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An Abstract of the Thesis of

Njteh Haroutioun Mkhsian for Master of Science
Major: Pure Mathematics

Title: The `2 decoupling conjecture

Suppose f1,f2, ...,fN are functions in a Lebesgue space Lp(µ).
Then

‖f1 + · · ·+ fN‖pLp(µ) =

∫
|f1 + · · ·+ fN |p dµ ≤ N

p
q

N∑
l=1

‖fl‖pLp(µ)

so that we get

‖f1 + · · ·+ fN‖Lp(µ) ≤ N
1
q

(
N∑
l=1

‖fl‖pLp(µ)

) 1
p

.

In the special case of p = 2, this inequality is reduced to

‖f1 + · · ·+ fN‖L2(µ) ≤

(
N∑
l=1

‖fl‖2
L2(µ)

) 1
2

provided the fl are mutually orthogonal.

One of the guiding principles of harmonic analysis (more precisely, restriction
theory) states that if the functions f1, . . . , fN are Fourier transforms of measures
of the form g1dσ, . . . , gNdσ supported on a paraboloid S of surface measure dσ,
then f1, . . . , fN are almost orthogonal provided the functions g1, . . . , gN are ap-
propriately separated. One particular manifestation of this principle is the l2

decoupling conjecture which asserts that to every ε > 0, there is a constant Cε
such that

‖f1 + · · ·+ fN‖Lp(µ) ≤ CεN
ε

(
N∑
l=1

‖fl‖2
Lp(µ)

) 1
2

vi



provided g1, . . . , gN are appropriately separated, when 2 ≤ p ≤ 2n+2
n−1

.
This conjecture has recently been solved in [4] using multilinear theory. The

purpose of our thesis is to present the solution to this important conjecture fol-
lowing the exposition in [1] and [3].
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Chapter 1

Notations

We will denote the truncated paraboloid in Rn by

Pn−1 := {(ξ1, ξ2, ..., ξn−1, ξ
2
1 + ξ2

2 + ...+ ξ2
n−1) : 0 ≤ ξi ≤ 1}

We will denote cubes in the frequency space [0, 1]n−1 with the letters Q, q and
cubes in the physical space Rn with the letters B,∆.

We will associate with each cube B = B(cB, R) in Rn the weight

wB(x) =
1

(1 + |x−cB |
R

)E

We will always assume that all cubes have side lengths in the set 2Z := {2k : k ∈
Z} We will denote by σ the lift of the Lebesgue measure from [0, 1]n−1 to the
paraboloid Pn−1.

We define the extension operator E
(n)
Q = EQ as follows: for a function g : Q→ C,

EQg is defined as the Fourier transform of the measure gdσ, that is EQg := ĝdσ.
More explicitly,

EQg(x) =

∫
Q

g(ξ1, ..., ξn−1)e2πi(ξ1x1+...+ξn−1xn−1+(ξ2
1+...+ξ2

n−1)xn)dξ,

where ξ = (ξ1, ..., ξn−1) and x = (x1, ..., xn).

For positive smooth functions η defined on Rn we will denote by

ηB(x) the function η(
x− c
R

) where B is the cube B(c, R) of cetner c and side

length `(B) = R.

For positive measurable functions ν : Rn → [0,∞) which we shall call weights,
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and for a function f : Rn → C, we define ‖f‖Lp(ν) :=
( ∫

Rn
|f |pνdλ

) 1
p where λ is

the Lebesgue measure on Rn.

We also define the norm ‖F‖Lp#(wB) :=
( 1

|B|

∫
|F |pwBdλ

) 1
p

We will denote by |A| the Lebesgue measure of A if A has positive Lebesgue
measure and the cardinality of A if A is finite, where the power E can be chosen
large enough (usually E ≥ 100n) to satisfy integrability conditions.

We will use the notation <∼ to mean ”less than or equal to a constant times”
where most of the constants will depend only on the Lebesgue index p and the
dimension n.
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Chapter 2

The Restriction Problem and the
Kakeya Conjecture

The restriction problem was first posed explicitly by Elias Stein and now it has
many equivalent formulations. In the study of restriction theory, one possible
approach to problems would be to take linear combinations of waves of the form
eiφ(ξ).xf(ξ) and look at operators of the form

Ef(x) :=

∫
Bn−1

eiφ(ξ).xf(ξ)dξ

where φ(ξ) is called the frequency of the wave. One possible choice for this
frequency would be the parametrization of the paraboloid:

φ(ξ) = (ξ1, ..., ξn−1, |ξ|2).

A typical question that can be asked would be: for what values of p does the
following hold:

‖Ef‖Lp(Rn) <∼ ‖f‖L∞(Rn).

A famously unsolved conjecture in the study of restriction theory is what is called
Linear Restriction, as stated in [2] and it goes as follows:

Conjecture 1 (Linear Restriction). Let U be a compact neighborhood of the
origin in Rn. Let S be an (n − 1) − dimensional submanifold of Rn that has
everywhere non-vanishing gaussian curvature. If q > 2n

n−1
and p′ ≤ n−1

n+1
q, then

there exists a finite positive constant C that depends only on n and φ such that

‖Eg‖Lq(Rn) ≤ C‖g‖Lp(U)

for all g ∈ Lp(U).

This conjecture which remains unsolved in the general case implies what is
known as the Linear Kakeya conjecture which can be stated in many forms. One
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possible form goes as follows: The Hausdorff dimension of a borel set in Rn that
contains a unit line segment in every direction is n. A stronger version which is
more quantitative says:

Conjecture 2 (Linear Kakeya). let 0 < δ << 1. Define a δ − tube to be a
rectangular box T of dimensions δ × δ × ... × δ × 1 (and hence of volume ∼
δn−1). Let T be an arbitrary collection of such δ− tubes whose orientations form
a δ − separated set of points on Sn−1. Then

‖
∑
T∈T

χT‖Lq(Rn) ≤ Cδ
n−1
q (#T)

1
q .

Although both of these conjectures remain unsolved in their general forms,
their respective multilinear versions have been formulated and proven successfully
as we shall show shortly. It is also the case that the Multilinear Restriction and
Multilinear Kakeya are equivalent to each other. However, the multilinear ver-
sions do not imply the linear versions. This however isn’t the case for decoupling
as we shall discuss later.

We shall be using a version of Multilinear Kakeya as proved by Bennett,
Carbery, and Tao in [2] and by Guth in [3].

Lemma 1 (Multilinear Kakeya). Suppose that `j,a are lines in Rn, where j =
1, 2, ..., n, and a = 1, 2, ..., Nj. Let Tj,a be the characteristic function of the 1-
neighborhood of `j,a. Suppose each of these lines `j,a makes an angle of at most
(10n)−1 with the xj − axis. Let QR be a cube of side length R. Then for any
ε > 0 and any R ≥ 1, the following inequality holds:

∫
QR

n∏
j=1

(
Nj∑
a=1

Tj,a

) 1
n−1

≤ CεR
ε

n∏
j=1

N
1

n−1

j .

We can deduce from this another version of multilinear Kakeya also proved
by Guth in [3] which will be useful for us in proving mutilinear restriction. We
state it as a corollary:

Corollary 1. Let `j,a, Tj,a, QR be as in the previous lemma.
Let wj,a ≥ 0 be numbers. Let

fj :=
∑
a

wj,aTj,a

Then for any ε > 0 and any R ≥ 1 the following inequality holds:∫
QR

n∏
j=1

f
1

n−1

j ≤ CεR
ε

n∏
j=1

(∑
a

wj,a

) 1
n−1
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We now state some results that will help us in the proofs that follow.
Suppose µ is a non-negative rapidly decaying function on Rn, and A ⊂ Rn is

a compact convex set. Then there is an affine function h : Rn → Rn such that

B(cn) ⊂ h(A) ⊂ B(Cn). (2.1)

The affine function has the form h(x) = Lx + v, where L is a linear map and
v ∈ Rn. We define the cutoff function µA by

µA(x) = |DetL|µ(h(x)).

Suppose K ⊂ Rn is a compact convex set with center of mass wK . The dual
convex body K∗ is defined by

K∗ = {x ∈ Rn : |x · (wK − w)| ≤ 1 ∀w ∈ K}.

Proposition 1 (The locally constant property). Suppose µ is a non-negative
rapidly decaying function on Rn, and cn, Cn are the constants in (2.1). Then
there is a non-negative rapidly decaying function η on Rn such that

sup
b+K∗

f ∗ µK∗ ≤ inf
b+K∗

f ∗ ηK∗

for all compact convex sets K ⊂ Rn, ∀ f ∈ O+, and ∀ b ∈ Rn.

Proof. There is an affine function h : Rn → Rn (which depends on K) such that
B(cn) ⊂ h(K∗) ⊂ B(Cn). Write h = L+ v as above. For x ∈ b+K∗, we have

f ∗ µK∗(x) =

∫
f(y)µK∗(x− y)dy

= |DetL|
∫
f(y)µ

(
L(x− y) + v

)
dy

= |DetL|
∫
f(y)µ(Lx− Ly + v)dy.

Applying the change of variables u = Ly, this becomes

f ∗ µK∗(x) =

∫
f(L−1u)µ(Lx− u+ v)du

=

∫
f(L−1u)µ(Lx− Lb+ Lb− u+ v)du

=

∫
f(L−1u)µ

(
L(x− b) + v + Lb− u

)
du.

Therefore,

f ∗ µK∗(x) =

∫
f(L−1u)µ

(
h(x− b) + Lb− u

)
du ≤

∫
f(L−1u)ψ(Lb− u)du,
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where ψ : Rn → [0,∞) is defined by

ψ(z) = sup
|z′−z|≤Cn

µ(z′),

and where we used the observation

x ∈ b+K∗ ⇐⇒ x− b ∈ K∗ =⇒ h(x− b) ∈ B(Cn).

Thus

sup
b+K∗

f ∗ µK∗ ≤
∫
f(L−1u)ψ(Lb− u)du.

On the other hand, for x ∈ b+K∗, we also have∫
f(L−1u)ψ(Lb− u)du =

∫
f(L−1u)ψ(Lx− Lx+ Lb− u)du

=

∫
f(L−1u)ψ

(
Lx− L(x− b)− u

)
du

=

∫
f(L−1u)ψ

(
Lx+ v − L(x− b)− v − u

)
du

=

∫
f(L−1u)ψ

(
Lx+ v − h(x− b)− u

)
du.

Applying the change of variables u = Ly, this becomes∫
f(L−1u)ψ(Lb− u)du = |DetL|

∫
f(y)ψ

(
Lx+ v − h(x− b)− Ly

)
dy

= |DetL|
∫
f(y)ψ

(
L(x− y) + v − h(x− b)

)
dy

= |DetL|
∫
f(y)ψ

(
h(x− y)− h(x− b)

)
dy

≤
∫
f(y)|DetL|η(h(x− y))dy

=

∫
f(y)ηK∗(x− y)dy = f ∗ ηK∗(x),

where

η(z) = sup
|z′−z|≤Cn

ψ(z′).

Thus

sup
b+K∗

f ∗ µK∗ ≤
∫
f(L−1u)ψ(Lb− u)du ≤ inf

b+K∗
f ∗ ηK∗ ,

as desired.
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Proposition 2 (B. Shayya). [5]
Suppose

θ is a box in Rn of center ξ0 and dimensions R−1/2 × · · · ×R−1/2 ×R−1,
θ∗ is the box dual to θ (i.e., θ∗ is centered at the origin and has dimensions
R1/2 × · · · ×R1/2 ×R),
η is a non-negative rapidly decaying function on Rn,
φ is a Schwartz function on Rn which is ∼ 1 on B(0, 1) and whose Fourier
transform is supported in B(0, 1),
{δt}t>0 is a dilation group on Rn given by δty = (ty1, . . . , tyn−1, t

2yn), and
ψ is the Schwartz function on Rn defined by ψ(ξ) = φ

(
δ√R(ξ − ξ0)

)
.

Then:
(i) There is a rapidly decaying function µ on Rn such that η√R ∗ |ψ̂|(x) ≤ µθ∗(x)
for all x ∈ Rn.
(ii) There is a rapidly decaying function µ+ on Rn such that: to every function
f ∈ L1(θ) there is a function h ∈ L1(θ) such that |h| ∼ |f | on θ and

sup
b+θ∗
|f̂ | ∗ η√R ≤ inf

b+θ∗
|ĥ| ∗ µ+

θ∗

for all b ∈ Rn.

Proof. (i) For x ∈ Rn, we have

ψ̂(x) =
1

(
√
R)n−1

1

R
e−2πix·ξ0φ̂

(
δ1/
√
R x
)

and

η√R ∗ |ψ̂|(x) =
1

(
√
R)n

1

(
√
R)n−1

1

R

∫ ∣∣φ̂(δ1/
√
R(x− y)

)∣∣η(y/
√
R)dy

=
1

Rn+(1/2)

(∫
B(0,
√
R)

∣∣φ̂(δ1/
√
R(x− y)

)∣∣η(y/
√
R)dy

+
∞∑
j=1

∫
B(0,2j

√
R)\B(0,2j−1

√
R)

∣∣φ̂(δ1/
√
R(x− y)

)∣∣η(y/
√
R)dy

)
≤ 1

Rn+(1/2)

∞∑
j=0

(sup
Aj

η)

∫
B(0,2j

√
R)

∣∣φ̂(δ1/
√
R(x− y)

)∣∣dy,
where A0 = B(0, 1) and Aj = B(0, 2j) \B(0, 2j−1) for j ≥ 1.

Since φ̂ is supported in B(0, 1), φ̂
(
δ1/
√
R(x−y)

)
, as a function of x (with fixed

y), is supported in y + θ∗. Since y ∈ B(0, 2j
√
R), it follows that

x ∈ box of center 0 and dimensions 2j
√
R× · · · × 2j

√
R× 2jR,
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and so

δ1/
√
R x ∈ box of center 0 and dimensions 2j × · · · × 2j, i.e. δ1/

√
R x ∈ B(0, 2j).

Therefore,

η√R ∗ |ψ̂|(x) ≤ 1

Rn+(1/2)

∞∑
j=0

(sup
Aj

η)‖φ̂‖L∞ |B(0, 2j
√
R)|χB(0,2j)(δ1/

√
R x)

=
|B(0, 1)|
R(n+1)/2

‖φ̂‖L∞
∞∑
j=0

2nj(sup
Aj

η)χB(0,2j)(δ1/
√
R x).

Letting

µ = |B(0, 1)|‖φ̂‖L∞
∞∑
j=0

2nj(sup
Aj

η)χB(0,2j),

we get a rapidly decaying function on Rn with

η√R ∗ |ψ̂|(x) ≤ µθ∗(x) ∀ x ∈ Rn.

(ii) Given f , we let h = f/ψ to get |f | = |ψ| |h| ∼ |h| on θ, f̂ = ĥ ∗ ψ̂, and

|f̂ | ∗ η√R ≤ |ĥ| ∗ |ψ̂| ∗ η√R ≤ |ĥ| ∗ µθ∗

(by part (i)). Now the locally constant property provides us with a rapidly
decaying function µ+ on Rn such that

sup
b+θ∗
|f̂ | ∗ η√R ≤ sup

b+θ∗
|ĥ| ∗ µθ∗ ≤ inf

b+θ∗
|ĥ| ∗ µ+

θ∗

for all b ∈ Rn.

We now prove some important lemmas that will be used to prove multilinear
restriction.

Lemma 2. Let Sj smooth compact transverse hypersurfaces in Rn

fj = ĝj and supp gj ⊂ N1/RSj
ψ ∈ C∞0 (Rn)

µBr(x) = 1
rn

∣∣∣ψ̂(x−x0

r

)∣∣∣ if Br = B(x0, r)

p0 = (2n)/(n− 1).
Then

AvgB√R⊂BR

n∏
j=1

‖fj µB√R‖
p0/n

L2
<∼ Rε

n∏
j=1

( 1

Rn

∫
|fj|2dx

)p0/(2n)

.
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Proof. We have∫
|fj|2µ2

B√R
dx =

1

Rn

∫ ∣∣∣fj(x)ψ̂
(x− x0√

R

)∣∣∣2dx =
1

Rn

∫ ∣∣∣fj(x+ x0)ψ̂
( x√

R

)∣∣∣2dx.
Since fj(x+ x0) is the Fourier transform of e−2πix0·ξgj(ξ), it follows that∫

|fj(x)|2µB√R(x)2dx =
1

Rn

∫ ∣∣∣(e−2πix0·ξgj
)
∗ ψ√R−1(ξ)

∣∣∣2dξ.
We write gj =

∑
θ gj,θ, and we recall that each θ is a

√
R−1×· · ·×

√
R−1×R−1

box. Since ψ√R−1 is supported in a ball of center 0 and radius ∼
√
R−1, it follows

that each function (
e−2πix0·ξgj,θ

)
∗ ψ√R−1

is supported in a ball of the same center as θ and of radius ∼
√
R−1. So∥∥∥∑

θ

(
e−2πix0·ξgj,θ

)
∗ ψ√R−1

∥∥∥2

L2

<∼
∑
θ

∥∥∥(e−2πix0·ξgj,θ
)
∗ ψ√R−1

∥∥∥2

L2

(where we used the fact that if θ 6= θ′, then the distance between the center of θ
and the center of θ′ is ∼

√
R−1), and so∫

|fj(x)|2µB√R(x)2dx <∼
1

Rn

∑
θ

∫ ∣∣∣(e−2πix0·ξgj,θ
)
∗ ψ√R−1(ξ)

∣∣∣2dξ.
Denoting the Fourier transform of e−2πix0·ξgj,θ by f ′j,θ, we obtain∫

|fj(x)|2µB√R(x)2dx <∼
∑
θ

∫ ∣∣f ′j,θ(x)
∣∣2 1

Rn

∣∣∣ψ̂( x√
R

)∣∣∣2dx
<∼

∑
θ

∮
Q√R

|f ′j,θ| ∗ ηQ√R(x)2dx

≤
∑
θ

sup
Q√R

(
|f ′j,θ| ∗ ηQ√R

)2
,

where η is a rapidly decaying function on Rn which depends only on ψ. So
n∏
j=1

‖fj µB√R‖
p0/n

L2
<∼

n∏
j=1

(∑
θ

sup
Q√R

(
|f ′j,θ| ∗ ηQ√R

)2
) p0

2n

=

(
n∏
j=1

(∑
θ

sup
Q√R

(
|f ′j,θ| ∗ ηQ√R

)2
) 1
n−1

) p0(n−1)
2n

<∼

(∮
Q√R

n∏
j=1

(∑
θ

sup
Q√R

(
|f ′j,θ| ∗ ηQ√R

)2
) 1
n−1

dx

) p0(n−1)
2n

≤
∮
Q√R

n∏
j=1

(∑
θ

|f ′j,θ| ∗ η+
Q√R

(x)2
) 1
n−1

dx.

9



We recall that f ′j,θ is the Fourier transform of e−2πix0·ξgj,θ. Denoting the
Fourier transform of gj,θ by fj,θ, we see that

n∏
j=1

‖fj µB√R‖
p0/n

L2
<∼

∮
Q√R

n∏
j=1

(∑
θ

|fj,θ| ∗ η+
Q√R

(x+ x0)2
) 1
n−1

dx

=

∮
x0+Q√R

n∏
j=1

(∑
θ

|fj,θ| ∗ η+
Q√R

(x)2
) 1
n−1

dx.

So

R
n
2 AvgB√R⊂BR

n∏
j=1

‖fj µB√R‖
p0
n

L2
<∼ R−

n
2

∫
BR

n∏
j=1

(∑
θ

|fj,θ| ∗ η+
Q√R

(x)2
) 1
n−1

dx,

and so

AvgB√R⊂BR

n∏
j=1

‖fj µB√R‖
p0
n

L2
<∼

∮
BR

n∏
j=1

(∑
θ

|fj,θ| ∗ η+
Q√R

(x)2
) 1
n−1

dx.

For each θ, we let T(θ) be a finitely overlapping family of
√
R×· · ·×

√
R×R

tubes pointing in the direction of θ and covering BR. Part (ii) of Proposition 2
provides us with functions hj,θ ∈ L1(θ) and a rapidly decaying function µ+ on Rn

such that
sup
T
|ĝj,θ| ∗ η+

Q√R
= sup

T
|fj,θ| ∗ η+

Q√R
≤ inf

T
|ĥj,θ| ∗ µ+

θ∗

for all T ∈ T(θ). Now, we define the functions g+
j by

g+
j =

∑
θ⊂N1/RSj

∑
T∈T(θ)

(
inf
T
|ĥj,θ| ∗ µ+

θ∗

)2
χT ,

and we observe that∑
θ⊂N1/RSj

(
|fj,θ| ∗ η+

Q√R

)2 ≤ g+
j ≤

∑
θ⊂N1/RSj

(
|ĥj,θ| ∗ µ+

θ∗

)2

on BR, so that

n∏
j=1

( ∑
θ⊂N1/RSj

|fj,θ| ∗ η+
Q√R

(x)2
) 1
n−1 ≤

n∏
j=1

g+
j (x)1/(n−1)

for all x ∈ BR. Thus

AvgB√R⊂BR

n∏
j=1

‖fj µB√R‖
p0/n

L2
<∼

∮
QR

n∏
j=1

g+
j (x)1/(n−1)dx.

10



It is now time to appeal to the multilinear Kakeya inequality∮
QR

n∏
j=1

g+
j (x)1/(n−1)dx <∼ Rε

n∏
j=1

(∮
BR

g+
j (x)dx

) 1
n−1

to get

AvgB√R⊂BR

n∏
j=1

‖fj µB√R‖
p0/n

L2
<∼ Rε

n∏
j=1

(∮
BR

∑
θ⊂N1/RSj

|ĥj,θ| ∗ µ+
θ∗(x)2dx

) 1
n−1

.

The right-hand side of this inequality can be written as

Rε

n∏
j=1

(
R−n

∑
θ⊂N1/RSj

∥∥|ĥj,θ| ∗ µ+
θ∗

∥∥2

L2

) 1
n−1

.

By Hausdorff-Young and Plancherel,∥∥|ĥj,θ| ∗ µ+
θ∗

∥∥2

L2 ≤ ‖ĥj,θ‖2
L2‖µ+

θ∗‖
2
L1 <∼ ‖hj,θ‖

2
L2 ∼ ‖gj,θ‖2

L2 ,

so ∑
θ⊂N1/RSj

∥∥|ĥj,θ| ∗ µ+
θ∗

∥∥2

L2
<∼

∑
θ⊂N1/RSj

‖gj,θ‖2
L2 = ‖gj‖2

L2 = ‖fj‖2
L2 ,

and so

AvgB√R⊂BR

n∏
j=1

‖fj µB√R‖
p0/n

L2
<∼ Rε

n∏
j=1

(
R−n‖fj‖2

L2

) 1
n−1

,

as desired.

Theorem 1 (Multilinear restriction). Suppose fj, gj, Sj, and p0 are as in Lemma
2. Then ∥∥∥ n∏

j=1

|fj|1/n
∥∥∥
Lpavg(BR)

<∼ Rε

n∏
j=1

( 1

Rn

∫
|fj|2dx

)1/(2n)

for 1 ≤ p ≤ p0.

Proof. We consider a sequence of scales. We pick a large integer M and we let
r = R2−M . We will use Lemma 2 at scales r, r2, . . . , r2M = R. We abbreviate
ra = r2a .

We begin with a crude inequality at the small scale r. Applying Bernstein’s
inequality to each fj on each Br ⊂ BR, we get∫

Br

n∏
j=1

|fj|p/ndx ≤ |B(0, 1)|rn
n∏
j=1

C1/n
n r2p‖fj‖p/nLp(ψr)

= Cnr
nr2pn

n∏
j=1

‖fj‖p/nLp(ψr)
,

11



where |B(0, 1)| was absorbed into the constant Cn, and where we used the fact
that r ≥ 1. Therefore,∫

BR

n∏
j=1

|fj|p/ndx ≤
Rn

rn
Cnr

nr2pnAvgBr⊂BR

n∏
j=1

‖fj‖p/nLp(ψr)
.

Therefore, ∮
BR

n∏
j=1

|fj|p/ndx ≤ Cnr
2pnAvgBr⊂BR

n∏
j=1

‖fj‖p/nLp(ψr)
.

But
AvgBr⊂BR = AvgBr1⊂BRAvgBr⊂Br1 ,

so the result follows by repeated (more precisely, M) applications of Lemma
2.

12



Chapter 3

The `2 Decoupling Theorem

For 2 ≤ p ≤ ∞ and R ∈ R, we let Dn,p(R) be the smallest constant such that
the inequality:

‖Eg‖Lp(wB) ≤ Dn,p(R)
( ∑
Q∈Part

R−1/2 ([0,1]n−1)

‖Eg‖2
Lp(wB)

)1/2

holds for every cube B ⊂ Rn with side length R and every g : [0, 1]n−1 → C.
We call Dn,p(R) the decoupling constant. The following theorem was stated and
proved by Bourgain and Demeter in [6].

Theorem 2 (`2 decoupling). Let Dn,p(R) be as above. Then

Dn,p(R) <∼ Rε

for 2 ≤ p ≤ 2(n+1)
n−1

. The implicit constant depends on ε, p, n but not on R.
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Chapter 4

Key Lemmas and Orthogonality

Lemma 3. Let W be the collection of all positive integrable functions on Rn. Let
R > 0 and fix E. Suppose Oi : W → [0,∞], i = 1, 2 satisfy the following four
properties:
(P1) O1(χB) <∼ O2(wB,E) for all cubes B ⊂ Rn with `(B) = R
(P2) O1(αu+ βv) ≤ αO1(u) + βO1(v), for every u, v ∈ W and α, β > 0
(P3) O2(αu+ βv) ≥ αO2(u) + βO2(v), for every u, v ∈ W and α, β > 0
(P4) If u, v ∈ W and u ≤ v then Oi(u) ≤ Oi(v).
Then

O1(wB,E) <∼ O2(wB,E)

for each cube B with side length R, where the implicit constant depends only
on the implicit constant from the first property (P1) and is independent of R,B .

Proof. Let B be a finitely overlapping cover of Rn with cubes B′ = B′(cB′ , R) .
To prove this lemma, we need to prove three basic inequalities involving charac-
teristic functions and weights. The inequalities are:

χB <∼
∑
B′∈B

wB′ <∼ wB (4.1)

wB(x) <∼
∑
B′∈B

χB′(x)wB(cB′) (4.2)

∑
B′∈B

wB′(x)wB(cB′) <∼ wB(x) (4.3)

First, we will show that if these inequalities hold, then the lemma is true:

O1(wB) <∼ O1

( ∑
B′∈B

χB′wB(cB′)
)

<∼
∑
B′∈B

wB(cB′)O1(χB′) <∼
∑

B′∈χB′

wB(cB′)O2(wB′)

14



<∼
∑

B′∈χB′

O2(wB(cB′)wB′)

<∼ O2

( ∑
B′∈B

wB(cB′)wB′
)
<∼ O2(wB).

Now we prove the inequalities.
(1) is easy to check.

To prove (2), first notice that if we take two cubes in Rn having the same side
length and such that they have at least one point in common, then their centers
are at most at a distance of R

√
n from each other (by taking the case where one

diagonal coincides, as this gives the furthest position of the cetners).∑
B′∈B

χB′(x)wB(cB′) =
∑
B′∈B

χB′(x)
1

(1 +
|cB−c′B |

R
)E

≥
∑
B′∈B

χB′(x)
1

(1 + 2R
√
n

2R
)E
≥ 1

(1 +
√
n)E

∑
B′∈B

χB′(x)

≥ 1

(1 +
√
n)E

wB(x)

the last inequality is true since at least one of the B′ has to contain x and the
weight of a cube is always at most 1.

To prove (3), just notice that wB(cB′) ≤ 1 and so we get∑
B′∈B

wB′(x)wB(cB′) ≤
∑
B′∈B

wB′(x) <∼ wB(x)

where in the last step we used inequality (1).

Proposition 3 (L2 decoupling or orthogonality). Let Q be a cube with l(Q) ≥
R−1. Then for each cube BR ⊂ Rn with side length R we have:

‖EQg‖L2(wBR ) <∼
( ∑
q∈Part 1

R
(Q)

‖Eqg‖2
L2(wBR )

)1/2

Proof. Pick a positive Schwartz function η whose square root has fourier support
contained in a small neighborhood of the origin, and such that η ≥ 1 on B(0, 1).
We apply Lemma 3 by setting

O1(v) = ‖EQg‖2
L2(v)

and
O2(v) =

∑
q∈Part 1

R
(Q)

‖EQg‖2
L2(v).
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All properties are straightforward and follow directly from the basic properties
of the norms except (1). So we only prove (1):

‖EQg‖2
L2(B′) ≤ ‖EQg‖2

L2(ηB′ )
= ‖√ηB′EQg‖2

L2(Rn).

Now, the functions
√
ηB′Eqg are orthogonal and hence the result follows directly.

Lemma 4 (Reverse Minkowski’s Inequality). Consider the measure space (X,M, µ).
Let p ∈ (0, 1] and f, g be two positive measurable functions. Then we have the
following inequality:

(

∫
(f + g)pdµ)

1
p ≥ (

∫
fpdµ)

1
p + (

∫
gpdµ)

1
p

Proof. The function defined for x > 0 by φ(x) = xp is concave for p ∈ (0, 1] .
This can be shown very easily since φ′′(x) < 0 for the given range of p. Hence
φ satisfies the concavity inequality: φ((1− α)x+ αy) ≥ (1− α)φ(x) + αφ(y) for
any x, y > 0 and for any α ∈ [0, 1].

Define the functions F and G by

F =
f

(
∫
fpdµ)

1
p ) + (

∫
gpdµ)

1
p

and
G =

g

(
∫
fpdµ)

1
p ) + (

∫
gpdµ)

1
p

and notice that ∫
F pdµ =

1[
(
∫
fpdµ)

1
p ) + (

∫
gpdµ)

1
p
]p ∫ fpdµ

and ∫
Gpdµ =

1[
(
∫
fpdµ)

1
p ) + (

∫
gpdµ)

1
p
]p ∫ gpdµ

so that we get

(

∫
F pdµ)

1
p + (

∫
Gpdµ)

1
p = 1.

Now set (
∫
F pdµ)

1
p = 1− α and (

∫
Gpdµ)

1
p = α.

By the concavity of φ as defined above, we get the inequality

(F +G)p = ((1− α)
F

1− α
+ α

G

α
)p ≥ (1− α)

F p

(1− α)p
+ α

Gp

αp
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and hence we get∫
(F +G)pdµ ≥ 1− α

(1− α)p

∫
F pdµ+

α

αp

∫
Gpdµ = 1

so that∫
f

(
∫
fpdµ)

1
p ) + (

∫
gpdµ)

1
p

+
g

(
∫
fpdµ)

1
p ) + (

∫
gpdµ)

1
p

)pdµ ≥ 1

so that ∫
(f + g)pdµ ≥

(
(

∫
fpdµ)

1
p + (

∫
gpdµ)

1
p
)p

and therefore ( ∫
(f + g)pdµ

) 1
p ≥ (

∫
fpdµ)

1
p + (

∫
gpdµ)

1
p .

Lemma 5 (Reverse Hölder’s Inequality). Consider cubes Q and B according
to the convention mentioned in the beginning such that the side length of Q is
`(Q) = R−1 and the side length of B is `(B) = R. Let q ≥ p ≥ 1.

Then ‖EQg‖Lq#(wB,E)
<∼ ‖EQg‖Lp#(w

B,
Ep
q

) where the constant is independent of R,

Q, B and the function g.

Proof. Let η be a positive smooth function on Rn that satisfies χB(0,1) ≤ ηB(0,1)

and such that supp(η̂
1
p ) ⊂ B(0, 1). The following inequality follows easily:

‖EQg‖Lq(B) ≤ ‖EQg‖Lq(ηp/qB )
= ‖η1/p

B EQg‖Lq(Rn).

Let ψ be a Shwartz function which is constant ( = 1) on the cube of center the
origin and radius 10. An easy computation using the fact that the fourier support
of η

1/p
B EQg is contained in the cube 3Q (that is a cube having the same center as

Q but thrice its side length) shows that:

(η
1/p
B EQg) ∗ ψ̂ = η

1/p
B EQg.

So for 1
q

= 1
p

+ 1
r
− 1 = 1

p
− 1

r′
apply Young’s inequality to get:

‖η1/p
B EQg‖Lq(Rn) ≤ ‖η1/p

B EQg‖Lp(Rn)‖ψ̂Q‖Lr(Rn) <∼ R−n/r
′‖EQg‖Lp(ηB).

Now we use the same notation and some of the inequalities mentioned in the
proof of lemma 3 to continue in the following way:

‖EQg‖Lq(wB,E) =

∫
|EQg|qwB,E <∼

∑
B′∈B

wB,E(cB′)

∫
B′
|EQg|q

17



<∼ R−
nq
r

∑
B′∈B

wB,E(cB′)‖EQg‖qLp(ηB′ )

<∼ R−
nq
r

( ∑
B′∈B

[wB,E(cB′)]
p
q ‖EQg‖pLp(ηB′ )

) q
p

<∼ R−
nq
r

(∫
|EQg|pwB,Ep

q

) q
p

where all integrals are with respect to the Lebesgue measure.
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Chapter 5

The Decoupling Norm

In this section S ⊂ Rn will denote a compact positively oriented curved C3 hy-
persurface. (Our truncated paraboloid was one example of such a hypersurface).
Now we define what we shall call the decoupling norm. Let suppf̂ ⊂ NδS and
let Ω be a domain in Rn. Then the decoupling norm is defined by Guth in [4] as:

‖f‖Lp,δavg(Ω) :=
( ∑
θ∈Part

δ1/2
(NδS)

‖fθ‖2
Lpavg(Ω)

)1/2

It can be shown very easily that this is an actual norm.
We now look at the situation where a domain is partitioned into smaller

subsets and we try to estimate the decoupling norm over the whole set in terms
of the decoupling norm over its partitioned subsets. For the usual Lp norms, we
would get equality. For the decoupling norm we get the following:

Lemma 6. Let Ω =
⊔

Ωj , p ≥ 2, δ ≥ 0, and f is such that suppf̂ ⊂ NδS. Then
we have: ∑

j

‖f‖p
Lp,δ(Ωj)

≤ ‖f‖p
Lp,δ(Ω)

Proof. Starting from the left-hand-side and replacing the decoupling norm by its
explicit expression, we get∑

j

‖f‖p
Lp,δ(Ωj)

=
∑
j

(∑
θ

‖fθ‖2
Lp(Ωj)

) p
2

=
∥∥∥∑

θ

‖fθ‖2
Lp(Ωj)

∥∥∥ p2
`
p/2
j

Now applying Minkowski inequality for the `
p/2
j norm and using the fact that∑

j ‖f‖
p
Lp(Ωj)

= ‖f‖pLp(Ω), we get∥∥∥∑
θ

‖fθ‖2
Lp(Ωj)

∥∥∥ p2
`
p/2
j

≤
(∑

θ

∥∥‖fθ‖2
Lp(Ωj)

∥∥
`
p/2
j

) p
2

=
(∑

θ

‖fθ‖2
Lp(Ω)

) p
2

= ‖f‖p
Lp,δ(Ω)
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The next question we ask is if we get a good decoupling over the subsets
forming the partition, does this give us a decoupling for the whole set? And the
answer is given by the proposition below:

Proposition 4 (Parallel Decoupling). Let Ω,Ωj, p, f be as in the above lemma.
Moreover, suppose that the following inequality holds for every j:

‖f‖Lp(Ωj) ≤M‖f‖Lp,δ(Ωj).

Then we get:
‖f‖Lp(Ω) ≤M‖f‖Lp,δ(Ω)

Proof. This will follow as a corollary to the previous lemma. Again we expand

‖f‖pLp(Ω) =
∑
j

‖f‖pLp(Ωj)
≤
∑
j

(M‖f‖
Lp,δ(Ωj))p = Mp

∑
j

‖f‖p
Lp,δ(Ωj)

≤Mp‖f‖p
Lp,δ(Ω)

,

where the last upper bound is given by the result of the previous lemma. Raising
both sides to the power 1

p
ends the proof.

In terms of our new notation, the decoupling constant Dp(R) is the smallest
constant such that the inequality:

‖f‖Lpavg(BR) ≤ Dp(R)‖f‖
L
p,1/R
avg (BR)

holds for all f with suppf̂ ⊂ N1/R(S) and all cubes BR. So the `2 decoupling

theorem asserts that Dp(R) <∼ Rε for every ε > 0 and 2 ≤ p ≤ 2(n+1)
n−1

.
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Chapter 6

Parabolic Rescaling

We start by proving that the decoupling constants are invariant under affine
changse of coordinates.

Lemma 7. Let h : Rn → Rn be an affine map. Let Ω be a domain in Rn

partitioned into a disjoint union of subsets θ. We denote the decoupling constant
over Ω given by its partition to the θ′s by D(Ω =

⊔
θ). Then we have:

D(Ω =
⊔

θ) = D
(
h(Ω) =

⊔
h(θ)

)
Proof. Let Ω̄ = h(Ω) and θ̄ = h(θ) Suppose g is a function with suppĝ ⊂ Ω̄. Then
g =

∑
θ̄ gθ̄. Applying the change of coordinates given by this affine transforma-

tion, we get a function f with fourier support in Ω such that fΩ =
∑

θ fθ. Denote
the Jacobian of this affine transformation by |J |. We notice that ‖g‖Lp(Ω̄) =

|J |
1
p‖f‖Lp(Ω) and ‖gθ̄‖Lp(θ̄) = |J |

1
p‖f‖θLp(θ)

This finishes the proof.

Theorem 3 (Parabolic Rescaling). Let r ≤ R. Let τ ∈ Partr−1/2(NR−1S) and
suppose f has Fourier support in τ . If θ ∈ PartR−1/2(NR−1S), then we have:

‖f‖Lpavg(BR)
<∼ Dp,n(R/r)

(∑
θ⊂τ

‖fθ‖2
Lpavg(BR)

)1/2

Proof. After an affine transformation which leaves the decoupling constant in-
variant, we can shift τ to the region:

{(ξ1, ..., ξn−1, ξn) : 0 < ξn < r−1, 0 < |ξi| < r−1/2; i = 1, 2, ..., n− 1}

Define the new coordinates ξ̄n := rξn and ξ̄i := r1/2ξi where i = 1, 2, ..., n− 1.
We will denote the image of any set A in the new coordinates by Ā. So now we
have θ̄ as a (R/r)−1/2 × ...× (R/r)−1/2 × (R/r)−1 − block.
The corresponding change of coordinates that takes place in physical space is
given by: x̄n = r−1xn and x̄i = r−1/2xi for i = 1, 2, ..., n− 1.
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Define the function f as f(x) = g(x̄) and so we get that since the fourier support
of g is in τ then the fourier support of f would be in τ̄ .
Easy computations show that BR is in fact an ellipsoid E with minor axis of
length R/r−1 and n− 1 major axes of length R/r−1/2.
Partition the ellipsoid E into balls of radius R/r. On each ball BR/r, we have the
estimate:

‖g‖Lpavg(BR/r)
≤ Dp(R/r)

(∑
θ

‖gθ̄‖2
Lpavg(BR/r)

)1/2

.

By parallel decoupling, this gives us a decouping estimate on the entire ellipsoid
as follows:

‖g‖Lpavg(E) ≤ Dp(R/r)
(∑

θ

‖gθ̄‖2
Lpavg(E)

)1/2

.

The fact that all norms are averaged takes care of any Jacobian fators that might
arise during the change back to our original coordinates and so we get the desired
estimate for f . Note that if we replace balls by cubes and the ellipsoid by the
corresponding box, the arguments will remain true.

Proposition 5. For any R1, R2 ≥ 1, we have Dn,p(R1R2) <∼ Dn,p(R1)Dn,p(R2).

Proof. We let R = R1 × R2, f be the function with fourier support in N1/RS,
and τ ∈ Part

R
−1/2
1

(N1/R(S)). We cover BR with disjoint boxes of side length R1

(this is possible since R > R1). We thus get the inequality:

‖f‖Lpavg(BR) ≤ Dp(R1)
(∑

τ

‖fτ‖2
Lpavg(BR)

)1/2

.

Let θ ∈ PartR−1/2(N1/RS). Using parabolic rescaling, we can find an upper bound
as follows:

‖fτ‖Lpavg(BR)
<∼ Dp(R2)

(∑
θ⊂τ

‖fθ‖2
L2
avg

(BR)
)1/2

.

Using the first estimate with this inequality we get:

‖f‖Lpavg(BR) ≤ Dp(R1)Dp(R2)
(∑

θ

‖fθ‖pLpavg(BR)

)1/2

.
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Chapter 7

Linear Decoupling and
Multilinear Decoupling

We will denote the multilinear decoupling constant by D̃.

Theorem 4. Suppose that in dimension n − 1, Dn,p(R) <∼ Rε for every ε > 0.
Then, for any ε > 0 we have:

Dn,p(R) <∼ RεD̃n,p(R)

and
D̃n,p(R) ≤ Dn,p(R)

for any n, p,R.

Proof. See Bourgain and Demeter’s proof in [1].

So we can conclude that if decoupling holds in dimension n−1 then D̃n,p(R) ≈
Dn,p(R) ≈ Rγ for some γ = γ(n, p).

Theorem 5 (Multilinear decoupling for 2 ≤ p ≤ 2n/(n − 1)). Suppose fj, gj,
Sj, and p0 are as in Lemma 2. Then∥∥∥ n∏

j=1

|fj|1/n
∥∥∥
Lpavg(BR)

<∼ Rε

n∏
j=1

‖fj‖1/n

Lp,R
−1

(ηBR )

for 1 ≤ p ≤ p0.

Proof. Let ψ ∈ C∞0 (Rn) be such that ψ̂ ≥ 1 on B1. By multilinear restriction,∥∥∥ n∏
j=1

|fj|1/n
∥∥∥
Lpavg(BR)

≤
∥∥∥ n∏
j=1

|fj ψ̂R−1|1/n
∥∥∥
Lpavg(BR)

<∼ Rε

n∏
j=1

( 1

Rn

∫
|fj ψ̂R−1|2dx

)1/(2n)

.
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By Plancherel,

1

Rn

∫
|fj ψ̂R−1|2dx =

1

Rn

∫
|gj ∗ ψR−1|2dξ.

Writing gj =
∑

θ gj,θ, and observing that the functions gj,θ ∗ψR−1 have essentially
disjoint supports, we see that

1

Rn

∫
|gj ∗ ψR−1|2dξ <∼

1

Rn

∑
θ

∫
|gj,θ ∗ ψR−1|2dξ.

Applying Plancherel again, we get

1

Rn

∫
|fj ψ̂R−1|2dx <∼

1

Rn

∑
θ

∫
|fj,θ ψ̂R−1|2dx.

Defining ηBR = R−n|ψ̂R−1|2, we get

1

Rn

∫
|fj ψ̂R−1|2dx <∼

∑
θ

∫
|fj,θ|2ηBRdx =

∑
θ

‖fj,θ‖2
L2(ηBR ).

Thus ∥∥∥ n∏
j=1

|fj|1/n
∥∥∥
Lpavg(BR)

<∼ Rε

n∏
j=1

(∑
θ

‖fj,θ‖2
L2(ηBR )

)1/(2n)

≤ Rε

n∏
j=1

(∑
θ

‖fj,θ‖2
Lp(ηBR )

)1/(2n)

= Rε

n∏
j=1

‖fj‖1/n

Lp,R
−1 (ηBR )

provided 2 ≤ p ≤ p0.

Lemma 8. If supp gi ⊂ N1/RSi, fi = ĝi, and Si are compact positively curved
transverse hypersurfaces in Rn, and if q ≥ 2n/(n− 1), then

AvgB√R⊂BR

n∏
i=1

‖fi‖
q
n

L2
avg(B√R)

<∼ Rε

n∏
i=1

‖fi‖
q
n
α(q)

L2
avg(BR)

n∏
i=1

‖fi‖
q
n

(1−α(q))

Lq,R
−1

avg (BR)
.

If q = 2n/(n − 1), then α(q) = 1. If q = 2(n + 1)/(n − 1), then α(q) = 1/2. If
q > 2(n+ 1)/(n− 1), then α(q) < 1/2.

Our goal is to show that Dn,q(R) <∼ Rε where s = 2(n + 1)/(n − 1), for
2 ≤ q ≤ s. We are going to use induction on the dimension, so we assume that
Dn−1,q(R) <∼ Rε (if y = 2(x+ 1)/(x− 1), then y′ = −4/(x− 1)2). We know that

24



Dn,q ≈ D̃n,q ≈ Rγ(n,q). We just have to show that γ(n, q) ≤ ε. We want to study

D̃n,q, and so we bring the multilinear decoupling setup into the picture. We want
to get an inequality of the following form:∮

BR

n∏
i=1

|fi|
q
ndx <∼ Rε

n∏
i=1

‖fi‖
q
n

Lq,R
−1

avg (BR)
.

To do this, we take a large integerM and we define a sequence of scales:r, r2, . . . , r2M =
R where r = R2−M . We will use Lemma 8 at scales r, r2, . . . , r2M = R. We write
ra = r2a .

By Bernstein’s, we have the following inequality at the small scale r:∮
BR

n∏
i=1

|fi|
q
ndx <∼ rCAvgBr⊂BR

n∏
i=1

‖fi‖
q
n

L2
avg(Br)

.

In this inequality we lost a factor of

rC = R
C

2M .

Next, we apply Lemma 8 on each ball of radius r2 = r1. We get

AvgBr⊂BR

n∏
i=1

‖fi‖
q
n

L2
avg(Br)

<∼ rε1 AvgBr1⊂BR

n∏
i=1

‖fi‖
q
n
α(q)

L2
avg(Br1 )

n∏
i=1

‖fi‖
q
n

(1−α(q))

L
q,r−1

1
avg (Br1 )

.

We use Hölder’s inequality to separate the terms of the form ‖fi‖
L
q,r−1

1
avg (Br1 )

from the L2 terms, and then we will decouple them the rest of the way in terms
of Dn,q(R/r1).

Recall that the multilinear Hölder inequality says that if bj > 0 and
∑
bj =

1, then Avg
∏

j Aj ≤
∏

j(AvgAj)
bj . We will apply the (n + 1)-linear Hölder

inequality with exponents α(q) + 1−α(q)
n

+ · · ·+ 1−α(q)
n

= 1 to get

AvgBr⊂BR

n∏
i=1

‖fi‖
q
n

L2
avg(Br)

<∼ rε1 AvgBr1⊂BR

( n∏
i=1

‖fi‖
q
n

L2
avg(Br1 )

)α(q)
n∏
i=1

(
‖fi‖q

L
q,r−1

1
avg (Br1 )

) 1−α(q)
n

≤ rε1

(
AvgBr1⊂BR

n∏
i=1

‖fi‖
q
n

L2
avg(Br1 )

)α(q)

×
n∏
i=1

(
AvgBr1⊂BR‖fi‖

q

L
q,r−1

1
avg (Br1 )

) 1−α(q)
n

.
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The first factor is ready to apply Lemma 8 again at the next scale. The second
factor is slightly decoupled, and now we explain how to decouple the rest of the
way. Using Minkowski’s inequality, we can bound

AvgBr1⊂BR‖fi‖
q

L
q,r−1

1
avg (Br1 )

≤ ‖fi‖q
L
q,r−1

1
avg (BR)

.

This expression involves decoupling fi into contributions from caps of size r
−1/2
1 .

We want to decouple fi into finer caps of size R−1/2. To do so, we use parabolic
scaling to decouple fi further, bringing in a factor of Dn,q(R/r1):

‖fi‖
L
q,r−1

1
avg (BR)

≤ Dn,q(R/r1)‖fi‖Lq,R−1
avg (BR)

<∼
(R
r1

)γ
‖fi‖Lq,R−1

avg (BR)
.

All together, we see that

AvgBr⊂BR

n∏
i=1

‖fi‖
q
n

L2
avg(Br)

<∼ rε1

(
AvgBr1⊂BR

n∏
i=1

‖fi‖
q
n

L2
avg(Br1 )

)α(q)
n∏
i=1

((R
r1

)qγ
‖fi‖q

Lq,R
−1

avg (BR)

) 1−α(q)
n

= rε1

(
AvgBr1⊂BR

n∏
i=1

‖fi‖
q
n

L2
avg(Br1 )

)α(q)

×
(R
r1

)qγ(1−α(q))( n∏
i=1

‖fi‖q
Lq,R

−1
avg (BR)

) 1−α(q)
n

.

Putting together the whole argument so far, we have proven that∮
BR

n∏
i=1

|fi|
q
ndx <∼ rCrε1

(
AvgBr1⊂BR

n∏
i=1

‖fi‖
q
n

L2
avg(Br1 )

)α(q)

×
(R
r1

)qγ(1−α(q))( n∏
i=1

‖fi‖q
Lq,R

−1
avg (BR)

) 1−α(q)
n

.

Now we can iterate this computation. Repeating the computation one more
time, we get

AvgBr1⊂BR

n∏
i=1

‖fi‖
q
n

L2
avg(Br1 )

<∼ rε2 AvgBr2⊂BR

n∏
i=1

‖fi‖
q
n
α(q)

L2
avg(Br2 )

n∏
i=1

‖fi‖
q
n

(1−α(q))

L
q,r−1

2
avg (Br2 )

,

where we have used Main lemma Lemma 8. The right-hand side of this inequality
is

= rε2 AvgBr2⊂BR

( n∏
i=1

‖fi‖
q
n

L2
avg(Br2 )

)α(q)
n∏
i=1

(
‖fi‖q

L
q,r−1

2
avg (Br2 )

) 1−α(q)
n

,
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which, by Hölder, is

≤ rε2

(
AvgBr2⊂BR

n∏
i=1

‖fi‖
q
n

L2
avg(Br2 )

)α(q)
n∏
i=1

(
AvgBr2⊂BR‖fi‖

q

L
q,r−1

2
avg (Br2 )

) 1−α(q)
n

,

which, by Minkowski, is

≤ rε2

(
AvgBr2⊂BR

n∏
i=1

‖fi‖
q
n

L2
avg(Br2 )

)α(q)
n∏
i=1

(
‖fi‖q

L
q,r−1

2
avg (BR)

) 1−α(q)
n

.

Using parabolic scaling, we obtain

AvgBr1⊂BR

n∏
i=1

‖fi‖
q
n

L2
avg(Br1 )

<∼ rε2

(
AvgBr2⊂BR

n∏
i=1

‖fi‖
q
n

L2
avg(Br2 )

)α(q)
n∏
i=1

((R
r2

)qγ
‖fi‖q

Lq,R
−1

avg (BR)

) 1−α(q)
n

= rε2

(
AvgBr2⊂BR

n∏
i=1

‖fi‖
q
n

L2
avg(Br2 )

)α(q)

×
(R
r2

)qγ(1−α(q))( n∏
i=1

‖fi‖q
Lq,R

−1
avg (BR)

) 1−α(q)
n

.

Putting together the whole argument so far, we have proven that∮
BR

n∏
i=1

|fi|
q
ndx

<∼ rCrε1r
εα(q)
2

(
AvgBr2⊂BR

n∏
i=1

‖fi‖
q
n

L2
avg(Br2 )

)α(q)2(R
r2

)qγ(1−α(q))α(q)

×
(R
r1

)qγ(1−α(q))( n∏
i=1

‖fi‖
q
n

Lq,R
−1

avg (BR)

)(1−α(q))(1+α(q))

≤ rC(c rε1)(c rε2)α(q) . . . (c rεM−1)α(q)M−2

×
(

AvgBrM−1
⊂BR

n∏
i=1

‖fi‖
q
n

L2
avg(BrM−1

)

)α(q)M−1

×
( cR

rM−1

)qγ(1−α(q))α(q)M−2

. . .
(cR
r2

)qγ(1−α(q))α(q)(cR
r1

)qγ(1−α(q))

×
( n∏
i=1

‖fi‖
q
n

Lq,R
−1

avg (BR)

)(1−α(q))
(

1+α(q)+···+α(q)M−2
)
,

where c is a constant which is greater than the constant coming from Lemma 8
and greater than the constant coming from parabolic scaling.
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Applying Main lemma Lemma 8 one more time, we arrive at∮
BR

n∏
i=1

|fi|
q
ndx

≤ rC
M−1∏
l=1

(c rεl )
α(q)l−1

(
c rεm

n∏
i=1

‖fi‖
q
n
α(q)

L2
avg(BR)

n∏
i=1

‖fi‖
q
n

(1−α(q))

Lq,R
−1

avg (BR)

)α(q)M−1

×
M−1∏
l=1

(cR
rl

)qγ(1−α(q))α(q)l−1( n∏
i=1

‖fi‖
q
n

Lq,R
−1

avg (BR)

)(1−α(q))
(

1+α(q)+···+α(q)M−2
)

= rCC ′
( M∏
l=1

r
α(q)l−1

l

)ε(M−1∏
l=1

(R
rl

)α(q)l−1
)qγ(1−α(q))

×
( n∏
i=1

‖fi‖
q
n

Lq,R
−1

avg (BR)

)(1−α(q))
(

1+α(q)+···+α(q)M−2
)

+α(q)M−1

,

where we have used the fact that

‖fi‖L2
avg(BR) = ‖fi‖L2,R−1

avg (BR)
≤ ‖fi‖Lq,R−1

avg (BR)
,

and where

C ′ =
( M∏
l=1

cα(q)l−1
)(M−1∏

l=1

cα(q)l−1
)qγ(1−α(q))

= c
∑M
l=1 α(q)l−1

(
c
∑M−1
l=1 α(q)l−1

)qγ(1−α(q))

= c
1−α(q)M

1−α(q) c
1−α(q)M−1

1−α(q)
qγ(1−α(q))

≤ c
1

1−α(q)
+qγ.

Now

(1− α(q))
(
1 + α(q) + · · ·+ α(q)M−2

)
+ α(q)M−1

= 1 + α(q) + · · ·+ α(q)M−2 − α(q)− α(q)2 − · · · − α(q)M−1 = 1,

and rl = r2l = R2l/2M , so∮
BR

n∏
i=1

|fi|
q
ndx

≤ rCc
1

1−α(q)
+qγ
( M∏
l=1

R(2α(q))l−1
) 2

2M
ε
(
M−1∏
l=1

R

(
1− 2l

2M

)
α(q)l−1

)qγ(1−α(q))

×
n∏
i=1

‖fi‖
q
n

Lq,R
−1

avg (BR)
,
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and so

Rqγ ≈ D̃n,q(R)

≤ rCc
1

1−α(q)
+qγ
(
R

∑M
l=1(2α(q))l−1

) 2

2M
ε(
R

∑M−1
l=1

(
1− 2l

2M

)
α(q)l−1

)qγ(1−α(q))

.

Also,

M∑
l=1

(2α(q))l−1 =


1−(2α(q))M

1−2α(q)
if 1

2
< α(q) < 1,

M if α(q) = 1
2

and

M−1∑
l=1

(
1− 2l

2M

)
α(q)l−1 =

M−1∑
l=1

α(q)l−1 − 2

2M

M−1∑
l=1

(
2α(q)

)l−1

=


1−α(q)M−1

1−α(q)
− 2

2M
1−(2α(q))M−1

1−2α(q)
if 1

2
< α(q) < 1,

1−α(q)M−1

1−α(q)
− 2

2M
(M − 1) if α(q) = 1

2
.

Case 1: α(q) = 1
2
. Then

Rqγ <∼ R
C

2M c2+qγR
2M

2M
εR

(
1−α(q)M−1

)
qγ− 2(M−1)

2M
qγ 1

2

so that
R

qγ

2M−1 +M−1

2M
qγ <∼ R

C

2M c2+qγR
2M

2M
ε,

i.e.
R

M+1

2M
qγ− C

2M
− 2M

2M
ε <∼ c2+qγ.

Letting R→∞, we get

M + 1

2M
qγ ≤ C

2M
+

2M

2M
ε,

i.e.
(M + 1)qγ ≤ C + 2Mε,

i.e.
M + 1

M
qγ ≤ C

M
+ 2ε.

Letting M →∞, we get qγ ≤ 2ε, so that γ ≤ 2ε
q
≤ ε.

Case 2: 1
2
< α(q) < 1. Then

Rqγ

<∼ R
C

2M c
1

1−α(q)
+qγR

1−(2α(q))M

1−2α(q)
2

2M
εR

(
1−α(q)M−1

)
qγ− 2

2M
1−(2α(q))M−1

1−2α(q)
qγ(1−α(q))
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so that

Rα(q)M−1qγ+ 2

2M
1−(2α(q))M−1

1−2α(q)
qγ(1−α(q)) <∼ R

C

2M c
1

1−α(q)
+qγR

1−(2α(q))M

1−2α(q)
2

2M
ε.

Letting R→∞, we get

α(q)M−1qγ +
2

2M
1− (2α(q))M−1

1− 2α(q)
qγ(1− α(q)) ≤ C

2M
+

1− (2α(q))M

1− 2α(q)

2

2M
ε,

i.e.

qγ +
1

(2α(q))M−1

(2α(q))M−1 − 1

2α(q)− 1
qγ(1− α(q))

≤ C

2(2α(q))M−1
+

(2α(q))M − 1

2α(q)− 1

ε

(2α(q))M−1
.

Letting M →∞, we get

qγ +
1− α(q)

2α(q)− 1
qγ ≤ 2α(q)

2α(q)− 1
ε,

i.e. (
2α(q)− 1

)
qγ +

(
1− α(q)

)
qγ ≤ 2α(q)ε,

i.e.
α(q)qγ ≤ 2α(q)ε,

i.e.

γ ≤ 2ε

q
≤ ε.

What happens when α(q) = 1? Well, C ′ = CM ,

M∑
l=1

(2α(q))l−1 =
1− 2M

1− 2
= 2M − 1,

and

M−1∑
l=1

(
1− 2l

2M

)
α(q))l−1 = M − 1− 1

2M

M−1∑
l=1

2l

= M − 1− 1

2M
2

1− 2M

1− 2

= M − 1− 2M − 1

2M−1
,

so that

Rqγ <∼ R
C

2M cMR(2M−1) 2

2M
εR

(
M−1− 2M−1

2M−1

)
qγ(1−1),
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i.e.

Rqγ <∼ R
C

2M cMR
2M−1

2M
(2ε).

Letting R→∞, we get

qγ ≤ C

2M
+

2M − 1

2M
(2ε).

Letting M →∞, we get
qγ ≤ 2ε.

This gives

γ ≤ 2ε

q
≤ ε,

as desired.
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