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This thesis involves the extension behavior of holomorphic functions in several variables, and the corresponding
extension problem for CR functions defined on a real hypersurface of a complex manifold. However, the extension
behavior of a holomorphic function f defined on a domain U turns out to depend on the complex geometry of
the boundary ∂U of U : thus the problem can be often formulated in terms of the trace of f on ∂U rather than f
itself. Then what follows is the notion of CR functions: complex-valued functions defined on real submanifolds
of Cn. Specifically we will discuss some important extension results for CR functions, with particular emphasis
on H.Lewy’s classical result about the extension from strictly pseudoconvex hypersurfaces.
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Chapter 1

Introduction

The main subject of the present thesis is the extension behavior of holomorphic functions in several variables, and

correspondingly the extension behavior of CR functions defined on a real hypersurface of a complex manifold.

This is a very important questions in the field of Several Complex Variables, and is still at the center of current,

active research.

Some of the fundamental differences between Complex Analysis in several variables and in one variable were

discovered in the beginning of the 20th century. Poincaré was the first to observe that an analogue of the

Riemann mapping theorem does not hold in Cn, by showing that the ball and bi-disc are not biholomorphically

equivalent. Another striking difference is Hartogs’ phenomenon: holomorphic functions defined outside of a

compact set K of Cn extend holomorphically through K. Together, these properties show that the study of

domains of existence of holomorphic functions in Cn is much more complicated than in C. It was this study

which ultimately led to the notions of domain of holomorphy and of pseudoconvexity.

The research on holomorphic functions has since uncovered various other extension phenomena, such as Bochner’s

tube theorem and Bogolyubov’s edge-of-the-wedge theorem, some of which have relevant applications in Physics.

As a general thread, the extension behavior of a holomorphic function f defined on a domain U turns out to

depend on the complex geometry of the boundary ∂U of U : the problem can be thus often formulated in terms

of the trace on ∂U rather than f itself.

This fact motivated the introduction of CR functions: complex-valued functions defined on real submanifolds

of Cn, solving a system of PDE’s which generalizes the usual Cauchy-Riemann equation. These functions have

become an important topic in their own right, lying at the intersection between Complex Analysis and PDE. In

the thesis we will review some of the most significant extension results for CR functions: mostly, we will focus

on H.Lewy’s classical result about the extension from strictly pseudoconvex hypersurfaces.

The organization of the thesis is as follows. In the first section we review some of the main notions of complex

analysis in several variables: the definition of holomorphy, Cauchy theorem, and the Cauchy integral formula.

In the second section we discuss some of the main differences between one complex variable and several complex

variables: in particular we introduce the notion of the domain of holomorphy and discuss Hartogs theorem. In the

third section we give a very brief overview of CR geometry by introducing real hypersurfaces in Cn, the Levi form,

and defining CR functions means of suitable vector fields. Then in the fourth section we go over the holomorphic

extension of CR functions. Specifically we discuss the fundamental result proved by Hans Lewy[4] and we provide

a more or less detailed proof of this result in the case of the Lewy hypersurface M = {=w = |z|2} ⊂ C2. first

we considered a compact domain where the CR function f will First we extend the CR function f on suitable

compact one dimensional slices of M to a function F which is holomorphic w.r.t z and then we show that F is

a holomorphic function in {=w > |z|2} and F �M= f . In the fifth section we expose subsequent developments

on the extension theorem 5.1 both for the local version and for the global one. Then we ended our discussion

by referring to the most far reaching generalizations of the one-sided local extension results of CR functions

,obtained by Treprean [8] and Tumanov [9].

1



Chapter 2

Complex analysis in several variables

Let Cn denote the complex Euclidean space. We denote by z = (z1, z2, ..., zn) the coordinates of Cn. Let

x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) denote the coordinates in Rn. We identify Cn with Rn ×Rn = R2n by

letting z = x+ iy. Just as in one complex variable we write z̄ = x− iy. We call z the holomorphic coordinates

and z̄ the antiholomorphic coordinates.

We will use the Euclidean inner product on Cn

〈z, w〉 = z1w1 + · · ·+ znwn

and the corresponding Euclidean norm on Cn

‖z‖ =
√
〈z, z〉 =

√
( |z1|2 + · · ·+ |zn|2) .

In the following we will outline the basic notions of the function theory of several complex variables.

2.1 Basic Definitions

In this section we will give some alternative definitions of holomorphic function in several complex variables which

extend the ones that are given in one complex variable. As in the case of one complex variable these definitions

turn out to be equivalent.

Definition 2.1 Let U ⊂ Cn be an open set, and let f : U −→ C be a function of class C1. Suppose that

f = u+ iv satisfies the Cauchy-Riemann equations
∂u
∂xj

= ∂v
∂yj

∂u
∂yj

= − ∂v
∂xj

for j = 1, 2, ..., n.

We then say that f is holomorphic.

The following is another way to define a holomorphic function.

Definition 2.2 Let U ⊂ Cn be a domain. A function f : U −→ C is called C-differentiable at z0 ∈ U if there

exist l1, · · · , ln ∈ C such that

|f(z)− f(z0)−
∑n
j=1 lj(zj − z0

j )| = O2(|z − z0|).

If a function f is C-differentiable on z0, then, for every j = 1, · · · , n, we have

lj =
∂f

∂zj
(z0),

where
∂f

∂zj
(z0) =

1

2
(
∂f

∂xj
− i ∂f

∂yj
) (z0) = lim

h→0

f(z0
1 , . . . , z

0
j + h, . . . , z0

n)− f(z0)

h
.

∂f/∂zj(z
0) is called the partial derivative of f at z0.
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Definition 2.3 For r = (r1, . . . , rn) where rj > 0 and a ∈ Cn, define a polydisc

P (a, r1, . . . , rn) = {z ∈ Cn : |zj − aj | < rj}.

We call a the center and r the polyradius or simply the radius of the polydisc P . If r1 = r2 = · · · = r > 0 then

we write

P (a, r) = {z ∈ Cn : |zj − aj | < r}.

If D denotes the unit polydisc in one complex variable, then the polydisc can be seen as a product of D :

Dn = D ×D × · · · ×D = P (0, 1) = {z ∈ Cn : |zj | < 1}.

As in one variable we define the Wirtinger operators

∂

∂zj
=

1

2
(

∂

∂xj
− i ∂

∂yj
)

∂

∂z̄j
=

1

2
(

∂

∂xj
+ i

∂

∂yj
).

The expression of the chain rule in terms of these operators will be useful later; the proof can be achieved by a

straightforward computation.

Lemma 2.1 (Chain rule for complex functions) Let f = f(z) and let g = g(z) be two complex valued functions

which are differentiable in the real sense, h(z) = g(f(z)).Then we have:

∂h

∂z
=
∂g

∂z
.
∂f

∂z
+
∂g

∂z
.
∂f

∂z

∂h

∂z
=
∂g

∂z
.
∂f

∂z
+
∂g

∂z
.
∂f

∂z

Using these operators the Cauchy Riemann condition in Definition 2.1 can be written in a more compact way as

∂f

∂zj
= 0 for j = 1, · · · , n.

Indeed,

∂f

∂zj
=

1

2

(
∂f

∂xj
+ i

∂f

∂yj

)
=

1

2

(
∂u

∂xj
+ i

∂v

∂xj
+ i

∂u

∂yj
− ∂v

∂yj

)
=

1

2

(
∂u

∂xj
− ∂v

∂yj
+ i

(
∂v

∂xj
+
∂u

∂yj

))
= 0

⇔


∂u
∂xj
− ∂v

∂yj
= 0

∂v
∂xj

+ ∂u
∂yj

= 0
⇔


∂u
∂xj

= ∂v
∂yj

∂u
∂yj

= − ∂v
∂xj

.

Remark 2.1 A function f is C-differentiable at z0 if and only if it is R-differentiable at z0 and the Cauchy-

Riemann conditions are fulfilled.

The proofs of this fact is identical to the case n = 1.

2.2 Cauchy Formula

In this subsection we will highlight how some basic theorems in one complex variable generalize to several

complex variables. We will start by the Cauchy theorem which is an important statement about line integrals

for holomorphic functions in the complex plane. Essentially, it says that if two different paths connect the same

two points, and a function is holomorphic everywhere in between the two paths, then the two path integrals of

the function will be the same. Beside its importance in practical applications this theorem is a cornerstone in

the development of complex analysis in one variable. Similarly, its generalization to several variables provides

the foundation for the proof of many of the essential features of holomorphic functions.
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Theorem 2.1 (Cauchy theorem in one variable)

Let D ⊆ C domain, K ⊂ D compact, and f ∈ O(D). Then∫
∂K

f(z)dz = 0.

Theorem 2.2 (Cauchy theorem in several variables)

Let D ⊆ Cn domain, K = K1 × · · · ×Kn ⊂ D compact, and f ∈ O(D). Then∫
∂K1

∫
∂K2

...

∫
∂Kn

f(z1, z2, ..., zn)dzn · · · dz2dz1 = 0.

Proof. Consider z = (z1, · · · , zn) where zj = xj + iyj , j = 1, · · · , n and f(z) to be f(z) = u(z) + iv(z) ,then ,

∫
∂K1

∫
∂K2

· · ·
∫
∂Kn

f(z1, z2, · · · , zn)dzn · · · dz2dz1 =

∫
∂K1

∫
∂K2

· · ·
∫
∂Kn

(u(z)+iv(z))(dxn+idyn)dzn−1 · · · dz2dz1 =

∫
∂K1

∫
∂K2

· · ·
∫
∂Kn

(u(z)dxn + iv(z)dxn + iu(z)dyn − v(z)dy)dzn−1 · · · dz2dz1 =∫
∂K1

∫
∂K2

· · ·
∫
∂Kn

(u(z)dxn − v(z)dyn) · · · dz2dz1 + i

∫
∂K1

∫
∂K2

· · ·
∫
∂Kn

(v(z)dxn + u(z)dyn)dzn−1 · · · dz2dz1 =∫
∂K1

∫
∂K2

· · ·
∫
Kn

(−∂v(z)

∂x
−∂u(z)

∂y
)d(xn, yn) · · · dz2dz1+i

∫
∂K1

∫
∂K2

· · ·
∫
Kn

(
∂u(z)

∂x
−∂v(z)

∂y
)d(xn, yn)dzn−1 · · · dz2dz1 =

0 + i0 = 0

where in the forth line we have applied Green’s theorem to Kn and d(xn, yn) is the area element in the xnyn

plane.

This is true since f is holomorphic, then it satisfies the Cauchy-Riemann equations.�

As a consequence of Cauchy theorem one can derive the Cauchy integral formula which expresses the fact that

a holomorphic function defined on a disk is completely determined by its values on the boundary of the disk.

Using the cauchy formula one can show that holomorphic function has derivatives of all orders and is analytic

(i.e. it can be represented by a power series).

We start by stating the Cauchy integral formula in one variable:

Theorem 2.3 (Cauchy integral formula in one variable)

Let D be a disc in C. Suppose f : D −→ C is a continous function holomorphic in D. Then for z0 ∈ D

f(z0) =
1

2πi

∫
∂D

f(z)

z − z0
dz.

The generalization to several variables can be given as follows:

Theorem 2.4 (Cauchy integral formula in several variables)

Let P be a polydisc centered at a ∈ Cn. Suppose f : P −→ C is a continuous function holomorphic in P. Write

Γ = ∂P1 × ∂P2 × · · · × ∂Pn. Then for z ∈ P

f(z) =
1

(2πi)n

∫
Γ

f(ζ1, ζ2, · · · , ζn)

(ζ1 − z1)(ζ2 − z2) · · · (ζn − zn)
dζn · · · dζ2dζ1

=
1

(2πi)n

∫
∂P1

∫
∂P2

· · ·
∫
∂Pn

f(ζ1, ζ2, · · · , ζn)

(ζ1 − z1)(ζ2 − z2) · · · (ζn − zn)
dζn · · · dζ2dζ1.

4



Proof. This can be obtained by an iterated application of the Cauchy formula in one variable∫
∂P1

∫
∂P2

· · ·
∫
∂Pn

f(ζ1, · · · , ζn)

(ζ1 − z1)(ζ2 − z2) · · · (ζn − zn)
dζn · · · dζ2dζ1

=

∫
∂P1

∫
∂P2

· · ·
∫
∂Pn−1

1

(ζ1 − z1) · · · (ζn−1 − zn−1)

∫
∂Pn

f(ζ1, · · · , ζn)

(ζn − zn)
dζn · · · dζ2dζ1

=

∫
∂P1

∫
∂P2

· · ·
∫
∂Pn−1

2πif(ζ1, · · · , ζn−1, zn)

(ζ1 − z1) · · · (ζn−1 − zn−1)
dζn−1 · · · dζ2dζ1

=

∫
∂P1

∫
∂P2

· · ·
∫
∂Pn−2

(2πi)2f(ζ1, · · · , ζn−2, zn−1, zn)

(ζ1 − z1) · · · (ζn−2 − zn−2)
dζn−2 · · · dζ2dζ1

= · · ·

= (2πi)nf(z1, z2, · · · , zn).�

A similar formula holds for the derivatives of f(z), and can be proved by differentiating the Cauchy formula

inside the integral.

Theorem 2.5 Let P be a polydisc centered at a ∈ Cn. Suppose f : P −→ C is a continuous function holomorphic

in P. Write Γ = ∂P1 × ∂P2 × · · · × ∂Pn. Then for z ∈ P and α = (α1, · · · , αn) ∈ Nn we have

f (α)(z) =
α!

(2πi)n

∫
Γ

f(ζ1, ζ2, · · · , ζn)

(ζ1 − z1)α1+1(ζ2 − z2)α2+1 · · · (ζn − zn)αn+1
dζn · · · dζ2dζ1

=
α!

(2πi)n

∫
∂P1

∫
∂P2

· · ·
∫
∂Pn

f(ζ1, ζ2, · · · , ζn)

(ζ1 − z1)α1+1(ζ2 − z2)α2+1 · · · (ζn − zn)αn+1
dζn · · · dζ2dζ1

where α! = α1!α2! · · ·αn! and f (α) = ∂|α|f
∂z
α1
1 ···∂z

αn
n

.

The following result shows that a holomorphic function is analytic.

Theorem 2.6 Let f be holomorphic in a domain Ω ⊂ Cn and let a ∈ Ω. Then, f can be expanded in an

absolutely convergent power series:

f(z) =
∑
α∈Nn

cα(z − a)α,

in a neighborhood of a. The coefficients cα are given by

cα =
f (α)(z)

α!
.

The representation of f as the sum of its Taylor series is valid in any polydisc centered at a and contained in Ω.

The proof is similar to the case n = 1.

As a consequence of analyticity we have the following unique continuation result.

Theorem 2.7 (Identity theorem)

Given functions f and g holomorphic on a connected open set D, if f = g on some non-empty open subset of D,

then f = g on D.

Proof.The connectedness assumption on the domain D is necessary. Under this assumption, since we are given

that the set is not empty, we can topologically prove that the set S ∈ D where f and g coincide is both open

and closed.

The closedness is immediate from the continuity of f and g: Let S = {z ∈ C : f(z) = g(z)} and h(z) = f(z)−g(z)

a continuous function. Since S is the zero set of h(z) a continuous function, S is closed.

Now we want to prove that S is open. Both f and g are holomorphic, then h is holomorphic. So it is analytic,

i.e. ∀p ∈ D ∃U a neighborhood of p such that h �U= sum of the power series centered at p. Let q ∈ ∂(interior of

5



S), then h(q) = 0 =⇒ all the derivatives of h will be zero =⇒ the Taylor series of h at q will be zero. Then,

q ∈ ( interior of S). Therefore, S is open.

Then f(z) = g(z) on the set S ∈ D which is both open and closed.

But, as D is connected, the only closed and open subset at once is D itself.

Thus f(z) = g(z) for z ∈ D.�
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Chapter 3

Domain of holomorphy and Hartogs

theorem

One might be tempted to think of the analysis of several complex variables as being essentially one variable

theory with the additional complications of multi-indices. However, this view turns out to be incorrect. So

in this section we will discuss several aspects in which one complex variable and several complex variables are

different.

One example is the Riemann mapping theorem, that is any two simply connected regions in C can be mapped

conformally onto each other. The corresponding result is not true in Cn: indeed, domains in Cn can behave

differently to each other in several ways. One of the ways to distinguish domains in Cn is given by the extension

properties of holomorphic functions. In order to discuss this topic in a precise way we first need a few definitions.

Definition 3.1 (Analytic completion) Let D ⊆ Cn be a domain and let ∆ be a subdomain of D. A domain

∆̂ ⊆ Cn is called an O(D)-analytic completion of ∆,or ,simply ,an analytic completion of ∆, if:

(i)∆ ⊆ ∆̂

(ii) for every f ∈ O(D), f |∆ extends holomorphically on ∆̂

Definition 3.2 (Domain of holomorphy)

A domain D ⊆ Cn is said to be a domain of holomorphy if, for every ∆ ⊆ D, all analytic completions ∆̂ of ∆

are contained in D.

Definition 3.3 (Domain of existence)

A domain D ⊆ Cn is said to be a domain of existance of f ∈ O(D) if D is an f-domain of holomorphy.

The Hartogs extension theorem is one of the crucial results of the theory. It highlights that, differently from what

happens in C, for n ≥ 2, Cn, contains domains D with the property that every f ∈ O(D) extends holomorphically

on a larger domain D̂ ⊃ D. This phenomenon, traditionally called Hartogs phenomenon, is at the core of the

fundamental notion of domain of holomorphy.

Theorem 3.1 (Hartogs theorem) Let D ⊆ Cn, n > 1, be a domain, K ⊂ D a compact subset such that D \K is

connected. Then the restriction homomorphism

O(D)
res−→O(D \K)

is an isomorphism.

7



Remark 3.1 In the theorem the assumption n > 1 is essential: the restriction map θ need not to be surjective

as the following example shows.

Consider the function f : D\K −→ C given by f(z) = 1
z

where D = {z ∈ C : |z| < 1} and K = {z ∈ C : |z| ≤ 1
2
},

then clearly f can not extent holomorphicaly to all of D. In fact in a similar way one can show that the restriction

map θ is never surjective.

Denote the restriction map by θ : O(D) −→ O(D \K).It is easy to show that θ is injective:

Ker(θ) = {f ∈ O(D) : θ(f) = 0 i.e. f �D\K= 0} = {0}
Indeed, using the identity theorem 2.7, since f = 0 on a connected open subset D \K ⊂ D we have f = 0 on D,

hence Ker(θ) = {0} and therefore θ is an injective map.

The proof that θ is surjective is much more involved and requires tools which go beyond the scope of our

discussion. However, some particular cases can be treated as a direct application of Cauchy’s integral formula

2.4. An especially notable instance is the following:

Theorem 3.2 (Hartogs figures for n = 2)

Let a, b, c ∈ (0, 1), b < c,

D1 = {(z1, z2) ∈ C2 : a < |z1| < 1, 0 < |z2| < 1},

D2 = {(z1, z2) ∈ C2 : |z1| < 1, b < |z2| < c}

and D = D1 ∪D2. Then every holomorphic function f : D −→ C extends holomorphically(and in a unique way)

on the bidisc P = P (0; 1).

Proof. Let r ∈ (a, 1),

Pr = {(z1, z2) ∈ C2 : |z1| < r, |z2| < 1}

and let f̃r : Pr −→ C be defined by

f̃r(z1, z2) =
1

2πi

∫
|ζ1|=r

f(ζ1, z2)

ζ1 − z1
dζ1.

f̃r is continuous on pr and holomorphic with respect to each variable z1 and z2 (since ∂f̃r
∂z̄1

(z1, z2) = ∂f̃r
∂z̄2

(z1, z2)),

therefore holomorphic. For every fixed z2 with z2 ∈ (b, c), f(z1, z2) is holomorphic with respect to z1 in the disc

{z1 ∈ C : |z1| < r},

And

f̃r(z1, z2) =
1

2πi

∫
|ζ1|=r

f(ζ1)

ζ1 − z1
dζ1.

Therefore,f̃r is the Cauchy representation of f . From the identity theorem f and f̃r coincide on Dr = D ∩ {z1 ∈
C : |z1| < r}. The function f̃ defined as f̃ = f̃r on Pr and f̃ = f on D is the required holomorphic extension of

f.�

Remark 3.2 By using Theorem 3.2 (and its straightforward generalization to n variables) it is relatively easy to

give a proof of theorem 3.1 in the case where D = Cn. Indeed, one can always “fit” a compact set K ⊂ Cn inside

a Hartog figure of the kind studied in theorem 3.2. However, the proof for a general domain D is considered more

difficult.

8



Chapter 4

Hypersurfaces and CR functions

4.1 Hypersurfaces

A deeper study of the extension problem considered in the previous section shows that the behavior of holomorphic

functions defined on a domain D ⊂ Cn is linked to the geometry of ∂D which is typically a real hypersurface of

Cn. That is why the study of holomorphic functions in several Complex Variables leads naturally to the study

of the Geometry of real hypersurfaces. We are going to review some of the main concepts involved in this study:

to this aim we will need to give some definitions.

Definition 4.1 Let M be a subset of Rn such that for every point p ∈ M there exists a neighbourhood Up of p

in Rn and a continuously differentiable function ρ : U −→ R with ∇ρ 6= 0 on U , such that

M ∩ U = {x ∈ U |ρ(x) = 0}.

Then M is called a real hypersurface of class C1.

Example 4.1 The unit sphere in C2 defined as S = {|z|2 + |w|2 = 1}, where z = x + iy, w = u + iv is a real

hypersurface of C2 ∼= R4. We can write the equation of S in terms of the real coordinates as ρ = x2+y2+u2+v2−1,

since ρ = 0 =⇒ x2 + y2 + u2 + v2 = 1 =⇒ |z|2 + |w|2 = 1. Note that the gradient of ρ is ∇ρ = (2x, 2y, 2u, 2v)

hence it does not vanish on S.

As it is well known if the hypersurface M ⊂ Rn is defined as {ρ = 0}, its convexity properties are encoded into

the Hessian matrix of ρ whose entries are the derivatives of ρ of order two. However, the (usual) convexity is

not an invariant property under holomorphic transformations and therefore it is not a natural notion in complex

analysis. An alternative concept of convexity was introduced by E.E. Levi in [3]. As it turns out in order to

define an invariant notion of convexity one needs to consider only the (1,1) part of the second order expansion of

ρ. This is what motivates the following definition.

Definition 4.2 Let ρ : Cn −→ R be of class C2 and fix z0 ∈ Cn. The Hermitian form

L(ρ; z0)(ζ) =

n∑
α,β=1

∂2ρ

∂zα∂z̄β
(z0)ζαζ̄β , ζ = (ζ1, ..., ζn) ∈ Cn,

is called the Levi form of ρ at z0.

For convenience we will now recall some facts about Hermitian forms on a complex vector space.

Definition 4.3 A Hermitian form on a vector space V over C , is a function 〈., .〉 : V × V −→ C satisfying the

following properties:

1- 〈v, w〉 = 〈w, v〉

9



2- 〈αv1 + βv2, w〉 = α〈v1, w〉+ β〈v2, w〉 ∀α, β ∈ C
3- 〈v, αw1 + βw2〉 = α〈v, w1〉+ β〈v, w2〉 ∀α, β ∈ C (note that 3 is a consequence of 1 and 2).

It is positive definite if it satisfies the following properties:

(i) 〈v, v〉 ≥ 0

(ii) 〈v, v〉 = 0 ⇐⇒ v = 0

Example 4.2 In C2 the standard Hermitian product

〈v, w〉 = z1w1 + z2w2,

where v =

(
z1

z2

)
and w =

(
w1

w2

)
, defines a positive definite Hermitian form.

Remark 4.1 The Levi form of ρ is by definition a Hermition form but needs not satisfy the positive definite

property. If L(ρ; z) is positive definite for any z ∈ Cn then ρ is called strictly plurisubharmonic.

In much the same way scalar products on Rn are represented by real symmetric matrices, Hermitian forms on

Cn can be represented by matrices of the following kind:

Definition 4.4 A Hermitian matrix A is a matrix of complex entries such that:

A = At

It is well known that a Hermitian matrix satisfies the following properties:

1-Its diagonal entries are real (by definition).

2-Its eigenvalues are all real.

3- It is diagonalizable.

Remark 4.2 The link between Hermitian forms and the corresponding matrices is given as follows:

For any Hermitian form L(v, w) on Cn write

L(v, w) =

n∑
i,j=1

aijziwj .

Then the matrix A = (aij) is Hermitian and we say that A represents the form L. Vice versa, given any

Hermitian matrix A the expression above defines a Hermitian form on Cn.

The standard Hermitian product on Cn is positive definite and is defined by:

L(u, v) = 〈Av, u〉 =
∑
i,j

aijziwj

Indeed for any complex matrix A:

〈Av, u〉 = 〈v,Atu〉

But if A is a Hermitian matrix then:

〈Av, u〉 = 〈v,Atu〉 = 〈v,Au〉

Then,

L(v, u) = 〈Av, u〉 = 〈v,Atu〉 = 〈v,Au〉 = 〈Au, v〉 = L(u, v).

10



Let now ρ : Cn −→ R be a function and fix z0 ∈ Cn such that ρ(z0) = 0. The order two Taylor expansion of ρ

about z0 can be written in terms of the complex coordinates as

ρ(z) =

n∑
α=1

ρzα(z0)zα +

n∑
α=1

ρz̄α(z0)z̄α+ (4.1)

+
1

2

n∑
α,β=1

ρzαzβ (z0)zαzβ +
1

2

n∑
α,β=1

ρz̄αz̄β (z0)z̄αz̄β +

n∑
α,β=1

ρzαz̄β (z0)zαz̄β +O3(z).

If ρ is a regular defining function for a real hypersurface M = {ρ = 0}, z0 ∈ M , then the linear part of the

expansion ` =
∑n
α=1 ρzα(z0)zα +

∑n
α=1 ρz̄α(z0)z̄α is not vanishing.

This fact allows to give the following definitions:

Definition 4.5 Let M be a real hypersurface defined as M = {ρ = 0}, z0 ∈M .

The zero set of the linear part ` of the expansion of ρ about z0 is a real hyperplane of Cn, called the tangent

hyperplane of M at z0 and denoted as Tz0(M).

Definition 4.6 Let M,ρ be as in definition 4.5 and let l : Cn −→ C be the complex linear function such that

<(l) = `. (Note that l = 1
2

∑n
α=1 ρzα(z0)zα)

Then the zero set of l is a complex hyperplane of Cn, called the complex tangent space of M at z0 and denoted

by Hz0(M).

If D ⊂ Cn is defined as D = {ρ < 0} with ρ : Cn −→ R a function of class Ck such that ∇ρ 6= 0 on ∂D = {ρ = 0}
then we say that D is a domain of class Ck of Cn. In this case the boundary ∂D is a real hypersurface of class

Ck.

The notion of convexity introduced by E.E. Levi can now be defined as follows:

Definition 4.7 Let D ⊂ Cn, n > 1 be a domain as before and let z0 ∈ ∂D. We say that D is Levi-convex at z0

if the restriction of the Levi form of ρ to Hz0(∂D)

L(ρ; z0)(ζ) =

n∑
α,β=1

∂2ρ

∂zα∂z̄β
(z0)ζαζ̄β , ζ = (ζ1, ..., ζn) ∈ Hz0(∂D),

has non-negative eigenvalues. If the eigenvalues are strictly positive then we say that D is strictly Levi convex at

z0.

In other words, the notion of Levi convexity depends on the (1,1) part
∑n
α,β=1 ρzαz̄β (z0)zαz̄β of the Taylor

expansion (4.1). As it turns out this part is the (1,1) enjoining some invariant properties with respect to

holomorphic changes of coordinates. In order to work with such coordinate changes it would be useful to recall

the holomorphic version of the inverse mapping theorem.

Theorem 4.1 (Inverse mapping theorem for holomorphic functions)

Let f : Cn → Cn be a holomorphic function and let z ∈ Cn be such that Jf (z) is invertible, where Jf (z) =

( ∂fi
∂zj

)i,j=1,...,n is the complex Jacobin of f at z. Then there exists a local inverse of f at z, that is, there are

neighborhoods U of z and V = f(U) of f(z) such that f : U → V is bijective and the map f−1 : V → U giving

the local inverse to f is holomorphic.

We also need the well known:

Theorem 4.2 (Implicit function theorem)

If f1, ..., fn are differentiable functions on a neighborhood of the point (x0, y0) = (x1
0, ..., xn

0, y1
0, ..., yn

0) in

Rn × Rm , if f1(x0, y0) = f2(x0, y0) = ... = fn(x0, y0) = 0, and and if the n× n matrix


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn


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is invertible at (x0, y0), then there is a neighborhood U of the point y0 = (y1
0, ..., yn

0) in Rm, there is a neighbor-

hood V of the point x0 = (x1
0, ..., xn

0) in Rn , and there is a unique mapping ϕ : U −→ V such that ϕ(y0) = x0

and f1(ϕ(y), y) = ... = f1(ϕ(y), y) for all y in U . Furthermore, ϕ is differentiable.

The special role played by the Levi form in the Taylor expansion of the defining function ρ can now be seen in

the following lemma:

Lemma 4.1 let D ⊂ Cn, n ≥ 1, be a domain with differentiable boundary and z0 ∈ ∂D. Then there exist a

neighbourhood U of z0 and a biholomorphism f : U −→ f(U), z 7→ w = f(z), such that

(i)f(z0) = 0

(ii)f(U ∩ bD) is defined by a differentiable function ρ̂ of the following form:

ρ̂(w) = wn + wn + L(ρ̂; 0)(w) +O3(w),

with |Ok(w)| < |w|k.

Proof. Suppose that n > 1. The statement does not depend on translations, therefore we may assume that z0 = 0.

Let ρ be a differentiable function which defines bD at z0. Using the derivatives ρzα , ρz̄α , ρzαzβ , ρzαz̄β , ρz̄αzβ , ρz̄αz̄β ,

we write the Taylor expansion of ρ as in (4.1) in the following form

ρ(z) =

n∑
α=1

ρzα(0)zα +

n∑
α=1

ρz̄α(0)z̄α+

+
1

2

n∑
α,β=1

ρzαzβ (0)zαzβ +
1

2

n∑
α,β=1

ρz̄αz̄β (0)z̄αz̄β +

n∑
α,β=1

ρzαz̄β (0)ρzαz̄β +O3(z).

Since dρ(0) 6= 0, there exist α ∈ {1, ..., n} say α = n, such that ρzα 6= 0.

Consider the local biholomorphism f given by



w1(z) = z1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

wn−1(z) = zn−1

wn(z) =
∑n
α=1 ρzα(0)zα + 1

2

∑n
α,β=1 ρzαzβ (0)zαzβ ;

Let g = f−1 be given by g = (g1, ..., gn) and ρ̂ = ρ ◦ g.

Applying the Taylor formula to each component gα of g, we obtain gα(w) = zα(w) =
∑n
γ=1

∂gα
∂wγ

(0)wβ+O2(w), 1 ≤
α ≥ n,
thus

L(ρ; 0)(z) =

n∑
α,β=1

ρzαz̄β(0)zαz̄β

=
n∑

α,β=1

[
ρzα z̄β(0)

( n∑
γ=1

∂gα
∂wγ

(0)wγ +O2(w)

)( n∑
σ=1

∂gα
∂wσ

(0)w̄σ +O2(w)

)]

Then by substitution we finally get

ρ(g(w)) = wn + w̄n +
n∑

α,β,γ,σ=1

ρzα z̄β(0)
∂gα
∂wγ

(0)
∂gβ
∂wσ

(0)wγw̄σ +O3(w) = wn + w̄n + L(ρ̃; 0)(w) +O3(w). �

We want to illustrate lemma 4.1 by showing how the computations are carried out in the case of the unit sphere

S of C2 at p = (0, 1) (cf. 4.1).
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Recall that S = {ρ = 0}, where ρ = x2 +y2 +u2 +v2−1 and ∇ρ = (2x, 2y, 2u, 2v). Since ∇ρ(p) = (0, 0, 2, 0) 6= 0,

we can apply the implicit function theorem. Hence in a neighborhood of p ∈ S we can express S as a graph of a

function: S = {u =
√

1− x2 − y2 − v2} for (x2 + y2 + v2) < 1.

Putting u(x, y, v) =
√

1− x2 − y2 − v2, we can find the Taylor expansion of u by recalling the binomial expansion:

(1 + ζ)α = 1 + αζ +
α(α− 1)

2
ζ2 +O(ζ3)

valid for α ∈ R. Setting ζ = x2 + y2 + v2

We get

u = (1− ζ)
1
2 = 1 +

1

2
(−ζ)2 +

1

2

−1

2
(−ζ)2 +O(ζ3) = 1− 1

2
(x2 + y2 + v2)− 1

4
(x2 + y2 + v2)2 +O(ζ3)

= 1− 1

2
(x2 + y2 + v2) +O(4)

Then

ρ = u− 1 +
1

2
(x2 + y2 + v2) +O(4) =

w

2
+
w̄

2
− 1

2

(
|z|2 +

(
w

2i
− w̄

2i

)2)
+O(4)

=
w

2
+
w̄

2
− |z|

2

2
− 1

2

(
− w2

4
− w̄2

4
+
ww̄

2

)
+O(4) =

w

2
+
w̄

2
+−w

2

8
+
w̄2

8
− zz̄

2
− ww̄

2
+O(4)

Then consider the local biholomorphism f given by:z̃ = z

w̃ = 1
2
w + 1

8
w2

If g = f−1 is the inverse of the coordinate change we have g(z̃, w̃) =z = z̃

w = 2w̃ − w̃2 +O(3)

Now compose ρ with g:

ρ̃ = ρ(g(z̃, w̃)) =
2w̃ − w̃2

2
+

2w̃ − w̃2

2
+

(
2w̃ − w̃2

8

)2

+

(
2w̃ − w̃2

8

)2

− z̃z̃

2
−
(
2w̃ − w̃2

)(
2w̃ − w̃2

)
4

+O(3)

= w̃ + w̃ − z̃z̃

2
− w̃w̃ = wn + wn + L(ρ̃; 0)(w) +O(3) where wn = w̃, wn = w̃, L(ρ̃; 0)(w) = − z̃z̃

2
− w̃w̃.

This is exactly the form obtained in lemma 4.1.

The notion of Levi convexity can be used to give an important necessarily condition for a domain D to be a

domain of holomorphy.

Theorem 4.3 Let D ⊂ Cn, n > 1 be a domain of holomorphy with smooth boundary. Then ∂D is Levi-convex.

Proof. The proof is now standard in the literature and can be achieved by using lemma 4.1. Let z0 ∈ ∂D . By

the previous lemma 4.1, up to a holomorphic change of coordinates we may assume that z0 = 0 and we can say

that ∂D is locally defined at zero by a function ρ of the form:

ρ(z) = zn + zn + L(ρ̃; 0)(z) +O3(z) for z ∈ Cn

H0(∂D) is the coordinate hyperplane zn = 0. Assume by contradiction that there exists z̃ ∈ H0(∂D) such that

L(ρ; 0)(z̃) < 0. Performing a holomorphic linear change of coordinates inH0(∂D), we may assume z̃ = (z̃1, 0, ..., 0).

By hypothesis, we have

0 > L(ρ; 0)(z̃) = ρz1z1(0)|z̃1|2
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hence ρz1z1(0) < 0.

Let

Dε = {z ∈ Cn : |z1| < ε, zα = 0, 2 ≤ α ≤ n}.

And we have that D = {ρ < 0} then ∂D = {ρ = 0}.

In particular, in a neighborhood of the origin, 0 is the only common point between ∂D and Dε.

It follows that there exist ε0 > 0 such that for every ε < ε0, the corona

{z ∈ Cn :
ε

2
≤ |z1| ≤ ε, zα = 0, 2 ≤ α ≤ n}

is contained in D.

There exist η0 > 0 such that, for every η ≤ η0, the domain

∆ε = {z ∈ Cn :
ε

2
< |z1| < ε, |zα| < η, 2 ≤ α ≤ n},

i.e the product of the corona

{z1 ∈ C :
ε

2
< |z1| < ε}

by the disc

B = {z ∈ Cn−1 : |zα| < η, 2 ≤ α ≤ n}

is relatively compact in D.

Now we add to ∆ε a domain ∆̃ of type:

∆̃ = {z1 ∈ C : |z1| < ε} ×A

with A ⊆ B, in order to obtain a Hartogs domain ∆ε ∪ ∆̃, whose analytic completion contains the origin, and

from here we get a contradiction.

Thus ∆ = ∆ε ∪ ∆̃ is contained in D, but ∆̂ is not, because 0 ∈ ∆̂ \D.

A contradiction, since D is a domain of holomorphy. �

Now we will show how the computations of theorem 4.3 works in a specific example: In C3 with coordinates

z = (z1, z2, z3) consider a domain D of the form D = {ρ < 0} with ρ of the following form:

ρ(z1, z2, z3) = z3 + z3 + |z1|2 − |z2|2 +O3(z)

By definition 4.6 we have that H0(∂D) = {z3 = 0}. Applying the complex linear holomorphic change of

coordinates (z1, z2, z3) −→ (z2, z1, z3) then ρ = z3 + z3 − |z1|2 + |z2|2 +O3(z) then ρz1z1 = −1 < 0. So

0 > L(ρ; 0)(z̃) = ρz1z1(0)|z̃1|2

For small ε > 0 let Dε be a one dimensional disc in the z1 line in C3

Dε = {z = (z1, z2, z3) : |z1| < ε, z2 = z3 = 0}

Recall that D = {ρ < 0} then ∂D = {ρ = 0}.

Claim 1: 0 is the only common point between ∂D and Dε.

Indeed, First ρ(0) = 0 then 0 ∈ ∂D and clearly 0 ∈ Dε, so 0 ∈ bD ∩Dε.
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For ε small enough show that 0 is the only common point between ∂D and Dε:

Let p ∈ Dε and look at ρ(p):

ρ(p) = 0 ⇐⇒ p ∈ ∂D ⇐⇒ p ∈ ∂D ∩Dε

We now restrict ρ to Dε and find the points for which ρ is equal to zero,

p ∈ Dε =⇒ p = (z1, 0, 0) for |z1| < ε, so ρ(p) = −|z1|2 + O(z1
3) = −|z1|2 + R(z1) where R(z1) where

|R(z1)| ≤ c|z1|3 for some constant c > 0. Let t = 1
2c

=⇒ if |z1| < t =⇒ |R(z1)| ≤ |z1|2|z1|c = |z1|2
2

. So if z1 is

very small then ρ(p) ≤ − |z1|
2

2
−→ 0 as z1 → 0

Therefore, Dε will meet bD at zero only.

Claim 2: It follows that there exist ε0 > 0 such that for every ε < ε0, the analus

{z = (z1, z2, z3) :
ε

2
≤ |z1| ≤ ε, z2 = z3 = 0}

is contained in D.

Indeed, If p belong to the analus

ρ(p) ≤ −|z1|2

2
=⇒ ρ(p) < 0 =⇒ p ∈ D

Therefore, analus is contained in D.

Claim 3: There exist η0 > 0 such that, for every η ≤ η0, the domain

∆ε = {z = (z1, z2, z3) :
ε

2
< |z1| < ε, |z2|, |z3| < η,

i.e the product of the analus

{z1 ∈ C :
ε

2
< |z1| < ε}

by the disc

B = {(z2, z3) ∈ C2 : |z2|, |z3| < η},

is relatively compact in D.

Indeed, The annulus is contained in D which is open, it is well known that if K is a compact set contained in

an open set D then a small translation of the compact set will be also contained in D. Since ∆ε is a union of

small translation of the analus it is contained on D.

Now we add to ∆ε a domain ∆̃ of type:

∆̃ = {z1 ∈ C : |z1| < ε} ×A

with A ⊆ B, in order to obtain a Hartogs domain ∆ε ∪ ∆̃, whose analytic completion contains the origin, and

from here we get a contradiction.

Thus ∆ = ∆ε ∪ ∆̃ is contained in D, but ∆̂ is not, because 0 ∈ ∆̂ \D.

A contradiction, since D is a domain of holomorphy.

The necessarily condition provided by theorem 4.3 led naturally to the following question known as the Levi

problem.
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Levi problem: Let D ⊆ Cn. Is it true that if D is Levi convex at all points then it is a domain of holomorphy?

The Levi problem for domains in Cn was solved by K. Oka in [7] (we remark however that the problem is still

open for domains of a complex analytic variety). For the scope of our discussion it will be enough to recall a

local converse of theorem 4.3 which is valid when D is strongly Levi convex and can be proved in an elementary

way, similar to the computations used in the proof of theorem 4.3.

Theorem 4.4 Let D ⊆ Cn be a domain of class C2 and z0 ∈ ∂D be a point of strong Levi-convexity. Then there

exist a neighborhood U of z0 in Cn such that U ∩D is a domain of holomorphy. More specifically there exist a

local change of coordinates φ on U such that φ(U ∩D) is strictly convex.

4.2 CR-functions

In this subsection we will discuss the notions of real and complex valued vector fields in Cn and how that can

be used to give a characterizations of holomorphic functions. If M is a hypersurface of Cn, we will use suitable

vector fields tangent to M to introduce the notion of CR-functions.

Recall:

A general vector field in Rn can be represented by:

X = a1
∂

∂x1
+ a2

∂

∂x2
+ ...+ an

∂

∂xn
,

where a1, a2, ..., an are functions from Rn −→ R.

A vector field X as above represents a differential operator acting on differentiable functions f : Rn −→ R as

follows:

Xf = a1
∂f

∂x1
+ a2

∂f

∂x2
+ ...+ an

∂f

∂xn
.

The value of X at a point p is:

X(p) = a1(p)
∂

∂x1
+ a2(p)

∂

∂x2
+ ...+ an(p)

∂

∂xn
,

which can be identified to the vector V = a1(p)e1 + ... + an(p)en. Therefore X differentiates f in the direction

of V .

A general complex valued vector field in Cn can be represented by:

Z = a1(z)
∂

∂x1
+ b1(z)

∂

∂y1
+ an(z)

∂

∂xn
+ bn(z)

∂

∂yn
where aj and bj are functions from Cn −→ C.

We can rewrite Z in terms of ∂
∂z

and ∂
∂z

by recalling that

∂

∂zj
=

1

2

(
∂

∂xj
− i ∂

∂yj

)
and

∂

∂zj
=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
Then

∂

∂xj
=

∂

∂zj
+

∂

∂zj
and

∂

∂yj
= i

(
∂

∂zj
− ∂

∂zj

)
So Z can be written as:

Z = α1(z)
∂

∂z1
+ ...+ αn(z)

∂

∂zn
+ β1(z)

∂

∂z1
+ ...+ βn(z)

∂

∂zn
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Where αj = aj + ibj and βj = aj − ibj . In the following it will be useful to distinguish the part of Z containing
∂
∂zj

and the part containing ∂
∂zj

. More precisely we call the vector field

L = α1(z)
∂

∂z1
+ ...+ αn(z)

∂

∂zn
the (1,0) part of Z, and the vector field

N = β1(z)
∂

∂z1
+ ...+ βn(z)

∂

∂zn
the (0,1) part of Z.

We denote by X (Cn) the set of complex valued vector fields in Cn. Then X (Cn) is a module over the ring

C∞(Cn). Defining the sub-modules X (1,0)(Cn) =

〈
∂
∂z1

, ..., ∂
∂zn

〉
and X (0,1)(Cn) =

〈
∂
∂z1

, ..., ∂
∂zn

〉
of X (Cn), the

composition defined above corresponds to the fact that

X (Cn) = X (1,0)(Cn)⊕X (0,1)(Cn).

Now definition 2.1 can be restated in terms (0, 1) vector fields as follows

Theorem 4.5 Let f : Cn −→ C.
f is holomorphic ⇐⇒ Lf = 0 for all L ∈ X (0,1)(Cn).

We now recall the well known notion of vector field tangent to a hypersurface.

Definition 4.8 Let M = {ρ = 0} be a hypersurface in Cn, and let X be a vector field. We say that X is tangent

to M if Xρ(p) = 0 for all p ∈M .

This allows to define the notion of CR function in analogy to Theorem 4.5.

Definition 4.9 Let M = {ρ = 0} be a hypersurface in Cn and let f : M −→ C be a differentiable function. We

say that f is a CR function if Lf = 0 on M for all L ∈ X (0,1)(Cn) which are tangent to M .

Remark 4.3 Let f : Cn −→ C be a holomorphic function and let M be a real hypersurface. Then f �M : M −→ C
is a CR function. This is a direct consequence of Theorem 4.5 and Definition 4.9, since Lf is actually zero for

all L ∈ X (0,1)(Cn) and not only for those tangent to M .

Constructing tangent vector fields to a manifold:

In Rn+1 consider a hypersurface of the form M = {xn+1 = l(x1, ..., xn)}; then a local defining function for M is

ρ(x1, ..., xn+1) = xn+1 − l(x1, ..., xn).

We can construct n vector fields that are tangent to M as follows:

X1 =
∂

∂x1
+ lx1

∂

∂xn+1

X2 =
∂

∂x2
+ lx2

∂

∂xn+1

...

Xn =
∂

∂xn
+ lxn

∂

∂xn+1

These X ′is generate the module of the vector fields tangent to M . In other words, if X ∈ X (0,1)(Cn) tangent to

M , then there exist functions g1, ..., gn : M −→ R such that X �M= g1X1 �M +...+ gnXn �M .

Analogously, in Cn+1, consider coordinates (z1, ..., zn, w) ∈ Cn+1 where w = u+ iv and define a real hypersurface

as M = {v = l(z1, ..., zn)}.
We can construct n vector fields of type (0, 1) that are tangent to M as follows:
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X1 =
∂

∂z1
− 2ilz1

∂

∂w

X2 =
∂

∂z2
− 2ilz2

∂

∂w

...

Xn =
∂

∂zn
− 2ilzn

∂

∂w

Just as in the real case the X ′is generate the module of the (restrictions to M of the) vector fields of type (0, 1)

that are tangent to M . We conclude that

f : M −→ C is a CR-function

⇐⇒ Lf = 0 for all L ∈ X (0,1)(Cn) tangent to M

⇐⇒



X1f = 0

X2f = 0

...

Xnf = 0 on M

.

This fact allows to express the CR condition as a system of partial differential equations. Now we will derive this

system explicitly in a particularly important case.

Consider coordinates z = x + iy , w = u + iv in C2 and define the hypersurface M ⊂ C2 as M = {v = |z|2}.
This is called the Lewy hypersurface and much of the work in the rest of the present thesis will revolve around

it. Arguing as above we find a vector field X tangent to M having the following form:

X =
∂

∂z
− 2ilz

∂

∂w

But l = |z|2 = zz =⇒ lz = z

X =
∂

∂z
− 2iz

∂

∂w

We want to write this vector field X in terms of z and u which can be used as local coordinates for the manifold M .

The map giving the local coordinates is the restriction to M of the projection π on Cn defined as π(z, w) = (z, u).

Then it is immediate to see that the push-forward map π∗ induced on vector fields satisfies π∗
∂
∂x

= ∂
∂x

, π∗
∂
∂y

= ∂
∂y

,

π∗
∂
∂u

= ∂
∂u

, and π∗
∂
∂v

= 0. To find the expression of X in the (z, u) coordinates we need to compute π∗(X):

π∗(X) = π∗
∂

∂z
− 2izπ∗

∂

∂w
=

∂

∂z
− 2iz

1

2

(
π∗

∂

∂u
+ iπ∗

∂

∂v

)
=

∂

∂z
− iz ∂

∂u

Then a function f : M −→ C is a CR-function if and only if Xf = 0, that is,

∂f

∂z
− iz ∂f

∂u
= 0

This is the CR-equation on M . This equation had been first studied by Hans Lewy and used in [5] to construct

the first example of a partial differential equation with smooth coefficients not admitting local solutions.

Remark 4.4 Let M ⊆ Cn be any hypersurface, f : M −→ C a CR-function, and h : C −→ C a holomorphic

function. Then h ◦ f : M −→ C is a CR-function.

Proof. Verify this using the CR-equation:

Consider

L = a1
∂

∂z1
+ a2

∂

∂z2
+ ...+ an

∂

∂zn

18



to be a (0, 1) vector field tangent to M .

Then

L(h ◦ f) = a1
∂(h ◦ f)

∂z1
+ a2

∂(h ◦ f)

∂z2
+ ...+ an

∂(h ◦ f)

∂zn
.

In particular by Lemma 2.1
∂(h ◦ f)

∂zj
=
∂h

∂z
.
∂f

∂zj
+
∂h

∂z
.
∂f

∂zj
=
∂h

∂z
.
∂f

∂zj

since h is a holomorphic function. We conclude that

L(h ◦ f) = a1

(
∂h

∂z
.
∂f

∂z1

)
+ ...+ an

(
∂h

∂z
.
∂f

∂zn

)
=
∂h

∂z

(
a1
∂f

∂z1
+ ...+ an

∂f

∂zn

)
= 0

since f is a CR-function. Thus h ◦ f is a CR-function. �

We want to work out the computations of Remark 4.4 in the particular example of the hypersurface M = {v =

|z|2}, using the intrinsic point of view rather than the vector fields L, that is, using directly the CR equation

written in the coordinates of M . Let as before f : M −→ C be a CR-function, and let h : C −→ C be a

holomorphic function.

Proof. Using directly the CR equation,

∂h ◦ f
∂z

=
∂h

∂z

∂f

∂z
+
∂h

∂z

∂f

∂z
=
∂h

∂z

∂f

∂z
,

since h is holomorphic.

∂h ◦ f
∂u

=
∂h

∂z

∂f

∂u
+
∂h

∂z

∂f

∂u
=
∂h

∂z

∂f

∂u
,

since h is holomorphic.

Then

X(h ◦ f) =
∂h ◦ f
∂z

− 2i
∂h ◦ f
∂u

=
∂h

∂z

∂f

∂z
− 2i

∂h

∂z

∂f

∂u
=
∂h

∂z

[
∂f

∂z
− iz ∂f

∂u

]
= 0,

since f is CR-function.

Therefore h ◦ f is a CR-function. �
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Chapter 5

Extensions of CR functions

As we have seen in the previous section the restriction of a holomorphic function is a CR-function, in this section

we will see that not all CR-functions are the restriction of holomorphic functions.

The square root of z:

• The square root of z can not be defined in C:

Let w be the square root of z, then w2 = z. The polynomial w2 − z = 0 has two roots (by the fundamental

theorem of algebra). So we can not define the square root of z in C.

• The square root of z is defined and continuous on C \ {z ∈ C : =z = 0 and <z < 0}.

The log z function:

• The log z function can not be defined in C:

Let w = log z, then ew = z. Suppose w = u+ iv, and z = ρeiθ. Then the equation ew − z = 0 will have infinitely

many solutions:

eu+iv = ρeiθ =⇒ eueiv = ρeiθ =⇒

ρ = eu =⇒ u = log ρ

eiv = eiθ =⇒ v = θ + 2πn

Since the log function is not injective, we can not define log z on C.

• The log z function can be defined on C \ {z ∈ C : =z = 0 and <z ≤ 0}.

Once we define the log function, we can define any real power of z:

For γ ∈ R, zγ can be defined since zγ = eγ log z on C \ {z ∈ C : =z = 0 and <z ≤ 0}.

Note: Let H = {z ∈ C : <z > 0} be the upper half-plane in C. Then on H the log, square-roots, and powers of

z are all defined.

5.1 CR functions that are not the restriction of holomorphic

functions

We want to study on H = {z ∈ C : <z > 0} a function h : H −→ C defined as:

h(z) = e
−1
zγ for γ ∈ R and γ > 0

Note that h(z) is a holomorphic function on H since it is the composition of two holomorphic functions the

exponential and −1
zγ

.

20



We want to check if the function h extends continuously to the boundary of H.

• Check first for γ = 1, h(z) = e
−1
z :

(i)If z = x is real, then h(z) = e
−1
x . This function extends continuously to the boundary of H since as x → 0,

h(z)→ 0.

(ii)If z = iy is pure imaginary, then h(z) = e
−1
iy = e

i
y = cos 1

y
+ i sin 1

y
.

But both the lim
y→0

cos
1

y
and the lim

y→0
sin

1

y
do not exist. Thus h(z) does not extend continuously to the boundary

of H.

If instead of H we take the domain Vc = {z = x+ iy ∈ C : x > c|y|} for c a constant.

Claim: h(z) = e
−1
z is continuous restricted to the boundary of Vc. In other words, |h(z)| −→ 0 as z −→ 0 where

z ∈ Vc.
Indeed, we know that for any exponential ew, its modulus is equal to = |ew| = e<w.

Then |h(z)| = e<
(
−1
z

)
. But

−1

z
=
−1

x+ iy
=
−x+ iy

x2 + y2
then <

(−1

z

)
=

−x
x2 + y2

Then

|h(z)| = e
−x

x2+y2 .

But on Vc

−x
x2 + y2

>
−x

x2 + x2

c2

→ −∞ for (x, y)→ (0, 0) =⇒ |h(z)| = e
−x

x2+y2 → e−∞ → 0 for (x, y)→ (0, 0).

(End Claim)

• Then work with γ = 1
2
, h(z) = e

−1√
z for z ∈ H :

(i)If z = x is real, then h(z) = e
−1√
x . This function extends continuously to the boundary of H since as x −→ 0,

h(z) −→ 0.

(ii)If z = x+ iy, h(z) = e
−1√
z for z ∈ H.

Lemma 5.1 The function h(z) = e
−1√
z is continuous up to the boundary of H. In other words, |h(z)| → 0 as

z → 0 where z ∈ H.

Proof. We know that |h(z)| = e
<
(
−1√
z

)
. So try to find a bound for <

(
1√
z

)
.

Let p = 1√
z
, then p ∈ V1. So p can be estimated by its real part. Indeed, for z ∈ Vc and any c 6= 0,

c|y| < x =⇒ |z| =
√
x2 + y2 <

√
x2 + x2

c2
= xc′. In particular for c = 1, |y| < x =⇒ |z| =

√
x2 + y2 <

√
x2 + x2 <

√
2x2 = x

√
2. Then for p ∈ V1 =⇒ |p| <

√
2<p =⇒ | 1√

z
| <
√

2<p =⇒ <p > 1√
2
√
|z|

.

So |h(z)| = e
−<
(

1√
z

)
= e−<p < e

−1√
2
√
|z| → 0 as z → 0 for z ∈ H. �

We are going to use the function h of the lemma 5.1 in order to construct a function ϕ on the hypersurface

M = {v = |z|2} which can not be extended to a holomorphic function on Cn.

Consider the coordinate function w = u + iv on C2, then w �M= u + i|z|2 is a CR function. let ψ = −iw �M ,

then define the function ϕ = e
−1√
ψ .

We want to prove the following things:

(i)That the function ϕ is well defined.

(ii)That the function ϕ is C∞.

(iii)That the function ϕ is a CR function which is not the restriction of a holomorphic function.

In order to show that ϕ is C∞ we should study the function h deeply. In particular we have to look at the

behavior of the derivatives of h at the boundary of H.
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Lemma 5.2 The derivatives of h = e
−1√
z are continuous up to the boundary of H.

Proof. Consider the first derivative of h. We have proved before that |e
−1√
z | = e

−<
(

1√
z

)
≤ e

−c√
z . Then the first

derivative of h is equal to h′(z) = e
−1√
z

2z
3
2

=⇒ |h′(z)| = |e
−1√
z |

|2z
3
2 |

= |e
−1√
z |

2|z|
3
2
≤ e

−c√
z

|2z
3
2 |
→ 0 as z → 0, so the first derivative

of h extends continuously to the boundary of H.

By induction on n we can show that all the derivatives of h have the following form:

(a1z
γ1 + a2z

γ2 + ...+ akz
γk )e

−1√
z

Then h(n)(z) = (a1z
γ1 + a2z

γ2 + ...+ akz
γk )e

−1√
z for a1, . . . , ak ∈ R and γ1, . . . , γk ∈ Q that depend on n.

So |h(n)(z)| ≤ (|a1||z|γ1 + |a2||z|γ2 + ...+ |ak||z|γk )e
−c√
|z| → 0 as z → 0 for any integer n. �

Proof of (i): Look at −iw �M= |z|2 − iu, let ψ = −iw �M , then <ψ = |z|2 ≥ 0 =⇒ the range of ψ lives in H.

Since every thing is defined on H, we can work with ϕ = e
−1√
ψ .

Therefore, ϕ is well defined since the values of ψ are in the domain of the function h which is H.

Remark 5.1 If we consider the function iw : C2 −→ C instead of iw �M : M −→ C, then h ◦ (iw) is not well

defined.

Indeed, w = u+ iv =⇒ iw = −v + iu, but (−v + iu) might not be in C \ {z ∈ C : =z = 0 and <z > 0}.
So we should take the function ψ = −iw �M instead of −iw, since −iw �M= |z|2 − iu
=⇒ <ψ = |z|2 > 0 =⇒ ψ is always in the domain H.

Proof of (ii): ϕ = h ◦ψ, ψ is C∞ and by Lemma 5.2 h is also C∞. Thus ϕ is C∞ since the composition of C∞

functions is C∞.

Proof of (iii): Define L = {(u, z) ∈ R× C : z = 0}
h is a holomorphic function on H and ψ is a CR function everywhere. Then ϕ = h ◦ ψ is a CR function in

(C× R) \ L by Remark 4.4. I still want to say that ϕ is a CR function everywhere on (C× R):

Consider the point p = (u, z) ∈ (C×R)\L. And <ψ = 0 on (C×R)\L =⇒ |z|2 = 0 =⇒ z = 0 then p = (u, 0).

ϕ is CR for q ∈ (C× R) \ L, implies

∂ϕ

∂z
(q)− i∂ϕ

∂u
(q) = 0 for q ∈ (C× R) \ L,

so it remains to prove that ϕ is CR for q ∈ (C× R), i.e it remains to prove that

∂ϕ

∂z
(q)− i∂ϕ

∂u
(q) = 0 for q ∈ (C× R).

Remark 5.2 Let l : C×R −→ C be a continuous function such that l = 0 on C×R \L. Then l = 0 everywhere

on C× R.

Indeed, (C× R) \ L is dense in C× R.

Now consider the continuous function l to be equal to ∂ϕ
∂z

(q) − i ∂ϕ
∂u

(q). And l = 0 on (C × R) \ L. Thus

l = ∂ϕ
∂z

(q)− i ∂ϕ
∂u

(q) = 0 everywhere on C× R.

Therefore, ϕ is a CR-function everywhere.

Lemma 5.3 Consider F : C2 −→ C to be a a holomorphic function, and ϕ = F �M : M −→ C. Then if ϕ is flat,

F is flat.
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We will give the proof of Lemma 5.3 in the case of the hypersurface M = {=w = |z|2} that we are studying.

Proof. Look at M = {=w = |z|2} and ϕ(z, u) = F (z, w) �M= F (z, u+ i|z|2). Relate the derivatives of F to the

derivatives of ϕ:

According to the first derivative:

• ∂ϕ
∂u

(z, u) = ∂F
∂w
. ∂(u+i|z|2)

∂u
+ ∂F

∂w
. ∂(u−i|z|2)

∂u
+ ∂F

∂z
. ∂z
∂u

+ ∂F
∂z
. ∂z
∂u

= ∂F
∂w

.

• ∂ϕ
∂z

(z, u) = ∂F
∂w
. ∂(u+i|z|2)

∂z
+ ∂F

∂w
. ∂(u−i|z|2)

∂z
+ ∂F

∂z
. ∂z
∂z

+ ∂F
∂z
. ∂z
∂z

= ∂F
∂z

+ ∂F
∂w
iz.

• ∂ϕ
∂z

(z, u) = ∂F
∂w
. ∂(u+i|z|2)

∂z
+ ∂F

∂w
. ∂(u−i|z|2)

∂z
+ ∂F

∂z
. ∂z
∂z

+ ∂F
∂z
. ∂z
∂z

= ∂F
∂w
iz.

According to the second derivative: Call ∂F
∂w

= g(z, u+ i|z|2),

• ∂2ϕ
∂u2 = ∂g

∂u
= ∂g

∂z
. ∂z
∂u

+ ∂g
∂z
. ∂z
∂u

+ ∂g
∂w
. ∂(u+i|z|2

∂u
+ ∂g

∂w
. ∂g(u−i|z|

2

∂u
= ∂g

∂w
= ∂2F

∂w2

• ∂2ϕ
∂u∂z

= ∂g
∂z

+ ∂g
∂w
. ∂(u+i|z|2

∂z
= ∂g

∂z
+ ∂g

∂w
.iz = ∂2F

∂z∂w
+ ∂2F

∂w2 iz

• ∂2ϕ
∂u∂z

= ∂g
∂w
.iz = ∂2F

∂w2 iz

• ∂2ϕ
∂z2

= ∂2F
∂z2

+ ∂2F
∂z∂w

.iz + ∂2F
∂w2 .(−z2)

• ∂2ϕ
∂z2

= ∂2F
∂z∂w

.iz + ∂2F
∂w2 .(−z2)

• ∂2ϕ
∂z∂z

= ∂2F
∂w∂z

.iz + ∂2F
∂w2 .(−zz + ∂F

∂w
.i

So a common pattern for the derivatives is:

• ∂nϕ
∂zn

= ∂nF
∂zn

+something that will be zero at z = 0.

• ∂nϕ
∂un

= ∂nF
∂wn

+something that will be zero at z = 0.

• ∂nϕ
∂zn−1∂u

= ∂nF
∂zn−1∂w

+something that will be zero at z = 0.

• ∂nϕ

∂zn−k∂uk
= ∂nF

∂zn−k∂wk
+something that will be zero at z = 0.

Therefore, if ϕ is flat, i.e. all its derivatives at (0, 0) are zero, then all the derivatives of F at (0, 0) will be zero.

Thus F will be also flat. �

Thus ϕ by lemma 5.3 is not the restriction of a holomorphic function F since all the derivatives of ϕ at (0, 0) are

zero, i.e. ϕ is flat , then F is flat, which implies that F is identically zero. Then ϕ is identically zero. This gives

a contradiction. �

Remark 5.3 Consider the hypersurface M = {=w = |z|2}, let F : C2 −→ C be a holomorphic function, and let

ϕ = F �M : M −→ C. Since M is a real analytic hypersurface, ϕ is also be analytic.

Note that Remark 5.3 is another way to show that ϕ is not the restriction of a holomorphic function.
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� Let Ω = {=w > |z|2} = {v > |z|2} ⊂ C2 and ϕ = e
−1√
ψ . We proved previously that ϕ is a CR-function which is

not the restriction of a holomorphic function defined on C2. Instead, ϕ is the restriction of a holomorphic function

F defined on Ω and smooth up to ∂Ω. Indeed, we can choose F (z, w) = e
−1√
−iw : F is well defined because for

any (z, w) ∈ Ω we have that <(−iw) = =w > |z|2 > 0.

In the discussion above we found an example of a CR function on M which does not extend holomorphically

to C2 but extends holomorphically to Ω. This happens more in general; the following fundamental result was

proved by Hans Lewy in [4].

Theorem 5.1 Let M be a smooth hypersurface of C2. Let p ∈M . Suppose that M is strongly Levi-convex at p.

Then there exist one-sided neighborhood Ω of p such that every CR function on Ω ∩M extends holomorphically

to Ω.

Remark: Note that Ω can be mapped by a biholomorphism to the sphere, and the sphere is a domain of

holomorphy. Then Ω is a domain of holomorphy since the notion of domain of holomorphy is invariant under

biholomorphisms. Thus there exist holomorphic functions in it that can not be extended to a bigger domain. So

it is clear that in Ω we can find more holomorphic functions than in C2.

Our goal is to prove Theorem 5.1 in the particular case where M = {=w = |z|2}. All the main ideas of the proof

given in [4] already appear in this case and up to some geometrical complication it is not too hard to extend the

argument we give to the general case,

the proof will be achieved in three main steps:

(i) We show that the intersection of Ω with complex lines of the form {w = c} is compact.

(ii) By solving a one variable problem we extend the function f holomorphically to each domain Ω ∩ {w = c}.
The resulting extension F : Ω→ C is holomorphic w.r.t. z.

(iii) Finally we show that F is holomorphic in Ω and smooth up to the boundary and F �M= f .

We first consider point (i), so we need to find the intersection of M = {=w = |z|2} and Ω = {=w > |z|2} with a

complex line w = c = c1 + ic2 ∈ C2. This results in the following systems:

M ∩ {w = c} =

w = c1 + ic2

=w = |z|2
Ω ∩ {w = c} =

w = c1 + ic2

=w > |z|2

We distinguish the following cases:

. If c2 < 0 =⇒ no intersection since c2 = |z|2 > 0.

. If c2 = 0 =⇒ z = 0 and w = c1 =⇒ the intersection M ∩{w = c} is a single point (0, c1) and Ω∩{w = c} = ∅
since z = 0 and |z|2 < 0.

. If c2 > 0 =⇒ |z|2 = c2 =⇒ r2 = c2 where |z| = r =⇒ x2 + y2 = c2 =⇒ M ∩ {w = c} is a circle of radius
√
c2 and Ω ∩ {w = c} is a disc ∆c of radius

√
c2 of raduis c2 and center zero.

Then we consider point(ii):

If a function is defined on M , then it will be defined on ∂∆c for all c for which c2 > 0. So we still need to extend

it inside ∆c. If f �∂∆c admits a holomorphic extension to ∆c then we can find the values of the extension F by

using the Cauchy formula.

f(z) =
1

2πi

∫
∂∆c

f(ρ)

ρ− z dρ, where ρ ∈ ∂∆c and z ∈ ∆c.

However not every continuous function defined on the unit circle extends holomorphically to the unit disc ∆c. For

instance for this to happen its Fourier Series its Fourier series must have only non-negative indexed coefficients.
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Indeed, consider for example the holomorphic function f(z) =

∞∑
n=0

anz
n whose radius of convergence is larger

than one and restrict f to the unit circle. Then f(eiθ) =

∞∑
n=0

ane
inθ this is the Fourier Series of f �∂∆. Thus

the negative indexed Fourier coefficients are zero for holomorphic functions. Then the restriction of f to ∂∆c is

f(eiθ) =
∑∞
n=0 cne

inθ.

Example: The function sin θ : [0, 2π] −→ C does not extend holomorphically inside the unite circle.

sin θ = eiθ−e−iθ
2i

=⇒ a−1 = −1
2i
6= 0 =⇒ the function sin θ can not extend holomorphically on the unit disc.

Example: The function cos θ − isinθ : [0, 2π] −→ C does not extend holomorphically inside the unite circle.

cos θ − i sin θ = e−iθ =⇒ a−1 = 1 6= 0 =⇒ the function cos θ − i sin θ can not extend holomorphically on the

unit disc.

We are now recalling few basic facts of Fourier Series. First of all you observe that:

∫ 2π

0

einθdθ =

0 n 6= 0

2π n = 0

Suppose the function f admits a uniformly convergent Fourier Series

f(θ) =

∞∑
j=−∞

aje
ijθ.

Computing

∫ 2π

0

f(θ)e−inθdθ we get:

∫ 2π

0

f(θ)e−inθdθ =

∫ 2π

0

∞∑
j=−∞

aje
(j−n)iθdθ =

∞∑
j=−∞

aj

∫ 2π

0

e(j−n)iθdθ = 2πan

because ∫ 2π

0

e(j−n)iθdθ =

0 j 6= n

2π j = n
.

Then we can recover the Fourier coefficients of f as follows

an =
1

2π

∫ 2π

0

f(θ)e−inθdθ.

In particular, the coefficient a0 corresponds to the average of f on the unit circle:

a0 =
1

2π

∫ 2π

0

f(θ)dθ.

Thus if f extends holomorphically to the unit disc ∆ we must have

a−n =
1

2π

∫ 2π

0

f(θ)einθdθ = 0 for n ≥ 0.

We can express the coefficient an in another way. Using the parametrization of the unit circle by eiθ for 0 ≤ θ ≤ 2π,

we get
1

2πi

∫
∂∆

f(z)zndz =
1

2πi

∫ 2π

0

f(eiθ)ieiθeinθdz =
1

2π

∫ 2π

0

f(eiθ)ei(n+1)θdθ =

=
1

2π

∫ 2π

0

f̃(θ)ei(n+1)θdθ = a−(n+1).

Then the general form of the negative indexed Fourier coefficients is as follows:

a−(n+1) =
1

2πi

∫
∂∆

f(z)zndz for n ≥ 0.
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The integrals

∫
∂∆

f(z)zndz, n ≥ 0, are called the moments of f . Thus, if f extends holomorphically to ∆ then

all its moments must vanish. As it turns out the converse is also true: if an = 0 for n < 0, then f extends

holomorphically to the unit disc ∆. This is a particular case of the following result.

Theorem 5.2 Let U ⊂ C be a domain whose boundary ∂U = γ is a closed simple curve of class C1. Let

f : γ → C be a continuous function. Then f admits a holomorphic extension to U , continuous up to γ, iff all the

moments of f vanish, that is

∫
γ

f(z)zndz = 0 for all n ≥ 0.

Thus f extends holomorphically to the disc ∆c with c = c1 + ic2 where c2 > 0 if

1

2πi

∫
∂∆c

f(z)zndz = 0 for n ≥ 0.

For c = c1 + ic2 with c2 ≥ 0 and M = {v = |z|2}, {w = c} ∩ M = {|z| =
√
c2} = γc. The restriction of

f : M −→ C to the curve γc ⊂M is fc(z) : γc −→ C. Fix n and consider∫
γc

fc(z)z
ndz = K(c).

Our plan is to show that K(c) = 0, ∀n ≥ 0 and ∀c ∈ H̃ where H̃ = {z ∈ C : =z ≥ 0}. In view of the next

result it is enough to show that K is holomorphic on H̃◦ and continuous up to the boundary.

Lemma 5.4 If f is a holomorphic function on H̃◦ = {z ∈ C : =z > 0}, extends continuously up to the boundary,

and is zero on the boundary. Then f is identically zero everywhere in C.

Lemma 5.4 is a direct consequence of the Schwarz reflection principle:

Lemma 5.5 (Schwarz reflection principle) Suppose f : H̃ −→ C a holomorphic function on H̃o, extends contin-

uously up to the boundary, and is real valued on the real line. Then f extends holomorphically on C.

Lemma 5.5 is of course well known but we provide a proof for convenience. Define a function g : C −→ C in the

following way:

If z ∈ H̃ we put g(z) = f(z).

For z ∈ C \ H̃ we have z ∈ H̃, hence we can define g as g(z) = f(z). To show that g is holomorphic on C \ H̃ we

should check that ∂g
∂z

= 0:

∂g

∂z
=

(
∂f(z)

∂z

)
=

(
∂f(z)

∂z

)
= 0

since f is holomorphic.

Next we show that g extends continuously to the boundary of C \ H̃. Let z0 ∈ ∂(C \ H̃) then

lim
z→z0

g(z) = lim
z→z0

f(z) for z ∈ C \ H̃.

Let w = z, we know that f is continuous up to the boundary then

lim
z→z0

f(z) = f(z0) =⇒ lim
w→z0

f(w) = f(z0) = f(z0)

since z0 ∈ R and f is real on R.

Then

lim
z→z0

g(z) = f(z0) for z ∈ C \ H̃.

Thus g extends continuously to the boundary and its limit is f(z0) as z → z0.

Consider f̃ : C −→ C defined as:
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f̃ =

f(z) z ∈ H̃

g(z) z ∈ C \ H̃

Both f and g extend continuously to the boundary and lim
z∈C\H̃→z0

g(z) = lim
z∈H̃→z0

f(z) = f(z0) =⇒ f̃ is

continuous everywhere on C.

f is holomorphic on H̃o and g is holomorphic on C \ H̃ =⇒ f̃ is holomorphic on C\(real line). Then by the

Riemann extension theorem f̃ is holomorphic on C. �

Proof of Lemma 5.4. f is a holomorphic function on H̃o = {z ∈ C : =z > 0}, extends continuously up to the

boundary, and is zero on the boundary. So f is real valued on the real line. Then by Lemma 5.5 f extends

holomorphically to f̃ on C.

f̃ : C −→ C is holomorphic everywhere on C and f̃ = f = 0 on the real line. Then f̃ has a non-isolated zero.

Thus f̃ is identically zero.

Therefore, f is identically zero on all of C. �

To prove that K(c) = 0 we want to use Lemma 5.4 and check first that K(c) is a holomorphic function. To

achieve this, rather than trying to differentiate K it will be more convenient to use Morera’s Theorem:

Theorem 5.3 (Morera’s Theorem) If f(z) is continuous function in a region D and satisfies∫
Γ

f(z)dz = 0

for all closed curves Γ in D, then f(z) is holomorphic in D.

Thus let us fix any simple closed curve Γ of class C1 on H̃o, and integrate K(c) over Γ:∫
Γ

K(c)dc =

∫
Γ

∫
γc

f(z, c)zndzdc

Consider V to be the interior of the curve Γ, then define Λ =
⋃
c∈V

γc and ω = ∂Λ. Then Λ is a three dimensional

submanifold of M , that is, it is an open domain since M itself has dimension three. Moreover, ω = ∂Λ =
⋃
c∈Γ

γc

is a two dimensional compact surface of M , homeomorphic to a torus.

Since the
∫

Γ
K is equal to the integral of fzn on ω, to prove that the former vanishes we will employ Stoke’s

theorem:

Theorem 5.4 (Stoke’s Theorem) Consider a k differential form µ and an orientable manifold Ω of dimension

k + 1. Then: ∫
∂Ω

µ =

∫
Ω

dµ.

Apply Theorem 5.4 to Ω =
⋃
c∈V

γc and µ = f(z, c)zndzdc. Then:

∫
ω

µ =

∫
Λ

dµ.

Consider first the following integral:

I =

∫
ω

f(z, c)zndzdc

But dc = dc1+idc2 and c2 = |z|2 = zz in M =⇒ dc2 = zdz+zdz =⇒ dc = dc1+i(zdz+zdz) = dc1+izdz+izdz.

Then dzdc = dz(dc1 + izdz + izdz) = dzdc1 + izdzdz. So:

I =

∫
ω

f(z, c1)zndzdc =

∫
ω

f(z, c1)zn(dzdc1 + izdzdz) =

∫
ω

f(z, c1)zndzdc1 + i

∫
ω

f(z, c1)zn+1dzdz.

But

d(f(z, c1)zndzdc1) = d(f(z, c1)zn)dzdc1 =

(
∂(f(z, c1)zn)

∂z
dz +

∂(f(z, c1)zn)

∂z
dz +

∂(f(z, c1)zn)

∂c1
dc1

)
dzdc1
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=
∂(f(z, c1)zn)

∂z
dzdzdc1 = zn

∂(f(z, c1))

∂z
dzdzdc1.

And

d(zn+1f(z, c1)dzdz) = d(zn+1f(z, c1))dzdz

=

(
∂(zn+1f(z, c1))

∂z
dz +

∂(zn+1f(z, c1))

∂z
dz +

∂(zn+1f(z, c1))

∂c1
dc1

)
dzdz =

∂(zn+1f(z, c1))

∂c1
dc1dzdz

= zn+1 ∂f

∂u
dc1dzdz.

Then by Theorem 5.4

I =

∫
Λ

d(f(z, c1)zndzdc1) + i

∫
Λ

d(f(z, c1)zn+1dzdz) =

∫
Λ

zn
∂f

∂z
dzdzdc1 + i

∫
Λ

zn+1 ∂f

∂u
dc1dzdz

=

∫
Λ

zn
∂f

∂z
dzdzdc1 − i

∫
Λ

zn+1 ∂f

∂u
dzdzdc1 =

∫
Λ

zn
[
∂f

∂z
− iz ∂f

∂u

]
dzdzdc1 = 0.

Since f is a CR-function.

Then ∫
Γ

K(c) = 0 on every Γ.

Therefore, Theorem 5.3 K is holomorphic in C.

Then the function K is a holomorphic function on H̃o = {z ∈ C : =z > 0}, extends continuously up to the

boundary, and is zero on the boundary. So by Theorem 5.4 K is identically zero everywhere in C. This implies

that ∫
γc

f(z, c)zndz = 0.

Thus f has no negative indexed Fourier coefficients. Then f can be extended holomorphically inside the disc ∆c

for every c.

Now consider point(iii):

Consider the open domain Ω = {v > |z|2}, define the function F (b, c) : Ω −→ C for b = b1 + ib2, c = c1 + ic2 ∈ Ω

by

F (b, c) =
1

2πi

∫
γc

f(z, c)

z − b dz.

For a fixed c, F is holomorphic with respect to b. However, we need to show that F is holomorphic on Ω

with respect to both variables. In view of the following well known result it is enough to show that F is also

holomorphic with respect to c for any fixed b:

Theorem 5.5 (Hartog’s Separate holomorphicity theorem)

Consider a continuous function f(z1, z2) : C2 −→ C such that f �z2=c and f �z1=c′ are holomorphic for every

c and c′. Then f is holomorphic on all of C2.

Now for fixed b, consider a closed curve Γ in the complex plane of the c variable, and integrate F over Γ as

follows: ∫
Γ

F (b, c)dc =
1

2πi

∫
Γ

∫
γc

f(z, c)

z − b dzdc.

Then by Theorem 5.4 ∫
ω

f(z, c)

z − b dzdc =

∫
Λ

d

(
f(z, c)

z − b

)
dzdc

Similar to the work we did before,

J =

∫
ω

f(z, c)

z − b dzdc =

∫
ω

f(z, c)

z − b dz(dc1 + izdz + izdz) =

∫
ω

f(z, c)

z − b dzdc1 + i

∫
ω

f(z, c)

z − b zdzdz =

∫
Λ

1

z − b
∂f

∂z
dzdzdc1 − i

∫
Λ

z

z − b
∂f

∂z
dzdzdc1 =

∫
Λ

1

z − b

[
∂f

∂z
− iz ∂f

∂u

]
dzdzdc1 = 0.

Since f is a CR-function.
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Thus, by Theorem 5.3 F is holomorphic with respect to c. Therefore, by Theorem 5.5 F is holomorphic on all of

Ω.

The fact that F is continuous on Ω can be proved by standard arguments since the integral defining F depends

continuously on its parameters.
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Chapter 6

Further developments on the

extension theorem

In the previous section we studied a manifold M with the property that a CR function defined on M can be

extended to a holomorphic function defined on a domain of C2. More in general Lewy’s theorem provides a

one-sided extension result in a neighborhood of p ∈ ∂D ⊂ C2 whenever the Levi form is positive definite at p.

On the other hand, if D is a relatively compact domain and f is a CR function defined on the boundary of D

then f extends to D:

Theorem 6.1 Let D ⊂ Cn be a relatively compact domain with smooth, connected boundary ∂D, and let f ∈
C1(∂D) be a CR function. Then there exists F ∈ C1(D) ∩ O(D) such that F �∂D= f . The following theorem

will in some way generalize the extension to an appropriate whole domain of Cn.

The function F of Theorem 6.1 can also be expressed in an explicit way by means of an appropriate kernel. The

following representation formula was discovered independently by Bochner [1] and Martinelli [6].

Definition 6.1 For z ∈ Cn, the Bochner-Martinelli kernel is the following form defined on Cn \{z}: KBM (z, ζ)

=
(n− 1)!

(2πi)n

n∑
α=1

(−1)α(ζα − zα)

|z − ζ|2n dζ1 ∧ . . . ∧ dζn ∧ dζ1 ∧ . . . ∧ dζ̂α ∧ . . . ∧ dζn

where dζ̂α means that the differential ζα is missing.

Theorem 6.2 Let D be a bounded domain in Cn, with connected boundary of C1. Let f be holomorphic in D

and continuous up to D. Then, for every z ∈ D,

f(z) =

∫
∂D

fKBM (z, .).

Then the statement of Theorem 6.1 can be made precise by saying that F can be obtained by means of integration

of the form fKBM over ∂D. The fact that the result is a holomorphic function depends on the fact that f satisfies

the CR condition.

This theorem generalizes to higher dimensions. The similar extension results which we used in one variable: the

Bochner- Martinelli kernel replaces the Cauchy kernel dz
z−ζ and the CR condition on f replaces the moments

condition.

Going back to the local extension problem, it turns out that a sufficient condition for one-sided extension in a

neighborhood of p ∈M ⊂ Cn is the presence of at least one non-vanishing eigenvalue in the Levi form at p: this

is proved in [2]. As a consequence, if the Levi form has eigenvalues of both signs, one obtains the extension to a

whole neighborhood of p in Cn.
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Subsequent work has provided local extension results under progressively weaker assumptions on the geometry

of M . The most far reaching generalizations have been obtained by Treprean ([8]) and Tumanov ([9]): the one-

sided local extension of CR functions holds iff M is minimal at p. In the setting we are interested in (i.e. real

hypersurfaces) the minimality condition just means that M does not contain any complex hypersurface passing

through p.
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