

AMERICAN UNIVERSITY OF BEIRUT

HARDWARE DESIGN AND
IMPLEMENTATION OF A CRYPTO SYSTEM

by

SEROVE VARTAN AWEDIKIAN

A thesis
submitted in partial fulfillment of the requirements

for the degree of Master of Engineering
to the Department of Electrical and Computer Engineering

of the Faculty of Engineering and Architecture
at the American University of Beirut

Beirut, Lebanon
April 2017

Acknowledgements

I would like to thank Dr. Mohammad Mansour and Dr. Ali Chehab for their
continuous effort in guiding me and coaching me throughout my graduate stud-
ies at AUB. Also, I would like to thank Dr. Ayman Kayssi for being part of the
committee.

I would like to thank my family, especially my parents and siblings, who kept
motivating throughout my studies even when times were difficult. I am also very
thankful to my friends who always stood by my side during this period.

v

An Abstract of the Thesis of

Serove Vartan Awedikian for Master of Engineering
Major: Electrical and Computer Engineering

Title: Hardware Design and Implementation of a Crypto System

Elliptic Curve Cryptography (ECC) promises better security with less com-
putational costs than other contemporary public cryptographic schemes. A cryp-
tosystem based on ECC can find applications in a variety of computing and
embedded systems such as RFID, and proximity cards. Public key cryptography
has gained wide interest over the years as it overcomes the key management prob-
lem posed by private key cryptography. The most expensive operation in ECC is
the point multiplication, and hence it is not surprising that most publications on
the topic focus on this subject, overlooking the overall system. However in ECC,
a plain-text cannot be readily used for encryption, but has to be mapped to an
elliptic point first, achieved by the Koblitz algorithm. In this paper, we propose
a cryptosystem based on ECC over Koblitz curves, a special family of curves de-
fined over binary extension fields that allow for efficient implementation of point
multiplication. To do so, they require the integer to be in τNAF format. In this
work, we propose a modified version of the Koblitz algorithm for text-to-point
conversion that accelerates the process by 40%. We introduce a novel design
of the τNAF converter that runs over double the frequency of existing designs.
We demonstrate a new technique in point multiplication that allows processing
two digits at a time without any precomputation. We design a new component
that performs both point addition and coordinate conversion efficiently, used af-
ter point multiplication. We implement all of the proposed architectures, and
interconnect them together on a Xilinx Virtex-5 field programmable gate array
(FPGA). The cryptosystem achieves a throughput over 27 Mbps on K-163.

vi

Contents

Acknowledgements v

Abstract vi

1 Introduction 1

2 Elliptic Curve Cryptography: Background Overview 5
2.1 Finite Fields . 5
2.2 Bases Representations of Binary Extension Fields and their Finite

Field Arithmetic . 6
2.2.1 Polynomial Basis . 7
2.2.2 Normal Basis . 11

2.3 Elliptic Curves and Coordinate Systems 14

3 Literature Review 16
3.1 Text to Point Conversion . 16
3.2 The τNAF Expansion . 18
3.3 Point Multiplication . 19

4 System Model 22
4.1 Mapping Text to Point . 22

4.1.1 Optimized Koblitz Algorithm 23
4.1.2 Proposed Text-to-Point Mapper Architecture 25

4.2 The τNAF Converter . 27
4.2.1 Optimized τNAF Conversion using Solinas Algorithm . . . 28
4.2.2 Optimized Lazy Reduction 30
4.2.3 Proposed τNAF Converter Architecture 31

4.3 Double-Digit Point Multiplication 34
4.3.1 Double-Digit Frobenious-Add-or-Subtract 34
4.3.2 Proposed Double-Digit Point Multiplier Architecture . . . 35

4.4 Point Addition and Coordinate Conversion 36
4.4.1 Point Adder and Coordinate Converter 37
4.4.2 Proposed SPACC and RPACC Architecture 37

vii

4.5 The Complete Cryptosystem . 40

5 Analysis and Implementation Results 43
5.1 Text to Point Conversion . 43
5.2 The τNAF Converter . 44

5.2.1 Point Addition and Coordinate Conversion 45
5.3 Double-Digit Point Multiplier . 45
5.4 Point Addition and Coordinate Conversion 46
5.5 FPGA and ASIC Synthesis of the Complete Cryptosystem 47

6 Conclusion 49

A Abbreviations 50

List of Figures

3.1 The x-coordinate of a message point 17
3.2 Pipeline structure of Z, X, and Y processors using four field mul-

tipliers. 21

4.1 Architecture of proposed text-to-point mapper 27
4.2 Adjusters used for incrementing and decrementing 29
4.3 Block diagram showing the flow of τNAF conversion 30
4.4 Logic diagram of the proposed τNAF converter 33
4.5 Architecture of the double-digit point multiplier 36
4.6 Point addition in SPACC . 38
4.7 Architecture of SPACC . 39
4.8 Point addition in RPACC . 40
4.9 Circuit connections of RPACC . 40
4.10 Block diagram of an ECC-based cryptosystem 42

5.1 Number of Inversions Required to Map Messages to Points. 43

ix

List of Tables

3.1 Summary of NIST recommended elliptic curves defined over F2m
(The value a is for Koblitz curves only) 18

5.1 Implementation results and comparison of the proposed architecture 48

x

Chapter 1

Introduction

The current age of the digital world, of massive and universal electronic intercon-
nections, has opened the path for malicious intruders to eavesdrop on personal
and corporate data, breach into transactions, and forge identities to get their
hands on sensitive information. Viruses have lurked throughout the web infect-
ing individual and organizational systems, and many security attacks have been
carried out on websites putting their services to a halt. Thus, there remains no
place where security isn’t a matter of interest. Computer systems have grown
drastically and their interconnections have increased our dependence on these
networks to perform our day-to-day activities, whether it is browsing the web
or conducting an online transaction. This has led to the increase in awareness
of the need to protect computer systems, stored data and communication links
from network-based attacks, which gave birth to the development of advanced
cryptographic techniques we use today.

Cryptographic applications have existed long ago aiming to disguise informa-
tion from the enemy. Ancient applications include Caesar cipher, Playfair cipher
and Hill cipher. Rotor machines, electro-mechanical stream cipher devices, were
heavily used during World War I and II. Many of these ciphers work on the basis
of substitution, where a letter in the alphabet is presented by another letter in the
same alphabet. More advanced and relatively modern techniques, such as Data
Encryption Standard (DES), operate on the basis of substitution and permuta-
tion in order not only to substitute a letter by another one, but also to change
their location in the word or sentence. However, advancements in technology
and computational capabilities have ruled out many of these techniques either
by cryptanalysis or by brute force attacks. Cryptanalysis is the study of ciphers
in the aim of finding weaknesses in them that enables the retrieval of plaintext
from ciphertext without a pass code. On the other hand, a brute force attack is a
trial and error attack where the intruder tries every possible combination of pass
codes in order to decrypt a message.

1

Cryptographic techniques can be classified into two categories: Symmetric-key
cryptography and Public-key (or Asymmetric-key) cryptography. A key, most of-
ten a secret, serves as a pass code by which data gets encrypted or decrypted.
Symmetric-key, as its name implies, requires both parties that are communicating
with each other to obtain the same key. Of the most noticeable symmetric-key
techniques are DES and AES (Advanced Encryption Standard). While DES is
not secure anymore due to advancements in computational power (brute force
attack), AES is still widely used today. Symmetric-key techniques are character-
ized by their ability to perform fast encryption and decryption. However, their
drawback emerges from the fact that both parties must share an identical secret,
which in practice, is a challenging task. If this shared key gets revealed during
its transmission, the whole encryption and decryption process becomes pointless.
This leads us to the second class of cryptography called Public-key cryptography.

The biggest advantage of public-key cryptography is that it doesn’t require
two communicating parties to share a common secret. Each end is required to
generate a pair of keys known as the public-key and the private-key. As their
name suggests, the public key is announced to others while the private key is
kept a secret. Messages encrypted by one’s public key can only be decrypted by
the same person’s private key. Consider an example where Alice wants to send
a secure message to Bob. Then, Alice must encrypt her message using Bob’s
public key. Bob, in turn, can decrypt this message using his private key. No one
else, other than Bob, can decrypt this message. The security strength behind
public key schemes lies within a very hard mathematical problem which cannot
be solved within a feasible amount of time. Examples of these problems are: in-
teger factorization problem, the discrete logarithm problem and the elliptic curve
discrete logarithm problem. While it is true that public-key encryption solves the
problems of symmetric-key encryption, it is generally slower and requires larger
key-size to achieve the same security as symmetric cryptography.

The most widespread and commonly used public key encryption nowadays
is the RSA, named after the initials of its three inventors: Rivest, Shamir and
Adleman. RSA is based on the integer factorization problem, where it is hard
to factorize the product of two very large prime numbers back to its composites.
However, algorithms targeting the integer factorization problems have advanced
over the years weakening RSA, and the most recent technique, the lattice sieve,
can factorize up to 663-bit (around 200 decimal digit) numbers. As a result, RSA
schemes currently operate on 1024 or 2048-bit numbers which are extremely large.
Consequently, RSA has become slower and more expensive to operate. A more
recent and advanced public key encryption technique is the Elliptic Curve Cryp-
tography (ECC) which promises better security with less computational costs.
For instance, the security strength of 1024-bit RSA is equivalent to 163-bit ECC,
and 2048-bit RSA is equivalent to 223-bit ECC [1].

2

Elliptic Curve Cryptography was proposed independently by Neal Koblitz [2]
and Victor Miller [3] in 1985. Since then, a vast amount of research has been con-
ducted on its efficient implementation as it gained increased acceptance. It is now
approved by accredited organizations such as IEEE (Institute of Electrical and
Electronics Engineers), ISO (International Standards Organization) and NIST
(National Institute of Standards and Technology). The domain of operation of
ECC lies on an Elliptic Curve Equation. At its heart is the Point Multiplication
(or Scalar Multiplication) operation which is the basis of its security. Point mul-
tiplication involves successive Point Additions. Point additions on elliptic curves
are defined in such a way that the resultant point also belongs to the curve. Point
multiplication is defined as successive point additions. Let k be an integer and
P an elliptic point, then point multiplication can be expressed as Q = k · P =
P + P + P... + P (k times). This operations forms the bottleneck of all ECC
applications dominating their execution time. Given P and Q, finding k such
that Q = k · P is known as the Elliptic Curve Discrete Logarithm Problem upon
which the security of ECC is based.

Elliptic curves used in ECC can be defined on prime fields or binary exten-
sion fields. Prime fields are suitable for software implementation, while binary
extension fields are suitable for hardware implementation. Elliptic curves defined
over binary extension fields are in turn divided into two classes: Generic curves
and Koblitz curves. Koblitz curves outperform generic curves due to their dis-
tinct properties that accelerate point multiplication [35]. To further enhance this
operation, projective coordinates are used instead of affine coordinates. They rep-
resent a point using three coordinates rather than two, and eliminate expensive
field inversions during point multiplication.

Point multiplication in ECC is not the full story. A plain-text arbitrarily cho-
sen cannot be readily used in ECC, but has to be embedded into an elliptic point
first. This can be accomplished by the Koblitz Algorithm [12], a probabilistic ap-
proach that imposes a trade-off between the amount of useful data and the rate
of success. Also, to be able take advantage of Koblitz curves, the integer used
for point multiplication must first be converted into a special format called the
τ -adic non-adjacent form, or τNAF. Furthermore, performing point multiplica-
tion in projective coordinates requires that the points are converted back to affine.

In this work, we propose four fundamental components that we use to build
up a cryptosystem based on ECC. We modify Koblitz algorithm of mapping
text-to-point and enhance it. We introduce novel ideas into the design of the
τNAF converter to significantly increase its speed. We propose a double-digit
point multiplier that doesn’t require any precomputation. Finally, we propose
a new component that performs both point addition and coordinate conversion

3

used to finalize the process of encryption and decryption. We interconnect these
components together, and implement our cryptosystem on a virtex-5 FPGA.

This work is structured as follows. Chapter 2 covers the background infor-
mation about Elliptic Curve Cryptography. Chapter 3 includes the designs and
various implementations in the literature. Chapter 4 discusses the proposed de-
sign architectures and how the cryptosystem is build. Chapter 5 presents analysis
of the design architectures and implementation results. Finally, Chapter 6 con-
cludes the thesis.

4

Chapter 2

Elliptic Curve Cryptography:
Background Overview

Elliptic Curve Cryptography (ECC) is a tool that enables parties to communicate
with each other securely. It uses point operations in order to encrypt and decrypt
messages. Point multiplication is the basis of security in ECC, and is built upon
elliptic curve arithmetic such as point addition and point doubling. Elliptic curve
arithmetic are in turn built upon finite field arithmetic, and therefore finite field
arithmetic form the basic building blocks of ECC. In what follows, we will provide
a basic overview on the aspects that constitute elliptic curve cryptography.

2.1 Finite Fields

In basic terms, a finite field [40] is a set of finite number of elements that comply
with the rules of addition and multiplication defined in that field. Subtraction and
inversion are also defined in terms of addition and multiplication, respectively.
These operations construct the finite field arithmetic. Finite field elements un-
dergoing finite field arithmetic also result in a finite field element that necessarily
belongs to the same field. Addition, subtraction, multiplication and inversion are
denoted as +, −, ·, and −1, respectively. Squaring is also a frequently used finite
field arithmetic operation. It is the multiplication of a finite field element by itself.

Let F represent a finite field and a, b be elements in F. Then, the following
hold [5]:

(i) The additive identity, denoted by 0, is defined such that a+ 0 = a, ∀a ∈ F.

(ii) The multiplicative identity, denoted by 1, is defined such that a · 1 = a,
∀a ∈ F.

5

(iii) The negative of a, denoted by −a, is defined such that a+(−a) = 0, ∀a ∈ F.
The negative of a is also unique in F.

(iv) The inverse of a, denoted by a−1, is defined such that a·a−1 = 1, ∀a ∈ F\{0}.
The inverse of a is also unique in F.

Common examples of finite fields include integers modulo n. For instance,
if n = 7, the field F7 consists of 7 elements namely {0, 1, 2, 3, 4, 5, 6}. We write
F7 = {0, 1, 2, 3, 4, 5, 6}F7 = {0, 1, 2, 3, 4, 5, 6}F7 = {0, 1, 2, 3, 4, 5, 6}. Let’s carry on with this example to further illustrate
the finite field arithmetic. Since we are working with integers, addition and
multiplication are well known. Below, we provide an example of each arithmetic
operation:

(i) Addition: (4 + 6) mod 7 = 10 mod 7 = 3 mod 7. Hence, 4 + 6 = 3.

(ii) Subtraction: (2− 5) mod 7 = −3 mod 7 = 4 mod 7. Hence, 2− 5 = 4.

(iii) Multiplication: (3 · 4) mod 12 = −3 mod 7 = 5 mod 7. Hence, 3 · 4 = 5

(iv) Inversion: 4 · 2 = 1. Hence, 4−1 = 2.

Of interest to cryptographic applications are prime fields, denoted by Fp and
binary extension fields, denoted by F2m . Prime fields consist of integers modulo
a prime number p. They can be expressed as Fp = {0, 1, 2, ..., p − 1}. Binary
extension fields, or sometimes called Galois Fields, are an extension of the binary
field F2 = {0, 1}. Hence, each element in the field F2m consists of m elements
of F2. There are a couple of ways, or bases, to represent these elements. The
most notable bases are the polynomial basis and the normal basis representations.

Binary extension fields are attractive for hardware implementations due to
their ease of representation in hardware and efficient implementation of their
finite field arithmetic. Prime fields are attractive for software implementations,
and therefore are out of the scope of this thesis. In what follows, we will discuss
the polynomial and normal basis representations and their corresponding finite
field arithmetic.

2.2 Bases Representations of Binary Extension

Fields and their Finite Field Arithmetic

Elements belonging to the finite field F2m are usually represented in either the
polynomial basis or the normal basis. Each of them has its own set of advantages
and disadvantages. Their difference emerges from the way finite field arithmetic is
carried out. The four basic and frequently used finite field arithmetic operations

6

are addition, multiplication, squaring and inversion. In F2m , subtraction is the
same as addition. Division can be performed by first inverting the denominator,
and then multiplying it with the numerator. Algorithms performing division in
one shot also exist.

Since elements of F2 can only take values from {0, 1}, they are easily repre-
sented by a bit on hardware. Elements of F2m , being an extension of F2, can
therefore be represented as a string of bits. This and other finite field arithmetic
properties of F2m is what makes this field attractive for hardware implementation.

2.2.1 Polynomial Basis

In polynomial basis, elements of F2m are expressed as polynomials of degree m−1.
To elaborate more on this basis, consider the following three field elements:

A = (am−1, ..., a2, a1, a0)

B = (bm−1, ..., b2, b1, b0)

C = (cm−1, ..., c2, c1, c0)

such that A,B,C ∈ F2m and ai, bi, ci ∈ F2 ∀i ∈ [0,m− 1].

In polynomial basis, A is interpreted as:

A =
m−1∑
i=0

aix
i = am−1x

m−1 + ...+ a2x
2 + a1x+ a0,

where {xm−1, ..., x2, x1, x0} are the terms of the polynomial.

Analogous to the prime integer p in Fp, elements of F2m are represented modulo
an irreducible polynomial of degree m, denoted by f(x), such that no polynomial
of degree less than m than can divide f(x). The finite field arithmetic are carried
out modulo the irreducible polynomial.

Addition is the simplest arithmetic operation in F2m . It is a simple bitwise
xor of the corresponding coefficients of the polynomial. It can be calculated as:

C =
m−1∑
i=0

ci = ai ⊕ bi

Multiplication in polynomial basis is the usual polynomial multiplication mod-
ulo the irreducible polynomial f(x). That is, the result of multiplication of two
polynomials must be reduced using the irreducible polynomial defined for the

7

field. Algorithm 1 demonstrates the simplest way to carry out this multiplica-
tion, imitating the pen and paper method used to calculate the product of two
finite field elements in F2m .

Algorithm 1 Multiplication using Right-to-Left Shift-and-Add Method

Input: A,B ∈ F2m
Output: C ∈ F2m
1: C ← 0
2: for i from 0 to m− 1 do
3: if ai = 1 then
4: C ← C +B
5: end if
6: B ← B · x mod f(x)
7: end for
8: return C

As seen in Algorithm 1, the elements of A are inspected one bit at a time.
This can be accelerated by inspecting several bits at a time. The length of bits
inspected in parallel at each iteration is called a digit and is denoted by d. As
a result, this method will require a total of q = dm/de iterations as opposed to
m iteration in Algorithm 1. They are often referred to as digit multipliers, and
their operation is shown in Algorithm 2 as represented in [6].

Algorithm 2 Digit Multiplication in F2m from Least to Most Significant Digit

Input: A,B ∈ F2m and digit size d
Output: C ∈ F2m
1: C ← 0
2: A = Aq−1x

(q−1)d + ...+ A2x
2d + A1x

d + A0, where Ai =
∑d−1

j=0 aid+jx
j

3: for i from 0 to q − 1 do
4: C ← C + AiB
5: B ← B · xd mod f(x)
6: end for
7: C ← C mod f(x)
8: return C

Fully parallel multipliers also exists, however they require a lot of resources
and are generaly not suitable for cryptographic applications [42]. In [43], area-
efficient serial multipliers are presented, while [44] presents a low-latency digit
multiplier suitable for large m. Classic digit multipliers [42] provide the flexibil-
ity to easily tune between speed and area reduction.

Squaring is a special type of multiplication. It is frequently used in Elliptic
Curve Cryptography and has interesting properties that help implement it effi-

8

ciently. In polynomial basis, squaring can be achieved by placing zeros between
consecutive coefficients of the polynomial.

Squaring A ∈ F2m will result in:

A2 = (am−1, 0, am−2, 0, ..., 0, a2, 0, a1, 0, a0)

A2 must then be reduced modulo f(x).

Optimized reduction algorithms exists for NIST recommended elliptic curves [5],
and do not require to run the lengthy algorithms. For instance, Algorithm 3 rep-
resent reduction for m = 163 with the reduction polynomial f(x) = x163 + x7 +
x6 + x3 + 1.

Algorithm 3 Fast Reduction Modulo f(x) = x163 + x7 + x6 + x3 + 1

Input: polynomial a(x) of degree at most 324
Output: a(x) mod f(x)
1: for i from 10 to 6 do
2: T ← C[i]
3: C[i− 6]← C[i− 6]⊕ (T � 29)
4: C[i− 5]← C[i− 5]⊕ (T � 4)⊕ (T � 3)⊕ T ⊕ (T � 3)
5: C[i− 4]← C[i− 4]⊕ (T � 28)⊕ (T � 29)
6: end for
7: T ← C[5]� 3
8: C[0]← C[0]⊕ (T � 7)⊕ (T � 6)⊕ (T � 3)⊕ T
9: C[1]← C[1]⊕ (T � 25)⊕ (T � 26)
10: C[5] ∧ 0x7
11: return (C[5], C[4], C[3], C[2], C[1], C[0])

Inversion is the most expensive and time consuming finite field arithmetic.
There are different algorithms that perform this task. Of the most notable meth-
ods is the Extended Euclidean Algorithm represented in Algorithm 4. However,
such algorithms are difficult to implement in hardware because checking the de-
gree of polynomials at every iteration is a costly operation [7].

9

Algorithm 4 Inversion in F2m using the Extended Euclidean Algorithm

Input: : A ∈ F2m
Output: A−1 mod f(x)
1: u← A, u← f(x)
2: g1 ← 1, g2 ← 0
3: while u 6= 1 do
4: j ← deg(u)− deg(v)
5: if j < 0 then
6: u↔ v
7: g1 ↔ g2
8: j ← −j
9: end if
10: u← u+ xjv
11: g1 ← g1 + xjg2
12: end while
13: C ← C mod f(x)
14: return g1

Algorithm 5 Division in F2m using Simple Arithmetic

Input: A,B ∈ F2m
Output: A/B mod f(x)
1: V ← 0, P ← f(x)
2: d← −1
3: while A 6= 0 and P 6= 1 do
4: if b0 = 1 then
5: if d < 0 then
6: B ← B + P ; P ← B
7: A← A+ V ; V ← A
8: d← −d
9: else
10: B ← B + P
11: A← A+ V
12: end if
13: end if
14: B ← B/2
15: A← A/2
16: d← d− 1
17: end while
18: return V

To overcome this difficulty, authors in [8] came up with the idea of introducing

10

a new variable to help keep track of the difference between degrees of two polyno-
mials. Although they developed the method to calculate the Greatest Common
Divisor, the technique can be adopted to calculate the division of two finite field
elements in F2m as shown in [7] and represented in Algorithm 5. The while loop
can be replaced by a for loop for easier hardware implementation. The algorithm
takes at most 2m − 1 iteration. It can be used for inversion instead of division
by setting A = 1.

Polynomial basis is an attractive choice to represent elements of F2m because it
allows for efficient and fast implementation of multiplication, a crucial finite field
arithmetic that heavily influence the performance of Elliptic Curve Cryptography.

2.2.2 Normal Basis

In normal basis, elements of F2m are expressed in terms of a basis, denoted by
β, where β ∈ F2m . To elaborate more on this basis, consider the following three
field elements:

A = (a0, a1, a2, ..., am−1)

B = (b0, b1, b2, ..., bm−1)

C = (c0, c1, c2, ..., cm−1)

such that A,B,C ∈ F2m and ai, bi, ci ∈ F2 ∀i ∈ [0,m− 1].

In normal basis, A is interpreted as:

A =
m−1∑
i=0

aiβ
2i = a0β + a1β

2 + a2β
22 + ...+ am−1β

2m−1

,

where {β, β2, β22 , ..., β2m−1} forms a normal basis.

In general, finite field arithmetic in normal basis are more complex and dif-
ficult to implement than in polynomial basis [9]. Analogous to the irreducible
polynomial f(x) defining the field in polynomial basis, normal basis is constructed
using a Type, denoted by T . Generally, higher the T , the more complex finite
field arithmetic becomes.

Addition in normal basis is identical to that of polynomial basis. It can be
expressed as:

C =
m−1∑
i=0

ci = ai ⊕ bi

11

Multiplication is more complicated and relatively difficult to implement. It is
described in Algorithms 6 and 7 as represented in [10].

Algorithm 6 Multiplication in Normal Basis over F2m
Input: A,B ∈ F2m
Output: C ∈ F2m
1: U ← A
2: V ← B
3: for k = 0 to m− 1 do
4: ck ← F (U, V)
5: U ← left rotation of U
6: V ← left rotation of V
7: end for
8: return C

where:

F (U, V) =

p−2∑
k=1

UJ(k+1)VJ(k) (refer to Algorithm 7)

In Algorithm 7, u is defined as the integer having order T mod p, where
p = m · T + 1. That is, uT ≡ 1 mod p, where T is the smallest positive integer
satisfying this equivalence.

Algorithm 7 Generating the sequence J(i)

INPUT: T, u
OUTPUT: J = {J(1), J(2), ..., J(p− 1)}
1: w ← 1
2: p← m · T + 1
3: for j = 0 to T − 1 do
4: n← w
5: for i = 0 to m− 1 do
6: J(n)← i
7: n← 2n mod p
8: end for
9: w ← uw mod p
10: end for
11: RETURN J

Squaring is the most attractive finite field arithmetic in normal basis. It can
be accomplished by a simple right cyclic shift. This is possible due to Fermat’s
Theorem where:

12

A2m−1 = 1

or, A2m = A

Hence, the square A can be written as:

A2 =
m−1∑
i=0

aiβ
2i+1

where β2m = β

or, A2 = (am−1, a0, a1, ..., am−2)

The extremely low cost of squaring in normal basis gave rise to efficient al-
gorithms that extensively use this finite field arithmetic. The most notable al-
gorithm, represented in Algorithm 8, is the Itoh-Tsujii algorithm for inversion
devised by Toshiya Itoh and Shigeo Tsujii in [11,45]. It is composed of repetitive
squaring and field multiplications, since from Fermat’s Theorem it follows that:

A−1 = A2m−2

Algorithm 8 The Itoh-Tsujii Algorithm for Inversion over F2m
Input: A
Output: : A−1

1: let m− 1 = vr...v1v0 = 1vr−1...v1v0 (binary representation)
2: n← A, k ← 1
3: for i = r − 1 down to 0 do
4: u← n
5: for j = 0 to k do
6: u← u2

7: end for
8: n← u · n, k ← 2 · k
9: if vi = 1 then
10: n← n2 · A, k ← k + 1
11: end if
12: end for
13: n← n2

14: return n

Normal basis is an attractive choice to represent elements of F2m because it
allows for fast and efficient computation of squaring. As a result, inversion which
is the most time consuming finite field arithmetic can be efficiently computed.

13

2.3 Elliptic Curves and Coordinate Systems

Elliptic curves used in ECC over binary extension fields F2m are governed by the
equation:

E : y2 + xy = x3 + ax2 + b (2.1)

Any point W (x, y) satisfying (2.1) is said to be a point on the curve, in
addition to the point at infinity denoted by O. Elliptic curve arithmetic on E
can be summarized as below [5]:

1. Identity : W +O = O +W = W ∀ W ∈ E

2. Negatives : If W = (x, y), then its negative is defined as −W = (x, x + y)
such that W + (−W) = O and O = −O.

3. Point Addition: Let U = (x1, y1) and V = (x2, y2) ∈ E such that U 6= ±V ,
then U + V = (x3, y3) where

x3 = λ2 + λ+ x1 + x2 + a and y3 = λ(x1 + x3) + x3 + y1

with λ = (y1 + y2)/(x1 + x2)

4. Point Doubling : Let U(x1, y1). Then 2U = (x3, y3) where,

x3 = λ2 + λ+ a and y3 = x1
2 + λx3 + x3

with λ = (x1 + y1)/x1

Koblitz curves are special family of elliptic curves where b = 1 and a = {0, 1}
in E. Hence, Koblitz curves are defined as:

Ea : y2 + xy = x3 + ax2 + 1 a = {0, 1} (2.2)

Koblitz curves (??) are preferred over generic curves (2.1) due to their distinct
curve properties that allows the efficient implementation of point multiplication.
They do so by completely eliminating point doublings and replace them with a
much cheaper operation called the Frobenius Map [35].

A Frobenius map on Ea, denoted by the function Fr is defined as:

Fr((x, y)) = Fr((x2, y2)) and Fr(O) = O (2.3)

The point (x2, y2) is also a point on Ea.

Since squaring is relatively an inexpensive operation, Frobenius maps can be
efficiently computed. To be able to incorporate this function into the algorithm
of point multiplication, the integer by which the point is multiplied by has to
be converted to a special format called the τ -adic non-adjacent from (τNAF).
The τNAF format is analogous to the binary expansion with the following key
differences [35]:

14

1. The τNAF expansion allows the usage of three numbers {0, 1,−1}

2. The expansion doesn’t allow any consecutive non-zero numbers

3. It follows from the above that the density of nonzero digits in the τNAF
expansion is 1/3.

Since the digits in the τNAF take three values, two bits are required to rep-
resent each digit. Generally, 0 is represented by 002, 1 by 012 and −1 by 11.

Representing a point on the curve using two coordinates (x, y) is known as
Affine Coordinates. Alternatively, representing a point using three coordinates
(X, Y, Z) is known as Projective Coordinates, such that (X/Zc, Y/Zd) ≡ (x, y)
where c, d are integers. Projective coordinates have the advantage of eliminating
field inversions from the formula of point addition and doubling, and replac-
ing them with field multiplication. Thus, the expensive field inversions can be
removed during the computation of point multiplication. Furthermore, point ad-
dition in mixed coordinates can also occur, where one of the operands is in affine
while the other is in projective.

15

Chapter 3

Literature Review

Elliptic curve cryptography (ECC) was independently introduced by Koblitz [12]
and Miller [3] in 1985. Since then, a significant amount of research has been
done on its efficient implementation because it promises better security with less
computational cost. RSA is the most widely used public key encryption scheme
nowadays [13]. Most commonly, it uses 1024-bit (and lately 2048-bit) length keys
to remain resistant against security attacks. In contrast, ECC achieves the same
level of security as 1024-bit and 2048-bit RSA using 163-bit and 233-bit length
keys, respectively [1]. Such advantages also make ECC an attractive candidate
for lightweight applications such as RFID, wireless network nodes, and smart
and proximity cards, bypassing the need of storing symmetric keys within these
devices that can potentially expose them to security risks.

3.1 Text to Point Conversion

To use ECC for secure messaging, the plain-text must first be embedded into
an elliptic curve point. Mapping text-to-point can be accomplished using the
Koblitz algorithm [12] represented in Algorithm 9. It is a probabilistic approach
that attempts to embed plain-text into the x-coordinate of an elliptic point. The
algorithm can be divided into parts as follows:

1. Finding a valid x-coordinate.

2. Solving a quadratic equation in F2m .

3. Calculating the y-coordinate from the above obtained results.

The algorithm works by splitting the x-coordinates into two parts as shown
in Fig. 3.1. One part contains the message, and the other is a counter that is set
to iterate incrementally until the combination of the message and the counter is
found to be a valid x-coordinate for the message point M . The larger the counter,
the more chance the algorithm has to map the message to a point, hence, the

16

Algorithm 9 Solving the quadratic equation λ2 + λ = u

Input: integer l, message e of length m− 1
Output: (x, y) ∈ F2m

1: i← 0
2: while i < 2l do
3: x = e� l + bi,l . bi,l: l-bit binary expansion of i
4: if Tr(x+ a+ 1/x2) = 0 and Tr(x) = a then
5: break
6: else
7: i← i+ 1
8: end if
9: end while
10: if i ≤ 2l then
11: Solve λ2 + λ = x+ a+ 1/x2

12: return (x, x·λ)
13: else
14: return ”attempt unsuccessful”
15: end if

probabilistic nature of the algorithm. Clearly, there is a trade-off between the
amount of useful data mapped and the probability of failure of the algorithm.
However, this probability can be virtually set to zero for l ≈ 10, since the prob-
ability of failure is given by (1/4)2

l
.

plain text counter

(m− l) bits l bits

Figure 3.1: The x-coordinate of a message point

An x-coordinate is valid if the quadratic equation in Alg. 9 (line 11) has a
solution. In order to know if it does for a certain value of x, the trace function, de-
noted by Tr is used. The trace function is a mapping from F2m to F2, and can be
efficiently computed for NIST recommended elliptic curves as shown in Table 3.1.

Solving the quadratic equation can be performed by the half-trace function,
denoted by HT , which unlike the trace function is a mapping from F2m to F2m .
It is defined as:

H(u) =

(m−1)/2∑
i=1

u2i, where u ∈ F2m (3.1)

When a suitable x-coordinate is found and the quadratic equation solved, it
remains to calculate the y-coordinate by simple field multiplication between the

17

Table 3.1: Summary of NIST recommended elliptic curves defined over F2m
(The value a is for Koblitz curves only)

m Trace (Tr(A)) Reduction Polynomial f(x) a m1

163 a157 ⊕ a0 x163 + x7 + x6 + x3 + 1 1 2

233 a159 ⊕ a0 x233 + x74 + 1 0 3

283 a277 ⊕ a0 x283 + x12 + x7 + x5 + 1 0 3

409 a0 x409 + x87 + 1 0 3

571 a569 ⊕ a561 ⊕ a0 x571 + x10 + x5 + x2 + 1 0 4

x-coordinate and the solution of the quadratic equation.

It is important to note the work in [14] that provides a deterministic method
for mapping text to a point. The author in [14] makes use of isomorphic curve
properties. However, this adds complexity and computational overhead over the
Koblitz algorithm, given that probability of failure for Koblitz Algorithm cab be
set to be virtually zero.

3.2 The τNAF Expansion

To fully exploit the advantages of Koblitz curves, an integer used for point mul-
tiplication must be first converted to a format called the τ -adic non-adjacent
form (τNAF). A simple algorithm was first introduced by Solinas in [35]. The
algorithm involes no more than few integer arithmetic, which is one of its major
drawbacks. Integer arithmetic is slow, and running for large m can put severe
constraints on the frequency of the implemented circuit. The algorithm is repre-
sented in Alg. 10.

Other conversion algorithms are presented in the literature such as in [36,37,
39], largely based on Solinas Algorithm. However in [39], the authors propose a
technique to generate two digits on every iteration instead of the conventional
one digit per iteration. In [38] the authors propose a hardware efficient imple-
mentation of the converter, and completely eliminate the arithmetic requires to
calculate digit u of the expansion generated during every iteration. Since the
subtraction is taken mod 4, the least two significant bits of c0 and c1 matter in
Alg. 10. Hence, u can be written as follows:

u = (u1, u0) = ((c01 ⊕ c10)·c00 , c00) (3.2)

However, the τNAF expansion obtains directly from Alg. 10 produces a length
approximately twice that of the binary expansion. This has negative consequences

18

Algorithm 10 Integer to τNAF conversion by Solinas [35]

Input: integer k
Output: u = τNAF(k)
1: i← 0
2: c0 ← k, c1 ← 0
3: while (c0 6= 0 or c1 6= 0) do
4: if (c0 is odd) then
5: ui ← 2− ((c0 − 2c1) mod 4)
6: c0 ← c0 − ui
7: else
8: ui ← 0
9: end if
10: (c0, c1)← (c1 + µc0/2,−c0/2)
11: i← i+ 1
12: end while
13: return u = (ui−1, ..., u1, u0)

on the point multiplication, since point addition is requires every time a non-zero
digit is encountered. To remedy this, the integer used for point multiplication is
first reduced modulo τm − 1. One of these reduction algorithms is called Lazy
reduction and is proposed in [39] and represented in Alg. 11. The reduced integer
will result in the same product of point multiplication as the original integer
because:

rP = ρP + κ(τm − 1)P

= ρP + κ(τmP − P)

= ρP + κ(P − P)

= ρP + κO = ρP (3.3)

where P ∈ F2m , and r, ρ, κ are integers.

3.3 Point Multiplication

Point multiplication is the most computationally intensive operation in Elliptic
Curve Cryptography. For real-time practical applications, the need of a hardware
accelerator is inevitable. Therefore, it is not surprising that most publications
in the literature address efficient implementations of point multiplication, tar-
geting optimizations for speed [15–20], reconfigurability [21–25], and area reduc-
tion [26–29]. Koblitz curves are a special class of elliptic curves defined over binary
extension fields F2m . They compute point multiplication significantly faster than
generic curves, and are recommended by the National Institute of Standards and

19

Algorithm 11 Lazy Reduction mod (τm − 1) [30]

Input: Integer r
Output: ρ = r mod (τm − 1)
1: (a0, a1)← (1, 0), (b0, b1)← (0, 0), (d0, d1)← (r, 0)
2: for i = 0 to m− 1 do
3: if d00 = 1 then
4: u← 1, d0 ← d0 − 1
5: else
6: u← 0
7: end if
8: (d0, d1)← (d1 + µd0/2,−d0/2)
9: if u > 1 then
10: (b0, b1)← (b0 + a0, b1 + a1)
11: end if
12: (a0, a1)← (−2a1, a0 + a1µ)
13: end for
14: return (d0 + b0) + (d1 + b1)τ

Technology (NIST) [9]. Hardware implementation of Koblitz curves are shown to
have a clear performance advantage over general curves [30–33], and their use can
also be extended to implement area efficient designs [27,29], as well as signature
verification algorithms [34]. Koblitz curves have also been shown to perform well
in software implementations [41].

In [30, 31], the authors introduce a parallelization technique interconnecting
the various hierarchical levels of point multiplication to achieve a very high accel-
eration in throughput. They use the López-Dahab projective coordinate system,
in which c = 1 and d = 2. They perform point addition in mixed coordinates,
and show how it can be pipelined to achieve acceleration during point multipli-
cation [30]. Let W1 = (X1, Y1, Z1) in López-Dahab coordinates and W2 = (x2, y2)
in affine, then point addition W3 = (X3, Y3, Z3) is calculated as:

A = Y1 + y2Z1
2; B = X1 + x2Z1; C = BZ1; Z3 = C2; D = x2Z − 3

X3 = A2 + C(A+B2 + aC); Y3 = (D +X3)(AC + Z3) + (y2 + x2)Z3
2

(3.4)

The authors in [30] were able to break down (3.4) further into a set of 8
equations, and ordered them in a way that allows execution of the next point
addition before the current one is finished. This lead to achieve great acceleration
during point multiplication, which is successive point additions. The equations

20

were broken down as follows:

Z0 :E = x2Z1

Z1 :

C = Z1(E +X1)

F = aC + (E +X1)
2

Z3 = C2

X0 :G = y2Z1
2

X1 :X3 = C(F +G+ Y1) + (G+ Y1)
2

Y0 :H = C(G+ Y1) + Z3

Y1 :D = x2Z3

Y2 :J = Z3
2(x2 + y2)

Y3 :Y3 = H(D +X3) + J

(3.5)

Each of the stages includes exactly one field multiplication, and depending on
the number of field multipliers used in the circuit, different pipeline structures
can be achieved. Four multipliers are enough to fully pipeline point addition.
In this case, three processors are designs called the Z-, X- and Y -processors.
The Z and X processors each contain one field multiplier, while the Y processor
contains two. Their circuit can configured in order to compute the different
equations assigned for these processors. Equations Z0 and Z1 are executed in
the Z-processor, X0 and X1 on the X-processor, and Y0, Y1, Y2 and Y3 on the
Y -processor. The authors also provide the pipelining schedules for using two or
three field multipliers as well. The diagram of Fig. 3.2 shows how pipelining is
carried on when using four multipliers.

Z0 Z1 Z0 Z1 Z0 Z1

X0 X1 X0 X1 X0 X1

Y0

Y1

Y2

Y3

Y0

Y1

Y2

Y3

Y0

Y1

Y2

Y3

Figure 3.2: Pipeline structure of Z, X, and Y processors using four field
multipliers.

21

Chapter 4

System Model

Point multiplication is the most expensive operation in ECC. For this reason, the
different computations of ECC are divided into multiple stages, and a separate
stage is dedicated for point multiplication only. The rest of the computations are
lumped together into different stages to try and balance out the delay imposed
by point multiplication. To this purpose, Itoh-Tsujii’s inversion algorithm is used
along-side digit-serial multipliers by manipulating the digit size d.

Koblitz curves have a glaring advantage over generic curves due to their dis-
tinct curve properties, enabling them to execute point multiplication using the
FAS algorithm. In order to use FAS, the integer used for point multiplication
must first be converted into τNAF format. Furthermore, projective coordinates
eliminate expensive field inversions from point multiplication and replace them
with much faster field multiplications.

In order to build the cryptosystem, four fundamental components are pro-
posed. The text-to-point (TTP) converter is required to map plain-text to an
elliptic point. The τNAF converter is needed to provide the τNAF expansion
of the integer. Point multiplication, the heart of ECC’s security, is executed in
projective coordinates. A final novel component called the point adder and coor-
dinate converter (PACC) is proposed to perform one point addition finalizing the
computation of ECC, followed by coordinate conversion to transform the points
back to affine.

4.1 Mapping Text to Point

In ECC, text-to-point conversion is an essential step for plain-texts to get en-
crypted. The Koblitz algorithm does this mapping using a probabilistic approach.
In this section, we propose some optimizations on the Koblitz algorithm to adapt
it for efficient hardware implementations.

22

4.1.1 Optimized Koblitz Algorithm

The Koblitz algorithm, first presented in [12], is a probabilistic approach to map
plain-text to elliptic points. Since its introduction, no improvements have been
made on the algorithm, and no hardware implementations have appeared in the
literature. We first present and analyze Koblitz algorithm, optimize it for hard-
ware implementation, and then propose a hardware architecture based on the
optimized algorithm.

The algorithm works by dividing the x-coordinate of the elliptic point into
two parts. The first part contains the plain-text, while the second part acts
as a counter (see Fig. 3.1). The algorithm proceeds iteratively by incrementing
the counter, until the plain-text and the counter form a valid x-coordinate for
the message point M . The combination is valid when the equations Tr(x) = a
and Tr(x + a + 1/x2) = 0 are satisfied, where Tr(·) is the trace function and
a ∈ {0, 1} as given in Table 3.1. The width l of the counter is chosen to minimize
the probability of failure, which can be calculated as (1/4)2

l
. A value of l = 10

will virtually set this probability to zero.

The algorithm seizes to iterate when the first combination of the plain-text
and the counter is valid. The role of the counter is to change the trace values
of x and x+ a+ 1/x2, until the conditions mentioned above are satisfied. If the
counter keeps incrementing, multiple possible solutions can be found, however,
the plain-text will remain the same in all possible solutions.

When a valid x-coordinate is found, the algorithm then computes the corre-
sponding y-coordinate ofM . To do so, the quadratic equation λ2+λ = x+a+1/x2

needs to be solved for λ. This equation is derived directly from (2.2) by dividing
both sides by x2, and setting λ = y/x. When a solution is found for λ, the y-
coordinate is calculated simply by multiplying λ with x resulting in M = (x, λ·x).

On every iteration step, the algorithm increments the counter and calculates
x+a+1/x2 in order to verify if the combination of the plain text e and the counter
value form a valid x-coordinate for M . Although the Tr itself is inexpensive to
compute, this process is expensive because the expression x + a + 1/x2 contains
field inversion. In an attempt to reduce the number of inversions required to
successfully map e to M , we outline the constraints as follows:

Tr(x) = a (4.1)

Tr(x+ a+ 1/x2) = 0 (4.2)

It is important to note that both (4.1) and (4.2) must be satisfied for x to be
valid. Therefore, if (4.1) is not satisfied, there is no need to check (4.2). This
eliminates unnecessary inversions and accelerates the runtime of the algorithm,

23

since verifying (4.1) is very cheap. However, checking for (4.1) can also be com-
pletely eliminated from the algorithm by taking a closer look at the Tr(·) function
itself. The trace function is merely an addition between certain bits of the binary
representation of element x = (xm−1 · · ·x1x0). In all of NIST’s recommended
elliptic curves, one of the bits involved in computing Tr(x) is always x0, while
the other bits have much higher indices (e.g., bit 157 for m = 163 in Table 3.1).
The higher order bits that contribute to the evaluation of the trace function are
too far away from the least significant bit (LSB), such that a counter of width
that large will not make any sense in practical applications.

Therefore, one can calculate Tr(x) only once, before the algorithm runs itera-
tively. This is possible because the value of the trace function will toggle between
a and 1−a on every iteration. When the counter is initialized to 0, Tr(x) is either
a or 1 − a. If Tr(x) = 1 − a, then setting the counter to 1 will make sure that
Tr(x) = a. Now, incrementing the counter by 2 rather than 1 on every iteration
will guarantee that (4.1) is always satisfied without the need for actually checking
it.

Next, with (4.1) being guaranteed to hold, additional simplifications can be
done on (4.2) as well, by making use of the following properties of the trace
function:

Tr(u) = Tr(u2) = Tr(u)2 (4.3)

Tr(u+ v) = Tr(u) + Tr(v) (4.4)

From (4.3), (4.4), and knowing that (4.1) is satisfied, equation (4.2) can be
simplified as:

Tr(x+ a+ 1/x2) = Tr(x) + Tr(a) + Tr(1/x2)

= Tr(a) + Tr(a) + Tr(1/x2)

= Tr(1/x)

When an x-coordinate is found for M , a quadratic equation has to be solved
in order to calculate y. This can be done by using the half-trace function, denoted
by H. It can be calculated as:

H(u) =

(m−1)/2∑
i=1

u2i. (4.5)

The function H(·) is simple to implement in hardware, because unrolling the sum
in (4.5) reveals that it simply raises the input to the power of 4 and accumulates
the result, as shown in Algorithm 12. When the quadratic equation is solved, it
remains to multiply the solution with x in order to get the y-coordinate of M .

24

Algorithm 12 Solving the quadratic equation λ2 + λ = u

Input: parameter m, u ∈ F2m
Output: λ = HT(u,m)
1: t← u . temporary variable
2: S ← u . sum accumulator
3: for i = 0 to i = (m− 1)/2 do
4: t← t4

5: S ← S + t
6: end for
7: return S

The optimized Koblitz algorithm with all the enhancements mentioned in the
section is listed in Algorithm 13.

4.1.2 Proposed Text-to-Point Mapper Architecture

Text-to-point conversion (TTP) requires field squaring, multiplication and inver-
sion. The Itoh-Tsujji inversion algorithm already requires a squarer and a field
multiplier [11]. However, solving for the quadratic equation requires two squaring
units, since it has to raise the input to powers of 4. In order to minimize hardware
resources and keep the design simple, an implementation for the TTP using one
field multiplier, two squarers, and three registers alongside a set of multiplexers
and one field adder is proposed.

The block diagram of the TTP mapper is shown in Fig. 4.1. In the figure,
RegX holds the plain-text e and the counter according to Fig. 3.1. The counter
is initially set to 0, and Tr(X) is computed using simple XOR gates. If Tr(X)
is found to be different than a, the counter is set to 1 ensuring that Tr(X) = a
for all subsequent iterations of the algorithm, as the counter is set to increment
by 2. In order to verify if RegX holds a suitable x-coordinate for M , it has to be
inverted and checked for its trace value, as discussed above.

Inversion, using Itoh-Tsujii’s algorithm [11], consists of repetitive squaring
and multiplication. In order to invert RegX, it is first copied into RegA. Then,
for every bit in the binary expansion of m− 1, RegA gets copied into RegB, and
RegB goes through successive squaring. Since we have two squarers in the circuit
to solve for the quadratic equation, we use them as well to accelerate the squaring
process. Next, RegA gets multiplied with RegB and the product is stored in RegA.
When the bit value equals to 1 in any of the iterations, RegA in turn gets squared
once, and multiplied by RegX. The product is also saved in RegA. Finally, when
the iterations are over, RegA gets squared one last time, and holds the inverse of

25

Algorithm 13 Optimized Koblitz Algorithm

Input: parameter m, integer l, message e of length m− l
Output: M = (x, y) = OptKoblitzAlg(e, l), x, y ∈ F2m
1: function bin(a, b) . compute binary expansion
2: return binary expansion of a of length b
3: end function
4: i← 0 . initialize counter to 0
5: x← exl + bin(i, l) . build a candidate x-coordinate
6: if Tr (x) 6= a then
7: i← 1 . initialize counter to 1
8: x← exl + bin(i, l)
9: end if
10: while i ≤ 2l do
11: if (Tr (1/x) = 0) then
12: break
13: else
14: i← i+ 2
15: x← exl + bin(i, l)
16: end if
17: end while
18: if (i ≤ 2l) then
19: λ← HT(x+ a+ 1/x2,m) . Algorithm 12
20: y ← xλ
21: else
22: return ”attempt unsuccessful”
23: end if
24: return (x, y)

RegX.

When inversion is complete, the algorithm checks if Tr(1/x) = 0. In case it
is not, the counter gets incremented by 2 and the inversion is repeated. If the
trace value is equal to 0, the algorithm proceeds to solve the quadratic equation
λ2 +λ = x+ a+ 1/x2. RegA already holds the inverse and it gets squared. Using
an adder, RegX gets added RegA. If a = 1, then only the least significant bit
needs to be inverted and no additional adder is required. The expression is held
in RegA and copied to RegB, in preparation to solve for λ. The quadratic equa-
tion gets solved as described in Algorithm 12, where RegB acts as the temporary
register while Reg A accumulates the result.

Once RegA holds the solution λ, it gets multiplied with RegX. This completes
the calculation of the y-coordinate. The message M(x, y) is now ready where x

26

resides in RegX and y in RegA. The multiplexers in the circuit, guided by the
controller, configure the datapath for the different stages of execution, selecting
appropriate inputs and outputs.

RegX

e i

RegA RegB

Squarer 1

Squarer 2

Multiplier
My

Mx

e : plain-text (input)
i : counter
M(Mx,My) : message point (output)

Figure 4.1: Architecture of proposed text-to-point mapper

4.2 The τNAF Converter

The τNAF converter is a necessary component to carry out point multiplication
using the FAS algorithm. In [35], Solinas presented a simple method for conduct-
ing this conversion. However, integer additions/subtractions in the algorithm
pose a constraint on the clock cycle of the implemented circuit, especially when
dealing with large m.

An integer converted directly to τNAF format using Solinas’ Algorithm results
in an expansion almost double that of the binary one. To remedy this, the
integer is first reduced, and then converted to τNAF. Based on the work of [38]
and [36], we propose a novel implementation of the τNAF converter that can
operate at higher clock frequencies than previously reported implementations in
the literature.

27

4.2.1 Optimized τNAF Conversion using Solinas Algo-
rithm

The τNAF representation S of an integer k is a weighted signed-digit represen-
tation using the ternary values T = {0, 1,−1}. Two bits are needed to represent
each of the ternary digits. Let 0 ≡ 00, 1 ≡ 01, and −1 = 11. In [35], Solinas
presented an iterative algorithm to compute the τNAF expansion using two vari-
ables c0 and c1. In every iteration, a digit u = u1u0 of the expansion is computed,
where u ∈ T and u0, u1 ∈ {0, 1}. The steps of the algorithm are given below,
where µ = (−1)1−a:

step 0 : initialize c0 ← k, c1 ← 0,S ← 〈〉

step 1 : u←
{

0, c0 even;
2− ((c0 − 2c1) mod 4), c0 odd.

step 2 : c0 ← c0 − u, S ← 〈u,S〉
step 3 : update (c0, c1)← (c1 + µc0/2,−c0/2)

step 4 : repeat step 1 until c0 = 0 and c1 = 0

From step 1, it is evident that u0 follows bit 0 of c0, denoted as c00 , since u is
zero if and only if c0 is even. The value of u1 can also be easily computed by
making use of the properties of the modulo function in step 1. Calculating u
when c0 is odd (in binary) can be simplified as follows:

u = 010(2)−((c0 − 2c1) mod 4)(2)

= 010(2)−(((c0 mod 4)(2) − (2c1 mod 4)(2)) mod 4)(2)

= 010(2)−((c01c011)(2) − (c10c100))(2)

It follows that u1 can be calculated as c01 ⊕ c10 when c0 is odd. To force the
value to 0 when c0 is even, an AND gate is added with c00 . Hence, u = (u1, u0) =
(c00 · (c01 ⊕ c10), c00).

The algorithm requires three integer arithmetic units. One is required to sub-
tract u from c0 when it is odd, and two are needed to update the values of c0 and
c1 for the next iteration. These two run in parallel, and hence, two adders are on
the critical path of the circuit (see Fig. 4.3).

However, since the density of the τNAF expansion is 1/3, it follows that the
first adder needed to subtract u from c0 is used on average only 33% of the time.
This reduces resource utilization while incurring additional delay on the critical
path of the circuit, hence reducing its clock frequency. For this purpose, a novel
change in the architecture of the τNAF converter to completely eliminate the
need of this adder in the circuit is proposed.

28

s

sA

s0

ui1 EN

s0

s

sA

s0

ui1 EN

s0

s ui1EN µ

sA

µ = 1

(increment)

µ = −1

(decrement)

(symbolic rep-

resentation)

s : input signal
ui1 : MSB of the τNAF digit u
EN : enable

µ : µ = (−1)(1−a) (Table 3.1)
sA : adjusted signal

Figure 4.2: Adjusters used for incrementing and decrementing

When c0 is odd and c0 = c0 − u is to be calculated, there is no immediate
use of c0 before it is divided by 2. One can take advantage of this and postpone
the calculation of c0, as this will only affect the next iteration of the algorithm.
Keeping in mind that c0 is odd, one can deduce that b(c0− 1)/2c = bc0/2c. This
implies, that whenever u = 1 there is no need to compute c0 = c0 − u at all.
However, when u = −1 one can easily verify that b(c0 + 1)/2c = bc0/2c+ 1.

Following the above, there is a concern on c0 = c0−u only when u = −1. Let
c′0 denote the value of c0 when c0 − u is not performed. The calculation of c0 for
the next iteration depends on µ. The equations can be written as:

c0 = c1 + µc0/2 = c1 + µ(c′0 + 1)/2

= c1 + µc′0/2 + µ (4.6a)

c1 = −c0/2 = −(c′0 + 1)/2 = −c0/2− 1 (4.6b)

From (4.6a) and (4.6b), omitting c0 = c0−u in the beginning of the algorithm,
will require either an addition or a subtraction by 1 to adjust c0 and c1 to their
correct values before the next iteration. For this purpose, emphasize two points
that are simple yet effective are emphasized. Incrementing an even number can
be accomplished by setting its LSB to 1, and decrementing an odd number by
setting its LSB to 0.

In (4.6a), the final result of c0 has to be incremented by 1 when µ = 1 and
decremented by 1 when µ = −1. Since it does not matter to the end result, we

29

choose to increment the even number and decrement the odd one for the reasons
stated above. Note that when µ = −1, the difference c1 − c′0/2 is subtracted by
1, since it is odd. To do these efficiently, we use what we call adjusters as shown
in Fig. 4.2. As for the calculation of c1, a subtracter already exists to negate the
number. A simple multiplexer can be used to select between 0 and 1 to subtract
an additional 1 when u = −1. The adjusters shown in Fig. 4.2 are attached to
the least significant bit of the signal and are activated only when u = −1 and the
enable signal is active (EN = 1).

4.2.2 Optimized Lazy Reduction

Converting an integer directly using Solinas’ Algorithm, results in a τNAF ex-
pansion of length approximately 2m, double that of the binary expansion. This
has negative consequences on point multiplication, since every non-zero digit will
trigger a point addition/subtraction. Recall that the density of the τNAF is 1/3.
On average, a binary expansion requires m/2 point additions, while τNAF ex-
pansion directly from Solinas’ Algorithm requires 2m/3. To overcome this, the
integer is first reduced modulo (τm − 1) prior to conversion. This helps reduce
the expansion to length of approximately m. As a result on average, m/3 point
additions will be needed during point multiplication.

The authors in [38] represent a reduction algorithm, called Lazy Reduction.
We adopt this algorithm because it is mathematically similar to Solinas’ Algo-
rithm, where we can apply the same optimization as discussed above. The steps

c0=c0−u

c0 = c1+
µc0/2

c1 =
−c0/2

c0 c1

c0=c0−u

c0 = c1+
µc0/2

c1 =
−c0/2

c0 c1

c0A c1A

Solinas [35] Proposed

register arithmetic adjuster

Figure 4.3: Block diagram showing the flow of τNAF conversion

30

Algorithm 14 Optimized Lazy Reduction mod(τm − 1)

Input: Integer r, parameter m
Output: ρ = OptLazyRed(r,m) = r mod (τm − 1)
1: (a0, a1)← (1, 0), (b0, b1)← (0, 0), (d0, d1)← (r, 0)
2: for i = 0 to m− 1 do
3: if d00 = 1 then
4: (b0, b1)← (b0 + a0, b1 + a1)
5: end if
6: (d0, d1)← (d1 + µd0/2,−d0/2)
7: (a0, a1)← (−2a1, a0 + a1µ)
8: end for
9: return (d0 + b0) + (d1 + b1)τ

of lazy reduction for a given m (from Table 3.1) are outlined below:

step 0 : initialize
(a0, a1)← (1, 0), (b0, b1)← (0, 0)
(d0, d1)← (k, 0)

step 1 : u← 0

step 2 : if d0 is even goto step 5

step 3 : d0 ← d0 − 1

step 4 : (b0, b1)← (b0 + a0, b1 + a1)

step 5 : (a0, a1)← (−2a1, a0a1µ)

step 6 : (d0, d1)← (d1 + µd0/2,−d0/2)

step 7 : repeat step 1 m times

step 8 : output (d0 + b0) + (d1 + b1)τ

The same discussion on c0 in the τNAF conversion can be applied here for
d0. When d0 is subtracted by 1 in step 3, it is never used directly unless it is
divided by 2 in step 6. Therefore, step 3 can be completely eliminated from the
algorithm, and the integer arithmetic in step 4, step 5 and step 6 can run in
parallel. The delay of the circuit is now reduced to one adder. The optimized al-
gorithm is shown in Algorithm 14, and the proposed τNAF conversion algorithm
following reduction in Algorithm 15.

4.2.3 Proposed τNAF Converter Architecture

Integer to τNAF conversion is divided into two parts, as previously discussed.
First, the integer is reduced modulo (τm − 1), and then converted to τNAF for-
mat (Algorithm 15). In order to reduce the integer, a total of 6 integer arithmetic
units are required. They consist of two adders, two subtractors, and the other two

31

Algorithm 15 Optimized Integer-to-τNAF Conversion

Input: parameter m, parameter µ, integer k
Output: S = τNAF(k)
1: [c0, c1]← OptLazyRed(k,m, µ) . Reduce using Alg. 14
2: S ← 〈〉 . initialization
3: while (c0 6= 0 or c1 6= 0) do
4: u0 ← c00
5: u1 ← (c01 ⊕ c10) · c00
6: (c0, c1)← (c1 + µc0/2,−c0/2)
7: if u = −1 then
8: c0 ← c0 + µ . Doesn’t require adder/subtractor
9: c1 ← c1 − 1 . Doesn’t require subtractor
10: end if
11: S ← 〈u, S〉
12: end while
13: return S

depend on µ. When µ = 1 then both are adders, otherwise both are subtracter.
A total of six registers are needed to hold the result of these adders. Figure 4.4
shows the architecture of the proposed τNAF converter.

All six adders work in parallel during the reduction phase, since none is depen-
dent on the other. During this phase, d0 and d1 are stored in register c0 and c1,
respectively. Registers b0 and b1 are enabled by d00 , and hence are self-controlled.
When the loop of the algorithm is over, d0 + b0 is calculated and stored in c0, and
d1 + b1 in c1, in preparation for the conversion phase.

During conversion, registers a0, a1, b0, and b1 are no longer needed. Hence,
the τNAF digits calculated during each iteration is stored in these registers. The
length of the expansion post lazy reduction (Algorithm 14) is at most m+ 4 [36].
Since two bits are required to store a single digit, a 2m+ 8 bit register is needed
to save the output.

Registers c0 and c1 in Fig. 4.4 are of length m+ 1; the extra bit is needed for
signed integer arithmetic in 2’s complement. Although it is enough for the rest
the registers to be of length dm/2e+1 as implemented in [36], we chose them to be
of length dm/2e+2 so that the converted τNAF expansion fits into these registers.

In Fig. 4.4, division by half is implemented by a simple right-shift operation
with sign extension. In order to set the correct value of c0 for the next iteration,
adjusters of Fig. 4.2 are used. When µ = 1, two adjusters are connected to the
LSB of c1 and c0/2. Since exactly one of the is even, the adjuster will have effect

32

± − + +

− ±

c0 c1 b0 b1

a0 a1

� �

�

c0A
�m+ 1

c1A
�m+ 1

b0

�dm/2e+ 2

b1

�dm/2e+ 2

a0

�dm/2e+ 2

a1

�dm/2e+ 2

c1A

c0A 0−1 c0

b0

a0 c0

b1

a1 c1

0

a1

a0 a1

c00c01c10

ui0

ui1

c0A: adjusted c0 c00 : bit 0 of c0
c1A: adjusted c1 ui: τNAF digit at iteration i
c0, c1: for τNAF conversion (Algorithm 15) and as d0, d1 for reduction (Algorithm 14)
b0, b1, a0, a1: for reduction (Algorithm 14)
c01 : bit 1 of c0 c10 : bit 0 of c1
ui0 : bit 0 of ui ui0 : bit 1 of ui

Figure 4.4: Logic diagram of the proposed τNAF converter

33

on only one them, incrementing the sum by 1 before the next iteration begins.
When µ = −1, we know that the different c1 − c0/2 is odd, and therefore, we
attach only one adjuster after the difference is calculated to further decrement
the result by 1.

It is important to note that the adjusters are completely disabled during the
reduction phase, as they are not required there. During the conversion phase,
they are activated only when u = −1.

The number of iterations for both reduction and conversion phases is known
and predefined. Reduction requires m clock cycles, and the conversion m + 4.
Overall, the algorithm will take 2m+ 4 cycles to complete.

4.3 Double-Digit Point Multiplication

Point multiplication is the heart of ECC, and its efficient implementation is of
utmost importance. The security of the algorithm is based on this operation, and
is used during both encryption and decryption. It is an expensive operation as it
is the most time consuming, and requires the most resources.

In [30], the authors present a pipelined architecture for point multiplication
achieving high acceleration. They do so by using López-Dahab coordinate system,
and exploiting parallelism in the hierarchical structure of point multiplication. In
this Chapter, a new idea that allows processing of two τNAF digits simultane-
ously during point multiplication without any precomputation is proposed. Also,
the architecture of [30] is adapted to integrate double τNAF digit processing to
further increase processing throughput and improve hardware efficiency.

4.3.1 Double-Digit Frobenious-Add-or-Subtract

Although in [30], the authors use left-to-right implementation of point multipli-
cation, we choose to use right-to-left. This allows executing frobenius maps in
parallel with point additions, saving clock cycles otherwise spent only on frobe-
nius maps while waiting for a non-zero digit to appears. This reduces the total
execution time of point multiplication, since the density of the τNAF expansion
is 1/3.

Since the τNAF expansion does not allow any two non-zero digits to appear
in succession, one can list all the five possible two-digit configurations in the ex-
pansion, which are: {0, 0}, {0, 1}, {0,−1}, {1, 0}, {−1, 0}. This shows that it is
possible to process two digits simultaneously using one point adder, since there

34

is at most one non-zero digit.

Performing double-digit point multiplication requires executing two Frobe-
nius maps in one iteration. When both digits are zeros, there is no need for point
addition. When the first digit is non-zero, point addition takes place as it does
when processing one digit. When the second digit is non-zero instead of the first,
point addition is performed after the first Frobenius map. A multiplexer can be
used to easily select the input to point addition according to the digits. The
modified algorithm is shown in Algorithm 16.

Algorithm 16 Optimized Frobenius Map and Add-or-Subtract Point Multipli-
cation for Koblitz Curves

Input: k in τNAF (Alg. 15), P (x, y) ∈ E in (??), parameter m
Output: Q = OptPointMult(k, P) = kP
Q← O, i← 0 . initialization
while i < m+ 4 do
switch ({ki+1, ki}) . where ki is the ith digit of k
case {0, 1}: Q← Q+ P
case {0,−1}: Q← Q− P
case {1, 0}: Q← Q+ Fr(P)
case {−1, 0}: Q← Q− Fr(P)
end switch
P ← Fr2(P)
i← i+ 2

end while
return Q

4.3.2 Proposed Double-Digit Point Multiplier Architec-
ture

To introduce the proposed modification into the design of [30], we require an
additional Frobenius map hardware block. Frobenius maps are simply squarers,
and two Frobenius maps would translate into four squaring blocks. On every
iteration, the base point P undergoes P ← Fr2(P) regardless of the τNAF digits
{u1, u0}. If one of u1 or u0 is non-zero, a multiplexer selects the appropriate
value P ′ = {P, Fr(P)}. Depending on the value of the non-zero digit, another
multiplexer selects P ′′ = {P ′,−P ′}.

These multiplexers are easily controlled by u1 and u0 themselves, without any
intervention from the circuit controller. Whenever u1 is non-zero P ′ = Fr(P),

35

P

Frobenius Map 1

Frobenius Map 2

Z-
Proc

X-
Proc

Y -
Proc

P ′

−P ′
P ′′

u10 u11 + u01

Figure 4.5: Architecture of the double-digit point multiplier

and therefore, this multiplexer can be controlled solely by u10 . Next, P ′ is negated
when either u1 or u0 is equal to −1. Therefore, this second multiplexer can be
controlled by u11 + u01 .

Point multiplication in [30] using four field multipliers is broken down into 8
stages {Z0, Z1, X0, X1, Y0, Y1, Y2, Y3}, and executed by three processors {Z,X, Y }.
Each stage requires one field multiplier. Processor Y has two multipliers, and ex-
ecutes {Y0, Y1} and {Y2, Y3} simultaneously. A point addition passes through six
field multiplication delays before the result is ready. For more details about the
point multiplier, the reader is referred to [30].

Since we are performing right-to-left point multiplication, we require three
pipeline registers to drag P ′′ along the pipeline stages. Processors Z and Y work
in phase, and out of phase with Processor X, meaning pipeline registers Z and Y
get updated together, while that of X gets updated one stage later. The pipeline
registers are required to hold their value for two stages before they can accept
new inputs.

Pipeline register Z holds the input values for the Z processor, rendering the
Frobenius map independent from the point adder circuit. This means that when-
ever both digits are zeros, the Frobenius map can keep executing until one of the
digits becomes non-zero, while point addition is taking place. This helps keep the
pipeline busy, and hide the clock cycles spent on Frobenius maps from the total
execution time of the point multiplier. The block diagram is shown in Fig. 4.5.

4.4 Point Addition and Coordinate Conversion

When point multiplication is done during encryption, the message point M is
added to rY to complete the calculation of the second cipher point C2. Next, both
cipher points have to be converted back to affine coordinates before sending them
to the receiver. During decryption, rY is subtracted from C2, and M is converted

36

to affine coordinates to extract the plain text. In this section, we propose a design
architecture that combines point addition and coordinate conversion (PACC) in
a single block, using minimum hardware and maximum utilization.

4.4.1 Point Adder and Coordinate Converter

The PACC block uses the same equations from [30] for point addition, and Itoh-
Tsujji’s algorithm for inversion. Both require field multiplication and squaring to
execute. The PACC of the sender (SPACC) is different than that of the receiver
(RPACC) because the sender needs to convert two points into affine coordinates,
while the receiver only one.

Coordinate conversion involves inversion, which requires at least one field
multiplier and one squarer. To minimize hardware complexity, we use two field
multipliers and two squarers for SPACC, and one field multiplier and one squarer
for RPACC. During the point addition phase of SPACC, all components are fully
utilized. Point addition can be pipelined using two field multipliers as shown
in [30]. When point addition is completed, each multiplier/squarer pair is used
to invert the Z-coordinate of C1 and C2.

The RPACC contains only one field multiplier. Hence, it is not possible to
pipeline point addition. However, a complete point addition is not needed since
the plain-text is embedded into the x-coordinate of the message point.

4.4.2 Proposed SPACC and RPACC Architecture

The SPACC block is composed of two field multipliers, two squarers, and takes
three elliptic points as input: rP and rY in projective, and M in affine cooar-
dinates. First, M is added to rY , the result of which is in projective. Next,
both C1 = rP and C2 = rY + M are converted to affine coordinates. The eight
stages of point addition are divided between the two multipliers. Stages Z0, Z1,
X1 and Y1 are performed by one multiplier, and X0, Y0, Y2 and Y3 by the other
(see Fig. 4.6).

Figure 4.7 shows the architecture of the SPACC. Eight registers are needed
to hold the input values of SPACC. Registers Rx1, Ry1 and Rz1 hold the three
coordinates of the product rP = (x1, y1, z1), while Rx2, Ry2 and Rz2 hold that
of rY = (x2, y2, z2) from point multiplication. Registers Rxm and Rym hold the
coordinates of the message point M = (xm, ym). In addition, three temporary
registers, Rt1, Rt2 and Rt3, are needed to hold intermediary values during point
addition. They are also used during inversion.

37

Stage Multiplier 1 Stage Multiplier 2

1 Z0 Rt1 ← xmz2
Rt1 ← z2(t1 + x2)

2 Z1 Rt2 ← z2(t1 + x2) X0 Rt3 ← ymz2
2

+(t1 + x2)
2

Rz2 ← [z2(t1 + x2)]
2

3 X1 Rx2 ← t1(t2 + t3 Y0 Rt1 ← t1(t3 + y2)

+y2) + (t3 + y2)
2 +z2

4 Y1 Rt2 ← xm + z2 Y2 Rt3 ←
z2

2(xm + ym)

5 Y3 Ry2 ← t1(t2 + x2)
+t3

Figure 4.6: Point addition in SPACC

When point addition is complete, the values of Rxm and Rym are no longer
needed, and therefore, these registers are then used to hold the initial values of
Rz1 and Rz2 when inversion starts. At this phase, two of the temporary registers
Rt1 and Rt2 are also used to hold the repetitive squaring values. To balance out
the number of inputs between the multiplexers, z1 is inverted using Multiplier 2,
Squarer 2, Rt2 and Rym, while z2 is inverted using Multiplier 1, Squarer 1, and
Rt1 and Rxm.

When inversion is complete, Rz1 and Rz2 hold the inverses of z1 and z2, re-
spectively. In order to calculate the x-coordinate of the cipher points C1 and C2

in affine, Rx1 is multiplied with Rz1 and Rx2 with Rz2, and stored in Rx1 and Rx2,
respectively. In order to calculate the y-coordinates, the values of Rz1 and Rz2
are squared one more time, and then multiplied with Ry1 and Ry2. The results
are stored in Ry1 and Ry2, respectively.

The RPACC has a similar dataflow architecture as SPACC, except that it
consists of half of its components, i.e., one field squarer and multiplier. It has
five registers to hold the inputs. Three of them Rx1, Ry1 and Rz1 are used to hold
kC1 = (x1, y1, z1) in projective, while the other two Rx2 and Ry2 hold C2 = (x2, y2)
in affine. Point subtraction C2 − kC1 terminates when the x-coordinate is cal-
culated, since there is no need to compute the y-coordinate. Three additional
registers Rt1, Rt2 and Rt3 are also required to hold intermediary values. The
stages of point addition are executed sequentially using the one field multiplier
as shown in Fig. 4.8.

When point addition is complete, the value of Rx2 is no longer needed and can
be used to hold the initial value of Rz1 for inversion. Register Rt1 is used to hold

38

Rx1

Ry1

Rz1

Rx2

Ry2

Rz2

Rxm

Rym

Rt1

Rt2

Rt3

t4

Squarer 1

Squarer 2

Multiplier 1

Multiplier 2

sq11 · · · sq14

sq1out

sq21· · ·sq23

sq2out

m111 · · · m115 m121 m122

m1out

m211 · · · m216 m221 · · · m224

m2out

Signal Value Signal Value

sq11 z2 sq21 t1 + x2
sq12 m1out sq22 t2
sq13 t3 + y2 sq23 z1
sq14 t1

m111 xm m121 z2
m112 t1 + x2 m122 t2 + t3
m113 t1 +y2
m114 x2
m115 y2

m211 ym m221 z2
m212 t1 m222 t3 + y2
m213 xm + ym m223 t2 + x2
m214 t2 m224 z1
m215 x1
m216 y1

Input signal wz into register Rw
(e.g. z11 and z12 are the two input)

values to register Rz1)

Multiplexers required for the below
signals to connect to the registers

are hidden in the circuit

Signal Value Signal Value

x11 m2out x21 m1out
y12 m2out +sq1out
z11 sq2out x22 m1out
z12 m2out y21 m2out + t3
z21 sq1out y22 m1out
z22 m1out t11 m1out
t13 z2 t12 m2out + z2
t14 sq1out t23 z1
t21 m1out t24 sq2out

+sq2out t22 m1out

Figure 4.7: Architecture of SPACC

39

the repetitive values of squaring. The inverse result is held in Rz1 and multiplied
with Rx1 to calculate the x-coordinate of the message point M in affine. The
plain-text is then simply extracted from Rx1, according to the chosen value of l
(Fig. 3.1). The connections for the circuit of RPACC is shown in Fig. 4.9.

4.5 The Complete Cryptosystem

Encryption starts by mapping the plain-text to an elliptic point M . Simulta-
neously, the τNAF conversion of a random number runs in parallel since it is
independent of the text-to-point mapping. This conversion is necessary for the

Stage Multiplier
1 Z0 Rt1 ← x2z1
2 X0 Rt3 ← (x2 + y2)z1

2

Rt1 ← z1(t1 + x1)
3 Z1 Rt2 ← z1(t1 + x1)

+(t1 + x1)
2

z1 ← [z1(t1 + x1)]
2

4 X1 Rx1 ← t1(t2 + t3
+y2) + (t3 + y2)

2

Figure 4.8: Point addition in RPACC

Sig Value Sig Value Sig Value

m11 z1 m21 x2 sq1 z1
m12 sqout m22 x2 + y2 sq2 t1 + x1
m13 t2 + t3 m23 t1 + x1 sq3 t1 + x1

+y1 m24 t1 sq4 mout

m14 x1 sq5 t3 + y1

x11 mout + sqout z12 mout t13 sqout
x12 mout t11 mout t21 mout

+sqout
z11 sqout t12 z1 t31 mout

m1 and m2: input to multiplier
sq: input to squarer

x1 and z1: input to Rx1 and Rz1
t1, t2, and t3: input to Rt1, Rt2 and Rt3

Figure 4.9: Circuit connections of RPACC

40

point multiplication to take place. Two point multiplications are required during
encryption. The random integer is multiplied with both the base point P and
the public key Y of the recipient. Using López-Dahab and point addition with
mixed coordinates, both rP and rY result in projective coordinates. M is then
added to rY . Finally, both C1 = rP and C2 = rY + M are converted to affine
coordinates, before sending them to the receiver.

Hence, encryption is divided into three stages. The first stage consists of text-
to-point conversion and integer-to-τNAF conversion. The second stage consists
of two point multiplications. Finally, the third stage consists of point addition
and coordinate conversion from projective to affine. The pipeline stages are bal-
anced to the best by changing the parameter d of the digit multiplier within each
stage.

Decryption follows the same structure as encryption, but requires less re-
sources and number of stages. Once the cipher points C1 and C2 are received,
the receiver calculates kC1 = krP = rY . Then, C2 gets subtracted from the
calculated product to yield rY + M − rY = M . The plain-text is directly ex-
tracted from the message point M . Since the integer used for point multiplication
is the private key k of the receiver, integer to τNAF conversion is required only
once. Thus, the first stage that exists in encryption is not required for decryption.

Therefore, decryption is divded into two stages. The first stage consists of
one point multiplication, which generates the product in projective coordinates.
The second stage consists of point subtraction and coordinate conversion. There
is no need to perform full point subtraction, as the y coordinate is not needed to
retrieve the plain-text. It is sufficient to calculate the Z and X coordinate during
point subtraction, and then convert X to affine in order to retrieve the plain-text.

In order to transmit messages between two parties, the sender has to obtain
recipients’ public key Y . The plain-text e is then encrypted using Y as well as
the NIST-recommended base point P . A random number r is obtained from a
generator as an input to the τNAF converter block. The cipher text produced by
the encrypter is read by the receiver, who decrypts the message using his private
key k. The private key is then fed to the τNAF converter, and its expansion is
saved in a register since it needs to be calculated only once.

41

TTP

τNAF

PMs PACC

EncryptionIn

e

Y
P

r

Out

C

τNAF

PM PACC

DecryptionIn

C

Out

e

k

e: plain-text TTP: text-to-point
Y : public key PM: point multiplication
P : base point PMs: 2 point multiplications
r: random number τNAF: τNAF converter
C: cipher points PACC: point addition
k: private key and coordinate conversion

Computing

Unit
FIFO

Pipeline

Register

Figure 4.10: Block diagram of an ECC-based cryptosystem

42

Chapter 5

Analysis and Implementation
Results

5.1 Text to Point Conversion

The proposed text to point converter in Chapter 4 runs faster than the original
Koblitz Algorithm because it requires fewer inversions to map a point. To nu-
merically verify this result, 100,000 points were simulated on K-163 using l = 11
for each algorithm. The results are displayed in Fig. 5.1.

After a sufficiently large number of simulations, the average number of inver-
sions required by each algorithm starts to converge. The original algorithm takes
3.5 inversions on average to map text to a point, whereas the proposed algorithm
takes 2. This is a reduction in the average number of inversions by about 40%.

0 5 10 15 20 25 30
20

40

60

80

100

Number of Inversions

P
er
ce
n
ta
ge

of
M
es
sa
g
es

M
ap

p
ed

Proposed Algorithm
Original Algorithm

Figure 5.1: Number of Inversions Required to Map Messages to Points.

43

From the simulation results, we conclude three differences between the orig-
inal algorithm and the proposed one. First, the original algorithm requires two
attempts to cover 50% of messages, while the proposed algorithm does it in one.
Second, the proposed algorithm converges to 100% faster than the original one.
Third, the maximum number of inversions required to map all 100,000 points is
dropped by half using the proposed algorithm compared with the original. The
differences can be explained by the fact that the proposed algorithm eliminates
unnecessary inversions that are costly to execute.

A hardware implementation for text-to-point conversion was also proposed.
Hardware resources were minimized and reused for the various stages of compu-
tation for maximum utilization. In the circuit, the delay of the digit multiplier
is bm/dc, and of the squarers is clock cycle. When the squarers are connected
one after the other, they take one clock cycle as well. This helps accelerate the
repetitive squaring phase during inversion.

Inversion using Itoh-Tsujji’s algorithm is based on multiplication and squar-
ing. For a given m, a total of m squarings and dlog2(m)e−1+m1 multiplications
are executed, where m1 denotes the number of 1’s in the binary expansion of m
(see Table 3.1). Since we have two squarer blocks, we use them both to reduce the
time a squaring operation takes during inversion. Then each inversion requires
m/2 + bm/dc(dlog2(m)e−1 +m1). When the first phase of the algorithm is over,
solving for the quadratic equation takes (m−1)/2 cycles. Finally, one last multi-
plication is needed to calculate the y-coordinate. On average, two inversions are
needed to find a suitable x-coordinate, and therefore the number of clock cycles
it takes to map text to a point on average can be approximated by:

θTTM =2
(
m
2

+
⌈
m
d

⌉
(dlog2(m)e−1+m1)

)
+ m−1

2
+
⌈
m
d

⌉
5.2 The τNAF Converter

The proposed architecture of the τNAF converter eliminates unnecessary com-
putations from the algorithm, and postpones the calculation of c0 − u to a later
stage. To pass the correct values of c0 and c1 onto the next iteration, they are
adjusted efficiently using clever techniques that eliminate the need for an adder.
As a result, our architecture has only one adder on its critical path, boosting its
frequency over contemporary designs.

We compare the proposed design with the architectures of [36] and [39]. The
proposed design has only one adder on its critical path which allows it to achieve
high frequencies. In [39], the authors propose an implementation to calculate two

44

digit’s of the expansion at each iteration. This requires about 20% more area, but
increases the overall gain, since the algorithm terminates faster than calculating
one digit of the expansion on every iteration. The same criteria is followed when
comparing the proposed design to that of [36] and [39]. The results are shown in
Table 5.1.

The τNAF conversion takes at most m + 4 cycles to complete after the lazy
reduction algorithm reduces the integer modulo (τm − 1). The lazy reduction
itself takes m clock cycles to complete. Overall, the τNAF expansion will require
approximately 2m+ 4 cycles. Although our design doesn’t reduce the number of
clock cycles, running at a faster frequency reduces the total time the conversion
takes to finish.

5.2.1 Point Addition and Coordinate Conversion

We proposed a novel circuit to perform both point addition and coordinate con-
version using minimum hardware. The circuit reuses the available hardware to
perform both functions.

In the SPACC, two field multipliers are available and point addition is pipelined
between the two. This results in a total of 5 field multiplier delays. After point
addition, inversion starts to convert both cipher point to affine coordinates. Both
inversions execute in parallel, and the delay for one is dm/de(dlog2(m)−1+m1e)
as previously calculated. When inversion is complete, one field multiplication is
required to calculate x in affine. A squaring operation follows to calculate 1/Z2,
and another field multiplication to calculate y in affine. The total delay can be
summed up as: (m

2
+
⌈m
d

⌉
(dlog2(m)e − 1 +m1)

)
+ 7
⌈m
d

⌉
+ 1 (5.1)

In RPACC, there is one field multiplier and one squarer. Point addition is
performed using only this multiplier, however, point addition stops when the x-
coordinate is calculated since the plain-text is embedded there. Point addition
has five multiplier delays, and adding the delay of the inverter, the clock cycles
required by this component can be written as:(m

2
+
⌈m
d

⌉
(dlog2(m)e − 1 +m1)

)
+ 5
⌈m
d

⌉
(5.2)

5.3 Double-Digit Point Multiplier

The Double-digit multiplier accelerates point multiplication by removing frobe-
nius maps from the critical path of the circuit at a very minor cost. A τNAF

45

expansion has a density of 33%. Thus there’s a 66% chance that a frobenius map
is executed without the need for point addition. When using the double-digit
point multiplier, only one out of five combinations requires a double frobenius
map without point addition and it requires that both digits to be zero. Hence,
the percentage is dropped to 44% as opposed to 66%.

The effect of the double-digit multiplier is proportional to the digit size d of
the digit multipliers, since the Z,XandY processors take more cycles to complete,
then frobenius maps. Using digit multipliers with small d makes point addition
cover a large portion of the clock cycles, and the effect of reducing frobenius
mappings from the critical path will be minimal. As the digit multiplier becomes
faster, the advantage of the double-digit multiplier becomes more obvious in terms
of speed.

5.4 Point Addition and Coordinate Conversion

The proposed novel circuit to perform both point addition and coordinate con-
version using minimum hardware. The circuit reuses the available hardware to
perform both functions.

In the SPACC, two field multipliers are available and point addition is pipelined
between the two. This results in a total of 5 field multiplier delays. After point
addition, inversion starts to convert both cipher point to affine coordinates. Both
inversions execute in parallel, and the delay for one is dm/de(dlog2(m)−1+m1e)
as previously calculated. When inversion is complete, one field multiplication is
required to calculate x in affine. A squaring operation follows to calculate 1/Z2,
and another field multiplication to calculate y in affine. The total delay can be
summed up as:

(m
2

+
⌈m
d

⌉
(dlog2(m)e − 1 +m1)

)
+ 7
⌈m
d

⌉
+ 1 (5.3)

In RPACC, there is one field multiplier and one squarer. Point addition is
performed using only this multiplier, however, point addition stops when the x-
coordinate is calculated since the plain-text is embedded there. Point addition
has five multiplier delays, and adding the delay of the inverter, the clock cycles
required by this component can be written as:

(m
2

+
⌈m
d

⌉
(dlog2(m)e − 1 +m1)

)
+ 5
⌈m
d

⌉
(5.4)

46

5.5 FPGA and ASIC Synthesis of the Complete

Cryptosystem

The complete system is composed of the components described in this paper. The
sender’s system is divided into three stages as shown in Fig. 4.10. The stages are
pipelined and balanced by tweaking the digit size d of the multiplier in each stage.

Point multiplication is the most expensive and time consuming operation,
and so, it requires the largest digit size d. Because it takes too many clock cycles
compared to TTP and PACC, it allows these components to take their time.
This explains the reasoning behind our design of TTP and PACC to minimize
hardware, and reuse them for different purposes.

K-163 is implemented on Xilinx Virtex-5 FPGA in VHDL, synthesizing the
design using the Synplify tool from Synopsys. For the point multiplier we pick
d = 41. We work our way back to TTP and PACC to calculate their d. The
PACC is slightly faster than TTP. We pick d = 5 for TTP, and d = 4 for PACC.
For TTP, we set l = 11, leaving us with 152-bits of useful information to transmit.

The proposed cryptosystem was synthesized in 40nm CMOS process. The
total area of the system is 0.35µm2, runs at synthesized at 0.6ns clock period.

The implemented circuit can run at 200MHz, achieving a throughput of
27Mbps. The design can be implemented using any of Koblitz curve. However,
one has to consider using an Asynchronous FIFO for higher curves, since the
τNAF converter may fall behind from the rest of the circuit in frequency. The
choice of the curve, d of the point multiplier, and l of the TTP ultimately dictate
the throughput of the circuit.

47

Table 5.1: Implementation results and comparison of the proposed architecture

F2163 F2233
[36] [39] Ours [36] [39] Ours

Area (slices) 990 1219 1375 1380 1777 1948

Area Increase (%) 38.89 12.8 — 41.16 9.62 —

Max. Freq. (MHz) 96.015 95.075 222.7 76.214 75.335 188.8

Freq. Increase 131.91 134.24 — 147.72 150.61 —

Avg. Time (µs) 3.428 1.752 1.478 6.154 3.140 2.484

Time Reduction (%) 56.88 15.64 — 59.64 20.89 —

Area Time 3.394 2.136 2.032 8.493 5.58 4.839

Total Gain (%) 40.13 4.87 — 43.02 13.28 —

F2283 F2409
[36] [39] Ours [36] [39] Ours

Area (slices) 1671 1998 2355 2399 2860 3692

Area Increase (%) 40.93 17.87 — 53.9 29.09 —

Max. Freq. (MHz) 65.913 65.134 169.7 50.787 49.751 165.7

Freq. Increase 157.46 160.134 — 226.26 233.06 —

Avg. Time (µs) 8.651 4.409 3.36 16.185 8.331 4.961

Time Reduction (%) 61.16 23.79 — 69.35 40.45 —h

Area Time 14.456 8.809 7.913 38.828 23.827 18.316

Total Gain (%) 45.26 10.17 — 52.83 23.13 —

F2571
[36] [39] Ours

Area (slices) 3349 3997 4980

Area Increase (%) 48.7 24.59 —

Max. Freq. (MHz) 38.862 38.204 137.9

Freq. Increase 254.85 260.96 —

Avg. Time (µs) 29.477 15.071 8.307

Time Reduction (%) 71.82 44.88 —

Area Time 98.718 60.239 41.369

Total Gain (%) 58.09 31.33 —

48

Chapter 6

Conclusion

In this thesis, we have designed a cryptosystem based on Elliptic Curve Cryp-
tography. We proposed a modified algorithm for text-to-point conversion that
performs 40% faster than the original Koblitz algorithm. We proposed a modified
implementation of the τNAF converter, that is able to reach higher frequencies
than any other implementation by reducing its critical path down to one adder.
We designed a new component that performs point addition and coordinate con-
version, whose aim is to finalize the calculations of ECC during encryption and
decryption.

We have implemented our design in VHDL, on Xilinx Virtex-5 FPGA using
Synplify as the synthesis tool. Our architecture is pipelines, and its stages are
balanced by selecting different digits of the field multiplier in each stage. On
K-163, using d = 41 for the field multiplier, and l = 11 for the text-to-point
converter, the system achieves a throughput of 27 Mbps.

49

Appendix A

Abbreviations

ECC Elliptic Curve Cryptography
TTP Text to Point Converter
τNAF τ -adic Non-Adjacent Form
PACC Point Addition and Coordinate Conversion
SPACC Sender Point Addition and Coordinate Conversion
RPACC Receiver Point Addition and Coordinate Conversion

50

Bibliography

[1] W. Stallings, Cryptography and Network Security: Principles and Practice.
Pearson Education, 7 ed., 2017.

[2] N. Koblitz, “Cm-curves with good cryptographic properties,” in Advances
in cryptologyCRYPTO91, pp. 279–287, Springer, 1991.

[3] V. S. Miller, Use of Elliptic Curves in Cryptography, pp. 417–426. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1986.

[4] L. Pontow and I. C. Paar, “Elliptic Curve Cryptography as a Case Study
for Hardware/Software Codesign,” 2004.

[5] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to elliptic curve cryp-
tography. Springer Science & Business Media, 2006.

[6] S. Kumar, T. Wollinger, and C. Paar, “Optimum Digit Serial GF(2m) Mul-
tipliers for Curve-Based Cryptography,” IEEE Transactions on Computers,
vol. 55, pp. 1306–1311, Oct 2006.

[7] A. A. Zadeh, “Division and inversion over finite fields,” Cryptography and
Security in Computing, pp. 117–130, Mar. 2012.

[8] R. P. Brent, “Systolic VLSI arrays for linear time GCD computation,”
VLSI’83, pp. 145–154, 1983.

[9] “Digital signature standard (dss),” July 2013.

[10] V. Trujillo-Olaya, J. Velasco-Medina, and J. C. Lopez-Hernandez, “Efficient
Hardware Implementations for the Gaussian Normal Basis Multiplication
Over GF (2163),” in 2007 3rd Southern Conference on Programmable Logic,
pp. 45–50, Feb 2007.

[11] T. Itoh and S. Tsujii, “A fast algorithm for computing multiplicative inverses
in GF(2m) using normal bases,” Information and Computation, vol. 78,
pp. 171–177, Sept. 1988.

51

[12] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation,
vol. 48, no. 177, pp. 203–209, 1987.

[13] K. Somsuk, “The improving decryption process of rsa by choosing new pri-
vate key,” in 2016 8th International Conference on Information Technology
and Electrical Engineering (ICITEE), pp. 1–4, Oct 2016.

[14] B. King, “Mapping an arbritrary message to an elliptic curve when defined
over GF(2n).,” Int. J. Network Security, vol. 8, pp. 169–176, Mar. 2009.

[15] F. Sozzani, G. Bertoni, S. Turcato, and L. Breveglieri, “A parallelized design
for an elliptic curve cryptosystem coprocessor,” in Proc. IEEE Int. Conf. Inf.
Technology: Coding and Computing (ITCC), vol. 1, pp. 626–630, Apr. 2005.

[16] B. Ansari and M. A. Hasan, “High-performance architecture of elliptic curve
scalar multiplication,” vol. 57, pp. 1443–1453, Nov. 2008.

[17] J. Lutz and A. Hasan, “High performance FPGA based elliptic curve cryp-
tographic co-processor,” in Proc. IEEE Int. Conf. Inf. Technology: Coding
and Computing (ITCC), vol. 2, pp. 486–492, Apr. 2004.

[18] G. Orlando and C. Paar, “A high-performance reconfigurable elliptic curve
processor for GF(2m),” in Proc. Int. Workshop Cryptographic Hardware Em-
bedded Syst. (CHES), pp. 41–56, Springer Berlin Heidelberg, Aug. 2000.

[19] F. Rodŕıguez-Henŕıquez, N. Saqib, and A. Dı́az-Pérez, “A fast parallel imple-
mentation of elliptic curve point multiplication over GF(2m),” Microproces-
sors and Microsystems. Special Issue on FPGAs: Applications and Designs,
vol. 28, pp. 329–339, Aug. 2004.

[20] C. Shu, K. Gaj, and T. El-Ghazawi, “Low latency elliptic curve cryptography
accelerators for NIST curves over binary fields,” in Proc. IEEE Int. Conf.
Field-Programmable Technology (ICFPT), pp. 309–310, Dec. 2005.

[21] J. Goodman and A. P. Chandrakasan, “An energy-efficient reconfigurable
public-key cryptography processor,” vol. 36, pp. 1808–1820, Nov. 2001.

[22] M. Bednara, M. Daldrup, J. von zur Gathen, J. Shokrollahi, and J. Teich,
“Reconfigurable implementation of elliptic curve crypto algorithms,” in Proc.
IEEE Int. Parallel and Distributed Processing Sympos. (IPDPS), vol. 2002,
pp. 157–164, Apr. 2002.

[23] M. Benaissa and W. M. Lim, “Design of flexible gf(2m) elliptic curve cryp-
tography processors,” vol. 14, pp. 659–662, June 2006.

[24] R. C. C. Cheung, N. J. Telle, W. Luk, and P. Y. K. Cheung, “Customizable
elliptic curve cryptosystems,” vol. 13, pp. 1048–1059, Sept. 2005.

52

[25] K. Jarvinen, M. Tommiska, and J. Skytta, “A scalable architecture for ellip-
tic curve point multiplication,” in Proc. IEEE Int. Conf. Field-Programmable
Technology (ICFPT), pp. 303–306, Dec. 2004.

[26] D. F. Aranha, R. Dahab, J. López, and L. B. Oliveira, “Efficient implemen-
tation of elliptic curve cryptography in wireless sensors,” Adv. in Math. of
Commun., vol. 4, no. 2, pp. 169–187, 2010.

[27] R. Azarderakhsh, K. U. Järvinen, and M. Mozaffari-Kermani, “Efficient al-
gorithm and architecture for elliptic curve cryptography for extremely con-
strained secure applications,” vol. 61, pp. 1144–1155, Apr. 2014.

[28] L. Batina, N. Mentens, K. Sakiyama, B. Preneel, and I. Verbauwhede, “Low-
cost elliptic curve cryptography for wireless sensor networks,” in European
Workshop on Security and Privacy in Ad-hoc and Sensor Networks (ESAS),
pp. 6–17, Springer Berlin Heidelberg, Sept. 2006.

[29] S. S. Roy, K. Järvinen, and I. Verbauwhede, “Lightweight coprocessor for
Koblitz curves: 283-bit ECC including scalar conversion with only 4300
gates,” in Proc. Int. Workshop Cryptographic Hardware Embedded Syst.
(CHES), pp. 102–122, Springer Berlin Heidelberg, Sept. 2015.

[30] K. Järvinen and J. Skyttä, “Fast point multiplication on Koblitz curves: Par-
allelization method and implementations,” Microprocessors and Microsys-
tems, vol. 33, no. 2, pp. 106–116, 2009.

[31] K. Järvinen and J. Skyttä, “On parallelization of high-speed processors for
elliptic curve cryptography,” vol. 16, pp. 1162–1175, Sept. 2008.

[32] J. Lutz and A. Hasan, “High performance FPGA based elliptic curve cryp-
tographic co-processor,” in Proc. IEEE Int. Conf. Inf. Technology: Coding
and Computing (ITCC), vol. 2, pp. 486–492, Apr. 2004.

[33] S. Okada, N. Torii, K. Itoh, and M. Takenaka, “Implementation of ellip-
tic curve cryptographic coprocessor over GF(2m) on an FPGA,” in Proc.
Int. Workshop Cryptographic Hardware Embedded Syst. (CHES), pp. 25–40,
Springer Berlin Heidelberg, Aug. 2000.

[34] K. Järvinen, J. Forsten, and J. Skyttä, “FPGA design of self-certified signa-
ture verification on Koblitz curves,” in Proc. Int. Workshop Cryptographic
Hardware Embedded Syst. (CHES), pp. 256–271, Springer Berlin Heidelberg,
Sept. 2007.

[35] J. A. Solinas, “Efficient arithmetic on Koblitz curves,” Designs, Codes and
Cryptography, vol. 19, pp. 195–249, Mar. 2000.

53

[36] B. B. Brumley and K. U. Järvinen, “Conversion algorithms and implemen-
tations for Koblitz curve cryptography,” vol. 59, pp. 81–92, Jan. 2010.

[37] V. S. Dimitrov, K. U. Järvinen, M. J. Jacobson, W. F. Chan, and Z. Huang,
“FPGA implementation of point multiplication on Koblitz curves using
Kleinian integers,” in Proc. Int. Workshop Cryptographic Hardware Embed-
ded Syst. (CHES), pp. 445–459, Springer Berlin Heidelberg, Oct. 2006.

[38] K. Järvinen, J. Forsten, and J. Skyttä, “Efficient circuitry for computing
τ -adic non-adjacent form,” in Proc. IEEE Int. Conf. Electronics, Circuits
and Syst. (ICECS), pp. 232–235, Dec. 2006.

[39] J. Adikari, V. S. Dimitrov, and K. U. Järvinen, “A fast hardware architecture
for integer to τNAF conversion for Koblitz curves,” vol. 61, pp. 732–737, May
2012.

[40] R. Lidl and H. Niederreiter, Finite fields, vol. 20. Cambridge university
press, 1997.

[41] D. Hankerson, J. López Hernandez, and A. Menezes, “Software implementa-
tion of elliptic curve cryptography over binary fields,” in Proc. Int. Workshop
Cryptographic Hardware Embedded Syst. (CHES), pp. 1–24, Springer Berlin
Heidelberg, Aug. 2000.

[42] J. Guajardo, T. Güneysu, S. S. Kumar, C. Paar, and J. Pelzl, “Efficient
hardware implementation of finite fields with applications to cryptography,”
Acta Applicandae Mathematica, vol. 93, no. 1, pp. 75–118, 2006.

[43] P. K. Meher, “On efficient implementation of accumulation in finite field
over GF(2m) and its applications,” vol. 17, pp. 541–550, Apr. 2009.

[44] J. S. Pan, C. Y. Lee, and P. K. Meher, “Low-latency digit-serial and
digit-parallel systolic multipliers for large binary extension fields,” vol. 60,
pp. 3195–3204, Dec. 2013.

[45] V. Trujillo-Olaya and J. Velasco-Medina, “Hardware architectures for inver-
sion in GF(2m) using polynomial and Gaussian normal basis,” in Proc. IEEE
ANDESCON, pp. 1–5, Sept. 2010.

54

	blank_page
	Serove_Awedikian_Thesis_Latex
	Serove_Awedikian_Signature
	Serove_Awedikian_Release
	Serove_Awedikian_Thesis_Latex

