
AMERICAN UNIVERSITY OF BEIRUT

Mapping through a Stereo Rig: Identifying
Ground Patches and Obstacles

by

Mahmoud Mohamad Ali Hamandi

A thesis
submitted in partial fulfillment of the requirements

for the degree of Master of Engineering
to the Department of Mechanical Engineering

of the Faculty of Engineering and Architecture
at the American University of Beirut

Beirut, Lebanon
April 2017

Acknowledgements

First of all I am thankful for Almighty Allah for providing me with the oppor-
tunity to start my masters, and taught me the skills I needed to finish it, whilst
providing me with the needed companionship, resources and power when I needed
it the most.

I am deeply grateful to my advisor and mentor Professor Daniel Asmar, for
guiding me throughout my masters years, providing me with his insight whenever
I am stuck and bearing with me throughout. Along with his academic advice,
one cannot forget the motivation and support he insisted on providing us with.

I would also like to thank both Professor Elie Shammas and Professor Naseem
Daher for pushing me forward with their on point questions and comments.

I thank my fellow labmates, who have provided me their support throughout
my year and a half, in a place I sincerely call home. I thank Ali Harakeh for his
work upon which I built this thesis. I thank Salah Bazzy for being our big brother
in the lab, and providing us with all the guidance and help he had provided. I
would like to thank Bilal Hammoud for all the coffee breaks, and companionship.
Lastly, I cannot thank enough my best companions, Abed AlRahman AlMakdah,
and Rahaf Rahal, I could not have imaged my stay in the lab without both of you.

Finally, I am infinitely thankful for my parents and brothers for their ever
lasting physical and mental support, and for pushing me to be the best I can in
this life and the hereafter. May I always make you proud.

iv

An Abstract of the Thesis of

Mahmoud Mohamad Ali Hamandi for Master of Engineering
Major: Mechanical Engineering

Title: Mapping through a Stereo Rig: Identifying Ground Patches and Obstacles

Mapping the space about an autonomous agent is one of the preliminary
steps for any sort of navigation or task planning. In this work, stereo rig output
is employed to accomplish this task, where ground patches, near ground obstacles
and background are delineated in one of the stereo images, in a self-supervised
method. In a first method, free space is estimated using a novel technique: first
depth information extracted from a stereo camera is used to identify, with high
certainty, regions that belong to ground or obstacle clutter. Next, interactive
graph cuts is used to propagate the initial segmentation across the entire image
to yield an estimate of the location of free space in each image, while considering
all obstacles and background as one object. This novel method is proved to
outperform state of the art in the literature; however, to mitigate the effect of
local noise in the disparity image, and reduce the runtime of the system, the
self supervised classifier is used to train a ground segmentation deep learning
algorithm, which is fine-tuned online when the system is faced with new ground.
The system detects the change in ground using a novel image clustering technique,
and by comparing its output against a weak classifier.

v

Contents

Acknowledgements iv

Abstract v

List of Figures viii

List of Tables ix

1 Introduction 1

2 Literature Review 3

3 Background 5

3.1 v-disparity and u-disparity transformations 5

3.2 Positive Näıve Bayes framework 6

3.3 Convolutional Neural Networks 7

3.3.1 Convolutional Layers . 8

3.3.2 Multilayer Perceptron . 10

3.3.3 Backpropagation . 11

4 System Details 13

4.1 Free Space estimation using Graph Cuts 13

4.1.1 v-disparity and Training data 14

4.1.2 u-disparity and identifying obstacles 15

4.1.3 Ground Classification and filtering 19

4.1.4 Interactive Graph Cuts . 19

4.1.5 Unary Terms . 20

4.1.6 Binary Terms . 21

4.1.7 Seeds . 21

4.2 Deep Learning Techniques . 21

4.2.1 Deep Clustering . 22

4.2.2 Adaptive Learning . 27

vi

5 Experiments and Results 29
5.1 Dataset . 29

5.1.1 Easy Dataset . 29
5.1.2 Moderate Dataset . 29
5.1.3 Difficult Dataset . 30

5.2 Benchmarking . 30
5.3 DCN . 30
5.4 Analysis . 34

5.4.1 FSGC obstacle constraint and runtime 34
5.4.2 Free Parameters . 37
5.4.3 Runtime . 39
5.4.4 Comparision . 40

6 Conclusion and Future Work 45

Bibliography 47

List of Figures

3.1 transformation from (u, v, d) to (v, d, s) and (u, d, l) 6
3.2 example showing a convolutional operation, with a 2x2 kernel, and

1 pixel stride . 9
3.3 example showing maxpooling, with a 2x2 filter, and 2 pixels stride 9
3.4 example showing a) a fully connected two layer perceptron net-

work, b) a locally connected two layer perceptron network. 11

4.1 diagram of Free Space estimation using Graph Cuts algorithm . . 13
4.2 image showing result of u-diaprity algorithm from the literature . 15
4.3 details of my obstacle detection algorithm 18
4.4 interactive graph cuts for a 3x3 image 20
4.5 Deep Clustering Ground Segmentation 23
4.6 DCN training Data . 26
4.7 Adaptive Learning Segmentation system 28

5.1 DCN first iteration . 31
5.2 DCN fourth iteration . 32
5.3 DCN seventh iteration . 33
5.4 FSGC precision comparison graph 36
5.5 ROC for varying γ and κ . 38
5.6 Precision vs Recall system comparision 41
5.7 final FSGC segmentation examples 43
5.8 segmentation comparision examples 44

viii

List of Tables

4.1 DCNs CNN architecture . 24

5.1 FSGC comparision table . 35
5.2 runtime comparison table . 39
5.3 performance comparison table . 40

ix

Chapter 1

Introduction

With the era of autonomous vehicles about us, scene understanding is becoming
ever more important. For autonomous navigation, one of the most fundamental
scene understanding tasks is to delineate free space from obstacles; thereby al-
lowing path planning for the autonomous agent.
Supervised training algorithms are thriving in the field of segmentation and ob-
ject detection [1], [2], [3], and offer a very appealing solution to many computer
vision problems. However, because of the variety of environments a vehicle might
travel in, another appealing alternative is the self-supervised approach, where one
sensor guides another, or one classification method supervises a second method,
without any human interaction. The absence of both protracted training time
and supervised human input renders this last approach more suitable for ground
segmentation.
Although other sensors are shown to be effective in the literature, I focus on
ground segmentation using stereo cameras because of the large bandwidth of
data they offer, their relatively small size, low power consumption, and relatively
low prices. However, it should be noted that the proposed system can work with
a monocular camera, paired with a device providing depth information, such as
LIDARs. In addition, most systems in the literature only exploit stereo disparity
data, and disregard intensity information. However, the extent of the range that
a stereo camera can capture is limited by the baseline between its stereo pair. On
the other hand intensity information is reliable for objects that extend to infinity
in a scene; therefore, integrating the intensity information into my solution can
expand the detection span beyond what the stereo data can accomplish alone.
It is in this spirit that my system is designed; my intent is to segment smooth and
coherent free space patches from obstacles and background in one of the stereo
image pairs, supervised by training data extracted from the stereo sensor input.
My approach is multi-tiered; starting with a series of classifiers to identify, in each
image, a number of pixels that represent free space and others that represent ob-
stacles. Interactive Graph Cuts (IGC) [4] is then implemented, using the labeled
pixels in the first stage as seeds, to find a smooth free space segmentation. Then

1

a deep learning algorithm is trained with the acquired segmentation to perform
its own sementic ground segmentation. The trained network is fined-tuned when
required, based on metrics calculated by two proposed techniques; the first rep-
resents the change in image appearance, and the other the depreciated network
performance.
The main contributions in this thesis are as follows:

• A novel ground segmentation algorithm that employs IGC, with unary
terms and seeds designed specifically for the application.

• A deep learning technique that clusters images based on their color repre-
sentation, and detects new representations in new images.

• An adaptive learning technique based on the decay of network performance.

• A variant of a deep learning ground segmentation technique, that is fine-
tuned based on the change in ground appearance, or the decay in network
performance.

• Evaluation of the proposed techniques, and comparison against the most
relevant self-supervised techniques in the literature.

The remainder of this thesis is structured as follows: Chapter 2 summarizes the
most relevant ground segmentation techniques in the literature, with emphasis
on self-supervised methods. Chapter 3 provides background information to pro-
vide context for my work. Chapter 4 provides detailed steps of the first part
of my system, referred to as Free Space estimation using Graph Cuts (FSGC),
along with the obstacle detection algorithm, and finally the deep learning tech-
niques employed for ground segmentation, and the consequent deep clustering
and adaptive learning techniques. Chapter 5 describes the experiments that were
conducted to validate the mentioned systems, along with analysis and compar-
ison of my results with those from three other algorithms from the literature.
Finally, Chapter 6 concludes this thesis, and presents possible future work.

2

Chapter 2

Literature Review

Previous work on ground segmentation and free space estimation employ a vari-
ety of sensors, such as LIDARs, and radars. 3D LIDARs were used in Sugar et
al. [5] in a semi-supervised free space estimation algorithm, where a human input
constitutes the training data, and is used to learn the occupancy grid of the envi-
ronment. Dahlkamp et al. [6] employed a 2D LIDAR to extract ground training
data and a color-based classifier is learned to segment ground in a monocular
image. Millela et al. [7] use a radar to extract ground training patches, and then
classify ground in a monocular image; unfortunately, their approach fails when
segmenting distant ground patches, mistakenly segmenting some of them as ob-
stacles.
Stereo cameras constitute a very attractive alternative sensor for free space es-
timation, because of their relatively low cost, and the high bandwidth of infor-
mation they offer. Labayrade et al. [8] used a stereo camera to identify ground
patches, by extracting the ground in the v-disparity space. The transformation
to the v-disparity space consists of calculating the frequency of each disparity at
each v (meaning image row height) location. Labayrade noticed that a relatively
flat ground plane shows up as a salient slanted line in the v-disparity image, and
was able to identify ground pixels based on their closeness to this line in the
v-disparity space.
Later, Harakeh et al. [9], [10] further studied the structure in the v-disparity to
learn a probabilistic model of the ground, by using Bayesian linear regression
to model the ground plane in both structured and unstructured environments.
While learning the parameters of the model, the authors identify free-space train-
ing data, which is used to train a support vector classifier. Harakeh et al. classify
ground with high precision; however, their system can only classify pixels fea-
turing reliable disparity, and labels all others as obstacles, thereby risking many
false negatives for free space.
Kim et al. [11] and Vernaza et al. [12] assumed the ground to be the largest plane
around the vehicle. While this assumption works well on flat scenes, it fails on
off-road scenes. Oniga et al. [13] used the u-disparity space to identify obstacles.

3

Similar to the v-disparity, the u-disparity consists of calculating the frequency of
each disparity at each u (meaning image column) location. Oniga et al. then
filter the u-disparity to identify obstacles in the scene. Although their method is
mathematically sound, it fails to generalize to the dataset I used, providing weak
obstacle classification, and a subsequent weaker ground segmentation.
Recently, Brust et al. [14] proposed a new technique to train a convolutional
neural network for pixel-wise ground segmentation. The proposed technique pro-
cesses each patch of the image through a convolutional neural network(CNN)
architecture to classify its central pixel. This method has the advantage that
each pixel is a training item on its own, thus for a given labeled image, one would
have training examples equal to its pixel count. In addition, Brust et al. noticed
that the pixel position is a strong prior for the labeling, and as such incorporated
the spatial prior as an input to the fully connected layers of the CNN.
Although Brust et al. [14] showed promising results, thier algorithm requires
supervised human interaction in the form of hand labeled training data. As a
solution, Sanberg et al. [15] extracted a self-supervised weak classifier to train the
network. In [15] they proved that online training of the network with the weak
classifier can outperform both the weak classification and the offline trained net-
work. However, their method requires online training of the network for each
input image, after extracting its weak classifier, thus increasing the system’s run-
time. In addition, the weak classifier they used is The Stixel World proposed by
Badino et al. [16], which requires more than two seconds to extract on a CPU ,
also increasing runtime per image.
In summary, the weaknesses of the state-of-the-art are either required human
supervision, extensive processing time, or processing only disparity data while
disregarding intensity information, all of which I intend to avoid in this work.

4

Chapter 3

Background

In this chapter I present some of the background information necessary to un-
derstand the remainder of this work. Mainly I will focus on the extraction of
u-disparity and v-disparity maps from a u,v,disparity map, as well as explain-
ing the Positive Näıve Bayes classifier, and presenting a brief explanation about
Convolutional Neural Networks.

3.1 v-disparity and u-disparity transformations

At the beginning of each segmentation iteration, each captured stereo pair is
processed and a corresponding disparity map is produced; then, a 3D point cloud
corresponding to this disparity map is estimated, using the cameras’ focal lengths,
the baseline distance between the two stereo cameras, and the disparity value at
each pixel location. The assumption here is that both cameras possess comparable
intrinsic parameters and that they are calibrated offline. Furthermore, since my
system also relies on appearance, the intensity values in one of two images is also
recorded.

Once the disparity map (u,v,d) is obtained, I calculate the v- and u-disparity
maps, which represent the frequencies (s) and (l) of occurrence of each disparity
value at each row v and column u, respectively. Figure 3.1 shows an example of
how this mapping occurs.

Mathematically, the transformationH from disparity space (u,v,d) to v-disparity
space (v,d,s) is formulated as:

H(u, v = i, d = ∆) = (i,∆, s =
max∑

u=min

d == ∆). (3.1)

Similarly, the transformation Q from disparity space (u,v,d) to u-disparity space
(u,d,l) is formulated as:

Q(u = i, v, d = ∆) = (i,∆, l =
max∑

v=min

d == ∆), (3.2)

5

where d stands for disparity, and ∆ is a specific disparity value.

1

3

4

4

2

2

3

3

1

2

3

4

2

3

4

4

2

0

0

0

2

2

0

0

0

2

2

1

0

0

2

3

1

0

1

2

0

2

2

0

1

1

1

1

0

1

1

2

u

v

u

v

d

d

disparity space v-disparity space

u-disparity space

Figure 3.1: transformation from (u, v, d) to (v, d, s) and (u, d, l)

3.2 Positive Näıve Bayes framework

The Positive Näıve Bayes (PNB) [17] is a classification method that estimates
the probability Pi=1→N(labeli|featureV ector), then chooses the label with the
highest conditional probability. The probabilities are calculated using Bayes rule
as:

P (labeli|FV) = ηP (labeli)P (FV |labeli), (3.3)

where FV is the feature vector and η is a normalizing factor, which is ignored in
PNB as it is unchanging between labels. By assuming independence between the
features, the joint probability can be reduced to a product, and (3.3) becomes:

P (labeli|FV) = ηP (labeli)
M∏
j=1

P (fj|labeli). (3.4)

It is assumed here that each component of the feature vector lies in a strictly
positive feature space such that fj ∈ [1, .., K] ∀j ∈ [1, ..,M], where K is the total

6

number of discrete values a feature can take and M is the total number of features
in the feature vector. Let the functions C(fi, S) and C(S) represent two counting
functions, where the first one is used to calculate the number of occurrences of
feature i in set S, and the second one is used to calculate the number of elements
in S. In the system at hand, the two labels include free space and obstacle. PNB
estimates P (fi|free) as:

P (fi|free) =
ζ + C(fi, TP)

ζ ×M ×K + C(TP)
, (3.5)

where TP are the training pixels, and ζ is a smoothing parameter. In case no
training data for obstacles exist, (3.5) cannot be used to find P (fi|obstacle), and
must be estimated from the law of total probability as:

P (fi) = P (fi|obstacle)P (obstacle) + P (fi|free)P (free). (3.6)

Then:

P (fi|obstacle) =
P (fi)− P (fi|free)P (free)

P (obstacle)
. (3.7)

Using the notation of UD being the unlabeled pixels, the probability of a feature
is then expressed as P (fi) = C(fi, UD)/C(UD). Finally, substituting (3.5) into
(3.7), and applying Laplace smoothing as done in [18] yields:

P (fi|obstacle) =
1 +Q

M ×K + (1− P (free))C(UD)
, (3.8)

where
Q = max(0, C(fi, UD)− P (free)P (fi|free)C(UD)). (3.9)

The max function was added by He et al. [18] to ensure a non negative probability.
The estimation of the prior P (free) warrants a comment; while one could use
the resulting classification of each frame as a prior to the subsequent frame, this
heuristic risks propagating erroneous classifications in scenes where the shape of
the ground plane changes quickly. It was therefore decided to initialize each new
frame with priors of equal values between free and occupied (i.e. P (free) =
P (occupied) = 0.5).

Once both P (fi|obstacle) and P (fi|free) are calculated, (3.3) is used to de-
termine the state of each pixel as being an obstacle or free.

3.3 Convolutional Neural Networks

In this section I will briefly explain some of the building blocks of a Convolutional
Neural Network (CNN), its operation, and training process. This chapter is not
intended to provide a comprehensive study of CNNs.
CNNs, as we know them today, where introduced by LeCun et al. in 1989 in [19]

7

and [20], as hand written digit classification networks, which can be trained
to classify an image after extracting its features. Later, in 1998, LeCun et al.
[21] presented another network architecture known as LeNet, trained to classify
hand written letteres. As such, a CNN architecture has three main components:
the convolutional layers responsible of feature extraction, the connected layers
known as Multilayer Perceptron (MLP) responsible of decision making, and the
backpropagation algorithm used for training.
In this work I am only interested in simple CNNs, where no internal branches
exist in the network, nor outputs can be input at a layer other than the first
layer, as opposed to Directed Acyclic Graphs (DAGs).

3.3.1 Convolutional Layers

Convolutional operators have been used in many computer vision applications for
feature extraction [22], as a matrix operation between a Kernel K of dimensions
mxn, and an input image as shown in Fig.3.2. Mathematically the operation can
be written as follows:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) (3.10)

where S(i, j) is the output of the convolution operation at pixel (i, j), and S is
referred to as a feature map.

Classical convolutional operations in computer vision have fixed kernels, thus
performing specific tasks such as blurring, edge detection, or smoothing. In
CNN, features change from one application to the other, thus the kernel K is
initialized at random, and then learned in the process. Each convolutional layer
might have multiple kernels, producing multiple feature maps. Each feature map
can be followed by a maxpooling layer, where only the maximum value within
a rectangular neighborhood is reported, as shown in Fig.3.3. Also, each feature
map can be followed by an activation function. The order of the maxpooling
layer and the activation layer can vary from one architecture to another. Finally,
the number of convolutional layers, number of feature maps per layer, kernel size
and parameters, maxpooling size and parameters, and activation functions are
specific for each architecture and application.

8

Figure 3.2: Convolutional operation example, with a 2x2 kernel, and 1 pixel
stride; this image is excerpted from [23]

1 6

2 4

13 8

9 10

10 3

5 9

3 2

0 1

6 13

10 3

Figure 3.3: example showing maxpooling, with a 2x2 filter, and 2 pixels stride

9

3.3.2 Multilayer Perceptron

Multilayer Perceptrons are the basic building blocks in any deep learning algo-
rithm [23], where multiple layers of perceptrons are connected, each one with
its preceding layer. The depth of the network is proportional to the number of
hidden layers, situated between the first layer, named the input layer, and the
last layer named the output layer. In a CNN architecture, an MLP follows the
convolutional layers whose output is considered as input to the MLP. MLPs are
also named Feedforward networks as the output of one layer is only processed
by the layers that follow, without any feedback loops. Each perceptron has the
output of some or all the perceptrons in the preceding layer as input, and its
output can be formulated as yj = f(

∑
i

wijxi + bj), where f(x) is the activation

function between the current and preceding layer, yj is the output of perceptron
j in this layer with bias bj, wij are the weights connecting perceptron j in the
current layer with each corresponding perceptron i in the preceding layer, with
output xi.
Each perceptron can be fully connected to its previous layer as shown in Fig.3.4a,
or locally connected to n of its preceding neighbors as shown in Fig.3.4b, with
the connection option being decided by the architecture and application.
Some of the activation functions used in the literature are:

• Linear unit f(x) = x

• Sigmoid function f(x) = 1
1+ex

• Softmax function f(x) = exi∑
j e

xj , where the summation is over all percetprons

of a layer.

• Hyperbolic Tangent f(x) = tanh(x)

• Rectified Linear Unit (ReLU) f(x) = max(0, x)

10

a)

x1 x5x4x3x2

y1 y5y4y3y2

x1 x5x4x3x2

y1 y5y4y3y2
b)

Figure 3.4: example showing a) a fully connected two layer perceptron network,
b) a locally connected two layer perceptron network.

3.3.3 Backpropagation

Training of a CNN is similar to many supervised machine learning algorithms,
where at each iteration, variable parameters are changed in the direction that
reduces the error between the output of the network and the training label. In
CNNs, and MLPs in general, this is known as backpropagation since the error
from the last layer is propagated to the first layer to correct all parameters of
the network, as opposed to forward propagation where the input is propagated
to the last layer.
Mathematically, given a cost function C, input x, and desired ouput y, after each
forward propagation iteration, the network calculates the output of the network
ŷ, based on the input x and the current weights and biases. Then it calculates
C(y, ŷ), and ∇wk

C for all weights in the network, and ∇bjC for all biases in the

11

network. The gradient computation is a simple element-wise matrix multiplica-
tion [23]. Then once the gradients are computed, each weight or bias is updated
as follows: {

wk ←− wk − α∇wk
C

bj ←− bj − α∇bjC
(3.11)

where alpha is the learning rate, set manually. This approach is usually referred
to as gradient descent in optimization theory.
Usually with large datasets, a stochastic gradient descent algorithm is applied,
as it is difficult to calculate the cost for all inputs. As such, the training algo-
rithm stochastically picks a batch of training examples from the dataset at each
iteration, and optimizes the network accordingly, reducing the runtime of each
iteration.
Although gradient descent and stochastic gradient descent are used in many deep
learning techniques, there exists other training algorithms that will not be covered
here.

12

Chapter 4

System Details

4.1 Free Space estimation using Graph Cuts

Figure 4.1: image showing a diagram summarizing the steps of FSGC

Figure 4.1 presents a breakdown of the system proposed as FSGC. First, for
each input image, I extract a corresponding v-disparity image, which is then
processed to extract ground training data, in a manner similar to the method
proposed in Harakeh et al. [10], in which a small percentage of pixels, possessing
reliable disparity values, are adopted as training data. Then, classification is
conducted via three stages: two stages that rely on a Positive Näıve Bayes (PNB)
classifier, and one that relies on (IGC) [4]. The first PNB classifier is trained with
the color values of the ground training data and then, once trained, it is used to
label the remaining pixels in the image based on their color. The second PNB
classifier is applied to all pixels for which the disparity calculation was reliable,
only this time both color and geometry are included in the feature vector of the

13

PNB. In addition, using what is known as a u-disparity mapping, the resulting
segmentation from both PNB classifications is further processed, and accordingly,
pixels identified as obstacles have their labels corrected. Finally, IGC is used to
yield a final smooth classification for the entire image.

4.1.1 v-disparity and Training data

The classification of ground pixels in the v-disparity space is done as follows:
first, the frequency of each disparity occurrence at each v-value is computed.
Next, the v-disparity image is processed to extract the line that represents, in
the v-disparity space, the ground plane. In order to attenuate vertical lines, the
v-disparity image is filtered using a horizontal Sobel edge detector. Then, the
image is binarized, thereby resulting in a line representing ground, in addition to
noise, which is removed using a binary area opening operation.
At this point in my solution, the segmentation of the ground plane is treated as
a stochastic process, where ground pixels in the v-disparity image are modeled as
belonging to a Gaussian distribution with the ground line, determined above, as
its mean. Although in perfectly planar roads, pixels belonging to ground fit very
well to a straight line in the v-disparity space, in off-road scenes the ground plane
is not flat and pixels belonging to it no longer fit well to a line; rather, a second
degree polynomial with additive Gaussian noise is a better fit. Accordingly, the
disparity of points on the ground plane is expressed as:

d = w0 + w1ν + w2ν
2 + ε = wTφ∗(ν) + ε. (4.1)

Then by consequence:

P (d|ν,w, β) = N (d; wTφ∗(ν), β−1). (4.2)

By assuming the pixels to be independent, the joint probability of all disparity
values of ground pixels can be reduced to the product of the conditional prob-
abilities of all pixels. Then, as shown in (4.3), the probability of the vector d
of all disparities that belong to ground, conditioned on their corresponding row
values–concatenated into the vector v–, and parameters of the modeled line from
(4.1), I get:

P (d|v,w, β) =
N∏

n=1

N (dn; wTφ∗(νn), β−1), (4.3)

where w = [w0w1w2] represents the parameteres of the ground line in the v-
disparity space, ε is a Gaussian random variable with mean zero, and precision
β, φ∗(νn) = [ν0ν1ν2], and (dn, νn) are the v-d values of each pixel in the image.
A prior distribution on w is assumed as: P (w|α) = N (0, α−1I).
In [10], the authors proposed a method to learn the two parameters α and β, and
consequently compute the Gaussian distribution of the v-disparity line. Once the
distribution is computed, all pixels that are within a confidence interval of the
distributions mean are considered as good training data for ground segmentation.

14

4.1.2 u-disparity and identifying obstacles

Figure 4.2: an example showing a colored image with the final filtered obstacles
in red overlaid (bottom) using Oniga et al. [13]; the corresponding raw u-disparity
image(top)

Obstacles in outdoor scenes can be difficult to detect [24]. However, in u-
disparity space such obstacles show up as salient bright regions (See Fig. 4.2 top);
knowledge of their location can significantly assist in the overall segmentation
and delineation of free space. Oniga et al. [13] suggest the following method to
adaptively filter the u-disparity image for all obstacles that are above a certain
height y3dmin. By replacing the canonical expression for depth in a stereo rig
Z = b × f/d into the denominator of the equation of a pinhole camera model
ymin/f = y3dmin/Z, a threshold ymin, which is dependent on the disparity, is
obtained:

ymin =
y3dmin

b
d. (4.4)

Here, b is the baseline between the stereo pair, f is the focal length, d is the dis-
parity, Z is the depth, y3dmin is the min 3D obstacle height. This filtering stage

15

transforms the u-disparity image into a binary image and removes all obstacles
smaller than y3dmin. In the u-disparity images, obstacles are reflected by clus-
ters of points, which are in some cases dense and large and in other cases sparse
and small. My experiments revealed that during the ensuing graph cuts stage,
a decrease in classification performance is observed when the small and sparse
clusters are not removed. These clusters over-constrain graph cuts, while not
significantly contributing to the classification of obstacles. Therefore, I remove
them using a smoothing morphological binary operation. The u-disparity is then
mapped back to the original image to mark the obstacle patches. Finally, in an
effort to regularize the segmentation, any pixel near an obstacle, with similar dis-
parity, is also classified as an obstacle (see Fig. 4.2 bottom). Although Oniga et
al. shows the advantage of this algorithm over those in the literature, its applica-
tion to the dataset I am using provided sparse obstacle detection in most images,
similar to Fig. 4.2 bottom. An effective obstacle segmentation is essential for
the ensuing FSGC, thus I present another obstacle segmentation algorithm that
takes advantage of my preliminary ground segmentation PNB-RGBD presented
section 4.1.3.
My algorithm aims to find, in each image column, the pixels that have a high
probability of corresponding to obstacles; the coordinates of these pixels are later
used as seeds for the growing of obstacles in the ensuing interactive graph cuts
segmentation discussed below. These candidate seeds are identified as the pixels
whose u-disparity values are within a threshold γ of the maximum u-disparity in
each column; the threshold γ is determined in a systematic manner as explained
in the experimental section below.

The assumption made in here is that, in each column, an obstacle starts where
free space ends; furthermore, all obstacles are assumed to be relatively vertical
in orientation, with negligible relative depth, the implication of which is that the
u−disparity values for the same obstacle are approximately the same. Therefore,
all pixels classified as obstacles and located before the limiting region of free space
are removed. Note that, at this point, free space was delineated using Positive
Naive Bayes with RGBD data, the details of which are explained below.

Fig.4.3 illustrates the results of my obstacle detection algorithm: in the top
image, ground pixels (pixels before the end of the ground segmentation) are
colored in blue, and other areas—obstacles or background—are colored in red;
the image in the middle shows the u-disparity of all non-ground regions. Finally,
in the image at the bottom, pixels that are classified as obstacles with high
certainty, are colored in red.
It should be noted that closer obstacles have a higher pixel representation per
unit length, thus in general they have higher u−disparity values; thus, most
obstacles detected by my algorithm are the closest to ground, and provide a
better constraint in the ensuing IGC.
For convenience, I will note FSGC employing Oniga et al.’s obstacle detection
algorithm as FSGC-O, while the one employing my obstacle detection algorithm

16

as FSGC-U.

17

Figure 4.3: (top) original segmentation with ground pixels in blue, and the re-
maining pixels in red; (middle) u-disparity map corresponding to the regions in
red from the top image; and (bottom) reliable training data for obstacles colored
in red

18

4.1.3 Ground Classification and filtering

Once ground training data and obstacles are identified, the image is segmented
using a sequence of two PNB classifiers. The first classifier, hereafter referred to
as PNB-RGB, uses RGB data alone, and the second classifier, hereafter referred
to as PNB-RGBD, uses RGB and geometry data as the input vector to the
classifier. The geometry data include height, standard deviation of height in a
5-by-5 neighborhood, and height difference in a 3-by-3 neighborhood.
While PNB-RGB is applied to all pixels in an image, PNB-RGBD is only applied
to pixels possessing reliable disparity values. PNB-RGB results in significant
classification errors because of similarities in appearance that could exist between
ground pixels and others; therefore, it warrants further processing as follows.
First, edges are filtered from PNB-RGB using a Sobel edge filter, as some are
erroneously classified as ground. Then PNB-RGBD is applied, and since it relies
on depth in addition to appearance, its classification is more reliable. To prune
pixels that were labeled as positive from the first PNB and negative from the
second, I use a moving window, in which the number of positive labels according
to PNB-RGBD are summed. If the sum is below a threshold, all the pixels inside
that window, that were previously labeled as free space based on PNB-RGB, are
now labeled as obstacles. The threshold is selected such that it takes into account
patches of PNB-RGBD classifications, while ignoring floating pixels that have a
relatively smaller area. This method removes positives from PNB-RGB that are
spatially distant from positives in PNB-RGBD, without expensive computations.
Finally, all pixels that maintain a free space label after the two PNB classifications
are considered as ground seeds for the final IGC segmentation discussed below.

4.1.4 Interactive Graph Cuts

To segment an image using graph cuts, a graph G =< V , E > for each pixel p ∈ P
is constructed, where P is the set of all pixels in the image. Then two terminal
nodes (sink T and source S) are added to the graph, each representing a label.
The terminal nodes are connected to each pixel with a set of edges noted as
{p, T} and {p, S} respectively, and referred to as unary terms. The unary terms
represent the resemblance between pixels with the same label.
In addition to the unary terms, each pixel is connected to its neighbors with an-
other set of edges called the binary terms, which describe the differences between
neighboring pixels. In interactive graph cuts, in addition to the unary and bi-
nary terms, there are seeds, which constitute non terminal vertices with pre-fixed
labels, as shown in Fig. 4.4.

19

T

S

{p,T}

{p,S}

p

q
Bp,q

g

K

o

K

Figure 4.4: IGC for a 3x3 image. The node o represents an obstacle and g
represents a ground seed. This figure is inspired by [4]

4.1.5 Unary Terms

Unary terms represent the similarity between vertices with the same label. As
such, a unary term exists between each pixel, and each of the two terminal nodes,
which represent free space and obstacle. In this work the unary term is calculated
from the conditional probability of each label based on its RGB color, and, is
calculated as the logarithm of the ratio between the two conditionals (log odds).
To accommodate for pixels with near unity ratios, I add a correction factor κ to
the unary term, chosen to advantage false negatives over false positives, otherwise
classification for these pixels will be based only on binary terms. κ has been
chosen experimentally as described later. The unary terms can be expressed as:

R(free) = −log P (free|RGB)

P (obstacle|RGB)
, (4.5)

R(obstacle) = −κ− logP (obstacle|RGB)

P (free|RGB)
. (4.6)

20

4.1.6 Binary Terms

Binery terms are used to coerce adjacent pixels, which have similar appearance,
to be labeled equally. In general, for neighboring pixels {p, q}, the binary term is
expressed as Bp,q = exp(−∆(p, q)Σ−1∆(p, q)), where ∆(p, q) is the difference in
intensity and Σ−1 is the variance in intensity values.

4.1.7 Seeds

Seeds are pixels with pre-fixed labels; accordingly, the edges connecting a seed
with the two terminals nodes are set to K and zero values for the similar and
different terminals, respectively, where K = 1 +maxp∈P

∑
q:{p,q}∈N Bp,q.

In the system at hand, pixels identified as ground are used as seeds for the free
space label, and those identified as obstacles are used as seeds for the other label.
Then IGC consists of building the graph G =< V , E >, where V = P ∪ {S, T}
and E = N ∪ {{p, S}, {p, T}}, and

{p, q} = Bp,q for {p, q} ∈ N (4.7)

{p, S} =


λ.R(free) for p ∈ P , p /∈ seeds
K for p ∈ free seeds
0 for p ∈ obstacle seeds

(4.8)

{p, T} =


λ.R(obstacle) for p ∈ P , p /∈ seeds
0 for p ∈ free seeds
K for p ∈ obstacle seeds

(4.9)

λ is a tradeoff coefficient between binary and unary terms. Once the graph is
complete, I use the iterative solution method [4] to find the final labels referred
to as FSGC.

4.2 Deep Learning Techniques

Deep learning techniques are thriving in many computer vision applications, be-
cause of their ability to learn high dimensional representations [23], while being
applied in real time on GPUs. Brust et al [14] proposed a CNN algorithm, re-
ferred to as CN24 for learning pixel-wise free space segmentation, while adding
pixel location as a spatial prior to the fully connected layers. The pixel-wise seg-
mentation network uses each pixel in the training images as training data points;
while this approach easily provides an abundance of training data, it has a double
sided drawback: if all images have the same representation, the network overfits
to those data points, while if all images are different, the network will have to
compromise some representations for others. Because of this training drawbacks,

21

and the variety of ground representations, fine-tuning is unavoidable. Sanberg
et al. [15] proposed to employ a self-supervised fine-tuning algorithm, where the
network is fine-tuned for each image with its self-supervised weak classifier. The
weak classifier they used is the Stixel World that requires a couple of seconds
on a CPU as stated by the authors, thus it is difficult to employ in a real-time
application. I suggest employing FSGC on a downscaled image, thus offering real
time training. In addition, instead of fine-tuning on each image, I suggest in what
follows two methods that determine the need to retrain. While the first method
examines the change in ground representation, the other assesses the performance
of the network against a weak classifier. In what follows, training is done with the
FSGC-U classification, with a downscaled image, while classification for network
assessement is done with the Ground Seeds, as was explained earlier.

4.2.1 Deep Clustering

In this section, I present a novel CNN-based image clustering algorithm, hereby
refered to as Deep Clustering Network (DCN). DCN is trained offline to cluster
an image dataset while learning their representation, and a CN24 is then trained
to segment ground in each of the learned clusters. When employed online, the
system extracts a weak classifier for the given image, and tests its resemblance
to the learned clusters; if it belongs to one of them, it is segmented with the
corresponding CN24, otherwise the image is added as a new cluster, for which a
new CN24 is fine-tuned. The system detailed below is shown in Fig 4.5.
In this system, I employ FSGC-U for training, because it has the best performance
within my self-supervised classifiers. As for online comparison, I use the ground
seeds presented in section 4.1.3, as they have the closest performance to FSGC
with a fraction of its runtime.
In the conducted experiments, the first 10 images of each sequence are used as
training data. DCN will recognize an image not belonging to a cluster if it is
classified differently than its preceding images.

22

Image presentation is unknown, retrain

Training
Images

FSGC DCN

Cluster
1

Cluster
2

Cluster
i

CN24
1

CN24
2

CN24
i

Offline

Cluster
k

CN24
k

DCN Cluster
i

CN24
i

Online

Input
Image

Ground
Seeds

Ground
Segmentation

Image presentation is known, classify

Cluster
k+1

CN24
k+1

Add to
cluster
pool

Add to
classifier

pool

DCNRe-Tune

DCN: Deep Clustering Network

DGS: Deep Ground Segmentation

CN24: CNN for ground sementic
segmentation with additive spatial
prior (to be cited)

FSGC

Figure 4.5: Graph showing my system employing DCN; offline DCN is used to
cluster training data, while online it is used to choose the appropriate ground
segmentation network.

23

Deep Clustering Network

A clustering network is an algorithm that can group data points in a dataset
into a preset number of clusters, or a calculated one. The data points in each
cluster should have features similar to those in the same cluster, and different
from those in other clusters. Zagoruykou and Komodakis showed in [25] that a
CNN can be designed to compare image patches. As such, my algorithm aims
to match ground containing patches from the training images; as shown in Fig.
4.6, the algorithm divides each image into rectangles, and classifies only those
containing ground pixels. As detailed in ALG1, DCN starts with a randomly
initialized CNN, with two output classes. Until the network reaches convergence,
DCN classifies the training rectangles such as all rectangles in an image have the
most probable label of the image; then it creates a new class, with the images
farthest from the mean probability as its training data.
The CNN architecture is a simple CNN, based on LeNet [21]. The network has
been chosen to have enough Convolutional Kernels and Maxpooling layers to pro-
duce a row vector before the fully connected layers; as such, the larger the input
image, the deeper the network should be. The depth of the image was chosen to
produce the correct number of clusters based on a ground truth. While decreas-
ing the depth will not allow the network to correctly differentiate the images in
the dataset, the increase of depth will increase the number of clusters beyond
what is required, as the network will learn higher dimensional features. As such,
the chosen architecture is as follows:

Table 4.1: DCNs CNN architecture

Layer Type Layer Size
Input Layer 10x10x3
Convolutional Layer 5x5x10
Convolutional Layer 5x5x30
Maxpooling 2x2
Fully Connected Layer 2
Softmax Layer

In ALG1, Probi is calculated similar to ALG2.

24

Algorithm 1 Deep Clustering Network

numberclusters = 2
Network{weights} = random()
Data = Relabeling{Network, Image, ground}
while average(Probi=1:end) < stoppingCriteria do
Network{weights} = train{Network,Data}
Data = Relabeling{Network, Image, ground}
if no label changes then

%change network last layer
numberclusters + +
avg = average(Probi=1:end)
std = standardDeviation(Probi=1:end)
label(Probi=1:end < avg − std) = last cluster

end if
remove empty clusters, reconfigure Network if needed

end while

Algorithm 2 Training Data = Relabel{Network, Images, ground}
TrainingData = ∅
for image i ∈ images do

Divide image into sub rectangles
for rectangle j ∈ image do

if sum(ground(rectanglej)) > threshold then
labeli{j} = Network(rectanglej)
Pi{j} = Probability(labeli{j})

end if
for class n ∈ Network classes do
Probi{n} = sum(Pi(labeli == n))

end for
end for
labeli{1 : end} = argmaxnProbi
add {rectangle{1 : end}, labeli{1 : end}} to TrainingData

end for
return TrainingData

25

Figure 4.6: showing an example image, divided into rectangles, with the ones
containing ground highlighted in green. My DCN will consider each of the high-
lighted rectangles as an input image.

26

4.2.2 Adaptive Learning

Theoretically, the ground segmentation network should be fine-tuned only when
ground representation change is detected. However, this assumes that the CN24
is able to accurately segment ground similar to its training, and at the same
time, the algorithm detecting representation change can learn the same features
as CN24. Although this works in many situations, a better approach is to fine-
tune the network when its performance drops. It is in this spirit that this system
is designed; the system trains a CN24 using FSGC on the first couple of images
it captures when launched, then for each new image the network’s classification
is assessed with a weak classifier’s output. If the performance(PrecisionxRecall)
of the network decreases below a threshold, the network is fine-tuned as shown in
Fig. 4.7. For this system, I also use my ground seeds, presented in section 4.1.4,
as weak classifier.
This approach allows the system to run in real-time for all images, without any
stop for fine-tuning. When fine-tuning is needed, FSGC is used for a couple
of images, then it’s output on those images is used as training data. Once the
system has enough training data, it fine-tunes the system and segments the next
image.

27

Training
Images

FSGC

CN24

At Startup

Online

Input
Image

Ground
Seeds

Ground
Segmentation

FSGC

CN24

Compatible?
Final

Segmentation
Yes Final

Segmentation

CN24

Fine-tune

No

Figure 4.7: showing my adaptive learning segmentation system, where at startup
the network is trained from a weak classifier, then online it is fine tuned when
the weak classifier and the segmentation network are not compatible.

28

Chapter 5

Experiments and Results

Experiments were conducted to assess the efficiency of my proposed methods.
This chapter first describes the experimental settings and the datasets that were
used to asses the proposed systems. Then, results of the experiments are pre-
sented, along with a comparison with other free space detection algorithms, with
emphasis on unsupervised or self-supervised systems.

5.1 Dataset

The AUB dataset [26] consists of 900 stereo images captured with a ZED stereo
camera [27]; it features images of different ruggedness and flatness, ranging from
easy (i.e., very flat), to moderate, to difficult images (i.e., off-road scenes). Each
entry in the dataset consists of the left RGB image of a stereo pair, the disparity
image, the corresponding XYZ point cloud, ground truth on all pixels from the left
image, and ground truth on the pixels with reliable disparity. More specifically,
the three datasets consist of the following:

5.1.1 Easy Dataset

The easy dataset consists of a sequence of 289 images, containing man-made
ground patches, and thus labeled as easy to segment ground. This sequence was
captured with the camera attached to an Unmanned Ground Vehicle (UGV).

5.1.2 Moderate Dataset

The moderate dataset consists of a sequence of 248 images, containing a combi-
nation of man made, and off road ground patches, and thus labeled as medium
to segment ground. This sequence was captured with the camera attached to a
UGV.

29

5.1.3 Difficult Dataset

The difficult dataset consists of two sequences, one of 176 and the other of 195 im-
ages, all of off-road ground patches, and thus labeled as hard to segment ground.
These sequences were captured with a hand-held camera.

5.2 Benchmarking

I compare my results with two self-supervised free space detection algorithms
from the literature, and the deep learning algorithn CN24 introduced earlier,
trained on an offline dataset. The two self-supervised methods include:

1. v-SVC [10]: this method models the v-disparity data probabilistically to
extract ground training data, and then using a feature vector of color and
geometry, and trains a support vector classifier to identify ground pixels
with reliable disparity values.

2. Plane Fitting: this method was used in Kim et al. [11] and Vernaza et
al. [12], where planes where fit into the generated point cloud to identify
ground patches. For maximum robustness towards outliers, M-estimator
SAmple Consensus (MSAC) is used for plane fitting. The expected normal
vector of the ground plane is required as an input.

5.3 DCN

To assess the Deep Clustering Technique, I tested its performance when provided
with 10 images from each dataset, which it is required to distinguish as corre-
sponding to different clusters.
The network is initialized with random weights, then it is provided with two
distinct images, with different labels to correct its weight, before being provided
with a larger set of images. This step ensures the network converges in the correct
direction. The set of images are organized with the first 10 images from the Easy
Dataset, the following are each from the two Difficult Datasets, and the last 10
are from the Moderate Dataset.
The first iteration of the clustering shown Figure 5.1 shows that the network so
far cannot distinguish any of the clusters correctly; however, it clearly shows that
while the images 11-30 have high probability to correspond to the same class,
the moderate dataset images, and the falsely classified images in the easy dataset
have very low probabilities. In later iterations, the network was not able to dis-
tinguish all of the easy dataset’s images as corresponding to a single cluster until
it added a new cluster in iteration 4 shown in Figure 5.2, which contained all of
the moderate dataset’s images. In addition, it is noted in Figure 5.2, that the

30

0 5 10 15 20 25 30 35 40

image

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C
la

ss
/P

ro
ba

bi
lit

y

iteration1

Figure 5.1: showing first iteration of the Deep Clustering Technique. Each marker
shows corresponds to a class, and the plot shows average probability of the cor-
responding image to belong to the current cluster.

probabilities of one of the two hard datasets decreased substantially from itera-
tion1; as the iterations progress, the network learns new ground representations,
and thus becomes more aware of the possible differences between images of one
class.

This awareness in the clustering algorithm allows it to finally classify images
from each dataset in a corresponding cluster at iteration 7, as shown in Figure
5.3. Even though DCN does not converge on iteration 7; however, the later iter-
ations do not change the number of clusters. When the algorithm tries to change
the number of clusters, all the images shifted to the new cluster correspond to all
images from one of the existing, thus shifting one of the clusters into a new one,
without changing the configuration. This helps the network relearn the represen-
tation of the shifted cluster from scratch, thus grasping a better understanding
of its representation.

31

0 5 10 15 20 25 30 35 40

image

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

ss
/P

ro
ba

bi
lit

y

iteration4

Figure 5.2: showing fourth iteration of the Deep Clustering Technique. Each
marker shows corresponds to a class, and the plot shows average probability of
the corresponding image to belong to the current cluster.

32

0 5 10 15 20 25 30 35 40

image

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

ss
/P

ro
ba

bi
lit

y

iteration7

Figure 5.3: showing seventh iteration of the Deep Clustering Technique. Each
marker shows corresponds to a class, and the plot shows average probability of
the corresponding image to belong to the current cluster.

33

5.4 Analysis

In this paragraph we will first provide a comparison between FSGC-U and FSGC-
O at different scales, as well as the methods used to choose FSGCs free parameters
γ and κ. After that, I will compare FSGC with the above mentioned algorithms
from the literature, along with the two deep learning algorithms I proposed in
this work.
All of the evaluations are pixel-based. Recall, precision, and specificity are used
as metrics for comparison. While recall reflects the fraction of ground pixels
detected by the algorithm, precision reflects the fraction of correctly classified
ground pixels. Finally, specificity provides a measure for the fraction of obstacle
pixels detected by the algorithm.

5.4.1 FSGC obstacle constraint and runtime

The improved obstacle delineation entails a better understanding of the bound-
ary between ground and obstacles in the IGC, allowing FSGC-U to ourperform
FSGC-O in terms of recall as shown in Table 5.1, and precision for most images
as shown in Fig.5.4. It can be noted that FSGC-O outperforms FSGC-U in the
easy dataset; the easy dataset presents uniform ground patches that can be clas-
sified easily with minimal obstacle restriction. While the ground seeds are the
same in both algorithms, a more comprehensive obstacle delineation in FSGC-U
over-constraints the IGC, resulting in a weaker performance. This problem is
not faced in the harder datasets, as the ground and obstacles are closely inter-
wined, and ground patches can have multiple representations; thus the additional
constaint imposed in FSGC-U allows it to learn a better ground segmentation.
Table 5.1 shows that FSGC-U outperforms all other scales and versions of FSGC
in terms of recall on most datasets; however, FSGC employed on the full scaled
image requires 6.3 seconds per image, thus cannot be used for a real time system.
Image rescaling has been used in v-SVC, where the algorithm does not converge
without extensive image rescaling, thus we proposed to downscale the image to
reduce the runtime to two frames per second on the expense of a decrease in per-
formance. In what follows, FSGC will refer to FSGC-U with an image rescaling
of 0.3.

34

Table 5.1: showing a comparision between FSGC with my obstacle detection
algorithm and the one proposed in [13], and comparision between both algorithms
at different scales.

Easy Dataset
Algorithm FSGC-U FSGC-O

Scale Full Scale Down Scaled Full Scale Down Scaled
Recall 0.9487 0.9628 0.9573 0.9670

Precision 0.9698 0.9846 0.9614 0.9790
Specificity 0.9769 0.9832 0.9803 0.9851

Difficult Dataset: Cyprus Triangle
Algorithm FSGC-U FSGC-O

Scale Full Scale Down Scaled Full Scale Down Scaled
Recall 0.9843 0.9081 0.9226 0.9134

Precision 0.8063 0.8182 0.8449 0.8167
Specificity 0.9935 0.9633 0.9685 0.9651

Difficult Dataset: Jafet
Algorithm FSGC-U FSGC-O

Scale Full Scale Down Scaled Full Scale Down Scaled
Recall 0.9156 0.8617 0.8710 0.8675

Precision 0.9152 0.9461 0.9630 0.9452
Specificity 0.9572 0.9324 0.9364 0.9349

Moderate Dataset
Algorithm FSGC-U FSGC-O

Scale Full Scale Down Scaled Full Scale Down Scaled
Recall 0.9423 0.8801 0.8891 0.8878

Precision 0.9030 0.8689 0.8607 0.8668
Specificity 0.9745 0.9488 0.9521 0.9520

35

0 50 100 150 200 250 300

Frame

0.75

0.8

0.85

0.9

0.95

1

P
re

ci
si

on

Easy Dataset

0 20 40 60 80 100 120 140 160 180

Frame

0.4

0.6

0.8

1

P
re

ci
si

on

Difficult Dataset: Cyprus Triangle

0 20 40 60 80 100 120 140 160 180 200

Frame

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

Difficult Dataset: Jafet

0 50 100 150 200 250

Frame

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

Moderate Dataset

FSGCU

FSGCO

FSGCU -Rescaled

FSGCO-Rescaled

Figure 5.4: showing per image precision comparison between presented FSGC
algorithm at different scaling factors

36

5.4.2 Free Parameters

The presented system has two free parameters: obstacle detection threshold γ
in the u-disparity obstacle detection algorithm, and the correction factor κ in
the unary term. While one could choose logical values for both parameters, we
rely on Receiver Operating Characterisitc (ROC) curve analysis to optimize my
choice.

Obstacle detection threshold γ

The obstacle detection threshold γ determines the confidence interval about the
largest value in each column of the u-disparity. While a near unity threshold
under-segments the obstacles, and classifies only the pixels with the highest values
in the u-disparity as obstacles, a near zero threshold is prone to adding noise and
small objects. We rely on an ROC to select γ: we calculate the average recall
and precision over all images, while varying the threshold γ between zero and
unity, and keeping κ constant at unity. The ROC shown in Fig.5.5 (left), shows
average precision versus recall for the different values of γ. A perfect detector
should have a unity recall and precision; while that is difficult to achieve in a real
system, we choose the threshold γ that has the shortest distance to the perfect
detector, shown in red in Fig.5.5 (left), and corresponding to γ equal to 0.5.

Correction factor κ

The correction factor κ accommodates for near unity ratios in the unary terms log
odds. κ should be chosen as a small positive number to advantage false negatives
over false positives without adding many false negatives. Another ROC curve in
Fig.5.5 (right) shows average recall versus precision over all images, while varying
κ from 0.1 to five, and keeping γ constant at the value of 0.5, found previously.
The detector with the shortest distance to the perfect detector, shown in red in
Fig.5.5 (right), corresponds to κ equal to unity.

37

0.895 0.9 0.905 0.91

Recall

0.86

0.88

0.9

0.92

0.94

0.96

P
re

ci
si

on

ROC curve
Optimum detector

0.8 0.85 0.9 0.95

Recall

0.86

0.88

0.9

0.92

0.94

0.96
P

re
ci

si
on

Figure 5.5: (left) ROC curve for varying γ from 0 to 1, (right) ROC curve for
varying κ from 0.1 to 5

38

5.4.3 Runtime

The following discusses the runtime of the proposed systems as well as the ones
from the literature. Some of the proposed systems have multiple runtimes as
follows:

• DCN has two run-time: Online segmentation and Online Training. Online
it requires to extract the ground seeds, choose the corresponding cluster
through DCN, and apply the corresponding CN24 to find the final segmen-
tation. In case it has to train, in addition to the extraction of the ground
seeds and DCN clustering, it requires to fine-tune DCN and retrain a CN24.

• Adaptive Learning The Adaptive Learning technique also has two run-
time: Online segmentation and Online Training. Online it requires to ex-
tract the ground seeds, and segment the ground with the CN24. In case
of mismatch between the two segmentations, the algorithm employs FSGC
for a couple of images, then fine-tunes the preceeding CN24, with the worst
case scenario being an FSGC and a CN24 segmentation on the mismatch
image.

Table 5.2: evaluation of the runtime of my algorithm and the baseline algorithms.

system FSGC v-SVC DCN Online DCN Training
time(sec) 0.505 0.4321 0.13 55.13
system Plane Fitting CN24 Adaptive Online Adaptive Training
time(sec) 0.4321 2.5e−3 0.08 0.505

As shown in Table 5.2, the fastest algorithm is CN24, where an offline trained
deep learning algorithm segments ground without any fine-tuning. It is a fast
algorithm, however, it requires supervised training data, and does not adapt to
unseen ground representations. FSGC, v-SVC, and plane fitting all achieve real
time results, with near constant runtime throughout their operation; all these
algorithms do not require any pretraining and exploit data directly from the
currently available frame. DCN and the Adaptive Learning method exploit solu-
tions in between, where they are pretrained on self-supervised data to be able to
achieve a higher frame rate than the other self-supervised methods, while fine-
tuning the network in a self-supervised manner when needed. The DCN network
keeps in memory all pre-learned ground represeantations, thus rarely requires
training, however, retraining requires extensive time. This is why the adaptive
method provides the best compromise between runtime and data exploitation,
as it exploits the self extracted weak classifier, while employing a self-supervised
pre-trained network, achieving 12.5 frames per second online, and an acceptable
training runtime.

39

5.4.4 Comparision

Table 5.3: evaluation of the classification of my systems and the baseline algo-
rithms on all three datasets.

Easy Dataset
Algorithm FSGC v-SVC Plane Fitting CN24 DCN Adaptive Learning

Recall 0.9628 0.8017 0.8807 0.9981 0.8208 0.9015
Precision 0.9846 0.9744 0.9542 0.7411 0.9806 0.9718
Specificity 0.9769 0.9167 0.9478 0.9990 0.9259 0.9572

Difficult Dataset: Cyprus Triangle
Algorithm FSGC v-SVC Plane Fitting CN24 DCN Adaptive Learning

Recall 0.9081 0.8346 0.5231 0.9994 0.9130 0.9165
Precision 0.8182 0.8546 0.8811 0.6171 0.8871 0.8857
Specificity 0.9633 0.9391 0.8465 0.9997 0.9689 0.9690

Difficult Dataset: Jafet
Algorithm FSGC v-SVC Plane Fitting CN24 DCN Adaptive Learning

Recall 0.8617 0.7551 0.8150 0.9968 0.8485 0.8751
Precision 0.9461 0.9625 0.9680 0.7696 0.9631 0.9330
Specificity 0.9324 0.8918 0.9147 0.9981 0.9316 0.9413

Moderate Dataset
Algorithm FSGC v-SVC Plane Fitting CN24 DCN Adaptive Learning

Recall 0.8801 0.7859 0.8399 0.9990 0.9660 0.9187
Precision 0.8689 0.9434 0.9460 0.7228 0.9147 0.8939
Specificity 0.9488 0.9148 0.9328 0.9995 0.9843 0.9665

40

0.
8

0.
85

0.
9

0.
95

1

R
ec

al
l

0.
7

0.
750.

8

0.
850.

9

0.
951

Precision

E
as

y
D

at
as

et

0.
75

0.
8

0.
85

0.
9

0.
95

1

R
ec

al
l

0.
7

0.
750.

8

0.
850.

9

0.
95

Precision

M
o

d
er

at
e

D
at

as
et

0.
5

0.
6

0.
7

0.
8

0.
9

1

R
ec

al
l

0.
6

0.
650.

7

0.
750.

8

0.
850.

9

Precision

D
if

fi
cu

lt
 D

at
as

et
:

C
yp

ru
s

T
ri

an
g

le

0.
75

0.
8

0.
85

0.
9

0.
95

1

R
ec

al
l

0.
750.

8

0.
850.

9

0.
951

Precision

D
if

fi
cu

lt
 D

at
as

et
:

Ja
fe

t

F
S

G
C

v-
S

V
C

A
da

pt
iv

e
Le

ar
ni

ng
D

ee
p

C
Lu

st
er

in
g

O
ffl

in
e

cn
24

P
la

ne
 F

itt
in

g

F
ig

u
re

5.
6:

sh
ow

in
g

P
re

ci
si

on
v
s

R
ec

al
l

of
al

l
al

go
ri

th
m

s
on

al
l

fo
u
r

d
at

as
et

s.

41

Table 5.3 shows average Recall, Precision, and Specificity of the proposed al-
gorithms along with the most relevant from the literature, evaluated on all four
datasets. The same data is shown in Figure 5.6 for an easier visual comparison,
where Precision vs Recall graph for the above mentioned algorithms are shown
for each of the four datasets. Figure 5.6 shows that my three proposed algorithms
outperform the algorithms presented in the literature. The offline trained net-
work shows the highest recall for all datasets, however, on the expense of a large
decrease in precision. v-SVC shows the opposite performance, where it outper-
forms most other algorithms in terms of precision, however, on the expense of
a lower recall. The Plane Fitting performance is comparable to my algorithms
for most datasets, however, its recall drops below all others on the hard dataset,
where ground cannot be segmented with a geometric surface, rather intensity
information can be more informative.
Despite my algorithms outperforming all others, none of the three presented sys-
tems can outperform the other on all datasets. As seen in Figure 5.6, while in the
easy dataset, FSGC is superior to all others, the other two have equal or superior
performance on the different datasets.
Fig. 5.8 shows example segmentations from the different datasets using FSGC.
Most of the results show accurate segmentation for ground and obstacles. Fail-
ure modes were also analyzed for FSGC, where it was observed to be sensitive
to patterns of repeating texture such as foliage, where disparity values are not
accurate; this can be observed in Fig. 5.8c, where ground and foliage from ob-
stacles are almost connecting, and possessing similar color, rendering the image
almost impossible for FSGC to correctly segment.

42

F
ig

u
re

5.
7:

ea
ch

co
lu

m
n

sh
ow

s
th

e
re

su
lt

s
of

th
e

se
gm

en
ta

ti
on

ap
p
li
ed

to
an

im
ag

e
ta

ke
n

fr
om

on
e

of
th

e
th

re
e

d
at

as
et

s.
T

h
e

to
p

ro
w

sh
ow

s,
in

re
d
,

th
e

p
ix

el
s

la
b

el
ed

as
ob

st
ac

le
s;

th
e

b
ot

to
m

ro
w

sh
ow

s
th

e
gr

ou
n
d

se
ed

s
ov

er
la

id
in

b
lu

e;
an

d
th

e
m

id
d
le

ro
w

sh
ow

s
th

e
fi
n
al

cl
as

si
fi
ca

ti
on

ov
er

la
id

in
gr

ee
n
.

N
ot

e
h
ow

m
os

t
se

gm
en

ta
ti

on
s

ar
e

ve
ry

go
o
d
,

cl
ea

rl
y

d
el

in
ea

ti
n
g

th
e

gr
ou

n
d

p
la

n
e.

T
h
e

se
gm

en
ta

ti
on

in
co

lu
m

n
(c

)
sh

ow
s

a
ca

se
w

h
er

e
F

S
G

C
m

is
ta

ke
n
ly

se
gm

en
ts

b
ra

n
ch

es
of

a
tr

ee
as

gr
ou

n
d
;

th
is

is
d
u
e

to
th

e
p
h
y
si

ca
l

p
ro

x
im

it
y,

an
d

si
m

il
ar

it
y

in
co

lo
r,

b
et

w
ee

n
th

e
b
ra

n
ch

es
an

d
th

e
gr

ou
n
d

p
la

n
e.

43

F
ig

u
re

5.
8:

ea
ch

co
lu

m
n

sh
ow

s
th

e
re

su
lt

s
of

th
e

se
gm

en
ta

ti
on

ap
p
li
ed

to
an

im
ag

e
ta

ke
n

fr
om

on
e

of
th

e
th

re
e

d
at

as
et

s.
T

h
e

to
p

ro
w

sh
ow

s
se

gm
en

ta
ti

on
s

fo
rm

th
e

A
d
ap

ti
ve

L
ea

rn
in

g
al

go
ri

th
m

,
th

e
m

id
d
le

ro
w

sh
ow

s
se

gm
en

ta
ti

on
fr

om
F

S
G

C
,

an
d

th
e

b
ot

to
m

ro
w

sh
ow

s
se

gm
en

ta
ti

on
fr

om
th

e
D

C
N

al
go

ri
th

m
.

44

Chapter 6

Conclusion and Future Work

The systems presented above are novel techniques for free space estimation.
FSGC is completely self supervised, and performs well on structured and un-
structured terrain; the Adaptive Learning and DCN segmentations provide a
compromise between deep learning networks that have been trained in only un-
seen ground, and thus no guarantee that they will reflect the current scene, and
between expensive network fine-tuned for each frame. The presented methods
outperform all others from the literature in real time.
As a conclusion, the main contributions in this thesis are the following:

• A self supervised free space segmentation algorithm that employs a mix-
ture of machine learning techniques to outperform all other self supervised
algorithms in the literature.

• A Deep Clustering Technique that employs a CNN to cluster images based
on their ground representation.

• A Deep Segmentation network fine-tuning on demand technique employing
DCN.

• An adaptive learning technique that compares a weak classifier and a pre-
trained one, to fine-tune the pretrained network when required.

Despite the contributions in this thesis, much work remains to be done; DCN
and the Adaptive technique each assesses only one aspect of the segmentation,
and I expect a combination of the two methods to outperform them both. In
addition, implementing DCN inside the CN24 can allow the DCN to learn the
representation that CN24 has been trained on, thus improving both algorithms.
Another appealing solution is to add a temporal prior to the spatial prior of
the CN24, thus constraining consecutive images in a sequence to have similar
segmentations, thus avoiding large drops in recall or precision that can be seen in

45

Figure 5.4. A last necessary step is to implement FSGC on a GPU thus reducing
further the runtime of all algorithms.

46

Bibliography

[1] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for se-
mantic segmentation,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3431–3440, 2015.

[2] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” arXiv preprint arXiv:1506.02640, 2015.

[3] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE International Confer-
ence on Computer Vision, pp. 1440–1448, 2015.

[4] Y. Boykov and G. Funka-Lea, “Graph cuts and efficient nd image segmenta-
tion,” International journal of computer vision, vol. 70, no. 2, pp. 109–131,
2006.

[5] B. Suger, B. Steder, and W. Burgard, “Traversability analysis for mobile
robots in outdoor environments: A semi-supervised learning approach based
on 3d-lidar data,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA), pp. 3941–3946, IEEE, 2015.

[6] H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, and G. R. Bradski, “Self-
supervised monocular road detection in desert terrain.,” in Robotics: science
and systems, vol. 38, Philadelphia, 2006.

[7] A. Milella, G. Reina, J. Underwood, and B. Douillard, “Visual ground seg-
mentation by radar supervision,” Robotics and Autonomous Systems, vol. 62,
no. 5, pp. 696–706, 2014.

[8] R. Labayrade, D. Aubert, and J.-P. Tarel, “Real time obstacle detection
in stereovision on non flat road geometry through” v-disparity” representa-
tion,” in Intelligent Vehicle Symposium, 2002. IEEE, vol. 2, pp. 646–651,
IEEE, 2002.

[9] A. Harakeh, D. Asmar, and E. Shammas, “Ground segmentation and oc-
cupancy grid generation using probability fields,” in Intelligent Robots and
Systems (IROS), 2015 IEEE/RSJ International Conference on, pp. 695–702,
IEEE, 2015.

47

[10] A. Harakeh, D. Asmar, and E. Shammas, “Identifying good training data
for self-supervised free space estimation,” International Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2016.

[11] D. Kim, S. M. Oh, and J. M. Rehg, “Traversability classification for ugv
navigation: A comparison of patch and superpixel representations,” in
2007 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pp. 3166–3173, IEEE, 2007.

[12] P. Vernaza, B. Taskar, and D. D. Lee, “Online, self-supervised terrain classi-
fication via discriminatively trained submodular markov random fields,” in
Robotics and Automation, 2008. ICRA 2008. IEEE International Conference
on, pp. 2750–2757, IEEE, 2008.

[13] F. Oniga, E. Sarkozi, and S. Nedevschi, “Fast obstacle detection using u-
disparity maps with stereo vision,” in Intelligent Computer Communication
and Processing (ICCP), 2015 IEEE International Conference on, pp. 203–
207, IEEE, 2015.

[14] C.-A. Brust, S. Sickert, M. Simon, E. Rodner, and J. Denzler, “Convolu-
tional patch networks with spatial prior for road detection and urban scene
understanding,” arXiv preprint arXiv:1502.06344, 2015.

[15] W. P. Sanberg, G. Dubbelman, and P. H. de With, “Free-space detection
with self-supervised and online trained fully convolutional networks,” arXiv
preprint arXiv:1604.02316, 2016.

[16] H. Badino, U. Franke, and D. Pfeiffer, “The stixel world-a compact medium
level representation of the 3d-world,” in Joint Pattern Recognition Sympo-
sium, pp. 51–60, Springer, 2009.

[17] F. Denis, A. Laurent, R. Gilleron, and M. Tommasi, “Text classification
and co-training from positive and unlabeled examples,” in Proceedings of
the ICML 2003 workshop: the continuum from labeled to unlabeled data,
pp. 80–87, 2003.

[18] J. He, Y. Zhang, X. Li, and Y. Wang, “Naive bayes classifier for positive
unlabeled learning with uncertainty.,” in SDM, pp. 361–372, SIAM, 2010.

[19] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel, “Backpropagation applied to handwritten zip code
recognition,” Neural computation, vol. 1, no. 4, pp. 541–551, 1989.

[20] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and
L. Jackel, “Handwritten digit recognition with a back-propagation network,
1989,” in Neural Information Processing Systems (NIPS).

48

[21] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[22] D. A. Forsyth and J. Ponce, “A modern approach,” Computer vision: a
modern approach, pp. 88–101, 2003.

[23] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[24] D. C. Asmar, J. S. Zelek, and S. M. Abdallah, “Tree trunks as landmarks for
outdoor vision slam,” in 2006 Conference on Computer Vision and Pattern
Recognition Workshop (CVPRW’06), pp. 196–196, IEEE, 2006.

[25] H. Badino, U. Franke, and D. Pfeiffer, “Learning to compare image patches
via convolutional neural networks,” in Joint Pattern Recognition Symposium,
pp. 51–60, Springer, 2009.

[26] “Aub ground segmentation stereo dataset.”

[27] “S.labs.”

49

http://www.deeplearningbook.org

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Literature Review
	Background
	v-disparity and u-disparity transformations
	Positive Naïve Bayes framework
	Convolutional Neural Networks
	Convolutional Layers
	Multilayer Perceptron
	Backpropagation

	System Details
	Free Space estimation using Graph Cuts
	v-disparity and Training data
	u-disparity and identifying obstacles
	Ground Classification and filtering
	Interactive Graph Cuts
	Unary Terms
	Binary Terms
	Seeds

	Deep Learning Techniques
	Deep Clustering
	Adaptive Learning

	Experiments and Results
	Dataset
	Easy Dataset
	Moderate Dataset
	Difficult Dataset

	Benchmarking
	DCN
	Analysis
	FSGC obstacle constraint and runtime
	Free Parameters
	Runtime
	Comparision

	Conclusion and Future Work
	Bibliography

