will be used in further experiments.

Twitter-specific preprocessing was applied to the Tweets dataset and included:
removing user mentions, re-tweet (RT) labels and URLs, and also preprocessing
hashtag mentions by removing the hashtag symbol and the ‘under-scores’ con-
necting between multiple words in a single tag. These techniques are common
practice in the literature [140–142].

The performance is quantified using the accuracy and the F1-score averaged
over both positive and negative classes. To ensure statistical significance of re-
sults, the different models are evaluated using 10-fold cross-validation. The AE is
formed of three layers, and both the size of the word embeddings and the number
of hidden neurons in each layer are set to 50, which yield the best results in a
preliminary experiment on a separate dataset.

Software and tools that were used to conduct the required experiments are
mentioned in Appendix A.

5.3.2 Ablation Analysis

We evaluate the improvements achieved by each of the proposed solutions. Ta-
bles 5.2, 5.3 and 5.4 illustrate the impact of applying 1) morphological tokeniza-
tion to combat sparsity and ambiguity, 2) sentiment embedding to provide better
input word vectors and 3) syntactic parsing to allow better composition. We com-
pare against the baseline RAE model [33] that uses randomly-initialized vectors
for raw words, and that iterates over trees derived using the greedy parser.

Impact of Morphological Tokenization

Results indicate that tokenization yields significant improvements over the base-
line RAE, and for all datasets. Improvement is mainly due to reduction in both
lexical sparsity and ambiguity, where raw words are rendered to their base words,
allowing the model to generalize to new unseen words. Results also highlight the
added benefit of performing composition at a finer-level of morphology instead
of raw words that are packed with many information.

Impact of Sentiment Embedding

Experiments were conducted to evaluate the impact of using sentiment versus
using semantic embedding, and also to evaluate the impact of fusing both em-
beddings. Since we are comparing to the baseline RAE, experiments are carried

52

Experiments on ATB Accuracy F1-score

Baseline RAE 74.3 73.5

Morphological Tokenization 77.3 (+3.0) 76.2 (+2.7)

Semantic embedding 76.5 (+2.2) 75.3 (+1.8)

Sentiment embedding 79.4 (+5.1) 78.7 (+5.2)

Both embeddings (concatenation) 81.9 (+7.6) 82.3 (+8.8)

Syntactic parsing 76.7 (+2.4) 76.1 (+2.6)

All (Improved RAE) 86.5 (+12.2) 84.9 (+11.4)

Table 5.2: Impact of each solution evaluated on the ATB corpus.

Experiments on QALB Accuracy F1-score

Baseline RAE 71.6 66.5

Morphological Tokenization 75.4 (+3.8) 71.6 (+5.1)

Semantic embedding 72.6 (+1.0) 68.4 (+1.9)

Sentiment embedding 73.8 (+2.2) 70.3 (+3.8)

Both embeddings (concatenation) 74.3 (+2.7) 71.1 (+4.6)

Syntactic parsing 71.0 (-0.6) 65.6 (-0.9)

All (Improved RAE) 79.2 (+7.6) 75.5 (+9.0)

Table 5.3: Impact of each solution evaluated on the QALB corpus.

on raw untokenized words. Results show that, for all datasets, using sentiment
embedding outperformed semantic embedding. This indicates that sentiment is
a much more important information that needs to be embedded into the word
and sentence vectors given the task of sentiment analysis. Results also indicate
that fusing both types of embeddings introduces additional improvements since
the classifier is now trained using sentence embeddings that are more complete
as they capture syntactic, semantic and sentiment information.

At last, it can be observed that using semantic embedding introduced signif-
icant improvements compared to using randomly-initialized word vectors, which
does not align with findings in English, where semantic embedding only achieved
marginal improvements [33]. This can be attributed to the unsupervised pre-

53

Experiments on Tweets Accuracy F1-score

Baseline RAE 69.7 61.1

Tokenization 70.9 (+1.2) 62.7 (+1.6)

Semantic embedding 71.3 (+1.6) 64.4 (+3.3)

Sentiment embedding 71.6 (+1.9) 65.8 (+4.7)

Both embeddings 73.8 (+4.1) 67.4 (+6.3)

Syntactic parsing 67.4 (-2.3) 58.1 (-3.0)

All (Improved RAE) 76.9 (+7.2) 68.9 (+7.8)

Table 5.4: Impact of each solution, evaluated on the Tweets corpus.

training stage that was introduced to the semantic embedding model. It can also
be an indicator that Arabic words, as opposed to English words, are packed with
many information that cannot be fully-captured by only fine-tuning randomly-
initialized vectors during RAE training, but require better initialization using
pre-trained embeddings.

Impact of Syntactic Parsing

We evaluated the impact of using syntactic parse trees versus trees generated by
the greedy parser. Since we are comparing to the baseline RAE, experiments are
carried on raw untokenized words. Since the Stanford parser generates trees for
morphologically-tokenized text, we detokenize the resulting trees by collapsing
nodes that correspond to morphemes of the same word into one node.

Experiments results indicate that using syntactic parse trees improved the
performance only on the ATB dataset, whereas it resulted in performance degra-
dation on the other datasets. The main reason for this behavior is that ATB
sentences are written in MSA and comply to the grammatical rules of the lan-
guage, allowing the parser to generate trees that reflect the natural order in
which words and constituents are combined in a sentence. On the other hand,
the QALB and Tweets datasets contain significant amounts of noise represented
by dialectal Arabic and misspellings, especially the Tweets dataset. This is re-
flected in the results, where automatic parsers failed to produce meaningful trees,
causing performance degradation compared to the greedy parser.

To confirm the importance of using syntactic parse trees, we evaluated the
impact of using gold syntactic trees that are manually-developed by expert lin-
guists, and hence free of automatic parsing errors. Gold trees are only available
for the ATB dataset since its sentences are extracted from the ATB Part 1 V 3.0.

54

Having access to V 4.1 [143], we align its trees with those in V 3.0, and then we
obtain the gold trees for the sentences in the ATB dataset. We evaluated three
different types of parse trees: those discovered using the greedy parser, those gen-
erated by automatic parsers (the Stanford parser) and the gold trees. Since the
gold trees assume the input to be morphologically-tokenized, we evaluated the
different trees following the same assumption. Results in Table 5.5 indicate that
using the gold trees achieved the best performance, and that errors introduced by
automatic parsing caused around 0.5% degradation on the overall performance,
when used to train RAE models on MSA data.

Accuracy F1-score

Tokenization + greedy trees 77.2 76.2

Tokenization + automatic Stanford trees 78.5 (+1.3) 77.8 (+1.6)

Tokenization + gold PATB trees 78.9 (+1.7) 78.1 (+1.9)

Table 5.5: Impact of different tree structures on the performance of RAE for
opinion mining in Arabic.

Combining All Solutions

The full RAE framework for opinion mining in Arabic is achieved by implement-
ing all solutions that address the different challenges. Tables 5.2, 5.3 and 5.4 show
that this framework achieves highest performance compared to its individual com-
ponents. Compared to baseline RAE, it achieved absolute accuracy improvement
of 12.2%, 7.6% and 7.2% on the ATB, QALB and Tweets datasets, respectively.
These improvements, compared to the baseline RAE, are statistically significant
with 90% confidence at 9 degrees of freedom.

The highest improvement was achieved on the ATB dataset since it consists
of sentences written in MSA, hence benefiting from all proposed contributions
including the use of syntactic parse trees, as opposed to the other datasets where
syntactic parsing did not achieve the hoped-for performances. Results also indi-
cate that the different solutions are synergetic. For example, tokenization helps
producing better embeddings as it reduces the language sparsity and resolves
much of the morphological complexity that becomes explicitly highlighted at the
surface (form)-level instead of being embedded into the learned representations.

5.3.3 Results Benchmarking

In this section, we evaluate the RAE framework for OMA against several Arabic
sentiment models proposed in literature. We compare to SVM and NB models

55

trained using BoW features with different choices of preprocessing and feature
representation [38, 75]. We train using word, stem and lemma ngrams (n =
1, 2, 3), represented using presence, term frequency (TF) and term frequency-
inverse document frequency (TFiDF) scores. We report the best results achieved
using the TFiDF scores. We also train SVM using aggregated sentence-level
sentiment scores based on the ArSenL sentiment lexicon as proposed by [42].
This model achieved better results than [80] on the ATB dataset. At last, we
compare to several deep learning models evaluated for OMA. These models are:
Deep Belief Networks (DBN), Deep Neural Networks (DNN), and Deep Auto
Encoders (DAE) combined with DBN. These models are trained using two types
of features: the BoW and the sentence-level aggregated sentiment scores. All the
above-mentioned models are also trained using 10-fold cross-validation to ensure
statistical significance of the results. Table 5.6 illustrates the performance im-
provement achieved by our solutions, compared to the aforementioned sentiment
models. Comparing to the second-best approach, our improved RAE model in-
troduces accuracy improvements of 7.3%, 1.7% and 7.6% on the ATB, QALB and
Tweets datasets, respectively.

56

Model Features
ATB QALB Tweets

accuracy F1-score accuracy F1-score accuracy F1-score

DNN
ArSenL scores 54.7 43.9 52.3 48.9 58.3 50.7

BoW 39.3 38.8 43.6 40.1 54.6 38.9

DBN
ArSenL scores 56.9 46.2 55.4 47.5 61.2 54.5

BoW 40.9 39.7 45.0 42.3 57.6 43.2

DAE-DBN
ArSenL scores 59.7 59.9 59.2 54.2 63.7 57.8

BoW 42.9 43.3 47.5 44.6 59.3 44.6

linear SVM

ArSenL scores 62.8 56.7 71.0 62.8 68.7 40.7

word 1-grams 75.3 73.9 76.1 71.3 62.1 54.7

stem 1-grams 77.5 76.6 77.5 74.7 62.4 55.9

lemma 1-grams 77.5 76.5 77.1 74.7 62.9 56.7

word 1-2-grams 76.2 73.9 73.3 62.3 68.5 56.6

stem 1-2-grams 79.2 77.7 77.4 70.3 68.4 57.4

lemma 1-2-grams 78.7 77.2 76.9 69.9 68.7 57.8

word 1-3-grams 75.3 71.8 69.9 54.0 68.5 54.5

stem 1-3-grams 77.5 75.2 74.4 63.9 69.3 56.7

lemma 1-3-grams 79.1 77.1 74.5 64.4 68.7 55.7

NB

word 1-grams 69.8 69.4 69.5 65.7 54.7 53.5

stem 1-grams 74.4 73.9 70.6 66.1 56.3 54.3

lemma 1-grams 73.6 73.2 68.9 65.1 55.2 53.5

word 1-2-grams 70.1 69.3 72.4 67.9 56.7 55.0

stem 1-2-grams 73.8 73.0 73.3 67.8 57.9 55.3

lemma 1-2-grams 74.2 73.4 71.5 65.7 56.0 53.8

word 1-3-grams 70.3 69.5 72.6 68.2 56.8 55.2

stem 1-3-grams 73.6 72.8 73.4 67.9 58.3 55.6

lemma 1-3-grams 73.1 72.1 72.2 66.4 56.0 53.8

RAE raw words 74.3 73.5 70.8 65.0 69.7 61.1

RAE for Arabic tokenized words 86.5 84.9 79.2 75.5 76.9 68.9

Table 5.6: Results of benchmarking the performance of RAE for OMA against
sentiment models from the literature.

57

Chapter 6

Morphologically-Enriched
Recursive Deep Models

In this chapter, we explore the Recursive Neural Tensor Networks (RNTN) [34] for
OMA, with focus on addressing challenges presented by: 1) lexical sparsity and
ambiguity of Arabic, and 2) lack of sentiment lexical resource to train RNTN. To
address these limitations, we exploit the orthographic and morphological space to
enrich the RNTN with useful information. We also present the Arabic sentiment
treebank (ArSenTB), the first of its kind for Arabic. The baseline RNTN model
for opinion mining in section 6.1, and then present solutions to address each of
the above-mentioned challenges in sections 6.2 and 6.3 Experiments and results
are presented in section 6.4 and show that, compared to the baseline RNTN,
morphologically-enriched RNTNs achieve significant accuracy improvements up
to 8.2% and 9.4% at the phrase and the sentence-level, respectively. They also
outperform SVM and RAE classifiers trained with similar morphological consid-
erations. We also present a qualitative analysis of the recursive deep models for
OMA with respect to the human reading for sentiment (HRS) meta-framework,
introduced earlier in chapter 4.

6.1 RNTN for Opinion Mining

The Recursive Neural Tensor Networks (RNTN) model follows a similar approach
to RAE; it uses a composition model recursively over a parse tree to derive the
sentence embedding, which is then used for sentiment classification [34]. However,
RNTN differs from RAE in the following aspects. 1) It performs composition
using a tensor-based function (tensor product). 2) Softmax classifier is trained
on top of each node of the tree, not only the root node.

RNTN takes a sequence of d-dimensional word vectors that can be either
randomly-initialized or pre-trained using some NLM. Equation (6.1) shows how
two input vectors are combined using the tensor product to produce the represen-

58

tation of their parent node. This process is performed recursively in a bottom-up
fashion.

o = f

[x1 x2

]
V [1:d]

 x1

x2

+W

 x1

x2

 (6.1)

where o, x1 and x2 ∈ Rd are the output and input vectors, respectively, f is the
‘tanh’ nonlinearity function, W ∈ Rd×2d is the set of model parameters to be
learned, and V ∈ R2d×2d is one slice of the tensor matrix, where each slice aims
to capture a specific type of composition.

Given K sentiment classes, a softmax layer is trained on top of each node
in the tree, and produces a K-dimensional distribution, in which every element
corresponds to the conditional probability of a particular sentiment label given the
vector of the current node. RNTN parameters (W,V,Ws) are trained to minimize
the cross-entropy between the predicted and the gold sentiment distributions, for
all nodes of the tree.

Figure 6.1 illustrates how RNTN is applied to predict sentiment in a three-
word phrase. At each non-terminal node, the composition function g (·) derives
its vector representation, which is then used to predict the sentiment of that
node.

Figure 6.1: Sketch of RNTN applied to predict sentiment in a three-word phrase.

The RNTN model needs to be trained on a sentiment treebank; a collection of
phrase structure parse trees with sentiment annotations at all levels of each tree.
Such resource only exists for English; the Stanford Sentiment Treebank [34].

59

6.2 Addressing Rich Morphology & Ambiguity

A common solution in Arabic NLP, to overcome the challenges associated with
morphological richness and ambiguity of Arabic, is to perform automatic in-
context morphological analysis and disambiguation. The goal of this process is
to identify for each word its exact “ in-context” analysis that is represented by a
set of inflectional features (voice, gender, part-of-speech, etc.), different levels of
morphological segmentation and abstraction (morphemes, lemmas, stems, roots,
etc.), in addition to orthographic features such as diacritization. While disam-
biguation reduces ambiguity, it does not address the question of lexical sparsity.
This is why it is common to see efforts exploring the use of different morpholog-
ical features to train machine learning models [40, 80, 94]. The typical solution
to lexical sparsity is to operate at more abstract levels of morphology, with the
following features being frequently explored in the literature:

• The stem (¨
	
Yg.) is defined as the part of the word that remains after

deleting all clitics and affixes.

• The lemma is a conventionalized choice of one word to represent the set
of all words related by inflectional (and not derivational) morphology.

• The root (P
	
Yg.), in Arabic and other Semitic languages, is typically a se-

quence of three (sometimes four or five) consonantal radicals that abstracts
away from all inflectional and derivational morphology [94]. Roots are often
associated with highly abstract - and sometimes idiosyncratic - meanings
that are shared in specific ways by specific lemmas, which may realize to
the surface in different stems.

• The ATB-token refers to the result of performing morphological tokeniza-
tion based on the ATB scheme [144] (splitting off all clitics except for the
definite article).

For example, given the word I.

��
Jº

��
J

�
�

�
ð wasataktub ‘and you/she will write’, it

corresponds to the lemma �
I.

��
J
�
» kataba, the stem I.

��
J» ktub, the root H. - �

H-¼ k-t-b

and the ATB-tokens I.

��
Jº

��
K + �

� wa+sa+taktub.

Naturally, while these abstract forms reduce sparsity, they also introduce am-
biguity. Roots are more ambiguous than lemmas and stems; and lemmas are
more general than stems. For example, while the lemma

�
éÒjÊÓ mlHmp means

‘epic’, ‘butchery’ or ‘soldering shop’, its root ÑmÌ lHm includes additional mean-

ings such as ÑmÌ laHm ‘meat’, ÐA
�
mÌ
�

liHAm ‘soldering’, ÐA
��
m

�
Ì laH~Am ‘butcher’, ÐA

�
j

�
JË @�

AiltiHAm ‘cohesion’,
�
é
��
J
Ò�

m

�
Ì laHmiy~ap ‘adenoids’, etc. Some stems may be similar

60

for different lemmas, which cause added noise. For example, Õç

'
�
A
��
¯ qA}im is the

stem from a number of words that belong to two lemmas: Õç

'
�
A
��
¯ qA}m ‘existing’

and
�
éÖ

ß�A

��
¯ qA}mp ‘list’.

In the context of our work, we explore the morphological space of Arabic
and enrich the recursive deep model with several levels of morphological abstrac-
tion. Then, we determine the level of morphology that achieves the best tradeoff
between model sparsity and ambiguity for the task of OMA. We also explore
the impact of diacritics on reducing lexical ambiguity at the different levels of
abstraction.

6.3 The Arabic Sentiment Treebank

Previous work have showed the added benefits of using fine-grained sentiment
prediction to train the composition model [34,70]. However, training such models
require a sentiment treebank, which only exists in English. In this section, we
describe the system architecture to create ArSenTB; the first morphologically-
enriched Arabic Sentiment Treebank that is needed to train RNTN for OMA
under different morphological abstractions, as discussed in section 6.2.

6.3.1 System Architecture

Creating sentiment treebanks in MRLs is not straightforward. For instance, gen-
erating the sytactic parse trees requires automatic preprocessing such as nor-
malization, tokenization and parsing, which all are prone to errors. As a result,
annotators could end up annotating a corrupted version of the text that may not
reflect the intended sentiment. For example, error in tokenization may cause a

word like
�
Y

�
g.

�
ð wajada ‘he found’ to be tokenized as

��
Y

�
g. + �

ð wa+jad∼a ‘worked

hard’ or ‘happened’, leading to different interpretations. Also, given our goal
of annotating all phrases in the treebank, we need to provide annotators with
very clear guidelines and instructions to ensure a proper handling of special cases
such as phrases that lack context, or weird phrases that are obtained because of
parsing errors, and so on.

Figure 6.2 describes the architecture of our proposed system to accurately and
effectively create ArSenTB, while addressing the above-mentioned treebank-
related challenges. This system is composed of the following components: mor-
phological disambiguation, syntactic parsing, tree detokenization, sentiment an-
notation and morphological enrichment.

• Morphological Disambiguation: We perform morphological analysis
and disambiguation in order to extract the in-context morphological fea-
tures of each word. In particular, we extract the stem and the lemma

61

Figure 6.2: Architecture of the system to develop ArSenTB.

features, in addition to the predicted diacritics. These features will be used
later on to enrich the generated treebank. We also perform Alef/Ya nor-
malization and morphological segmentation according to the ATB scheme,
in order to obtain the text representation that is required by typical phrase
structure parsers. It is worth noting that character repetitions (elongations)
are normalized as part of text preprocessing prior to morphological disam-
biguation. However, since elongations are useful for sentiment analysis [91],
we preserve this information by marking words that originally-contained
elongation.

• Parsing and Binarization: The ATB-tokenized text is fed to a trained
parser [135] to generate phrase structure parse trees. These trees are not
necessarily binary, and hence cannot be used to train recursive models that
require inputs and outputs with consistent dimensionalities. Therefore,
we use left-factoring to transform the trees to the Chmosky Normal Form
(CNF) grammar that only contains unary and binary production rules. The
choice of left (vs. right) was made such that sentiment composition follows
the same direction readers follow to combine words when reading. After
collapsing unary productions, we obtain binary trees that can be used to
train recursive models.

• Tree Detokenization: As mentioned earlier, tokenization and parsing
that are performed so far may produce errors that affect the quality and
readability of phrases to be annotated. In order to provide annotators with
phrases that look identical or as close as possible to the original text, we

62

perform tree ‘detokenization’ to obtain trees that represent the raw untok-
enized text. Detokenization is done by merging leaf nodes corresponding to
tokens of the same word, while preserving the trees’ binary structure. As a
result, annotators will only see the raw text in phrases that are determined
by a parser that ran on the tokenized form.

• Sentiment Annotation: We assign a sentiment label to each node (phrase)
in the treebank to predict sentiment at all constituency levels. We designed
a crowdsourcing sentiment annotation task using CrowdFlower. Before run-
ning the full task, we conducted a pilot study to tune the quality settings
and get feedback on the clarity of the guidelines. Annotators were asked to
assign each text one of five labels {very negative, negative, neutral, positive,
very positive}. They were instructed not to be biased by their personal opin-
ions, but rather reflect the authors’ opinions, similar to [145]. They were
also asked to pay attention to linguistic phenomena such as elongation,
emoticons and use of dialects. Annotators were provided with phrases that
are randomly sampled from the treebank, so they are not affected by addi-
tional context. The model should be able to capture how different contexts
affect sentiment.

• Morphological Enrichment: Our solution to improve recursive deep
models is to incorporate morphological and orthographic information. This
is achieved by enriching ArSenTB with the in-context morphological fea-
tures that were extracted at an earlier stage. These features include the
ATB-tokens, stems and lemmas (each with and without diacritics). We also
extract roots using lemma-root lookup tables for verbs and nouns [146,147].
Also, elongation markers that were extracted during preprocessing are also
used to enrich the treebank. Each of these features is mapped into its cor-
responding node in the detokenized trees. Figure 6.3 shows a sample of an
enriched sentiment tree corresponding to the phrase

�
�J

�
®j

�
JË

	
àA

��
J
�
�
J.ë

	
X

	
àA

��
J�Q

	
¯

	P 	P 	P 	P 	Pñ
	
®Ë @ frStAn ∗hbytAn ltHqyq Alfwzzzzz ‘two golden opportunities to

winnnnn’.

6.3.2 Description and Intrinsic Evaluation

The corpus we used to generate ArSenTB consists of 1,177 comments sampled
by [138] from the QALB corpus. It is worth mentioning that this dataset is the
same one we used to evaluate RAE for OMA in chapter 5, where we disregarded
the neutral cases leaving us with 1,133 comments.

Parsing the 1,177 comments produced a total of 123,242 nodes that correspond
to phrases ranging from words (leaves) to full comments (roots). Since we target
out-of-context annotations, we do not need multiple annotations of the same
phrase, even if it appears in different contexts. Therefore, we compiled a list of

63

Figure 6.3: The different morphological features provided in ArSenTB

78,879 unique phrases to be randomly distributed to annotators. Each phrase is
independently annotated by 3 to 5 annotators, and annotations are aggregated
based on majority voting. To resolve cases with tied votes, we back-off from
five to three sentiment classes {negative, neutral, positive} to match annotations
of same polarity, regardless of the intensity. If votes remain tied, we assign an
additional annotator to break the tie.

Table 6.1 shows the sentiment distribution in ArSenTB across the sets of
unique phrases, all phrases and all comments (roots). We also observed that
short phrases tend to be neutral as they mostly consist of words that need more
context to become expressive, whereas stronger sentiment, particularly negative,
builds up in longer phrases.

Figure 6.4 illustrates the normalized sentiment distribution at different levels
of n-grams in ArSenTB. It can be observed that shorter phrases tend to be
neutral as they mostly consist of words that need further context to become
expressive, whereas stronger sentiment, particularly negative, builds up in longer
phrases.

A sentiment composition takes sentiments of two phrases and produces the
sentiment of their union. Table 6.2 illustrates the different types of sentiment
compositions that are obseved in ArSenTB. For each type, it shows the senti-
ment distribution of its output.

We can observe from Table 6.2 that the output of combining neutral with

64

Sentiment unique phrases all phrases comments

very negative 4.2% 3% 13.4%

negative 27.4% 17.7% 49.3%

neutral 47.8% 61.3% 3.7%

positive 19.5% 16% 25.5%

very positive 1.1% 2% 8.1%

Table 6.1: Sentiment distribution in ArSenTB

N-gram Length
5 10 15 20 25 30 35 40 45 50

N
or

m
al

iz
ed

 S
en

tim
en

t D
is

tr
ib

ut
io

n

0

10

20

30

40

50

60

70

80

90

100

very negative negative neutral positive very positive

Figure 6.4: Normalized distribution of aggregated sentiment labels at each level
of n-gram in ArSenTB.

subjective phrases tends to be the same as that of the subjective phrase with a
probability of 84% for negative and 69% for positive. Also, in more than 90%
of the cases, the sentiment remains intact when combining subjective phrases of
identical sentiment polarity. However, patterns become less obvious when com-
bining phrases with different sentiments, where the output tends to be negative
in 68% of the cases.

We used two methods to evaluate annotation quality. The first method an-
alyzes the ‘per-phrase’ agreement by measuring, for each phrase, how well the
annotators agreed on its sentiment. We observed that 47.9% of phrases had
full agreement among their annotators, and that 88% had an agreement that is
greater than 50%, which allows proper majority aggregation. For the remaining

65

Type of composition
Sentiment distribution of Output

count
positive (%) negative (%) neutral (%)

positive + positive 90.3 3.8 5.9 2,874

positive + negative 26.4 68.0 5.6 2,894

positive + neutral 68.9 7.6 23.5 13,385

negative + negative 4.8 93.0 2.2 3,753

negative + neutral 5.6 84.3 10.1 14,460

neutral + neutral 9.7 7.7 82.7 23,488

Table 6.2: Different types of sentiment compositions observed in ArSenTB

12% with tied votes, backing-off from five to three classes resolved most of these
cases, and the remaining cases were assigned to an independent annotator to
break the tie. These statistics reflect the clarity of the guidelines and resulting
annotations.

The second method calculates the inter-annotator agreement (IAA) statistics
using a set of 600 phrases that are sampled from the treebank. This set was anno-
tated by the author and was compared to the outcome of aggregating annotations
produced by CrowdFlower. 87% of the phrases had the identical sentiment la-
bels, and 90% of the phrases agreed in their sentiment polarities regardless of its
intensity. We calculated the kappa statistics to measure the proportion of agree-
ment above what would be expected by chance [148]. Linear kappa was equal to
77%, where labels were assumed equally-important. Weighted kappa was equal
to 83%, where labels were assigned different weights based on their frequency.
These numbers indicate excellent levels of agreement according to [149].

As a result, the sentiment labels in ArSenTB are considered robust in terms
of 1) agreement among CrowdFlower annotators, and 2) agreement between their
aggregated labels and the authors’ expectations.

6.4 Experiments and Results

In this section, we evaluate the impact of the morphologically-enriched RNTN
that we train using ArSenTB for OMA. We highlight the improvements achieved
due to the morphological and orthographic features. We also compare to similar
improvements achieved on well-known classifiers including SVM and the RAE
with the best-performing configuration based on chapter 5.

66

6.4.1 Experimental Setting

The input to RNTN is a set of word embedding vectors that are derived by train-
ing the Continuous Bag-of-Words (CBOW) model [64] on all 550,273 comments
from QALB. Different embeddings were derived for each morphological feature
by training word2vec on different versions of QALB, each reflecting a specific fea-
ture. In previous work, elongation was used as explicit features to train machine
learning models [91]. For our experiments, we learn embeddings for elongations
by training word2vec on QALB with elongated words being normalized then
marked.

Size Comments # Phrases #

Train 70% 823 85,622

Dev 10% 118 12,518

Test 20% 235 24,991

Table 6.3: Evaluation splits of ArSenTB

We created the train, dev, and test splits by uniformly sampling from Ar-
SenTB as illustrated in Table 6.3. We used the train and the dev sets to tune
the word embedding size and the learning rate. The model was then evaluated
on the test set using the parameters that achieved the best performance in the
tuning stage. Performance was quantified using accuracy and weighted F1 score,
where the weights are determined by the percentage of each class in the test set.
The model was evaluated at both the phrase and the comment-level. A phrase
corresponds to any node in the treebank, whereas a comment corresponds to the
root nodes only.

Software and tools that were used to conduct the required experiments are
mentioned in Appendix A.

6.4.2 Results

To evaluate the impact of morphological and orthographic features on the RNTN
sentiment model in Arabic, we compare the baseline RNTN that is trained using
raw words to variants of the model trained with the suggested linguistic enrich-
ments.

We compare RNTN to the majority baseline, which automatically assigns the
most frequent class in the train set to all instances in the test set. We also compare
to well-known classifiers including SVM and RAE. SVMs are trained using word
n-grams of different lengths (n). Preliminary experiments showed that word bi-
grams are better than uni-grams and tri-grams, and hence we report only results

67

for bi-grams. On the other hand, we used the RAE model with the setup that
achieved highest results for OMA in chapter 5. In other words, (1) the recursion
of RAE is based on syntactic parse trees, (2) the input word vectors are formed
by concatenating C&W embeddings with our proposed sentiment embeddings,
and (3) the input text is morphologically-tokenized. To ensure a fair comparison
with RNTN, we also train SVM and RAE with the same levels of morphological
abstraction (word, stem, lemma and root). Table 6.6 illustrates the performances
of the different models for five-way and three-way sentiment analysis.

Finally, we conduct a qualitative analysis of the RNTN model in order to
evaluate its conformity with the Human Reading for Sentiment (HRS) framework
that we introduced in chapter 4.

Impact of Orthographic features

Experimental results, shown in Tables 6.4 and 6.5 illustrate the performance im-
provement introduced to the baseline RNTN by marking/normalizing character
repetition (elongation) and adding diacritics. The baseline RNTN is trained using
raw unprocessed words as they originally appeared in the corpus.

Phrases Comments

Accuracy F1-score Accuracy F1-score

Baseline RNTN (raw words) 72.4 72.0 52.3 43.4

Normalizing Elongation 73.4 73.2 53.0 46.9

Marking Elongation 73.5 73.4 54.5 48.0

Adding Diacritics 74.5 73.9 54.2 47.5

Marking Elongation & Diacritics 75.0 74.6 55.0 48.0

Table 6.4: The impact of adding orthographic features on the performance of
baseline RNTN for five-way classification.

It can be observed that marking elongation did not have much impact at the
phrase-level performance, mainly because of its scarce occurrence, as it can be
observed in only 0.15% of the words and 0.4% of the phrases in the treebank.
However, elongations become more evident at the comment-level, and are iden-
tified in 8% of the comments, leading to significant performance improvement.
These observations confirm the importance of elongations as sentiment indicators.

It can also be observed that adding diacritics to the words consistently im-
proved the performance at both phrase and comment levels. This observation
confirms the value of diacritization at reducing ambiguity.

Based on these observations, the remaining experiments assume that diacritics
are known and elongation is marked.

68

Phrases Comments

Accuracy F1-score Accuracy F1-score

Baseline (raw words) 75.2 75.1 70.6 68.2

Normalizing Elongation 77.9 77.9 71.5 70.2

Marking Elongation 78.2 77.8 74.7 73.9

Adding Diacritics 78.8 78.0 73.4 73.6

Marking Elongation & Diacritics 79.2 78.2 76.7 74.9

Table 6.5: The impact of adding orthographic features on the performance of
baseline RNTN for three-way classification.

Baselines

First, we compare the baseline RNTN that is trained with raw words (Table 6.6,
row 3) to the majority classifier (row 1) and to the basic SVM, also trained
with raw words (row 2). Results indicate that the baseline RNTN outperforms
the majority classifier. It also outperforms the basic SVM at the phrase-level,
but achieves lower results at the comment-level. These results confirm the fact
that RNTN does not achieve outstanding performances, as it did in English,
when directly applied to Arabic text. This is mostly attributed to the complex
morphology of the language.

Next, we explore the value of enriching the RNTN with the morphological
features that are provided as part of ArSenTB.

Impact of Morphological Abstraction

We evaluated RNTN under several morphological abstractions: words, tokens,
stems, lemmas, and roots from most specific to most abstract. ArSenTB con-
tains 20,459 unique words that correspond to 14,262 tokens, 9,842 stems, 8,836
lemmas and 4,669 roots. These numbers reflect the concept hierarchy in Arabic
morphology, leading to better generalization as we climb through this hierar-
chy. However, as mentioned in Section 6.2, increasing the level of abstraction
introduces additional lexical ambiguity. For instance, 20% of the unique roots in
ArSenTB represent words with different sentiments. This percentage drops to
12% and 11% for lemmas and stems, respectively.

Rows 12-16 show that abstracting away from raw words improves perfor-
mance, with best results achieved with stems. However, going beyond that level
of abstraction and operating at the root-level leads to a performance degrada-
tion, reflecting loss of semantic information due to over-generalized representa-
tions, especially with roots. This behavior is similar to the classical bias-variance

69

Five Classes Three Classes

Phrases Comments Phrases Comments

Acc. F1 Acc. F1 Acc. F1 Acc. F1

1 Majority 60.0 45.8 47.2 31.6 60.0 45.8 63.0 48.5

2 Baseline SVM (raw words) 66.3 59.6 52.8 46.3 68.8 63.4 71.9 69.7

3 Baseline RNTN (raw words) 72.4 72.0 52.3 43.4 75.2 75.1 70.6 68.2

4 SVM (stems) 72.7 68.2 55.3 48.2 75.6 72.7 72.7 71.3

5 SVM (lemmas) 74.2 68.8 56.2 48.6 76.3 73.5 72.7 70.9

6 SVM (roots) 75.0 71.3 56.6 49.0 78.3 76.3 72.6 71.4

7 RAE (words) – – 51.0 45.0 – – 73.7 70.9

8 RAE (ATB tokens) – – 51.7 46.2 – – 75.2 73.0

9 RAE (stems) – – 58.0 48.8 – – 78.0 75.8

10 RAE (lemmas) – – 53.6 46.1 – – 76.9 74.5

11 RAE (roots) – – 53.4 45.7 – – 70.3 69.2

12 RNTN (words) 75.0 74.6 55.0 48.0 79.2 78.2 76.7 74.9

13 RNTN (ATB tokens) 77.2 74.2 55.7 48.2 80.1 78.5 79.2 77.8

14 RNTN (stems) 79.6 78.2 60.0 51.8 83.4 83.1 80.0 79.0

15 RNTN (lemmas) 79.4 78.3 56.6 49.1 83.3 82.9 77.9 75.5

16 RNTN (roots) 77.5 76.1 57.4 48.7 81.0 80.7 72.3 71.2

Table 6.6: Performance of the different RNTN models, and comparison to a
variety of SVM classifiers. Numbers in bold indicate best performance under each
section: (1-3), (4-6), (7-11) and (12-16). Numbers with underline indicate best
performance across all classifiers.

dilemma, where we are trying to simultaneously minimize two sources of errors;
lexical sparsity and ambiguity. The bests tradeoff was achieved at the stem level,
achieving absolute average F-score improvements (over the baseline RNTN) of
8% and 10.8% at the phrase and the comment level, respectively, on three-way
sentiment classification. Similar improvements are also observed on the five-way
classification task. It is worth mentioning that the reported improvements were
obtained through one iteration (or cycle) of training/testing. To calculate sta-
tistical significance, we repeated the experiments two more times on different
training/testing splits. We obtained similar improvements that are statistically
significant with 95% confidence at 2 degrees of freedom.

We conducted additional experiments to compare the impact of morphology

70

abstraction on two well-known classifiers: SVM and RAE. Rows 4-6 indicate
that, similar to RNTN, increasing the level of morphological abstraction im-
proves performance compared to the baseline SVM. However, unlike RNTN, the
highest performance is achieved with roots; the most abstract representation of
text. Such behavior indicates that SVM benefits from morphological abstraction
to mitigate the impact of curse of dimensionality and sparsity associated with
BoW features. On the other hand, the semantics of these abstractions are bet-
ter captured by RNTN. For example, although roots are better than stems and
lemmas at reducing lexical sparsity, they are expected to produce worse results
because they over-generalize the words’ semantics. The best RNTN model (us-
ing stems) outperforms the best SVM model (using roots) by 6.8% and 7.6%
absolute average F1-score at the phrase and the comment-level, respectively, on
three-way sentiment classification. Similar improvements are also observed on the
five-way classification task. It can also be observed that, at the comment-level,
improvements due to morphological abstraction are more evident in RNTN than
in SVM, suggesting that recursive deep learning models are more able to explore
the morphology space to improve sentiment prediction.

Rows 7-11 illustrate the performance of RAE at the comment-level, because
RAE was initially proposed for sentence-level classification, with only one softmax
classification layer trained on top of each parse tree. Results indicate that the
impact of morphology on RAE is similar to that on RNTN, where RAE performs
the best at the stem-level, while its accuracy decreases at the root-level due to
over-generalization. Also, RNTN performs better than RAE, which is mainly due
to phrase-level sentiment prediction that helps modeling sentiment composition
and its intricacies. However, this improvement required an expensive sentiment
treebank, whereas RAE can be trained on corpora with simple sentence-level
annotations.

Phrases Comments

Accuracy F1 Accuracy F1

RNTN (words) 80.7 78.1 45.7 39.7

RNTN (stems) 81.0 78.9 47.1 40.8

RNTN (lemmas) 80.8 78.8 46.1 40.0

Table 6.7: The impact of adding morphological features on RNTN performance
in English.

Finally, we evaluated the impact of extending the use of morphological fea-
tures to recursive deep models in English; a non-MRL. For instance, and on
average, a lemma in the English Stanford sentiment treebank covers 1.25 words,

71

whereas in ArSenTB it covers 2.3 words. To prove this evaluation, we trained
RNTN on the Stanford sentiment treebank [34] that is enriched with stems and
lemmas extracted using the Stanford CoreNLP toolkit [46]. Results in Table 6.7
indicate that adding morphological features improved RNTN by only 1%, which
is much less than what has been achieved in Arabic. Therefore, MRLs would
benefit more from incorporating features that reduce their complexity.

Evaluation against the HRS meta-framework

To address this input, we performed a qualitative analysis of the applicability of
the HRS meta-framework to the RNTN and RAE models for OMA, where the
aim is to identify human reading-specific gaps in these models. The gap analysis
is consistent with what was followed for English in chapter 4 (also published
in [24]), where the target model should be able to capture the different aspects
of the human reading. This includes the low-level cognitive processes including
“lexical access, “syntactic parsing and “semantic proposition formation, and the
high-level cognitive processes including “text model of comprehension, “situation
model of interpretation and “inference including impact of working memory. The
needed automated steps of the HRS model are listed in the header columns of
the Table 6.8, which illustrates the qualitative analysis, where the rows show the
results of the analysis for RAE and RNTN.

We start by analyzing the RAE-based model for OMA. This model captures
very well the low-level processes. It performs “lexical access” since it is applied
at the word-level. It makes use of syntactic and morphological knowledge to per-
form morphological segmentation and syntactic parsing (for model recursion). It
also incorporates grammatical knowledge as it is trained via word embeddings,
capturing distributional syntactic and semantic information of the words. It also
captures the “semantic composition formation” aspect, as it uses composition
functions to derive the meanings of phrases (concepts or ideas), which are later
used to derive the sentiment of the text. As for the high-level processes, the
RAE model does not capture the “text model of comprehension”, as it does not
use the purpose of reading to select only relevant phrases or ideas. The “sit-
uation model of interpretation” aspect reflects the ability to construct notions
(i.e., ideas or concepts associated with sentiment) that will be used later for in-
ference. This aspect is captured via our proposed lexicon-based word sentiment
embedding, which learns word vectors that can be representative of the word-level
sentiment, and that can propagate up the sentence parse tree (via recursion) to
capture phrase-level sentiment information (equivalently notions). Finally, RAE
captures the “Inference” aspect by modeling semantic compositionality, i.e., how
does the meanings of words and phrases change when they combine together.
Combinations are performed in a recursive manner, following the phrase struc-
ture of a sentence, until we derive the overall meaning and sentiment of that
sentence. Compositionality is a more realistic approach, that comes closer to

72

Low-level Processes Low-level Processes

Syntactic Pars-
ing

Semantic
proposition
formation

Text model of
comprehension

Situation
model of inter-
pretation

Inference and
Memory

RAE
Available Syntactic re-

lations are
captured via
embedding. Also,
grammatical
structure capture
via syntactic
parsing, which
in turn requires
morphological
segmentation

Recursively
model the mean-
ings of phrases
(concepts or
ideas) of varying
lengths

All text is taken
into consideration
to infer the overall
meaning or senti-
ment

Notions (text +
sentiment) are
captured via word
sentiment em-
bedding (lexicon
embedding)

Inference is mod-
eled through SE-
MANTIC compo-
sitionality

Gap No selection of
phrases/ideas rel-
evant to the pur-
pose of reading

No account for
working memory

RNTN
Available Syntactic re-

lations are
captured via
embedding. Also,
grammatical
structure capture
via syntactic
parsing, which
in turn requires
morphological
segmentation

Recursively
model the mean-
ings of phrases
(concepts or
ideas) of varying
lengths

All text is taken
into consideration
to infer the overall
meaning or senti-
ment

Word and phrase
embeddings are
fine-tuned based
on sentiment
classification
error

Inference is
modeled through
SENTIMENT
compositionality
(how sentiment
changes across all
levels of phrase
constituency)

Gap No selection of
phrases/ideas rel-
evant to the pur-
pose of reading

No account for
working memory

Table 6.8: A qualitative analysis of the recursive deep models for OMA against
aspects of human reading.

the way humans perform inference than training classical machine learning mod-
els with n-gram features and different choices of feature engineering. However,
this model does not take into consideration the impact of working memory on
inference.

Regarding the RNTN-based model for OMA, this model captures very well
the low-level processes, similar to the RAE model, with the use of sophisticated
NLP techniques to capture the word morphology and the syntactic structure of
the text. As for the high-level processes, similar to RAE, the RNTN does not
capture “text model of comprehension”. The “situation model of interpretation”
aspect is captured by fine-tuning all word and phrase representations based on
the sentiment classification error while training the model. Hence, each word or
phrase will be updated to capture the in-context sentiment, producing accurate
notions (text + vector representation of sentiment). Finally, RNTN captures

73

the “Inference” aspect by modeling sentiment compositionality, i.e., how does
the meaning and sentiment of words and phrases change when combine together.
Combinations are performed in a recursive manner, following the phrase structure
of a sentence, until we derive the overall meaning and sentiment of that sentence.
Similar to RAE, the RNTN does not take into consideration the impact of working
memory on inference.

In summary, and based on this qualitative analysis, both RAE and RNTN
models capture almost the same aspects of the human reading but vary in the
extent to which they accurately capture those aspects. Overall, RNTN comes
closer to the human reading than RAE, which is also reflected in the superior
results produced by RNTN. The common gaps in both models are: (1) they
do not use the purpose of reading to model the “text model of comprehension”,
and (2) they do not model the working memory during inference. The first gap
can be addressed by performing inference (compositionality) on the subjective
portions of the text that are relevant to its sentiment. The second gap can be
addressed by incorporating the working memory into inference. An example is
the use of LSTM networks that are optimized to keep a recollection of recently-
read text (short-term memory) and to refresh this memory by flushing existing
information to the long-term memory, which resembles the functionality of the
human memory during reading.

It is worth noting that existing deep learning models for OMA can only per-
form sentence-level classification because recursion is based on sentence parse
trees. Therefore, these models need to be extended to become applicable to
documents as well. The suggested improvements will be considered for future
work.

74

Chapter 7

Conclusion

In this dissertation, we presented a novel meta-framework for opinion mining.
This framework was inspired from the humans’ natural process of reading and
inferring opinions from text, which involves low-level and high-level processing
and that uses background knowledge to infer semantics in general and sentiments
in specific. The “human reading for sentiment” (HRS) meta-framework identifies
gaps in existing approaches, and introduces further improvements. We showed
how to apply HRS to approaches that rely on feature engineering, and others
that rely on deep learning. For feature engineering-based methods, we developed
new “notions” features to model aspects of the human reading process. We
also automated two additional aspects of the human reading; the human working
memory that reflects the reader’s short span of attention, and the human’s ability
to relate words with close meanings. On the other hand, we modified the neural
network architecture in deep learning-based methods. We modeled the notions by
producing embedded representations that capture sentiments at multiple levels
of the text hierarchy. Experiments showed the performance improvements when
applying HRS to both state-of-the-art methods, highlighting its ability to improve
methods with already high accuracy.

We also presented new state-of-the-art solutions for opinion mining in Arabic
by addressing several Arabic-related challenges with focus on relevance to recur-
sive deep models. We addressed morphological complexity and lexical sparsity
and ambiguity by performing composition at a more granular level of morphol-
ogy, and also by enriching the model with with a variety of morphological and
orthographic features. We derived sentiment embeddings to improve the accuracy
of the input features with a broader coverage of the words’ semantics. We also
used phrase structure parse trees to guide the recursion of composition, and to
capture the natural order in which constituents are combined to express meaning
in sentences. Furthermore, we introduced ArSenTB, the first Arabic sentiment
treebank, to support recursive deep models for opinion mining at different lev-
els of text granularity, starting from the word-level. Experimental results using
different datasets indicate that the proposed solutions, applied to both RAE

75

and RNTN models, achieved significant improvements, in both accuracy and F1,
compared to the baseline models.

Arabic text can be found in different forms; it can be written in either Modern
Standard Arabic (MSA) or in one of its many dialectal variants. It can contain
grammatical mistakes (e.g., incorrect verb-subject agreements) or orthographic
misspellings (e.g., typing errors). Furthermore, Arabic can be found in different
genres of text with different characteristics. For instance, newswire documents
or blogs are usually long carefully written in MSA, microblogs such as tweets are
short and contain a lot of noisy data (dialects, misspellings, links, switch coding,
etc.), and finally online comments can be short or long, and can be either written
in MSA or contain significant amount of noise, depending on the comment’s
author.

Our proposed models have various degrees of success with Arabic. For MSA
(tested with ATB dataset), our model was able to achieve 87% level of accuracy.
For dialectal Arabic and misspellings (tested with Twitter data), our model was
able to achieve 77% accuracy For mixture of MSA and dialects with misspellings
(tested with the QALB dataset), our model was able achieve 80% accuracy. The
confidence levels in these results were evaluated by comparing with previous meth-
ods and using tests of confidence. They were found to have tests of confidence
ranging between 90% and 95%.

Our method works best with Arabic MSA, since the models were derived
using tools designed for Arabic MSA. For dialectal Arabic, with grammatical
mistakes or misspellings, we trained the models using word embeddings that are
learned from a large corpus (QALB) that contains similar phenomena. Hence,
the model would be aware of semantic and syntactic relations between MSA and
dialectal/incorrect words. The results indicate potentials for more improvements
for MSA to reach higher accuracy, and even more potential for dialectal improve-
ments.

Future work would need to develop improved models for sentiment inference,
and better methods to handle dialectal Arabic. We aim to extend these recursive
deep models to match aspects of human reading for OMA. By qualitatively ana-
lyzing these models against the HRS meta-framework, the main aspects that need
to be captured are the “text model of comprehension” and the working memory.
Finally, these models only work at the sentence-level, and hence it is very useful
to make them applicable to the document-level as well.

76

Appendix A

Tools and Software

The following tables describes the different tools and software that we used to
conduct the different experiments for the purpose of this dissertation.

Processing Steps Tools and Resources

FRN for feature reduction FRN Java code provided by authors
of [12]

Notions Extraction Custom script in Java to extract notions
and assign working memory weights

Sentiment Classification LibSVM implementation in Java

Table A.1: Software and tools required to train and evaluate the applicability of
the HRS meta-framework to the “FRN” opinion model

1Embeddings are available in http://ir.hit.edu.cn/~dytang/

77

Processing Steps Tools and Resources

Semantic Composition and
Sentiment Classification

GRNN Java code provided by authors
of [13]

Word embedding (A) Embeddings provided in the original
GRNN experiments in [13] 1. (B) Cus-
tom MATLAB script to implement our
sentiment embedding. We used Senti-
WordNet [22] as a source of supervised
data.

Table A.2: Software and tools required to train and evaluate the applicability of
the HRS meta-framework to the “GRNN” opinion model

Processing Steps Tools and Resources

Semantic Composition and
Sentiment Classification

The RAE MATLAB code was published
by the authors of [33] 2

Word embedding (A) Custom MATLAB script to imple-
ment the Collobert and. Weston (C&W)
embedding model [99]. (B) Custom
MATLAB script to implement our pro-
posed sentiment embedding. We used
ArSenL [42] as a source of supervised
data.

Morphological tokenization MADAMIRA [43] to perform morpho-
logical tokenization in Arabic.

Syntactic Parsing (A) Stanford parser [135] 3, implemented
in Java, to generate the Syntactic parse
trees. (B) To transform the parse tree’s
grammar to a binary grammar, we used
the left-factoring algorithm implemented
in Python as part of the Natural Lan-
guage ToolKit (NLTK) [47] 4

Table A.3: Software and tools required to train and evaluate the “RAE” model
for OMA

78

Processing Steps Tools and Resources

Semantic Composition and
Sentiment Classification

Stanford CoreNLP [12], implemented in
Java, to train and evaluate RNTN [34] 5

Word embedding Word2cec to obtain the word embed-
dings, using the CBOW model [64]6

Morphological tokenization MADAMIRA [43] to extract the differ-
ent morphological and orthographic fea-
tures.

Syntactic Parsing (A) Stanford parser [135], implemented
in Java, to generate the Syntactic parse
trees. (B) To transform the parse tree’s
grammar to a binary grammar, we used
the left-factoring algorithm implemented
in Python as part of the Natural Lan-
guage ToolKit (NLTK) [47]

Table A.4: Software and tools required to train and evaluate the “RAE” model
for OMA

4The RAE code is available in http://www.socher.org/index.php/Main/

Semi-SupervisedRecursiveAutoencodersForPredictingSentimentDistributions
4Stanford Parser can be downloaded from http://nlp.stanford.edu/software/

lex-parser.shtml
4Left-factoring code can be downloaded from http://www.nltk.org/_modules/nltk/

tree.html
6Word2vec can be downloaded from https://github.com/dav/word2vec

79

Bibliography

[1] H. Chen and D. Zimbra, “Ai and opinion mining,” IEEE Intelligent Sys-
tems, vol. 25, no. 3, pp. 74–80, 2010.

[2] Rawkes, “The moment twitter lost steve jobs,” 2011.

[3] L. Hoffman, “Reflecting on twitter and its implications for elections and
democracy,” 2013.

[4] B. Liu and L. Zhang, “A survey of opinion mining and sentiment analysis,”
in Mining text data, pp. 415–463, Springer, 2012.

[5] B. Pang and L. Lee, “Opinion mining and sentiment analysis,” Foundations
and trends in information retrieval, vol. 2, no. 1-2, pp. 1–135, 2008.

[6] X. Ding, B. Liu, and P. S. Yu, “A holistic lexicon-based approach to opinion
mining,” in Proceedings of the 2008 international conference on web search
and data mining, pp. 231–240, ACM, 2008.

[7] M. Hu and B. Liu, “Mining and summarizing customer reviews,” in Pro-
ceedings of the tenth ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 168–177, ACM, 2004.

[8] L. Zhang and B. Liu, “Identifying noun product features that imply opin-
ions,” in Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies: short papers-
Volume 2, pp. 575–580, Association for Computational Linguistics, 2011.

[9] X. Ding and B. Liu, “Resolving object and attribute coreference in opinion
mining,” in Proceedings of the 23rd International Conference on Computa-
tional Linguistics, pp. 268–276, Association for Computational Linguistics,
2010.

[10] W. P. Grabe and F. L. Stoller, Teaching and researching: Reading. Rout-
ledge, 2013.

80

[11] R. Hobeica, H. Hajj, and W. El Hajj, “Machine reading for notion-based
sentiment mining,” in Data Mining Workshops (ICDMW), 2011 IEEE 11th
International Conference on, pp. 75–80, IEEE, 2011.

[12] A. Abbasi, S. France, Z. Zhang, and H. Chen, “Selecting attributes for sen-
timent classification using feature relation networks,” IEEE Transactions
on Knowledge and Data Engineering, vol. 23, no. 3, pp. 447–462, 2011.

[13] D. Tang, B. Qin, and T. Liu, “Document modeling with gated recurrent
neural network for sentiment classification,” in Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language Processing, pp. 1422–
1432, 2015.

[14] B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs up?: sentiment classifi-
cation using machine learning techniques,” in Proceedings of the ACL-02
conference on Empirical methods in natural language processing-Volume 10,
pp. 79–86, Association for Computational Linguistics, 2002.

[15] B. Pang and L. Lee, “A sentimental education: Sentiment analysis using
subjectivity summarization based on minimum cuts,” in Proceedings of the
42nd annual meeting on Association for Computational Linguistics, p. 271,
Association for Computational Linguistics, 2004.

[16] P. D. Turney, “Thumbs up or thumbs down?: semantic orientation ap-
plied to unsupervised classification of reviews,” in Proceedings of the 40th
annual meeting on association for computational linguistics, pp. 417–424,
Association for Computational Linguistics, 2002.

[17] T. Wilson, J. Wiebe, and R. Hwa, “Just how mad are you? finding strong
and weak opinion clauses,” in aaai, vol. 4, pp. 761–769, 2004.

[18] A. Abbasi, H. Chen, and A. Salem, “Sentiment analysis in multiple lan-
guages: Feature selection for opinion classification in web forums,” ACM
Transactions on Information Systems (TOIS), vol. 26, no. 3, p. 12, 2008.

[19] T. Wilson, J. Wiebe, and P. Hoffmann, “Recognizing contextual polarity in
phrase-level sentiment analysis,” in Proceedings of the conference on human
language technology and empirical methods in natural language processing,
pp. 347–354, Association for Computational Linguistics, 2005.

[20] Y. Dang, Y. Zhang, and H. Chen, “A lexicon-enhanced method for sen-
timent classification: An experiment on online product reviews,” IEEE
Intelligent Systems, vol. 25, no. 4, pp. 46–53, 2010.

[21] A. Esuli and F. Sebastiani, “Sentiwordnet: A publicly available lexical
resource for opinion mining,” in Proceedings of LREC, vol. 6, pp. 417–422,
2006.

81

[22] G. A. Miller, “Wordnet: a lexical database for english,” Communications
of the ACM, vol. 38, no. 11, pp. 39–41, 1995.

[23] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[24] L. Denoyer and P. Gallinari, “The wikipedia xml corpus,” in International
Workshop of the Initiative for the Evaluation of XML Retrieval, pp. 12–19,
Springer, 2006.

[25] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A
large-scale hierarchical image database,” in Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on, pp. 248–255, IEEE,
2009.

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in neural information
processing systems, pp. 1097–1105, 2012.

[27] J. Zhang, C. Zong, et al., “Deep neural networks in machine translation:
An overview,” IEEE Intelligent Systems, vol. 15, 2015.

[28] A. Owens, P. Isola, J. McDermott, A. Torralba, E. H. Adelson, and W. T.
Freeman, “Visually indicated sounds,” arXiv preprint arXiv:1512.08512,
2015.

[29] A. Graves, “Generating sequences with recurrent neural networks,” arXiv
preprint arXiv:1308.0850, 2013.

[30] J. Mitchell and M. Lapata, “Composition in distributional models of se-
mantics,” Cognitive science, vol. 34, no. 8, pp. 1388–1429, 2010.

[31] Y. Bengio, H. Schwenk, J.-S. Senécal, F. Morin, and J.-L. Gauvain, “Neu-
ral probabilistic language models,” in Innovations in Machine Learning,
pp. 137–186, Springer, 2006.

[32] D. Tarasov, “Deep recurrent neural networks for multiple language aspect-
based sentiment analysis of user reviews,” in Proceedings of Interna-
tional Conference of Computational Linguistics and Intellectual Technolo-
gies Dialog-2015, vol. 2, pp. 53–64, 2015.

[33] R. Socher, J. Pennington, E. H. Huang, A. Y. Ng, and C. D. Manning,
“Semi-supervised recursive autoencoders for predicting sentiment distribu-
tions,” in Proceedings of the Conference on Empirical Methods in Natural
Language Processing, pp. 151–161, Association for Computational Linguis-
tics, 2011.

82

[34] R. Socher, A. Perelygin, J. Y. Wu, J. Chuang, C. D. Manning, A. Y. Ng,
and C. Potts, “Recursive deep models for semantic compositionality over a
sentiment treebank,” in Proceedings of the conference on empirical methods
in natural language processing (EMNLP), vol. 1631, p. 1642, Citeseer, 2013.

[35] D. Dowty, “Compositionality as an empirical problem,” Direct composi-
tionality, no. 14, pp. 23–101, 2007.

[36] UNESCO, “World arabic language day,” 2014.

[37] “Internet world stats,” 2016.

[38] M. Rushdi-Saleh, M. T. Mart́ın-Valdivia, L. A. Ureña-López, and J. M.
Perea-Ortega, “Oca: Opinion corpus for arabic,” Journal of the American
Society for Information Science and Technology, vol. 62, no. 10, pp. 2045–
2054, 2011.

[39] M. Abdul-Mageed and M. T. Diab, “Awatif: A multi-genre corpus for
modern standard arabic subjectivity and sentiment analysis.,” in LREC,
pp. 3907–3914, Citeseer, 2012.

[40] M. Abdul-Mageed, M. Diab, and S. Kübler, “Samar: Subjectivity and
sentiment analysis for arabic social media,” Computer Speech & Language,
vol. 28, no. 1, pp. 20–37, 2014.

[41] M. Abdul-Mageed and M. T. Diab, “Sana: A large scale multi-genre, multi-
dialect lexicon for arabic subjectivity and sentiment analysis.,” in LREC,
pp. 1162–1169, 2014.

[42] G. Badaro, R. Baly, H. Hajj, N. Habash, and W. El-Hajj, “A large scale
arabic sentiment lexicon for arabic opinion mining,” ANLP 2014, vol. 165,
2014.

[43] A. Pasha, M. Al-Badrashiny, M. T. Diab, A. El Kholy, R. Eskander,
N. Habash, M. Pooleery, O. Rambow, and R. Roth, “Madamira: A fast,
comprehensive tool for morphological analysis and disambiguation of ara-
bic.,” in LREC, vol. 14, pp. 1094–1101, 2014.

[44] N. Habash, R. Eskander, and A. Hawwari, “A morphological analyzer for
egyptian arabic,” in Proceedings of the twelfth meeting of the special interest
group on computational morphology and phonology, pp. 1–9, Association for
Computational Linguistics, 2012.

[45] X. Yu, Y. Liu, X. Huang, and A. An, “Mining online reviews for predicting
sales performance: A case study in the movie domain,” Knowledge and Data
Engineering, IEEE Transactions on, vol. 24, no. 4, pp. 720–734, 2012.

83

[46] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and D. Mc-
Closky, “The Stanford CoreNLP natural language processing toolkit,” in
Association for Computational Linguistics (ACL) System Demonstrations,
pp. 55–60, 2014.

[47] S. Bird, E. Klein, and E. Loper, Natural language processing with Python.
” O’Reilly Media, Inc.”, 2009.

[48] T. Wilson, J. Wiebe, and P. Hoffmann, “Recognizing contextual polarity in
phrase-level sentiment analysis,” in Proceedings of the conference on human
language technology and empirical methods in natural language processing,
pp. 347–354, Association for Computational Linguistics, 2005.

[49] C. Whitelaw, N. Garg, and S. Argamon, “Using appraisal groups for sen-
timent analysis,” in Proceedings of the 14th ACM international conference
on Information and knowledge management, pp. 625–631, ACM, 2005.

[50] C. Lin, Y. He, R. Everson, and S. Ruger, “Weakly supervised joint
sentiment-topic detection from text,” Knowledge and Data Engineering,
IEEE Transactions on, vol. 24, no. 6, pp. 1134–1145, 2012.

[51] Y. Lu, M. Castellanos, U. Dayal, and C. Zhai, “Automatic construction of a
context-aware sentiment lexicon: an optimization approach,” in Proceedings
of the 20th international conference on World wide web, pp. 347–356, ACM,
2011.

[52] 2000.

[53] S. M. Mohammad, S. Kiritchenko, and X. Zhu, “Nrc-canada: Build-
ing the state-of-the-art in sentiment analysis of tweets,” arXiv preprint
arXiv:1308.6242, 2013.

[54] S. Kiritchenko, X. Zhu, and S. M. Mohammad, “Sentiment analysis of
short informal texts,” Journal of Artificial Intelligence Research, vol. 50,
pp. 723–762, 2014.

[55] C. Havasi, R. Speer, and J. Alonso, “Conceptnet 3: a flexible, multilingual
semantic network for common sense knowledge,” in Recent advances in
natural language processing, pp. 27–29, Citeseer, 2007.

[56] C. Whissell, “The dictionary of affect in language,” Emotion: Theory, re-
search, and experience, vol. 4, no. 113-131, p. 94, 1989.

[57] A. Agarwal, F. Biadsy, and K. R. Mckeown, “Contextual phrase-level po-
larity analysis using lexical affect scoring and syntactic n-grams,” in Pro-
ceedings of the 12th Conference of the European Chapter of the Association

84

for Computational Linguistics, pp. 24–32, Association for Computational
Linguistics, 2009.

[58] Z. Tu, Y. He, J. Foster, J. van Genabith, Q. Liu, and S. Lin, “Identifying
high-impact sub-structures for convolution kernels in document-level senti-
ment classification,” in Proceedings of the 50th Annual Meeting of the As-
sociation for Computational Linguistics: Short Papers-Volume 2, pp. 338–
343, Association for Computational Linguistics, 2012.

[59] I. M. Katakis, I. Varlamis, and G. Tsatsaronis, “Pythia: Employing lexical
and semantic features for sentiment analysis,” in Machine Learning and
Knowledge Discovery in Databases, pp. 448–451, Springer, 2014.

[60] D. Tang, F. Wei, B. Qin, T. Liu, and M. Zhou, “Coooolll: A deep learning
system for twitter sentiment classification,” SemEval 2014, p. 208, 2014.

[61] Y. Miura, S. Sakaki, K. Hattori, and T. Ohkuma, “Teamx: A sentiment
analyzer with enhanced lexicon mapping and weighting scheme for unbal-
anced data,” SemEval 2014, p. 628, 2014.

[62] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harsh-
man, “Indexing by latent semantic analysis,” Journal of the American so-
ciety for information science, vol. 41, no. 6, p. 391, 1990.

[63] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of machine Learning research, vol. 3, no. Jan, pp. 993–1022, 2003.

[64] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Dis-
tributed representations of words and phrases and their compositionality,”
in Advances in neural information processing systems, pp. 3111–3119, 2013.

[65] X. Glorot, A. Bordes, and Y. Bengio, “Domain adaptation for large-scale
sentiment classification: A deep learning approach,” in Proceedings of the
28th International Conference on Machine Learning (ICML-11), pp. 513–
520, 2011.

[66] Q. V. Le and T. Mikolov, “Distributed representations of sentences and
documents.,” in ICML, vol. 14, pp. 1188–1196, 2014.

[67] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional networks
for text classification,” in Advances in Neural Information Processing Sys-
tems, pp. 649–657, 2015.

[68] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convolutional neural
network for modelling sentences,” arXiv preprint arXiv:1404.2188, 2014.

85

[69] O. Irsoy and C. Cardie, “Deep recursive neural networks for composition-
ality in language,” in Advances in Neural Information Processing Systems,
pp. 2096–2104, 2014.

[70] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic repre-
sentations from tree-structured long short-term memory networks,” arXiv
preprint arXiv:1503.00075, 2015.

[71] M. A. Aly and A. F. Atiya, “Labr: A large scale arabic book reviews
dataset.,” in ACL (2), pp. 494–498, 2013.

[72] M. N. Al-Kabi, N. A. Abdulla, and M. Al-Ayyoub, “An analytical study
of arabic sentiments: Maktoob case study,” in Internet Technology and
Secured Transactions (ICITST), 2013 8th International Conference for,
pp. 89–94, IEEE, 2013.

[73] A. Shoukry and A. Rafea, “Sentence-level arabic sentiment analysis,” in
Collaboration Technologies and Systems (CTS), 2012 International Con-
ference on, pp. 546–550, IEEE, 2012.

[74] A. Mountassir, H. Benbrahim, and I. Berrada, “A cross-study of sentiment
classification on arabic corpora,” in Research and Development in Intelli-
gent Systems XXIX, pp. 259–272, Springer, 2012.

[75] R. M. Elawady, S. Barakat, and M. E. Nora, “Sentiment analyzer for arabic
comments,” International Journal of Information Science and Intelligent
System, vol. 3, no. 4, pp. 73–86, 2014.

[76] N. Omar, M. Albared, A. Q. Al-Shabi, and T. Al-Moslmi, “Ensemble of
classification algorithms for subjectivity and sentiment analysis of arabic
customers’ reviews,” International Journal of Advancements in Computing
Technology, vol. 5, no. 14, p. 77, 2013.

[77] N. Farra, E. Challita, R. A. Assi, and H. Hajj, “Sentence-level and
document-level sentiment mining for arabic texts,” in Data Mining Work-
shops (ICDMW), 2010 IEEE International Conference on, pp. 1114–1119,
IEEE, 2010.

[78] M. Maamouri, A. Bies, T. Buckwalter, and W. Mekki, “The penn arabic
treebank: Building a large-scale annotated arabic corpus,” in NEMLAR
conference on Arabic language resources and tools, vol. 27, pp. 466–467,
2004.

[79] M. Maamouri, D. Graff, B. Bouziri, S. Krouna, and S. Kulick, “Ldc
standard arabic morphological analyzer (sama) v. 3.1,” LDC Catalog No.
LDC2010L01. ISBN, pp. 1–58563, 2010.

86

[80] M. Abdul-Mageed, M. T. Diab, and M. Korayem, “Subjectivity and sen-
timent analysis of modern standard arabic,” in Proceedings of the 49th
Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies: short papers-Volume 2, pp. 587–591, Association
for Computational Linguistics, 2011.

[81] E. Refaee and V. Rieser, “Subjectivity and sentiment analysis of arabic
twitter feeds with limited resources,” in Proceedings of the Workshop on
Free/Open-Source Arabic Corpora and Corpora Processing Tools, p. 16,
2014.

[82] H. S. Ibrahim, S. M. Abdou, and M. Gheith, “Sentiment analysis for modern
standard arabic and colloquial,” arXiv preprint arXiv:1505.03105, 2015.

[83] W. Black, S. Elkateb, H. Rodriguez, M. Alkhalifa, P. Vossen, A. Pease, and
C. Fellbaum, “Introducing the arabic wordnet project,” in Proceedings of
the third international WordNet conference, pp. 295–300, Citeseer, 2006.

[84] R. Eskander and O. Rambow, “Slsa: A sentiment lexicon for standard
arabic,” in Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 2545–2550, 2015.

[85] D. R. Heise, Expressive order: Confirming sentiments in social actions.
Springer Science & Business Media, 2007.

[86] M. Abdul-Mageed, M. Korayem, and A. YoussefAgha, “ yes we can?: Sub-
jectivity annotation and tagging for the health domain,” 2011.

[87] S. A. Morsy, “Recognizing contextual valence shifters in document-level
sentiment classification,” 2011.

[88] R. M. Duwairi and M. A. Alshboul, “Negation-aware framework for senti-
ment analysis in arabic reviews,” in Future Internet of Things and Cloud
(FiCloud), 2015 3rd International Conference on, pp. 731–735, IEEE, 2015.

[89] G. Badaro, R. Baly, R. Akel, L. Fayad, J. Khairallah, H. Hajj, W. El-Hajj,
and K. B. Shaban, “A light lexicon-based mobile application for sentiment
mining of arabic tweets,” in ANLP Workshop 2015, p. 18, 2015.

[90] N. Abdulla, S. Mohammed, M. Al-Ayyoub, M. Al-Kabi, et al., “Automatic
lexicon construction for arabic sentiment analysis,” in Future Internet of
Things and Cloud (FiCloud), 2014 International Conference on, pp. 547–
552, IEEE, 2014.

[91] A. Mourad and K. Darwish, “Subjectivity and sentiment analysis of modern
standard arabic and arabic microblogs,” in Proceedings of the 4th workshop

87

on computational approaches to subjectivity, sentiment and social media
analysis, pp. 55–64, 2013.

[92] E. Refaee and V. Rieser, “Benchmarking machine translated sentiment
analysis for arabic tweets,” in NAACL-HLT 2015 Student Research Work-
shop (SRW), p. 71, 2015.

[93] M. Salameh, S. M. Mohammad, and S. Kiritchenko, “Sentiment after trans-
lation: A case-study on arabic social media posts,” in Proceedings of the
2015 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 767–777,
2015.

[94] N. Y. Habash, “Introduction to arabic natural language processing,” Syn-
thesis Lectures on Human Language Technologies, vol. 3, no. 1, pp. 1–187,
2010.

[95] O. Smrz, “Functional arabic morphology,” Formal system and implemen-
tation PhD Thesis, Charles University, Prague, Czech Republic, 2007.

[96] A. El Kholy and N. Habash, “Orthographic and morphological processing
for english–arabic statistical machine translation,” Machine Translation,
vol. 26, no. 1-2, pp. 25–45, 2012.

[97] F. Alotaiby, S. Foda, and I. Alkharashi, “Arabic vs. english: Comparative
statistical study,” Arabian Journal for Science and Engineering, vol. 39,
no. 2, pp. 809–820, 2014.

[98] A. Shahrour, S. Khalifa, and N. Habash, “Improving arabic diacritization
through syntactic analysis,” in LREC, 2016.

[99] R. Collobert and J. Weston, “A unified architecture for natural language
processing: Deep neural networks with multitask learning,” in Proceed-
ings of the 25th international conference on Machine learning, pp. 160–167,
ACM, 2008.

[100] R. Socher, C. D. Manning, and A. Y. Ng, “Learning continuous phrase rep-
resentations and syntactic parsing with recursive neural networks,” in Pro-
ceedings of the NIPS-2010 Deep Learning and Unsupervised Feature Learn-
ing Workshop, pp. 1–9, 2010.

[101] R. Socher, C. C. Lin, C. Manning, and A. Y. Ng, “Parsing natural scenes
and natural language with recursive neural networks,” in Proceedings of the
28th international conference on machine learning (ICML-11), pp. 129–136,
2011.

88

[102] B. Lemaire and G. Denhière, “Incremental construction of an associative
network from a corpus,” 2004.

[103] M. S. Seidenberg and J. L. McClelland, “A distributed, developmental
model of word recognition and naming.,” Psychological review, vol. 96, no. 4,
p. 523, 1989.

[104] M. W. Harm and M. S. Seidenberg, “Computing the meanings of words
in reading: cooperative division of labor between visual and phonological
processes.,” Psychological review, vol. 111, no. 3, p. 662, 2004.

[105] M. S. Seidenberg, “Connectionist models of word reading,” Current direc-
tions in psychological science, vol. 14, no. 5, pp. 238–242, 2005.

[106] C. Perry, J. C. Ziegler, and M. Zorzi, “Nested incremental modeling in the
development of computational theories: the cdp+ model of reading aloud.,”
Psychological review, vol. 114, no. 2, p. 273, 2007.

[107] S. Dehaene, L. Cohen, M. Sigman, and F. Vinckier, “The neural code for
written words: a proposal,” Trends in cognitive sciences, vol. 9, no. 7,
pp. 335–341, 2005.

[108] J. G. Cromley and R. Azevedo, “Testing and refining the direct and infer-
ential mediation model of reading comprehension.,” Journal of Educational
Psychology, vol. 99, no. 2, p. 311, 2007.

[109] P. Van den Broek, “Using texts in science education: Cognitive processes
and knowledge representation,” Science, vol. 328, no. 5977, pp. 453–456,
2010.

[110] O. Etzioni, M. Banko, and M. J. Cafarella, “Machine reading.,” in AAAI,
vol. 6, pp. 1517–1519, 2006.

[111] O. Etzioni, M. Cafarella, D. Downey, A.-M. Popescu, T. Shaked, S. Soder-
land, D. S. Weld, and A. Yates, “Unsupervised named-entity extraction
from the web: An experimental study,” Artificial intelligence, vol. 165,
no. 1, pp. 91–134, 2005.

[112] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and O. Etzioni,
“Open information extraction for the web,” in IJCAI, vol. 7, pp. 2670–2676,
2007.

[113] F. Wu and D. S. Weld, “Autonomously semantifying wikipedia,” in Pro-
ceedings of the sixteenth ACM conference on Conference on information
and knowledge management, pp. 41–50, ACM, 2007.

89

[114] C. Kwok, O. Etzioni, and D. S. Weld, “Scaling question answering to the
web,” ACM Transactions on Information Systems (TOIS), vol. 19, no. 3,
pp. 242–262, 2001.

[115] S. Schoenmackers, O. Etzioni, and D. S. Weld, “Scaling textual inference
to the web,” in Proceedings of the Conference on Empirical Methods in
Natural Language Processing, pp. 79–88, Association for Computational
Linguistics, 2008.

[116] D. J. Kurland, “Inference: The process,” 2000.

[117] K. A. Ericsson and W. Kintsch, “Long-term working memory.,” Psycholog-
ical review, vol. 102, no. 2, p. 211, 1995.

[118] G. Dewar, “Parenting for the science-minded,” 2012.

[119] A. Baddeley and G. Hitch, “Working memory,” 2010.

[120] A. Yessenalina, Y. Yue, and C. Cardie, “Multi-level structured models for
document-level sentiment classification,” in Proceedings of the 2010 Confer-
ence on Empirical Methods in Natural Language Processing, pp. 1046–1056,
Association for Computational Linguistics, 2010.

[121] D. Tang, B. Qin, and T. Liu, “Learning semantic representations of users
and products for document level sentiment classification,” in Proc. ACL,
2015.

[122] V. F. Hopper, 1001 Pitfalls in English Grammar. Barron’s Educational
Series, 1986.

[123] E. Riloff, S. Patwardhan, and J. Wiebe, “Feature subsumption for opinion
analysis,” in Proceedings of the 2006 Conference on Empirical Methods in
Natural Language Processing, pp. 440–448, Association for Computational
Linguistics, 2006.

[124] T. O’Keefe and I. Koprinska, “Feature selection and weighting methods in
sentiment analysis,” ADCS 2009, p. 67, 2009.

[125] Y. Yang and J. O. Pedersen, “A comparative study on feature selection in
text categorization,” in ICML, vol. 97, pp. 412–420, 1997.

[126] A. Yousefpour, R. Ibrahim, and H. N. Abdull Hamed, “A novel feature re-
duction method in sentiment analysis,” International Journal of Innovative
Computing, vol. 4, no. 1, 2014.

[127] E. Breck, Y. Choi, and C. Cardie, “Identifying expressions of opinion in
context.,” in IJCAI, vol. 7, pp. 2683–2688, 2007.

90

[128] A. Hassan, A. Abbasi, and D. Zeng, “Twitter sentiment analysis: A boot-
strap ensemble framework,” in Social Computing (SocialCom), 2013 Inter-
national Conference on, pp. 357–364, IEEE, 2013.

[129] S.-M. Kim and E. Hovy, “Determining the sentiment of opinions,” in Pro-
ceedings of the 20th international conference on Computational Linguistics,
p. 1367, Association for Computational Linguistics, 2004.

[130] I. Becker and V. Aharonson, “Last but definitely not least: on the role of the
last sentence in automatic polarity-classification,” in Proceedings of the acL
2010 conference Short Papers, pp. 331–335, Association for Computational
Linguistics, 2010.

[131] Y. LeCun and Y. Bengio, “Convolutional networks for images, speech, and
time series,” The handbook of brain theory and neural networks, vol. 3361,
no. 10, 1995.

[132] W. Fletcher, “Kfngram,” Retrieved July, vol. 29, p. 2009, 2002.

[133] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer, “Feature-rich part-
of-speech tagging with a cyclic dependency network,” in Proceedings of
the 2003 Conference of the North American Chapter of the Association
for Computational Linguistics on Human Language Technology-Volume 1,
pp. 173–180, Association for Computational Linguistics, 2003.

[134] N. Habash and F. Sadat, “Arabic preprocessing schemes for statistical
machine translation,” in Proceedings of the Human Language Technology
Conference of the NAACL, Companion Volume: Short Papers, pp. 49–52,
Association for Computational Linguistics, 2006.

[135] S. Green and C. D. Manning, “Better arabic parsing: Baselines, evalua-
tions, and analysis,” in Proceedings of the 23rd International Conference
on Computational Linguistics, pp. 394–402, Association for Computational
Linguistics, 2010.

[136] N. Chomsky, “On certain formal properties of grammars,” Information and
control, vol. 2, no. 2, pp. 137–167, 1959.

[137] E. Refaee and V. Rieser, “An arabic twitter corpus for subjectivity and
sentiment analysis.,” in LREC, pp. 2268–2273, 2014.

[138] N. Farra, K. McKeown, and N. Habash, “Annotating targets of opinions in
arabic using crowdsourcing,” in ANLP Workshop 2015, p. 89, 2015.

91

[139] B. Mohit, A. Rozovskaya, N. Habash, W. Zaghouani, and O. Obeid, “The
first qalb shared task on automatic text correction for arabic,” in Proceed-
ings of the EMNLP 2014 Workshop on Arabic Natural Language Processing
(ANLP), pp. 39–47, 2014.

[140] A. Go, R. Bhayani, and L. Huang, “Twitter sentiment classification using
distant supervision,” CS224N Project Report, Stanford, vol. 1, p. 12, 2009.

[141] E. Kouloumpis, T. Wilson, and J. D. Moore, “Twitter sentiment analysis:
The good the bad and the omg!,” Icwsm, vol. 11, pp. 538–541, 2011.

[142] A. Z. Khan, M. Atique, and V. Thakare, “Combining lexicon-based and
learning-based methods for twitter sentiment analysis,” International Jour-
nal of Electronics, Communication and Soft Computing Science & Engi-
neering (IJECSCSE), p. 89, 2015.

[143] M. Maamouri, A. Bies, S. Kulick, F. Gaddeche, W. Mekki, S. Krouna,
B. Bouziri, and Z. Wajdi, “Arabic treebank: Part 1 v 4.1,” LDC Catalog
No. LDC2010T13. ISBN, 2010.

[144] N. Habash and F. Sadat, “Arabic preprocessing schemes for statistical ma-
chine translation,” 2006.

[145] S. M. Mohammad, “A practical guide to sentiment annotation: Chal-
lenges and solutions,” in Proceedings of the Workshop on Computational
Approaches to Subjectivity, Sentiment and Social Media Analysis, 2016.

[146] N. Habash and O. Rambow, “Magead: a morphological analyzer and gen-
erator for the arabic dialects,” in Proceedings of the 21st International Con-
ference on Computational Linguistics and the 44th annual meeting of the
Association for Computational Linguistics, pp. 681–688, Association for
Computational Linguistics, 2006.

[147] M. Altantawy, N. Habash, O. Rambow, and I. Saleh, “Morphological anal-
ysis and generation of Arabic nouns: A morphemic functional approach,”
in Proceedings of the International Conference on Language Resources and
Evaluation, LREC. Valletta, Malta, 2010.

[148] J. Cohen, “A coefficient of agreement for nominal scales. educational and
psychosocial measurement, 20, 37-46,” 1960.

[149] J. L. Fleiss, B. Levin, and M. C. Paik, Statistical methods for rates and
proportions. John Wiley & Sons, 2013.

92

