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The Lorentz group SO(1,3) is a local symmetry of space-time and
is used to define a local orthonormal frame. This symmetry could
be used to define General Relativity that allows spinors using the
Cartan formulation. Some years ago, it was shown by Chamsed-
dine and Mukhanov, contrary to statements made by Weinberg,
that the local symmetry could be enlarged to the groups SO(1,4)
or SO(2,3), and that the gravitational action is equivalent to the
Einstein-Hilbert action. A Lagrangian for Supergravity could be
constructed by considering the Poincare extension of the Lorentz
group, as was shown by Chamseddine and West in 1976. A recent
paper by Chamseddine and Mukhanov have shown that gravity and
gauge theories could be unified in one geometric construction, using
a large Lorentz tangent group SO(1,13), provided that a metricity
condition is imposed on vielbein. We will discuss this unification
in Topological field theories in 3-dimension. This implies that the
Chern-Simons Theory exists in 3-dimensions for both gauge theories
and gravity with the same quantized coupling constants.
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Introduction

General relativity has been so far the best theory to describe gravity and

spacetime for spacetime tells matter how to move, and matter tells spacetime

how to curve. General relativity treats the gravitational field as a classical dy-

namical field, represented by (pseudo-) Riemannian metric of spacetime. However

a quantum field theory of gravity would require a quantization of the gravitational

field. There have been several attempts to construct semi-classical modifications

of the Einstein field equations where gravity is treated classically and everything

else is treated quantum mechanically; as well as, quantum field theories in curved

spacetime. A quantum theory of gravity is needed to reconcile general relativity

with the principles of quantum mechanics, but applying the usual recipe of a

quantum field theory to gravity via the bosonic force carrier, the graviton, gives

a non renormalizable theory that cant be used to make useful physical predic-

tions. There have been several approaches towards a theory of quantum gravity

such as string theory, supergravity, non-commutative geometry and loop quan-

tum gravity. The aim of quantum gravity is only to describe the behavior of

the gravitational field quantum mechanically; it is not aiming to unify all the

fundamental interactions into a single mathematical framework. But a theory of

quantum gravity could lead the way to several branches in high energy physics

that aim for the unification of all of the fundamental forces of nature which is

also called The Theory of Everything.

Speaking about the standard model of particle physics, the matter fields which

are the fermions are classified according to how they interact and described by

representations of their corresponding symmetry group. There are six quarks

and six leptons coming in three flavors, having color and charge. The gauge
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bosons are defined as force carriers that mediate the fundamental interactions.

We have three fundamental interactions in the standard model, the strong nu-

clear, weak nuclear and the electromagnetic interactions. For the electromag-

netic interactions we have U(1) symmetry, SU(2) for the weak interactions and

SU(3) for the strong interactions, thus the gauge group for the standard model

is U(1)xSU(2)xSU(3). Although the standard model agrees perfectly with ex-

periment, it leaves the physicist unsatisfied because it does not address some

fundamental questions. For example, the different coupling constants for the

electromagnetic, weak and strong interactions, the amount of parameters in the

model, the quantization of the charge, and the hierarchy problem. We know that

the values of the renormalized coupling constants depend on the renormaliza-

tion scale M, so a theory unifying those three fundamental interactions requires

finding a renormalization scale at which the three coupling constants satisfy the

group property which already embed the electroweak and QCD in a grand uni-

fied group. In other words, the three coupling constants unify at the unification

scale where the new gauge fields are associated with the larger gauge group. This

is called a Grand Unified Theory at high energy at which all forces are merged

into one single force. As an example, we have GUTs using the symmetry groups

SU(5), SO(8) ,SO(10) and E8.

Moreover, we can have supersymmetric extensions to the Standard Model. Su-

persymmetry is a symmetry between the fermions and bosons, it predicts su-

persymmetric bosonic partners for the fermions and supersymmetric fermionic

partners for the bosons. Since supersymmetry involves new fields, there will be

new contributions to the evolution of the coupling constants where these changes

are due to the superpartners. As a result the three couplings meet exactly at the

same point (unification scale). If we take supersymmetry as a local symmetry
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group, this will give us a theory that includes gravity as well and is called Su-

pergravity. This was one of the attempts to unify the four forces of nature by

combining the principles of supersymmetry and general relativity.

The quest for the theory of everything has been a motivation for mathemati-

cians and even lead the way for new mathematical fields for all of theoretical

physics is based on consistent mathematical frameworks. Group theory is a main

ingredient in the standard model, grand unified theories, and supersymmetry.

Non-Euclidean geometry is what general relativity is based on. Much more than

that, most theorists dream of an abstract mathematical description of the uni-

verse with elegance and beauty. Topological field theories turned out to be useful

in physics as well. The Chern-Simons theory has been used in mathematics to

calculate knot invariants and three manifold invariants such as the Jones poly-

nomials, while in physics to describe the topological order in fractional quantum

Hall effect states. Moreover, topology is applied to condensed matter and used

in topological insulators and topological phases of matter. Chern-Simons theory

turned out to me most useful in three dimensional manifolds, this can give in-

sights to the physics in four dimensions and is of special interest experimentally

and theoretically. We are interest here in investigating the unification of gauge

interaction and gravity in a Chern-Simons theory in three dimensions.

The Lorentz group SO(1,3) is a local symmetry of space-time and is used

to define a local orthonormal frame. General Relativity could be constructed

by taking the local symmetry of the Lorentz group, the Cartan formalism of

General Relativity. The local symmetry could be enlarged to the SO(1,4) or

SO(2,3) or to the Pioncare extension, as well as Graded Lie Algebras in order to

include Supergravity as well. In a recent paper by Chamseddine and Mukhanov
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have shown that gravity and gauge theories could be unified in one geometric

construction of a larger group SO(1,13) provided that a metricity condition is

imposed on vielbien. In 3-dimensions the Chern-Simons action using such group

with a specific gauge can be split into two parts, the gravitational Chern-Simons

part and the Yang-Mills Chern-Simons part, which will have several applications.

We will begin by the work of Chamseddine and Mukhanov [1] which intro-

duces the large group that unifies gravity and gauge theories and see how we

can split the gravitational and gauge indices by impposing a metricity condition,

then construct the action. In the second chapter we’ll introduce the Chern-Simons

Thoery for both Gravity and Yang-Mills then discuss their relation to topological

invariances [2][3][4]. In the third chapter we’ll try to unify the gauge and gravi-

tational interactions in the Chern-Simons theory. Starting from the larger group

we reduce to 3-dimensions then split the action into two parts resulting with the

same quantized coupling constants for gravitational and gauge interactions in the

case of compact groups.

In the last chapter we will discuss Super Algebras, specifically the Super

Poincare algebra. This provides a symmetry between the bosonic and fermionic

sectors of the Standard Model of Particle Physics. Then the Supergravity La-

grangian will be constructed as a Gauge theory of Supersymmetry as proposed by

Chamseddine and West. At last, we’ll talk about how our Unified Chern-Simons

action can be extended to Supersymmetry.
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Chapter 1

The Unification using Tangent
Groups in a Cartan Formalism

A recent paper by Chamseddine and Mukhanov [1] have managed to unify gravity

and gauge interactions by considering a higher dimensional Lorentz group as the

symmetry of the tangent space in a Cartan formalism. We will consider a general

case for any SO(N) symmetry group and elaborate how the spin connection of

the gauged Lorentz group is responsible for both gravity and gauge fields.

In General Relativity the Lorentz group is taken as a local symmetry of the tan-

gent manifold, the dimension of the tangent space is usually considered equal to

the dimension of the curved manifold. The Lorentz symmetry is just a manifes-

tation of the equivalence principle for spaces with zero torsion condition. The

Cartan formalism of General Relativity considers the local Lorentz transforma-

tions in tangent space so that General Relativity is formulated as a gauge theory

where the gauge fields are the spin-connections. If the dimensions of the tangent

space is taken to be equal to that of space time then the gauge fields, the spin

connections, include the same amount of information about the dynamics of the

gravitational field as the affine connection only! However, the dimension of the

tangent space must not necessarily be taken equal to that of space time.

Here we will consider the case of a higher dimensional tangent Lorentz group.
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In which, the gauge transformations are realized as a subgroup of the tangent

Lorentz group and the spinors describing matter are unified in the fundamental

representation of this higher dimensional Lorentz group. Normally the group

SO(10) is considered to be the group that unifies all matter in the Standard

Model of particle physics and the SO(1,3) being the Lorentz group, thus the

group SO(1,13) would be a good model.

As in [1], we consider a 4-dimensional manifold, where at every point of this man-

ifold there is a real N-dimensional tangent space. This tangent space is spanned

by linearly independent vectors vA , A runs from 1 to N (A = 1, 2, ..N) , where

N ≥ 4. We also define the coordinate basis vectors spanning the 4-dimensional

subspace by eα = ∂/∂xα , where α = 1, .., 4.

We define the scalar product in the tangent space as follows, where ηAB (−,+, ..,+)

is the Minkowski matrix.

vA.vB = ηAB (1.1)

and the scalar product of the coordinate basis vectors eα in the tangent space

induces the metric in the 4-dimensional manifold, which is defined by

eα.eβ = gαβ(xγ) (1.2)

We define the vielbiens eAα as the coefficients of expansion of eα in vA-basis.

eα = eAαvA (1.3)
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by substituting (1.3) in (1.2) we can express the metric gαβ in terms of the

velbiens.

gαβ = eAαe
B
β ηAB = eAαeAβ

where we raise and lower tangent space indices using ηAB.

In order to determine the rules of parallel transport for the coordinate basis

vectors and the vielbiens in the nearby tangent space, we use the affine and

spin-connections that are respectively defined by

∇eβeα = ∇βeα = Γναβeν (1.4)

∇βvA = −wBβAvB (1.5)

∇β is the directional derivative along the coordinate basis vector eβ. Using the

important fact that ηAB and gαβ are sets of scalar functions, we deduce the metric-

ity condition ∇βηAB = 0 and ∇γgαβ = ∂gαβ/∂x
γ = ∂γgαβ.

A consequence of the metricity condition would be that the spin-connection

should be antisymmetric in tangent indices wαAB = −wαBA , this is easily seen

by

∇αηAB = (∇αvA).vB + vA.(∇αvB)

= −wCαAvC .vB − vA.wCαBvc = −wαAB − wαBA = 0

and if we apply ∇β to eAα that is defined as eAα = (vA.eα) ,we get

∂βeAα = (∇βvA.eα + vA.(∇βeα),

∂βeAα = −wBβAeBα + ΓναβeAν (1.6)
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where the space-time here is assumed to be torsion free, that is the affine con-

nection is symmetric with respect to the coordinate basis indices Γναβ = Γνβα .

We also note that in the absence of torsion, the well known Christoffel connections

are expressed by the following, and are determined from eq.(1.6) irrespective of

the dimension of the tangent space

Γγαβ =
1

2
gγσ(gασ,β + gσβ,α − gαβ,σ), (1.7)

where gγσ is the inverse of gσβ , gασgσβ = δαβ .

We will also need to use the vielbien satisfying the metricity condition

eαA = gαγeAγ (1.8)

∂βe
α
A = −wBβAeαB − Γαβνe

ν
A. (1.9)

where eαAe
B
β 6= δAB. However, only if the dimension of the tangent space is equal

to that of the manifold then eαA is inverse to eBβ .

eαAe
A
β = gαγeAγe

A
β = gαγgγβ = δαβ

It is important to mention that in the vielbien formalism, eαA is a fundamental

quantity and is invariant under the group of local Lorentz transformations ΛB
A(x).

In order to show how the larger dimension Lorentz group unifies gauge theo-

ries and gravity, we will split the tangent space basis vA into a basis of (eα, nĴ).

Let us introduce N − 4 orthonormal vectors nĴ orthogonal to the subspace

spanned by eα, that is,

nĴ .eα = 0

9



nĴ .nÎ = δĴ Î

where Ĵ , Î = 5, 6, ..., N . and the vectors nĴ , eα form a complete basis in tangent

space. Taking into account eAα = (vA.eα) we have

eAγ = (vA.eγ) = vαAgαγ (1.10)

and hence, vαA = gαγeAγ = eαA, that is, the coefficients vαA in (1.10) coincide with

soldering form eαA. From this one gets

ηAB = vA.vB = vαAv
β
Bgαβ + nJ̃AnJ̃B = eαAeαB + nĴAnĴB, (1.11)

or after raising the tangent space index B

eαAe
B
α = δBA − nĴAnBĴ ≡ PA

B

(1.12)

where PA
B is defined as a projection operator: PA

C P
C
B = PA

B .

It is convenient consider the expansion

nĴ = lB
Ĵ
vB (1.13)

Substituting this expression into nĴA = nĴ .vA we obtain nĴA = lB
Ĵ
ηBA and hence

lB
Ĵ

= nB
Ĵ

; therefore

nĴ = nB
Ĵ
vB = nB

Ĵ

(
eαBeα + nÎBnÎ

)
(1.14)
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Therefore the components nĴA satisfy the following relations

nA
Ĵ
eαA = 0

nA
Ĵ
nÎA = δÎ

Ĵ

Before we get to the curvature of the spin connection, we will introduce the

Dirac action. Consider a spinor ψ which transforms in tangent space under the

transformation generated by the representation of the Lie algebra according to

ψ → exp(
1

4
λABΓAB)ψ (1.15)

where ΓAB = 1
2
(ΓAΓB − ΓBΓA) are generators of the Lie algebra in the spinor

representation and ΓA are N Dirac matrices satisfying

{
ΓA,ΓB

}
= 2ηAB

Γ = Γ0ΓAΓ0.

The Lorentz and Gauge invariant gauge Dirac action is

∫
d4x
√
g ψiΓCeαCDαψ (1.16)

where

Dα ≡ ∂α +
1

4
ωABα ΓAB (1.17)

and the hermiticity of the Dirac action is guaranteed by the metricity condition.
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Taking the commutator of Dirac operators allows us to define the spin-connection

curvature RAB
αβ .

[Dα, Dβ] =
1

4
R AB
αβ ΓAB (1.18)

where

R AB
αβ (ω) = ∂αω

AB
β − ∂βω AB

α + ω AC
α ω B

βC − ω AC
β ω B

αC . (1.19)

and under lorentz transformation the spin curvature transforms as (Rµν)
B

A →

(ΛRΛ−1)
B

A .

If we use the identity

∂β∂αeAγ − ∂α∂βeAγ = 0. (1.20)

Substituting here ∂βeAα = −wBβAeBα + ΓναβeAν and using this metricity condi-

tion one more time to express ∂e which appears after taking the derivative, we

immediately arrive at the following relation

R AB
αβ (ω) eBγ = Rρ

γαβ (Γ) eAρ (1.21)

where

Rρ
γαβ (Γ) = ∂αΓρβγ − ∂βΓραγ + ΓρακΓ

κ
βγ − ΓρβκΓ

κ
αγ (1.22)

is the Riemann curvature. Thus we have a relation between the spin-connection

curvature and the affine connection curvature.

Taking eαAe
A
β = gαγeAγe

A
β = gαγgγβ = δαβ into account and irrespective of the

dimensions of the tangent space, we can express the 4d Riemann curvature in
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terms of R AB
αβ (ω) as

Rσ
γαβ (Γ) = eσAR

AB
αβ (ω) eBγ (1.23)

By using the pervious derived property eαAe
B
α = δBA − nÎAnBÎ , we can express

R AB
αβ (ω) in terms of Rσ

γαβ (Γ)

R AB
αβ (ω) = R AC

αβ (ω)nÎCn
B
Î

+Rρ
γαβ (Γ) eAρ e

Bγ. (1.24)

Calculations in this paper shows that the first term on the right hand side of

this equation R AC
αβ (ω)nÎCn

B
Î

can be entirely expressed in terms of the spin-

connections defining the parallel transport of vectors nĴ . This tangent subspace

is orthogonal to that spanned by the 4 coordinate basis vectors eα.

It is convenient to define the following

∇αnĴ = −A Î
αĴ

nÎ +B β

αĴ
eβ (1.25)

where indices Ĵ and Î run over values 5, 6, ..., N. These indices are also raised and

lowered with the Minkowski metric ηÎĴ . In [1], Chamseddine and Mukhanov have

shown that B β

αĴ
= 0 and derived the metricity conditions for A Î

αĴ
.

Defining another covaraint derivative allows us to compute the curvature RC
αβA(w)

as a function of the gauge fields A and a term proportional to the affine curvature.

Dα (ω)nÎA ≡ ∂αn
Î
A + ω C

αA nÎC , (1.26)

and consider the commutator that defines the curvature in terms of the spin
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connection

[Dα (ω) , Dβ (ω)]nÎA = R C
αβA (ω)nÎC (1.27)

and using the following derived equation from that paper

Dα (ω)nÎA = nĴAA
Î

αĴ
(1.28)

we get

[Dα (ω) , Dβ (ω)]nÎA = Dα (ω)
(
nĴAA

Î
βĴ

)
− (α↔ β) = nĴAF

Î
αβĴ

(A) , (1.29)

where

F ÎĴ
αβ (A) = ∂αA

ÎĴ
β − ∂βAÎĴα + AÎL̂α A

Ĵ
βL̂
− AÎL̂β A Ĵ

αL̂
. (1.30)

F ÎĴ
αβ (A) here describes the curvature in terms of the gauge fields of the subspace

spanned by the nÎ coordinate vectors (not the affine curvature). to conclude that

R C
αβA (ω)nÎC = nĴAF

Î
αβĴ

(A) (1.31)

Now, using this result in (1.23) we finally obtain

R AB
αβ (ω) = F Ĵ Î

αβ (A)nA
Ĵ
nB
Î

+Rρ
γαβ (Γ) eAρ e

Bγ. (1.32)

Contracting the tangent space index in R AB
αβ with eσA always removes the F

term in (1.31).

We are interested in computing the curvature invariants out of R AB
αβ (ω) and

eγA. In order to get the Lagrangian for the theory we construct
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R AB
αβ (ω) eαAe

β
B = R (Γ) (1.33)

which is a scalar invariant linear order in curvature, where R (Γ) is the usual

scalar curvature of 4d manifold which gives the Einstein action.

However, the second order curvature invariants are obtained by contractingR AB
αβ R CD

γδ

with eAeBeCeD in all possible combibations of indices αβγδ, that are

R2 (Γ) , Rαβ (Γ)Rαβ (Γ) , Rαβγδ (Γ)Rαβγδ (Γ)

We still have to generate the kinetic terms for AÎĴβ that is achieved only by

contracting the tangent space indices with themselves. This shows that the Yang-

Mills kinetic terms are a part of the curvature square term

gαγgβδR AB
αβ (ω)RγδAB (ω)

= gαγgβδ
(
F ÎĴ
αβ (A)FγδÎĴ (A)

)
+Rαβγδ (Γ)Rαβγδ (Γ)

Then the most general action up to quadratic order can be be expressed as follows

as in the referred paper

I =

∫
d4x
√
−g
[

1

16πG
R AB
αβ (ω) eαAe

β
B −

1

4
gαγgβδR AB

αβ (ω)RγδAB (ω)

+R AB
αβ R CD

γδ

(
aeαAe

β
Be

γ
Ce

δ
D + beαAe

β
Ce

γ
Be

δ
D + ceαCe

β
De

γ
Ae

δ
B

)]
(1.34)

=

∫
d4x
√
−g
[

1

16πG
R (Γ) + aR2 (Γ)− bRαβ (Γ)Rαβ (Γ)

+

(
c− 1

4

)
Rαβγδ (Γ)Rαβγδ (Γ)− 1

4
gαγgβδF ÎĴ

αβ (A)FγδÎĴ (A)

]
(1.35)

15



where a, b, and c are dimensionless constants. To avoid the ghost in the graviton

propagator, a possible gauge choice will do well.

We have done all of this detailed calculation as presented in the paper[1] to

emphasizes on how gauge interactions and gravity have been unified. The re-

sults showed that the SO(1, N − 1) invariants split into SO(1, 3) and SO(N − 4)

invariants, To work in a special gauge, we first split the constraint of

∂βe
α
A = −wBβAeαB − Γαβνe

ν
A

into A = a = 1, ..., 4 and A = Î = 5, ...N :

0 = ∂µe
ν
a + ω b

µa eνb + ω Î
µa eν

Î
+ Γνµρe

ρ
a (1.36)

0 = ∂µe
ν
Î

+ ω a
µÎ

eνa + ω Ĵ
µÎ

eν
Ĵ

+ Γνµρe
ρ

Ĵ
(1.37)

And under SO(1, N − 1) transformation, the vielbiens transform according

to eµA → ẽµA = ΛABe
µB. If we take the gauge subspace only we get eµ

Î
→ ẽµ

Î
=

ΛÎae
µa+ΛÎĴe

µĴ . Thus, it is possible to use the gauge invariance and the freedom

in the choice of gauge parameters ΛÎa to set eµ
Î

to zero

eµ
Î

= 0. (1.38)

The action is invariant under transformations of the group SO(1, N − 1). It is

also invariant under transformations deduced from equation (1.37) leading to the

transfromations under the subgroup SO(1, 3)× SO(N − 4) paramatrized by Γab

and ΓÎĴ .

This gauge choice implies that ω a
µÎ

= 0 .
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In this special gauge ω Ĵ
µÎ

= A Ĵ
µÎ

and

R aÎ
µν = 0, (1.39)

and clearly the nonvanishing components of the curvature R ab
µν and R ÎĴ

µν are

responsible for the gravity and gauge fields respectively. Thus achieving our goal

of unification of gravity and gauge interactions in a Cartan formalism!

More clearly stated, the gauge groups can be considered as subgroup of the

Lorentz group of a higher dimensional tangent space. This means that the con-

nections AÎĴα transform under SO (N − 4) rotations in a subspace orthogonal to

the space spanned by coordinate tangent vectors eα . Thus the gauge fields are

already unified with gravity within SO (1, N − 1) Lorentz group.
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Chapter 2

Chern-Simons Action and

Topology

After elaborating how Chamseddine and Mukhanov managed to unify gauge in-

teraction with gravity in one geometric construction by enlarging the group and

dimensions of the tangent space in a vielbien formalism in chapter 1, our next aim

is to use this large group in Chern-Simons theory in 3-dimensions. Chern-Simons

Theory is a topological field theory; thus in this chapter we will explain what we

mean by a topological field theory and present the gravitational Chern-Simons

action and the Yang-Mills Chern-Simons action independently before unifying

them in the next chapter.

Topological Field Theories are metric independent theories that define in-

variants of the manifold M which they are defined on. A topological invariant

or topological property is a property of the topological space which is invariant

under Homeomorphism. By Homeomprphism we mean a continuous function

between topological spaces that has a continuous inverse function.
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For example, a compact (topological) gauge group is a topological group whose

topology is compact. Compactness generalizes the notion of a subset of Euclidean

space being closed and bounded. Compact groups are also a natural generaliza-

tion of finite groups with the discrete topology.

We note that a quantum field theory defined on a manifold M without any prior

choice of metric on M is said to be generally covariant, but a quantum field the-

ory in which all observables are topological invariants can naturally be seen as a

generally covariant quantum field theory.

In general, we call the topological field theory whose action is explicitly indepen-

dent of the metric a Schwarz type topological field theory

δS

δgµν
= 0 (2.1)

examples of such are Chern-Simons theories and BF theories. We also have the

Witten type topological field theories, such as the Donaldson-Witten theory that

was formulated by Witten in 1988 and is used to compute Donaldson invariants.

We are interested in Chern-Simons theory for our problem. There have been

a lot of interest in this field of study recently, especially after the 2016 Nobel

Prize for Topological Phases of Matter. Chern-Simons theory has many physical

application like describing the topological order in fractional quantum Hall effect

states. While in mathematics, it has been used to calculate Knot invariants and

three-manifold invariants such as the Jones polunomials.

Since our theory is topological, indicating that we can’t define a metric to con-

struct the action. We will have to use differential forms !

If x1...xn are local coordinates then a differential k-form is

w = wi1...ikdx
i1 ∧ ... ∧ dxik
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the differential forms also have the antisymmetric property

dxi ∧ dxj = −dxj ∧ dxi

More generally stated for vectors α, β of degrees p, q respectively , the wedge

product has the following property

α ∧ β = (−1)pqβ ∧ α

Given a manifold M and a Lie Algebra valued 1-form A over it, we can define the

family Chern-Simons of p-forms as follows.

In 1-dim, the Chern-Simon 1-from is the trace Tr(A). In 3-dim, the Chern-Simons

3-form is

Tr[F ∧ A− 1

3
A ∧ A ∧ A]

where the curvature F is a 2-form is defined by F = dA+ A ∧ A .

The Chern-Simon action with a compact and simple gauge group G = SU(N)

on a generic 3-manifold as defined by Witten [4] is

S =
k

4π

∫
Tr(A ∧ dA+

2

3
A ∧ A ∧ A), (2.2)

=
k

8π

∫
εijkTr(Ai(∂jAk − ∂kAj) +

2

3
Ai[Aj, Ak])

Here k is the coupling constant and A is a G-gauge connection on the trivial

bundle on M.
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He showed that the partition function

Z(M) =

∫
DAeiS, (2.3)

is a topological invariant of the manifold M [4]. For more complicated topological

spaces when L is a collection of oriented and non-intersecting knots Ci, we have

the partition function

Z(M,L) =

∫
DAexp(iS)

r∏
i=1

WRi(Ci) (2.4)

with

WR(C) = TrRPexp

∫
C

A (2.5)

representing a certain type of Knot invariant called Jones Polynomial.

Topological spaces with knots and links are not of our interest in this problem.

We will now talk about the Chern-Simons term in a Yang-Mills or a Non-

Abelian gauge theory. The action is still the same as in eq.(2.2) where A is the

group’s gauge connection on the trivial bundle on M. The group could be chosen

as SU(2) for weak interactions, SU(3) for strong interaction, U(1)×SU(2)×SU(3)

for the standard model, SO(10) for the unification case , or generally any SU(N)

gauge group.

In paper [2] , Deser , Jackiw and Templeton have added a topological mass

term to the lagrangian of a Non-Abelian gauge theory. Similarly, as explained
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above, the Lagrangian with an additional topological mass term is written as

LG =
1

2g2
trF µνFµν −

µ

2g2
εµναtr(FµνAα −

2

3
AµAνAα) (2.6)

the notation used here was as in [2]

Aµ = gT aAaµ

Fµν = gT aF a
µν = ∂µAν − ∂νAµ + [Aµ, Aν ]

[T a, T b] = fabcT c where T a are the representation matrices of the group, and g is

a coupling constant.

As for the case of the gravitational Chern-Simons action, the same 3-from

action of eq.(2.2) applies but using the spin-connection ωAµB as defined in chapter

1 instead of the gauge field A. The gravitational Chern-Simons action is thus

given by

I =

∫
[ωBA(e)dωAB(e) +

2

3
ωBA(e)ωCB(e)ωAC(e)] (2.7)

eA is the dreibein e = eAµdx
µ.

This gravitational action can also be written in term of the Christoffel symbols

as defined in eq.(1.7), where the action is

I ′ =

∫
εµνρ(Γσµκ∂νΓ

κ
ρσ +

2

3
ΓσµκΓ

κ
νλΓ

λ
ρσ) (2.8)

the relation derived in chapter 1 ωAµB(e) = Γρµνe
A
ρ e

v
B − ∂µeAν eνB allows us to find a

relation between the action I in terms of the spin-connection and I’ in terms of

the Christofell symbols. This is straightforward and derived in the appendix of
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[3].

I(e) = I ′(gµν) +
i

12π

∫
M3

(e−1de)BA(e−1de)CB(e−1de)AC (2.9)

+
i

4π

∫
∂M3

εij∂ie
a
κΓ

κ
jλe

λ
ad

2x

this relation shows that the two actions are the same up to boundary terms.

In the next chapter we will derive how we can unify the Yang-Mills and grav-

itational Chern-Simons actions by starting with the larger tangent group of

Chamseddine and Mukhanov that is explained in details in the first chapter.
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Chapter 3

Unification of the Gravitational

and Gauge Chern-Simons Action

3.1 The Unification in two ways

We have discussed in the first chapter the unification of gauge interactions and

gravity by considering a larger tangent group as done by Chamseddine and

Mukhanov. In the second chapter, we introduced the Chern-Simons theory and

what we mean by Topological field theories. We are now interested in unifying

gravity and gauge interactions in a 3-dimensional Chern-Simons theory and ex-

amining it’s consequences.

So, we will use a higher dimensional Lorentz tangent group as in chapter 1,

which contains subgroups that allows it to split into a gravitational and a gauge

interaction parts, in a Chern-Simons theory. We can work directly on a 3-

dimensional manifold or start by a 4-dimensional manifold and take its limits

to 3-dimensions[13].

We will start by the method of directly working in 3-D. The topological Chern-
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Simon term, as explained in the second chapter, corresponding to a large group

SO(N) is

ICS =
k

4π

∫
Tr(A ∧ dA+

2

3
A ∧ A ∧ A) (3.1)

Where A is the 1-form connection of the group, A = dxµ 1
4
AABµ ΓAB and A,B,C

range from 1 to N.

The Γ-matrices are a set of 2D matrices resulting from the repeated multiplica-

tion of the γ-matrices of the D-dimensional Clifford algebra

γaγb + γbγa = 2δabI (3.2)

where a,b range from 1 to D.

Using properties of Γ matrices in an arbitrary space-time dimension we find that

the Chern-Simon term in the action can be written in the form

ICS =
k

4π

∫
(AACdACA +

2

3
AABABCACA) (3.3)

Now, we choose the same gauge as in [1] as explained chapter 1 ,and split the

indices A, B, C into a, b, c which go from 1 to 3 and Î , Ĵ , K̂ which ranges from

4 to N. We re-emphasize that this specific gauge is of vanishing mixed spin-

connections eν
Ĵ

= 0 ;

the action can directly be split into the two parts; thus becomes

ICS =
k

4π

∫
AACdACA +

2

3
AABABCACA =
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k

4π

∫
(AabdAba +

2

3
AabAbcAca) +

k

4π

∫
(AÎĴdAĴ Î +

2

3
AÎĴAĴK̂AK̂Î)

(3.4)

The first term in equation (3.3) corresponds to the gravitational Chern-Simon

action and the second one to the gauge Chern-Simon action with both having

the same coupling coefficient.

It is so important to note that by using the first fundamental property of Chern-

Simons theories we get that the coupling coefficient is quantized for compact

groups. The quantization is because the group G of continuous maps M → G is

not connected. In fact, in the homotopy classification of groups, the action is not

invariant under gauge transformations of non-zero ”winding number”.

Now, we will get the same result by starting in 4-dimensions and taking the

limits to the Chern-Simons term in 3-dimensions.

Our starting point are objects called Chern-Pontryagin densities. We pre-

ferred to explain them here with the unification rather than in the second chapter

to avoid repetition. On a 2n dimensional manifold, these are of the form:

P 2n ∝ εµ1µ2...µ2nTr(Fµ1µ2 ....Fµ2n−1µ2n) (3.5)

where F (field strength) is the curvature 2-form (dA+A∧A) of some G-connection

(G is the gauge group). These are gauge-invariant, closed, and their integral over

the manifold M (compact, no boundary) is an integer which is a topological in-

variant. (*note that these sorts of invariants are examples of characteristic classes.)
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The Pontryagin density of any gauge theory is

P4 = − 1

16π2
Tr(∗F µνFµν) (3.6)

Where

F a
µν = ∂µA

a
ν − ∂νAaµ + fabcAµbAνc

∗F µν =
1

2
εµναβFαβ

and that for gravity is the ( Hirzebruch-Pontryagin) given by

∗RR =
1

2
εµναβRµνρσR

ρσ
αβ (3.7)

After we have explained what we mean by the Pontryagin densities it is time to

make use of it in our case. We start from the results of chapter 1, where the

procedure is applicable for every N. We start by the compact group SO(N) in

4-D space-time and consider the field strength corresponding to it

RAB
αβ (w) = F Ĵ Î

αβn
A
Ĵ
nB
Î

+Rρ
γαβ(Γ)eAρ e

Bγ (3.8)

where A and B range from 1 to N, Greek indices go from 1 to 4 and indices

with hat go from 5 to N. eα and nĴ form a complete basis for SO(N), the former

correspond to SO(4) and the latter to SO(N-4). Then any vector vA can be

expanded as:

vA = vαAeα + nĴAnĴ

The spin connection curvature of the SO(N) group is the RAB
αβ (ω)

RAB
αβ (ω) = ∂αω

AB
β − ∂βωABα + ωACα ωBβC − ωACβ ωBαC (3.9)
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The field strength of the SO(N-4) group is F Ĵ Î
αβ

F ÎĴ
αβ (A) = ∂αA

ÎĴ
β − ∂βAÎĴα + AÎL̂α A

Ĵ
βL̂
− AÎL̂β AĴαL̂ (3.10)

Showing on steps in details, the Pontryagin density for the large group SO(N)

in 4D is

1

2
εµναβRAB

µν RαβAB =
1

2
εµναβ(F Ĵ Î

µν n
A
Ĵ
nB
Î

+Rρ
γµνe

A
ρ e

Bγ)(F K̂L̂
αβ nĴAnL̂B +Rδ

σαβeδAe
σ
B)

(3.11)

using the relation nA
Ĵ
eαA = 0 , and making a gauge choice means that the mixed

terms vanish and we are left with two Pontryagin densities corresponding to gauge

theory and gravity.

1

2
εµναβRAB

µν RαβAB =
1

2
εµναβFµνK̂L̂F

K̂L̂
αβ +

1

2
εµναβRAB

µν RαβAB (3.12)

We deduce that in 4-D space-time, the Pontryagin density can be split as well.

The first term in the right hand side of eq.(3.12) corresponds to gauge interac-

tions, while the other corresponds to gravity!

Now we move to determining the limits from 4 to 3-dimensions. We know

that the Chern-Pontryagin densities in 4-D are the exterior derivatives of the

Chern-Simons entities in 3-D. We have ICS =
∫
ω3 in 3-D. Then using Stokes

theorem

∫
M4

P4 =

∫
M4

dω3 =

∫
∂M4

ω3 (3.13)
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where

P4 = Tr(F ∧ F ) = Tr((dA+ A ∧ A)(dA+ A ∧ A))

= Tr(d(AdA+ A3)) = Tr(dω3),

(3.14)

and Tr(A4) = 0.

Based on this, we can easily translate the 4-D unification of the corresponding

Chern-Simons terms
∫
M4
P4 =

∫
M4
P gauge
4 +

∫
M4
P gravity
4 to 3-D

we see that ω3 also splits into 2 parts, one corresponding to gravity and the

other to gauge interactions

∫
M3

ω3 =

∫
M3

ωgauge3 +

∫
M3

ωgravity3 (3.15)

where

ωgauge3 = εijk(Aai ∂jA
a
k +

1

3
fabcAaiA

b
jA

c
k)

ωgravity3 = εijk(Rijabω
ab
k +

2

3
ωcibω

a
jcω

b
ka)

(3.16)

We note that eq.(3.16) can also be expressed as a 3-from of a topological Chern-

simons theory, thus reaching the same results. After we have achieved the results

in 2 different ways, we will discuss the quantization and other important conse-

quences of this in the next section.
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3.2 Consequences of Unification in Chern-Simons

theory

The first consequence is that eq.(3.4) and eq.(3.12) represent topological invariant

quantities as shown by Witten. However, Witten added the gravitational part to

the gauge interaction part without showing how they can be related by enlarging

the tangent group as a starting point. In order to prove that the partition function

Z below represents a topological invariant quantity, Witten [4] worked the case

of weak coupling limit (large k) leading to

Z =

∫
DAexp(

ik

4π

∫
M

Tr(AdA+
2

3
A ∧ A ∧ A)) (3.17)

which turned out to be a toplogical invariant quantity of the 3-D space-time man-

ifold. We will continue with our case using Witten’s technique and calculations.

For the SO(6) group, we split the indices as in chapter 1 so that the partition

function Z splits into two parts

Z =

∫
DAexp(iICS) =

∫
DAexp(iIgauge + iIgravity) =∫

Dwexp(iIgravity)

∫
DBexp(iIgauge) = Z1.Z2

(3.18)

the first term represents the SO(3) Gravity Chern-Simon term with ω as the

gauge connection, and the second term represents the SO(3) gauge Chern-Simon

term with B as the gauge field.

Now we consider the weak coupling limit of the gauge part. So Z2 as named

above is given by

Z2 =
∑
α

µ(Bα) (3.19)
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Here µ(Bα) is a function of flat connections for which the curvature vanishes

as defined in Witten’s paper. We expand the gauge field Bi = B
(α)
i + Ci, the

Chern-Simon gauge action term becomes

IgaugeCS = kI(Bα) +
k

4π

∫
M

Tr(C ∧DC) (3.20)

D is the covariant derivative with respect to Bα.

In order to compute the Gaussian integral in eq(3.20), a gauge fixing is needed

which can not be done without picking a metric. We choose such a metric to

satisfy DiC
i = 0 and from field theories we know that this will lead to ghosts in

the action, so it becomes

SGF =

∫
M

Tr(φDiC
i + c̄DiD

ic) (3.21)

where φ is a lagrangian multiplier enforcing the gauge condition DiC
i = 0 and

c,c̄ are anticommuting ghosts.

Integrating out C, φ, c, c̄, will lead to the following

exp(
iπη(Bα)

2
)Tα (3.22)

as Witten computed where η(Bα) is the ” eta inavraint” and is defined by the

following

η(Bα) =
1

2
lim
s→0

∑
i

signλi|λi|−s (3.23)

λi’s are eigenvalues of operator Li,
∗DB +DB∗ is restricted on odd forms, and Tα

is the torsion invariant of flat connection B(α).
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Witten then used the Atiyah-Patodi-Singer index theorem so that the parti-

tion function can be written as

Z2 = exp(i
π

2
η(0))

∑
α

ei(k+c2(G)/2)I(B(α)).Tα (3.24)

η(0) is the eta invariant of the trivial gauge field and c2(G) is the Casimir oper-

ator of G. The function η(0) is the only term that depends on the metric, which

means that the partition function is not yet a topological invariant quantity.

Witten suggested that by adding a counter term, the partition function will be

regualrized and turned into a topological invariant quantity. This counterterm

must be a multiple of the gravitational Chern-Simons term. Luckily, this term is

already present in our case because we started from the large group and split the

actions. Substituting the weak coupling limit of Z2 from our case in eq.(3.25) we

already get the gravitational term that Witten added. This leads to a topological

invariant partition function and results similar to his

Z =

∫
Dωexp(iIgrav).Z2

=

∫
Dωexp(iIgrav)exp(i

π

2
η(0))

∑
α

ei(k+c2(G)/2)I(B(α)).Tα

=

∫
Dωexp(i(Igrav +

π

2
η(0)))

∑
α

ei(k+c2(G)/2)I(B(α))Tα

(3.25)

We conclude that the partition function of this unification of gauge interaction

and gravity is already a topological invariant quantity without the need of adding

any terms.

Another important consequence other than unifying gravity and gauge Chern-
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Simons theories in 3-D space-time is the quantization of the coupling constants

for compact groups cases. In fact, the coupling constant is quantized for compact

groups but not for non-compact groups as shown in [12]. Actually, this is a first

fundamental property of Chern-Simons theories which states that coupling coef-

ficient is quantized for compact groups. This quantization is because the group

G of continuous maps M → G is not connected, as mentioned before, and in the

homotopy classification of groups the action is not invariant under gauge trans-

formations of non-zero ”winding number”.

It should be noted that such Chern-Simon theories also admit local super-

symmetric extensions to be discussed in the last chapter.
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Chapter 4

Notes on Supergravity

Supergravity is a field theory that combines the principles of supersymmetry and

general relativity. Supergravity is generally written in terms of Cartan connec-

tions as a gauge theory of supersymmetry. Supersymmetry is a spacetime sym-

metry relating particles with integer and half-integer spins by associating super-

fermionic partners to each boson and super-bosonic partners to each fermion. Not

only is supersymmetry elegant but also is of remarkable significance in theoreti-

cal physics. The supersymmetry algebras are the only extension of the Poincare

algebra to graded lie algebras that are consistent with the symmetries of the

S-matrix by Coleman Mandulas theorem. By considering equal fermionc and

bosonic degrees of freedom, supersymmetry manages to cancel the contributions

to the Higgs mass2 quantum corrections and thus solves the hierarchy problem

between the grand unified theories mass scale and the electroweak mass scale

without requiring any fine tuning. Much more than that, supersymmetry has

been used as a gauge theory to construct supergravity and serves as a corner

stone for string theories. Therefore, tremendous efforts have been devoted to find

supersymmetric particles throughout the decades. We’ll begin with Supergravity

34



now as we introduce the concept of Graded algebras and the supersymmetric

algebra in the appendix.

As mentioned above, the theory of Supergravity can be obtained by taking

the local gauge symmetry of the Supersymmetric algebra in the Cartan formalism

of General Relativity. We will go through Supergravity briefly; then discuss how

we can relate Supergravity to Chern-Simons theory to serve our objectives and

see how these topics relate to each other.

In the first chapter, we have discussed how enlarging the tangent symmetry

group in the tangent space to higher dimensions than the manifold allows us

to unify gauge interactions with gravity. However, originally, the well-known

Einstein-Cartan formalism for gravity was formulated by considering the Poincare

gauge group alone as a local gauge symmetry.

Defining the covariant derivative to be

Dµ = ∂µ + eaµPa + ωabµ Mab

where Mab are the generators of the Lorentz algebra SO(1, 3). To define the

curvature we compute the commutator of the covariant derivatives

[Dµ, Dν ] = Rab
µνMab + T aµνPa

and

[Mab,Mcd] = −1

2
(ηacMbd − ηadMbc − ηbcMad + ηbdMac)

we get

T aµν = ∂µe
a
ν − ∂νeaµ + ωaµce

c
ν − ωaνcecµ

Rab
µν = ∂µω

ab
ν − ∂νωabµ + ωacµ ω

b
νc − ωacν ωbµc
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Rab
µν is similar to the curvature tensor in General relativity. ωabν is called the spin

connection which in the absence of matter is similar to the affine connection in

gravity.

Now, as we take supersymmetry as a gauge theory we automatically take the

symmetry to be local. This will give us the advantage of including gravity in the

theory automatically!

We will begin by taking pure supergravity at which matter fields are still not

included ! The covariant derivative now includes an extra term for supersymmetry

Dµ = ∂µ + eaµPa + ωabµ Mab + ψαµQα (4.1)

here ψαµ is a spin 3
2

vector contracted to the supersymmetry generator and is

known as the gravitino field, while eαµ is the graviton of helicity 2. This forms

the supergravity multiplet (3
2
, 2) . The curvature Rab

µν remains the same while the

torsion gets an extra term

T aµν = ∂µe
a
ν − ∂νeaµ + ωaµce

c
ν − ωaνcecµ + 2ψ̄µγ

aψv (4.2)

and we have

ψαµν = ∂µψ
α
ν − ∂νψαµ +

1

4
ωabµ (γab)

α
βψ

β
ν −

1

4
ωabν (γab)

α
βψ

β
µ (4.3)

The field ωabµ can be eliminated by solving some constraints and equations of

motion. Moreover, constraints on these fields can be added to construct the de-

sirable invariant actions.
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The action can then be constructed out of invariant quantities built out of

these fields! We will not elaborate in detailed calculations any further about this.

Our aims for introducing supersymmetry and supergravity were to elaborate

how to construct a field theory out of a symmetry group, to show how gauging

this symmetry group will lead to supergravity, and intentionally to show that

Chern-Simons theories admit supersymmetric extensions as well!

In the previous chapter we have shown how gravitational and gauge Chern-

Simons theories could be unified in 3-D space-time. We realized that the coupling

constant is quantized for compact groups but not for non-compact cases. And

that the partition function Z is directly a topological invariant quantity. Now,

our concern is to see how Chern-Simon theories are related to supersymmetry; in

fact, they admit local supersymmetric extensions. This is achieved by gauging

the supergroups, by extending the space-time manifold to a supermanifold, or by

both [12]. Therefore, we will consider the graded groups that are extensions of

our SO(1,5) group as done in [12], for example, we could choose the supersym-

metrization of the de-sitter group in six space-time dimensions

O(6, 1)⊕ SU(2), (8, 2) (4.4)

where O(6, 1) ⊕ SU(2) is the bosonic part, while the fermionic part live in the

(8, 2) representation the 2 groups, and the group SU(N, q) is the group of unitary

quaternionic N ×N matrices.
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As an example consider the SU(4/N) group of graded connections

φAµB =

Mβ
µα ψiµα

−ψ̄αµi Aiµj


the Chern-Simons theory for this connection will yield a supersymmetric topo-

logical theory. This and the other group will be considered in future works.
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Conclusion

To sum it all up, we have used the large group SO(1,N-1) as a symmetry of the

tangent space to unify gauge interactions and gravity as proposed by Chamsed-

dine and Mukhanov. We have considered this group in Chern-Simons theory

at 3-dimensions to find out that the quantized coupling constants is the same

for gauge interactions and gravity. The quantization of the coupling constants

emerges from the first fundamental property of Chern-Simons theory for compact

groups. The resulting action is a topological invariant quantity as proved by Wit-

ten. However, in our case, we didn’t need to add a gravitational term as Witten

did because this term is already a consequence of our tangent symmetry group.

In the end we discussed how all of the above can be extended to supersymme-

try. By considering the SU(4/N) group of graded connections as an example, the

Chern-Simons theory will yield a supersymmetric topological field theory.

In general relativity, usually the dimensions of the tangent space is taken to

be equal to the dimensions of the manifold and the Lorentz group is taken to be

the symmetry of the tangent space. However, by arguing that the dimensions of

the tangent space could be taken different than that of the manifold or better

stated that the symmetry group of that tangent space could be enlarged, we re-

alize that a unification of gauge interaction and gravity emerges naturally. The

chosen symmetry group of the tangent space provides description of the physical

gauge interactions of the standard model as well as a description of gravity. A

symmetry breaking mechanism is then used to produce the fermions’ masses.

While, the advantage of the Chern-Simons theory in 3-dimensions is that the

coupling constants are quantized in the case of compact symmetry groups. This
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leads to the suspicious conclusion that the quantized coupling constants are the

same for gauge interactions and gravity before symmetry breaking. Could this

symmetry be truly a unifying symmetry of nature at a certain scale? And when

it’s broken, it is broken at exactly what scale? Much more than that, we get

a topologically invariant quantity of 3-manifolds out of gravitational and gauge

interaction contributions. Then what does this physically mean, how could it

be useful, and how could be related to 4-dimensional physics? For example,

topological field theories and Chern-Simons theories turned out to have several

applications in condensed matter physics and even in quantum computing.

What we have presented is a mathematical realization aiming for a possible ele-

gant mathematical description of nature. It is consistent within the mathematical

framework and the principles of the addressed theories. But this does not imply

that our proposed results must be of physical significance.
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Appendices

Graded and Supersymmetric Algebras

We begin our discussion with the graded algebras [14]. A graded algebra is an

algebra in which a grading exists. The Lorentz group provides an example of

graded algebras because the rotation generators, denoted by L0, and the boosts

, denoted by L1, together define a Z2 grading

[Li, Lj] ⊂ Li+j

The super algebra is an algebra with a Z2 grading of even and odd elements. The

bracket of two odd elements is symmetric; however, the bracket of any other two

generators is antisymmetric. The Jacobi identities (to be explained in a while)

should be also satisfied. Since super algebras contains both even and odd gener-

ators, we are interested in them in order to construct a theory that unifies the

even bosonic sector of particles with the odd fermionic sector.

We will consider only the super algebras whose structure constants are ordi-

nary numbers. There are two main families of the simple super algebras, the

orthosymplectic OSp(n/m) and the super-unitary SU(n/m). Super algebras con-

tain also several semisimple super algebras, non-semisimple super algebras, and

exceptional algebras such as E6, E7, E8.

Consider algebras with even generators (E) and odd generators (O), this im-

plies the following commutations relations with the respective structure constants

[Ei, Ej] = fkijEk
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[Ei, Oα] = gβiαOβ

{Oα, Oβ} = hiαβEi

these should satisfy the Jacobi identity as mentioned above. The extended

Jacobi identity which include anticommutators is

{A, {B,C]]± {B, {C,A]]± {C, {A,B]] = 0 (5)

where A,B,C are the generators. The bracket structure {, ] signifies signifies

either commutator or anticommutator according to the even or odd character

of the generators A,B,C. The odd elements determines the signs. The sign is

positive if the odd elements are in cyclic permutation of the first term, and the

sign is negative if the odd elements are not in in cyclic permutation of the first

term.

Applying the Jacobi identities for the above commuatations relations, we get

the usual Jacobi identities for ordinary Lie algebras for the even elements in ad-

dition to the following

[Ei, [Ej, Oα]]− [Ej, [Ei, Oα]] = [[Ei, Ej], Oα] (6)

[Ei, {Oα, Oβ}] = {[Ei, Oα], Oβ}+ {[Ei, Oβ], Oα} (7)

[Oα, {Oβ, Oγ}] = [{Oα, Oβ}, Oγ] + [{Oα, Oγ}, Oβ] (8)

the identity of eq.(4.2) indicates that the Oα form a representation of the ordi-

nary Lie algebra Ei if we consider the Oα as vectors on which Ei acts. Eq.(4.3) is

equivenlent to eq.(4.2) if giαβ = h∗αβi. Eq.(4.4) forms a restriction on the possible
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representations Oα of the ordinary Lie algebra, thus not every ordinary Lie alge-

bra can be extended to a super algebra. We will see in the next section that of

all the graded algebras only the supersymmetry algebras generate symmetries of

the S-matrix that are consistent with relativistic quantum field theory according

to Coleman-Mandula theorem.

An important example of simple super algebras is the orthosymplectic super

algebra OSp(N/M). Its bosonic part contains the ordinary Lie algebras SO(N)

and Sp(M). It can be defined as the linear transformations that leave the bilinear

real form F invariant

F = xiyjδij + θαξβCαβ

where θ and ξ are anticommuating objects such as the Grassmann numbers, C

denotes an antisymmetry real metric, and i,j run from 1 to N while α, β run from

1 to M.

The term θαξβCαβ is invariant under Sp(M).

We can use the diagonal form F = x2 to define SO(N). And require that θα being

anticommuting objects for Sp(M), then F can be considered as

F = xixjδij + θαθβCαβ ≡ x2 + θ̄θ

Thus the orthosymplectic algebra OSp(N/M) consists of all real transforma-

tions that leaves F invariant. The diagonal parts are for the even SO(N) and

Sp(M) generators while the odd generators of OSp(N/M) are represented by

(M +N)× (M +N) matrices with anticommuting entries.

The set of generators of SO(N), Sp(M) and the M × N odd generators form a

closed algebraic system under commutators only, but defining the set of (M +
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N) × (M + N) matrices with ordinary numbers only allows us to form a closed

algebraic system under commutators and anticommutators.

We note that if we take N=1 and M=4 we get OSp(1/4) the super de-sitter alge-

bra. It is also called super de-sitter algebra because Sp(4) is locally isomorphic

to O(3,2) that is the de-sitter algebra. OSp(1/4) can be contracted down to the

super Poincare algebra using the so-called Wigner-Inonu contraction.

Another important example of super algebras are the super-unitary SU(N/M)

algebras. They contain as bosonic part the SU(N)× SU(M)× U(1) algebras.

In a representation of (N +M)× (N +M) matrices , the representation SU(N)

algebras lies in the first N ×N submatrice and that of SU(M) algebras lie in the

last M ×M submatrices, while that of U(1) lies along the diagonal of (N +M)×

(N +M).

The super-unitary algebras can be defined as the transformations that leave the

real F form invariant, where F is

F = (zi)∗zjδij + (θα)∗θβgαβ

where gαβ = ±δαβ, i runs from 1 to N, and α runs from 1 to M.

In the case of super-unitary algebras we do not need an antisymmetric metric

Cαβ because one can always diagonalize the θ-metric where M, N can be even or

odd. So we can use the two diagonal metrices δij and gαβ. We note that θ are

taken to be anticommuting objects. Because the transformations x→ θ contain

anticommuting entries, then all of these transformations form form a closed al-

gebra under commutation and anticommutation relations.
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After providing an idea of what the super algebras are, in the next section we

consider the super Poincare algebras.

Supersymmetry

Bosons correspond to even generators of Lie algebras. Fermions correspond

to odd generators. What are the supersymmetric bosons and fermions described

by the Super-Poincare algebra?

1. The Supersymmetry Algebra

The Super Poincare algebra or the so-called Supersymmetry algebra is

{QA
α , Q̄β̇B} = 2σm

αβ̇
Pmδ

A
B

{QA
α , Q

B
β } =}Q̄α̇A, Q̄β̇B} = 0

[QA
α ,Mmn] = (σmn)βαQ

A
β

[Pm, Q
A
α ] = [Pm, Q̄α̇A] = 0

[Pm, Pn] = 0

where α, β, α̇, β̇, ... = 1, 2 denotes two-component Weyl spinors, and m,n =

1, 2, 3, 4 identify Lorentz four-vectors. A, B refer to an internal space, they run

from 1 to N ≥ 1. For N=1 we call it a supersymmetry algebra, for N ≥ 1 we call

it an extended supersymmetry.
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The supersymmetry algebras (along with their extensions to include central

charges) are the only graded Lie algebras of symmetries of the S-matrix consis-

tent with relativistic quantum field theory. The proof is based on the Coleman-

Mandula theorem which assumes that:

The S-matrix is based on a local, relativistic quantum field theory in 4-dim space-

time.

There are only a finite number of particles associated with one-particle states

of given mass.

There is an energy gap between the vacuum and the one particle states. As-

suming as well,

The operators Q acts in Hilbert space with positive definite metric

Both Q and its hermitian conjugate belong to the algebra.

Decomposing the generators Q into a sum of irreducible representations under

the homogeneous Lorentz group L :

Q = ΣQα1...αa,α̇1...α̇b

Since it is symmetric w.r.t. dotted and undotted indices it belongs to the irre-

ducible spin
1

2
(a+ b) representation.

(a+b) is odd since the Q′s anticommute.

{Q
1...1︸︷︷︸

a

,1̇...1̇︸︷︷︸
b

, Q̄
1̇..1̇︸︷︷︸

a

,1...1︸︷︷︸
b

} thus closes into an even (commuting) element of the

algebra with spin-(a+b) . From Coleman-Mandula theorem, to be consistent

with Lorentz symmetry, this element is either zero or a component of Pm(the

energy-momentum operator) for a+ b = 1.

This anticommutator is a positive definite operator in Hilbert space with a

positive metric, so for {Qα1...αa,α̇1...α̇b , Qα1...αa,α̇1...α̇b} to vanish we should have
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Q
1...1︸︷︷︸

a

, i̇...i̇︸︷︷︸
b

= 0 for (a + b) ≥ 1.[6][7] So the anticommuting part of the superal-

gebra is composed only of spin-
1

2
operators QA

α and Q̄α̇B. We can choose it to be

{QA
α , Q̄β̇B} = 2σm

αβ̇
Pmδ

A
B.

2. Component Fields and Superfields

We are concerned now in representing the superalgebra in terms of fields that

are not restricted to mass shell conditions. To do so, we will take advantage of

the well-known mathematical tool of introducing Grassmann numbers (anticom-

muting parameters) ξα, ξ̄α̇ .

{ξα, ξβ} = {ξα, Qβ} = ... = [Pm, ξ
α] = 0.

From this we have

[ξQ, ξ̄Q̄] = ξQξ̄Q̄− ξ̄Q̄ξQ = −ξQQ̄ξ̄ − ξQ̄Qξ̄ = −ξ{Q, Q̄}ξ̄

= −2ξσmPmξ̄ = 2ξσmξ̄Pm

Therefore we have the following commuators

[ξQ, ξ̄Q̄] = 2ξσmξ̄Pm

[ξQ, ξQ] = [ξ̄Q̄, ξ̄Q̄] = 0

[Pm, ξQ] = [Pm, ξ̄Q̄] = 0
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We define a set of fields (A,ψ, ...) and an infinitesimal transformation δξ = ξQ+

ξ̄Q̄ acting on the fields such that:

δξA = (ξQ+ ξ̄Q̄)× A

δξψ = (ξQ+ ξ̄Q̄)× ψ

using the commutators we just derived we can straight forwardly show that

(δηδξ − δξδη)A = −2i(ησmξ̄ − ξσmη̄)∂mA (9)

where both η and ξ are grassmann parameters.

We deduce that that the supersymmetry transformation acts by transforming the

field of dimension L in a field of dimension L+
1

2
or L− 1

2
. we can say that the

supersymmetry transformation maps tensor fields into spinor fields, and scalar

fields into spinor fields,..etc. Thus creating a symmetry between the fermionic

and bosonic fields as desired.
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