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An Abstract of the Thesis of

Njteh Haroutioun Mkhsian for Master of Science
Major: Pure Mathematics

Title: The ¢? decoupling conjecture

Suppose fi,f2, ...,fn are functions in a Lebesgue space LP(u).
Then

N
r
1 f1 +""|‘fN||Izp(u) :/ |fi+- 4 fnlP dp < N Z Hfl”ip(u)
=1

so that we get

B =

N
1
bt Sl < N (Z ”f’”%‘”’) |
=1

In the special case of p = 2, this inequality is reduced to

N
1f1 4+ fallag < (Z “le%%m)
=1

provided the f; are mutually orthogonal.

-

2

One of the guiding principles of harmonic analysis (more precisely, restriction
theory) states that if the functions fi,..., fy are Fourier transforms of measures
of the form gido, ..., gydo supported on a paraboloid S of surface measure do,
then fi,..., fy are almost orthogonal provided the functions gy, ..., gy are ap-
propriately separated. One particular manifestation of this principle is the [?
decoupling conjecture which asserts that to every € > 0, there is a constant C.
such that

2

N
4o fxllzngy < C-N° (Z ”leip(u))
=1

vi



provided gy, ..., gy are appropriately separated, when 2 < p < %

This conjecture has recently been solved in [4] using multilinear theory. The
purpose of our thesis is to present the solution to this important conjecture fol-

lowing the exposition in [1] and [3].
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Chapter 1

Notations

We will denote the truncated paraboloid in R™ by

Pt = (&, & b, GG+ ) 0< & < 1}

We will denote cubes in the frequency space [0,1]"~* with the letters Q, ¢ and
cubes in the physical space R™ with the letters B, A.

We will associate with each cube B = B(cp, R) in R™ the weight

1

We will always assume that all cubes have side lengths in the set 2% := {2% : k €
Z} We will denote by o the lift of the Lebesgue measure from [0,1]""! to the
paraboloid P"—1.

(n)

We define the extension operator E,” = Eq as follows: for a function g : Q@ — C,

Eqg is defined as the Fourier transform of the measure gdo, that is Egg := m/al\a.
More explicitly,

Eqg(x) = / G(Er, ooy Gy )2 E T a1 H(E A6 Jan) e
Q

where & = (&1, ...,&—1) and x = (x4, ..., T,,).

For positive smooth functions 1 defined on R"™ we will denote by
np(x) the function n(%) where B is the cube B(c, R) of cetner ¢ and side
length ¢(B) = R.

For positive measurable functions v : R" — [0, 00) which we shall call weights,

1



and for a function f : R™ — C, we define || f||1r() = (/ |f\pyd/\)% where \ is
R’ﬂ

the Lebesgue measure on R".

D=

1
We also define the norm HFHL;(UJB) = (E / |F|Pwgd))

We will denote by |A| the Lebesgue measure of A if A has positive Lebesgue
measure and the cardinality of A if A is finite, where the power E can be chosen
large enough (usually £ > 100n) to satisfy integrability conditions.

We will use the notation < to mean "less than or equal to a constant times”
where most of the constants will depend only on the Lebesgue index p and the
dimension n.



Chapter 2

The Restriction Problem and the
Kakeya Conjecture

The restriction problem was first posed explicitly by Elias Stein and now it has
many equivalent formulations. In the study of restriction theory, one possible
approach to problems would be to take linear combinations of waves of the form
e £(¢€) and look at operators of the form

Bf@) = [ @0 s(e)as

where ¢(§) is called the frequency of the wave. Omne possible choice for this
frequency would be the parametrization of the paraboloid:

O(&) = (&1y o Enr, [E)-

A typical question that can be asked would be: for what values of p does the
following hold:

I Efllzr@ny S I ooy

A famously unsolved conjecture in the study of restriction theory is what is called
Linear Restriction, as stated in [2] and it goes as follows:

Conjecture 1 (Linear Restriction). Let U be a compact neighborhood of the
origin in R™. Let S be an (n — 1) — dimensional submanifold of R™ that has
everywhere non-vanishing gaussian curvature. If ¢ > % and p' < Z—jr}q, then
there exists a finite positive constant C' that depends only on n and ¢ such that

1£gll 2oy < Cllgllzr)
for all g € LP(U).

This conjecture which remains unsolved in the general case implies what is
known as the Linear Kakeya conjecture which can be stated in many forms. One

3



possible form goes as follows: The Hausdorff dimension of a borel set in R™ that
contains a unit line segment in every direction is n. A stronger version which is
more quantitative says:

Conjecture 2 (Linear Kakeya). let 0 < 6 << 1. Define a § — tube to be a
rectangular box T of dimensions 6 X § X ... x § x 1 (and hence of volume ~
6"1). Let T be an arbitrary collection of such § — tubes whose orientations form
a § — separated set of points on S™1. Then

1" xrllzaeny < C6™F (#T)5.

TeT

Although both of these conjectures remain unsolved in their general forms,
their respective multilinear versions have been formulated and proven successfully
as we shall show shortly. It is also the case that the Multilinear Restriction and
Multilinear Kakeya are equivalent to each other. However, the multilinear ver-
sions do not imply the linear versions. This however isn’t the case for decoupling
as we shall discuss later.

We shall be using a version of Multilinear Kakeya as proved by Bennett,
Carbery, and Tao in [2] and by Guth in [3].

Lemma 1 (Multilinear Kakeya). Suppose that {;, are lines in R", where j =
1,2,..,n, and a = 1,2,...,N;. Let T;, be the characteristic function of the 1-
neighborhood of ;.. Suppose each of these lines {;, makes an angle of at most
(10n)~" with the x; — axis. Let Qr be a cube of side length R. Then for any
€ >0 and any R > 1, the following inequality holds:

n N; a1 n )
Lii(5n) e
QR j=1 \ a=1 j=1

We can deduce from this another version of multilinear Kakeya also proved
by Guth in [3] which will be useful for us in proving mutilinear restriction. We
state it as a corollary:

Corollary 1. Let {;,,T; ., Qr be as in the previous lemma.
Let wj, > 0 be numbers. Let

fi=> wiTia
a

Then for any € > 0 and any R > 1 the following inequality holds:

[ 1 = en T ()™

R j=1 j=1  a



We now state some results that will help us in the proofs that follow.
Suppose 4 is a non-negative rapidly decaying function on R", and A C R" is
a compact convex set. Then there is an affine function A : R™ — R"™ such that

B(e,) C h(A) C B(C). (2.1)

The affine function has the form h(z) = Lz + v, where L is a linear map and
v € R". We define the cutoff function p4 by

pa(x) = |Det L] p(h(x)).

Suppose K C R" is a compact convex set with center of mass wy. The dual
convex body K* is defined by

K'={zeR": |z (wg —w)| <1Vwe K}
Proposition 1 (The locally constant property). Suppose p is a non-negative
rapidly decaying function on R™, and c,,C, are the constants in (2.1). Then
there is a mon-negative rapidly decaying function n on R™ such that
su x e < inf f x npes
b+£*f HK _b+K*f K

for all compact conver sets K CR", ¥V fe€ Oy, and Vb € R".

Proof. There is an affine function h : R™ — R™ (which depends on K') such that
B(c,) C h(K*) C B(C,,). Write h = L + v as above. For € b+ K*, we have

fpre(@) = / F@px- (@ — v)dy

Applying the change of variables u = Ly, this becomes
f*pg(x) = /f(L_lu),u(Lx —u+v)du
= /f(Llu)u(Lx —Lb+ Lb—u—+v)du
= /f(L_lu),u(L(x —b)+ v+ Lb—u)du.
Therefore,
[ pg(x) = /f(Llu)/,L(h(x —b)+ Lb—u)du < /f(Llu)z/J(Lb — u)du,

5



where ¢ : R" — [0, 00) is defined by

and where we used the observation

r€b+ K'<—x—be K* = h(z —b) € B(C,).
Thus
sup f * pger < /f(L_lu)Q/J(Lb — u)du.

b+K*

On the other hand, for x € b+ K*, we also have
/f(L‘lu)w(Lb —u)du = /f(L_lu)w(La: — Lx + Lb — u)du
= /f(Llu)w(Lx — L(z —b) —u)du
= /f(L_lu)w(Lx +v—L(z—b) —v—u)du
= /f(L_lu)z/J(Lx + v — h(z —b) — u)du.
Applying the change of variables u = Ly, this becomes

/f(L‘W)@/J(Lb —u)du = |Det L] /f(y)¢(Lx + v —h(z —b) — Ly)dy

I
=
S
=
—
S~~~

(W) (L(z —y) +v —h(z —b))dy
— IDetLl [ fu)e(he ~ ) ~ hia ~ b)dy

< [ f)iDet Linila = )iy

= [ fme o - )y = £ (o)

where
n(z) = sup P(2).
|2/ —2|<Ch,
Thus
sup fox g < /f(L_lu)z/)(Lb —w)du < inf f kg,
b+K* b+K*
as desired.



Proposition 2 (B. Shayya). [5/
Suppose
6 is a box in R™ of center & and dimensions R™Y2 x --- x R7Y2 x R71,
0* is the box dual to 0 (i.e., 0 is centered at the origin and has dimensions
RY?x ... x RY? x R),
1 1S a non-negative rapidly decaying function on R",
¢ is a Schwartz function on R™ which is ~ 1 on B(0,1) and whose Fourier
transform is supported in B(0,1),
{6 }1>0 18 a dilation group on R™ given by Sy = (tyy, ..., tyn_1,t*yn), and
¥ is the Schwartz function on R™ defined by 1 (§) = Qﬁ(é\/ﬁ(ﬁ — fo)).
Then: R
(i) There is a rapidly decaying function p on R™ such that 1 5 * [[(x) < pe- ()
for all z € R".
(ii) There is a rapidly decaying function p* on R™ such that: to every function
f € LY(0) there is a function h € L*(0) such that |h| ~ |f| on 0 and

sup |f| Sy
b+-6

for all b € R™.

Proof. (i) For x € R™, we have

- 11
v = (VR 1R G (6 vm )

and

1

W) = g ) POt o) ey

1
— ([, 106t = ) ooV R

[e.9]

" o0 VR)dy)
j=1 /3(0,2]'@)\8(0,2]'—1\/@) ‘gb( 1/\F )}77 y/VR)dy

=
o0

1 ~
) ;(SUP n) /13(0,21\/1?2) |6(8,ym(x = v))|dy,

Aj

VAN

where Ag = B(0,1) and A; = B(0,27) \ B(0,2771) for j > 1.
Since ¢ is supported in B(0, 1), ¢(5W§(x —y)), as a function of z (with fixed
y), is supported in y + #*. Since y € B(0,2/v/R), it follows that

x € box of center 0 and dimensions 2V R x - -+ x 21V R x 2R,



and so
01/yr® € box of center 0 and dimensions 20 x o x 2 e, 4,y € B(0, 27).

Therefore,

*¢l(x) < Rn+ ) ZO sup )| ¢ll =< | B(0, 2V R) X502 (81 7)
j= .7

B0, 1)~ nd
— _R(”+1)/2 ||¢||LOO 22 ]<Sklpn)XB(O72j)(5l/\/Ex).
=0 i

Letting

o0

= [B(0,1)[[|¢| L Z 2" (SE_P MXB0.29)>

J=0

we get a rapidly decaying function on R” with
#[0](2) < pg-(z) VxR
(ii) Given f, we let h = f /1 to get |f| = |¢||h| ~ |h| on 6, J/C\:/};*i/ﬂ\, and

|fl*nyz < bl x [ xn 5 < |h] * po-

(by part (i)). Now the locally constant property provides us with a rapidly
decaying function p™ on R” such that

sup |f| *NVER < sup |h| % g« < inf |h| * pJ;;
b+0* b+0* b+0*
for all b € R™. 0

We now prove some important lemmas that will be used to prove multilinear
restriction.

Lemma 2. Let S; smooth compact transverse hypersurfaces in R"
f; = g; and supp g; C N1/grS;
¥ e G5 (R)

pig, () = & @(m_fo)

po=(2n)/(n—1).
Then

Zf Br = B(flf’oﬂ”)

n

| po/(2n)
ST | (TAT LY I1 (s [ 168t
=1

7j=1



2

dz.

Proof. We have
J 1585 e = 5 [ @0 o = 5 [ +ai()

Since fj(x + x¢) is the Fourier transform of e=27%0¢g,(¢), it follows that
150 gladn = g [ 2m0%g) w0 )] de

We write g; = >_, gj.0, and we recall that each §isa VR ! x---x VR IxR™!
box. Since ¥ /= is supported in a ball of center 0 and radius ~ v R~ it follows
that each function

:

( 27mxo§gje) *wm

is supported in a ball of the same center as # and of radius ~ v R~1. So
2 2
—2mixg- —2mixzo-
H E (e “€g0) =, < E H(e Cgi0) *x Y pt L
0 0

(where we used the fact that if 6 # ', then the distance between the center of 6
and the center of #' is ~ v R~1), and so

[ o < g 3 [ [l 0) et

Denoting the Fourier transform of e 2™ g, o by fjﬂ, we obtain

11~ o (|2

115(@)Pus g (2)2de < flo(@))? )| dz
/ J Byr ;/| 3.0 (\/ﬁ)‘
DY fgmvg,mn%(x)?dx

S Z sup (|fj/,9‘ * 77Q\/§)27
9 QvE

where 7 is a rapidly decaying function on R™ which depends only on . So

dg.

n

po}
H ymo 2 < TL (3 s (1F50l #m0,)°)
o Qvr

j=1
pg(n—1)
n 9 ﬁ 2n
- (IS Gnan) ™)
j=1 9 QVr
. N po(anfl)
2\ n—1
< (f TL (3 5w (550l #n0,)°) dx)
Qur j=1 © o Vg
n
<

(R[OS MED .

VE j=1



We recall that f, is the Fourier transform of e >™%g;,  Denoting the
Fourier transform of g;¢ by f; e, we see that

ﬁ”f]/iB\/,Po/n < 72 H<Z|f39|*7762 $+x0)>7fldx

VR j=1

- { I 5 ol #3540 @) da.

0+Q % R j=1

So

1

n - 2o _n i n—1
REAves e [T mn gl SRE [T Ul w0 002) ™
j=1 Rj=1 " ¢

and so

1

AvngcBRanjuBfnp 110 D1 sol e )

R]]_

For each 6, we let T(6) be a finitely overlapping family of VR x - - - X VR x R
tubes pointing in the direction of 6 and covering Bgr. Part (ii) of Proposition 2
provides us with functions h;y € L'(6) and a rapidly decaying function ™ on R”
such that

okt = . + inf s ol % ut
SUP G501 % 7g . = SUP [0l % g 7, < 1 [Rso] + p1g-

for all T € T(6). Now, we define the functions g; by

Z Z 1nf|h]9| *1‘9*) XT,

O0CN1/rS; TET(H)

and we observe that

—~ 2
> (10l * ﬁQf) <gF < Y (lhjol = 1)
GCNl/RSj QCNl/RSj
on Bp, so that
n 1 n
=y e
IT( > elens @?) < TLgf (@)
j:1 GCNl/RS]' j:l

for all x € Bg. Thus

AVgB\FcBRHHfJ np 1" < j{ ng ) D
7j=1

le

10



It is now time to appeal to the multilinear Kakeya inequality

7{ Hg;r(x)l/("_l)dx < R° H (74 gj(x)dx) "
QR j=1 j=1 Br

to get

1
n ¢ = =1
NT— H 15y " 5 BT 74 S Vol i ()
BRocN, RS,
The right-hand side of this inequality can be written as

RIL(R™ 32 Mol = pellz) ™

J=1 0CN1/RrS;

By Hausdorff-Young and Plancherel,

2 —
2 < Hh'j,@

1Bl * b5 w2 llgllin < Whsollze ~ llgiollze,

ST kel *

QCNl/RSj GCNI/RS]'

SO

72 = llgllz> = 1fill

2

and so
n 1

Aves e Lm0 < B TL (R1518:) ™

j=1 j=1
as desired. n

Theorem 1 (Multilinear restriction). Suppose f;, g;, S;, and py are as in Lemma

2. Then .
l/n €
HHm s < ® 11 (5 [ 15000

for 1 < p < py.

1/(2n)

Proof. We consider a sequence of scales. We pick a large integer M and we let

—M . M
r = R*" . We will use Lemma 2 at scales r,7%,...,r>" = R. We abbreviate
2(1
re = 12",

We begin with a crude inequality at the small scale r. Applying Bernstein’s
inequality to each f; on each B, C Bg, we get

[ 1L <1m0.00 T2 5, = Cur' zp”HufJ [

”Jl Jj=1

11



where |B(0,1)| was absorbed into the constant C),, and where we used the fact
that » > 1. Therefore,

R" n
/ TT 151 mde < G Avey, e, H A

R J 1
Therefore,

7{ H |filPmde < Cur®™ Ave, s, H £ 150
Br .
But

AVgBch R AVgBT1 CcB ,;{AV%U}?TCBT1 )

so the result follows by repeated (more precisely, M) applications of Lemma
2. O

12



Chapter 3

The ¢? Decoupling Theorem

For 2 < p < oo and R € R, we let D, ,(R) be the smallest constant such that
the inequality:

1/2
1Bglrwn < Dap(( D0 1Bl
QEPart ,_y/5([0,1]"71)

holds for every cube B C R" with side length R and every g : [0,1]""! — C.
We call D,, ,(R) the decoupling constant. The following theorem was stated and
proved by Bourgain and Demeter in [6].

Theorem 2 (¢* decoupling). Let D, ,(R) be as above. Then
Dnp(R) S B

for2 <p< 2(”—:1) The implicit constant depends on €, p,n but not on R.

n

13



Chapter 4

Key Lemmas and Orthogonality

Lemma 3. Let W be the collection of all positive integrable functions on R™. Let
R > 0 and fir E. Suppose Oi : W — [0,00],i = 1,2 satisfy the following four
properties:
(P1) O1(xB) < Os(wp,g) for all cubes B C R™ with {(B) = R
(P2) O1(au + pv) < aO1(u) + SO1(v), for every u,v € W and o, 5 > 0
(P3) Ozy(au + Pv) > aOy(u) + SO5(v), for every u,v € W and o, 5 > 0
(P4) If u,v € W and v < v then O;(u) < O;(v).
Then
Ol(wB,E) ,S Oz(wB,E)

for each cube B with side length R, where the implicit constant depends only
on the implicit constant from the first property (P1) and is independent of R, B .

Proof. Let B be a finitely overlapping cover of R™ with cubes B’ = B'(cp/, R) .
To prove this lemma, we need to prove three basic inequalities involving charac-
teristic functions and weights. The inequalities are:

XB S Z wp S Wp (4.1)
B'eB
Z xp (z)ws(cp) (4.2)
B’eB
Z wB/ wB CB/) < wB( ) (43)
B'eB

First, we will show that if these inequalities hold, then the lemma is true:

O1(wp) < Ol( Z XB’U)B(CB’)>

B'eB

N ZwB(CB’)Ol(XB’) N Z wg(cp)Oz(wpr)

B'eB B'exp

14



Z OQ(U}B(CB/)U)B/)

B/GXB/

5 OQ( Z UJB(CB/)U}B/> 5 OQ(U)B).
B'eB
Now we prove the inequalities.
(1) is easy to check.

To prove (2), first notice that if we take two cubes in R" having the same side
length and such that they have at least one point in common, then their centers
are at most at a distance of Ry/n from each other (by taking the case where one
diagonal coincides, as this gives the furthest position of the cetners).

Z xp ()wp(cp) = Z X () !

leg—cg] E
BeB BeB (1+=52)

1
2 3 o 2 e o

BreB (
> b wp(x)
(14++/n)F

the last inequality is true since at least one of the B’ has to contain x and the
weight of a cube is always at most 1.
To prove (3), just notice that wg(cp) < 1 and so we get

Z wp (z)wp(cp) < Z wp () S wp(x)
B'eB B'eB

where in the last step we used inequality (1). O
>

Proposition 3 (L? decoupling or orthogonality). Let Q be a cube with 1(Q)
R Then for each cube Br C R™ with side length R we have:

1/2
1EQdlzwny S (Y 1Bl 20,))
qEPart%(Q)

Proof. Pick a positive Schwartz function 7 whose square root has fourier support
contained in a small neighborhood of the origin, and such that n > 1 on B(0,1).
We apply Lemma 3 by setting

O1(v) = | Eqylliz)

and

O2(v) = D lEqyllta)

qEPart%(@

15



All properties are straightforward and follow directly from the basic properties
of the norms except (1). So we only prove (1):

”EQQH%Q(B’) < HEQQHQL?(nB/) = ||\/773’EQ9H%2(R”)'

Now, the functions /np E,g are orthogonal and hence the result follows directly.
O

Lemma 4 (Reverse Minkowski’s Inequality). Consider the measure space (X, M, p).
Let p € (0,1] and f,g be two positive measurable functions. Then we have the
following inequality:

([ +grdwt = ([ prans + ([ gy

Proof. The function defined for = > 0 by ¢(x) = P is concave for p € (0,1] .
This can be shown very easily since ¢”(x) < 0 for the given range of p. Hence
¢ satisfies the concavity inequality: ¢((1 — o)z + ay) > (1 — a)é(z) + ad(y) for
any x,y > 0 and for any o € [0, 1].

Define the functions F' and G by

B f
(f fedp)v) + ([ grdp)

g
(f fedp)v) + ([ grdp)

F

and

and notice that

1
Frdp = 1 1 fpd
/‘ 8 Kfﬁ@ﬁ%ﬂfw@ﬁf/‘ 8

and

GPdy — : : rd
fen KIPWV%HIWWVV/glL

so that we get

Now set ([ FPdp)r =1 —a and (f Grdu)r = a.

By the concavity of ¢ as defined above, we get the inequality

F G FP GP
Vs (1—a) 4
l—oz+aoz) = (1 a)(l—a)P+aaP

(F+GY = ((1-a)

16



and hence we get

1_
/(F+G)pdu2 ﬁ/de,ujL%/Gpdu:l
so that

/ 1 f 1 + 1 g
([ frdu)?) + (f gpdp)e ([ frdu)?) + ([ gPdpu)

Ydp > 1

3=

so that

hSA

/(f+g)pdu > ((/ Frdu)y + (/gpdu) )"

and therefore

D=

(/(f+g)”du)fl’ > (/f”du)fl’ +(/gpdu) :
O

Lemma 5 (Reverse Holder’s Inequality). Consider cubes @ and B according
to the convention mentioned in the beginning such that the side length of Q) is
(Q) = R and the side length of B is {(B) = R. Let ¢ > p > 1.

Then ||EQg||L3¢(wB,E) < ||EQ9||L§;(wB ) Where the constant is independent of R,
' q

Q, B and the function g.

Proof. Let n be a positive smooth function on R™ that satisfies xp0,1) < 1B(0,1)

and such that supp(n%) C B(0,1). The following inequality follows easily:
1
| B9l as) < 1Eagll oo = 15" Eqgllcagn).

Let ¢ be a Shwartz function which is constant ( = 1) on the cube of center the
origin and radius 10. An easy computation using the fact that the fourier support
of 77]13/ PFEqg is contained in the cube 3Q (that is a cube having the same center as
@ but thrice its side length) shows that:

(ni"Eqg) * 4 = ng” Eqg.

+ 1 —1=12— L apply Young’s inequality to get:

SRl

1
P
1 1 A —n/r’

Ing” Eqall Loy < Ing” Eqgll @ ¥ollLr@y S B | Eqgll o).

Now we use the same notation and some of the inequalities mentioned in the
proof of lemma 3 to continue in the following way:

|Baglstun ) = [ |Bogltwns £ - wns(ear) [ |Easl
B'eB

17



_ng
§R o Z U}B7E(CB’)||EQ9||%ID(WB’)
B'eB

q
ng

<R+ ( Z [wp,p(cp)] ‘|EQQHI£”(’73’)) ’“
B'eB

q
SR—TI(/|EQ9|pr,E”>p
q

where all integrals are with respect to the Lebesgue measure.
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Chapter 5

The Decoupling Norm

In this section S C R™ will denote a compact positively oriented curved C® hy-
persurface. (Our truncated paraboloid was one example of such a hypersurface).
Now we define what we shall call the decoupling norm. Let supp f C NsS and
let Q be a domain in R™. Then the decoupling norm is defined by Guth in [4] as:

1/2
e =0 X 1ol,o)
96Part61/2 (N(;S)

It can be shown very easily that this is an actual norm.

We now look at the situation where a domain is partitioned into smaller
subsets and we try to estimate the decoupling norm over the whole set in terms
of the decoupling norm over its partitioned subsets. For the usual L” norms, we
would get equality. For the decoupling norm we get the following:

Lemma 6. Let Q= |Q; , p>2,0 >0, and f is such that suppf C NsS. Then
we have:
ZHfHLpa a;) < sy

Proof. Starting from the left-hand-side and replacing the decoupling norm by its
explicit expression, we get

ULAIEDY (Z flltay)” = | > flf,

Now applying Minkowski inequality for the €§/ ? norm and using the fact that
Zj HinP(Qj) = ||f||IL)P(Q)7 we get

| > 5ol
0

D
2

on < (XAl o) = (S olnen)” = 171
’ 0
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The next question we ask is if we get a good decoupling over the subsets
forming the partition, does this give us a decoupling for the whole set? And the
answer is given by the proposition below:

Proposition 4 (Parallel Decoupling). Let Q,€;,p, f be as in the above lemma.
Moreover, suppose that the following inequality holds for every j:

[fllzeeyy < MIfllLrsy)-

Then we get:
[fllzr@) < Ml fllLese)

Proof. This will follow as a corollary to the previous lemma. Again we expand

1 7oy = D 1 1o,y < Z M| ppan)” = Mpz 1105,y < MPIFIE 000
j

where the last upper bound is given by the result of the previous lemma. Raising

both sides to the power % ends the proof.
O

In terms of our new notation, the decoupling constant D,(R) is the smallest
constant such that the inequality:

||f||Lgvg(BR) < Dp(R)Hf“Lgblg/R(BR)

holds for all f with suppf C N, /r(S) and all cubes Bg. So the ¢* decoupling
theorem asserts that D,(R) < R° for every ¢ >0 and 2 <p < ("H)

20



Chapter 6

Parabolic Rescaling

We start by proving that the decoupling constants are invariant under affine
changse of coordinates.

Lemma 7. Let h : R" — R" be an affine map. Let Q be a domain in R"
partitioned into a disjoint union of subsets 6. We denote the decoupling constant
over 0 given by its partition to the 8's by D(2 =| |60). Then we have:

D =] |6) = D(n(Q) = |1(6))

Proof. Let Q = h() and § = h(f) Suppose g is a function with suppg C Q. Then
g = > 595 Applying the change of coordinates given by this affine transforma-
tion, we get a function f with fourier support in €2 such that fo =, fo. Denote
the Jacobian of this affine transformation by |J|. We notice that ||g||.»@q) =

1 1 . .
[J17 ] Fllzo(ey and [1ggl o@y = 17171 £llo,s, This finishes the proof. m

Theorem 3 (Parabolic Rescaling). Let r < R. Let 7 € Part,—12(Ng-15) and
suppose [ has Fourier support in 7. If € Partg-1/2(Nr-1S), then we have:

1/2
110,500 S DRI (S 1ol )

ocr

Proof. After an affine transformation which leaves the decoupling constant in-
variant, we can shift 7 to the region:

{(&, oy &n1,6n) 10 <&, < r0< 1&| < T*I/Z;i =1,2,..,n—1}

Define the new coordinates &, := r, and & = r'/2¢;, where i = 1,2, ...,n — 1.
We will denote the image of any set A in the new coordinates by A. So now we
have f as a (R/r)"Y2 x ... x (R/r)™Y2 x (R/r)~" — block.

The corresponding change of coordinates that takes place in physical space is
given by: @, = r 'z, and &; = r~/2x; fori =1,2,...,n — 1.
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Define the function f as f(z) = ¢(Z) and so we get that since the fourier support
of g is in 7 then the fourier support of f would be in 7.

Easy computations show that By is in fact an ellipsoid E with minor axis of
length R/r~' and n — 1 major axes of length R/r—1/2,

Partition the ellipsoid E into balls of radius R/r. On each ball Bg/,, we have the
estimate:

1/2
190220, 50,00 < Do(R/) (3 1983, 0,0) -
0

By parallel decoupling, this gives us a decouping estimate on the entire ellipsoid
as follows:

1/2
19022, < DoR/) (3 NaliEs,, )
0

The fact that all norms are averaged takes care of any Jacobian fators that might
arise during the change back to our original coordinates and so we get the desired
estimate for f. Note that if we replace balls by cubes and the ellipsoid by the
corresponding box, the arguments will remain true.

]
Proposition 5. For any Ry, Ry > 1, we have D, ,(R1Rs) < Dy p(R1) Dy p(R2).

Proof. We let R = R; x Ry, f be the function with fourier support in Ny gS,
and 7 € Part -1/2(Ny/r(S5)). We cover Bp with disjoint boxes of side length R,

(this is possible since R > R;). We thus get the inequality:
1/2
1 ssim < DolRO (X I, 80) -

Let § € Partz-1/2(Ny/gS). Using parabolic rescaling, we can find an upper bound
as follows:

1/2
1ol < DolB) (D2 Mol (Br))

ocr

Using the first estimate with this inequality we get:

» 1/2
102y 00 < Do BOD(R) (D ol )
0
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Chapter 7

Linear Decoupling and
Multilinear Decoupling

We will denote the multilinear decoupling constant by D.

Theorem 4. Suppose that in dimension n — 1, D, ,(R) < R® for every e > 0.
Then, for any € > 0 we have:

D, ,(R) < R°D,,(R)

and )
Dnp(R) < Dny(R)
for any n,p, R.
Proof. See Bourgain and Demeter’s proof in [1]. O

So we can conclude that if decoupling holds in dimension n—1 then D, ,(R) ~
D, ,(R) = R for some v = y(n,p).

Theorem 5 (Multilinear decoupling for 2 < p < 2n/(n — 1)). Suppose f;, g;,
S, and py are as in Lemma 2. Then

T

€ 1/n
SR Huf]nLLR

P
Lavg

for 1 <p < po.
Proof. Let ¢ € C§°(R™) be such that ¥ > 1 on By. By multilinear restriction,

I TLis
j=1

o) S \\H|fjwl|1/"
avg .

Lgvg(BR)

< ®] o T

N - jWYR-1 i[}) .
Jj= 1 R
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By Plancherel,

1 — 1
ﬁ/‘fﬂﬂR1|2d$:ﬁ/|93*¢}%1|2d§

Writing g; = >, g;,0, and observing that the functions g; ¢ *1g-1 have essentially
disjoint supports, we see that

%/@j*%{ﬂ dff,ﬁz:/mga*%% 1Pde.

Applying Plancherel again, we get
/\waR e S o Z/\fjewR da.

Defining np,, = R_”MEDL:P, we get

1 —_—
i [ 150mPde S 3 [ 1oPumds =3 ol
0 0

Thus
n 1/(2n)
H Hm e S BT Msoliern,)
Lavg(Br) j=1 6
i 1/(2n)
< R H <Z|’fﬂb0‘|ip<nBR>>
€ 1/n
- R anjuLi,R y
provided 2 < p < pg. O]

Lemma 8. If suppg; C Ni/gSi, fi = Gi, and S; are compact positively curved
transverse hypersurfaces in R"™, and if ¢ > 2n/(n — 1), then

AVEp pn H 1illiz 5, S B H 1illis O H i
Ifg=2n/(n—1), then a(q) = 1. If g =2(n+1)/(n — 1), then a(q) = 1/2. If
q>2(n+1)/(n—1), then a(q) < 1/2.

Our goal is to show that D, ,(R) < R where s = 2(n + 1)/(n — 1), for
2 < q < 5. We are going to use induction on the dimension, so we assume that
D, 14R) <R (ify=2(z+1)/(x —1), then ¢ = —4/(z — 1)?). We know that
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D, ,~ 5n ~ R'™?_ We just have to show that v(n,q) < e. We want to study

D,, 4, and so we bring the multilinear decoupling setup into the picture. We want
to get an inequality of the following form:

[ D RGH A0

avg
Br ;=1

To do this, we take a large integer M and we define a sequence of scales:r, 12, .
R where r = R, We will use Lemma 8 at scales r,72,...,r2" = R. We erte
re =1

By Bernstein’s, we have the following inequality at the small scale 7:

1 T

R j=1

tde < rCAveg cp, H ”fz”szg(B

In this inequality we lost a factor of
C
= R2M .
Next, we apply Lemma 8 on each ball of radius r? = r,. We get

(1a

AVgBchRHHszB (B) <T1AVgBT1CBRHHfz”L2 (Bry) HHszn
=1

avg

We use Hélder’s inequality to separate the terms of the form || fi”Lq’Tlfl(B :
from the L? terms, and then we will decouple them the rest of the way in terms
of D, ,(R/r1).

Recall that the multilinear Hélder inequality says that if b; > 0 and ) b; =
1, then Avg [[; 4; < [[;(Avg A;)%. We will apply the (n + 1)-linear Holder

inequality with exponents a(q) + %"(q) + ot 17%([1) =1 to get
Avgp, By H Hfz”Lgvg(Br
a alg) - 1ola)
< riave, oo (T1IN o) T (A7, )
i=1 i=1 Lavg (Br,

- a a(q)
< (AVgBrchR H ||fi||£gvg(37\1)>

=1

x H (Aves, caal i,

1—a(q)

)

g 1
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The first factor is ready to apply Lemma 8 again at the next scale. The second
factor is slightly decoupled, and now we explain how to decouple the rest of the
way. Using Minkowski’s inequality, we can bound

Avep, coll il o <A,
L av

avg 1

g BR)

This expression involves decoupling f; into contributions from caps of size r; 12,
We want to decouple f; into finer caps of size R~/2. To do so, we use parabolic
scaling to decouple f; further, bringing in a factor of D,, ,(R/r1):

RN\~
17l gty < Dual Ry S () Wil

avg ( R)

All together, we see that

n
q
AVgBchR H HfiHZng(BT)
=1
1-a(q)

< rl(AvgBchRHufzu A | (S T
=1

avg

q o(q)
= /r.]. <AVgBT1 CBR H Hlezgvg(Brl))
1-a(g)

X(yﬁ—}?)m(l o(q)) (HHsz )) n

Putting together the whole argument so far, we have proven that

%B H’fz’ d:U 5 r T1<AVgBr1CBRH”leLavg(B’rl))

R j=1

a(q)

1—a(q)

X( ) <H”f1”Lgv’; 1(BR)> n

Now we can iterate this computation. Repeating the computation one more
time, we get

g

e H il oy S 75 AVEs o [T, H 150,
74 1 av

where we have used Main lemma Lemma 8. The right-hand side of this inequality

is
1-a(q)

alg)
1 !
s AvngR(H LTy | (LN I

2
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which, by Holder, is

n q alg) Lot
<r5(Avancn [TIAIE o) TT(Avemcmlfil, o )7
i=1 i=1 avg (Brg
which, by Minkowski, is
n q O{ n 1—a(q)
< 5 (Aven e, [T 1 )™ TT (1007, )
=1 i=1 avg BR)
Using parabolic scaling, we obtain
AVgBrchR H Hfingvg(Bm)
i=1
n a a(q) L~ ol
S (AVngCBR,H ”fi||g§vg(3rz)> 11 <<r2> I L 1(BR)>

i=1

a(q)
)

= 73 (AVgBTQCBR H ||fz
1-a(q)

«(2 )””’”(IIHMLqu D

avg

Putting together the whole argument so far, we have proven that

# Tt
Br j=1
. n q a(@)? R\ av(1—a(q)e(q)
S 7”07"17’2 (AVgBTQCBRH||fi||£§vg(BT2)> (_)

T

qv(1—a(q)) (1—a(g))(1+a(q))
< ()

avg

“erf)(ery) @ (ery )"

IN

r

a(q
x(A Ve, 1cBRH||fZHL2 )

q)M—2 (cR) Y(1—a(q))a <cR>qvl a(q))
T2 (A1

—a(q)) <1+a(q)+...+a(q)M—2)
(H il ) |

avg

M-—-1

X

>q71 o( ))a(

Tm—1

where ¢ is a constant which is greater than the constant coming from Lemma 8
and greater than the constant coming from parabolic scaling.
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Applying Main lemma Lemma 8 one more time, we arrive at

74 T] 1l de
BRZ 1
M—-1

- a(q
< Teerir (crmmfzum BR)HMHLqu )

. (ﬁ Hf H _a(q))(1+a(Q)+--~+a(q)M72)
v LQR 1 )

avg

)Jw—l

iN
)—‘H

(cR>q7(1 a(q))a(q

T

X
l

M M—1 av(1—a(q))
1\ € oz(q)l*1
- o) (T E)

=1

1

l
(1-a(@) (1+a(@)++a(@)™2) +a(q) M1

(Huf@HLqR o) ,

avg

where we have used the fact that

il tom =15 g < Wy ey
and where
M M-
av(1—a(q))
= (H (@) )(H alg)- )
I=
= CZz—la(q)‘1<sz”11a(q)l—1>q“f(1 o(q))
= clzfzizazj)\l Cl’?i‘ifff)_l av(1-a(q))
< Cﬁ(qﬂrqv‘
Now

(1—a(g)(1+a(g) + - +a(@™?) +a(g)™!

= l+alg)+ - +a@"?—alg) —a(@?®— - —alg" = 1,
and r; =2 = RY/?" 5o
¢ it

Br j—1

M s M—1 . (1-a(q))
< rCeie@ a(q)+‘”<HR(2a(Q)) )2M€ (H R(1 22M) ((D“)

=1 =1

LqR l 7
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and so

RT ~ D,4(R)
< Comamto ( Rz?il(za(q»l*l) e ( pE (-3 )a<q>l-1)‘”““"(‘”)_

Also,
1—(2a(g)™ .
M . 1(_2—0(131)) if L <a(g) <1,
> (2a(g)) ' =
=1 M if a(q) =3
and
M-1 ol M-1 o M- .
-1 _ -1 -
(1= 57 )a@™ = D al@' " = 55 X (2a()
=1 I=1 =1
1— M-1 1—(2 M-1
10_(2)([1) 5T (1552()(;) if 3 <a(q) <1,

Case 1: a(q) = 3. Then
R < RQLMC%WR;%ER(I—CV(@M‘I)qw e

S0 that M—1 C 2M
RAFTH 0T O < R (2HaY Ronre
~Y

i.e.

M+1 C 2M
R oM V5~ o€ 5 cAtar

Letting R — oo, we get

M+1 C 2M
2M qry — 2M + 2M
i.e.
(M +1)qy < C+2Me,
Le. M+1 C
<= +2
i qry M+ €.

Letting M — oo, we get ¢y < 2¢, so that v < % <e.
Case 2: 5 < a(q) < 1. Then

RQ'Y
1—(2a _ 1—(2a(q)M—1
< REr et R s (1@ o g R n-at)
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so that

_ 1—(2a(q)M—1 1—(2a(q))M
Ro@" Lot s SRR —n(-al0) < RV cia TR e SATe.
~Y

Letting R — oo, we get

2 1-2a(g)™!

alg)M gy + 2M 1 —2a(q ¢v(1 = alg) < 2M * 1 —2a(q)
I ag)" -1
1+ s a1t

< ¢ (20(g)M =1 €
~ 2(2a(q))M-1 2a(q) — 1 (2a(g))M-1

Letting M — oo, we get

1-alg —_ _2a(q)

T 3alg) - 17 = 2a(g) - 1°
i.e.
(2a(q) — 1) gy + (1 — alq)) gy < 2a(g)e,
1.e.
a(q)qy < 2a(q)e,
1.e.
2e
YS — <€

1-2
=1
and
M—1 Vo1
2! 1
(- e = i S
=1 =
1 1—2M
= M-1—-—"2
oM™ 1 -2
oM _ 1
= M-1 SN
so that
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i.e.
c oM _y
qy i M 7 (2€)
R? < Raw (MR Taar (29,

Letting R — oo, we get

c 2M—1
qy < 2—M + oM (26).

Letting M — oo, we get

qy < 2e.
This gives
2e
7S — <k
q
as desired.
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