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AN ABSTRACT OF THE THESIS OF 
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            Major: Power Engineering 
 
 
 
Title: Battery modeling for life time assessment 
 
 

Batteries have played a crucial role in power systems of different sizes, ranging 
from small portable electronic devices, to hybrid electric vehicle (HEV), as well as 
storage devices in renewable systems. The two main challenges of renewable energy 
sources are their intermittency and unpredictability, which are two drawbacks that can 
be mitigated by the usage of battery storage in the system. Many power engineers 
continuously thrive to understand the performance of batteries and their ageing process 
by modeling.  The uncertainty of the expected lifetime of a battery has a significant 
impact on the cost of a given project as well as its effectiveness. This uncertainty in the 
life time of a battery can be limited by modeling it using circuit parameters and 
identifying how these parameters vary over time, which is the essential focus of this 
thesis.  The ageing process of the battery is simulated in an experimental setup that 
charges and discharges the battery in a cyclic manner through the use of a 
programmable power supply and an electronic load.  Three different approaches were 
attempted to estimate the battery lifetime. The first relies on using the total energy 
supplied by a battery through all the discharge cycles of the experiment as a reference 
for the energy supplied, obtained by integration of delivered power over time while the 
battery is being used. The second approach relies on discharging the battery for 20 
minutes while measuring its terminal voltage; if it drops to below 1.75V per cell then 
the battery is to be replaced. The third method is based on the use of electrochemical 
impedance spectroscopy (EIS) to measure the variation in internal model parameters as 
the battery is cycled and thus aged.  The models used were of the single and double 
Randle cell which consists of a resistance in series with one or two polarization circuits 
formed by one or more resistance in parallel with one or more double layer capacitance. 
Other models based on an infinite Warburg impedance element as well as a finite 
Warburg impedance model were also used. The Shepherd’s model for discharging was 
also used to investigate how battery ageing affects the parameters of this model. Three 
lead-acid battery samples were tested through cycling while measuring the discharge 
time, the terminal voltage and current. An EIS device was used to measure the real and 
imaginary battery impedance using a frequency range of 1 to 1000 Hz at different stages 
of the cycling process from which the internal battery parameters were estimated.  We 
finally used an Artificial Neural Network to relate these parameters to the total energy 
delivered through its life time which was considered to represent the age of the battery.   
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CHAPTER I 

INTRODUCTION 

 

Electrical energy is considered the most important form of power since it can be 

easily applied and converted into light, heat or any other form. The main problem is that 

electrical energy is hard to be stored in large quantities. Capacitors store it directly but 

with limited quantities, and its storage in larger quantities requires it to be changed into 

another form. In batteries, the energy of chemical compounds acts as a storage medium. 

Batteries are devices that can store the electrical power in the form of chemical energy 

and release it by internal chemical reactions when it is needed. Rechargeable batteries 

are electrochemical cells that convert the stored chemical energy into electrical form by 

a discharging process and vice versa by a charging process. 

Batteries have played a crucial role recently in many power systems, for 

example they are used as power sources for portable electronic devices. Nowadays the 

trend is to use batteries as an economically and environmentally friendly power sources 

in hybrid electric vehicle (HEV) as well as  storage devices in HEV’s and renewable 

systems. Batteries do not have only an impact on the system operation and performance, 

but also they greatly affect the life cycle cost of a specific power plant. The two main 

challenges of renewable energy sources are their intermittency as well as their 

unpredictability. These two challenges can be faced by the usage of batteries in the 

system.  

Power system designers in general agree that one of the essential weak links in 

the long-term operation of renewable rural-based energy framework is batteries due to 

their limited life and high cost. The construction of the electrodes of a battery and the 
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electrolyte sets are the main ways to distinguish their structure. Many power engineers 

continuously thrive to improve the performance of a battery as well as its ageing 

process by modeling it. As it was mentioned, the uncertainty of the expected lifetime of 

the battery has a tremendous impact on the cost of the project as well as its 

effectiveness. The uncertainty can be limited by modeling it because this will help 

expect its life time more accurately and possibly help extend its efficient time. One 

method of modeling batteries is by using circuit parameters and identifying how these 

parameters vary over time as it is utilized.  

Battery models focus on three different characteristics. The first and commonly 

used model is a simple performance model that depends mainly on modeling the state of 

charge of the battery. The second type is circuit model with parameters that is used to 

predict the terminal voltage and current and hence used for elaborate modeling of the 

battery operation and its management system to provide detailed calculations of the 

losses of the battery. The last type is the lifetime model that is used for assessing the 

impact of operating criteria on the expected life time of the battery. One of the widely 

used models uses the Shepherd that describes the relation of the output voltage with the 

state of charge and current throughput. The parameters in the Shepherd’s equation can 

be related to the physical or chemical attributes of the battery which are different for the 

different types like internal resistance, open circuit voltage, discharge current and the 

state of charge [1]. 

Scientists investigated many different types of batteries, among them, lithium-

ion and lead-acid. Many types of life time models exist but the main types are post-

processing models, and performance degradation models. The performance model 

consists of two parts, the charge transfer and the battery voltage. The charge transfer is 
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in fact the state of charge (SOC) which is evaluated by evaluating the time integral of 

the input current. The battery voltage is the voltage that is calculated using Shepherd 

equation. The battery degradation model is related to the continuously charging and 

discharging process, and how this process affects the model parameters. Another factor 

that affects the battery degradation is temperature.  With higher temperature, the 

deterioration will be faster and so the energy that can be extracted from the battery will 

be affected. At higher temperature, a battery capacity will be higher compared to the 

same at lower temperature, but on the expense of its life time. For example a Lithium-

Ion battery may loss about 10% of its capacity after 1000 charging cycles, under25°C , 

of course the amount of capacity loss will be smaller after 1000 charging cycles at 40°C.  

In this thesis, different approaches were followed based on an experimental 

setup to cycle the battery through charging and discharging and monitoring the voltage 

and current throughout the experiment. The first approach is based on using the 

electrochemical impedance spectroscopy (EIS) to determine battery parameters 

applying different models. The second approach based on the energy integration method 

where the total energy delivered by the battery is calculated using the discharge curves. 

The third approach based on carrying out a 20 minutes discharge test and observes the 

voltage across the battery terminals. The fourth approach is combining the first and 

second approaches using the Artificial Neural Network where the energy delivered from 

the battery is considered as an interpretation of the battery’s life time.    

Since the thesis based on experimental results, a full description of the 

experiment setup and description of the software that drive the instruments that charges 

and discharges the battery will be explained thoroughly. Then discussion of the sample 

output will follow. After that the results on models will be considered to determine 
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which model is the best fit to the experimental data received from the experiment.  

Finally results based on the data will be promoted and analyzed to make a proper 

assessment of the life time of the battery based on the variation of its internal 

parameters. 
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CHAPTER II 

LITERATURE REVIEW 

 

Zeitouny et al [2], tried to model a typical battery using electrical circuit models 

that best fits its operational behavior. She used the least square estimation method to 

derive the parameters of the model design, which minimizes the sum of squares of 

errors between measured impedance values and those values given by the model. She 

used the impedance spectroscopy experimental means to obtain the values of the 

impedances measured. The experiments were applied to Lithium-iron as well as lead-

acid batteries. Using the graphical user interface connected to computer to monitor the 

changes in the values of real and imaginary impedance values as the state of charge and 

frequency change. She applied the experiment to a single- time constant Randle cell, 

Two Randle cell, and a circuit using a finite Warburg to model the batteries. To make 

the behavior of the model tractable, an algorithm as well as an experimental setup is 

done simultaneously. She found out that the single Randle cell model didn’t in fact 

represent the Lead-acid battery since the measured and the theoretical impedance values 

didn’t match, while infinite Warburg impedance model shows a perfect match (from 0.1 

HZ to 1 KHZ) specially at low frequencies. For Lithium-ion battery, also the single 

Randle cell failed to model the variations of the impedance values as the frequency and 

state of charge change. The Two Randle cell gave best representation of the behavior of 

the Lithium-ion battery (from 1HZ to 1 KHZ). 

 

Tremblay et al [1] represented an easy – to – use battery model that was applied 

to dynamic simulation software. It used the battery state of charge only as a state 



6 

variable in a trial to avoid the algebraic loop problem. This method is used to extract the 

model parameters and to approximate its internal resistance. The model is then validated 

by mounting the results with the manufacturer’s discharge curves. Finally the battery 

model is included in the SimPowerSystems (SPS) simulation software. According to 

Tremblay et al, it is important to develop an accurate battery model which can easily be 

used with simulators of power systems and on- board power electronic systems. Based 

only on the SOC, the model is chosen in order to reproduce the manufacturer’s curves 

for four major types of battery chemistries. These types are: Lead- Acid, Lithium-ion 

(li-ion), Nickel-Cadmium (NiCad) and Nickel-Metal-Hybrid (NiMH). The paper is 

divided into three sections. In the first section, the proposed model parameters are 

described based on utilizing simple controlled voltage source in series with a constant 

resistance. And a method is described to show to extract the battery parameters from the 

manufacturer’s discharge curves of the battery. The second section presented a 

discharge curves that are obtained by simulations and are validated with the 

manufacturer’s datasheets. The third section presents an application of an integrated 

battery model to the SimPowerSystems (SPS) used in the complete simulation of an 

HEV power train based on several assumptions. The validation approach is 

accomplished by comparing directly (by superposition) the obtained discharge curves 

using the model with those of the manufacturers. The model then integrated in the 

MATLAB-Simulink Sim- Power Systems library, and then is used in the SPS 

simulation of a complete HEV power train. The proposed model is simple and requires 

few parameters (only three points on the discharge curve which are defined as: the fully 

charged voltage, the end of the exponential zone, and the end of the nominal zone) and 

accurately represents the discharge curves of the manufacturers. The results obtained 
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after applying the model show the possibility of using this battery model to represent 

transient states. 

 

Zhang and Chow [6] proposed that it is important to find an accurate battery 

model that describes the precise battery state, such as the state of charge, the state of 

health and the state of function, which determines the power capability of the battery, 

for an optimal usage, since the PHEV applications require a battery model which can 

accurately simulate and predict the battery performance under different dynamic loads, 

environmental and battery conditions. He found out that such model prolong the battery 

life, and enable vehicle to grid and vehicle to home applications. To do that he proposed 

that such model should precisely describe the nonlinear I – V battery performance by 

examining the battery’s hysteresis effect and the battery relaxation effect which are the 

corner stone of Zhang paper. The relaxation effect is simply the measure of time for the 

terminal voltage that the battery requires to relax after charging and discharging, to the 

new steady state value. For a certain PHEV applications an appropriate battery model is 

selected and this is done by formulating a multi-objective optimization problem 

balancing between the model accuracy and the computational complexity within the 

constraints set by the minimum acceptable accuracy and maximum allowable 

computational complexity time. An equivalent circuit based on the Thevenin's theorem 

is used as the basis for the battery model to provide an accurate battery I-V 

performance. Zhang used a series connected RC parallel circuits to model the battery’s 

relaxation effect. The circuit is composed of two parts; the left part describes how the 

battery SOC varies with the current. The battery capacity is expressed by CCapacity. The 

right part in turn describes the relation between the load current and the battery terminal 
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voltage. Root mean square percentage error (RMSPE) and maximum percentage error 

(MPE) are used to quantify the model accuracy for models containing RC circuits 

ranging from one to five. Zhang found that the more RC circuits used increases the 

model accuracy, but at the same time increases the model’s computational complexity. 

He formulated the model parameter determination as a typical least squares fitting 

problem and used the Gauss-Newton algorithm to solve the problem. Formulating a 

multi-objective optimization problem with two objectives: to maximize the model 

accuracy and to minimize the model complexity. Also two constraints had to be 

defined: the accuracy required and the maximum complexity allowed. By maximizing 

the modeling accuracy while minimizing the modeling complexity, the optimization 

problem tries to find out the optimal solution.  

 

Li and Ke  [4] presented a comparison study of mathematical and circuit- 

oriented battery models applied to lead- acid batteries, since these batteries are used for 

large power storage applications. This study shows how mathematical and circuit 

oriented battery models are developed to represent the batteries electrochemical 

properties. And then the relation will be analyzed. He showed that fundamental battery 

electrochemical relationship is explicitly built into the battery mathematical model but 

not directly in the circuit – oriented one. The mathematical battery models are mainly 

developed based on Shepherd’s relation to predict system-level behavior, such as 

battery runtime, efficiency, or capacity.  The Circuit –oriented models are electrical 

equivalent models which use the voltage sources, resistors, and capacitors 

combinations. There have been many circuit-oriented battery models. This paper 

presents this comparison study with a focus on the lead- acid batteries. For 
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mathematical battery model, and based on Shepherd relation the fundamental voltage-

current relation with the SOC is built into the model. While for the circuit –oriented 

battery model, the effect of the SOC to the circuit parameters is not directly tractable. 

There are several distinctions between the two approaches but the main difference is 

that regarding model extraction parameters of a mathematical battery model obtained by 

solving a system of equations or utilizing regression techniques. Taking into 

considerations that the parameter extraction of runtime- based circuit- oriented battery 

models requires more expensive computational power.  

 

Low Wen Yao et al [5] developed an electrical battery model in 

MATLAB/Simulink. Where lithium Ferro Phosphate battery is presented. This model is 

claimed to be capable of simulating current- voltage performance in a highly accurate 

manner. He built his model based on Shepherd equation, but unable to characterize the 

nonlinear current-voltage performance of battery. So a new battery model based on the 

equivalent circuit model should be applied to MATLAB/Simulink to obtain a more 

accurate simulation results. Low found out the equivalent circuit model for battery 

developed in MATLAB/Simulink and the parameters of the battery model were 

determined using an experimental result. The model circuit is a dynamic equivalent 

circuit model consists of a dc voltage source, a series resistance and two RC parallel 

circuits. Successfully representing the open circuit voltage (OCV) using DC voltage 

source, the series resistance is used to represent the internal dc resistance and RC 

parallel networks (R1, C1, R2, C2) are used to represent the transient response voltage. 

The comparison results come up to show that the voltage curves of the simulation and 

the experimental results are perfectly matched. The RMS error of voltage in random 
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load test is 20.32mV, which is 0.635% to the nominal voltage of the battery. This 

confirms that the developed model can perform accurately in random load conditions. 

So he concluded that an accurate MATLAB/Simulink battery model is recommended to 

characterize the dynamic characteristics of the Lithium –ion battery. 

 

  Layadi et al [9] stated that the battery lifespan depends mainly on the number of 

cycles and the depth of discharge (DOD). But he added that in renewable hybrid power 

systems, the charging and discharging cycles are random and not regular. A relevant 

way for aging lead-acid batteries connected to a standalone multi source renewable 

system has been developed. It depends on the Rain Flow method for counting cycles 

and considers instantaneous DOD and average temperature. In this paper Toufic settled 

a method for classifying the number of cycles for each functioning year according to the 

DOD. Based on these data, the battery degradation rate is being estimated and so it is 

possible to come up with conclusions concerning battery life span. He promoted the 

method to be applicable to a multi power-system simulated dynamically under 

MATLAB/Simulink. According to Layadi et al, It should be taken into account several 

inputs and elements such as sun radiation, wind speed, load profile, photovoltaic 

generator, wind turbine and diesel generator to have results with good accuracy. Also he 

proved that the DOD as well as the nominal battery capacity are factors that affect the 

battery lifespan. In fact he investigated two models, the first represents the variation of 

the number of cycles according to temperature, and the second model represents the 

variation of the number of cycles according to various depths of discharge DOD. He 

supposed that we should simulate the battery by different values of maximum DOD if 

we want to successfully evaluate the aging of the battery bank. Then he presented a 



11 

Rain Flow algorithm he had used to extract the cycles of the battery operation. Where 

this algorithm is based on the extraction of cycles from a signal which represents the 

degradation of the system. 

 

Stephen Buller et al [23] employed the electrochemical impedance spectroscopy 

to find the equivalent battery parameters for a super capacitors and Lithium-ion 

batteries. He used the Lithium –ion and super capacitors to present the nonlinear and 

lumped-element-equivalent circuit models that give the accuracy requirements for 

energy storage devices models simulations. The method of EIS is used and the 

simulation results are compared to test-bench data. Perfect matching of simulation 

results and measured voltage data. Due to the versatility of his approach (impedance – 

based modeling), then it can promoted to the fuel oil stacks in the future. And of course 

will give a chance for the combined simulation of different energy storage devices on a 

purpose to evaluate the new storage-hybridization concepts. 

 

Daowd et al [3] proposed a new method to estimate the parameters of the battery 

based on MATLAB/Simulink estimation tool for three famous battery models; the 

partnership for a New Generation of vehicles (PNGV), Thevenin and second order 

battery model. He used Lithium polymer (Li-Po) 12Ah, 3.7V battery to be tested by a 

specific standard tests under different states of charge (SOC), temperatures and current 

rates. Three model parameters are estimated in these conditions. To acquire an 

acceptable results, two steps has to be aware of, the first step is applying a standard tests 

for estimating the parameters of the battery. The second step is to use an accurate 

method to estimate the battery parameters with minimal errors. So he followed a new 
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parameter estimation method using MATLAB/Simulink parameter estimation tool, 

which is easy, fast processing time, useful, powerful tool and it is applicable for any 

battery model. The validity of the Simulink for any model is a spectacular advantage 

which makes it a special tool in parameter estimation as well as model modification, 

also it requires less processing time, easy to implement, and a powerful tool that gives 

accurate results. The second order battery model gives the best response with the least 

error into the battery simulation modeling. Also the best response can be noticed during 

the validation simulations.  Thevenin battery model in turn, gives the maximum voltage 

error while the PNGV battery model gives an error that is intermediate between 

Thevenin and the second order model[3]. 

 

Jongerder and Haverkort [7] explained the effect of nonlinear physical effects in 

the battery. The life time depends on the usage pattern beside the rate of consumption of 

the device. He demonstrated that during the periods of high energy consumption, the 

effective capacity degrades; hence the lifetime will be reduced. However, during 

periods without energy consumption, the battery can recover some of its lost capacity, 

and consequently the lifetime will be extended. They investigated different approaches 

that have been utilized to model batteries. They studied their properties, starting from 

very detailed electro-chemical models to high level stochastic models. They gave a deep 

insight of the electrochemical basics of batteries and define what so called ’recovery 

effect’, which is the recovery of the battery capacity lost during the periods of high 

discharge when the discharge rate is lowered to a certain extent. Also they define the 

electrochemical models which are based on chemical process that takes place in the 

battery. 
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They used Dualfoil, the FORTRAN program to simulate the Lithium-ion 

batteries using an electrochemical model. The program deduces how the battery 

properties change overtime for the load profile set by the user. From the output data, 

they proposed it is possible to come up with the battery life time. Beside the load 

profile, the user has to set over 50 battery related parameters, like, the thickness of the 

electrodes, the initial salt concentration in the electrolyte and the overall heat capacity. 

They investigated the electrical circuit models. They concluded that although the 

electrical circuit models are simpler and computationally less expensive than the 

electrochemical models, they still require massive efforts to construct the electrical 

circuit models beside they are less accurate. Further they defined the analytical model 

that describes the battery at a higher level of abstraction than electrochemical and 

electrical circuit models. At the end, they defined the Peukert’s law which is the 

simplest model used to predict the life time of the battery by relating the nonlinear 

relationship of the lifetime of the battery and the discharge rate without considering the 

recovery effect. 

 

Unterrieder et al [8] proposed a scheme that presents a battery open-circuit 

voltage extrapolation method that uses a modified version of the approximate least 

squares estimation scheme for the estimation process. The proposed project is applied to 

battery state-of-charge estimation. By predicting the battery's electromotive force, the 

suggested approach allows for a highly improved re-initialization of the Coulomb 

counting based state-of-charge estimation method. The proposed methodology makes 

use of the EMF- SOC table based re-calibration method. 
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Miriam et al [11] used the Artificial Neural Network with back propagation to 

predict the life time and the behavior of lead acid battery as a function of less discharge 

time, less energy and less working hours. The experimental training data set like 

discharge voltage and time were used to predict the unknown outcomes. It proved that 

the predicted values were close enough to the practical results. They showed an 

acceptable performance and capabilities. They concluded that they can be considered as 

a leading resolution concerning maintenance and a guide decision to replace the used 

battery by learning.  They performed experiments concerning the prediction of a battery 

with a floating service and daily discharge, prediction of the battery life with endurance 

cycle (life cycle test) and the prediction of the discharge manner at high discharge rates 

and cold cranking at low temperature. They concluded that the results were good 

without a need for many experimental data. 

Thesis contribution: 

The main focus of this thesis is to determine a method or approach to estimate 

the battery life-time or to clearly answer the question: should the battery be replaced or 

not? 

           Three different approaches were attempted to estimate the battery life time. The 

first relies on using the total energy supplied by a battery through all the discharge 

cycles of the experiment as a reference for the energy supplied, obtained by integration 

of delivered power over time while the battery is being used. The second approach 

relies on discharging the battery for 20 minutes while measuring its terminal voltage; if 

it drops to below 1.75V per cell then the battery is to be replaced. The third method is 

based on the use of electrochemical impedance spectroscopy (EIS) to measure the 

variation in internal model parameters as the battery is cycled and thus aged.  The 
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models used were of the single and double Randle cell which consists of a resistance in 

series with one or two polarization circuits formed by one or more resistance in parallel 

with one or more double layer capacitance. Other models based on an infinite Warburg 

impedance element as well as a finite Warburg impedance model were also used. The 

Shepherd’s model for discharging was also used to investigate how battery ageing 

affects the parameters of this model. Three lead-acid battery samples were tested 

through cycling while measuring the discharge time, the terminal voltage and current. 

An EIS device was used to measure the real and imaginary battery impedance using a 

frequency range of 1 to 1000 Hz at different stages of the cycling process from which 

the internal battery parameters were estimated.  We finally used an Artificial Neural 

Network to relate these parameters to the total energy delivered through its life time 

which was considered to represent the age of the battery.   
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CHAPTER III 

STATE OF HEALTH AND STATE OF CHARGE 

 

To understand what the battery state of health means, it is better to understand 

the electro-chemical processes that the battery undergoes which controls its 

performance and life degradation. Battery capacity can be defined as the total charge or 

energy delivered by a fully charged battery before depletion. For a certain temperature 

and discharge current, the rated capacity is given by amp-hours (Ah). The available 

capacity depends mainly on the discharge current and the temperature, when they vary 

its actual available value will not be the same. Before going on the definition of the 

battery state of health, its state of charge (SOC) and battery aging, a closer look about 

the chemistry of the battery will be beneficial understanding the behavior of the battery 

and its characteristics. 

 

A. Battery chemistry background 

The chemical process that occurs in the cell is responsible for the dynamic 

electrical behavior of the battery during charging and discharging operation. 

Understanding the reactions that occur in the battery’s cell gives us a great insight of its 

functionality. 

In the active material bonded to the positive and negative metallic electrodes, the 

battery cell stores the electrochemical energy. When an external circuit is connected to 

the battery electrodes, chemical compositions change and consequently, electrons will 

have the mobility from one active material to the other. The shuttling ions between the 
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the active mass and decreased active surface area. Knowing the reactions and reactants 

that must be present at each active mass surface for current to flow is very important in 

understanding the dependence of battery performance on operating conditions. 

Furthermore, the morphological structure and availability of the active materials 

themselves will also play a large role in battery electrical behavior. Measurements of 

voltage and open circuit voltage during discharge will help determining the 

 State of health (SOH) and the state of charge (SOC) of the battery. 

In lead-acid batteries, the electrolyte is diluted and broken down to lead-sulfate and 

water as the SOC depleted. In the following sections we are going to define the state of 

health and the state of charge and present the method used to measure them. 

 

B. Definition of state of health (SOH) 

The state of health is a measure that reflects the condition of the battery or the 

performance of the battery compared with the fresh unused one. In another way it is a 

figure of the quality of its condition compared to the condition of an ideal one. It is 

measured in percentage. i.e. that a battery’s state of health is equal to 100% when it is 

newly produced or manufactured, and this percentage will decrease over time and 

usage. The state of health is an important parameter of the battery to measure its 

remaining life time, and to change it before its total failure.  

The performance or the “health” of the battery continuously deteriorate due to 

the physical and chemical reactions that take place during the usage of the battery till it 

ages and no longer usable. The SOH is acting as an indication of the condition of the 

battery relative to the fresh one. 
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There is no obvious method to measure the SOH since it is an estimation rather 

than measurement according to people perspectives. SOH tracking techniques are in 

their infancy, the battery management system defines the SOH as the ability of the 

battery cell to store energy, deliver, receive power and high currents and hook up charge 

over long periods relative to its nominal capabilities. 

 

1. Parameters 

Unlike the state of charge (SOC) that can be evaluated by measuring the actual 

existing charge in the battery, measurement of the state of health is a subjective reliance 

in that engineers derive it from the variety of different measurable battery parameters. 

Since the SOH applies only to batteries that started to age either due storage or entered 

service. The SOH is determined by the test equipment’s or by the users themselves via 

determining some parameters. The battery designer management system may use one or 

a combination of the following parameters to derive a value for the state of health since 

SOH doesn’t correspond to any physical interpretation, these parameters are: 

1- Internal resistance 

2- Capacity. 

3- Voltage. 

4- Self- discharge. 

5- The ability to accept a charge. 

6- Cyclic number (number of charge- discharge cycles). 

The most important parameter of the battery to estimate its state of health is the 

capacity which can be determined by different methods, but the direct evaluation of the 

capacity is time consuming beside it is very difficult to find out the value of the capacity 
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when the battery is operating. So we can measure any of the above parameters which 

have a good correlation to the capacity, but on a condition that the measured parameters 

at time t should be linked to the capacity at that time t. In VRLA (valve regulated Lead 

acid) batteries, measurement of the battery impedance proved to have the best results for 

determination of the state of health for VRLA batteries. 

 

2. SOH applications  

Usually the battery management system estimates the SOH of the operating 

battery [14]. This estimation is then compared to what so called the SOH threshold of 

the given implementation. Comparing these two values gives a clear insight whether the 

selected battery is suitable for this usage, and also lifetime assessment of the battery is 

then possible.  So we can conclude that the purpose of the state of health is to give an 

insight of the expected performance of the battery when put in operation and to provide 

an indication of the life time consumed and the useful lifetime remaining before the 

battery ages. Engineers can use SOH to contemplate problems concerning fault 

diagnosis or replacement of recent plan. SOH mainly is a long term battery changes 

tracking phenomena. 

 

C. State of Charge 

The state of charge (SOC) indicates the amount of charge that the battery can 

deliver with respect to its nominal capacity. Measuring the amount of energy left in the 

battery relative to the total energy that it  had when fully charged, gives an indication of 

the time that the battery will perform a certain application before recharging. It is a short 

term capability measure of the battery. A fully charged battery will have a 100% SOC 
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while the fully discharged one will have a 0% SOC.  The SOC is usually defined as the 

available capacity expressed as a percentage of a certain reference. Sometimes this 

reference could be the rated capacity of the battery but usually the reference is chosen to 

be its current. 

Engineers prefer to consider the new cell rated capacity as a reference rather 

than the current capacity of the cell. The reason is that the cell capacity is affected when 

the cell ages; also it is affected by the temperature and the discharge rate since 

temperature and discharge rate reduces its effective capacity. Battery’s SOC is very 

important parameter in the modeling and diagnostic perspectives. From a modeling 

perspective the dynamic features of the battery changes with the SOC, and if the battery 

is operated or stored at low SOC, it will cause an irreversible damage to the battery in 

the diagnostic perspective. 

 

1. Determining the state of charge 

SOC can be estimated by many methods. Most consider the measurement of a 

suitable parameter that varies with the state of charge which is related to the chemistry 

changes that happen in the battery cell due to charging and discharging the battery. 

The direct measurement is the easiest method for measuring the SOC, but this 

would happen if the battery is discharged at a constant current rate. It is known that the 

battery charge is a result of the current multiplied by the time required for discharging. 

Two draw backs are in fact facing this method. First the discharge current in the 

practical cases is not constant; in fact the current is continuously reduced as the battery 

discharges in a non-linear manner.  For this reason any measurement apparatus should 

be able to integrate the current over the discharging time. Second, this method rely on 
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the discharging the battery to recognize the amount of charge it captured. But in real 

applications it is preferred to know this amount of charge without the need to discharge 

the battery. Further due to the losses caused by charge-discharge cycles, the battery will 

deliver less amount of charge than the amount it receives when charging. Other methods 

for SOC measurements are 

 

a. Specific gravity (SG) measurements for SOC 

It is an accustomed way for recognizing the charge condition of the lead acid 

battery depending on finding the variations of the weight of the active chemicals. As we 

explained earlier, as the discharge process is going on the electrolyte (Sulphric acid) is 

consumed and its concentration is reduced and consequently reduces the specific gravity 

of the electrolyte in proportion to SOC.  Accordingly this can be used as a hint of the 

state of charge. Slow and awkward suction hydrometer type was used to measure the 

specific gravity. Now electronic sensors with digital measurements can continuously 

and directly give readings of the electrolyte specific gravity. 

 

b. Voltage based estimation 

This method is based on measuring the voltage of the battery to determine the 

SOC or the active remaining capacity of the battery. It has a disadvantage that is the 

lack of accuracy since it depends on the actual voltage, the rate of discharge, 

temperature, and the battery age so a compensation factor should be taken into 

consideration to achieve an acceptable accuracy.   
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For that reason we can use current sensing methods like: 

1- Current shunt:  it is a low ohmic value, series, sense and high precision resistor 

between the battery and the load. It is required to measure the voltage drop across it. 

But the main drawback of this method is the power loss in the current path and it 

may cause a battery temperature rise. Another thing it has a lack of accuracy for low 

currents use. 

2- Hall Effect:  to avoid this problem engineers use transducers but they are expensive 

and can’t withstand high currents, further they are exposed to noise. 

3- GMR:  magneto resistive sensors are more accurate, higher sensitivity, higher 

temperature stability and provide higher signal level than the Hall Effect devices but 

they are more expensive. 

We should note that the coulomb counting depends on the current flowing from 

the battery (discharge) to an external circuit but not self-discharge currents. 

 

d. Internal impedance measurements for estimating the state of charge 

Between the charge and discharge state, the composition of the active chemicals 

in the battery cell keep changing. And accordingly the cell impedance will change. So 

we can use the measurement of the cell internal impedance to determine the state of 

charge (SOC). This method has limitations due to the difficulties in measuring the 

impedance of the battery while using it, further, the internal impedance itself is 

temperature dependent. 
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CHAPTER IV 

BATTERY MODELING 

 

A. Electrochemical Impedance Spectroscopy (EIS) 

Modeling the battery to better understand its behavior and estimate its life time 

directly requires deep study of the chemistry of the battery as we attempted to do in the 

last chapter. Alternatively, the chemical reactions taking place in the battery have an 

effect on the electrical parameters of a postulated model, which may be measured using 

a powerful tool  known as electro-impedance spectroscopy (EIS) that has the merit to 

supply us with the accurate and free – error kinetic and mechanistic information in the 

study of corrosion, batteries, electroplating and electro-organic synthesis.  

Electrochemical impedance is usually evaluated by applying an AC potential to 

an electrochemical cell and measure the current through the cell at different frequencies.  

The main feature of (EIS) is that one can simply represent the electrochemical cell by 

the usage of an electric model. When electrochemical reactions occurred at an electrode 

interface, it is identical to an electronic circuit or any equivalent circuit consisting of a 

combination of resistances and capacitors that are connected in series, parallel or series 

– parallel combination, since the chemical reactions with electrodes can obstruct the 

flow of the electrons that have resemblance to an electric circuit elements (resistors, 

capacitors and inductors) behavior.  Also the (EIS) can signal the damage of the coating 

on the metal substrate. Once a particular model is adopted, the physical and chemical 

properties of the elements of the circuit can be correlated and hence, assume numerical 

values obtained by fitting the measured data to the model elements. [17] 
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For this reason, the theory of the electric circuit will be applied starting from the “Ohms 

Law”. As we know the impedances of any electric circuit are R, ωL and 
ଵ

ఠ஼
  . Where ω 

is the angular frequency given ω = 2πf where f is the frequency of the applied signal in 

hertz (Hz).  

Nyquist and Bode plots are the most widely used data plots in the (EIS) since the 

frequency is shown on x-axis. Further, the Bode plots are logarithmic scale plots. 

 

B. Equivalent Circuit Models 

Several models are investigated in this chapter to monitor the behavior of the 

battery and try to predict its life time by monitoring the variation of its model’s internal 

parameters using the method of charging-discharging (cycling). Here we will discuss 

each model, its concept, the theory, the rules and equations used to find its parameters. 

Here we present the models in increasing level of complexity and expect that each 

model will give a more accurate and robust results than the preceding one. First, I will 

start with the single Randle cell model that would be considered as the corner stone to 

the other models. Second, the double Randle cell will be analyzed and try to use it to 

figure out the parameters of the battery for its life time assessment. Then a model with a 

finite Warburg impedance element will be examined to find out if it really represents the 

measured data and the parameters of the battery. After that, a more generalized model, 

infinite Warburg impedance model is analyzed and examined to fit the data. Finally a 

Shepherd equation model for an open circuit voltage is examined and a modified 

Shepherd model is tried to fit our data and then monitor the variation of its internal 

parameters to predict the battery life time. 
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1. Single Randle Cell 

The Single Randle Cell shown in Fig. 3 is considered the simplest model used to 

represent the battery’s functionality. It consists of a resistance that represents the 

electrolyte uncompensated solution resistance ( ܴ௦  ). This series resistance represents 

the opposition to the current flow, since most electrochemical cells don’t have a 

uniform distribution of currents through electrolytes. Calculating this series resistance is 

cumbersome because we should determine the current flow path and the electrolyte 

geometry. However, it is found by fitting the battery’s model to experimental EIS data. 

ܴ௦  is connected in series with a parallel combination of RC circuit. RC is the time 

constant of Randle cell formed by what so called the polarization resistance Rp in 

parallel with Cp. To understand what Rp stands for, we should define the word 

“polarizing the electrode”. It is referred to the potential of the electrode that is forced 

away from its open circuit value. When electrode polarization occurs, it causes a current 

flow by the electrochemical redox reactions that happened on the electrode surface; 

hence Rp is the charge transfer impedance. While Cp represents the double layer 

capacitance. The double layer capacitance is the layer that is formed when solution ions 

stick on the electrode surface. Electrodes charges are separated from these ions charges, 

this separation is of the order of angstroms, and as we know charges separated by an 

insulator form a capacitor. Many factors affect the value of the double layer capacitor, 

like, electrode potential, temperature, ionic concentrations, types of the ions, impurity, 

layers roughness and oxide layers. The time constant RpCp symbolize the time that the 

battery needs to change its state from transient to steady state. Single Randle cell is 

shown below. 
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And the equivalent impedance can be derived as follows: 

ࢗࢋࢆ ൌ 	࢙ࡾ	 ൅ ቆ࢖ࡾ૚	 ብሺ
૚

૚࢖࡯࢐࣓
ሻቇ ൅ ቆ࢖ࡾ૛	 ብሺ

૚
૛࢖࡯࢐࣓

ሻቇ 

This leads us after simplifications and using series parallel rules to  

ܼ௘௤ = ܴ௦ +		
ோುభ

ଵା௝	ఠൈோ೛భ	ൈ஼೛భ
൅

ோುమ
ଵା௝	ఠൈோ೛మ	ൈ஼೛మ

        (2) 

 

Double Randle Cell model proved to be suitable to model the Lithium- ion 

batteries; but lack the accuracy to model the lead acid batteries; hence it is poor in 

predicting the life time of lead acid batteries, however the model was applied as will be 

seen in the next chapters. 

 

3. Warburg Impedance Based Models 

The Warburg diffusion element is an equivalent circuit that characterizes the 

diffusion process that is associated with the charge transfer resistance and a double layer 

capacitance. It is related to the mass transfer of ions in the electrochemical system, and 

its presence can be justified if a linear relation of log ǀZǀ versus log (ω) has a slope equal 

to (-	ଵ
ଶ
 ).  

The circuit model of a single Randle’s cell with a Warburg Impedance to 

represent diffusion is shown below in Fig. 6. 
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ܼఠ	 ൌ 	
ఠܣ
√߱

∗ ሺ1 െ ݆ሻ										ሺ4ሻ 

 

Where “tanh’’ equals 1 at high frequencies [2]. The model would then be known 

as the infinite Warburg impedance model.  

The above equation can model the lead-acid battery internal circuit but at low 

frequencies to an acceptable accuracy. 

 

C. Shepherd’s equation 

Shepherd derived an equation directly describes the electrochemical behavior of 

the battery using several terms like, the terminal voltage, open circuit voltage, internal 

resistance, discharge current and the state of charge. This model is applied to charging 

or discharging states as well. The main problem with Shepherd is that it causes an 

algebraic loop problem in the closed loop simulations [2]. The Shepherd’s model 

describes the voltage – current characteristics. It is the preferred model for the 

photovoltaic (PV)-systems because it offers a high precision, further fewer parameters 

are involved with Shepherd model than other parameters. The parameters are extracted 

from experimental data analysis. Shepherd’s equation is expressed as follows [20]: 

௖ܷ௘௟௟ ൌ 	 ௢ܷ௖ െ	݃௖	ሺ1 െ ሻܨ 	൅	ߩ௖	
ூ

஼ಿ
	൅	

ఘ೎∗ெ೎∗ூ

஼ಿ
		

ி

஼	೎ିி
  

 (For 0˃  ܫ, battery is charging)…… (5) 

௖ܷ௘௟௟ ൌ 	ܷ௢ௗ െ	݃ௗ	ሺ1 െ ሻܨ 	൅	ߩௗ	
ூ

஼ಿ
	൅	

ఘ೏∗ெ೏∗ூ

஼ಿ
		

ி

஼	೏ିி
  

 (For 0> ܫ, battery is discharging)….. (6) 

 

The above equations contain four terms: 
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The first term is the open circuit voltage which balances the cell voltage after 

full charge and sufficient rest period	ࢉ࢕ࢁ. 

The second term is related to the state of charge. The third one represents the 

ohmic losses that are proportional to the current. The fourth term characterizes the 

charge factor over voltage that increases when the battery is nearly empty or fully 

charged. [2] 

In the above two equations we had: 

 .The terminal voltage of the battery in [V] :࢒࢒ࢋࢉࢁ

 The normalized SOC and it equals (1 – H), obtained by integrating the effective :      ࡲ

current then dividing it with the nominal capacity. 

I       : discharge current (I <=0) or charge current (I >0) in [A]. 

 the open circuit equilibrium voltage in [V] : ࢉ࢕ࢁ , ࢊ࢕ࢁ

 .proportionality constant over the electrolyte in [V]  :	ࢊࢍ ,	ࢉࢍ

,	ࢉ࣋  .The internal resistance parameter [ΩAh] : 	ࢊ࣋

 .The battery nominal capacity defined by the manufacturer [Ah] :     ࡺ࡯

Mc       : charge transfer over voltage coefficient. 

Cc, Cd: the normalized capacity coefficient. 

If we plot			࢒࢒ࢋࢉࢁ versus time of the experimental measured data versus the 

model we will note that the measured data trend has an exponential zone in the first 

region (Fig7). For that reason an exponential term is added so the above equation for 

discharging becomes: 

௖ܷ௘௟௟ ൌ ஻ሺଵିிሻି݁ܣ	 ൅ ௢ܷௗ െ	݃ௗ	ሺ1 െ ሻܨ 	൅	ߩௗ	
ூ

஼ಿ
	൅	

ఘ೏∗ெ೏∗ூ

஼ಿ
		

ி

஼	೏ିி
 ….. (7) 

And if we substitute H = 1 –F, where H is the depth of discharge. We get the 

following equation  
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Figure 8. Discharge curve for one of the tested lead acid batteries 

 

 

D. Methodology used for battery life time estimation 

According to the above explanations of the models proposed, our strategy to 

estimate the life time will be based on three approaches: 

 

1. Energy integration 

Figure 9 below shows the battery life time detection using energy integration. 

The theory behind this is a reference measure of the energy delivered by a battery 

during the discharging process (E0) over its lifetime may be estimated over the 200 

cycles of charging-discharging process. As the battery is utilized, the energy delivered 

up to a point in time (E) can be evaluated by integrating the product VI over time as 

shown in Fig. 9. The ratio E/E0 may be considered as a measure of the lifetime of the 

battery in per-unit and can be converted into time by knowledge of the current and 
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continuously repeated until pre –defined convergence criteria are met. We will use the 

MATLAB ANN tool box for Warburg infinite parameters recognition and their relation 

with the total energy delivered till the battery ages. But before proceeding we have to 

make a preprocessing step. 

 

d. Preprocessing 

Before implementing any neural network, it should be trained. To train a neural 

network a training set should be used to help in battery aging classification. First we 

should normalize the data. The first attribute in the data set is just the parameters and 

shelf life of the batteries; hence it is not part of our training set. The other 5 features are 

real number values, so we have to use the standard Min Max normalization formula ( 

the data set and the normalized values are in Appendix D) 

ܤ ൌ	 ሺ஺ି௠௜௡		஺ሻ

ሺ௠௔௫	஺ି௠௜௡	஺ሻ
…… (12) 

Where B is the standardized value, A the given value. Proceeding we get all our 

input data in the range between 0-1. The selection of a multi-layer perceptron is for its 

advantageous characteristics. It is ability to model the complex functions as it is robust 

that it ignores the irrelevant data or noise. Another thing is that it is adaptive to 

environmental changes by adapting the weights and topology. Add to these advantages 

its easiness to use. 

  

4. Support Vector Regression for battery parameters 

To understand the Support Vector Regression, the Support Vector Machine 

(SVM) should be explained first. Support vector machine (SVM), originally developed 

by Vapnik , is based on the Vapnik-Chervonenkis (VC) theory and structural risk 
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Min 
ଵ	

ଶ
ݔ	௜ݓ௜ሺݕ	ଶ , subject to‖ݓ‖ ൅ ܾሻ ≪ 1. But if the training data are not 

linearly separable, then there is not a hyper-plane that could linearly classify the data. In 

this case when the linear SVM doesn’t accomplish the job, the nonlinear SVM is used. 

This is done using Kernel functions which transform the feature vector to a higher 

Hilbert dimensional feature vector, by nonlinear mapping in which the optimal hyper 

plane is found. Kernel function transform x to Ф(x) by k (xi, xj) = Ф (xi). Ф (xj). Many 

forms of Kernel can be used but the most common one is the Gaussian radial basis 

function (RBF) and the polynomial Kernel function. 

Kernel Gaussian (RBF)        = exp െ
ฮ௫೔ି	௫ೕฮ

మ

ఙమ
 

Kernel polynomial function = ሺݔ௜. ௝ݔ ൅ 1ሻ௣ 

 

Here the famous Gaussian RBF Kernel function to transfer the non-separable 

nonlinear data to a higher dimension at which will be linearly separable will be used. 

The Support Vector Machine can be implemented to be applied as a regression method 

as shown in Figure14-b. Regarding the main characteristics that describes the maximal 

margin. The same main principles for the SVM are used with few distinctions. First the 

output of the SVR is a real number with infinite possibilities that make the prediction a 

hard task. A tolerance margin (epsilon) is recommended. And the algorithm is even 

more complicated than the SVM algorithm. 

But the same concept is the same which is the target is to minimize the error by 

individualizing the hyper-plane that maximizes the margin, with minimum tolerated 

error 
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ii. Non Linear SVR 

If the data are not separable, the kernel functions transform the data to a higher 

dimensional space where the linear separation is possible 

	

ݕ ൌ 	∑ ሺܽ௜
ே
௜ୀଵ െ	ܽ௜

∗ሻ	. ሺ∅	ሺݔ௜ሻ	, ∅ሺݔሻሻ ൅ ܾ……. (14) 

 

Two types of kernel functions are available, the polynomial function and the 

Gaussian radial basis function. 

The polynomial function and the Gaussian radial basis function as mentioned 

above. 

In the next chapter a full experimental set –up description is going to be 

discussed with the experimental data measured and the results we come up with to end 

up with the conclusions at the end of the thesis. 
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CHAPTER V 

EXPERIMENTAL SET–UP 

 

Here we will describe the experiment and its set-up, and provide detailed 

explanation of the devices used to accomplish this experiment. Also the code used to 

run the devices and the algorithm that is used to extract the parameters for each model. 

The main purpose of the experiment is to estimate the life time of type HW, 12 V, & 

7Ah lead – acid battery, by monitoring the variation of its internal parameters. As we 

are going to investigate the proper model that best fit the measured data.  

The devices used are: 

1- Programmable power supply. 

2- An electronic load. 

3- BRS device 

4- PC 

5- Temperature sensor 

6- Lead-acid battery-12V& 7Ah. 

A detailed explanation of the above devices will follow. 

 

A. Description of the experiment 

1. Programmable Power Supply 

The dc programmable power supply (PPS), shown in Fig. 15, is a Keysight – 

N5767A, 60V/25A, 1500W, which is power – factor corrected and operates for a wide 

AC voltage range. The output voltage and current are continuously displayed on the 

LED indicators as they show the operating condition of the power supply. It has two 
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interface. The power supply also can be remotely controlled with the SCPI commands 

or writing the proper code that drives the (PPS). In our case we used a USB, GBIP 

remotely controlled interface to control the charging the battery by writing the proper 

code. We can control this type of power supplies by visual basic programming code, C 

programming code or by Lab view. In this thesis   a C programming code to remotely 

control the whole devices was developed. 

 

2. Electronic Load 

It is a key sight N3301 A, system DC electronic load mainframe that is half rack 

width with the two slots only for load modules. It can dissipate up to 300 watts per slot, 

and for a full load mainframe the power dissipated can reach up to 600 watts. N3301A 

electronic load module can operate in a constant current mode (CC), constant voltage 

mode (CV), or constant resistance mode (CR). Further each input can be turned on or 

off (open -circuited), or short- circuited, see figure 16. 

Like a programmable power supply, the electronic load has many features, like 

the different constant modes mentioned above. And has built-in GPIB interface with the 

SCPI command language for remote controlling, triggered input and measurement 

functions, independent channel operation, and overvoltage and over current and over 

temperature protection, and fan speed control to mitigate the acoustic noise under light 

load. 

The front panel keyboard controls the input voltage, current and resistance. Its 

display supplies digital readings of input functions. Annunciators display the operating 

case of the electronic load. The front panel keys can access and control the electronic 

load function menus, they let you select and enter the values of the parameters. Like 
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6- The BRS will turn on to take the readings of the real and imaginary impedance at 

different frequencies at ranges from 1HZ to 1000 HZ for the new battery. 

7- Then the battery cycling begins.  

8-  We repeat step 2 and 3 then the power supply turned off and the electronic load 

turned on to start the discharge process at I4 = 1.75 A until the voltage reaches 1.75 

V/cell i.e.  10.5 V (DOD = 100%). Current and voltage are continuously monitored 

at 1 minute intervals.  

9- Step 8 is repeated 20 times. 

10- Then the battery is charged as in steps 2 &3 and the battery is left to rest for 15 

minutes and after that the impedance readings are taken using the BRS device. 

11- Steps 7, 8, and 9 are considered to be one loop. 

12- And then we repeat the loop 10 times. Till we reach number of cycles = 20*10 =200 

cycles. 

13- According to the data sheet, the Lead acid battery after 200 cycles has aged where in 

each cycle the depth of discharge was 100%. 

14- We wrote a C programming code to control the charging – discharging process and 

recording data from BRS. 

15- Since the charging and discharging are time varying process according to the battery 

status, some data should be taken at different times, midnight or at dawn. So, team 

viewer software was installed and the devices were controlled remotely by a team 

viewer program, also we can constantly check the cyclic operation at any time and 

any place. 

16- After finishing the 200 cycles we select the model to be tried and fit the data and use 

to process them using the MATLAB algorithm early developed. The parameters of 
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the model are obtained using least square method using the function “fminunc” to 

minimize the error between the measured data and the model. 

 

C. The code used to remotely control the experiment 

It is a C code that perform the steps mentioned above (for programmable power 

supply, electronic load and BRS) is attached in the appendix (A) 

 

D. Parameter estimation 

To find the parameters of the battery, after applying the cyclic method and take the 

measurements of ܼோ  andܼூ௠. Suppose that we choose the single Randle cell to model 

the battery. Then as previously mentioned the equivalent impedance ܼ௘௤ is given by:  

ܼ௘௤ ൌ ܴ௦ ൅
ܴ௣ሺ

1
௣ܥ݆߱

	ሻ

ܴ௣ ൅	
1

௣ܥ݆߱

	ൌ 	ܴ௦ ൅	
ܴ௣

1 ൅ ௣ܴ௣ܥ݆߱
 

																ൌ 	ܴ௦ ൅	
ܴ௣

1 ൅ ௣ܴ௣ܥ݆߱
		
1 െ ݆ܴ߱௣ܥ௣
1 െ ݆ܴ߱௣ܥ௣

 

 

Now by let  ܴ௣ܥ௣	 ൌ 	 ߬௣ the expression can be written as:  

ܼ௘௤ ൌ 	ܴ௦ ൅	
ܴ௣ሺ1 െ ݆߱߬௣ሻ
1 ൅	߱ଶ߬௣ଶ

 

With real and imaginary components given by:  

ܼோ ൌ 	ܴ௦ ൅	
ோ೛

ଵା	ఠమ	ఛ೛
మ   (15) 

ܼூ௠ ൌ 	
ିఠோ೛	ఛ೛
ଵା	ఠమఛ೛

మ    (16) 

So we will cross-multiply the above two functions to avoid differentiating 

fractional expressions. In this case (15) and (16) will yield the following, respectively:  
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ܼோ	൫1 ൅	߱ଶ	߬௣ଶ൯ ൌ 	ܴ௦൫1 ൅	߱ଶ	߬௣ଶ൯ ൅	ܴ௣ 

ܼோ	 ൌ 	ܴ௦൫1 ൅	߱ଶ	߬௣ଶ൯ ൅ ܴ௣ െ	ܼோ	߱ଶ	߬௣ଶ         ሺ17ሻ 

ܼூ௠	(1 ൅	߱ଶ	߬௣ଶሻ ൌ 	െܴ߱௣	߬௣ 

ܼூ௠ ൌ 	െܴ߱௣	߬௣ െ	ܼூ௠߱ଶ	߬௣ଶ         ሺ18ሻ 

 

Each one of (17) and (18) represents an element of a vector of measurements 

corresponding to a different frequency. When written in matrix form they appear as 

follows: 

 ܼ ൌ ݄	൫ݔ൯ 	൅	݁ 

Where: 

ݔ ൌ 	 ൥
ܴ௦
ܴ௣
߬௣
൩,                 ܼ ൌ 	 ൤

ܼோ
ܼூ௠

൨,      ݄൫ݔ൯ ൌ 	 ൥
݄ଵ൫ݔ൯

݄ଶ൫ݔ൯
൩ 

 

Our objective is to determine the vector ݔ to minimize the sum of square of 

errors denoted by ܬ ൌ ݁௧	݁	 which can be written as follows: 

ܬ ൌ ሺܼ െ	݄ሺݔ ))′ሺܼ െ	݄	ሺ	ݔ	ሻሻ  (19) 

The optimum value ݔ∗is obtained by solving by solving the system of partial derivatives 

of ܬ with respect to the state variable ݔ equated to the null vector: 

డ௃

డ		௫
ฬ
௫ୀ	௫∗

ܼ	൯ሺ∗ݔ	൫	ᇱܪ 2 ‐ =  െ	݄	ሺݔ∗	ሻ = 0   (20) 

 

Given a point ݔ଴	close to the solution, then; 

݄	൫ݔ൯ is approximated by Taylor series 

݄ሺݔ∗ሻ ൌ ݄൫ݔ଴൯ ൅	ܪ൫ݔ൯∆ݔ   (21) 

where 

ݔ∆  ൌ ሺݔ∗ െ	ݔ଴ሻ 
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ܪ ൌ
߲݄
ݔ߲

ൌ 	

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ
߲݄ଵ
߲ܴ௦

߲݄ଵ
߲ܴ௣

߲݄ଵ
߲߬௣

⋮ ⋮ ⋮
⋮ ⋮ ⋮

߲݄ଶ
߲ܴ௦

߲݄ଶ
߲ܴ௣

߲݄ଶ
߲߬௣

⋮ ⋮ ⋮
⋮ ⋮ ⋮ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 

Now the elements of the ܪ matrix are given by: 

߲݄ଵ
߲ܴ௦

ൌ ሺ	1 ൅	߱ଶ߬௣ଶሻ 

߲݄ଵ
߲ܴ௣

ൌ 1 

߲݄ଵ
߲߬௣

ൌ 		2߱ଶܴ௦	߬௣ െ 	2ܼோ߱ଶ	߬௣ 

߲݄ଶ
߲ܴ௦

ൌ 0 

߲݄ଶ
߲ܴ௣

ൌ െ߱	߬௣ 

߲݄ଶ
߲	߬௣

ൌ 	െ߱	ܴ௣ െ 	2ܼ௠߱ଶ	߬௣ 

 

From (20) and (21) we obtain after expansion:   

ܼ	ሻ∗ݔᇱሺܪ െ	ܪᇱ൫ݔ∗൯		݄൫ݔ଴൯ 	െ	ܪᇱ൫ݔ∗൯	ܪ൫ݔ∗൯∆ݔ ൌ0 

Let 	ܼ െ ݄ ቀݔ଴ቁ ൌ ∆ܼ then 

ܼ∆	ሻ	∗ݔ	ᇱሺܪ ൌ ∗ݔሺ	ሻ	∗ݔ	ሺܪ	൯∗ݔᇱ൫ܪ	 െ	ݔ଴ሻ 

By rearranging we obtain:   

∗ݔ ൌ 		  ܼ∆ሻ∗ݔ	ᇱሺܪ	ିଵ	ሻሿ	∗ݔ	ሺܪሻ	∗ݔ	ᇱሺܪ]  +  ଴ݔ

So if ݔ଴ is not very close to the solution we may need to iterate as follows:  

௥ିଵݔ ൌ  ܼ∆	௥൯ݔ	ᇱ൫ܪ	ିଵ	௥൯ሿݔ	൫ܪ	൯	௥ݔ	ᇱ൫ܪ]  +  ௥ݔ	
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Alternatively we may use the MATLAB function “fminunc” to find a local 

minimum of ܬ as defined by (19) which is a function of the state variable.  X = fminunc 

(FUN, X0) is a MATLAB function that finds a (local) minimum of a (nonlinear) 

multivariable function. The user must supply a function ܬ which returns the value and 

partial derivatives (if the option “GradObj” is on) with respect to all variables. It starts 

at X0 and attempts to find a local minimizer X of the functionܬ. FUN is a function that 

we will have to define to calculate a value of ܬ as given by (19), which accepts input X 

and returns a scalar value ܬ evaluated at X, and X0 is a vector representing the initial 

solution. Use the (GradObj) since the main benefit of providing gradient is that the 

convergence will be quicker. Anyway even without gradient, we should be able to 

converge to the solution within the desired accuracy but on the expense of more 

iteration. We extended the analysis to Double Randle cell, Warburg infinite impedance 

and Warburg finite impedance as well. Also we will write a code to find the parameters 

of Shepherd model and try to plot the discharge voltage versus time curve to calculate 

the total energy delivered by the battery before being disposable.  
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CHAPTER VI 

RESULTS AND CONCLUSIONS 

 

As mentioned in the previous chapter, many models are applied to model the 

battery and its life time. Cyclic method (charging –discharging process on three 

samples) is used. The batteries type is lead-acid, HW, 7Ah, 12 volt. The process is done 

at 100% depth of discharge (DOD). Here in this chapter the results of modeling the 3 

batteries using Single Randle Cell, Double Randle Cell, Warburg impedance and 

Shepherd equation models are presented each with its parameters to decide which best 

fit the data measured experimentally and at the same time test the parameters for their 

behavior. Also monitoring and calculating the total time of discharge for each sample 

and calculate the total energy delivered by each battery by energy integration method. 

 

A. Life time assessment by studying the total discharge time of the battery 

We implemented the data acquired from the experiment which is the voltage, 

current and time since a display of the output voltage and current every single moment 

was recorded. The data of the time of discharge each loop (each loop corresponds to 20 

cycles of charging and discharging) is plotted versus the number of cycle’s i.e. a plot of 

the total time required for charging- discharging process every 20 cycles. Doing so, 

until the battery ages at 200 cycles.   

For example, Figure 25 presents the amount of time that each battery take to 

discharge over 20 cycles after they have completed the given number of cycles (x-axis).  

From figure (24) we can see that the total discharge time for the first battery when the 

battery aged (200 cycles as mentioned in the data sheet of the Lead-acid battery) is 7.8 
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hours, which is approximately equal to 23 minutes, the time it takes the voltage of the 

battery to drop to 1.75 V/cell that is equivalent to 10.5 V each single cycle. The same 

can be generalized for the second battery. However the third battery takes a total 

discharge time when aged (200 cycles) equals 12.5 hrs. That is on average about 37.5 

minutes in each cycle for the voltage to decline to 10.5 V. To confirm our observations, 

we tried to investigate the plot volt versus time discharge curve.  

 

 

Figure 25 the total discharge time for the three batteries throughout the whole 
experiment 
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Figure 26. The discharge curve for the first battery 

 

It is obvious that the time it takes the battery voltage to drop to 10.5 V is 20 

minutes for a full battery discharge when it has aged and need to be replaced.  The tests 

on the two other batteries confirm the information about the total discharge time. The 

reason that the third battery takes a longer time for the voltage to drop to 10.5 V is that 

this battery was newly manufactured and hasn’t been shelf-stored like the first and 

second one, and so was not as aged through self-discharge. Here it is worth noting that 

according to the lead acid battery data sheet, the battery’s capacity decline by 3% 

monthly at 20Ԩ due to self-discharge. 

So a first method to determine whether the battery is to be replaced or not is to 

discharge it at I4 and monitor the output voltage across its terminals, if the voltage drops 

to below 10.5V in a time less than 20 minutes, we can conclude that the battery has 

fully aged and should be replaced, otherwise it is still usable. 
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B. Life time assessment by Energy Integration method 

As explained in Chapter (3), this process relies on the value of the integral 

obtained from the V- t discharge curve.  Recall figure 26, we calculated the average 

energy delivered each loop (one loop corresponds to 20 cycles of charging and 

discharging) and hence for the total 200 cycles. This is done for the three batteries to 

come up with the following: 

The first battery delivered about 4440 KWh until fully aged, while the second 

battery delivered 3092 KWh, however the third battery transmitted 5243 KWh, this is 

logical since we claimed that the third battery was not shelf-stored and as such had more 

life-time and was able to deliver more energy throughout the experiment. Maybe we can 

determine the shelf life of the battery and then consider it as a correction factor for 

determining the life time of the battery using energy integration approach. These values 

were trained as an output using the Artificial Neural Network. They were used, since we 

can consider the percentage of the energy delivered at any time relative to the total 

energy delivered by the battery as an interpretation of the life time of the battery to 

estimate its life time.  

 

C. Life time assessment by studying the variation of the internal parameters after 
battery modeling 
 

First the single Randle cell (SRC) and the Double Randle cell (DRC) were 

investigated, they gave a poor modeling of the measured data, this is shown below in 

Fig. 27 &28. 
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Figure 27. SRC for the first battery (140 cycles) 

 

 

 

 

 

 

Figure 28. DRC for the first battery at 140 cycles 
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shown in the value of Fig.  29. A similar erratic behavior was observed in the values of 

0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Z
real

 (ohms)

-Z
im

ag
 (

oh
m

s)
 

 

model

data

0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Z
real

 (ohms)

-Z
im

ag
 (

oh
m

s)

 

 

model

data



66 

the parallel capacitances of the DRC model in Fig.30; the two other batteries have the 

same outcome.  

 

 

 

 

 

 

 

 

 

 

Figure 29. ۱ܘ Versus number of cycles in the first battery SRC model 
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Figure 31. The erratic behavior of the capacitance ۱ܘ૛  in the DRC 

 

We concluded from above that The Single Randle Cell and so the Double 
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And so, figure 36 shows a trend in the Warburg constant impedance ܣ௪ but again with 

an ill-mannered behavior at cycle 120. 

 

Figure 32. The clear deviation between the data and the model in Warburg infinite 
model 

 

 

Figure 33. The series resistance of Warburg infinite impedance (second battery) 
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Figure 34. The parallel resistance decreases as the battery ages (second battery) 

 

 

Figure 35. The irregular behavior of the capacitance as the battery ages 
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Figure 36. Aw Versus the number of cycles 

 

We applied the finite Warburg model by adding another parameter ܤ௪ as 
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imaginary impedances is as illustrated in figure 37. Figure 38 shows that the relation 
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magnitude perfectly matched with the model as the angler frequency increases. 
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120 cycles as in figure 42. Warburg second constant ܤ௪  behavior shows nothing about 

the battery life time; this is obvious in figure 43 

 

Figure 37. ࢒ࢇࢋ࢘ࢆ Versus ࢍࢇ࢓࢏ࢆ for the third battery at 140 cycles 

 

Figure 38. The magnitude and phase angles versus angular frequency 
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Figure 39.	ܛ܀  Versus the number of cycles 

 

 

 

Figure 40.	ܘ܀ Versus number of cycles 
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Figure 41. The irregular manner of the parallel capacitance 

 

 

 

Figure 42. Warburg first constant versus number of cycles 
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Figure 43. Warburg second constant ( ۰ܟ) versus the number of cycles 

 

The only explanation of the unfitting the previous models and the inconvenient 

behaviors of the parameters unlike the expectations,  is that when modeling the data, 

filtration takes place and this affects the manners of the parameters and varies their 

trend. For this reason we should be aware of data filtration while modeling them.    

In fact this leads us to promote our study to use the Shepherd model since this model 

depends on relating the open circuit voltage to the depth of discharge by the following 
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……. (6) 

This equation clearly relates the open circuit voltage with the cell voltage and 

the normalized state of charge H that is relied on the time of discharge. When trying to 

model the data using the above equation we got the relation of the measured data and 

the model data in figure 44 
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Figure 44. Shepherd model for the discharge curve at 140 cycles 
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Figure 45. The modified Shepherd model 
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(40cycles), examining the frequencies is carried out  one by one to study the effect of 

excluding them one each step, we come up with the fact that 3.3 Hz in loop(6) and 

4.7Hz in loop(2)  causes this erratic trend Figure 46 shows the erratic behavior of the 

double layer capacitor before excluding those frequencies, while figure 47 shows the 

clear increasing trend after excluding those frequencies. The Warburg infinite constant 

 ௪  at cycle 120 also has the erratic trend but after excluding the 3.3 Hz in loop (6) andܣ

4.7 Hz in loop (2), an improvement is clear as shown in figure 49 with a decline 

tendency. The parallel resistance ࢖ࡾ   didn’t suffer the ill-mannered behavior as ݌ܥ  or 

 that has an ascending trend as in figure 	࢙ࡾ figure 51. The same can be said about   ݓܣ

53. 

 

 

Figure 46.  ۱ܘWithout excluding the 3.3 Hz in loop (6) i.e. 120 cycles & 4.7Hz in 
loop (2) i.e. 40 cycles 
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Figure 47. ۱ܘWith excluding the 3.3 Hz in loop (6) i.e. 120 cycles & 4.7Hz in loop 
(2) i.e. 40 cycles 

 

 

Figure 48. ܟۯWithout excluding the 3.3 Hz in loop (6) i.e. 120 cycles & 4.7Hz in 
loop (2) i.e. 40 cycles 
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Figure 49. ܟۯWith excluding the 3.3 Hz in loop (6) i.e. 120 cycles& 4.7Hz in loop 
(2) i.e. 40 cycles 

 

 

Figure 50. ܘ܀Without excluding the 3.3 Hz in loop (6) i.e. 120 cycles & 4.7Hz in 
loop (2) i.e. 40 cycles 
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Figure 51. ܘ܀With excluding the 3.3 Hz in loop (6) i.e. 120 cycles & 4.7Hz in loop 
(2) i.e. 40 cycles 

 

Figure 52. ܛ܀Without excluding the 3.3 Hz in loop (6) i.e. 120 cycles & 4.7Hz in 
loop (2) i.e. 40 cycles 
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Figure 53. ܛ܀With excluding the 3.3 Hz in loop (6) i.e. 120 cycles & 4.7Hz in loop 
(2) i.e. 40 cycles 
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simply a very slight increase. It can be considered for further study and investigation 

since they have an increasing trend over a limited range. This is obvious in Figure 

54and Figure55 

 

Figure 54. The real impedance versus the number of cycles for the first battery 

 

 

 

Figure 55. The magnitude of Z Versus the no. of cycles 
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A more accurate training method is the support vector regression. A Gaussian 

SVR with 5 folds cross validation to train the given data using the MATLAB function 

MdlGau=fitrsvm(data,y,'Standardize',true,'KFold',5,'KernelFunction','gaussian') 

Is applied.  This kind of regression is used to train a SVR model using Gaussian kernel 

with an auto scale. With 5 folds cross validation with the function 

mseGau = kfoldLoss(MdlGau). The mean square error was equal to 0.0189. 

Then a linear SVR is used to train the data using the above functions but 

replacing the Gau by Lin,  in the cross validation function and Gaussian by linear in the 

“fitrsvm” function given above. The value of the mean is even better and equals 0.0098. 

We conclude from above that the Neural Network trained the data in a very good way 

but limited by the size of the data set but the support vector regression has the 

Excellency to train the data with the least mean square error by linear Support Vector 

Regression. 

Tables below show the results of the ANN retraining process and the support 

vector regression, the results of the ANN training with over fitting is found in Appendix 

IV at the end of the thesis. We can see that the error between the desired Etot as an 

interpretation of the battery life time and the output of training ANN and SVR is 

relatively small. But error has a greater value when the battery is new and at the 

beginning of the charging- discharging process as seen in the data with bolded red color. 

The first red row is the first discharging process for the first battery, the second 

red row is the first discharging process for the second battery, and the third one is for 

the third battery. The SVR error for the first discharging process for the three samples is 

relatively smaller than that for the ANN.  
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ANN retraining                                                                           SVR training 

  

Etot 
 

Output 
 

Error 
 

0.359  0.355  0.004 

0.496  0.515  0.019 

0.609  0.612  0.003 

0.694  0.688  0.006 

0.76  0.764  0.004 

0.812  0.813  0.001 

0.854  0.871  0.017 

0.892  0.877  0.015 

0.909  0.926  0.017 

0.235  0.298  0.063 

0.42  0.430  0.010 

0.568  0.568  0.000 

0.66  0.663  0.003 

0.725  0.728  0.003 

0.776  0.772  0.004 

0.82  0.835  0.015 

0.859  0.871  0.012 

0.893  0.877  0.016 

0.909  0.928  0.019 

0.162  0.412  0.250 

0.301  0.348  0.047 

0.424  0.501  0.077 

0.533  0.530  0.003 

0.626  0.746  0.0120 

0.702  0.721  0.019 

0.663  0.630  0.033 

0.816  0.873  0.057 

0.865  0.873  0.008 

0.909  0.977  0.068 

 

Table 1. Results of training ANN and SVR for the three lead-acid samples 

 

 

 

Etot           output  Error      
       

0.359  0.553  0.194     

  0.496  0.562  0.066 

0.609  0.5791  0.03 

0.694  0.613  0.081 

0.76  0.578  0.182 

0.812  0.613  0.199 

0.854  0.8863  0.032 

0.892  0.872  0.02 

0.909  0.973  0.064 

0.235  0.587  0.352 

0.42  0.577  0.157 

0.568  0.61  0.042 

0.66  0.632  0.028 

0.725  0.655  0.07 

0.776  0.698  0.078 

0.82  0.78  0.04 

0.859  0.864  0.005 

0.893  0.86  0.033 

0.909  0.975  0.066 

0.162  0.473  0.311 

0.301  0.388  0.087 

0.424  0.42  0.004 

0.533  0.367  0.166 

0.626  0.456  0.17 

0.702  0.517  0.185 

0.663  0.625  0.038 

0.816  0.688  0.128 

0.865  0.851  0.014 

0.909  0.821  0.088 
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In conclusion, three approaches were attempted for life time estimation of lead-

acid battery of 7 Ah, 12 volts.  First to determine if the battery is aged, the discharge 

time is used. If after 20 minutes we measure the voltage across the battery terminals and 

find out that the voltage drops to a value less than 1.75 V/ cell i.e. 10.5 V, then the 

battery should be replaced, otherwise it can still be used. This method helps us 

determine if the battery should be replaced or it is still useful, but it can’t provide us 

with the life time of the battery. 

The second approach relies on the energy integration process that can be evaluated 

using the V-t discharge curves for the battery all over its life time. The total energy 

delivered by the battery is evaluated by integrating the voltage discharge curve. It is 

dependent on the time that is spent over the shelf, which is hard to be found. So a 

combination of the two methods (energy integration and the time of discharge method) 

would tell the age of the battery based on the 5240 KWh ability of the new battery. It 

should be accompanied by a test to be run on the battery every once in a while from 

which one can tell that the battery has been on the shelf or has some manufacturing 

defect and if the battery is to be replaced or not. 

The third approach is battery modeling. Many models were attempted like single Randle 

Cell, Double Randle Cell, Warburg impedance models, and Shepherd equation model. 

The condition to accept the model as best modeling the battery is fitting the measured 

real and imaginary impedances (and the terminal voltage for the Shepherd equation 

model), and the parameters show a clear pattern. Warburg infinite impedance shows an 

acceptable fit and for a range of frequency from 1 – 100 Hz and by excluding the 

frequencies that cause noises and the ill- mannered trends, it proved the best to model 

this type of batteries. After extracting the Warburg infinite parameters, we apply the 
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Artificial Neural Network for these parameters accompanied with the time spent on 

shelf to train the data and consider the energy delivered by the battery as an 

interpretation of the life time of the battery. A very good result obtained using the ANN 

training algorithm. The support vector linear regression gives even a better result with a 

mean square error = 0.0098 compared to the mean square error using Artificial Neural 

network that was = 0.0106. 

There was a limitation when using the Artificial Neural Network, only a two 

hidden layers with 5 neurons each were used because the size of the data were small, to 

avoid over fitting. While the support vector regression is applied for all data sizes and it 

shows a fast and robust training process. Artificial Neural Network can hang up in a 

local minimum value that makes the training slow, however the Support Vector 

Regression has a unique solution. 

 

 

E. Future Work 

The study can be extended to include more battery samples to extract their 

parameters and study the variation of these parameters under different conditions like 

testing batteries at different higher temperatures using ovens, and different discharge 

currents. Also it is recommended to take more (EIS) readings for battery parameters, for 

example taking readings every 5 cycles rather than 20 cycles. Another thing is the 

ability to do (EIS) measurements at lower frequencies like 0.1 Hz.   

 

 

 



93 

REFERENCES 

 

1) Oliver Tremblay, Louis-A. Dessaint, and Abdel-illah Dekkiche, “A Generic 
Battery Model for the Dynamic Simulation of Hybrid Electric Vehicles”, IEEE 
Vehicle Power and Propulsion Conference, 2007. Arlington, TX , 9-12 Sept. 
2007, Page(s):284 - 289 

2) Joya Zeitouny, Jihad Bou Merhi, Jana Chalak, Sami Karaki, “Estimation of 
Battery Internal Parameters”, IEEE International Conference on Industrial 
Technology (ICIT), 17-19 March 2015, Seville. 

3) Mohamed Daowd, Noshin Omar, Bavo Verbrugge, Peter Van den Bossche, 
Joeri Van Mierlo, “Battery Models Parameter Estimation based on Matlab/ 
Simulink”, The 25th World Battery, Hybrid and Fuel Cell Electric Vehicle 
Symposium & Exhibition, Nov. 5-9, 2010, EVS-25 Shenzhen, China,  

4) Shuhui Li, Bao Ke, “Study of Battery Modeling using Mathematical and Circuit 
Oriented Approaches”, IEEE Power and Energy Society General Meeting,  24 -
29 July 2011, San Diego, CA, Pages 1-8. 

5) Low Wen Yao, Aziz J.A, Pui Yee Kong, Idris N.R.N, “Modeling of Lithium – 
Ion Battery using Matlab / Simulink”, 39th Annual Conference of the IEEE 
Industrial Electronics Society (IECON) Nov. 10-14, 2013, Vienna, Austria,  

6) Hanlei Zhang, Mo–Yuen Chow, “Comprehensive Dynamic Battery Modeling 
for  PHEV Applications”, IEEE Power and Energy Society General Meeting, 
25–29 July 2010, Minneapolis, MN, pages 1-6 . 

7) M.R Jongerder and B.R Harverkot, “Battery Modeling”, Technical Report, TR-
CTIT-08-01, Centre for Telematics and Information Technology, University of 
Twente, Enschede, 2008. 

8) C. Unterrieder , C. Zhang , M. Lunglmayr , R. Priewasser , S. Marsili , M. 
Huemer “Battery state-of-charge estimation using approximate least squares”, 
Journal of Power Sources, Vol. 278, 15 March 2015, Pages 274–286 

9) Toufik Madani Layadi, Gérard Champenois , Mohammed Mostefai, Dhaker 
Abbes,  “Lifetime estimation tool of lead–acid batteries for hybrid power 
sources design” Simulation Modelling Practice and Theory ,Vol. 54, May 2015, 
Pages 36–48 

10) David C. C. Freitas, Marcos B. Ketzer, Marcos R. A. Morais, Antonio M. N. 
Lima,“Life Estimation Techniques For Lead –Acid Batteries”, Industrial 
electronics society, IECON 2016-42nd Annual conference of IEEE 

11) E. Jensi Miriam, S. Sekar, S. Ambalavanan, “Artificial Neural Network 
Technique for predicting the Lifetime and performance of Lead – Acid Battery”, 



94 

IRACST-An International Journal (ESTIJ), ISSN:2250-3498, Vol 3, No.2,April 
2013. 

12) Christopher Suozzo, “Lead-Acid Battery Aging And State Of Health 
Diagnosis”, A thesis for the Degree Master of Science in the graduate school of 
the Ohio State University, 2008. 

13)  http://www.mpoweruk.com/soh.htm, Electropedia “Battery and Energy 
Technologies” 

14) B.S. Bhangu. P. Bentley, D.A. Stone and C.M. Bingham, “state-of-charge and 
state-of-health prediction of Lead-Acid batteries for Hybrid Electric Vehicles 
using non-linear observers”, IEEE, power electronics and applications, 2005 
European conference. 

15) V. Spath, A. Jossen, H. Doring, J. Garche, “ The detection of the state of health 
of Lead-Acid batteries”, IEEE, telecommunications Energy Conference,1997. 

16) Kwang Kim, “ Electrochemical methods: Fundamentals and Applications” 
Lecture note 7, Younsi University, (2014). 

17) Gamry Instruments. (2013). Application Note – Basics of Electrochemical 
Impedance Spectroscopy [Online]. Available   
https://www.gamry.com/application-notes/EIS/basics-of-electrochemical-
impedance-spectroscopy/ 

18) Anton Anderson, “Battery Lifetime Modeling” Riso National Laboratory, 
Roskidle, Denmark, Rep, Riso – I – 2440, January 2006 

19) S. Theodoridis and K. Koutroumbas, Pattern Recognition, Elsevier, USA, 2009  
PP151-169 &PP 198 - 215 

20) H. Bindner et al., “Lifetime Modelling of Lead Acid Batteries”, Riso National 
Laboratory,Roskilde, Denmark, Rep. Riso-R-1515(EN), 2005. 

21) J.Leao,L. Hartmann, M.Correa, A.Lima, “ Lead –acid battery modeling and 
state of charge monitoring”, Applied Power Electronics conference and 
Exposition, APT), 25th Annual IEEE conference, pp 239-243, 2010 

22) M.A.Casacca, Z.M.Salameh, “Determination of lead –acid battery capacity via 
mathematical modeling techniques”, IEEE transitions on energy coversion, Vol. 
7, no.3, pp 442-446. 1992 

23) Stephen Buller, “ mpedance –Based Simulation Modelsof Supercapacitors and 
Li-Ion Batteries for power Electronic Applications”, IEEE transactions on 
Industry Applications,Vol 41 NO.3,May/July 2005,pp742-746 

 

 



95 

 

 

 

 

 

 

APPENDICES 

  



96 

APPENDIX I 

C Code  

C code that drive the Programmable Power Supply, Electronic Load and BRS 

#include "visa.h" 

#include <stdio.h> 

#include <stdlib.h> 

#include <windows.h> 

#include <time.h> 

#include  <fcntl.h> 

#include <string.h> 

void discharge(float, float, FILE*); 

void charge(float, float, float, double, FILE*); 

void printvolt_currEL(ViSession, ...); 

void printandsleep(double, FILE*); \ 

void printvolt_currPS(ViSession, ...); 

void DisplayBRS(FILE*); 

void delay(unsigned int); 

float voltread = 0; 

float currread = 0; 

int main() 

{ 

    time_t mytime; 

  FILE *file; 

  file = fopen("Data.txt", "w"); 

  if (file == NULL) { 

    printf("Error opening the file \n"); 

    return(0); 

  } 

  //printf("Beginning of first time charge \n"); 
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  //fprintf(file, "Beginning of first time charge \n"); 

  //charge(14.4, 1.75, 0.175, 0, file); //use the power supply to charge the battery arg1 is 

the voltage to be reached arg2 is the constant current at which charging occurs arg3 is the 

current decreasing threshold after the constant voltage mode is entered arg4 is the duration in 

hours that the supply must stay on after the current reaches the threshold 

  //printandsleep(0.25, file); //do nothing in 0.25 hourswhile printing the value on the 

screen 

  //DisplayBRS(file); 

  //printf("End of first time charge \n"); 

  //fprintf(file, "End of first time charge \n"); 

  for (int i = 0; i < 20; i++) 

  { 

    printf("The loop is the number %d loop\n", i + 1); 

    //printf("hola"); 

    fprintf(file, "loop is the %d \n", i + 1); 

    for (int j = 0; j < 20; j++) 

    { 

    printf("The loop is the number %d loop  \n", j + 1); 

      fprintf(file, "The loop is the number %d loop\n", j + 1); 

charge(14.4, 1.75, 0.175, 0, file); //use the power supply to charge the battery arg1 is the 

voltage to be reached arg2 is the constant current at which charging occurs arg3 is the current 

decreasing threshold after the constant voltage mode is entered arg4 is the duration in hours 

that the supply must stay on after the current reaches the threshold= 0.175 A 

      discharge(1.75, 10.5, file); //use the electronic load for discharging 

arg1 is the cosntant current at which the discharge happens arg2 is the threshold voltage=10.5 

V                  //printandsleep(1, 

file); //do nothing in hours while printing the value on the screen 

                    //charge(14.4, 

1.75, 0.175, 0, file);//use the power supply to charge the battery arg1 is the voltage to be 

reached arg2 is the constant current at which charging occurs arg3 is the current decreasing 

threshold after the constant voltage mode is entered arg4 is the duration in hours that the 

supply must stay on after the current reaches the threshold     

//discharge(1.75, 10.5, file);//use the electronic load for discharging arg1 is the cosntant 

current at which the discharge happens arg2 is the threshold voltage 
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  //printandsleep(1, file); //do nothing in hours while printing the value on the screen 

 

                    //charge(14.4, 

1.75, 0.175, 0, file);//use the power supply to charge the battery arg1 is the voltage to be 

reached arg2 is the constant current at which charging occurs arg3 is the current decreasing 

threshold after the constant voltage mode is entered arg4 is the duration in hours that the 

supply must stay on after the current reaches the threshold 

                 

  //discharge(1.75, 10.5, file);//use the electronic load for discharging arg1 is the 

cosntant current at which the discharge happens arg2 is the threshold voltage 

                 

  //printandsleep(1, file); //do nothing in hours while printing the value on the screen 

 

    } 

    charge(14.4, 1.75, 0.175, 0, file);//use the power supply to charge the battery 

arg1 is the voltage to be reached arg2 is the constant current at which charging occurs arg3 is 

the current decreasing threshold after the constant voltage mode is entered arg4 is the 

duration in hours that the supply must stay on after the current reaches the threshold 

    printandsleep(0.25, file); //do nothing in hours while printing the value on the 

screen 

    DisplayBRS(file); 

  } 

  printf("Finishing up the program. Closing the file \n"); 

  fprintf(file, "Finishing up the program. Closing the file \n"); 

  fclose(file); 

  return 0; 

} 

 

void charge(float voltsetting, float currsetting, float currthresh, double duration, FILE *file) { 

  time_t mytime; 

  printf("Start Charging process at the following time: \n"); 

  fprintf(file, "Start Charging process at the following time: \n"); 

  mytime = time(NULL); 



99 

  printf(ctime(&mytime)); 

  fprintf(file, ctime(&mytime)); 

        ViSession session1, defrm1, session2, defrm2; 

  ViStatus VISAstatus1, VISAstatus2; 

  char statdsc[100]; 

  char err[100]; 

  char voltmeasurement[32] = "0"; 

  int overcurron; 

  float  overvoltsetting; 

  char add1[] = "GPIB0::4::INSTR"; 

  char add2[] = "GPIB0::5::INSTR"; 

 

  //these vaiables control the over voltage protection setting 

  overvoltsetting = 20;  //in volts 

 

               //this variable controls the over current 

protection (1 for on, 0 for off); 

  overcurron = 0; 

  // connection to DC POWER Supply 

 

  //The default resource manager manages initializes the VISA system 

  VISAstatus1 = viOpenDefaultRM(&defrm1); 

  if (VISAstatus1 != VI_SUCCESS) 

  { 

    viStatusDesc(defrm1, VISAstatus1, statdsc); 

    printf("Error on viOpen: %s \n", statdsc); 

  exit(EXIT_FAILURE); 

  } 

  //opens a communication session with the instrument at address "add1" 

  VISAstatus1 = viOpen(defrm1, add1, VI_NULL, VI_NULL, &session1); 
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  if (VISAstatus1 != VI_SUCCESS) 

  { 

    viStatusDesc(session1, VISAstatus1, statdsc); 

    printf("Error on viOpen: %s \n", statdsc); 

    printf("Error communicating with power supply"); 

    exit(EXIT_FAILURE); 

  } 

 

  //connection to the electronic load 

 

  VISAstatus2 = viOpenDefaultRM(&defrm2); 

  if (VISAstatus2 != VI_SUCCESS) 

  { 

    viStatusDesc(defrm2, VISAstatus2, statdsc); 

    printf("Error on viOpen: %s \n", statdsc); 

    exit(EXIT_FAILURE); 

  } 

 

  //opens a communication session with the instrument at address "add2" 

  VISAstatus2 = viOpen(defrm2, add2, VI_NULL, VI_NULL, &session2); 

  if (VISAstatus2 != VI_SUCCESS) 

  { 

    viStatusDesc(session2, VISAstatus2, statdsc); 

    printf("Error on viOpen: %s \n", statdsc); 

    printf("Error communicating with Electronic Load"); 

    exit(EXIT_FAILURE); 

  } 

  viPrintf(session2, "CHAN 1;:INPUT OFF \n"); 

 

  printf("Voltage and current initially are: \n"); 
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  fprintf(file, "Voltage and current initially are: \n"); 

  printvolt_currPS(session1, voltread, currread); 

  fprintf(file, "Voltage: %f      Current: %f \n", voltread, currread); 

 

  //Set voltage 

  viPrintf(session1, "VOLT %f \n", voltsetting); 

  //Set the over voltage level 

  viPrintf(session1, "VOLT:PROT:LEV %f \n", overvoltsetting); 

 

  //Turn OFF over current protection  

  viPrintf(session1, "CURR:PROT:STAT %d \n", overcurron); 

 

  //Set current level 

  viPrintf(session1, "CURR %f \n", currsetting); 

  Sleep(500); 

  //Enable the output 

  viPrintf(session1, "OUTP ON \n"); 

  Sleep(500); 

  printvolt_currPS(session1, voltread, currread); 

  fprintf(file, "Voltage: %f      Current: %f \n", voltread, currread); 

  while (voltread < voltsetting) { 

    printvolt_currPS(session1, voltread, currread); 

    fprintf(file, "Voltage: %f      Current: %f \n", voltread, currread); 

    Sleep(60000); 

  } 

 

  printf("Voltage Reached. Done Charging. Monitoring current until threshold is reached 

\n"); 

  fprintf(file, "Voltage Reached. Done Charging. Monitoring current until threshold is 

reached \n"); 
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  while (currread > currthresh) { 

    printvolt_currPS(session1, voltread, currread); 

    fprintf(file, "Voltage: %f      Current: %f \n", voltread, currread); 

    Sleep(60000); 

  } 

  //printandsleep(duration, file); 

  printf("Done charging and Sleep to specified voltage \n"); 

  fprintf(file, "Done charging and Sleep to specified voltage \n"); 

  printf("turning OFF power Supply \n"); 

  fprintf(file, "turning OFF power Supply \n"); 

  viPrintf(session1, "OUTP OFF \n"); 

  Sleep(1000); 

  //check for errors 

  viPrintf(session1, "SYST:ERR? \n"); 

  Sleep(1000); 

  viScanf(session1, "%t", &err); 

  printf("Error: %s \n", err); 

  //This frees up all of the resources 

  viClose(session1); 

  viClose(defrm1); 

  //check for errors 

  viPrintf(session2, "SYST:ERR? \n"); 

  Sleep(1000); 

  viScanf(session2, "%t", &err); 

  printf("Error: %s \n", err); 

  //This frees up all of the resources 

  viClose(session2); 

  viClose(defrm2); 

  printf("Done Charging process and topping. Starting the discharge process at this time: 

\n"); 
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  fprintf(file, "Done Charging process and topping. Starting the discharge process at this 

time: \n"); 

  mytime = time(NULL); 

  printf(ctime(&mytime)); 

  fprintf(file, ctime(&mytime)); 

 

  return; 

} 

 

void discharge(float curr, float voltthreshhold, FILE *file) 

{ 

 

  printf("Starting the discharge process with constant current of %f and voltage 

threshold of %f \n", curr, voltthreshhold); 

  fprintf(file, "Starting the discharge process with constant current of %f and voltage 

threshold of %f \n", curr, voltthreshhold); 

  ViSession session, defrm; 

  ViStatus VISAstatus; 

  char statdsc[100]; 

  char err[100]; 

  char voltmeasurement[32] = "0"; 

  char add[] = "GPIB0::5::INSTR"; 

 

  VISAstatus = viOpenDefaultRM(&defrm); 

  if (VISAstatus != VI_SUCCESS) 

  { 

    viStatusDesc(defrm, VISAstatus, statdsc); 

    printf("Error on viOpen: %s \n", statdsc); 

    exit(EXIT_FAILURE); 

  } 
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  //opens a communication session with the instrument at address "add" 

  VISAstatus = viOpen(defrm, add, VI_NULL, VI_NULL, &session); 

  if (VISAstatus != VI_SUCCESS) 

  { 

    viStatusDesc(session, VISAstatus, statdsc); 

    printf("Error on viOpen: %s \n", statdsc); 

    exit(EXIT_FAILURE); 

  } 

 

  viPrintf(session, "CHAN 1;:INPUT OFF \n"); 

  viPrintf(session, "FUNCTION CURRENT \n"); 

  viPrintf(session, "CURRENT:LEVEL %f \n", curr ‐ 0.01); // 0.01 calibration 

  viPrintf(session, "CHAN 1;:INPUT ON \n"); 

 

  printvolt_currEL(session, &voltread, &currread); 

  fprintf(file, "Voltage: %f      Current: %f \n", voltread, currread); 

 

  while (voltread > voltthreshhold) { 

    printvolt_currEL(session, &voltread, &currread); 

    fprintf(file, "Voltage: %f      Current: %f \n", voltread, currread); 

    Sleep(60000); 

  } 

 

 

  viPrintf(session, "CHAN 1;:INPUT OFF \n"); 

  printf("Stopping the discharge process by eliminating the load of the Electronic Load 

Machine \n"); 

  fprintf(file, "Stopping the discharge process by eliminating the load of the Electronic 

Load Machine \n"); 

  viPrintf(session, "SYST:ERR? \n"); 
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  Sleep(1000); 

  viScanf(session, "%t", &err); 

  printf("Error: %s \n", err); 

  //This frees up all of the resources 

  viClose(session); 

  viClose(defrm); 

  time_t mytime; 

  printf("Done disCharging process . Time is: \n"); 

  fprintf(file, "Done disCharging process .  Time is: \n"); 

  mytime = time(NULL); 

  printf(ctime(&mytime)); 

  fprintf(file, ctime(&mytime)); 

  return; 

} 

void printvolt_currEL(ViSession session, ...) { 

 

  viPrintf(session, "MEASURE:VOLTAGE? \n"); 

  Sleep(1000); 

  viScanf(session, "%f", &voltread); 

  viPrintf(session, "MEASURE:CURRENT? \n"); 

  Sleep(1000); 

  viScanf(session, "%f", &currread); 

  printf("Voltage: %f      ", voltread); 

  printf("Current: %f \n", currread); 

} 

void printvolt_currPS(ViSession session, ...) { 

  viPrintf(session, "MEAS:VOLT? \n"); 

  Sleep(1000); 

  viScanf(session, "%f", &voltread); 

  viPrintf(session, "MEAS:CURR? \n"); 
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  Sleep(1000); 

  viScanf(session, "%f", &currread); 

  printf("Voltage: %f      ", voltread); 

  printf("Current: %f \n", currread); 

} 

void printandsleep(double duration, FILE *file) { 

  \ 

 

    ViSession session, defrm; 

  ViStatus VISAstatus; 

  char statdsc[100]; 

  char err[100]; 

  char voltmeasurement[32] = "0"; 

  char add[] = "GPIB0::5::INSTR"; 

  VISAstatus = viOpenDefaultRM(&defrm); 

  if (VISAstatus != VI_SUCCESS) 

  { 

    viStatusDesc(defrm, VISAstatus, statdsc); 

    printf("Error on viOpen: %s \n", statdsc); 

    exit(EXIT_FAILURE); 

  } 

 

  //opens a communication session with the instrument at address "add" 

  VISAstatus = viOpen(defrm, add, VI_NULL, VI_NULL, &session); 

  if (VISAstatus != VI_SUCCESS) 

  { 

    viStatusDesc(session, VISAstatus, statdsc); 

    printf("Error on viOpen: %s \n", statdsc); 

    exit(EXIT_FAILURE); 

  } 
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  double d = duration * 3600; 

  time_t start, end; 

  printf("Sleeping for 0.25 hour. The voltage and current will be displayed for analytical 

purposes \n"); 

  fprintf(file, "Sleeping for 0.25 hour. The voltage and current will be displayed for 

analytical purposes \n"); 

  start = time(NULL); 

  Sleep(1500); 

  end = time(NULL); 

  while (difftime(end, start) <= d) { 

    printvolt_currEL(session); 

    fprintf(file, "Voltage: %f      Current: %f \n", voltread, currread); 

    Sleep(60000); 

    end = time(NULL); 

  } 

  printf("Waking UP\n"); 

  fprintf(file, "Waking UP\n"); 

  viPrintf(session, "SYST:ERR? \n"); 

  Sleep(1000); 

  viScanf(session, "%t", &err); 

  printf("Error: %s \n", err); 

  //This frees up all of the resources 

  viClose(session); 

  viClose(defrm); 
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  time_t mytime; 

  printf("Done Sleeping for 0.25 of an hour at time: \n"); 

  fprintf(file, "Done Sleeping for 0.25 of an hour at time: \n"); 

  mytime = time(NULL); 

  printf(ctime(&mytime)); 

  fprintf(file, ctime(&mytime)); 

  return;} 

void DisplayBRS(FILE *f) { 

  FILE *file; 

  file = fopen("BIMresults.log", "r"); 

  char line[1024]; 

  if (file == NULL) { 

    printf("error \n"); 

  } 

 

  else 

  { 

    while (fgets(line, 1024, file)) 

    { 

      if (line[91] == '<') 

      { 

        printf("BRS VALUES ARE‐‐‐ \n"); 

        fprintf(f, "BRS VALUES ARE‐ \n"); 

        printf("Line: %s\n", line); 

        fprintf(f, "Line: %s\n", line); 

      } 

    } 

  } 

  fclose(file); 
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} 

void delay(unsigned int mseconds) 

{ 

  clock_t goal = mseconds + clock(); 

  while (goal > clock()); 

} 
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APPENDIX II 

Parameters extraction 

 

1) The impedance calculation MATLAB code 

function [Zr, Zm] = ImpedanceCalc(P, w, nexp, model) 
  
% This function calculates the equivalent impedance of our 
% battery circuit model (including the Warburg impedance). 
  
if (model == 1) 
    % Model Impedance by Randles Cell 
    Rs = P(1);  % Rs (series resistance)  
    Rp = P(2);  % Rp (transient resistance)  
    Tp = P(3);  % Tp (transient time constant)  
    Z= Rs + Rp./(1 + (1i* w).^nexp * Tp); 
  
elseif (model == 2) 
  
    % % Use a double Randles cell 
    Rs = P(1);   % Rs (series resistance)  
    Rp1 = P(2);  % Rp (transient resistance)  
    Tp1 = P(3);  % Tp (transient time constant)  
    Rp2 = P(4);  % Rp (transient resistance)  
    Tp2 = P(5);  % Tp (transient time constant)  
    Z= Rs + Rp1./(1 + (1i* w).^nexp(1) * Tp1) + Rp2./(1 + (1i* 
w).^nexp(2) * Tp2); 
  
elseif (model == 3) 
  
    % % Model Impedance using Warburg 
    Rs = P(1);  % Rs (series resistance)  
    Rp = P(2);  % Rp (transient resistance)  
    Cp = P(3);  % Cp (transient capacitance)  
    Aw = P(4);  % Aw (Warburg impedance constant)  
    Zw = (Aw./sqrt(w)).*(1-1i);              % Zw is the Warburg 
impedance. 
    Zp = ((1i.*w.*Cp)+1./(Rp + Zw)).^(-1);   % Zp the equivalent 
impedance of the parallel branch. 
    Z = Rs + Zp; 
  
elseif (model == 4) 
    % % Model Impedance using finite Warburg impedance in parralel 
with Rp 
    Rs = P(1);  % Rs (series resistance)  
    Rp = P(2);  % Rp (transient resistance)  
    Cp = P(3);  % Cp (transient capacitance)  
    Aw = P(4);  % Aw (1st Warburg impedance parameter)  
    Bw = P(5);  % Bw (2nd Warburg impedance parameter)  
     
    % Zw is the finite Warburg impedance. 
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    Zw = (Aw./sqrt(w)).*(1-1i).* tanh(Bw* sqrt(1i*w));               
    Zp = ((1i.*w.*Cp)+1./(Rp + Zw)).^(-1);   % Zp the equivalent 
impedance of the parallel branch. 
    Z= Rs + Zp; 
     
end 
  
Zr = real(Z);   % real part of equivalent impedance. 
Zm = imag(Z);   % imaginary part of equivalent impedance. 
  
end 
  

2) The sum of square error function MATLAB code 
function [J, GJ] = sumSquareErrors(P, Zr, Zm, w, nexp, model) 
  
% This function calculates the sum of squares of errors between the 
% experimental impedance value and that of the model. I t also 
% calculates its gradient needed for optimization.  
  
% Zrm and Zmm are the real and imaginary parts of the impedance  
% as calculated by the model . 
[Zrm, Zmm] = ImpedanceCalc(P, w, nexp, model);    
  
% Performance index 
J= (Zr- Zrm)'* (Zr- Zrm) + (Zm - Zmm)'* (Zm - Zmm); 
  
nP= size(P,1); 
GJ= zeros(nP,1); 
  
% Assign disturbance values of 1 to 5%  
DPO = P*0.05; 
  
% Calculate gradient of J using a finite difference method 
for k = 1 : nP 
  
    % Initialize the disturbance vector.         
    dP = zeros(nP, 1);                           
  
    % Assign a perturbation for the selected parameter (k). 
    dP(k) = DPO(k)/2;                              
  
    [Zr1, Zm1] = ImpedanceCalc(P-dP, w, nexp, model); 
    [Zr2, Zm2] = ImpedanceCalc(P+dP, w, nexp, model); 
  
    % Compute element (k) of the gradient of J 
    J1= (Zr- Zr1)'* (Zr- Zr1) + (Zm - Zm1)'* (Zm - Zm1);             
    J2= (Zr- Zr2)'* (Zr- Zr2) + (Zm - Zm2)'* (Zm - Zm2);             
    GJ(k)= (J2-J1)/ DPO(k);         
  
end 
  
end 
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3) The MATLAB code for the function “FminUnc” 

 This function minimizes the sum of square errors of the measured values to the model 

 

% The following program is meant to calculate a minimal-error 
approximation 
% of a vector P which includes Rs, Rp, tp (= Rp x Cp), and Aw which 
are the 
% characteristic components of our battery circuit model. 
  
clc 
close all 
format long 
iterMax = 1;       % Maximum number of iterations  
tol = 1e-6;         % The tolerance for error. 
  
fact= 0.001; % Convert impedances to ohms 
  
% Identify Models. Set model in data file.  
modelName= [... 
        'One Randles Cell with exponent                 '; 
        'Two Randles Cell with exponent                 '; 
        'A Randles Cell with infinite Warburg impedance '; 
        'A Randles Cell with finite Warburg impedance   ' ]; 
  
% Small set of data to test 
% Zr=  fact* [ 1.618, 1.638, 1.682, 1.725, 1.767, 1.827, 1.871 ]'  
% Zm= -fact* [ 0.031, 0.066, 0.116, 0.151, 0.170, 0.182, 0.187 ]'  
% w=   2*pi* [ 333,   250,   143,   100,   71.4,  45.5,  33.3  ]' 
  
% Get Data  
  
% Lithium_001_40soc_23p5d         % lithium ion 
% Lithium_001_40soc_23p7d         % lithium ion  
% Lithium_001_40soc_24p1d         % lithium ion 
% Lithium_001_40soc_24p2d         % lithium ion 
% Lithium_001_40soc_24p3d         % lithium ion 
% Lithium_001_40soc_24p5d         % lithium ion 
% Lithium_001_40soc_24p6d         % lithium ion 
% Lithium_001_40soc_24p7d         % lithium ion 
  
% Lithium_001_40soc_10d           % lithium ion 
  
% Lead_Acid_007_100soc_34d            % lead acid 
% Lead_Acid_007_3_100soc_7p5d           % lead acid 
% Lead_Acid_007_3_2_100soc_7p5d           % lead acid 
% Lead_Acid_007_3_0_100soc_7p5d 
% Lead_Acid_007_3_1_100soc_7p5d 
Lead_Acid_007_3_1_100soc_7p5d 
  
Zr= fact* Data(:,2); 
Zm= fact* Data(:,3); 
w= 2*pi* Data(:,1); 
  
% Minimize using WLS pseudo-inverse 
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% [P, flag]= minSumSquares(P0, Zr, Zm, w, nexp, model, 20, 1e-12); 
  
% Unconstrained minimization using MATLAB function  
% options = optimset('GradObj','on','TolX', 1e-12,'TolFun',1e-12, 
'MaxIter',100 ); % gradient provided  
options = optimset('GradObj','on','TolX', 1e-12,'TolFun',1e-
12,'MaxIter',800,'MaxFunEvals', 800);  % gradient provided  
% [P,fval,exitFlag] = fminunc(@(P) sumSquareErrors(P, Zr, Zm, w, nexp, 
model), P0, options); 
[P,fval,exitFlag] = fminunc(@(P) sumSquareErrors2(P, Zr, Zm, w, nexp, 
model), P0, options); 
% sumSquares= fval; 
  
% Evaluate 
[Zrm, Zmm] = ImpedanceCalc(P, w, nexp, model); 
sumSquares= sum( ((Zr-Zrm)).^2) + sum( ((Zm-Zmm)).^2); 
  
fprintf('\n') 
fprintf(['---------- Summary of Results: ',bat.Type,' ----------
\n\n']) 
fprintf('Battery State of Charge (percent)=   %9d\n', bat.SOC* 100); 
fprintf('Battery Temperature (C)=             %9.2f\n', bat.Temp ); 
fprintf(['Model Name:  ',modelName(model,:),'\n']) 
fprintf('Model exponent (n)=                    %9.3f\n', nexp); 
fprintf('Sum of Squared Errors=                 %0.6g\n', sumSquares); 
fprintf('\n') 
  
writeResults 
  
plotResults  
  

 

 

 

 

 

 

   



114 

APPENDIX III 

ANN Matlab code 

 

The MATLAB code for the ANN training algorithm 

% Battery parameters 
  
data= [ ... 
%  Rsn  Rpn      Cpn     Awn     SL 
0.1371  0.4508  0.3750  0.3666  0.1930 
0.1211  0.4612  0.3684  0.3367  0.1930 
0.1139  0.3231  0.3684  0.2588  0.1930 
0.1898  0.2394  0.4145  0.1808  0.1930 
0.1298  0.0943  0.4671  0.1335  0.1930 
0.2521  0.0766  0.4868  0.1064  0.1930 
0.5066  0.1269  0.5066  0.1135  0.1930 
0.4776  0.1332  0.6184  0.0501  0.1930 
0.8054  0.0000  1.0000  0.0463  0.1930 
0.0541  0.5355  0.1447  0.3901  0.2900 
0.0000  0.5259  0.1645  0.3487  0.2900 
0.0670  0.2954  0.1908  0.1939  0.2900 
0.1835  0.1906  0.2500  0.1159  0.2900 
0.2536  0.1154  0.2895  0.0705  0.2900 
0.3285  0.0922  0.3355  0.0630  0.2900 
0.4049  0.0719  0.3421  0.0358  0.2900 
0.4830  0.0606  0.3421  0.0324  0.2900 
0.5144  0.0156  0.3947  0.0252  0.2900 
0.7409  0.0147  0.5461  0.0000  0.2900 
0.6000  0.8192  0.2171  0.8392  0.0473 
0.4931  1.0000  0.0395  1.0000  0.0473 
0.3244  0.9819  0.0000  0.9555  0.0473 
0.6749  0.9744  0.0789  0.9790  0.0473 
0.6193  0.8087  0.1908  0.8717  0.0473 
0.6502  0.6386  0.3092  0.7518  0.0473 
0.8313  0.6417  0.4342  0.6419  0.0473 
0.9045  0.5786  0.5658  0.5993  0.0473 
1.0000  0.5661  0.6118  0.4668  0.0473 
0.9265  0.4344  0.6184  0.4324  0.0473 
  
]; 
  
target= [... 
     
0.359 
0.496 
0.609 
0.694 
0.760 
0.812 
0.854 
0.892 
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0.909 
0.235 
0.420 
0.568 
0.660 
0.725 
0.776 
0.820 
0.859 
0.893 
0.909 
0.162 
0.301 
0.424 
0.533 
0.626 
0.702 
0.763 
0.816 
0.865 
0.909 
  
  
]; 
  
 
x = data'; 
t = target'; 
  
% Choose a Training Function 
% For a list of all training functions type: help nntrain 
% 'trainlm' is usually fastest. 
% 'trainbr' takes longer but may be better for challenging problems. 
% 'trainscg' uses less memory. Suitable in low memory situations. 
trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation. 
  
% Create a Fitting Network 
hiddenLayerSize = 2; 
net = fitnet(hiddenLayerSize,trainFcn); 
  
% Choose Input and Output Pre/Post-Processing Functions 
% For a list of all processing functions type: help nnprocess 
net.input.processFcns = {'removeconstantrows','mapminmax'}; 
net.output.processFcns = {'removeconstantrows','mapminmax'}; 
  
% Setup Division of Data for Training, Validation, Testing 
% For a list of all data division functions type: help nndivide 
net.divideFcn = 'dividerand';  % Divide data randomly 
net.divideMode = 'sample';  % Divide up every sample 
net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 15/100; 
net.divideParam.testRatio = 15/100; 
  
% Choose a Performance Function 
% For a list of all performance functions type: help nnperformance 
net.performFcn = 'mse';  % Mean Squared Error 
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% Choose Plot Functions 
% For a list of all plot functions type: help nnplot 
net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ... 
    'plotregression', 'plotfit'}; 
  
% Train the Network 
[net,tr] = train(net,x,t); 
  
% Test the Network 
y = net(x) 
e = gsubtract(t,y) 
performance = perform(net,t,y) 
  
% Recalculate Training, Validation and Test Performance 
trainTargets = t .* tr.trainMask{1}; 
valTargets = t .* tr.valMask{1}; 
testTargets = t .* tr.testMask{1}; 
trainPerformance = perform(net,trainTargets,y) 
valPerformance = perform(net,valTargets,y) 
testPerformance = perform(net,testTargets,y) 
  
% View the Network 
view(net) 
  
% Plots 
% Uncomment these lines to enable various plots. 
%figure, plotperform(tr) 
%figure, plottrainstate(tr) 
%figure, ploterrhist(e) 
%figure, plotregression(t,y) 
%figure, plotfit(net,x,t) 
  
% Deployment 
% Change the (false) values to (true) to enable the following code 
blocks. 
% See the help for each generation function for more information. 
if (false) 
    % Generate MATLAB function for neural network for application 
    % deployment in MATLAB scripts or with MATLAB Compiler and Builder 
    % tools, or simply to examine the calculations your trained neural 
    % network performs. 
    genFunction(net,'myNeuralNetworkFunction'); 
    y = myNeuralNetworkFunction(x); 
end 
if (false) 
    % Generate a matrix-only MATLAB function for neural network code 
    % generation with MATLAB Coder tools. 
    genFunction(net,'myNeuralNetworkFunction','MatrixOnly','yes'); 
    y = myNeuralNetworkFunction(x); 
end 
if (false) 
    % Generate a Simulink diagram for simulation or deployment with. 
    % Simulink Coder tools. 
    gensim(net); 
end 
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APPENDIX IV 

ANN and SVR input data and results 

 

1)  The raw data used for ANN and SVR training process  

Rs  Rp  Cp  Aw  SL  Et 

           

31.139  40.428  0.466  27.475  0.153  1752.4 

31.073  40.718  0.465  26.628 0.153 2421.2

31.043  36.868  0.465  24.42 0.153 2973.6

31.357  34.534  0.472  22.21  0.153  3390.4 

31.109  30.488  0.48  20.869  0.153  3711.5 

31.615  29.994  0.483  20.101  0.153  3965.3 

32.668  31.396  0.486  20.301 0.153 4172.1

32.548  31.572  0.503  18.505  0.153  4355.4 

33.904  27.858  0.561  18.397  0.153  4440.5 

30.796  42.79  0.431  28.139  0.256  1010.0 

30.572  42.522  0.434  26.968  0.256  1803.2 

30.849  36.094  0.438  22.58 0.256 2437.9

31.331  33.173  0.447  20.371  0.256  2832.7 

31.621  31.077  0.453  19.084  0.256  3111.1 

31.931  30.429  0.46  18.872  0.256  3330.3 

32.247  29.863  0.461  18.1  0.256  3518.4 

32.57  29.549  0.461  18.004 0.256 3686.4

32.7  28.292  0.469  17.801  0.256  3833.5 

33.637  28.268  0.492  17.086  0.256  3901.8 

33.054  50.7  0.442  40.865  0  937.1 

32.612  55.742  0.415  45.423 0 1733.3

31.914  55.237  0.409  44.162 0 2443.9

33.364  55.029  0.421  44.829  0  3073.8 

33.134  50.409  0.438  41.788  0  3611.1 

33.262  45.665  0.456  38.389  0  4050.0 

34.011  45.752  0.475  35.276 0 4401.6

34.314  43.993  0.495  34.069 0 4706.4

34.709  43.644  0.502  30.315  0  4988.8 

34.405  39.971  0.503  29.338  0  5243.1 
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2) The normalized data set 

Rsn  Rpn  Cpn  Awn  SL Etn 

           

0.137  0.451  0.375 0.367 0.193 0.359

0.121  0.461  0.368 0.337 0.193 0.496

0.114  0.323  0.368 0.259 0.193 0.609

0.190  0.239  0.414 0.181 0.193 0.694

0.130  0.094  0.467 0.134 0.193 0.760

0.252  0.077  0.487 0.106 0.193 0.812

0.507  0.127  0.507 0.113 0.193 0.854

0.478  0.133  0.618 0.050 0.193 0.892

0.805  0.000  1.000 0.046 0.193 0.909

0.054  0.536  0.145 0.390 0.29 0.235

0.000  0.526  0.164 0.349 0.29 0.420

0.067  0.295  0.191 0.194 0.29 0.568

0.183  0.191  0.250 0.116 0.29 0.660

0.254  0.115  0.289 0.071 0.29 0.725

0.328  0.092  0.336 0.063 0.29 0.776

0.405  0.072  0.342 0.036 0.29 0.820

0.483  0.061  0.342 0.032 0.29 0.859

0.514  0.016  0.395 0.025 0.29 0.893

0.741  0.015  0.546 0.000 0.29 0.909

0.600  0.819  0.217 0.839 0.0473 0.162

0.493  1.000  0.039 1.000 0.0473 0.301

0.324  0.982  0.000 0.955 0.0473 0.424

0.675  0.974  0.079 0.979 0.0473 0.533

0.619  0.809  0.191 0.872 0.0473 0.626

0.650  0.639  0.309 0.752 0.0473 0.702

0.831  0.642  0.434 0.642 0.0473 0.763

0.905  0.579  0.566 0.599 0.0473 0.816

1.000  0.566  0.612 0.467 0.0473 0.865

0.927  0.434  0.618 0.432 0.0473 0.909
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3) Results from training the input data set  

 

Etn desired o/p error train perf. val perf test perf 
     

0.359  0.4097 0.0507 0.007 0.0023 0.0095

0.496  0.4052 0.0908      

0.609  0.5440 0.0646      

0.694  0.6869 0.0071  

0.760  0.7994 0.0394      

0.812  0.8556 0.0436      

0.854  0.8876 0.0336      

0.892  0.8621 0.0299      

0.909  0.9190 0.01  

0.235  0.3295 0.0945      

0.420  0.3261 0.0939      

0.568  0.4592 0.1088      

0.660  0.6269 0.0331      

0.725  0.7458 0.0208  

0.776  0.7865 0.0105      

0.820  0.8368 0.0167      

0.859  0.8680 0.0092      

0.893  0.8891 0.0039  

0.909  0.9098 0.0008  

0.162  0.4555 0.2935      

0.301  0.3654 0.0644      

0.424  0.3556 0.0684      

0.533  0.4011 0.1319  

0.626  0.4851 0.1509  

0.702  0.6550 0.047      

0.763  0.7236 0.0394      

0.816  0.7800 0.036      

0.865  0.8420 0.023  

             0.909  0.8992 0.0098      

 

 

 




