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An Abstract of the Thesis of

Frederic Michael E] Bayeh for Master of Science

Major: Mathematics

Title: A sufficient normality condition for Turing’s formula

Given is a multinomial model with infinite number of categories.
For k = 1, 2,... let N, be the number of categories represented exactly by &
observations in the sample; and let Pi be the category probabilities satisfving

O0<pr<l1,and ¥, pp = 1.

In classical statistics, a sample of size n is used to obtain information about the
proportions of categories that are observed. The main idea of the current paper
1s to show how to use the sample to obtain valid information about the categories
that were not observed in the sample.

That is, we want to "estimate” the probability:

o0
Mo 1= Zmﬂgxk:(}]
k=1

An "estimator” of the quantity mo, known as Turing’s formula, is given by:
= Nl /TL

The problem of ” estimating” 7y has many applications: estimating the propor-

tion of new species of animals in a population, studying gene categorization and

vi



discussing data confidentiality.

This thesis establishes a sufficient condition for the asymptotic normality of the

hon-parametric estimate of mp under a fixed distribution {re} where all p;, > 0.
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Chapter 1

Introduction

Consider the population of all the birds in the world and assume that there are
infinitely many species in the world enumerated as k = 1,2, ---. Also denote the
corresponding distribution of proportions {p;; k > 1} where py is the proportion
of the &' bird species in this population satisfying 0 < py < 1 for all k and
>opPr =1

Suppose a random sample of n = 2000 is to be chosen from the population, and
let the bird counts for the different species be denoted by {X;;i > 1}.

For k£ = 1,2,---, let Ny be the random variable number of species represented
exactly k& times in the random sample.

For example, if all the 2000 birds come from different species, then N; = 2000;
and if a robin appeared exactly once while all the other species have more than
one member, then N, =

We are interested in estimating p;, the proportion of birds of species 1 in the
population; clearly y; = X /n is the maximum likely hood estimator of the pa-
rameter p;.

In the general case, py, = Xi/n.

For a sample of size n = 2000 with birds counts given in Table 1.1 and a second

version (rearranged in decreasing order of X} s) as shown in Table 1.2.
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In this example, p; is estimated by p; = 300/2000 = 0.15 and py by ps =
200/2000 = 0.10 and so on.

The total number of bird species observed in this sample is 30. It is clear that
the bird population must have more or equal than just 30 different species.

Here is the question to ask:

What is the total population proportion of birds belonging to species other than

those observed in the sample?

This question implies a statistical problem of estimation of the proportion of
birds belonging to species that did not appear in the sample. This is a seemingly
counter intuitive probability because we are proposing to use a sample to estimate
proportions of categories that didn’t appear in the sample.

To do so, let us denote this proportion by 7. That is:

o = Zpk]l[xﬁn]
k=1

1Lif Xp=0,
where 1x,—q =
0¢f Xp#0
Already defined, we can write:
Ne=) Tix,-
i=1

It is important to notice that my is neither a constant, nor an observable random
variable. Also, it is not a statistic since it depends on the unknown proportions

of the species not represented in the sample.



Table 1.3: The number of species represented k times in the sample

Table 1.1: Bird sample

k 1 2 3 4 5 6 7 8 9|10
Xy | 300 | 200 | 300 | 200 | 100 | 100 | 100 | 100 | O | 100
k(11 (12 | 13 | 14 [ 15 | 16 | 17 | 18 | 19| 20
X, | 100 80 | 70 | O | 30 | 50 | 6 11211
k|21 | 2223 24|25 |26 |27 |28 (29| 30
Xe | 1 1 0 0 1 1 1 1 1 1
k|31 |32] 3334|3536 37| 38139
Xe | 50 [ 100 | 1 1 0 0 0 0 (0
Table 1.2: Rearranged bird sample
k 1 3 2 4 5 6 7 8§ |10 | 11
Xy | 300 | 300 [ 200 | 200 | 100 | 100 | 100 | 100 | 100 | 100
k{32 (12 13|16 |31 |15 | 17 | 19 | 18 | 20
Xy | 100 | 80 | 70 | 50 | 50 | 30 | 6 2 i 1
k|21 122 25|26 (27|28 |29 |30 | 33| 34
Xe| 1 1 1 1 1 1 1 1 1 1
kK| 9 |14 (23|24 |35]|36| 37| 38| 39
Xip | O 0 0 0 0 0 0 0 0

1

2

3

6

30

50

70

80

100

200

300

12

1

0

1

1

2

1

1
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Because of the fact that g is not a parameter in the usual sense, we cannot
properly speak of estimation of 7y but rather of prediction of my. However, some
authors do refer to this problem as to one of estimation of m,. We follow this use.
What is meant by an estimator of 7y is an observable random variable 7, in some
way close to m, denoted here in this paper by T. The quantity mp, often known
as the non coverage probability is interpreted as the probability of discovering a
new species i.e the chance that the next bird is of a new or unobserved species.
The most essential idea of this thesis is that 7 can be estimated by the sample
using Turing’s formula, known also by Good-Turing’s formula which was intro-
duced by Good in 1953 but lately credited to Alan Turing.

Turing’s formula is given by:

We use the number of species that appeared once in the sample to estimate the

proportion of species that didn’t appear, which implies:

n

7T0%T

Clearly in the previous example, 7' = 12/2000 = 0.006 where N; is the number

of species that appeared only once in the sample.

The problem of estimating a probability of unobserved species may be encoun-
tered in several fields such as population biology, species recognition, risk man-

agement, discussing data confidentiality.

It is more customary to work with the coverage probability defined by C' = 1 -y,
and its estimate is C' =1 -T.

Esty [15] gave a sufficient condition for the normality of a \/n-normalized cov-
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erage estimate especially when the behavior of the coverage estimate under an
infinite dimensional p, was discussed. Esty establishes a y/n-normality law for
C" — C where C =1 — mg and its estimate C' = 1 — T, that is:

VR(C = C)[(Ny/n) + (2Ng/n) — (N1 /n)? =12 which converges in distribution to
a standard normal.

Unfortunately, Esty’s normality law was established not for a fixed {px} but for
a distribution which is allowed to vary as n increases.

If {px} is fixed, the sufficient condition of Esty never holds and therefore the
v/n-normalized coverage estimate necessarily degenerates at 0.

To straighten out this issue, this paper establishes a sufficient condition for the
asymptotic normality of the non-parametric sample coverage estimate under a

fixed {px} but with a normalizing factor g(n) that increases faster than /.

In this thesis, we will:

e Prove that the condition of an earlier limit theorem for T is not satisfied

by any particular distribution.

e State and prove a limit theorem for T with a normalizing factor g(n) that

increases faster than y/n, the usual factor in the central limit theorem.
e Show that the conditions of the proposed limit theorem are satisfiable.

e Show how to use the main result to make statistical inference, including

constructing confidence intervals and hypothesis testing.



Chapter 2

A Note on Esty’s Normality Law

Let C"=1- 5:%

Esty establishes a \/n-normality law for C" — C where C' = 1— 7, and its estimate
'=1=T, that 5

V(C = C")[(N1/n) + (2Na/n) — (N, /n)?]~/2 which converges in distribution to
a standard normal, in a way allowing the underlying distribution {pr} to vary

within a family {{p;C Fis & B 0 o } as the sample size n changes to ensure the

following imposed conditions would hold:
(a) E(Ni/n) — ¢, 0<c <1 and (b) E(Na/n) — ¢ >0 (2.1)

where N2 B Z H[Xk:Q]-
Naturally, one would want to have a limit distribution for a particular underlying
distribution {pi}. However when the distribution is fixed, Equation (2.1) never

holds as the following lemma establishes that fact.

Lemma 2.0.1. Consider a random sample of size n from a multinomial popula-

tion with probability {p.}, then:

(@) lim E(N;/n)=0 and (b) lim E(N,/n) =0.

—r00 n—oo
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Proof. For equation (a) we have

=3 Bllxen) = 2 Y P = 1)
k=1 k=1

Il
| =
2
/_:}
S
=
ES
o
—
|
3
&,
3

Since pr(1 — pr)"™ ' < prand 3 p, = 1 < 00, by the dominated convergence

theorem we get

(o o]
n—-1 __ : _ n—1 _
lim E( ) = lim Z}Uk —p)" 7 = ;?}ggopk(l ) 0.

nN—o0

For part (b) we have that
N.

5(%)
n

_E Ng) = — (Z Il[\kﬁg])
= - ZE('ﬂlxk 7)) Z ([Xk =2])

JI

]' n—2
5 Z n = 1pi(l —pi)"~

k=1

b

Letting f(p) = (n—1)p(1—p)"~? then we have by straightforward differentiation,

f'p)=(n-1)1-p)" 2= (n-1)(n-2)p(1 —p)">
=(n-1)1-p)"?[p(1 —n)+1]

The function f(p) attains its extremum value at p = ﬁ since

f(P)=0 <= pl-n)+1=0 < p(l—n) = -1 < b=

7



and to check that it is a maximum, we calculate the second derivative:

f'(p) = (n=1)(1 - p)"*[p(=n® + 5n — 4) - 2],

f (;) =—(n—1) (” - f) (n+6) <0,

and then

(n— Dpp(1 = p)* 2 < f (;)

n—1

1 1 1 \"?  (n-2\"?
f(n—l)z(n_l)n—l(lnl) ﬁ(n—l)

n—9 n—2
(n— Dpr(l —pp)" 2 < (n — 1) < 1.

and

and thus

We multiply by pr on both sides then
(n = Dpp(l = pe)" % < py

We then use the dominated convergence theorem to interchange the limit and

the sum to get

n—oo n

_ N, 1 o= .. e
lim F (—2) = B kzl ﬂll_{go(n — 1)?;%(1 — i) P
|

The method of Esty [15] is instructive and we are going to follow it in this
thesis closely.
The main point of Esty’s method is based on direct computation of the limit of
the characteristic function of a normalized coverage estimate.
We denote by K = {1,2,--} the index set for the categories.
The method is supported by two different partitions, denoted by K = M U M

8



and K = TUII. The first partition is designed to support an exchange of a limit
operator and an integral operator. The second partition is designed to control
the tail probabilities of {py} as n increases. All the proofs done in this paper are
similar to those done by Esty. However, we establish that Esty’s first partition
(M and MC) is not necessary. Hence in this thesis, we use the second partition
(1 and I7) which depends on a function, g(n), that replaces the \/n factor and,

therefore, plays an important role in the relevant proofs.



Chapter 3

Preliminary Results

Even though the result of Esty is not satisfied by any particular distribution, the

method of Esty [15] is instructive.
Let K3 = {1} and Ko ={2,---}. Forany k € K = K, U K>, let

Pk =0,
fiz)=<¢-1/n z=1,.
0 & =2,
We have that

s} 1 o0
C'—C=m-T= Zpk]l[A'k:O] . Z Iixi=1)
k=1 k=1

1
Prlx,=0 — fﬁ]llxﬁl])

[+

k=1

Il
¢
H_,_A

k:(Xk)-

El
Il

1
Let Z = C" — C. We are interested in the asymptotic behavior of Zg(n), where

g(n) is a function of n satisfying
g(n) = O(n'~?), (3.1)

for some 6 € (0,1/4), in terms of the limit of the characteristic function, Eexp(isZg(n))].

To begin with, we note that Z = Z, + Z,, where Z;, = Zm fe(Xg) and Z; =

10



21\'2 fk(Xh)
Lemma 3.1 below is a well known lemma that allows us to replace X} by inde-

pendent Poisson random variables. Lemma 3.2 is due to Bartlett [20)].

Lemma 3.0.1. Let { X} be the counts of observations in category k, k=1,2.. .,

in an random sample from a multinomial population of parameters {py}, then
P(Xy = 2k = 1,2,...)=P(Yk:;ck;k:1,... 1> v :n),

where {Y,} are independent Poisson random variables with mean npy.

Proof. Let Y1, ..., Y, beindependent random Poisson variables with means np;, nps, - - -

respectively.
P(Yk = &g, kb = 1,’221}/; :n)
r (Zzoil Yi= n)
?21 P(Y; = ;)

:P(Z?;Y;:n)

HOO (np;)*i —np;
i
i=1" gz,
nto—n
n!

P(Y}c=mk,k:l,...|ZYk=n)=

where >°° Y, =nand Y 02, p; = 1 and this is because n is finite, so 2, = 0
for some k > ky.

O

Lemma 3.0.2. Let (U,V) be a two-dimensional random vector with U integer

valued. Then

Elexp(ivV)|U = n] = m /ﬁ Elexp(iv(U — n) + wwV)]du.

11
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By the two lemmas 3.1 and 3.2 where U = Y. Y} and V = Zg(n), we want to
evaluate the characteristic function E(exp(isZg(n))).

First note that, by Stirling’s formula, (27n)2P(3" Y, = n) — 1. Indeed,

We have
71 7
E (e”zg(”)f Z ¥, = n) = (Q?TP (ZY,-C — n)) / E [ei“(‘f‘”)”szﬂ’(n) du
But
ZYk =gy = ZYk *an = Z(Yk — np)
Then

™

E [eiuZ(Yk—nkaHsZg(n)} i

E (E“ZQ(”J| S Y= n) = (271’]3 (Z % = n))_lf

We know that Y}, has a Poisson distribution with parameter npy i.e. Yi ~ P'(npy)
so that 3 Yy ~ P’ (3" npy) and thus 3_ Yy ~ P'(n) since 3 pp = 1.
Then

1
(_,n,nl

P(Z Yy =n)=(n"e")/n! thus (27rP (Z Y, = n)) _ = 217rn’.“

but

(27n)Y2 P (Z Ve = n) = M.

n!

We know by the Stirling formula that
nl ~ n" e "/21 = n"e~"/27n

Hence

[y N ,—n |
(272-71)1/2]3 (ZYk :n) — M ~ E =1

n! n!

and therefore

T v Vi
() i ey

12



S0

™

E( iu Y (Ye—npr)+isZg(n )) du

- ( i 24 n)) (sz (Z Yy, = ”))_1 /

We denote

T

Hn S mz Yi—npr)+isZg(n) ) du

- LA

We will evaluate the limit of H,,(s) using the change of variables formula t = u+/n,

dt = (t/u)du then

Hyls)= ”fl’""t Z(Yk—ﬂpk}+i529{")) %dt

t
U\/ 27

\/ 2n /
but —m < u < 7 so that —7/n < uy/n < m/n and therefore —m\/n <t < 7/n

1/282 (Yi—npy)+isZg(n) ) i

so finally

Huld) = —,—/ Vinimmtin s (em_mtZ(Y"_”p")"'iszg(”)) dt

\/— / Lig<nymE (€

Our first task is to allow the limit operator to exchange with the integral operator.

( n= Y2 5 (Y —npr ) +isZg( 'rz)) dt.

The key element to support this exchange is Equation (3.3).
Toe / o |dt = f litn [y |d. (3.2)

Proof of equation (3.3). Let

b = Ljjpjcnym B (em_mt Z(Y‘“fnp‘“)“‘"”zg(n))

We recall that K; = {1} and Ky = {2,...} and K = K, U K,. So we let

hoy = Ljg<nym B (e”r1/2*(Y1*ﬂ?’1)+'i629(n})
h ]1“{|< \/ﬂE( 1/2,§ZK (Yi— Tlpk)+iszg(n))
Clearly h, = hy, hn,.

13



Claim 1. Prove that |h,,| <1 and thus |h,| < |hy,|.
Proof of Claim.
|y | = ~11Ht|<n\/mE (e”’_mtznz(3’k-nPk)+isZg(n))‘
_ .]llltlor\ﬁ'ﬂ Zem-lﬂtZK,Z(Yh.fnm)ﬂ'szg(n)P[Yk _ xk]}

52(

o D e 2K Py, = ]
== ( e PlY. = M])
S

and |ha| = |hnyhpy| < |hn, | 80 hny| < 1. O

i(rz_ 1/24 ZK2 (Ye *Tlpk)JFSZg(n))

On the other hand,
E (emm—nplmm (*: )g(n)) - (eiu(—ﬂm)+i3f1(0)9(n)) P[Y; = 0]
o0
4 (eiu(l—ﬂpl)+isf1(l)g(ﬂ)) P[}/I - 1] + Zeiu(j—npl)lp[)/l — j]
j=2
and since Y is a Poisson distribution with parameter np;, then
Pl == g™
Pl = 1} =i e ™"

Hence

E (eiu(Yl—nm)-i—isz(Yl}g(n)) = (eiﬂ(—ﬂpl)-i-ismg(n)) e P 4 (emu—nm)—z‘sn-lg(n)) ™

+3 e ply; = 5]

j=2
But we know that
00 oo
Zeiu(j—nm)P(}/l _ j') — eiu(—npl)e—-npl+eiu(lfnp1)nple—np1+z ei“(j_”pl)P[Yl s j’]
=0 j=2

14



So that we get

00
E (eiu(}/l*ﬂpl)‘!‘isfl(Y-]}g(n)) o Zeiu(j—n;uljp[y] _ j] . e—iu(npl)efnpl . EiTL(l_Tlpl)ﬂ,p16771p1
i=0

iu(— 2 ) — —du(l— —isn~1 -
_l_em( npl)-ﬁ-?-:plg(n)e "L e tu(l—npy)—isn Q(n)ﬂp1€ np1

Also notice

7=0

Zem(j—nm)p[yl =j] = Ze_i”"p‘ PV = ]
=0

o0
— e—tunp1 Zemjp[}/l _ ]}
=0

= efiunp] E(Gm)’l)

= 67'ifu.np1 (enpl(msufl)enplisinu)

The last line is because
- i I
E(eiY) - e)\(e 1 o e)\(cosu I+isinu) _ "1 (cosu—1+isinu)
and if we let ¢t — u, we obtain

E(emy) _ "M ((cosu—1)+isinu)

Thus,

E (eiu(Yl*npl)ﬁ-isfl(Y;]g(n]) _ e—iunplenp] (cos ufl)einpl sinu efiu(npl)e—npl - eiu(l*npl)nple_"pl

. oo . - - . - o 7] _
+ew( np1)+zsplg(n)e e iu(l—npy)—isn g(frz),npl6 npy

15



Hence by the triangle inequality we have that

(ein’lﬂt(h —ﬂ.;m)+:isZg(n))

[Py | = {ﬂuqm\/mE
—tunpy ,npi(cosu—1) jinp; sinu —iu(n —n iu(l—npy), -7
= Ljycnym|e " el Jeinprsinu _ g—iu(npl)g—np _ piu(l-npi)py, o—np1
4 eful=np1)+ispig(n) ,—nm ik e—iu(l—npl]—iSﬂ‘ly(n)nplefnp: |
—iunpy ,np1(cosu—1) inp; sinu —iu(np1) ,—np1 u(l—npy —npy
< jy<nymyle ¢ e | + |e e~ | 4 | Inp, e "

i i ~ B B e B
ik |etu( ﬂpl)-rzsp]g(n)e np, I + |€ w(l—npy)—isn g{n)nple npi '
< Ljyj<nym) (enm s b L g P nple_np])

— ]l[u\(n\/wﬂ [enpl(cosu—l) D (e—ﬂpx 58 npleknm)]

Therefore

- -
T |hn1| _ ﬂ[ltkﬂ\/ﬁ]enm(cosuvi) _ ﬂ[lt“(ﬁmenm(cosun 2)-1) _ hm.

n—oo

We then use the Taylor expansion of cosu to get

w? ot
cosu—lz—a-kz-;-...
Then replace u by tn=1/? to get
1 Pt g2
cos(tn™2) — 1= — 5 + S,
L t? ¢ n—o0 t?
os(tn " 2)—1)= - — 4+ — - -- = =
n(cos(tn™2) ~1) = -5 + o0 2
Therefore
2 -
lim h,, =e ™72 =}y
n—oo
Now
= _1
by = ]llltlmr\/ﬂ (enpl(mS(m e anle_npl)
Therefore

— g
[ il = / Ljgcqymem™ e ZH)dH] Lig<nym2e " dt + / Ljj<nym2npre”" dt

i
= / Lyjnyme™™ € "0t 4 2e="1 (21 /) + +2npre " (21 /7)

16



By letting n — oo we obtain

s e
lim /|hm}dtg lim /]1[|t,<ﬂme”p1{°°5(t" D-Ngy

n—0oo Nn—00

n—o0 n—o0

since 4my/ne™ ——= 0 and 4nn./npie”™ == 0. Then by using the same

change of variables

lim /‘lf_lnl,dt = lim /11||u1<w]e”p‘(€°5“_l)ﬁdu= limf nePr(cosu=1) gy,
n—boo‘ n—oo _

n—oo -

Letting 6 be a constant in (0,1/2), we divide the interval (—, ) into

1 1 VA
e nmen ) U\ T hmen pu-on na-a7z ™ )

We integrate separately on each interval and take the limit

lim /Enldt = lim VnerPres =gy 4 lim / nerPr{cosu=1) gy,
n(]jmpglukn

n—00 n—oc 1 nN—r00
9 |
lul<—=gy72

Claim 2. Define
T = / \/T_Ieﬂpl(cosu—])d“
. ;rl—_lmflnkﬂ

then lim,, oo 19 = 0

Proof of claim.

lim Ny = lim ﬂenm (cosu—l)du

n—00 n—+oo/
n“—_1m75<|-u.|<77

< lim Ve ) ) gy

n—co Wg[ukn

—n 1— 1 )
< lim 2m/ne m( COS(W)

n—oo

Since —25z < |u| < 7 so that cos (=255 ) < cosu < —1 and cosu — 1 <
n1-072 n(1-0)/2

1
Cos (W) - 1.

17



But

1 ( s ) (1 ( : >) 1_FCOS(nU}mN)
—Cos| ——— | = — cos .
1-8)/2 e
i n(1-0)/ 1+ cos (nu—le)ﬁ)

1 — cos? (W)
1+ cos (W)
sin® (nufw)
1+ cos (W)

1 1 5P
T2\ pl-or2

i
2nl-o

_ a1
then we get lim,,_,o n2 < limy,_,o0 2m/n€ "‘plo(nl 0) =0

Now we compute

lim n, = lim VnemPicosu—l) gy,

n—co n—rco 1
U<
lul< =gy72

For u satistying |u| < ﬁ, consider the Taylor expansion of

—b—ﬁ+£ w -<—£+H+8+ %—£+ o
cosSu =750 4!—6!+”_ 5 U +u S

(a geometric sequence of ratio u?)
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Therefore,

2 4
: : . . np1 (—“T"‘T__’»r)
lim n; = lim f Ve eosu=1) gy < lim / Vne e du
Jluj<

n—0c0 n—00 |u‘<n(l_19),’,2 n—0o0 n(J._lo),',2
¥
- (__%_,_z;zh)
. 214
< lim / Vne n7=20 / du
n—00 1
lul<—r=my72
1
e gl T
( Tl'r';-]!l _i_npllizi’ ?n’ )
= lim e =) du
n—0oo ITL|< - g
2
. —npyu o 1
= lim vne 2 du (e (ﬂl‘z”))
n—00 |“‘<71_0)/'_
2
f.
% O 1
= lim - dt e (nl-'ﬂ))
e |t|<n”n"2
+oo I
:/ e 2 dt.
— 00
Claim 3.

+00 —3’31t2
lim 2/ e 2 dt

n—00
o0

. 2, . 1
Proof. Since cosu > 1 — ”{ for all u satisfying |u| < ———— then cosu — 1 >
~ n(-6)/2
—u*/2 and clearly
lim 7y = lim VnerPr(eosu=1) g,
n—oo n—00 iul( 1_16 5
> lim / Vne "PT du
T <
= lim / e P18/ 2 gy
—00 iul(ﬂ{{_lg 5
+o0 P 2
= e 2 dt.
—0o0
Which proves the claim. O

The claim tells us that

+00 _p]iz
lim 7 =/ e 2 di.

n—r
o o] 00

19



and thus

lim /hnl dt = lim .

n—co n—oo

But we have already proved that

Je's)
. = =5 2 7 = = 2
lim h,, = e P 2 and / lim h,, —/ gty
— o0

n—o0 n—00

and so
lim / ﬁmdt = / lim ﬁmdt
n—o0 n—00

This finishes the proof of equation (3.3).

Lemma 3.0.3. Let h,, and H, be as defined in Equation (5.3). Then

1
lim H, = — [ lim h,dt.
V2 /

Lemma 3.0.4. For each k we have that h, ~ [[(By + Ey), where

By = exp(—itpen'/*)[exp(npi(exp(itn™'/%) — 1))]
Ck = exp(—itpyn'/?)[exp(isprg(n)) — 1] exp(—npi)

Dy, = exp(—itpyn'/?) exp(itn~/?)[exp(—isn~'g(n)) — 1npy exp(—npz)

and B, = Cy, + Dy,

20



Proof. For each k,

oo

E (eié{j—npk)ﬂ_1”2+"5$Zg{71)) — Zeil(j*-?lpk)'n*1/?+iSZg(n) ; P(YL - ])
=0
e R e Y
oo
" ~i/8
+ 3 etimen i p(y, = )
j=2
_ e—iipkﬂlmeisipkg{ )(/ Pk + ¢t wt(l-npg)n~ 1/ e—fi.sn‘lg(n)npke—ﬂpk
oo
2
+ Y et ply, = 4]
j=2

— e—z’t;mcnl"'zeis;nkg(n)er-npk e eitn'lfze—'imlfzpke-isn‘1g(n)npkefnpk

o0
+ Y ett-mn 2 ply, — j)

—itonl/2 s I in—1/2 _gnl/2, oo -1 _
— g itpEn Ca.spkg(n)e npp elfﬂ, e itn Pk p—isn 9(1'1)7,14%“:3 ﬂpk_'_

oo
—itnl/? - it(1— -1/2 - it(i— -1/2 :
e itn Pro—mPr _ ezt(l npg)n npye e 4 E emt(j npg)n PJ:Y;C :j}
j=0

o0
_ § eitli—npr)n ]‘Izp[}fk = 4]+ {e—itmn”uismg(n) _ e*im”"pk} e~k

i [eitn‘1/28—itn”2pke—isn"19(71) - eit(lfnpk)nd/z] nppe” Pk

oo
= 3 et ply, ) {e—iw“ (ctrwote 1)} e
3=0

_itnl/2 —iem—1 _
4 [eztn itn'/ “py, ((i‘ isn”g(n) 1)] npge npk

But we have that

00 o0
el -1/2 3 -1/2 _- 1/2 3

§ eii{j npg)n P(Yk — j) — § 11;171 itn ka(Yk: — J)
- i=0

oo

—1m”2 E “1tjn Yk _ ])
j=0
£ efitnlflzpkenpk(e“"71"’2—1)
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Hence

1/2

: o —1/2 . ;o o 1/2 itn _ . /2, _
E (eit(Yk npg)n +i.sz,’g(n)) — (6 itppn en.pk(e 1)) + (8 itpgn (ezspkg(n) _ 1)8 npk) i

1

g(n) _ 1)npk€—npk}

®

[ itn~ lfze—z'tnlf?;nk (e—isn_

The lemma follows with:

By, = exp(—itpyn'/?)[exp(npy (exp(itn™"/?) = 1))]
C. = exp(—itpknlp)[exp(ispkg(n}} — 1] exp(—npx)

Dy = exp(—itppn'/?) exp(itn~/2)[exp(—isn~'g(n)) — 1|npi, exp(—npx)
O

Recalling that Ej. = C} + Dy, we are interested in evaluating lim [[(By. + Ej).

The following two lemmas are given by Esty [15].

Lemma 3.0.5. Let {3} and {e;} be two sequences of complex numbers, and M,
be a sequence of subsets of K, indexed by n. If the following conditions are true:

@ J]8~ 8,

My

(i) > e~

Mn

(ili) B ~ 1 uniformly,
(iv) ex ~ 0 uniformly,

(v) there exists a constant 6, such that Z |8k — 1| < 67 and
A/f’fl

(vi) there exists a constant &, such that ch < b
ACIFI

H([)’k + €x) ~ Bef

My

where 3 and € may also depend on n.
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Lemma 3.0.6. For allk € K,
Bi = exp[(—t2/2)p + O(t3pen~1%)].
Proof. We have that

i 1/2 o (eitn H2-1)
Bk = g itpgn l:erri)k(c

1/2

_ omitpen! Zamp(eitn 721
(using Taylor expansion)

1/2 2,1 3, —3/2

T

e 1/2 it

s e—ttpkn ! +T),Pk(1 nl! 21 3! o )
: : 2 il S

s e—liPkﬂl"2+1imﬂl"2*%Pk*”‘"@.—m-ﬁ"“

2 b
—e TP 4 O(t3n 1 2py).
Which proves the lemma.
The next lemma includes some useful facts.

Lemma 3.0.7. (i) For any complex number z satisfying |x| < 1,

|In(1+2)| < |=|/(1 - |z]).
(ii) For any real number z € [0,1), 1 — z > exp(—z/(1 — x)).
(iii) For any real number z € (0,1/2), 1/(1 —z) < 1+ 2z.

Proof. For part (i), by Taylor’s theorem we have

i1+ 2] =[S -1y < 3 oy = 17
3=1 J §=1 L= le]
and since 7 > 1 then % < 1.
For part (ii), let
¢
e
fO) =1 tel000)



Calculate the derivative of f:

tef

f’(t):m >0

then f(t) is an increasing function on [0, cc).
At t =0, f(t) attains its maximal value of 1 since f(0) = €°/(1 + 0) = 1, then
f(t) = f(0) and therefore 1‘5’—_; > 1. By changing the variables t = z/(1 — z) then

1
1+

etz >1 = l—g>eT+
For part (iii), for any real number z € (0, 1/2) calculate

I (14 922) = #l—1 +2z)

1—=z

since x € (0,1/2) then 2z — 1 <0 and z > 0 and 1 — z > 0 then

(22 — 1
M(O hence

<1+ 2z.
1—xz -

Let us consider a partition of the index set K = I U I where
I={k prgln) <n*} and 11 = {k; pugln) > n"?}
where ¢ is as in equation (3.1).
Lemma 3.0.8. 3, |Ey| = 0 and [],,(Bx + Ei)/[1;; Bk — 1.
Proof. We have that
by = e_ii?”“"m(e"‘sl’*g(”) — 1)e™"Pk 4 e“'tp"”we“”gm(e’is”flg(n) — 1)e "Pknpy
By the triangle inequality, we get

|Ex| = le”pkg(”) — 1]e™ Pk + [e'i“m_lg(") — 1le "Pknpy
< (|eispkg(n)| +1)e ™ 4 (Iefisn’lg(n)! + 1)e Prnpy,

= 2¢”"Pk 4 2npre” Pk

24



Therefore
55 <25 e 4.
11 17

Let f(px) = e™"Pt + npre~"Pk,

The derivative of f is:
f'(pe) = —ne™™* + ne™™Pk — pPpe” P = —nlp e Pk

For all k € 11, f'(px) < 0in (0,1) and the function f(py) attains its maximum

n

-4 .
Pk = oo with value

(TI—-—) — e_nﬂ ;(“} + n%e_nnag(n)
ng(n) n’g(n)

The total number of indices in I7 is less than or equal to g(n)n’ since

#{krpk>g—n(%} =#{k:pik<g(n)n5}

but pj is a pmf therefore
1 1 5
m< T+ = k< — < k<gnn’,
k Pk
because if pr > 1/k then > pp > >"(1/k) but we know that 3 py = 1 < oo and
Y (1/k) is divergent which is not true. Therefore,

flpe) < f (ﬂTgl(l—L))

1-4 1-6
=2 fo) <2y [ (142
L1 I7 g('fl,)

5 elsd n1_6
7)1 e 9(n) —_—
— ZIE::ISQ{Q( )nJ (l+g(n))

LI
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where g(n)n? is the number of indices in /1 and thus

al=8 16

Ll
Z |Ex| < 2g(n)nle” ™ + 2ne” ot = 2e” atn (g(n)nd -I-n)
11

pl=1

< 2e omITH (O(nl_%)n‘s + n)

% 28"0(”6)0(7&) =20

Next, it is required to prove that

H;I(Bk £ Ek)

1.
HH By
We let
11 (Bx + Ey)
==
HH By
We evaluate:
[1;(Bx + Ex)
log F, = log | ————=
2 g ( ]—[]I Bk

= log H(B’“ + Ey) | —log H B,
11 17

= Z:log(B,yc + Ey) — Zlog B,
11

i

= Z (log(Bk + Ek) = log Bk)
I1

_ Zlog (Bk + Ek)
17 By
= Zlog (1 + %) )
By,
11
Therefore

b

Ey
] 1+ —
og( +Bk)

since | B| is bounded away from zero and by the fact that lim [Ex| = 0 and hence

[log F

= Zlog(lJr%) SZ
1

11

by the fact that lim |E,|/|Bx| = 0 and by applying the first part of lemma 3.7

26



with z = E, /By, we get that

| Ex| [Ek|
[log Fi| <) |log (1 e gk) D - D, [Bel 1B ]
I ir By 7 |B|

_ | Ek| _
Z(IBH |E|) O\ 215 | =0

11
Then log [}, — 0 so that Fj, — 1 and finally

[1;;(Bx + Ey)
Hu By

O

Now let us use the condition under which many of the subsequent results are

established.

CONDITION 3.0.1. As n — oo
(1) 3(g°(n)/n)pre ™ — c; > 0,
(2) S P (n)pie ™ = ¢ >0, and
(3) a1+ >0.

Lemma 3.0.9. Under Condition 3.1, all of the conditions of Lemma 3.5 are

satisfied with M, =1, By = By, =B, ¢, = E; ande = E.

Proof. We need to check that all six conditions in Lemma 3.5 are satisfied.

(iii) is true because By = e~Pxt*/2+0(E*pn"1/2) _ e“Q/kaeO(\%p“‘) since py, is uni-
formly bounded by 1/(g(n)n?) and pi./+/n is uniformly bounded by 1/(g(n)y/nn®).
Therefore, By — 1 uniformly as n — oc.

(i) is true because

2 3
H Bk _ H (8_%}%60(%;0”) - 6_% Z; ’Pkeo(:—@ E}pk)
I

&
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but 37, pe < 3702, Pr — 0 (part of the tail of a convergent series) then I1; B —

1. Hence, B=1.
(v) is true. Indeed,

2 —t?
By = exp (ﬁ Pt O(t?’pk’nl/2)) A ek O(t*pkn"/%) — 0,

uniformly. Using the Taylor expansion of the exponential we get e —1 <z +

22+ 23 + .+« so that

||

T _ 1l <
S

for |z| < 1.

Here, we take z = ﬁi;‘;pk + O(*prn=1/2). Clearly |z| < 1 and thus

| — Epr + O(B3pen=172)| £2 -
|1Br — 1| < T ~ =0 | |[-5o + Epen™ )| |,
1= | = Zpp 0 ppn—112)| 2
and hence

2

_ t 3. —1/2
=0 §¥Pk+|tl” ;pk

t2 N
5Pk + (Bpen 1)

D 1Bi-1<30
I I

< O + |£°]),

then &, = O(t? + |t3]).

For (ii), (iv) and (vi) we have

Egc:Ck-I-Dk

i 1/2 ; _ - 1/2 4, —1/2 ] _
—e itpgn (etspkg(n) . 1)8 npk P ippn eztn (6 isn"lg(n) 1) npge Pk

_ e*ﬂpke—iizﬂk\/ﬁ l:(eispkg(n) . 1) + npk‘eitn*”z (e—isn‘lg(n) _ 1):| )
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Using the Taylor expansion: e — 1 = iz — 22/2 + O(2?) then
BB N0
Ej = e~ "PreitpeV/n [isg(n)pk B ;n)pk + O(s%¢3(n)p})

| it 1 & isg(n) _ s°*(n) . r5°¢°(n)
+71PA:(1 e i 2n +O(m)) (_ n  2n2 +O( n3 ))

2

isg(n)pe — S0*(0)p} + O(s%* (n)p})

— e—npke-itpkﬁ {

+ (npk + itprv/n — gpk 'y npko(ntg_;)) ( _isg(n) s2g%(n) i 0(3393‘(71)))}

n 2n? n3

2 2

isg(p. — o+ O(5P(t) = gt — 5 (L0

— ef-npkefitpk\/ﬁ [

3 g5 52t 3.3 942
+npk0(b ! (n)) +st9(2}pk - 7 (n)px +itpk\/ﬁo(b J (n)) s ist° g(n)

n3 v 2ridie n? 2 n PH
+ S?ngg?’}pk - gpkO(ssg;(”)) - isg(n)pko(nf/z) ~ %ngin)pko(nz—;)
+ nppO (nf/g ) O ( Saia(n) )}
= ¢ PR HPRVR { = ;gz(N)Pi = S;@pk + stg\(/%)pk + sZtQ g:;l)m - ;3292(”)%
+ %ggj)pk + 0(3393(n)pﬁ) + O(SS%@C) + 10 (tsg%ﬁ) - O(Szﬁgz:?)pk)
-0 5) - o L) + o5 £ es
We observe the following
(a) For all k € I, e"P+v™ _ 1 uniformly since
pkgm — pk\/ﬁsm—‘/)ﬁmﬂo, for all k € I.

(b) Every additive term of Ej converges to 0 uniformly for all k& € I, therefore

(iv) is checked.

(c) For every term within the brackets in Equation (A,) denoted by 7 (s, t, n, pi),
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except the first two terms

ZG_"“L?(S,LW,MN = Zeiwqy(szt:”:pkﬂ —+ 0

T

uniformly by condition 3.9. The uniform convergence of >, e™"" g (n)p3

2
and >, e " %pk are directly guaranteed by condition 3.9 since

1 (1) nooo
e np,r < e "Prg 2 =y e~ Pk e >0
E Pk E .kn = E] - Pp —0 =2

since pp < % for all k£ and

2/,

S om0, o s
n

T

then clearly > E; — —%(cl + ) = E. Therefore (ii) is checked and the

uniformity of the convergence for >, [Ex| and hence for 3, | Ex| guarantees

(vi).

O

Remark 3.0.1. It may be interesting to note that the third term within the brack-

ets in Equation (A2), stg(")pk also satisfies Y, e*”p"st%pk — 0. However, if

= \/n as in Esty, this term does not vanish and as a result shows up as

an extra term in the asymptotic variance of the normalized coverage estimator in

Esty’s results.

Lemma 3.5 and 3.9 give immediately the following corollary.

Corollary 3.0.1. Under Condition 3.1, [[,(By + Ei) ~ [[;(Brexp(>_; Ex)).

Lemma 3.0.10. Under Condition 3.9, [[(Bx+ E) — Bef where B = lim [ By
and E =1lim}_ Ey.
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PT‘OOf. H(B.‘c + Ek) = HI(B-'C + E;\) HU'(B"" + EL)
Using Lemma 3.8 (b), [[(Ex + Bi) ~ [[,; Bx then

H(Bk = Ek) = H(Bk + Ek) HBk

I 17

(using Lemma 0.3.9)

~ 1 B+ (ez,Ek) I3
-~ IiIBk (= Ek) ”
(using the fact that » |Ej| — 0 by Lemma 3.8)
~ [ BreZ 5 '
O

Remark 3.0.2. At this point, one may see the reason why it is imposed that
g(n) = O(n'=%) for some small positive 5. If g(n) is allowed to be a sequence
increasing to infinily in the order of n or faster, > ,; Ex, — 0 cannot be established
using the current method. The proof for (a) of Lemma 3.8 will break down.
Consequently, the partition K = I'UII will not effectively support the subsequent
proofs.
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Chapter 4

Main Results

Theorem 4.0.1. Let g(n) be as in Equation (2.1). Under Condition 3.1,
g(n)(C" — C) 2 N(0, ¢; + ).
Proof. To prove that g(n)(C'—C) EEN N(0,¢; + ¢2), we use the Levy’s Continuity
Theorem, i.e. we prove that the characteristic function H, of g(n)(C' — C")
converges to the characteristic function of N(0,¢; + ¢2).
We know that H,(S) = E(e*%9)) where Z = C — C’'. We will use Lemma

3.4

1
lim H, = — [ lim h,dt,
n—00 4\,"2',11‘~/'ﬂ4—‘+00

and h, ~ [[(Bx + Ej) then

lim hn = lim H(Bk b Ek) = lim (H Bk)ehmﬂ_’mZEk_

n—oo

First let’s find lim,, ,00 [ [ Bi:
i TT B = Jim T[e 50 =l oo Zr0CEme 1 - ¢ 01
Then let’s find the limit of the > Ej:
tin 3 5= i 5 (et (5 - 5 0
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Therefore

1
lim H, = — lim A, dt
n—00 ,/277/11—>oo
2

2
( / 2 ) = (limn_,OC 3 3—7(11)3;;ke_”5”k—Himn_,DO ZgZ(n)pke*”?’k)
_? ;
V2m

= 67%(“ +e2)

2
Because (—\[12—; fe‘tTdt = 1 and by Condition 3.1
ZJ pe_”p"—>c1>0

> Pn)pre™™ — 02 >0

as n — 0o.
Clearly, the limit of H, is the characteristic function of a normal distribution
with mean 0 and variance 6% = ¢; + ¢» > 0.

By the Levy’s continuity theorem
Zg(n) % N(0,c1 + c2)

g(n)(C' = C) 2, N(0,¢; + ¢)

O

Given a g(n) satisfying Equation (3.1), Condition (3.1) imposes a rate of
convergence of {p,}. To see that and the condition of Theorem 4.1 describes a

non-empty class of distribution, we consider the following example.

Example 4.1 Let
2

F4

m, k:1,2,...

Pr=
Condition 3.1 holds if and only if g(n) = O(n**). To see this, we have
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2 i~ o
g (n)/ 5 e—w—imd:c
n , (x+1)2

o 0
= fQM / e~ g (use the change of variables t =
/2

27, r1/2 ,
— 29 (n’) / —27zt‘d?;

)

T+ 1

~% dt (use the change of variables u = 2+v/nt therefore du = 2v/ndt)

n 2\/_
g°(n) 1 V2m
W

271 2n
=0 (i(n)) =& (gn§/2)>

. 2
since when n — oo, le—r jﬂﬁ e~ /24t goes to a constant but O (f’nd(g)) is a

== 9 e_%dt

non-zero constant when g%(n) = kn3? <= g(n) = kn®* < g(n) =

O(n3/).

(2) Similarly using the same change of variables

QQ(n) ” Lei (:r«g.:lt)2 dr
’ 1 (-1' + 1)4
1/2 ,
= 492(71)/ t2e M 4t
0
= 492(7’1) /ﬁ 120=/2 ¢
(2v/n)? Jo

_ 4¢%(n) V2
(2v/n)* var

g*(n)
=0 (an )

since —= foﬁ t2e="*/2dt goes to constant when n goes to infinity.

ﬁ b 4
e 20

Same as above, O ( £ (”) goes to a non-zero constant if and only if
gin

O(n4).
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Remark 4.1 This example proves that there is at least one distribution

satisfying Condition 3.1 when the conditions of Esty didn’t satisfy an distribution.

Let us consider the following condition.
CONDITION 4.0.1. Asn — oo,

(1) ZOE(N) = ¢; >0,

2

(2) LYB(N,) 2 >0

n2

(3) c1+ca > 0.
Lemma 4.0.2. Condition 3.1 and Condition 4.1 are equivalent.

Proof.

70 pvy = 0 g (32 10w

n2 n?

_ ngL_) Z E(1x,=1)

- gn(f) > PX =1
@n D op(l—p)"!

2 2

g-(n _E g(n n—

= (2 )n E pe(l—pe)* ™ + —;2 )n E pi(1 = p)™ !
1 11

n

Using the partition K = I U IT where

1= {eematm <= (ko < g}

and IT = I€. Let f(p) = pe™™ then f'(p) = (1 — np)e .
Notice that f’ is negative on (i, 1] i.e. on (HT;@,I} for large n so that f is

decreasing for large n and then

—npy, 1 '”‘(Id'ﬁ)
— D€ = e ;

fo) < f ( =

n°g(n)
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—{n—-1)

—()—6 and since 1 —z < e~ % then
g(n)n

but since pp > ( ) on I then —(n—1)p; <

_n-—1
(1 7pk)"ﬂz—] < e~ (n=1)pk <e g(n)n?

Therefore

2
(n y n il
)n E pe(l—pe)" " < TEQ)RE pug™ 1P
11

2 coobiprons
1 il
<9 (n)nz ron

e 7 g(n)n
g°(n)

—Hn(gn)n’)

2( ) =t

== ‘9 y(ﬂjn

_ oty (e75%)

T

e g9(n)n
g(n)n?

IA

= 0(n**0(e™) - 0

as n — 00, where g(n)n® is the maximum number of terms in I7. Now by the

gi(f)E(Nl) > 0 then

7}5{.10 n2 an (1-p)" 1 =0.

Now,

nzpk n— ;

72

70 gy = L8 S
I

thus we have

lim 92(;*)3(N ) = lim

n—oo T n—oo n2

RZM (1—pe)" .

On the other hand, since —np; + pr < —npy + sup;(px)

then e—®—1)px < e~ WPetsupr(P) — esuPr(Pk) =Pk gnd thus
g*(n) . -
51 Zpk(l ) < n Z ~(n=lpe < neS“pfpk Zp T
J;
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and hence by the definition of 7, lim,, ., e*P1P+ = 1.

Furthermore, by applying part (2) of Lemma 3.7, we have:

Pk

- —n-1
(l-p)>e T < (1—p)" ! >e 7P,

then

Npg

g*(n _ns1 2(n _
nzpk n 1 > T‘Ez )HZPke 1—py Pk > gﬂg )RZPke 1-sup; pi
1 I

Also by part (3) of Lemma 3.7, we know that

—n
<14 2suppe then Pt

T o —_— = _npk(l + quppk)
1 — sup; pr I 1 — sup; px I

and we also have that
Pi - SUPPL < (suppi)? *27'%(81}13%) > _QH(SL;ppk)Q
!

then

2
n
”*Zpk ])k ﬂ 1 > 752 )n Zpke_nm(l+23umpk)
I

2

g°(n) - —2n(sup, pe)? -
27116 SUP[ Pk Zpke k
s & (

2
n) _
n} pre” Pk
7

since by the definition of I, lim,,_, ., e~ 2r(suwprpe)® — 1 Therefore,

2
g (n) np
Y S D om(l — ) - i 7 ”Z“ .
Clearly,
2
i )
A EWJJ—,LW - RZW—W

= lim n E pre” Pk
n—o0 nz

= lim ? ngpe“"
n—00 n

= lim Z E pre” P
n—oo 7l
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Similarly for (2).

2 2
29" ) gy, = 2 (Z]l[\k 2) i )Z(nm:2 =2MZP[X;€ _
=géSJZ(Z>Pi(1—PM R n(n —1) Zpk 1—p)"?

< W23 21—t = gz(n)zpi(l )"
2(n) g1 — pi)" "+ 2(m) 3 (1L — pi) 2
7 17

Let’s compute the second term:

g*(n) Y p(1—p) 7 < gP(n) Y pie
17

IA
Q
[3%]
S—
N
ps]
Q=
&,
~—
(3]
m‘
=
|
R
AT
I~
{=2
|~
=,
L SR

Clearly,

n(n —
o9 L( Z (1 — p)-2 2%, g
By the sandwich theorem, since Q%E(Ng) > 0 then

2(n)n(n —
lim 2 ( )uZ}Di(l —p)" 2 =0.

n—oo n2 2

Now

lim QQQ(n)ﬂn—_l—) Zpﬁ(l —pi)" 7 = lim 2q il )E(NQ).

n—00 n? < 7
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and

29 n) n—l g*(n e
'S0 -y < Lt ) Yo
I
2 ']
g9°(n) T
& ~ ”(”‘U?Pie pr+2sup; pi

2
q (n) 2 _—n
)Y
§ :p2 TPk

Furthermore by applying part (2) and (3) of Lemma 3.7,

( since lim e?*"P1Px — 1)
=00

2 —(n—2)py

292(”) n(n — 1) 2 n-2 - 9 (”
- 5 lepk(lpk) B s n—l)zpke T

—np

2
g (n nin—1 sze(l sup!pk

IV

I\

QQ(H)( . —Qn(supfpk sz —npy

2 n—oo
—

( since e~ 2r(suPrPk)

2
g°(n) o
1) > 752 n(n—l)E pre P
1

> g*(n) ) _pie ™,

I

Therefore,

. 2g°(n) n(n —1) n-2 _ 15 —n
Jim = ; gpi(l —pe)" 7 = lim ¢*(n) ;pie Pe,
and thus
. 297 -n
T}l_)l’IQlQ gng )E(Ng) = hm g n Zp2 BE,
and the equivalence between Condition 3.1 and 4.1 is established. O

Theorem 4.0.3. If there is a g(n) satisfying Equation (3.1) and Condition (4.1)

then
n(C’ - C)

VE(N) + 2E(N,)

2 N(0,1)

39



Proof. 1If g(n) = O(n'~??), we want to prove that
M —O) b N(0,1).
VE() +2E(NV,)

To see this, let’s standardize theorem 4.1:

g(n)(C" = C) B N(0,c1 + ).

where = 0 and 6% = ¢; + ¢, then

g(”)(cc—l_—l—i) —2 5 N©,1) e 9—(”)_f+;2_c) L NG, 1),
On the other hand, multiplying by g(n)\/c; + ¢ up and down,
n(C' - C) _ nye +c; g(n)(¢' - C)
VEND) +2E(Ny)  g(n)VE(N) + 2E(Ns) Vet e
) JaE gn)(C =)
2R 22 E,)  Vate

Now by Condition 4.1, as n — oo,

\/%E_?E(Nl} + QME(NQJ — Ve + ¢

n?
and hence
ver 622 — 1.
\/gn(s?)E(Nl) + 2L G B(N,)

Now by Slutsky’s theorem

/e, + ¢ g(n)(C" = C) B}N(O 1.

g(n)\/E(N1) +2E(Ny) Ve te

which finishes the proof. tJ

Remark 4.2 The statement of Theorem 4.2 can be re-written as

’ s
yae’—C) o N(0, 1).
E(N1) £ 2E(N2}

n

which resembles very much Theorem 4 of Esty except the third term in the
variance of Esty is missing. However, it is to be noted that in the current context,
the coverage statistic, even though its normalized form can be expressed as above,

is not normalized by \/n but by g(n) satisfying g(n)/y/n — oc.
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As a consequence of Theorem 4.1, we have the following theorem.

Theorem 4.0.4. If there is a g(n) satisfying Equation (3.1) and Condition 4.1
then

n(C' - C)

D
— 5 N{(0,1).
VN + 2N; (%1

Proof. Let ¢; and é be the estimate of ¢; and ¢, respectively.

Let é = %Nl and é = 29275”) N,, then

E(E,l) =F (%N]) = QQ(QL)E(NI) —

n

. 2(n 2(n
E(&)=FE (QQTEQ )Ng) - 29?52 )E(ng) — Co

by Condition 4.1. If suffices to show that ¢ and ¢ are consistent estimates of ¢;
and ¢, respectively.

Using Markov’s inequality:

Pl —er] > € = Pl(é — er)? 3 7] < L& — )]

_ E[(& — pa + pa — 1))

= =

- E[E’l - J“'élJQ + E{H‘El - 61]2 i QE[((:I - f"'él)(l“‘@l — Cl)]
(2

( since E[(é1 — pe, )y, — 1)l = 0)

_ V&) + (pa — i
62

and (us — ¢1)* — 0 by Condition 4.1. Then to prove the consistency of ¢, or in
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other words that ¢, — ¢, it suffices to show that V(¢;) =0 as n — oco. Indeed,

(Z ]1[X‘~ 1] Z ]1[)‘3—1]
k

(ﬂ[xk=1], Il[xj:u)

g*(n
_g'(n) ZCOV (Lxe=1)s L) +ZCOV( [Xk:ll,nlxj_”))
k#j]

= géf) ZV(MHZCOV (2= i, #u))

k#j
= Qd(n) /Z (E(]lﬁ\,k:”) = E2(]1[.\'k:1])) + ZCOV (]1[)&.&_:1]_’ 1[[;\.]1]))

k k#j

k k kj

4
e g (’11) Z E(ﬂ[szi]) - Z EQ(]i-[Xk=l]) + Z cov (ﬂlxk=ll’ ]I[XJ_I]))

1
:&f) E (Zﬂ[xk 1) ZE (Apxe=1) +ZCOV (]llXa 1],11[\J_]])
k

k#j

IA

94(n) E(Ny) + ZCOV (]I[Xk=l]: ]]'[XJ=]]))

kst

By the first part of Condition 4.1,

4(1‘1) 2 7’1) O(ﬂ1—25)2

Z E(N;) — 0 since gn = ~n % 30asn— 00

nt



On the other hand,

4

—_

g

n) Z cCov (Il[xkzl]v 1%:”)

nd
n :
J#k

=< Z (E(HI-YFH}(E[XFI]) - E(]llxj=1])E(]1[Xk:u))

- g Z (E(]I[XJ:I,szlj) - E(]l[le])E(]l[Xk:ll))

4
o g {n’) n! L n-2 . e Ame—] _ n—1
- ; (lll!(n —oy PPl =2y = p)" (1= i)™ np(L Px) )

= n(n — Dp;jpp(1 — pj — pe)™ 2 — nPpipr(1 — p;)" (1 — pe)" )
ﬂd
L i#k

4” = n— n—
g,rfci)Ztn%pk(l—pj—m) 2 mlppe(1 - p) (1= pi) )
itk
g'(n) n—2 n—1 n—1
= Y (pipe(1 = p; — )" = pipe(1 = )" (L = pe)") -
7k

IA

IA

but

n—2

(1—pj—pe)" 2 < (1—pj— e +pipe)" 2 = (1 —pe)" (1 — ;)" %,
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then

ZCOV (Xe=1]; Tl[xj:ﬂ)

ik
& nzn) x > (ppr(1—py)" (1 - P;)H_Q = k(1= p)" (1 = )" )
BEA 5 (el =20~ 1)
Tfa o > 1= )" 21 =" 1)
and by symmetry ]
£ 29:;2) Zk(pj)ﬁm(l o )i
= % (ggén) > omk(l- pk)”*z) (92(?1) > op- pk)”’z)
-2 (el ) (£ )

—+ 0 asn — oo by Lemma 3.1 and Condition 4.1.

Hence V(¢;) — 0 and n — oo and P[|¢; — ¢2|] > €] — 0 as n — oo which is
the desired result and therefore ¢; is consistent.
Similarly, we want to prove that ¢, — ¢; as n — oo. We know that by

Markov’s:

V(CQ) g (nu'cz - )2

Pllés — 2] > ¢ -

€

but pz, — o — 0 by Condition 4.1. It remains to show that V(é) — 0 asn — oo

n2

£ 494(7@) E(Ny) + Z cov (Il[xﬁz], ]l[xJ:z])

=480 :
k#]

By the same arguments as above, the term converges to 0 since

4%}3(1\5) = 4%?)5 (Z nngl) .
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But we know that

p (%) =1 - 10 -

2B (M) = Y0~ DAL - )"
2

~E(Ny) < > npi(1—pe)*?

2 .
SE(N2) < ) pj(1l—p)"?

then

4gzn)E(N2) PR ( _E(Ny) ) (Zpk

(gg(n) P AR p:c)”'g) = 0.

o
= [
=

For the second term, let’s verify the inequality first:

1—(1—pe)*(1 = p;)* < 4(px + pj).

Indeed,

n 2)

1= (1—pe)?(1—p)* =1 — (L4 prp;)® — (pj + pi)” + 2(1 + ;) (p; + D)

< 1= (14 papy)® + 21+ pup;) (p; + D)

= —pipi{2 + pep;) + 201 + pep; ) (pi + i)

< 2(1 + pwp;)(pj + i)

< 4(p; + px)

Then we have in the second term:
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4
g'(n)
4 A ZCOV(H[X;C:%II[XFZ])

i#k
4
g (n ; .
=k T£4 : > (E(]I[Xk=ﬂlﬂlXj=2]) - E(]I[Xk=2])E(]1[XJ:2}))
J#k
4
g (n
= 754 ! > (E(ﬂlxk=2],[xj=21) - E(ﬂ[xkﬂ])E(]llXFz]))
7k
_ 494(71) Z ( n! 2 2(1 e Eae )n—4 _ n! 2(1 _ ‘)71—2
nd £ 2 4(n — 4)!p3pk Pi — Pr 2(n — Z)IPJ P
nl 2 n—2
. 2(n — 2)!pk(1 — ) )
_ 4g*(n) n! 2 2 n—4 n! ’ 2 92 n—2 n—2
Y #Z; 4(n — 4)[pjpk(1 P; — Pk) 2(n — 2)! Pjpk(l p;i)" (1 = px)
4g'(n n—3{n—2)(n—1)n B n — 1)2n?
_ ) s (oYW s (( 0 )
#k

pepr(1 — )" 31 - pk)““g)

4(n n — 1)2n2 n —1)%n?
<y (“ D a1 )t — ey - (—( = )p?-pi(l —p)" (=)™

= 49:571) ; ((n _41)2n2p§p§(1 ~ gkt~ g L~ ~ pk)g))
< 4g;£n) ; ((n _41)2n2p?pﬁ(1 — )" (1 — )" (pe + Pj))

< 49;51”) 2 (n"pfpi(l — )" (1 = )" (pe + pj))

<450 D (Br R0 = x4 1))

By symmetry

=8g'(0) D (ipR(1 = py)" (1 - pm”"“)

1.k
=8 (g%(0) Y_pi1 —p)™™) (6°() YRRt —p)™)
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We see that g?(n) > pi(1 — pe)™~? converges to 0 by condition 4.1.
But to see that the second factor converges also to 0, let f(p) = p*(1 —p)"~* and

compute its maximum value.

F(p) =2p(1 —p)"* + (n — Dp*(1 - p)"~°(-1)

=p(1=p)"° 2+p(-n+2)

2
n—2

fP)=0 & 2+p(-n+2)=0 < p=

After computing the second derivative of f(p) at =%, then we deduce that f(p)
attains its maximum at this point where p € (0,1)

then:

f(pk)ﬁf( - )

n—2
2 2 9 n—4
21_.n—4< = 1__
Pl =pe)" " S | —

multiply both sides by ¢*(n)py:

Pkl - o)™ < ¢2(n) ( = )2(1—i)n4m

and then:

0 S -t < (25) (1-:25) T

< 4g*(n)

Hence V(&) —+ 0 as n — oo
and P (|éa — 2| > ¢) 2 0asn— o0

then ¢; — ¢ as n —» co and ¢, is consistent.
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Now,

MC' -C) __n/a¥m  gm)(C -C)

VN2V,  gmVM 2N, | Jeata
Vata  gm)C-C)

\/gz(n) N+ Q%Ng Ve + ¢

n?
_Va+te « g(n)(C' = C)
VL + G2 Vel + e

Since ¢; — ¢ and é; — ¢ as N — 00
then é; + ¢o — ¢1 + o

vertez
and s lasn— oo

Use now Slutskey’s theorem to prove that:

n(C'-C) bp.
B N(0,1
——N1+2N2_> (0,1) asn — oo

which finishes the proof.
We note that the condition of Theorem 4.2 and 4.3 requires no further knowledge

of g(n) other than its existence.
O

Theorem 4.3 leads to an approximate (1 — «) level confidence interval for C:

N, N 2N.
1_1_1 iZQ _1_|__2
n 2y n2 n?

where z,/, is the usual constant for a normal confidence interval.

Proof. By theorem 4.3:

n(C' — C)
VN7 4+ 2N,
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For n large:

l—a=P| —z2s < me —G) &<
—a= —Ze L ———~L < Za
2 vINy + 2N, 2

T
N 2N. N 2N.
—P(—C'—zg i Pt P R o R —1+—2)
2y p? n? n n?
N, 2N. N 2N,
:P(C"—z% Sty <C<C +zay| =5+ =5
n n n n

Pl

n 2 n2 Tl2 2 n z N2 72

N N1 2N, N Ny 2N.
( 1 . T L 2)

and for completeness, an approximate (1 — a) level confidence interval for my is:

N N 2N. N N, 2N.
Pliy——L —221/—1+72<1—7r0< g e B + ze —21+—22 = l—a
n T\ p2 n? n 2V n n

N N 2N. N N 2N.
P(—luz% 21+T2<7r0<—]+2u\/—;+-—§3)—1—a
7 7 7 n 2¥ n n

Therefore, the approximate (1 — &) level confidence interval for mg is:

——zag — o —2, — sy =+ 2
n 2 Y p? n?’ n 2\ p? n?

a

Example 4.2 Use the data in Table 1 to construct a 95% confidence interval
for my. With n = 2000, N; = 12 and N, = 1:
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N1 12 4+ 2(1)
ot rey/ o+ = 1,06y = =)
VW T2 2000 9V 30002
— 0:006 + 0.0037
= (0.0023, 0.0097)
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Chapter 5

Conclusion

The sufficient condition of this thesis and Example 1 together ensure the exis-
tence of a non-degenerated asymptotic normality law for a non empty class of

distributions.

A similar result was obtained by Esty [15] but it did not establish a non-degenerated
normality law for a fixed {pi} as already explained above.

Esty [15] established a y/n-normality law for C' — C but allowing the underlying
probability distribution to vary within a family {{pk}m m=1,2 } as the sam-

ple size n increases.

For the method of proof, we used a direct evaluation of the characteristic function
of the normalized coverage probability, with an appropriate partition that allows
us to control the tail probabilities.

Although the sufficient condition of Esty [15] and that of this thesis describe
different populations, an intuitive comparison is still possible. Esty’s condition
is essentially a thicker tail condition. It says that as n increases, the total proba-
bility of unobserved species does not converge to zero but inflates at a rate such

that the total probability remains constant. On the other hand, condition (4.1)
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allow the total probability to converge to zero. It is therefore conceivable, in some
sense, that the respective biases converge to zero at different rates, slower under
Esty’s condition, and faster under Condition (4.1). The difference is reflected by

the fact that the rate of convergence g(n) is higher than \/n.

Finally, only the existence of g(n) is needed, we were able to use the main
results to carry out statistical inference including hypothesis testing and con-

struction of a confidence interval for m.
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