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Title: Network Traffic Classification and Novelty Detection for Mobile Apps 

 

 

Network operators and mobile carriers are facing serious security and QoS challenges 

caused by an increasing number of services provided by smartphone apps. For example, 

Android OS has more than 2 million apps in stores. Hence, network administrators tend 

to adopt strict policies to secure their infrastructure. At the same time these policies have 

to ensure and maintain an excellent user experience. Our aim in this study is to propose 

an efficient classification and novelty detection mechanism for mobile apps’ network-

flows based on traffic analysis. The aim of this mechanism is to classify network flows 

based on a predefined set of classes which reflect user actions in each app. Such a 

mechanism can help network administrators to set QoS parameters according to traffic 

types over multiple network segments. Additionally, it helps in detecting new types of 

traffic that might be abnormal or malicious which can affect network performance. The 

mechanism differs from other proposed studies by focusing on identifying apps traffic 

from a network perspective without introducing additional clients on users’ smartphones, 

or requiring special privileges. It involves a technique for pre-possessing network flows 

to acquire a set of feature vectors (samples) that are used to build a classification model 

using supervised machine learning algorithms. The study includes a parameter tuning 

phase, and a performance comparison phase to assess multiple machine learning models 

at their best parameter values. It is revealed that classification ensembles called Random 

Forests outperform other types of supervised classifiers such as Multi-Class SVMs. The 

classification model is used in an outlier detection process that employs Bayesian 

Inference. The process uses a confidence score metric produced by the classification 

model to detect novel samples. We reached a high detection accuracy for novel samples 

at 97% for benign apps and 92% for malicious apps with a low false alarms rate at 3%. 
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CHAPTER 1  

 

INTRODUCTION 

 According to IDC [1], smartphones market worldwide share grew 13% over the 

second quarter of 2015 indicating a remarkable increase. Android OS dominated the 

market with 86.8% share and 7.2% growth over the four quarters of 2015. This indicates 

an increase in the number of smartphone users. In 2015, the percentage of users who 

accessed the web using their smartphones only was 52.7%. As a natural result for this 

increase, the number of smartphone apps and services is growing quickly to satisfy users’ 

needs. According to Statista [2], as of June 2016, Google play store apps have reached 

2.2 million, and Apple App store contained 2 million apps. 

 Serious challenges are facing today’s computer and smartphone networks to cope 

with this vast number of apps and services. For example, maintaining a certain QoS level 

for some apps’ functionalities (e.g. media streaming, video conferencing), and detecting 

abnormal network flows that may be consuming network’s resources and affecting 

service quality for other users. These abnormal flows could be resulting from network 

attacks that aim to downgrade the availability of the network (e.g. Distributed Denial of 

Service DDoS using botnets [3]). 

 These challenges are affecting every public network that serves smartphones as a 

part of its infrastructure (e.g. mobile operators). Additionally, private networks have 

raised concerns after Bring your Own Device (BYOD) technology has emerged [4]. This 

technology endues users to bring their smartphones and tablets to work instead of using 

machines provided by the workplace. Users have full control over their devices and they 
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can easily consume workplace’s network resources inappropriately. Therefore, most 

companies tend to use Mobile Device Management (MDM) systems [5] to gain partial 

control over the staff personal devices and protect the scarce resources of the workplace 

(e.g. bandwidth, servers). Access control solutions have been adopted in BYOD and 

implemented through MDM. These solutions act at the app level by placing restrictions 

on apps usage, or at the file level by using containers to limit the scope of company’s data 

leakage to other apps on the same smartphone. Usually, MDM solutions require installing 

a light weight client on users’ smartphones which raises privacy concerns. Additionally, 

MDM clients may not always be a lightweight service and may consume smartphone’s 

resources (e.g. Battery, Memory, Computational power). Therefore, most users tend to 

avoid installing such clients on their smartphones. MDM solutions are ineffective in 

public networks, and they are suited better for private networks since they operate in a 

client-controlled environment. 

 Many solutions are proposed to protect networks’ resources against inappropriate 

use and possible attacks. Most solutions use gathered information from smartphones or 

probes over the network to identify abnormal activities. Some solutions provide feedback 

to the users and warn them about the misbehaving apps. In general, many proposed works 

in the literature are based on a client-server architecture e.g. [6]. This architecture requires 

the installation of a client app on the smartphone just like MDM solutions. However, the 

client’s role is to warn the user about their misuse or a misbehaving app without having 

any control over the device. On the other hand, the literature includes network-side 

solutions which concentrate on protecting network resources only. Such solutions include 

modeling apps behavior from processing and network perspectives [7], payload 

inspection by applying Deep Packet Inspection (DPI) [8], using machine learning to 
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classify apps behavior [9], and traffic analysis through statistically analyzing apps 

network behavior [10]. 

 As mentioned, the majority of the proposed work employ gathered information 

from the smartphone itself, or from distributed probes over the network to build a 

knowledge base. This knowledge base is used to detect abnormal activities over the 

process or network level. Thus, we can categorize existing solutions based on the source 

of collected information. 

 Data mining and pattern recognition techniques have dominated state of the art 

methodologies to build such knowledge bases. A knowledge base is used to detect and 

fingerprint apps’ process and network behavior by comparing the detected behavior 

against it. The type of detected behavior relies on a set of measurements (Features) which 

are gathered from multiple sources and levels. Methodologies that concentrate on process 

behavior of apps use features that are linked to CPU and Memory consumption. At a 

deeper level, such methodologies inspect messages from inter-process communication 

that take place on the kernel level in case of Android OS. This requires installing client 

apps to collect such features, and sometimes these apps require root and super-user access 

[11]. Such methodologies have more disadvantages compared to their advantages. For 

example, installing clients that consume smartphones’ resources due to their complexity 

is impractical. Additionally, the nature of the collected features makes them unable to 

detect apps’ network behavior. Super-user privilege and root access may not be available 

on most smartphones as most users are not security experts. Therefore, most 

methodologies tend to collect multi-level features which are able to represent apps’ 

behavior more generally [12]. Again, these require installing clients which act as data 

gathering and information collection agents. Due to the introduced complexity of using 
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multi-level features, data processing is moved to take place on a backend server. This 

introduced communication overhead between the distributed agents and the main server. 

In addition, it requires buffering the collected info which can be useless if not delivered 

at the time when an abnormal incident took place. 

 Finally, most recent state of the art methodologies [13][14] have been oriented 

towards network-side solutions. Such solutions focus on protecting network resources 

and pay less attention to users’ smartphones. From a network operator, or a network 

administrator perspective, these solutions are more practical and introduce more 

advantages compared to the used solutions in the latter two types of approaches. Such 

solutions are located in the network core, and don’t require installing a client or an agent 

on users’ smartphones. This makes them secured against intruders, user misbehavior, and 

manipulation. They outperform client-server and client only solutions since they are 

completely deployed in the network core which theoretically has unlimited computational 

power and negligible communication overhead. The down time of such solutions is 

limited since the features are collected from the network which links the availability of 

the solution to the availability of the network. 

 The proposed methodology in this thesis follows a network-side solution to 

classify apps encrypted traffic. We focus on apps’ network behavior since our aim is to 

protect network resources against improper usage and unwanted traffic types. 

Additionally, our aim is to utilize a classification technique to detect traffic types which 

helps in tuning QoS parameters to deliver best user experience. We focus on Android OS 

since it dominates the market share and has more users worldwide. Another reason for 

picking Android OS is the easiness of app development and familiarity with Linux 

operating system and shell commands which form the Android OS kernel. Figure 1.1 
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shows an illustration of how the proposed methodology could help in solving the 

described challenges.  

Network Core

Administrator

The Internet

Access point

?

 QoS &
Intrusion 
Detection

1- Facebook
2- WhatsApp
3- Abnormal (Maybe Malicious)
...

Access Point

Flow Based App Detection 

 

Figure 1.1 An illustration of the proposed methodology 

 

The rest of the thesis is organized as follows. CHAPTER 2 describes the related work. In 

CHAPTER 3, we state the problem and the proposed technique to solve the problem. 

CHAPTER 4 describes the proposed technique for app traffic classification and novelty 

detection in details. CHAPTER 5 demonstrates the experimental setup and the data 

collection results. In CHAPTER 6, we show the results of classification and novelty 

detection and their analysis. Finally, conclusion and future work are covered in 

CHAPTER 7.  
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CHAPTER 2  

LITERATURE REVIEW 

Most proposed solutions in the literature which concentrate on app identification are 

related to security. As stated earlier we can classify previous work into the following 

categories. 

2.1 Composite solutions 

 Some solutions are related to profiling and app fingerprinting such as [12], where 

the authors presented a multilayer system for profiling Android apps. The system includes 

four layers: Static, User interaction, OS, and Network layers. The main idea is taking 

advantage of cross-layer analysis to detect invisible abnormalities from a single layer 

perspective. However, root privileges are used in order to analyze apps’ events and 

network behavior. 

 The authors of [8] proposed app fingerprinting based on DPI. As stated it helps 

network operators to expect traffic loads, quality of service, and discover network 

abnormalities. However, their approach supposes that 70% of apps don’t use HTTPS 

which is not the case for current apps in stores. Additionally, applying deep packet 

analysis locally consumes smartphone’s resources. 

 Other solutions are related to behavioral analysis. By concentrating on the 

analyzed behavior, we can split the proposed solutions to general behavior analysis and 

network behavior analysis.  
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 Andromaly [11] and Crowdroid [15] are solutions based on general behavior 

analysis. Andromaly is a behavioral malware detection framework that consists of real-

time monitoring, collection, pre-processing, and analysis of Android system metrics 

(Features). These features are extracted from both kernel and app levels using a client 

running on the device. They capture aspects such as network activities, resource 

consumption (e.g. memory and CPU), and event occurrence (e.g. touch screen and 

keyboard). Crowdroid uses a crowdsourcing dynamic analysis method to detect Android-

platform malware. The system collects samples of execution traces for the running apps. 

These traces help in differentiating between benign and malicious apps. However, both 

solutions require rooted devices in order to collect some of the features.  

 Network Behavior analysis solutions concentrate more on features related to 

network activity. The authors of [16] presented a hybrid behavioral based anomaly 

detection system, which has a client-server architecture. The system is designed to protect 

mobile users and network infrastructure by detecting deviations in apps’ network 

behavior. Models are generated to represent the normal network behavior of each 

installed app. The models are based on network related features, which are collected using 

a client running on the smartphone.  

 The authors of [17] proposed a system for network behavior detection of android 

malware, which consists of three parts: monitoring, anomaly analyzing, and cloud storage 

model. The system monitors apps’ network behavior in real time, and does not need to 

parse the content of exchanged packets, which protects users’ privacy. It depends on 

network behavior features only such as Bytes in, Bytes out, connection length, and 

connections log of the running processes. However, the results show low accuracy rates. 
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2.2 Network Side Solutions 

 These kinds of solutions are being adopted in the latest state-of-the-art work since 

they introduce more advantages than disadvantages over client-server solutions. Most 

network-side solutions employ traffic analysis since it is the only source of information 

on a network level. Latest works include profiling and modeling apps network traffic 

using machine learning algorithms and statistics.  

 The authors of [18] presented detailed analysis of Android smartphones traffic to 

show the effect on power consumption and throughput. They analyzed transfer sizes of 

TCP Flows and Round Trip Times, in addition to retransmission rates. The authors of [7] 

concentrated on modeling network traffic produced by users’ behavior. They introduced 

a session concept that represents the needed flows to complete a single task. Multiple 

session characteristics are extracted and modeled using Hidden Markov Models (HMM). 

The authors introduced session types, which differ in packet lengths and traffic exchange 

duration. Each type of traffic, such as media streaming or browsing, defined a set of 

values for these variables. However, the values were based on assumptions and collected 

statistics. The models are used in profiling apps’ patterns. However, models are not tested 

in a real environment. 

 The authors of [19] investigated background traffic generated by Android apps. 

They confirmed traffic characteristics’ diversity by conducting a detailed experiment to 

analyze the traffic. The authors also studied Persistent TCP based apps, which require 

periodic message exchange in order to keep connections alive. However, the study was 

restricted to background traffic only. They suggested using DPI in order to identify 

running apps, which is not practical due to traffic encryption. 
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 In order to identify apps, the authors of [9] suggested an adaptive algorithm that 

automatically recognizes traffic by relying on Classification Rules. They introduced a 

traffic classifier as a collection of rules that defines each type of traffic. The system 

architecture is composed of three sections: data collection, a flow capturing mechanism, 

and a classifier generation algorithm. The information generated from flow capturing and 

payload information of non-encrypted flows are used to generate the classifiers. However, 

their method had drawbacks because it depends on known destination IPs and ports of 

apps’ servers. Such information is not determined in peer to peer communication. In 

addition, the method used non-encrypted flows to build classifiers, which is not an 

effective method in case of encrypted traffic. 

 The authors of [20] proposed traffic anomaly recognition using SVM 

classification algorithms. A detection model is built using collected features from the 

phone. Afterwards, they evaluated the detection model using real malware. The system 

used network features, and applied statistical classification in order to detect malicious 

apps. However, traffic features vectors are collected on the smartphone which can be done 

on network side to save resources.  

 The authors of [21] analyzed mobile traffic by comparing the URLs in apps’ 

HTTP requests against a set of malicious domains. Requests are logged using Wireshark 

and Netstat, which requires deep packet inspection. This approach is limited because 

URLs are extracted from un-encrypted requests while most of apps’ traffic is encrypted. 

The authors of [22] focused on analyzing encrypted traffic to build usage profiles to 

understand users’ actions. The proposed framework analyzes TCP/IP packets, and 

extracts information about network flows. The authors used Dynamic Time Wrapping 

algorithm [23] to find alignments between incoming and outgoing packets, which turned 



 

 

 

10 

out to be unique for each app. Their approach handled encrypted traffic and identified 

users’ actions with high accuracy; it did not involve a client installation on the device and 

it did not require any rooting privileges. However, it was affected by noisy packets such 

as TCP retransmission packets, and required reading TCP flags to set the start and end of 

the flow.  

 In another work [24], the same authors introduced an automatic app fingerprinting 

framework to identify apps behavior. The framework analyzes encrypted HTTPS/TLS 

flows collected from a client running on the phone. The authors applied various 

preprocessing techniques before extracting the features. The features expressed training 

samples used to train supervised machine learning classifiers. The authors introduced 

multiple training and testing scenarios and evaluated the performance of the used 

classifiers. However, their dataset is generated using specific conditions on a single 

phone.  

 The authors of [14] combined statistical-based and behavioral-based detection. 

Network traffic attributes were represented by Graphlets and packet sizes as distributions. 

They studied apps’ background and foreground traffic separately. The authors achieved 

high accuracy in detecting apps’ traffic patterns using a feature vector of 59 features. 

However, their experiment was limited were they studied traffic of a single device for a 

user, and they also used TCP flags to detect the flows which add more overhead. 

 

 In summary, the proposed solutions that employ traffic analysis are mostly related 

to network security. Only few have tried to classify normal traffic of multiple apps. The 

solutions which attempted to perform this kind of classification mostly involve installing 

a client on the smartphone, or require information that may expose users’ privacy or may 
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not be available and increase the overall overhead of the proposed solution. Additionally, 

the majority of proposed works use limited datasets generated using a single testing 

device. This may limit the scope of the solution to a particular device or a user.  

 In this thesis, we propose a methodology to classify apps’ traffic patterns using 

supervised machine learning algorithms and network collected features. The proposed 

technique doesn’t require a client-app installation and ensures users’ privacy. The 

overhead is moved to the network core since the computational resources are theoretically 

unlimited. Novel traffic patterns detection forms the second part of our contribution. We 

employ a specific type of machine learning classifiers called classification ensembles in 

an algorithm to detect novel flows using Bayesian Inference. The classification model 

and the detection process are validated using two datasets generated by multiple users 

using different smartphone models. 
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CHAPTER 3  

PROBLEM DESCRIPTION 

 The aim of this study is to provide a technique for mobile apps traffic 

classification, and novel flows detection. The technique uses network-side features and 

doesn’t introduce processing overhead to the smartphone. The technique is non-invasive 

for users’ and transparent for intruders over the network. Since the proposed process 

operates and depends entirely on the network core, and doesn’t use information from 

probes or client-apps that are can exposed to users it should be protected against 

manipulation and its security is tied to the core’s security. Flows classification can take 

place on pseudo real-time basis as will be explained in CHAPTER 4. 

 There are two main components which the technique consists of. First, the 

classification model, which is represented by a supervised machine learning classifier. 

Building the classification model is described in CHAPTER 4. A comparative analysis is 

performed to asses multiple supervised machine learning classifiers. Assessment results 

are used to choose the best classification model which will form the main part of the 

novelty detection process. Second, novel flows detection process, which is based on 

Bayesian Inference. The process is designed to utilize Bayesian decision theory in 

detecting novel flows. A confidence metric is used in the process which is produced by 

the classification model. The confidence metric is assigned to each sample in the network 

flow and the patterns that has a relatively large number of samples with a low confidence 

are detected. Apps’ flows are sampled during the lifetime of the flow and each sample is 

represented by a feature vector X. Forming the feature vector is an integral part of the 
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proposed methodology because it has a great effect on the performance of the 

classification model. Many proposed feature extraction attributes can be found in the 

literature [25] and they are implemented in this thesis. 

 The classification model is trained off-line before deployment. Since supervised 

machine learning models are used, the training phase should provide the ground-truth of 

the training data samples. We ensure the ground-truth labels for the training samples in 

the flow extraction phase which is a part of building the classification model. 

  

Flow extraction Ground-truth labels

Apps Network Traffic

Data Preprocessing

Training the Classifier

Parameter Tuning

Labeled Samples

Building the Classification Model

Classification 
Model

New samples 
unknown flows 

Classified 
samples

Classification and Novelty Detection 
Process

 

Figure 3.1 Classification model building steps 

 



 

 

 

14 

As shown in Figure 3.1 training the classifier is the last phase of building the classification 

model. Important phases precede the training which are data preprocessing and feature 

extraction and aggregation. These phases enable the model to deliver accurate 

classification results depending on the nature of the extracted features. 

 Thereafter, the classification model can be used in a generalized classification 

process which is able to detect novel samples. The process algorithm employs Bayesian 

Inference to make decisions about the testing samples. Bayesian Inference helps in 

avoiding threshold based decisions which require continuous updates to preserve the 

detection performance. 

 

 In support of designing and implementing the process we have to answer the 

questions below. 

1- how to design the classification and novelty detection process and what metrics 

are used to help in detecting novel flow samples?  

2- What are the process parameters which minimize novelty detection error? 

3- What type of supervised machine learning classifier should be used and how is it 

validated? 

4- What features should be extracted in the feature extraction and aggregation phase? 

5- Can we preserve same classification accuracy by reducing the feature vector 

dimension? 

6- How to implement the flow extraction phase and what are the characteristics that 

represent a flow? 
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 These questions are addressed through the thesis to build the methodology process 

of the proposed solution. Then, to validate the results of classification and novelty 

detection. 
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CHAPTER 4  

 

PROPOSED CLASSIFICATION AND NOVELTY 

DETECTION TECHNIQUE 

 In this chapter, we address the problem described in CHAPTER 3 for the case of 

real traffic collected from real smartphones and regular users. First, we describe the 

novelty detection process algorithm and blocks. Then, in section 4.2 we describe our 

approach of building the classification model which used in the novelty detection process. 

Finally, in section 4.3 we describe the flow extraction and feature aggregation approaches 

which are used to extract classifiable samples to train and validate the classification model 

and the detection process.  

 

Bayesian Inference 
Decision making 

Preliminary 
Class (Can be empty)

Risk Novelty > 
Risk Known

Calculated Risk
ModelNew Samples Sample is NovelNo

Preliminary 
Class Empty

Yes

Samples from 
Class[i]

No

Calculate samples 
ratio  for each 

Class i
Yes

Samples ratio > 
Threshold

No

Yes

 

Figure 4.1 Novelty detection process flow chart 
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4.1 Classification and Novelty Detection Process 

 As shown in Figure 4.1, the classification model is used as part of the general 

classification and novelty detection process. The process consists of sequential sub-

processes to make a final decision about the class of the new sample. The sample’s class 

can be one of the known classes in the supervised classification model, or it can be novel. 

Therefore, the generalized process adds the capability of detecting novel samples that are 

unknown by the classification model. The Bayesian Inference and decision making block 

of the process is shown in Algorithm  4.1. Bayesian decision is based on a calculated 

conditional risk. The conditional risk is calculated as shown in Equation (4.1).  

 

𝑅(𝛼𝑖|𝑥) =  ∑ 𝜆(𝛼𝑖|𝑤𝑖)𝑝(𝑤𝑗|𝑥) 

𝑐

1

 

(4.1) 

 

Where 𝛼𝑖 is the decision made by the Decision Rule to classify samples within a specific 

window in class 𝑤𝑖 (e.g. known), 𝜆(𝛼𝑖|𝑤𝑖) is a coefficient in the loss matrix which is 

controlled by the user. 𝑝(𝑤𝑗|𝑥) is the posterior probability of the other class 𝑤𝑗  (e.g. 

novel). The loss matrix for a Decision Rule of two classes have the structure shown in 

Equation (4.2). 

 
𝜆(𝛼𝑖|𝑤𝑖)  = 𝜆𝑖𝑗 ; 𝑤ℎ𝑒𝑟𝑒 𝜆𝑖𝑗  𝑖𝑛 (

𝜆𝑘𝑘 𝜆𝑢𝑘

𝜆𝑘𝑢 𝜆𝑢𝑢
) 

(4.2) 

 

 Where 𝜆𝑘𝑘, and 𝜆𝑢𝑢 represent the loss of classifying known samples as known, 

and novel samples as novel respectively. Thus, these two values are set to zero usually 

because there is no penalty on making correct decisions.  
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Consequently, the decision rule for classifying incoming samples in our process would 

be an inequality between the conditional risk of classifying samples as known, and the 

conditional risk of classifying samples as novel as shown in Equation (4.3). 

 

 𝑅(𝛼𝑘|𝑥) >< 𝑅(𝛼𝑢|𝑥)  (4.3) 

Where  

 𝑅(𝛼𝑘|𝑥) = 𝜆𝑘𝑘 𝑝(𝑤𝑘|𝑥) +  𝜆𝑘𝑢 𝑝(𝑤𝑢|𝑥) (4.4) 

 

 𝑅(𝛼𝑢|𝑥) = 𝜆𝑢𝑘 𝑝(𝑤𝑘|𝑥) +  𝜆𝑢𝑢 𝑝(𝑤𝑢|𝑥) (4.5) 

 

 𝑅(𝛼𝑘|𝑥) is the conditional of classifying samples as known, and 𝜆𝑘𝑢 is the loss 

coefficient of classifying known samples as novel. 𝑅(𝛼𝑢|𝑥)  is conditional risk of 

classifying samples as novel, and 𝜆𝑢𝑘 is the loss coefficient of classifying novel samples 

as known. Algorithm  4.1 describes the Bayesian decision concept in our approach. 

 

 The preliminary class score (confidence score) 𝑺𝒌𝒄𝒊
 is calculated based on the type 

of the classifier which used in the generalized process. The class score will be null if none 

of the known classes has a relatively high confidence score to classify the sample. If the 

score is not null it means that one of the known classes has a relatively high confidence 

score. When the class score is not null we increase the vote count for class 𝑉𝑐𝑖
. Then, we 

split Bayesian decision risk calculation into two phases.  
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ALGORITHM. BAYESIAN INFERENCE & DECISION MAKING 

while (new samples) 

𝑺𝒌𝒄𝒊
 = get preliminary class of sample k from the classification model; 

if (𝑺𝒌𝒄𝒊
 is not null) 

 𝑽𝒄𝒊
++;   

 for l = x to k do  | (x = 1 if at the we are at the beginning of the flow else x = k –w; w is the window size)  

𝑅𝑖𝑠𝑘𝑢𝐻 =    
𝑉𝑐𝑖

∑ 𝑆
⁄ ∗  𝜆ℎ; 

𝑅𝑖𝑠𝑘𝑘𝐻 =    
𝑉𝑈

∑ 𝑆⁄ ∗ (1 − 𝜆ℎ); 

end 

 

 for l = k to x do  | (x = end if at the we are at the end of the flow else x = k +w; w is the window size)  

𝑅𝑖𝑠𝑘𝑢𝐹  =    
𝑉𝑐𝑖

∑ 𝑆
⁄ ∗  𝜆𝑓; 

𝑅𝑖𝑠𝑘𝑘𝐹  =    
𝑉𝑈

∑ 𝑆⁄ ∗ (1 − 𝜆𝑓); 

end 

 

else 

𝑽𝑼++; 

for l = x to k do     | (x = 1 if at the we are at the beginning of the flow else x = k –w; w is the window size)  

𝑅𝑖𝑠𝑘𝑢𝐻 =    
𝑉𝑘

∑ 𝑆⁄ ∗ 𝜆ℎ; 

𝑅𝑖𝑠𝑘𝑘𝐻 =    
𝑉𝑈

∑ 𝑆⁄ ∗ (1 − 𝜆ℎ); 

end 

 

for l = k to x do     | (x = end if at the we are at the end of the flow else x = k +w; w is the window size)  

𝑅𝑖𝑠𝑘𝑢𝐹  =    
𝑉𝑘

∑ 𝑆⁄ ∗  𝜆𝑓; 

𝑅𝑖𝑠𝑘𝑘𝐹  =    
𝑉𝑈

∑ 𝑆⁄ ∗ (1 − 𝜆𝑓); 

end 

end 

𝑹𝒊𝒔𝒌𝒏𝒐𝒗𝒆𝒍𝒕𝒚 = 𝛼 ∗  𝑅𝑖𝑠𝑘𝑢𝐻 + (1 −  𝛼) ∗  𝑅𝑖𝑠𝑘𝑢𝐹;  

𝑹𝒊𝒔𝒌𝒌𝒏𝒐𝒘𝒏 = 𝛼 ∗  𝑅𝑖𝑠𝑘𝑘𝐻 + (1 −  𝛼) ∗  𝑅𝑖𝑠𝑘𝑘𝐹;  

end 

Algorithm  4.1 Bayesian Inference and decision making 

 

   

 First, calculate the risk of classifying the sample as known or unknown based on 

flow samples history (predecessors). 𝑅𝑖𝑠𝑘𝑢𝐻 and 𝑅𝑖𝑠𝑘𝑘𝐻 represent the risk of classifying 

the sample as novel or known respectively based on the predecessors.  



 

 

 

20 

 Second, calculate the risk of classifying the sample as known or unknown based 

on the upcoming samples (successors). 𝑅𝑖𝑠𝑘𝑢𝐹  and 𝑅𝑖𝑠𝑘𝑘𝐹  represent the risk of 

classifying the sample as novel or known respectively based on the successors.  

 The samples that are taken into consideration whether as part of flow history or 

flow upcoming samples fall within a specific window. The moving window technique is 

used to include latest flow samples in the decision making process. Hence, when the 

process is making a decision about a specific sample it waits for the moving window to 

have all needed samples.  

 𝑉𝑈  is the count of samples which are classified as novel, and ∑ 𝑆  is the total 

number of samples.  𝜆ℎ and 𝜆𝑓 are weights of the loss matrix which are used in making 

weighted decisions. If the confidence score is null, the same process repeats with one 

difference: 𝑅𝑖𝑠𝑘𝑘𝐻  and 𝑅𝑖𝑠𝑘𝑘𝐹  will be calculated using the vote count of all known 

classes 𝑉𝑘 instead of a specific class  𝑉𝑐𝑖
.  

 Finally, the total risk for classifying the sample as novel 𝑹𝒊𝒔𝒌𝒏𝒐𝒗𝒆𝒍𝒕𝒚, or as known 

𝑹𝒊𝒔𝒌𝒌𝒏𝒐𝒘𝒏 is calculated using a weighted sum of 𝑅𝑖𝑠𝑘𝑢(𝐻|𝐹) and 𝑅𝑖𝑠𝑘𝑘(𝐻|𝐹) using the 

parameter 𝛼. The posterior probability for being known or being novel which is used in 

calculating the conditional risk is represented by the vote count ratio of each class.  After 

calculating the conditional risks, we classify the sample according to the lowest risk. 

However, if the risk of classifying the sample as known was lower and the preliminary 

class was null; we calculate samples’ count ratio for each known class, and if any class 

ratio exceeds a predefined penalty threshold, the sample is classified in that class. 
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4.1.1 Process Design Blocks and Parameters 

 We revisit the novelty detection process flow chart shown in Figure 4.1. After 

deciding on which classification model will be used in the process, we have to define the 

method of assigning the preliminary class by the model. We suggest using Random Forest 

(RF) in the classification model component as it will be shown that it outperforms the 

other supervised classifiers in terms of the classification precision and sensitivity. Thus, 

RF will form the classification model part in the detection process. 

 RF is used in the literature for outlier and intrusion detection in computer 

networks [26]. The authors used a proximity score generated by the RF model to assign 

a confidence score for each network pattern. The proximity score shown in Equation (4.6) 

is the average fraction of trees in the RF model for which the instance lands on the same 

leaf versus other instances in the same class. 

 
𝑃−(𝑛) =  ∑ (𝑝𝑟𝑜𝑥2(𝑛, 𝑘))

𝑘∈𝑐𝑙𝑎𝑠𝑠 𝑗

÷ 𝑁 
 
(4.6) 

 

 Where 𝑘 is a known instance from class 𝑗, 𝑛 is the testing instance, and 𝑁 is the 

number of trees in the RF ensemble. In other words, the outlier score of an instance is the 

inverse of its proximity towards a specific class in the RF model (see Equation (4.7)). 

 
𝑂−(𝑛) =  

𝑁

𝑃−(𝑛)
  

(4.7) 

 

 Then, they compared the assigned scores for each network pattern to detect the 

outliers which represent network intrusions. 

  

 In another work [27], the authors proposed two approaches for novelty detection 

using RF. The first approach relies on the proximity score that is mentioned earlier. 
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However, the second approach relies on the voting mechanism that RF uses to classify 

samples. The authors use the votes given by each tree in the RF ensemble to create a 

confidence score for each class as shown in Equation (4.8). 

 

𝐹𝑖 =
𝑣𝑖

𝑁
 ; ∑ 𝐹𝑖

𝑘

1

= 1 

 
(4.8) 

 

 Where 𝐹𝑖 is the confidence score of the 𝑖𝑡ℎ class in the sample, 𝑣𝑖 is the votes sum 

for the 𝑖𝑡ℎ class and 𝑘 is the number of trees in the RF ensemble. Thus, the confidence of 

the RF classifier towards each class regarding a particular sample is represented by the 

vote distribution for each class. Grouping the confidence scores of each class in the same 

sample defines a vote vector as shown in Equation (4.9). 

  
𝑣𝑜𝑡𝑒 = [𝐹1 𝐹2 … 𝐹𝑘]  

 
(4.9) 

 

 The confidence score is used to differentiate between two cases. First, the case of 

a sample coming from a class known by the RF ensemble. Here, the vote distribution 

should bias towards the known class 𝐹 score in the vote vector. Second, the case of a 

sample coming from an unknown class. Here, the voting distribution should not be biased 

as in the case of the sample coming from a known class. As mentioned by [27], this 

approach provides a metric to measure the proximity between a sample and class relying 

on the characteristics of that class. 

 In our technique, we use the confidence score defined in Equation (4.8) to assign 

a preliminary class for the testing samples. First, the process defines a Probability Density 

Function (PDF) for each class voting distribution. Only correctly classified samples are 

included to form the voting PDF of each class. The distribution defines the region of vote 
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counts when the sample is correctly classified in that class. Then, for each new sample 

from the testing set, the sum of the votes 𝑣𝑖 for each class 𝑐𝑖 is calculated. Thereafter, the 

process calculates the normalized 𝑍𝑠𝑐𝑜𝑟𝑒 for each 𝑣𝑖 as shown in Equation (4.10). 

 

𝑍𝑣𝑖
=

𝑣𝑖 −  𝜇(𝑃𝐷𝐹𝑐𝑖
) 

𝜎(𝑃𝐷𝐹𝑐𝑖)
  

 
(4.10) 

 

 The process assumes that the voting distribution for each known class follows a 

Gaussian distribution with a mean 𝜇 and standard deviation 𝜎. The assumption is based 

on analyzing the vote counts for all classes’ samples as will be shown in CHAPTER 6. 

  

 After calculating the 𝑍𝑠𝑐𝑜𝑟𝑒 for each 𝑣𝑖, the process calculates the 𝑃𝑣𝑎𝑙𝑢𝑒 of the 

normalized score to produce a probability score for each class vote sum between 0 and 1. 

The produced probability is compared against a probability threshold which represents a 

decision making edge. The testing sample is assigned to a preliminary class if the 

probability score of that class crosses that edge. We note that only a single preliminary 

class can be assigned to each sample since the probability scores of classes in the same 

sample sum up to 1. The steps for assigning the preliminary class are summarized in 

Algorithm  4.2.  
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ALGORITHM. ASSIGNING A PRELIMINARY CLASS    

Initialization: foreach class 𝑐𝑖 calculate voting distribution 𝑃𝐷𝐹𝑐𝑖
;  

while (𝑆) 

foreach class 𝑐𝑖 

𝑍𝑣𝑖
=

𝑣𝑖− 𝜇(𝑃𝐷𝐹𝑐𝑖
) 

𝜎(𝑃𝐷𝐹𝑐𝑖)
; 

 

𝑃𝑣𝑖
= 𝑃𝑣𝑎𝑙𝑢𝑒(𝑍𝑣𝑖); | one tailed Gaussian distribution  

end 

𝑃 = [𝑃𝑣1 … 𝑃𝑣𝑘
]; 

if any( (𝑃𝑣 in 𝑃) > 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) 

 𝑆𝑐 = 𝐼𝑛𝑑𝑒𝑥𝑜𝑓(𝑃𝑣); 

else 

 𝑆𝑐 = null;  

end   

end 

Algorithm  4.2 Preliminary class assigning 

 

 Where 𝑆  is a new sample, 𝑃𝑣𝑖
 is the 𝑃𝑣𝑎𝑙𝑢𝑒  of the normalized Z score for the 

testing sample, 𝑃 is the class probability vector, and 𝑆𝑐 is the assigned preliminary class 

for that sample. 

 After assigning the preliminary class the process continues to assign the final class 

for the testing sample by calculating the Bayesian risk as shown in Algorithm  4.1. 

4.2  Proposed Approach of Building the Classification Model 

 Classification is a form of supervised or unsupervised machine learning 

implemented using data mining techniques [28]. In supervised learning there are three 

datasets, one for training the second for evaluation and tuning, and the third is for testing. 

Every sample in both datasets is represented by a set of features that may be continuous, 

categorical, or binary [28] and have known labels or classes. Before building the 

classification model, there are three important phases that have to be implemented. These 

phases guarantee correct interpretation to achieve high detection accuracy. Data Pre-

processing is the first phase. Training datasets may contain missing values that need to 
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be filled, or noisy points that need to be cleaned [28]. Therefore, extracted samples should 

go through a filtering phase. The second phase is feature selection, which is the process 

of removing redundant and useless features that may affect learning either by increasing 

the learning period, or decreasing the accuracy of classification. In most cases, classifiers 

use aggregated features from a set of basic features. The feature selection phase 

implementation depends on the type of the selection method e.g. Filtering or Wrappers. 

The final phase is choosing a suitable learning algorithm to meet the objectives of the 

study. Supervised classification has a large number of techniques that use data mining, 

e.g. Decision Trees [29], and some use statistical approaches, e.g. Bayesian classifiers 

[30]. 

 As stated, we use supervised machine learning algorithms to build the 

classification model. In the literature, each proposed solution uses a specific model to 

classify patterns in apps’ behavior. We decided to conduct a comparison among several 

models and pick the best in terms of classification accuracy and time performance 

Labeled 
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Learning 

Algorithm

Parameter 
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Accuracy

Not Met
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Figure 4.2 Hyper-parameter tuning for supervised machine learning classifiers 

 

 To perform the comparison, each selected classifier goes through a parameter 

tuning phase as shown in Figure 4.2. This phase assigns best values for each hyper-

parameter. We use Bayesian optimization [31] for the parameter tuning phase. 
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4.2.1 Bayesian Optimization of Supervised Machine Learning Classifiers 

 Seeks best hyper-parameter values that minimize the generalization performance 

function of a machine leaning classifier. In general, training a machine learning classifier 

requires some high-level choices about the values of its hyper-parameters. Most 

supervised machine learning models have a set of hyper-parameters which have their 

values assigned during a parameter tuning phase. The aim is to use Bayesian optimization, 

which outperforms other state of the art optimization algorithms in this case [32], to 

determine the best values for the set of hyper-parameters of a specific model. In general, 

Bayesian optimization assumes that the generalization function is sampled from a 

Gaussian Process (GP) [33]. Therefore, it maintains a posterior distribution for the 

outcome of that function at each evaluation. The outcome of the generalization function 

in the case of a machine learning classifier is represented by the generalization error under 

different hyper-parameter values. 

 In order to pick the next value for a hyper-parameter, Bayesian optimization 

optimizes the Expected Improvement (EI) [31]. It is desirable to invest the computational 

power in making better choices about where to find best hyper-parameters instead of 

making expensive function evaluations e.g. training a classifier. The improvement is 

compared to the current best result of the generalization function. 

 Bayesian optimization constructs a probabilistic model for the generalization 

function 𝑓(𝑥). Then, it exploits the model to find values of 𝑥 which is a subset of 𝑅𝐷 to 

evaluate the function. It uses all available information from previous evaluations of  𝑓(𝑥) 

and do not rely only on local gradient and Hessian. Thus, the procedure can minimize a 

non-convex function such as 𝑓(𝑥)  in a few iterations. This kind of optimization is 
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preferred in the case of expensive evaluation of the generalization function e.g. training 

a machine learning classifier. 

 While using Bayesian optimization one has to make choices about the Gaussian 

process prior and type of Acquisition Function (AF) [34]. The Gaussian process prior is 

used to make assumptions about the target function. While the AF is used in constructing 

a utility function for the model posterior which allows to determine the next evaluation 

point. 

4.2.2 Supervised Machine Learning Classifiers 

 In this study a comparative analysis is performed to compare four of the most 

known supervised machine learning classifiers. 

1. Bagged Ensembles of Trees (Bagged) 

2. Random Forest (RF) 

3. Multi-Class SVM 

4. KNN with Random Subspace  

 Each algorithm has a different set of parameters that has to be tuned for training. 

Each algorithm represents an ensemble of classification models of the same type. For 

example, Random Forest is formed of an ensemble of Decision Trees. Multi-Class SVM 

contains multiple binary classification SVMs. In this section, we briefly describe each 

algorithm and identify the different parameters used in the tuning phase. 

4.2.2.1 Bagged Trees 

 The Bagging Algorithm, introduced by Breiman [35], creates a single classifier 

from multiple weaker classifiers, which are Decision Trees. These classifiers generate 

their votes from multiple Bootstrap samples [30], by uniformly sampling n instances from 

a single training dataset and replacing them [36]. Afterwards, T Bootstrap samples are 
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used in building T classifiers in parallel using the C4.5 Algorithm [37]. Each Classifier, 

Ci, is learned by Bootstrap sample, Bi. The output of the final classifier C is the class that 

is most voted for by 𝐶1, 𝐶2, … , 𝐶𝑇 as shown in Algorithm  4.3. 

ALGORITHM. THE BAGGING ALGORITHM 

Input: set S, Inducer I, integer T (number of bootstrap samples) 

Output: Classifier 𝐶∗ 

 

for i = 1 to T do 

𝑆′ = bootstrap sample from S (i.i.d. sample with replacement); 

𝐶𝑖  = I(𝑆′); 

End 

 

𝑪∗(𝒙) = 𝐦𝐢𝐧
𝐲∈𝐘

∑ 𝟏𝐢:𝐂𝐢(𝐱)=𝐲  (𝐭𝐡𝐞 𝐦𝐨𝐬𝐭 𝐨𝐟𝐭𝐞𝐧 𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐞𝐝 𝐯𝐚𝐫𝐢𝐚𝐛𝐥𝐞 𝐲); 

Algorithm  4.3 The Bagging Algorithm 

 

 Each instance in the training set has a probability of  1 − (1 −
1

𝑛
 )𝑛  to be selected 

in one of the n times instances picked from the single training set [38]. This technique 

decreases the error probability since we are including most instances in different 

combinations to build the classifier. In addition, it prevents creating an over fitted model 

of the system. The set of tunable parameters in this study are shown in Table 4.1. 

 

Table 4.1 Tunable Parameters of Bagged Trees 

Parameter Description 

N No. of bootstrap samples to generate the classifiers 

Learner type Classification or Regression 

Min. Leaf size The minimum No. of observations to create a leaf 

 

 The leaner type depends on whether the class is continuous or categorized in order 

to be considered as regression or classification, respectively. The leaf is the terminal node 

in the Decision Tree that assigns the class for an instance. 
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4.2.2.2 Random Forest  

 Random Forest Classifier (RF) consists of a collection of Decision Tree 

classifiers, each built using an independent set of random training vectors {𝜃𝑘}, which is 

identical to the rest of the sets. Each Tree classifier casts a vote for the most popular class 

for the input vector [39]. Therefore, the RF classifier uses a similar approach to the 

Bagged Trees classifier with one difference; the random vectors used in training each 

Tree in RF are identical is size, but each uses a different combination of features to 

structure the training set. For example, the Bagging Algorithm generates the random 

vectors in each training set by randomly selecting N instances from N sets where N is size 

of the training set. However, in RF, each random vector 𝜃𝑘 is generated independently of 

the former vectors, but using the same distribution. The random split selection builds 

training vectors by permuting a specified number of features between 1 and K, where K 

is the maximum size of a training vector. The tunable parameters in this study are shown 

in Table 4.2. 

Table 4.2 Tunable parameters of RF 

Parameter Description 

N No. of bootstrap samples to generate the classifiers 

K Number of Predictors 

Learner type Classification or Regression 

Min. Leaf size The minimum No. of observations to create a leaf 

 

 k is fixed for all the training vectors in all the training sets, but each vector has a 

different random permutation of features in each training set. 

4.2.2.3 Multi-Class SVM 

 Support Vector Machines (SVM) was introduced by E. Osuna [40]. It builds a 

supervised classification model that can perform classification and regression analysis on 

linear and non-linear data. SVM models separate known classes by mapping their 
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instances on a hyperplane using a kernel, then it tries to minimize the generalization error 

between classes. SVM is a binary model that can separate between two classes at a time. 

Therefore, the employed implementation uses an Error-correcting Output Code 

Multiclass Model (ECOC) that reduces the problem of Multi-class Classification to a set 

of binary classifiers. The Coding Design in ECOC determines the classes that the binary 

learners should train on. For example choosing one versus one (OVO) coding design 

results in 𝐾(𝐾 − 1)
2

⁄  classifiers. The decoding scheme determines how the predictions of 

the multiple binary classifiers are interpreted. For example, in OVO coding a binary 

classifier prediction can be one of three possible choices. The sample is in Class 1, or in 

Class 2, or in none of the two classes. ECOC uses the loss g to determine the class that 

each new sample should be assigned as shown in Equation (4.11). 

 

 
𝑘̂ = min

𝑘

∑ |𝑚𝑘𝑙|𝑔(𝑚𝑘𝑙 , 𝑠𝑙)𝐿
𝑙=1

∑ |𝑚𝑘𝑙|𝐿
𝑙=1

  
 
(4.11) 

 

 𝑚𝑘𝑙 is an element in the design matrix M representing class k and binary learner 

l. 𝑠𝑙  is the predicted classification score for the positive class in leaner l. Using this 

approach can improve the accuracy compared to other classification models. The tunable 

parameters in this study are shown in Table 4.3, depend on the coding and decoding 

scheme, and the type of the used kernel. 

Table 4.3 Tunable parameters of Multi-Class SVM 

Parameter Description 

Coding design Type of coding used to separate classes, e.g. OVO, OVA. 

Kernel function Type of kernel used in the binary classifier e.g. Gaussian, Polynomial 

Kernel scale The learning rate parameter  

Polynomial order If the kernel is Polynomial, define polynomial order 

Soft Margin Allows misclassifications at the cost of a penalty factor c. 
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4.2.2.4 KNN with Random Subspace 

 The K Nearest Neighbor Algorithm was introduced by [41], and it is a non-

parametric method used for classification and regression. The sample is classified 

according to the superior class dominating over the k neighbors of the sample in the 

feature space. KNN assigns weights to the contribution of each neighbor, where nearer 

neighbors contribute more in the classification decision. Training vectors are separated 

over a multidimensional feature space, each with a different class label. K and the distance 

metric are user defined constants.  

 

Table 4.4 Tunable parameters of KNN with random subspace 

Parameter Description 

K Number of neighbors 

Distance 

metric 

The used method for measuring the distance between neighbors e.g. 

Euclidian, Hamming 

Distance 

weight 

A function applied on the distance metric e.g. inverse, squared inverse, equal. 

Tie break 

When two neighbors have the same weighted distance, KNN breaks the tie by 

locating: nearest same neighbor from other points or randomly picks the 

class. 

M Number of subspace dimensions 

N Number of learners in the ensemble 

 

 Typically, Euclidian distance is used for continuous features, while Hamming 

distance is used for discrete ones. Using KNN algorithm with Random Subspace selection 

[42] can improve the accuracy when an ensemble of n classifiers is created using n 

training sets. Each sample in the training set contains m random features selected from 

the original feature space that has a dimension d. Therefore, there are additional tunable 

parameters along with the number of neighbors k, which are shown in Table 4.4. 



 

 

 

32 

 After performing the comparison, we compare the ability of each classifier to 

reduce the features vector size while partially preserving the same classification accuracy 

within an acceptable ratio. This phase is called feature selection, where it is used to 

increase the classification model performance time-wise, and reduce the noise in training 

data. 

4.2.3 Feature Selection 

 There are two approaches to perform this selection. The first approach is to score 

the subset of features using a classification model. In other words, choose subsets of 

features which increase the classification accuracy of the used model. This type of feature 

selection methods is called Wrapper methods [43][44][45][46].  

 The second approach is to analyze dataset properties and extract relationships 

among features. For example, calculating the correlation between two features in the 

feature space to eliminate one. This type of feature selection methods is called Filter 

methods. The first approach requires optimizing the classification model before using it 

in features ranking. On the other hand, Filter methods rely on the characteristics of the 

dataset to select features independently of the used classifier. In our approach, we 

implement both Wrapper and Filter methods to validate each classifier after completing 

the parameter tuning phase. 

  

 Feature selection aims to reduce the number of features in the feature space to 

increase the performance e.g. training time, and remove the noise in decision making 

caused by irrelevant features. However, reducing the feature vector size shouldn’t have a 

great negative impact on the classification accuracy. As mentioned, we concentrate on 

two types of feature selection methods. First, filter methods which focus on the statistical 
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properties of the feature vectors and filter-out the ones which deliver less information e.g. 

Correlation Score. In our implementation, we use the correlation score analysis to rank 

the features that will be extracted later on. The computed rank is the correlation between 

the feature column and the change in the feature vector class with respect to all samples 

in the dataset. The correlation score is a real number between -1 and +1 that measures the 

degree of association between two data vectors. Whether it is a negative or a positive 

score, as long as it is closer to -1 or +1, the correlation is considered more significant. 

 Second, Wrapper methods which use a machine learning classifier to score the 

importance of each feature. We used four algorithms (Information Gain [44], OOB 

predictor Importance [47], RELIEFF [45], and Hold-out Support Vector Machines (HO-

SVM) [43]) to calculate the importance and rank the extracted features later on. Each of 

the used algorithms is associated with a specific classifier. For example, OOB Importance 

and Information Gain are associated with DT classifiers which are used in the Bagging 

ensembles and RF. HO-SVM obviously uses SVM, while the RELIEEF algorithm uses 

KNN. 

 After ranking the features using both methods we re-evaluate the four 

classification models using the top n ranked features.   

4.2.3.1 OOB Predictor Importance 

 This method uses out-of-bag (OOB) estimation [47] in Trees ensembles to 

calculate two metrics, which express the importance of a feature. 

1. Delta Error: which is the increase in the prediction error if the values of the 

specified feature are permuted across the OOB observations. 

2. Delta Mean Margin: which is the decrease in the classification margin if the values 

of the specified feature are permuted across the OOB observations. 
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 OOB observations are the omitted samples that form 1
𝑒⁄  or 37% of the total 

samples for each Decision Tree in the ensemble [46]. The samples are omitted when 

performing drawing with no replacement over N samples to form T bootstrap samples. 

The classification margin is the difference between the classification score of the positive 

class and the maximum score obtained for the false class in the same sample [48]. 

4.2.3.2 RELIEFF 

 The algorithm [45] estimates features’ strength according to the change in their 

values in nearby neighbors. The algorithm searches for a nearest neighbor from the same 

class, which is called a near hit, and k nearest neighbors for other classes, which are called 

near misses selected from n random training instances. Then, it calculates the difference 

between the features of the sample, the near hit, and the near misses. The difference for 

discrete features is either 0, which indicates equality, or 1, which indicates a difference. 

For continuous features, the difference is calculated using the Euclidian distance and 

normalized between [0, 1] to guarantee that all features’ weights are within [-1, 1]. The 

algorithm averages the contribution of k samples to update the weight of the feature. A 

good feature has the same value for instances in the same class and should differ in 

instances from different classes. 

4.2.3.3 Information Gain 

 Information Gain [44] is based on the change of the entropy value for a feature 

after splitting the dataset using one of the features. The same method that DT uses when 

raking the importance of a feature to be selected for the next dataset split. There are two 

kinds of entropies, the first is calculated using the frequency table of a class attribute c, 

where the frequency 𝑝𝑖 is the count of the distinct values of that attribute, as shown in 

Equation (4.12). 
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𝐸(𝑆) =  ∑ − 𝑝𝑖 𝑙𝑜𝑔2 𝑝𝑖

𝑐

𝑖=1

  
 
(4.12) 

 

 The second entropy value is calculated using the frequency table of a feature 

against the class attribute c, as shown in Equation (4.13). 

 
𝐸(𝑇, 𝑋) =  ∑ 𝑃(𝑐)𝐸(𝑐)

𝑐 ∈𝑋

 
 
(4.13) 

 

 Finally, the gain of each feature is calculated using both entropies, and the feature 

with the largest gain is chosen to split the dataset based on its values, as shown in Equation 

(4.14). 

 𝐺𝑎𝑖𝑛(𝑇, 𝑋) = 𝐸(𝑇) − 𝐸(𝑇, 𝑋)  (4.14) 

 

4.2.3.4 HO-SVM 

 HO-SVM Algorithm is summarized as shown in Algorithm  4.4. 

ALGORITHM. HO-SVM  

(1) Model Selection  

(2) Initialization   

 

while smallest value of 𝐸(−𝑝)(𝛼, 𝜎) < 𝐸(𝛼, 𝜎) do 

   (a) Extract a random split of the dataset 

   (b) Train SVM using the specified parameters  

   (c) foreach feature p with 𝜎𝑝 = 1, do determine 𝐸(−𝑝)(𝛼, 𝜎) 

   (d) remove feature j with the smallest value of 𝐸(−𝑝)(𝛼, 𝜎) 

end 
 

Algorithm  4.4 HO-SVM 

 

 Where 𝐸(−𝑝)(𝛼, 𝜎)  is the number of classification errors when feature p is 

removed.  𝐸(𝛼, 𝜎) is the number of errors in the validation set using all features as 

indicated by the current feature vector 𝜎. The Model selection step is to determine the 

parameters of the SVM model e.g. kernel type. The initialization step indicates training 



 

 

 

36 

and validating the model using all features for the first time. We note that the previous 

method is used in the case of binary classification only. Thus, it is applied in each binary 

classifier in the multi-class SVM classifier. 

 SVM does not determine the importance of used features such as Bagged Tress 

and RF. The method starts with all available features in the dataset. Then, for each feature, 

the method determines the contribution in the SVM classifier. The feature that has the 

least impact on the classification accuracy will be removed at each iteration until a certain 

criterion is met. 

 In our technique, we validated the classification accuracy at the removal of each 

feature alone to rank the features independently of each other. We didn’t set a stopping 

criteria because our aim is to rank all features. 

 

 In the following section we suggest our approach of flow and feature extraction 

and aggregation. The extracted features will be used to build the classification model and 

will go through the feature selection process as will be shown later.  

 

4.3 Flow Extraction and Feature Aggregation Approach 

 We followed two approaches while extracting the flows. In the first approach we 

considered all exchanged packets between two network IPs using the same ports and 

protocol to represent a flow and it is called the 5 tuples approach. In the second approach, 

we dropped the ports and considered all exchanged packets between two network IPs 

using the same protocol to represent a flow and it is called the 3 tuples approach. The 

flow is terminated when traffic exchange is idle for a specified amount of time and no 

more packets from this flow appear. Features are extracted from network flows generated 
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by a running app. The flows consist of TCP or UDP packets. Each flow packet is defined 

by a set of attributes as shown in Table 4.5. As we will see later, the proposed flow 

extraction approach does not require reading any information that may put users’ privacy 

at risk. Some proposed methods in the literature require reading part of the payload. 

Others, read TCP flags to have inquiries about 

 the flow state.  

Table 4.5 Packet Attributes 

 

Packet 

Number 
Timestamp 

Packet 

Length 

Inter arrival 

Time 

Direction 

(In/Out) 

App 

Label 

 

 As shown in Table 4.5, timestamp is the time at which the packet has arrived. The 

packet length is the payload size in Bytes. The inter-arrival time is the time elapsed since 

the last packet was received in the flow. Packet direction states if the packet was outgoing 

or incoming relative to the smartphone network IP. Finally, the label represents the app 

which produced these packets by executing specific actions.  

 Feature extraction and aggregation is implemented to get useful information that 

describe the traffic generated by apps. The traffic is the set of extracted flows and packets 

exchanged while executing certain actions on the app. It is an important phase which has 

a great impact on the classification model accuracy and performance. We used some of 

the proposed feature groups listed in [25].  
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 Table 4.6 Extracted feature vector 

# Feature 

1 Packets Out Count 

2 Packets In Count 

3 Packets Out / Packets In ratio 

4 Bytes Out Count 

5 Bytes In Count 

6 Bytes Out / Bytes In ratio 

7 Average difference of Inter-arrival time of incoming packets 

8 Average difference of Lengths of incoming packets 

9 Average difference of Inter-arrival time of outgoing packets 

10 Average difference of Lengths of outgoing packets 

11 Median of Inter-arrival time of incoming packets 

12 Median of Lengths of incoming packets 

13 Median of Inter-arrival time of outgoing packets 

14 Median of Lengths of outgoing packets 

15 Variance of difference of Inter-arrival time of incoming packets 

16 Variance of difference of Lengths of incoming packets 

17 Variance of difference of Inter-arrival time of outgoing packets 

18 Variance of difference of Lengths of outgoing packets 

19 Average of Inter-arrival time of incoming packets 

20 Average of Length of incoming packets 

21 Average of Inter-arrival time of outgoing packets 

22 Average of Length of outgoing packets 

23 Variance of Inter-arrival time of incoming packets 

24 Variance of Lengths of incoming packets 

25 Variance of Inter-arrival time of outgoing packets 

26 Variance of Lengths of outgoing packets 

27 Inter-arrival  Time between packets bursts incoming  

28 Inter-arrival  Time between packets bursts outgoing 

 

 The features shown in  Table 4.6 are extracted for each flow at a fixed time 

interval. Each flow may have more than one sample generated in this phase. An advantage 

of this technique is having multiple measurements for the same flow at formal intervals. 

These measurements can be used in real time detection of abnormalities in flow behavior, 

or in detecting novel samples.  

 There are important parameters to extract the flows which we can aggregate the 

features from. Flow idle timeout and sampling time interval are two important parameters 
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of our system. There are no standards that suggest values for these parameters. Therefore, 

they are set empirically in such a way to get best achievable results as we describe later. 

 

 In the following chapter we will show the outcomes of the flow extraction and 

feature aggregation phases. Classification model building through the comparative 

analysis approach, along with novelty detection results are described in CHAPTER 6.  
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CHAPTER 5  

 

 EXPERIMENTAL SETUP AND DATA COLLECTION 

RESULTS  

 In this chapter we describe the data collection experiment which is performed to 

form the experimental dataset. During the experiment we went through different stages 

from packet dump and network connections info collection, to flow and feature extraction 

and aggregation. Finally, the dataset is filtered to pull useful training and evaluation 

samples. The experimental dataset is used in our methodology implementation to build, 

design and evaluate the classification model and the generalized classification and 

novelty detection process. 

Access point

Packet dump

Traffic

Connections Info

Connections

 

Figure 5.1 Experimental setup 

 

5.1 Experimental Setup 

 We can notice from Figure 5.1 that the experimental setup follows a client-server 

architecture. To collect packet dumps, we create a virtual access point attached to a 

terminal. The terminal is running Wireshark [49]  to sniff and store packets in 

promiscuous mode. Packet dumps are stored as Pcap files that hold information about 
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each sniffed packet as shown in Table 5.1. On the other hand, the smartphone runs a 

background service that stores network connections information established or received 

by every running app. 

 

Table 5.1 Packet information 

Attribute Definition 

No.  Packet sequential number as sniffed from the network. 

Time A Unix timestamp which indicates the packet sniffing time. 

Source  Source IP address as stated in the packet header  

Destination Destination IP address as stated in the packet header 

Protocol  Layer 3 protocol as stated in the packet header  

Length Packet (Frame) Payload size 

Src. Port  Layer 3 Source port as stated in the packet header  

Dst. Port Layer 3 Destination port as stated in the packet header. 

Delta Time Time difference in milliseconds between current packet and last 

received packet from a specific source. 

Time Sum Cumulative addition of timestamps in sequential packets from a 

specific source. 

 

 The client-app extracts connections’ info by frequently by running a simple 

“Netstat” command at fixed intervals. The service checks each established connection 

against a runtime list and stores new connections as entries. At each interval iteration, if 

the same connection still exists, the service updates its entry by updating the connection 

age attribute (see Table 5.2). The background service stores the information as temporary 

encrypted binary files on the external storage of the phone. Then, the service starts 

uploading the binary files to the server through a secure link over the internal network 

once these files exceed a specified file size. The secure link is established from the client 

to the server using a Public Key Infrastructure (PKI). For this setup we use a self-signed 

certificate which uses a 2048 RSA key generated by the server. The server side, which is 

implemented using PHP, receives the encrypted connections information as JSON arrays 
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and saves these arrays into a database structure. The Entity Relationship Diagram (ERD) 

of the database structure is shown in Figure 5.2. 

User App

User Apps

Connection

User IDPK App IDPK

... ...

User_App IDPK

...

IDPK

User_App IDFK

...

User IDFK

App IDFK

 

Figure 5.2 ERD of client monitor DB 

 

Table 5.2 Connection Information 

Attribute Definition 

ID Connection unique number  

User App ID A unique ID for the app which generated this connection which runs on a 

unique user smartphone. 

Source IP Layer 3 IP of the smartphone running the app which generated this 

connection 

Destination IP Layer 3 IP as shown when the service collected connection’s info  

Source Port Layer 3 source port of this connection  

Destination Port Layer 3 destination port of this connection   

Age  Connection’s lifetime in seconds until the file was uploaded to the server 

 

 We can notice that the database structure can saves all connections information 

for all apps running on different smartphones independently. Each inserted connection 

information is represented by several attributes shown in Table 5.2. 



 

 

 

43 

 Connections information are used in filtering packet dumps and extracting traffic 

flows generated by each user app. We followed two approaches in flow extraction. In the 

first approach, we used the 5 tuples structure (Source IP, Destination IP, Source Port, 

Destination Port, Protocol) to group packets under the same flow. In the second approach, 

we used the 3 tuples structure (Source IP, Destination IP, Protocol). Therefore, by 

matching the specified tuple of a single connection in the database structure with the 

packet information saved in the packet dump file we can extract apps’ flows. The 

User_App ID is used to label each extracted flow by the unique ID of the app which runs 

on a unique smartphone. 

 We note that the client service is used to label the extracted flows. However, 

whenever the model is deployed along with the process, users do not have to install this 

client on their smartphones.  

5.2 Apps 

 A total of 14 Apps are used in the experiment as shown in Table 5.3. Each app is 

categorized according to the type of user actions executed while performing the 

experiment. 

 A set of user actions is specified for each app as shown in Table 5.3 to narrow 

down the classification task. The users were recommended to perform this set of actions 

only. We also used two advanced apps to generate malicious traffic. The first app is Nmap 

for Android [50] where it was used to perform network, service, and port scan attacks. 

The second app is Packet Generator [51], it was used to generate large number of dummy 

packets to perform a DoS attack on the server. 
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Table 5.3 Experiment’s apps 

# App Name Version Category Actions 

1 Facebook 64.0.0 Interactive browsing Browse, Comment, Like, Post 

2 LinkedIn 4.0.62 Interactive browsing Browse, Comment, Like, Post 

3 8 ball pool 3.5.0 Game Play 

4 Clash Royal 1.8 Game Play 

5 Skype 6.22.0 Video Call Video Call 

6 Viber 5.8.0 VOIP Voice Call 

7 WhatsApp 2.12.45 Messaging Texting, Media sharing 

8 Instagram 10.3.2 Media Browsing Browse, Like 

8 Telegram 3.17.1 Messaging Texting 

9 Sound Cloud 2016.10.19 Music streaming Listen to Music 

10 Anghami 2.2.5 Music streaming Listen to Music 

11 YouTube 11.04.56 Video streaming Play Videos 

12 Daily Motion 9422 Video streaming Play Videos 

13 N map N/A Malicious Service and Port Scan 

14 Packet Generator N/A Malicious DoS 

 

5.3 Users 

 Two groups of users participated in the first round of the experiment. The first 

group contained 4 users, and the second group contained 5. In the second round, we 

repeated the experiment to collect more data with a single user. Table 5.4 shows a list of 

smartphones used in the experiment and the users’ count associated with each 

smartphone. 

Table 5.4 Experiment's users and smartphones 

# Smartphone Model No. Android OS Version Users 

1 Samsung Galaxy S3 GT-I9300 Lollipop 5.0 4 

2 Samsung Galaxy Tab 4 SM-T230 Marshmallow 6.0.1 1 

3 Sony Xperia M2 D2302 Lollipop 5.1 1 

4 Sony Xperia Z3 D6633 Marshmallow 6.0.1  1 

5 LG G3 D855 KitKat 4.4 1 

6 HTC Desire 826 D826W Lollipop 5.1 1 
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5.4 Data Description 

 In this section we describe the results of flow extraction and feature aggregation 

phases. Additionally, we show some statistics about the dataset size and extracted 

samples.  

Packet 
dump 

Network 
connections

Extract 
Flows Labeled 

Flows

Network Core

Client
 

Figure 5.3 Flow extraction  

 

5.4.1 Flow Extraction 

 Figure 5.3 shows the proposed method for extracting the flows. We note that flows 

are extracted by filtering the packet dumps which are collected from the network core 

using connections’ information collected from a client running on the smartphone. The 

client is used only to get labeled flows where each label represents an app. However, 

when the classification model is deployed in a real environment, the users do not have to 

install any client on their phones. The client is used to get the ground-truth of the extracted 

flows which is the type of the app or action that generated the flow. The proposed 

approach produces ground truth labels for the flows that results from specific actions 

executed within a specific app.  

 Two data collection sets resulted from two rounds of the experiment. The first 

data collection contains packet dumps and connection information from 6 different apps 
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(Facebook, 8 Ball Pool, Skype, Viber, WhatsApp, YouTube) produced by 9 users. The 

second data collection contains packet dumps and connection information from 9 

different apps produced by a single user. We applied the 5 tuples flow preprocessing 

approach on the first data collection. On the other hand, we applied both flow 

preprocessing approaches on the second data collection. Figure 5.4 shows flow count 

statistics for the first data collection set per app and per user. Figure 5.5 shows the box 

plot for flow length in seconds for the same set. We can notice that Skype and WhatsApp 

have a relatively higher flow length compared to the other apps. We also note that some 

apps generated a larger number of flows due to its behavior in opening random network 

ports while being used.  

 

Figure 5.4 First data collection set flow count 
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Figure 5.5 First data collection set flow length boxplot 

  

 Figure 5.6 shows flow count statistics for the second data collection using 5 tuples 

preprocessing approach and 3 tuples preprocessing approach. We can notice that the flow 

count drops significantly using the second preprocessing approach because many apps 

open multiple parallel connections to exchange data on multiple ports simultaneously. 

Therefore, when we treat all packets between two IPs as a single flow, we are aggregating 

all ports’ traffic in that flow. 

 

 

Figure 5.6 Second data collection set flow count 
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 Figure 5.7 shows the box plot for flow length in seconds for the second data 

collection. By comparing flow lengths resulting from the 5 tuples preprocesseing 

approach against flow lengths resulting from the 3 tuples preprocesseing approach, we 

can notice that the flow length has increased significanlty in the case of some apps when 

following the 3 tuples preprocessing approach. It is a result of aggregating all randomly 

opened ports for all app’s connections as a single flow. This indicates that some apps 

change the randomly opened ports occasionally while the app is running.  

 

Figure 5.7 Second data collection set flow length 

  

 Additionally, we generated flows of malicious traffic using nMap and Packet 

Generator. Three different types of attacks are performed: Service Scan, Port Scan, and 

DoS. Figure 5.8 shows statistics on flow counts generated by these attacks which are 

extracted using the 3 tuples preprocessing approaches. We note that the 5 tuples 

preprocessing approach produced insignificant flows with less than two packets 

exchnaged on the same flow due to the nature of these network attacks. Thus, we will rely 

on the 3 tuples preprocessing approach to extract attack feature vectors. 
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Figure 5.8 Malicious flows count 

 

 Figure 5.9 shows flow length statistics for the three types of attacks following  the 

3 tuples preprocessing approach. The extracted flows represent the network attack traffic 

exchanged between two IPs irrelavent of the port.  

 

Figure 5.9 Malicious flows length boxplot 

 

5.4.2 Feature Extraction 

 As shown in Figure 5.10 the labeled flows are used to get labeled samples by 

feature extraction which are used to build the classification model. 
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Labeled Flows
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Filtering Labeled Ground 

Truth Samples
 

Figure 5.10 Feature vectors extraction and aggregation 

 

 Feature extraction phase requires setting two important parameters which are the 

flow idle time and the sampling interval. Since there is no criterion to set these parameters 

we followed a trial and error approach. The approach is to use an intermediate machine 

learning classifier which is Decision Tree (DT) to evaluate our choice of these two 

parameters. We chose this classifier because it is relatively fast to train and generates a 

classification model that is understandable by humans [29]. For each value for the idle 

time and the sampling rate ranging from 1 to 10 by increments of 1, we extracted samples 

defined by the feature vector shown in  Table 4.6, and trained a DT classifier. 

 We used the flows resulting from the first data collection set to extract the 

samples. At each iteration we used the resulting samples at specific values for the idle 

time and the sampling rate to train the DT classifier. Then, we evaluated the accuracy of 

the classifier using 5 folds’ cross validation expressed by TPR and FPR.  

 

 Figure 5.11 shows the ROC space of the intermediate DT classifier for each 

chosen set of parameters. We notice that a sampling rate of 2 seconds per sample returned 

the best evaluation accuracy for the intermediate classifier. Thus, we’ve chosen this value 

to extract the samples (feature vectors) from the first and second data collections using 

both pre-mentioned preprocessing approaches. The idle flow time parameter is set to 5 

seconds where it has been shown that all TCP flow packets arrive at most within 4.43 

seconds [52]. 



 

 

 

51 

 

Figure 5.11 Accuracy of the Intermediate classifier at each sampling rate time interval 

 

 A set of rules is defined in a filtering phase to filter the samples (feature vectors) 

from the first and second data collection. This phase ensures that only statistically 

significant samples are taken into consideration to be used in building the classification 

model and later on, in the classification phase. Such samples represent traffic bursts that 

happen within the lifetime of the flow. A traffic burst is a relatively fast exchange of 

packets that occur when the user executes a specific action. Therefore, significant samples 

have a relatively low inter-arrival time, and a minimal count of exchanged packets. This 

phase ensures that we hold out unclassifiable samples which represent signaling and keep-

alive packets. The set of rules are defined as following. 

1. Each sample with zero incoming packets and less than 2 outgoing packet is 

discarded. 

2. Each sample with zero outgoing packets and less than 2 incoming packet is 

discarded. 

3. Each sample that have an average inter-arrival of more than 1 second for incoming 

and outgoing traffic bursts is discarded. 
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 The limit on the inter-arrival time of packets is set by examining the samples 

which indicate action execution against samples that represent idle traffic. The aim of this 

filtering is to discard signaling packets and keep alive traffic which add noise to the 

dataset. Figure 5.12 shows plotting the inter-arrival time of incoming packet bursts 

against the inter-arrival time of outgoing packet bursts. We can notice that samples 

outside the 1 second box are less dense which indicates a lower packet burst rate. 

Therefore, we use this criterion to discard noisy samples that represent signaling data. 

 

Figure 5.12 Packet bursts inter-arrival time scatter plot 

 

 Figure 5.13 shows the classifiable samples vs. total samples count before and after 

filtering for each app in the first data collection set. The total number of samples before 

filtering is 59385 which is reduced to 49942 after filtering. 
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Figure 5.13 Classifiable samples in first data collection set 

 

 Figure 5.14 shows classifiable samples vs. total samples count in the second data 

collection set before and after filtering following the 5 tuples preprocessing approach, and 

the 3 tuples preprocessing approach. 14769 samples resulted from the 5 tuples 

preprocessing approach which is reduced to 12827 after filtering. The 3 tuples 

preprocessing approach produced 17893 samples which are reduced to 10989 after 

filtering. 

 

 

Figure 5.14 Classifiable samples in second data collection set 
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 We note that in the second data collection set we grouped apps’ samples based on 

their categories. The Browsing category contains Facebook, LinkedIn, and Instagram 

samples. The Gaming category contains 8 Ball Pool, and Clash Royal samples. The Video 

Call category contains Skype video call samples. The VOIP category contains Viber 

voice call samples. We grouped Daily Motion and Facebook video samples in the Video 

Stream category. Sound Stream category includes Sound Cloud and Anghami samples. 

Finally, the Texting category contains WhatsApp and Telegram samples. 

 In the 3 tuples preprocessing approach we notice a drop in the classifiable samples 

ratio for most apps. It varies according to the type of actions that can be executed in 

parallel and how the app handles parallel connections with multiple IPs for a single 

session. Actions such as voice calling and video calling nearly had the same ratio of 

classifiable samples in both preprocessing approaches. This is a result of sniffing packets 

for these actions while the calls were connected where packet bursts exchange is at its 

peak while transferring voice and video in real time. This means that there was no 

dragging in the packet exchange rate. The other apps have infrequent packet bursts from 

multiple parallel connections on different ports at the same time that result from executing 

a specific action. This makes the significant samples which indicate an action more 

significant by aggregating the exchanged traffic from all ports in these samples. 

Additionally, it produces more insignificant samples which indicates a lower traffic 

exchange rate while being idle. 
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CHAPTER 6  

 

 RESULTS AND ANALYSIS  

 This chapter demonstrates the results of our proposed method. Section 6.1 shows 

the results of the parameter tuning, feature selection, and time performance for the four 

supervised classification models. Section 6.2 shows the results of the classification and 

novelty detection process. 

6.1  Comparative Analysis of Supervised Machine Learning Classifiers 

 Bayesian optimization is used to select the values of hyper-parameters for each 

classifier. This type of optimization tends to minimize the generalization function 𝑓(𝑥) 

which in our case is set to be 1 − 𝐹1𝑠𝑐𝑜𝑟𝑒 (see Equation (6.4)) of the evaluated classifier. 

Additionally, when using Bayesian optimization, we have to make a choice about the GP 

prior and the type of the Acquisition Function (AF). The implementation in Matlab called 

“bayesopt” [53] assumes that the GP prior has an added Gaussian noise and the prior 

distribution is assumed to be also a GP with a mean 𝜇(𝑥, 𝜃) and a covariance kernel 

function 𝑘(𝑥, 𝑥′, 𝜃), where 𝜃 is a vector of kernel parameters. The kernel type is set to be 

“ARD Matern 5/2 kernel” shown in Equation (6.1). 

 

𝑘(𝑥𝑖 , 𝑥𝑗) = 𝜎𝑓
2 (1 +  

√5𝑟

𝜎𝑙
+  

5𝑟2

3𝜎𝑙
2) exp(−

√5𝑟

𝜎𝑙
) 

 
(6.1) 

 

Where  

 
𝑟 =  √(𝑥𝑖 − 𝑥𝑗)

𝑇
(𝑥𝑖 − 𝑥𝑗)  

 
(6.2) 
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 𝑋 = 𝑥𝑖  and 𝑋 = 𝑥𝑗  are the current and next set of points associated with the 

current and next value of the objective function 𝐹 = 𝑓𝑖 and 𝐹 = 𝑓𝑗 respectively. As for 

the type of the AF it is set to be “Expected Improvement” shown in Equation(6.3). 

 

 𝐸𝐼(𝑥, 𝑄) = 𝐸𝑄[max(0, 𝜇𝑄(𝑥𝑏𝑒𝑠𝑡) − 𝑓(𝑥))] (6.3) 

 

 Where 𝑥𝑏𝑒𝑠𝑡  is the location of the lowest posterior mean and 𝜇𝑄(𝑥𝑏𝑒𝑠𝑡) is the 

lowest value of the posterior mean. 

 For evaluation, we use the samples that resulted from the first data collection set 

that includes samples for 6 different apps and 9 different users. Forming the dataset is 

divided into three steps using the hold out technique. First 10% of the data produced by 

a user x is held out, then 65% of samples from the remaining users is grouped to form the 

training dataset which is used on each classifier iteratively with a different set of 

parameters. The parameters are picked by the Bayesian optimization process. Thereafter, 

the remaining 35% of samples is used to evaluate the trained classifier accuracy. Then, 

we use the 10% held out earlier as a testing set, which is not introduced in the training 

and evaluation phases to perform the final evaluation. The set of parameters that return 

best performance in terms of evaluation are used in the comparison. 

6.1.1 Parameter Tuning and Evaluation Results 

 The Bayesian optimization process repeats for 30 consecutive times, each time a 

different set of parameter values is picked according to the GP prior and AF. In order to 

enclose parameter values, we set lower and upper limits for each parameter of type 

numeric. As for the categorical parameters, we define a set of values that the Bayesian 

optimization process can pick from. The bounds were set based on some knowledge in 
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the field to avoid overfitting. At the end of the optimization process we get a set of 

parameter values referred as “X at min objective function”.  Table 6.1 shows parameter 

values for each classifier at the located min objective value. Setting the bounds for each 

numerical parameter helps in preventing the classifier from overfitting the training data. 

 Each classifier is evaluated using the parameter values in Table 6.1. The 

evaluation is repeated on each 10% of data which was held out from each user. Then, the 

evaluation F1 score (see Equation (6.4)) is averaged over these folds for each app.  

 
𝐹1 =  

2 𝑇𝑃

2 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 

(6.4) 

 

Where TP is the True positive, FP is the False Positive, and FN is the False Negative. 

𝐹1𝑠𝑐𝑜𝑟𝑒 measure which combines precision and recall of a classifier is referred as the 

classification accuracy or evaluation accuracy.  

 

Table 6.1 Parameters’ ranges and optimized values 

Classifier Parameter Values range Value 

Bagged 

Trees 

N [30 – 50] 50 

Min. Leaf Size [1 – 5] 2 

Random 

Forests 

N [30 – 50] 47 

K [1 – 28] 9 

Min. Leaf Size [1 - 5] 2 

SVM 

Kernel {Polynomial – Gaussian – Linear} Polynomial 

Coding Design {OVA - OVO} OVO 

Kernel Scale [0 - 3] N/A 

Polynomial 

Degree 

[1 - 3] 
2 

Soft Margin [0 - 1] 1 

KNN 

K [1 - 9] 5 

M [1 - 28] 5 

N [30 - 50] 42 

Distance 

Metric 

{Euclidian – city block – cosine – hamming 

– mahalanobis – jaccard – minkowski} 
city block 

Distance 

weight 

{inverse – squared inverse – equal} squared 

inverse 

Tie break {nearest – smallest – random} random 

 



 

 

 

58 

Table 6.2 shows the averaged 𝐹1𝑠𝑐𝑜𝑟𝑒 over 9 users for each app in the dataset. 

  

Table 6.2 Evaluation results 

Classifier Score Class 

  Facebook 8 Ball Pool Skype Viber WhatsApp YouTube 

Bagged Trees 

FPR 0.02 0.004 0.001 0.001 0.021 0.005 

TPR 0.913 0.891 0.987 0.996 0.903 0.918 

F1 0.875 0.925 0.990 0.995 0.863 0.940 

Random Forests 

FPR 0.023 0.005 0.001 0.001 0.015 0.004 

TPR 0.920 0.954 0.985 0.997 0.890 0.910 

F1 0.878 0.961 0.989 0.995 0.889 0.945 

SVM 

FPR 0.014 0.006 0.001 0.001 0.030 0.008 

TPR 0.914 0.866 0.985 0.997 0.962 0.937 

F1 0.903 0.908 0.989 0.996 0.840 0.944 

KNN 

FPR 0.023 0.005 0.002 0.004 0.018 0.012 

TPR 0.864 0.939 0.974 0.998 0.896 0.916 

F1 0.847 0.954 0.982 0.991 0.979 0.920 

  

 We can notice that RF has the best overall averaged F1 score comparing the FPR 

rate for the 6 apps as shown in Figure 6.1. 

 

Figure 6.1 F1 score and FPR of all classifiers 

 

6.1.2 Feature Selection and Time Performance 

 Feature normalized rankings  of each selection method are shown in Table 6.3. 

The correlation method is implemented using all the samples combined in a single dataset. 
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As for the other wrapper methods, each method is implemented using the corresponding 

classifier with the best parameter values that we obtained from the parameter tuning 

phase. For example, for RELIEFF we’ve set the same distance metric, distance weighting, 

and number of neighbors. The same applies for all other classifiers regarding their 

corresponding parameters. The same dataset splitting technique that has been used for 

training and evaluating the classifiers in the parameter tuning phase is used. We highlight 

the top 10 features ranked by each method as shown in Table 6.3. As we can notice each 

method has ranked the features differently. 

 

Table 6.3 Features' ranking 

Feature # Info Gain Correlation SVM OOB Bagged OOB RF RELIEFF 

1 0.511 0.650 0.229 0.566 0.816 0.324 

2 0.596 0.225 0.342 0.553 0.821 0.220 

3 0.545 0.217 0.394 0.242 0.571 0.015 

4 0.798 1.000 0.486 0.656 0.986 0.174 

5 0.901 0.522 0.589 0.142 0.574 0.201 

6 0.848 0.180 0.953 0.289 0.347 0.000 

7 0.142 0.000 0.893 0.191 0.183 0.171 

8 0.079 0.114 0.429 0.075 0.196 0.491 

9 0.085 0.058 0.411 0.107 0.165 0.058 

10 0.038 0.168 0.143 0.086 0.205 0.240 

11 0.497 0.064 0.722 0.236 0.427 0.083 

12 0.824 0.533 0.662 1.000 1.000 0.353 

13 0.203 0.125 0.369 0.256 0.577 0.093 

14 0.553 0.130 0.575 0.137 0.216 0.111 

15 0.577 0.068 0.489 0.243 0.391 0.133 

16 1.000 0.210 0.609 0.482 0.491 1.000 

17 0.151 0.013 0.376 0.222 0.425 0.046 

18 0.742 0.731 0.400 0.231 0.529 0.254 

19 0.335 0.090 0.628 0.242 0.554 0.162 

20 0.973 0.484 0.381 0.357 0.657 0.569 

21 0.250 0.087 0.195 0.126 0.531 0.209 

22 0.651 0.375 0.886 0.063 0.260 0.259 

23 0.632 0.081 0.530 0.081 0.426 0.149 

24 0.976 0.046 1.000 0.223 0.542 0.971 

25 0.192 0.019 0.458 0.196 0.411 0.066 

26 0.715 0.791 0.303 0.243 0.556 0.315 

27 0.169 0.774 0.768 0.000 0.016 0.441 

28 0.000 0.128 0.000 0.031 0.000 0.466 
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 To reevaluate the classifiers, we ordered the features in a descending order as 

ranked by each method. Then, we iterated over the features, and at each iteration we 

pulled out the least ranked feature from the training set and trained the classifier. For 

evaluation, the same feature is pulled out from the test set and the classifier is evaluated 

using the pre-mentioned technique. We report the averaged 𝐹1𝑠𝑐𝑜𝑟𝑒 over the 9 user folds 

for the 6 apps. Additionally, we benchmark the training and evaluation time for each 

classifier when each feature was pulled out. 

 In Figure 6.2 we can notice the drop in the F1 score as we proceed with pulling 

the features from the training set according to the least ranked by each method. In the 

case of RF and Subspace KNN we stopped at 23 features because the random space and 

the subspace sizes in RF and KNN respectively are set to 5. KNN, RF, and Bagged 

classifiers reported a high evaluation score even when we pulled 75% of the features. 

However, SVM started reporting a lower score when 50% of the features were pulled. 

This indicates the significance of the remaining features in each set ranked by each 

method. 

 

Figure 6.2 F1 score vs. feature vector size 

 



 

 

 

61 

 Figure 6.3 shows the elapsed training time to train each classifier at each feature 

pull. We can notice that SVM has a relatively large training time compared to the other 

three classifiers. RF and Bagged reported a 50% decrease in the training time when 

pulling 75% of the features. The evaluation score stayed above 90% when the features 

are pulled with respect to the OOB predictor importance rank. Subspace KNN reported a 

relatively low training time compared to all other classifiers due to the decreased subspace 

size. However, the training time was not affected by pulling out the features. It is a result 

of executing the same distance measuring calculations using the same subspace size. 

Another reason is the nature of the KNN classifier which uses distance calculation instead 

of building a fixed a model to classify patterns. 

 

 

Figure 6.3 Training time vs. feature vector size 

 

 According to the results shown in Figure 6.2 and Figure 6.3, Bagged Trees and 

RF classifier have reported a better 𝐹1𝑠𝑐𝑜𝑟𝑒 compared to the other two classifiers while 

pulling out the features. The random feature space technique which is used in RF helps 
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in defining significant random spaces to separate classes with higher accuracy [39]. 

Additionally, RF reports a reasonable training time with higher accuracy compared to 

SVM, Bagged, and KNN.  Hence, RF is proven to be a better classifier. Thus, it is used 

in the classification model component in our implementation of the novelty detection 

process.  

 In all four models we used a parallel programming toolbox provided by Matlab 

for training and evaluation. The parallel programming toolbox reduces time consumption 

in terms of building classification ensembles such as RF, Bagged, and KNN. The same 

applies on SVM which consists of multiple binary SVM models that does binary 

classification between each pair of classes. 

6.2 Classification and Novelty Detection Process Results 

 We use the second data collection set to validate the novelty detection process. 

The process assumes that the voting distribution for each known class follows a Gaussian 

distribution with a mean 𝜇  and standard deviation 𝜎 . The assumption is based on 

analyzing the vote counts for all classes’ samples. Figure 6.4 shows the PDF of each class 

vote ratio over all correctly classified samples in the second data collection set when all 

classes are known. 
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Figure 6.4 Accurately classified samples vote PDF 

 

 The process implementation requires setting important parameters shown in Table 

6.4. Setting the correct values for these parameters is an essential step before validating 

the detection accuracy. 

 

Table 6.4 Process parameters 

# Parameter Value 

Range 

Description 

1 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 [0.33 – 1] Probability threshold of assigning the preliminary 

class for the testing sample. 

2 𝐹𝑙𝑜𝑤𝑚𝑖𝑛 [1 - 5] Minimum flow length measured in samples count 

that can be processed by the novelty detection 

process. 

3 𝑤 [1 - 5] Size of the moving window in samples. 

4 𝛼 [0.5 - 1] Weighting attribute in calculating the decision risk 

from flow history and upcoming samples 

5 𝜆𝐻 [0.5 - 1] Bayesian decision loss matrix element which is a 

weight for assigning “Unknown” as class for the 

predecessors of the testing sample from the same 

flow. 

6 𝜆𝐹 [0.5 - 1] Bayesian decision loss matrix element which is a 

weight for assigning “Unknown” as a class for the 

successors of the testing sample from the same flow. 

7 𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 [0.3 - 1] A penalty threshold which the process compares 

against when the preliminary class is empty and the 

sample has a high risk to be “Unknown”. 
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 Values’ ranges are set based on experimental knowledge to deliver best 

classification and detection accuracy in pseudo real-time approach as will be shown in 

the results section. For example, setting the upper limit of the moving window to 5 

samples enables the process to detect novel samples with a maximum 10 seconds delay. 

Setting the minimum flow length to 5 samples enables the process to detect relatively 

short flows. 

 

 The validation is divided into two sections. In the first section, we validate the 

ability of the process to detect novel samples of benign classes e.g. browsing. Extracted 

samples from the second data collection set that resulted from the 5 tuples preprocessing 

approach are used in the first validation section. In the second section, we validate the 

ability of the process to detect novel samples of malicious classes e.g. DoS. We use the 

samples in the second data collection set that resulted from the 3 tuples preprocessing 

approach since the attacks samples are generated using this approach only. The 

classification and detection accuracies are represented by four indicators. 

 

1. Recall or True Positive Rate (TPR): the number of correctly classified samples of 

a novel class to the total number of novel class samples, see Equation (6.5). 

 
𝑇𝑃𝑅 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(6.5) 

 

2. Fall-out or False Positive Rate (FPR): the number of misclassified samples of a 

known class to the total number of known non-class samples, see Equation (6.6). 

 
𝐹𝑃𝑅 =  

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

(6.6) 
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3. Specificity or True Negative Rate (TNR): the number of correctly classified 

samples of a known class to the total number of known non-class samples, see 

Equation (6.7). 

 
𝑇𝑁𝑅 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

(6.7) 

 

4. False Negative Rate (FNR): the number of misclassified samples of a novel class 

to the total number of novel non-class samples, see Equation (6.8).  

 
𝐹𝑁𝑅 =

𝐹𝑁

𝐹𝑁 + 𝑇𝑃
 

(6.8) 

 

6.2.1 Detecting Novel Samples of Benign Classes 

 In this validation section we iterate over each known benign class and pull its 

samples from the training dataset. For each iteration we validate the classification 

accuracy for the samples of known classes in addition to the detection accuracy of the 

novel samples coming from the unknown class. The evaluation mechanism divides the 

data set into a training set that forms 70% of the data, a validation set that forms 20% of 

the data, and a testing set which includes the rest of the remaining samples. Dividing the 

samples into these three sets is based on the flow ID. The training dataset includes flows 

from a class 𝑐𝑖 which are not introduced in the validation set nor in the testing set. The 

same applies for the validation and testing sets. 

 We use the Bayesian optimization approach to optimize the novelty detection 

process parameters. Hyper-parameters of the RF ensemble are also included in the 

optimization process. We have set the generalization function 𝑓(𝑥) to be (1 - 𝑇𝑃𝑅) of the 

detection accuracy for novel samples averaged over all unknown classes which were 

pulled one by one. However, to control the optimization process we’ve set a Coupled 
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Constraint [54] to be the averaged FPR value over all known classes to ensure a balanced 

optimization and decrease the false alarm rate. At each iteration a training set is extracted 

using the (70,20,10) mechanism then the samples of class 𝑐𝑖 are removed. After training 

the RF ensemble, we use the validation set after removing the samples of class 𝑐𝑖  to 

calculate 𝜇(𝑃𝐷𝐹𝑐𝑖
) and 𝜎(𝑃𝐷𝐹𝑐𝑖

) for each known class. Finally, the testing set is used to 

validate the classification novelty detection process. 

 At the end of the optimization process we obtained the parameter values shown 

in Table 6.5 along with the validation results which represent the minimum observed 

objective function with respect to the optimization constraint. 

 

Table 6.5 Process parameters values (detecting novel samples of benign classes ) 

# Parameter Value 

1 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 0.39 

2 𝐹𝑙𝑜𝑤𝑚𝑖𝑛 3 

3 𝑤 5 

4 𝛼 0.33 

5 𝜆𝐻 0.98 

6 𝜆𝐹 0.56 

7 𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 0.75 

8 (RF) N 43 

9 (RF) K 2 

10 (RF) Min. Leaf Size 4 

 

 Figure 6.5 (a) shows the detection accuracy for each class when it was left out of 

the training set (TPR). We notice a good detection accuracy for all the classes. Figure 6.5 
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(b) shows the detection accuracy (TNR) and the false alarm rate (FPR) for each class 

when it was included in the training set averaged over the number of iterations. All 

evaluation iterations resulted a low false alarm rate for all the classes. 

 

Figure 6.5 Novelty detection results of benign classes 

 

6.2.2 Detecting Novel Samples of Malicious Classes  

 To validate the detection accuracy of novel malicious samples, the RF ensemble 

is trained using samples from benign classes only. Then, we use each malicious class 

samples to validate the novelty detection process. For each validation round, the RF 

ensemble will have knowledge about all the benign classes since it was trained using these 

classes. We use the same dataset dividing mechanism (70,20,10) which is mentioned in 

the latter section. However, the samples of the benign classes will stay as a part of the 

training and validation sets to calculate the 𝜇(𝑃𝐷𝐹𝑐𝑖
)  and 𝜎(𝑃𝐷𝐹𝑐𝑖

)  for each known 

benign class. The testing set will contain samples from malicious classes only. 

 Similar to the former section we use the Bayesian optimization approach to set 

the novelty detection process parameters’ and RF hyper-parameters values to achieve best 
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detection accuracy over the malicious classes.  

Table 6.6 shows the parameters’ values obtained at the end of the optimization process. 

 

Table 6.6 Process parameters values (detecting novel samples of malicious classes ) 

# Parameter Value 

1 𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 0.34 

2 𝐹𝑙𝑜𝑤𝑚𝑖𝑛 5 

3 𝑤 4 

4 𝛼 0.16 

5 𝜆𝐻 0.97 

6 𝜆𝐹 0.92 

7 𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 0.56 

8 (RF) N 48 

9 (RF) K 13 

10 (RF) Min. Leaf Size 1 

 

 Figure 6.6 (a) shows the detection accuracy of novel malicious samples (TPR) 

along with the FNR. Figure 6.6 (b) shows the classification accuracy of samples coming 

from known classes along with the FPR. We can notice from the figures that the process 

is capable of detecting novel flows with high accuracy. Novel samples from benign flows 

detection accuracy is around 0.97 with a false alarm rate of 0.06. Novel samples of 

malicious flows detection accuracy reached 0.93 with a low false alarm rate of 0.03. 
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Figure 6.6 Novelty detection results of malicious classes 

 

 Both testing scenarios proved that the process can detect these flows regardless of 

their origin. We note that the type and count of the known classes plays a major role in 

detecting novel flows. As mentioned, the confidence score depends on the characteristic 

of the known class and the test sample. Accordingly, increasing the number of the unique 

known classes will enable the RF ensemble to assign the confidence score with more 

precision. In other words, the voting distribution is affected with the number of known 

classes and their uniqueness. The more classes we include in the training phase, the more 

distributed the votes will be. This is true if the characteristics of the novel test sample 

which are defined by the features’ values tend to follow the characteristics of more than 

one class. 
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CHAPTER 7  

CONCLUSION 

 In this thesis, we’ve successfully designed and implemented a classification and 

novelty detection process. The process is defined to classify and detect known and novel 

samples. These samples represent traffic flows generated by mobile apps. The flows are 

extracted by applying two preprocessing approaches known as the 5 tuples and the 3 

tuples. Our contribution can be summarized in three main deliverables.  

 The first contribution is represented in the data collection experiment. Through 

our experimental setup, we were successful to collect packet dumps and connection flows 

of mobile apps running on Android devices. The connections’ info is collected using a 

self-designed client-app that runs as a background service. Matching connections info 

with the collected packet dumps produced ground-truth labeled flows that represent 

mobile apps actions. Finally, the produced dataset of feature vectors (samples) represent 

the main part of the first deliverable.  

 The second contribution relies in the comparative analysis study of the classifiers. 

Using the extracted dataset, we trained and evaluated multiple supervised machine 

learning classifiers in terms of accuracy and time performance. The hyper-parameters of 

the classifiers were tuned using Bayesian optimization. In addition to tuning the hyper-

parameters for evaluation, a feature selection phase was performed to increase the 

performance and identify significant features. Finally, the main part of this deliverable 

was identifying the best classifier to serve as a classification model in the novelty 

detection process.  
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 The third and final contribution of this thesis is the design and implementation of 

a flow novelty detection process. The process uses Bayesian decision theory to detect 

novel flows. The process uses a confidence score produced by the classification model to 

infer samples classes whether known or novel. Using Bayesian decisions helped in 

avoiding threshold-based detection which requires instant updates and tweaking. As 

shown, the process delivered good detection results with a low false alarm rate.  

 In this study we faced an essential limitation presented by the lack of labeled 

datasets that represent mobile apps traffic. The produced dataset in this thesis was 

contributed by a limited number of users in a closed experimental environment. 

Additionally, the labeling approach was controlled by setting a limited set of actions for 

each app. Some users didn’t comply to these actions which was a direct cause of 

producing noisy samples in some of the classes. We think that the latter limitation is out 

of this study’s scope because it is practically difficult to assign labels to apps’ actions 

accurately without producing noise samples. It is due to the way that Android OS, which 

is the used mobile platform in this experiment, treats established connections. However, 

an important part of the future work for this study is creating a larger dataset that contains 

more apps and users. 

 Another limitation in this study relies in the novelty detection process. As shown, 

the process can detect samples of novel flows with high accuracy. However, the process 

lacks the ability of identifying the type of the novel flow. We believe that such an action 

requires some interaction with the external world e.g. asking users about their latest 

activities on the phone. As such, the authors of [55] developed an app-rating system based 

on crowd interactions. Getting users feedback represent an external feedback loop which 
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can help in labeling detected novel flows in our proposed solution. Hence, designing and 

implementing this feedback link forms another major part of our future work.    
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