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Chapter 1

Introduction

Let R = k[x1, . . . , xn] be the polynomial ring in n variables, and I a homogeneous ideal

in (x1, . . . xn). Let F be a minimal graded free resolution of S = R/I given by

F : 0→
⊕
j

R(−j)βsj
∂s→ . . .→

⊕
j

R(−j)βij
∂i→ . . .→

⊕
j

R(−j)β1j
∂1→ R→ R/I → 0.

For each a, denote by Ta and ta the maximal and minimal shifts in the resolution F:

ta = min {j : βaj 6= 0} and Ta = max {j : βaj 6= 0} .

F is said to satisfy the subadditivity condition for maximal shifts if for all a and b, we

have

Ta+b ≤ Ta + Tb.

There is a history of looking at the subadditivity of maximal shifts in a minimal graded

free resolution: [1], [2], [4], [7], [8] and [10]. Subadditivity for maximal shifts has been
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established in a few cases. In [4, Corollary 4.1], the authors proved that Tp ≤ Ta + Tp−a

with p =projdimS, in the case where R is of depth zero and of dimension ≤ 1. In [8,

Corollary 3], it was shown that Tp ≤ T1 +Tp−1 for all graded algebras . When S = R/I is

Koszul, it was proved that Ta+1 ≤ Ta+T1 = Ta+ 2 for a ≤ height (I), see [2] for instance.

More results were established when I is Gorenstein or monomial, [7], [8].

Furthermore, it is known that the minimal graded free resolution of graded algebras

may not satisfy the subadditivity for maximal shifts, as we see in example 5.7 in the thesis.

However, no counter examples are known for Gorenstein algebras, nor for monomial ideals.

The cases of Gorenstein algebras and monomial ideals were partially tackled by El Khoury-

Srinivasan [7], and Herzog-Srinivasan [8] respectively.

In this thesis, we study the subaddivity of Gorenstein algebras and monomial ideals.

In the Gorenstein case we get Th ≤ Th−a + Ta with h ≥ p− 1 where p =pdim R/I , and

in the monomial case we obtain Ta+1 ≤ Ta + T1 for all a.
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Chapter 2

Preliminaries

2.1 Graded Rings

Definition 2.1. A graded ring is a ring R together with a direct sum decomposition

R = R0

⊕
R1

⊕
R2

⊕
· · · as abelian groups, such that: RiRj ⊂ Ri+j for i, j ≥ 0.

Example 2.2. The ring of polynomials R = k[x1, ..., xn] is a graded ring, graded by

degree: R = S0

⊕
S1

⊕
· · ·

Definition 2.3. A homogeneous element of R is an element of one of the groups Ri, and

a homogeneous ideal of R is an ideal that is generated by homogeneous elements.

Example 2.4. Let R = k[x, y, z], then I = (x3 + y3, z2 − xy) is an ideal of R generated

by homogeneous elements.
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Remark 2.5. If f ∈ R, there is a unique expression for f of the form

f = f0 + f1 + · · · with fi ∈ Ri and fj = 0 for j � 0;

the fi are called the homogeneous components of f .

Example 2.6. Let R = k[x, y, z] be the polynomial ring of two variables, where k is a

field. Let f = x3 + yz, then the homogeneous components of f are x3 and yz.

Definition 2.7. A ring homomorphism φ : Rn → Rm is called homogeneous if degx =

degφ(x), i.e degφ = 0. For that we define R(a)d = R(a + d). Meaning, if f has degree d

in R(a), then it has degree 0 in R(a+ d).

Example 2.8. Let g be the following map:

g : R(−3)
x3

−→ R

We have g(1) = x3, then 1 has degree 0 in R(−3 + 3) and degree 3 in R(−3).

Definition 2.9. Let R be a graded ring and M an R-module. M is said to be a graded

R-module if there exists a family of subgroups {Mn}n∈Z of M such that:

1. M =
⊕

nMn as abelian groups

2. Rn.Mm ⊆ Mn+m ∀n,m

If u ∈ M\{0} and u = ui1 + · · ·+ uik where uij ∈ Rij\{0}, then ui1, ..., uik are called the

homogeneous components of u.
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Definition 2.10. (R-Algebras) Let R be a commutative ring. An R-algebra is a ring A

which is also an R-module such that the multiplication map A×A→ A is R-bilinear, that

is,

r ∗ (ab) = (r ∗ a).b = a.(r ∗ b) for any a, b ∈ A, r ∈ R.

Theorem 2.11. (Hilbert’s basis theorem) If R is a Noetherian ring, then R[X] is a Noethe-

rian ring.

Proof. Let I be an ideal of R[X]. Let J be the set of the leading coefficients of the

polynomials in I. Then, J is an ideal of R : Assume s > t. Let c, d ∈ J , then cxs + · · ·+

c1x+ c0 ∈ I and dxt+ · · ·+d1x+d0 ∈ I. Now, cxs+ · · ·+ c0 +(dxt+ · · ·+d1x+d0)xs−t ∈

I =⇒ cxs + · · ·+ c0 + dxs + · · ·+ d0x
s−1 = (c+ d)xs + lower terms ∈ I =⇒ c+ d ∈ J.

Also, r(cxt + · · · + c0) = rcxt + · · · + rc0 ∈ I. So, rc ∈ J . Therefore, J is an ideal of

R. Since J is an ideal of R and R is Noetherian, then J is finitely generated. Say J is

generated by: a1, a2, ..., an ∈ R. For each i = 1, ..., n, there is a polynomial fi ∈ R[X] with

ai being the leading coefficient =⇒ fi = aix
ri + lower terms ∈ I. Let r = max(ri) and

suppose f1, ..., fn generate an ideal I ′ ⊆ I of R[X]. Let f = axm + lower degree terms be

any polynomial in I.

Case 1: If m < r, then we are done.

Case 2: If m ≥ r, since a ∈ J and J is generated by a1, a2, ..., an ∈ R, then a = c1a1 +

c2a2 + · · ·+ cnan =
∑n
i=1 ciai. Consider: f −

∑n
i=1 cifix

m−ri = f − (c1f1x
m−r1 +

c2f2x
m−r2 + · · · ) = f − (c1a1 + c2a2 + · · · + cnan)xm + lower terms = f − axm +
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lower terms ∈ I. So this new polynomial is in I and has degree < m. Proceeding

this way, we continue subtracting elements in I ′ to get a polynomial g of degree < r.

So we have f = g+h. Let M be the R-module generated by {1, x, x2, ..., xr−1}, since

f ∈ I, it can be written as f = g+h where g ∈M ∩I and h ∈ I ′. So I = M ∩I+I ′.

M is finitely generated and hence it is Noetherian =⇒ M ∩ I is finitely generated.

So let g1, g2, ..., gt be the generators of M ∩ I, then f1, ..., fn, g1, g2, ..., gt generate

I. Hence, I is finitely generated.

Definition 2.12. R is said to be finitely generated as R0-algebra means that R ∼=

R0[x1, ..., xn].

Proposition 2.13. The following are equivalent for a graded ring R:

i. R is a Noetherian ring;

ii. R0 is Noetherian and R is finitely generated as an R0 − algebra.

Proof. i) =⇒ ii): Let R+ = ⊕n>0Rn. R0
∼= R/R+, hence is Noetherian. R+ is an ideal

in R, hence is finitely generated, say by x1, ..., xs, which we may take to be homogeneous

elements of R, of degrees k1, ..., ks say (all > 0). Let R′ be the subring of R generated by

x1, ..., xs over R0. We shall show that Rn ⊆ R′ for all n ≥ 0, by induction on n. This is

certainly true for n = 0. Let n > 0 and let y ∈ Rn. Since y ∈ R+, y is a linear combination

of the xt, say y =
∑s
t=1 atxt, where at ∈ Rn−ki (conventionally Rm = 0 if m < 0). Since
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each ki > 0, the inductive hypothesis shows that each at is a polynomial in the x’s with

coefficients in R0. Hence the same is true of y, and therefore y ∈ R′. Hence Rn ⊆ R′ and

therefore R = R′.

ii) =⇒ i): by Hilbert’s basis theorem.

2.2 Notions in Algebra

Lemma 2.14. (Nakayama) Suppose M is a finitely generated graded R-module and m1, ...,mn ∈

M generate M/mM . Then m1, ...,mn generate M .

Proof. Let M = M/
∑
Rmi, show that M = 0. First, if the mi generate M/mM , then

M/mM = (M/
∑
Rmi)/(mM/

∑
Rmi) ∼= M/(mM +

∑
Rmi) = 0 =⇒ M = mM.

Suppose M 6= 0, take ξ of least degree in M and show that ξ /∈ mM. Since M is finitely

generated, M is finitely generated. Then, there will be a non-zero element ξ of least degree

in M . Suppose ξ ∈ mM , then ξ =
∑
uivi with deg ui > 0. Contradiction.

Definition 2.15. (Local Ring) A local ring is a ring R that has a unique maximal ideal.

Example 2.16. We know that for p prime, Zp is a field and the only ideals of a field are

{0} and itself. Therefore, Zp is a local ring.

Example 2.17. Let R = k[x1, ..., xn], then the maximal ideals of R are of the following

form: (x1 − a1, ..., xn − an) since R/(x1 − a1, ..., xn − an) ∼= k. Since R is a graded ring
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then R can be viewed as a local ring with the only maximal ideal to be m = (x1, ..., xn)

with respect to homogeneous ideals. For that we set a1 = · · · = an = 0.

Definition 2.18. (Non-zero Divisors) For a commutative ring R and an R-module M , an

element r in R is called a non-zero-divisor on M if rm = 0 implies m = 0 for m in M .

Example 2.19. In the ring Z/4Z, 2̄ is a zero divisor since 2̄× 2̄ = 4̄ = 0̄.

Definition 2.20. Let R be a ring and let M be an R-module. A sequence of elements

x1, ..., xn ∈ R is called a regular sequence on M if:

1. (x1, ..., xn)M 6= M , and

2. For i = 1, ..., n, xi is a non-zero divisor on M/(x1, ..., xi−1)M.

Example 2.21. {x2, y3, z3} is a regular sequence on the polynomial ring k[x, y, z]. So, y3

is a non-zero divisor on M/x2M and z3 is a non-zero divisor on M/(x2, y3)M .

Definition 2.22. (Height) The height of a proper prime ideal P of R is the maximum of

the lengths n of the chains of prime ideals contained in P,

P0 ⊂ P1 ⊂ · · · ⊂ Pn = P.

The height of any proper ideal I is the minimum of the heights of the prime ideals con-

taining I.

Example 2.23. Let R = k[x, y, z] and P = (x, y). The homogeneous prime ideals of R

are: (0), (x), and (x, y). We have, (0) ⊂ (x) ⊂ (x, y) = P . Hence, ht(P ) = 2.
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2.3 Exterior Algebras

Definition 2.24. Let R be a commutative ring, and let M be an R-module. Define

T 0(M) = R, T 1(M) = M , and T p(M) = M ⊗R · · · ⊗RM (p tensor times) if p ≥ 2.

Proposition 2.25. If M is an R-module, then there is a graded R-algebra

T (M) =
∑
p≥0

T p(M)

with the action of r ∈ R on T q(M) given by

r(y1 ⊗ · · · ⊗ yq) = (ry1)⊗ y2 ⊗ · · · ⊗ yq = (y1 ⊗ · · · ⊗ yq)r,

and with the multiplication T p(M)×T q(M)→ T p+q(M), for p, q ≥ 1, given by (x1⊗· · ·⊗

xp, y1 ⊗ · · · ⊗ yq) 7→ x1 ⊗ · · · ⊗ xp ⊗ y1 ⊗ · · · ⊗ yq.

Definition 2.26. If R is a commutative ring and M is an R-module, then T (M) is called

the tensor algebra on M .

Definition 2.27. If M is an R-module, then its exterior algebra is
∧

(M) = T (M)/J ,

where J is the ideal generated by all x ⊗ x with x ∈ M. J is generated by homogeneous

elements (of degree 2), so it is a graded ideal. Hence,
∧

(M) is a graded R-algebra,

∧
(M) = R⊕M ⊕ ∧2(M)⊕ · · · ⊕ ∧n(M).

This direct sum decomposition gives the exterior algebra the additional structure of a

graded algebra, that is

∧k(M). ∧p (M) ⊂ ∧k+p(M).
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Moreover, if k is the basis field, we have ∧0(M) = k and ∧1 (M) = M.

Lemma 2.28. Let R be a commutative ring, and let M be a R-module.

1) If x, y ∈M , then in
∧2

(M), we have

x ∧ y = −y ∧ x.

2) If p ≥ 2 and xi = xj for some i 6= j, then x1 ∧ · · · ∧ xp = 0 in
∧p

(M).

Proof. 1) 0 = (x+ y) ∧ (x+ y) = x ∧ x+ x ∧ y + y ∧ x+ y ∧ y = x ∧ y + y ∧ x hence,

x ∧ y = −(y ∧ x).

2) Recall from the definition, that
∧p

(M) = T p(M)/Jp, where Jp = J ∩ T p(M)

consists of all elements of degree p in the ideal J generated by all elements in

T 2(M) of the form x ⊗ x. In more detail, Jp consists of all sums of homogeneous

elements α⊗ x⊗ x⊗ β, where x ∈ M,α ∈ T q(M), β ∈ T r(M), and q + r + 2 = p.

Since the multiplication in
∧

(M) is associative, we can (anti)commute a factor xi

of x1 ∧ · · · ∧ xp several steps away at the possible cost of a change in sign, and so

we can force any pair of factors to be adjacent, i.e. x1 ∧ · · · ∧ xp = 0 if there are

two equal adjacent factors, say xi = xi+1.

Definition 2.29. (Basis and dimension) If the dimension of V is n and {e1, ..., en} is a

basis of V , then the set {ei1 ∧ ei2 ∧ · · · ∧ eik/1 ≤ i1 < i2 < · · · < ik ≤ n} is a basis for

∧k
(V ).
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The reasoning behind definition 2.29 is the following:

When given any exterior product of the form v1 ∧ · · · ∧ vk, every vector vj can be written

as a linear combination of the basis vectors ei; using bilinearity of the exterior product,

this can be expanded to a linear combination of exterior products of those basis vectors.

Any exterior product in which the same basis vector appears more than once is zero; any

exterior product in which the basis vectors do not appear in the proper order can be

reordered, changing the sign whenever two basis vectors change places. In general, the

resulting coefficients of the basis k-vectors can be computed as the minors of the matrix

that describes the vectors vj in terms of the basis ei. By counting the basis elements, the

dimension of
∧k

(V ) is equal to a binomial coefficient:

dim ∧k (V ) =

(
n

k

)
.

In particular,
∧k

(V ) = {0} for k > n. Any element of the exterior algebra can be written

as a sum of k-vectors. Hence, as a vector space the exterior algebra is a direct sum

∧(V ) = ∧0(V )⊕ ∧1(V )⊕ ∧2(V )⊕ · · · ⊕ ∧n(V ),

and therefore its dimension is equal to the sum of the binomial coefficients, which is 2n.

Example 2.30. (Cross and triple products) For vectors in R3, the exterior algebra

is closely related to the cross product and triple product. Using the standard basis

{e1, e2, e3}, the exterior product of a pair of vectors u = u1e1 + u2e2 + u3e3 and v =
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v1e1 + v2e2 + v3e3 is:

u ∧ v = (u1e1 + u2e2 + u3e3) ∧ (v1e1 + v2e2 + v3e3)

= u1v2e1 ∧ e2 + u1v3e1 ∧ e3 + u2v1e2 ∧ e1 + u2v3e2 ∧ e3 + u3v1e3 ∧ e1 + u3v2e3 ∧ e2

= (u1v2 − u2v1)(e1 ∧ e2) + (u3v1 − u1v3)(e3 ∧ e1) + (u2v3 − u3v2)(e2 ∧ e3)

where {e1 ∧ e2, e3 ∧ e1, e2 ∧ e3} is the basis for the three dimensional space
∧2

(R3). The

scalar coefficient is the triple product of the three vectors.

Theorem 2.31. If M is an R-module, x ∈
∧p

(M), and y ∈
∧q

(M), then

x ∧ y = (−1)pqy ∧ x.

Corollary 2.32. If M can be generated by n-elements, then
∧p

(M) = {0} for all p > n.

2.3.1 Koszul Complex

Definition 2.33. (Chain Complex) A chain complex (M•, δ•) is a sequence of abelian

groups or modules (Mi)i∈Z connected by homomorphisms δn : Mn+1 → Mn, such that

the composition of any two consecutive maps is the zero map: δn ◦ δn+1 = 0 for all n

(Imδn+1 ⊂ Kerδn). A chain complex is usually written down like this:

· · ·Mi+1
δi+1−−−→Mi

δi−→Mi−1
δi−1−−−→ · · ·

Definition 2.34. Let R be a commutative ring and M a free R-module of finite rank r.

Let
∧i

M be the ith exterior power of M , then, given an R-linear map s : M → R, the
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Koszul complex associated to s is the chain complex of R-modules:

K(s) : 0→ ∧rM δr−→ ∧r−1M → · · · → ∧1M
δ1−→ R→ 0

where the differential δk is given, for any ei ∈M , by

δk(e1, · · · , ek) =

k∑
i=1

(−1)i+1δ1(ei)e1 ∧ · · · ∧ ei−1 ∧ ei+1 ∧ · · · ∧ ek.

Notice that ei is omitted, showing that δk ◦ δk+1 = 0.

Example 2.35. Let R = k[x, y, z] and I = (x2, y3, z3) a homogeneous ideal. Let K be

the Koszul complex associated to I:

K(x2, y3, z3) : 0→ R δ3−→ R3 δ2−→ R3 δ1−→ R→ R/I → 0.

δ1(e1) = x2, δ1(e2) = y3, and δ1(e3) = z3

Hence, δ2(e1 ∧ e2) = δ1(e1)e2 − δ1(e2)e1

= x2e2 − y3e1

δ3(e1 ∧ e2 ∧ e3) = δ1(e1)e2 ∧ e3 − δ1(e2)e1 ∧ e3 + δ1(e3)e1 ∧ e2

= x2e2 ∧ e3 − y3e1 ∧ e3 + z3e1 ∧ e2

Example 2.36. In example 2.35, we constructed the Koszul complex associated to the

regular sequence {x2, y3, z3}. Let I = (x2, y3, z3), then

K(x2, y3, z3) : 0→ R δ3−→ R3 δ2−→ R3 δ1−→ R→ R/I → 0.

is a Koszul complex associated to this regular sequence.
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Remark 2.37. A Koszul complex complex is a minimal free resolution if and only if

the ideal I is generated by a regular sequence. We will discuss in details minimal free

resolutions in section 3.1.

2.4 Exact Sequences

Definition 2.38. Consider a sequence of R-modules and homomorphisms

· · ·Mi+1
δi+1−−−→Mi

δi−→Mi−1 → · · ·

The sequence is exact at Mi if Im(δi+1) = ker(δi)

Example 2.39.

0→M1
f−→M

g−→M2 → 0

is exact iff: f is injective, g is surjective, and kerg = Imf .

Properties 2.40. 1. δ : M → N is onto if and only if the sequence M
δ−→ N → 0 is

exact, where N → 0 is the homomorphism sending every element of N to 0.

2. δ : M → N is one-to-one if and only if the sequence 0 → M
δ−→ N is exact, where

0→M is the homomorphism sending 0 to the additive identity of M .

3. δ : M → N is an isomorphism if and only if 0 → M
δ−→ N → 0 is exact. This

follows from the above since δ is an isomorphism if and only if it is one-to-one and

onto.
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Properties 2.41. 1. For any R-module homomorphism δ : M → N , we have an

exact sequence

0→ ker(δ)→M
δ−→ N → coker(δ)→ 0

where ker(δ) → M is the inclusion mapping and N → coker(δ) = N/Im(δ) is the

natural homomorphism onto the quotient module.

2. If Q ⊂ P is a submodule of an R-module P , then we have an exact sequence

0 → Q → P
v−→ P/Q → 0, where Q → P is the inclusive mapping, and v is the

natural homomorphism onto the quotient module.

Next we state the following theorem by Buchsbaum-Eisenbud without its proof.

Theorem 2.42. (Buchsbaum-Eisenbud) A complex of free modules

F : 0→ Fm
δm−−→ Fm−1 → · · · → F1

δ1−→ F0

over a Noetherian ring R is exact if and only if rankδi+1+ rankδi = rankFi and depthI(δi) ≥

i, for every i.
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Chapter 3

Free Resolutions

3.1 Minimal Free Resolutions

The properties of the polynomial ring R = k[x1, ..., xn] and its ideals play a fundamental

role in the study of the homogeneous coordinate rings of projective varieties and the

modules over them in algebraic geometry. In order to study ideals effectively we need to

study more general graded modules over R. The simplest way to describe a module is by

generators and relations which are called syzygies. Finding syzygies is what characterizes

minimal free resolutions.

Definition 3.1. (Free resolutions) Let R be a Noetherian ring and M an R-module. A

free resolution of M is an exact sequence of the form: · · ·F2
δ2−→ F1

δ1−→ F0
δ0−→ M → 0,
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where for all i, Fi is a free R-module. If there exists l such that Fl = Fl+1 = · · · = 0, then

the resolution is finite. In other words, a free resolution can give us exactly the structure

of the ideal. It is a complex that resolves I.

Definition 3.2. A complex of graded R-modules

· · · → Fi
δi−→ Fi−1 → · · ·

is called minimal if for each i, the image of δi is contained in mFi−1. i.e. δi(Fi) ⊂ mFi−1.

Notation 3.3. We set up the notation for the rest of the thesis as follows:

• R = k[x1, ..., xn] the polynomial ring over the field k

• m = (x1, ..., xn) the maximal ideal of R

• I a homogeneous ideal in R

Construction of a Minimal Free Resolution

1. Let M as an R-module and mi be a generator of M . Then, define a map F0 =

⊕iRi →M by sending the ith generator to mi. Let M1 ⊂ F0 be the kernel of F0.

F1
δ1 //

s1 !!

F0
δ0 // M

M1

i1

OO

Since R is Noetherian, by the Hilbert Basis theorem, M1 is finitely generated and

the elements of M1 are called the syzygies on mi.
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2. Choosing finitely many homogeneous syzygies that generate M1, we define a map

from a graded free module F1 → F0 with image M1.

3. Continuing this way, we construct a sequence of maps of graded free modules, called

a graded free resolution of M :

· · · → Fi
δi−→ Fi−1 → · · · → F1

δ1−→ F0

since δi preserves degrees, we get an exact sequence of finite dimensional vector

spaces.

Example 3.4. Let R = k[x, y, z] and I = (x2, y2, xz), then a minimal free resolution for

I is given by:

0→ R δ3−→ R3 δ2−→ R3 δ1−→ R
δ0−→ R/I → 0

with δ1 = I = (x2, y2, xz) and δ2 is constructed in the following way: we need to have

Imδ2 = Kerδ1. For that we find the first syzygy. i.e.


r1

r2

r3


∈ R3 such that


r1

r2

r3


(x2, y2, xz) = 0 =⇒ δ2 =


−y2 −z 0

x2 0 xz

0 x −y2


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Now construct δ3 in a similar way. So we need

Imδ3 = Kerδ2 =⇒


−y2 −z 0

x2 0 xz

0 x −y2




r1

r2

r3


=


0

0

0


=⇒


r1

r2

r3


=


−z

y2

x


.

Next, we give an example of a non-minimal free resolution.

Example 3.5. Let R = k[x] and I = (x2, x3), then the following is a non-minimal free

resolution of R/I:

0→ R


−x

1


−−−−−→ R2 (x2,x3)−−−−→ R

δ0−→ R/I → 0

This free resolution is not minimal because 1 ∈ δ2. i.e: δ2(R) * m(R2).

Next, we state the Hilbert Syzygy theorem without the proof.

Theorem 3.6. (Hilbert Syzygy Theorem) Any finitely generated graded R-module M has

a finite graded free resolution

0→ Fm
δm−−→ Fm−1 → · · · → F1

δ1−→ F0.

Theorem 3.7. Let M be a finitely generated graded R-module, if F and G are two minimal

free resolutions of M , then there is an isomorphism of complexes F → G inducing the

identity map on M .
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Proof. Consider:

F : · · · F1
// F0

d0 // M

idM

��

// 0

G : · · · G1
// G0

δ0 // M // 0

We first start by constructing the identity map on M . Now, since δ0 is surjective, Fo is

free and every free module is a projective module. Then, there exists f0 : F0 → G0 such

that:

F0

f0

��
G0

δ0 // M

the diagram commutes. We need to show that f0 is an isomorphism. To do so, we tensor

both F and G with k = R/m and we show that f0 ⊗ id is an isomorphism.

F : · · · F1 ⊗ k // F0 ⊗ k
d0⊗id // M ⊗ k

idM⊗k
��

// 0

G : · · · G1 ⊗ k // G0 ⊗ k
δ0⊗id // M ⊗ k // 0

Since F and G are minimal, F0 ⊗ k ∼= F0/MF0 and G0 ⊗ k ∼= G0/MG0 which are k-

vector spaces, then by theorem d0⊗ id and δ0⊗ id are isomorphisms. Hence, f0⊗ id is an

isomorphism. We will now show that f0 is an isomorphism. Let f0 = (aij) be the matrix,

then f0 ⊗ id = (aij ⊗ 1) = (a′ij) is invertible. Thus, det(a′ij) is a unit in k and det(aij) is

not in M . This implies that det(aij) is a unit in R and the matrix is invertible, so, f0 is an

isomorphism. Now, to construct f1 we proceed the same way. f0 induces an isomorphism
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between Kerd0 and Kerδ0. As we have seen earlier in the construction of a minimal free

resolution, we map F1 onto Kerd0, so we obtain a surjective map: F1 → Kerd0. Similarly

with G1 and Kerδ0. We then follow the same procedure as above.

Definition 3.8. (Projective Dimension) The projective dimension is the length of a min-

imal free resolution denoted by pdim.

Example 3.9. In example 3.4, pdim(R/I) = 3.

3.2 Graded Minimal Free Resolutions

Definition 3.10. Let R = k[x1, ..., xn] be the polynomial ring in n-variables, and I a

homogeneous ideal of R. The minimal free resolution of I is said to be graded if the maps

are degree preserving at every step of the resolution, that is degδi = 0 for every i.

Example 3.11. In example 3.4, we have R = k[x, y, z] and I = (x2, y2, xz), then a graded

minimal free resolution of I is given by:

0→ R(−5)
δ3−→ R(−4)⊕ R(−3)⊕ R(−4)

δ2−→ R3(−2)
δ1−→ R

δ0−→ R/I → 0.

To do so, first consider R3 δ1−→ R. Take


a

b

c


∈ R3, we have


a

b

c


(x2, y2, xz) = ax2 +

by2 + cxz a homogeneous expression. We split R3 into R(−k)⊕R(−l)⊕R(−m). Hence, a

has degree a+ k in R(−k), b has degree b+ l in R(−l), and c has degree c+m in R(−m).
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Since the above expression must be homogeneous then degree a + 2 = degree b + 2 =

degree c + 2. On the other hand, the maps are degree preserving i.e. degree δ1 = 0. We

obtain,

degree a+ k = degree a+ 2 =⇒ k = 2,

degree b+ l = degree b+ 2 =⇒ l = 2, and

degree c+m = degree c+ 2 =⇒ m = 2.

So R3 is represented by the graded module R3(−2).

Moving onto δ2, we want


−y2 −z 0

x2 0 xz

0 x −y2




a

b

c


which is equal to


−ay2 − zb

ax2 + cxz

bx− cy2


to

belong to R3(−2). R3 is split into R(−n) ⊕ R(−p) ⊕ R(−q). Since the maps are degree

preserving and the polynomials are homogeneous, then

deg a+ n = deg a+ 4 =⇒ n = 4,

deg b+ p = deg b+ 3 =⇒ p = 3, and

deg c+ q = deg c+ 4 =⇒ q = 4.

So, R3 is represented by the following graded module: R2(−4)⊕ R(−3).

Now, δ3 : R(−r) → R(−4) ⊕ R(−3) ⊕ R(−4), so deg a + r = deg a + 5 =⇒ r = 5.

Hence, R is represented by the following graded module: R(−5).
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Corollary 3.12. A graded free resolution F : · · · → Fi
δi−→ Fi−1 → · · · is minimal if and

only if ∀i, δi takes a basis of Fi to a minimal set of generators of the image of δi.

Proof. Consider the right exact sequence Fi+1
δi+1−−−→ Fi

δi−→ Imδi → 0.

F is minimal ⇐⇒ ∀i, δi+1(Fi+1) ⊆ mFi

⇐⇒ Fi+1
δ̄i+1−−−→ Fi/mFi is the zero map

⇐⇒ Fi+1/mFi+1
δ̄i+1−−−→ Fi/mFi is the zero map

⇐⇒ Fi/mFi
φ̄−→ Imδi/m(Imδi) is an isomorphism

(because δ̄i+1 is the zero map, and by exactness Kerφ̄ = Imδ̄i+1 = 0 and φ̄ is surjective).

Suppose now φ̄ is an isomophism. We will show that ∀i, δi takes a basis of Fi to a minimal

set of generators of the image of δi.

{f1, ..., fn} is a basis of Fi (minimal set of generators), then {f̄1, ..., f̄n} is a minimal

set of generators of Fi/mFi. By Nakayama’s lemma, with M/mM = Fi/mFi, we have

{f̄1, ..., f̄n} generate Fi. Now, φ̄(f̄i) = mi is a minimal set of generators of Imδi/m(Imδi) =⇒

by Nakayam’s lemma, mi generates Imδi and {mi} is a minimal set of generators.

Suppose now that ∀i, δi takes a basis of Fi to a minimal set of generators of the image

of δi, we show that φ̄ is an isomorphism. Since R = k[x0, ..., xn] and M is an R-module,

then M/mM is an R/m = k vector space. Consider the following diagram

Fi/mFi
φ̄ // Imδi/mImδi

Fi

OO

δi // ImδiFi

OO
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We know that a basis in Fi is sent to a minimal set of generators of Fi/mFi, and a minimal

set of generators of ImδiFi is sent to a minimal set of generators of mImδi. Therefore, φ̄

is an isomorphism.

3.3 Betti Diagrams

Definition 3.13. Let R = k[x1, ..., xn] be the polynomial ring in n-variables. A compact

way to describe minimal free resolutions is the Betti diagram. Let (F, δ) be a minimal

graded free resolution ofR over S with Fa = ⊕jS(−j)βaj . The βaj are called Betti numbers.

The elements (βij)0≤i≤n
j∈N

satisfy:

i. for all 0 ≤ i ≤ n, βi,j = 0 for all j such that |j| � 0.

ii. for all i > 0 and for all j, if βi,j 6= 0, then there exists j′ < j such that βi−1,j′ 6= 0.

Definition 3.14. (Betti Diagram) Let (F, δ) be a minimal graded free resolution of R over

S with Fa = ⊕jS(−j)βaj . Each Fi requires βi,j minimal generators of degree j. The Betti

diagram of F has the form:
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0 1 · · · s

0 β0 β1 . . . βs

...
...

...
...

...

i β0,i β1,i+1 · · · βs,i+s

i+1 β0,i+1 β1,i+2 · · · βs,i+s+1

...
...

...
...

...

j β0,j β1,j+1 · · · βs,js

• the column labeled i describes the free module Fi

• s+1 columns correspond to the free modules F0, ..., Fs

• rows labeled with consecutive integers correspond to the degrees

• βk =
∑
r

βkr

Example 3.15. Let R = Q[x, y, z, w], I = (x2y, xy2, z3, w2 − y2, w3), and the following

minimal free resolution:

0 −→ R2 −→ R7 −→ R9 −→ R5 −→ R

which can be extracted from the Betti diagram below.
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0 1 2 3 4

0 1 5 9 7 2

1 - 1 - - -

2 - 4 2 - -

3 - - 4 2 -

4 - - 3 2 -

5 - - - 3 2

We will extract the graded minimal free resolution:

Step 0: 1 minimal generator of degree 0 =⇒ R = R.

Step 1: 1 minimal generator of degree 2 and 4 minimal ones of degree 3 =⇒ R5 is

represented by the following graded module: R4(−3)⊕R(−2).

Step 2: 2 minimal generators of degree 4, 4 of degree 5, and 3 of degree 6 =⇒ R9 is

represented by the following graded module: R3(−6)⊕R4(−5)⊕R2(−4).

Step 3: 2 minimal generators of degree 6, 2 of degree 7, and 3 of degree 8 =⇒ R7 is

represented by the following graded module: R3(−8)⊕R2(−7)⊕R2(−6).

Step 4: 2 minimal generators of degree 9 =⇒ R2 = R2(−9).

So the graded minimal free resolution is given by:

0→ R2(−9)→ R3(−8)⊕R2(−7)⊕R2(−6)→ R3(−6)⊕R4(−5)⊕R2(−4)

→ R4(−3)⊕R(−2)→ R.
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Chapter 4

Syzygies of Gorenstein

Algebras

Let F be a minimal graded free resolution of S = R/I

0→
Ts⊕
j=ts

R(−j)βsj
∂s→ . . .→

Ti⊕
j=ti

R(−j)βij
∂i→ . . .→

T1⊕
j=t1

R(−j)β1j
∂1→ R→ R/I → 0.

F is said to satisfy the subadditivity condition for maximal shifts if for all a and b, we

have Ta+b ≤ Ta + Tb. Subadditivity has been established in several cases, see [1], [2], [4],

[7], [8] and [10]. In this section, we study the Gorenstein case done by [7], they show that

subadditivity holds for a+ b = h and h− 1 respectively, where h is the height of I.
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4.1 Gorenstein Algebras

Definition 4.1. Let R be a commutative Noetherian ring with finite projective dimension.

The grade of I is the length of a maximal R-sequence contained in I. If the grade of I is

equal to the height of I, then R is said to be Cohen-Macauly.

Definition 4.2. An ideal I is called perfect if the grade of I = pdim(R/I).

Definition 4.3. An ideal I of grade g is called a Gorenstein ideal if I is perfect and

rankFg = 1.

Every Gorenstein ideal admits a symmetric minimal free resolution of the following

form:

If I is of height 2k + 1, then

0→ R(−c)→
b1∑
j=1

R(−(c− a1j)→ · · · →
bk∑
j=1

R(−(c− akj))→
bk∑
j=1

R(−akj)→

· · · →
b1∑
j=1

R(−a1j)→ R

and if I is of height 2k, then

0→ R(−c)→
b1∑
j=1

R(−(c− a1j)→ · · · →
bk/2=rk∑
j=1

R(−(c− akj)⊕
bk/2=rk∑
j=1

R(−akj)→

· · · →
b1∑
j=1

R(−a1j)→ R

Example 4.4.

i110 : R = QQ[x,y,z,w]
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o110 = R

o110 : PolynomialRing

o111 = ideal (w^2, y*w, x*w, y*z, x*z, x^2 - y^2, z^3, y^3 + z^2 w, x*y^2)

o111 : Ideal of R

i112 : betti res o111

0 1 2 3 4

o112 = total: 1 9 16 9 1

0: 1 . . . .

1: . 6 8 3 .

2: . 3 8 6 .

3: . . . . 1

o112 : BettiTally

Hence, I admits the following graded minimal free resolution:

0→ R(−7)→ R6(−5)⊕R3(−4)→ R8(−4)⊕R8(−3)→ R3(−3)⊕R6(−2)→ R.

4.2 Syzygies

In this subsection, we first prove a general result on the syzygies of homogeneous algebras,

then we show a partial result on the subadditivity of graded Gorenstein algebras R/I with

height I = h.
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Theorem 4.5. Let S = R/I be a graded algebra with ti and Ti being the minimal and

maximal shifts in the minimal graded free R-resolution of S at degree i, then tn ≤ t1+Tn−1,

for all n.

Proof. We show the theorem by induction on n, where n is the nth step of the resolution.

For n = 1, T0 = 0 and hence t1 = t1. We need to prove the theorem for 1 < n ≤ s, where

F : 0→ Fs → · · · → F2
δ2−→ F1

δ1−→ S

is the graded resolution of S. Let I = (g1, ..., gβ1
) where {g1, ..., gβ1

} is a set of minimal

generators of I and Fi = ⊕βi

j=1Rfij with t1 = degf11 ≤ degf12 ≤ ... ≤ degf1β1 = T1.

Suppose δ1(f1j) = gj and δn(fnt) =
βn−1∑
i=1

rtif(n−1)i for all n.

We show the theorem for n = 2, and n = 3. Consider the following diagram:

F : · · · // F3
δ3 // F2

δ2 // F1
// F0

K : · · · // F2 ∧ F1

OO

// F1 ∧ F1

OO

// F1
//

OO

F0

OO

where K is the Koszul complex associated to (g1, ..., gβ1).

Let n = 2 and 2 ≤ i ≤ β1. Construct Z(f11, f1i) ∈ F1 where Z(f11, f1i) = g1f1i − gif11 is

a non-zero second syzygy. We have

δ1(Z(f11, f1i)) = g1δ1(f1i)− giδ1(f11) = g1gi − gig1 = 0

=⇒ Z(f11, f1i) ∈ Kerδ1 = Imδ2, by exactness. So, there exists an element f11 ∗

f1i ∈ F2 such that δ2(f11 ∗ f1i) = Z(f11, f1i) 6= 0. So we get, deg(f11 ∗ f1i)=deg(δ2(f11 ∗

f1i) =deg(Z(f11, f1i) = deg(g1)+ deg(gi) ≤ t1 + T1. Since Z(f11, f1i) is a syzygy, then
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degg1+deggi should be greater than or equal to the minimum of the degrees of the syzygies

in F2 which is t2, =⇒ t1 + T1 ≥ degg1+deggi ≥ t2.

Let n = 3, by the induction assumption, we construct the following syzygy f11 ∗ f1i ∈

F2/ δ2(f11 ∗f1i) = Z(f11, f1i). On the other hand, δ2(f11 ∗f1i) = δ1(f11).f1i−f11 ∗ δ1(f1i)

by K. Let f11 ∗ f1i =
∑β2

j=1 sijf2j .

Z(f11, f2t) = δ1(f11)f2t −
β1∑
i=1

β2∑
j=1

rtjsijf2j ∈ F2. We get

δ2(Z(f11, f2t)) = δ1(f11)δ2(f2t)−
β1∑
i=1

rtiδ2(

β2∑
j=t

sijf2j)

= δ1(f11)

β1∑
i=1

rtif1i −
β1∑
i=1

rtiδ2(f11 ∗ f1i)

=

β1∑
i=1

[δ1(f11)rtif1i − δ1(f11)rtif1i + rtif11 ∗ δ1(f1i)]

=

β1∑
i=1

rtif11 ∗ δ1(f1i)

= f11 ∗ δ1(

β1∑
i=1

rtif1i)

= f11 ∗ (δ1 ◦ δ2(f2t)) (by exactness)

= f11 ∗ 0

= 0

We show Z(f11, f2t) 6= 0. For that, we suppose Z(f11, f2t) = 0 for all t, then
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δ1(f11)f2t =
β1∑
i=1

β2∑
j=1

rtisijf2j . So for all t, we have

β1∑
i=1

β2∑
j=1

rtisij =


0 j 6= t

δ1(f11) j = t.

(4.1)

We set r̄ = r̄2 = (rti)β2×β1
and s̄ = s̄2 = (sij)β1×β2

:

F : · · · // F3
r̄3 // F2

r̄2 // F1
// F0

K : · · · // F2 ∧ F1

s̄3

OO

// F1 ∧ F1

s̄2

OO

// F1
//

OO

F0

OO

By 4.1, we get r̄s̄ = δ1(f11)I which implies that the rank r̄s̄ = β2. By the exactness

of the resolution, we have rank(r̄3)+rank(r̄2) = β2 where r̄3 is the matrix representing δ3.

Since δ3 6= 0, then rank r̄2 < β2 which is a contradiction.

We showed there exists a non zero cycle in F2 of degree t1+degf2t ≤ t1 + T2. Again,

Z(f11, f2t) ∈ kerδ2 = imδ3 which implies the existence of an element f11 ∗ f2i ∈ F3 such

that δ3(f11 ∗ f2i) = Z(f11, f2t). The degree of f11 ∗ f2i=deg(Z(f11, f2t)) = t1 +T2 which is

≥ t3.

The cases n = 2, 3 are established. We proceed by supposing that the statement is

true for n− 1. For that, there exists an element f11 ∗ f(n−2)i ∈ Fn−1 for all 1 ≤ i ≤ βn−2

such that

δn−1(f11 ∗ f(n−2)i) = δ1(f11)f(n−2)i − f11 ∗ δ2(f(n−2)i)),

and tn−1 ≤ t1 + Tn−2 for 4 ≤ n ≤ s.

Let (f11 ∗ f(n−2)i) =
βn−1∑
j=1

sijf(n−1)j . We also have δn−1(f(n−1)t) =
βn−2∑
i=1

rtif(n−2)i for all
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1 ≤ t ≤ βn−1. Consider Z(f11, f(n−1)t) = δ1(f11)f(n−1)t −
βn−2∑
i=1

βn−1∑
j=1

rtisijf(n−1)j , then

Z(f11, f(n−1)t) is a cycle in Fn−1, since

δn−1(Z(f11, f(n−1)t)) = δ1(f11)δn−1(f(n−1)t)−
βn−2∑
i=1

rtiδn−1(

βn−1∑
j=t

sijf(n−1)j)

= δ1(f11)

βn−2∑
i=1

rtif(n−1)i −
βn−2∑
i=1

rtiδn−1(f11 ∗ f(n−2)i))

=

βn−2∑
i=1

[δ1(f11)rtif(n−2)i − δ1(f11)rtif(n−2)i + rtif11 ∗ δn−2(f(n−2)i)]

=

β(n−2)∑
i=1

rtif11 ∗ δn−2(f(n−2)i)

= f11 ∗ δn−2(

βn−2∑
i=1

rtif(n−2)i)

= f11 ∗ (δn−2 ◦ δn−1(f(n−1)t))

= f11 ∗ 0

= 0

We show that there is at least one t such that one of the cycles Z(f11, f(n−1)t) is

not identically zero. Suppose that Z(f11, f(n−1)t) = 0 for all t, then δ1(f11)f(n−1)t =

βn−2∑
i=1

βn−1∑
j=1

rtisijf(n−1)j . So for all t, we have

βn−2∑
i=1

βn−1∑
j=1

rtisij =


0 j 6= t

δ1(f11) j = t.

By setting r̄ = r̄n−1 = (rti)βn−1×βn−2 and s̄ = (sij)βn−2×βn−1 , we get r̄s̄ = δ1(f11)I and

hence the rank r̄n−1s̄ = βn−1. By the exactness of the resolution, we have rank(r̄n)+rank(r̄n−1) =
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βn−1 where r̄n is the matrix representing δn. Since δn 6= 0, this implies that rank

r̄n−1 < βn−1 which is a contradiction.

Thus, for every t, 1 ≤ t ≤ βn−1, there exists an element f11 ∗ f(n−1)t ∈ Fn of the

same degree as degZ(f11, f(n−1)t) that is mapped by δn onto Z(f11, f(n−1)t). This means

there is an element f11 ∗ f(n−1)t ∈ Fn of degree t1 + degf(n−1)t ≤ t1 + Tn−1 such that

δn(f11) ∗ f(n−1)t) = Z(f11, f(n−1)t) 6= 0. Hence, we get t1 + Tn−1 ≥ tn.

Remark 4.6. If S = R/I is a Gorenstein algebra, with height I = h, then Th ≤ Ta+Th−a.

Since c = Th = th, then by the duality of the minimal graded free resolution F we get

c− th−a = Ta for all a = 1, ..., h− 1. This implies that c = Ta + th−a ≤ Ta + Th−a.

Theorem 4.7. For any graded Gorenstein algebra R/I with height I = h, we have Th−1 ≤

Ta + Th−1−a. Thus, Tn ≤ Ta + Tn−a for n ≥ h− 1.

Proof. Since R/I is Gorenstein, then Th−1 = Th − t1 and Th−1−a = Th − ta+1. So,

Th−a−1 = Th−ta+1 ≥ Th−(t1+Ta) by theorem 4.5. So, Th−a−1 ≥ Th−t1−Ta = Th−1−Ta

and hence Th−1 ≤ Ta + Th−a−1 as desired.

Example 4.8.

i197 : R= QQ[a,b,c,d,e]

o197 = R

o197 : PolynomialRing

i198 : I = ideal fromDual matrix{{a^2*b*c^2-c^4*d+d^3*e^2+e^5}}
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o198=ideal(c*e,b*e, a*e,b*d,a*d,b^2,d^3-e^3,c*d^2,a^2b+c^2d,a^3,d*e^3,

c^4+d^2e^2,b*c^3,a*c^3)

o198 : Ideal of R

i199 : betti res o198

0 1 2 3 4 5

o199 = total: 1 14 35 35 14 1

0: 1 . . . . .

1: . 6 8 3 . .

2: . 4 12 12 4 .

3: . 4 12 12 4 .

4: . . 3 8 6 .

5: . . . . . 1

o199 : BettiTally

Then by theorem 4.7,

T4 ≤ T3 + T1 =⇒ 8 ≤ 11 and T4 ≤ 2T2 =⇒ 8 ≤ 12.
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Chapter 5

Syzygies of Monomial Ideals

In this section, we study the subadditivity of monomial ideals that was shown by [8] for

b = 1. Before stating the main theorems, we recall the definition of a dual basis of a vector

spaces over a field k.

Definition 5.1. (Dual Basis) Let V be a vector space over the field k. We view k as a

one-dimensional vector space over itself. The set of all linear maps of V into k is called

the dual space, and will be denoted by V ∗. Elements of the dual space are usually called

functionals.

Let V be finite dimensional of dimension n. Let {v1, ..., vn} be a basis. Write each

element v in terms of its coordinate vector v = x1v1 + ...+ xnvn. For each i we let

φi : V → k
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be the functional such that

φi(vi) = 1 and φi(vj) = 0 if i 6= j.

Then

φi(v) = xi.

The functionals {φ1, ..., φn} form a basis of V ∗, called the dual basis of {v1, ..., vn}.

Definition 5.2. If f : V →W is a linear map, then the transpose (or dual) f∗ : W ∗ → V ∗

is defined by:

f∗(φ) = φ ◦ f for every φ ∈W ∗.

The resulting functional f∗(φ) in V ∗ is called the pullback of φ along f .

If the linear map f is represented by the matrix A with respect to two bases of V and

W , then f∗ is represented by the transpose matrix AT with respect to the dual bases of

W ∗ and V ∗.

Notation 5.3. Let k be a field, R = k[x1, ..., xn] the polynomial ring over k in the

indeterminates (x1, ..., xn) and I ⊂ R a graded ideal. Let (F, δ) be a graded R-resolution

of S = R/I. Each free module Fa in the resolution of the form Fa = ⊕jR(−j)baj . We set

Ta = max{j : baj 6= 0}.

Proposition 5.4. Let I ⊂ R be a graded ideal, F the graded minimal free resolution of

R/I. Suppose there exists a homogeneous basis f1, ..., fr of Fa such that

δ(Fa+1) ⊂
r−1⊕
i=1

Rfi.
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Then degfr ≤ Ta−1 + T1.

Proof. We denote by (F∗, δ∗) the complex HomR(F, R) which is dual to F. For any basis

h1, ..., hl of Fb we denote by h∗i the basis element of F∗b with

h∗i (hj) =


1 if j = i

0 if j 6= i.

Then, h∗1, ..., h
∗
l is a basis of F∗b , the so-called dual basis of h1, ..., hl.

F : · · · → Fa+1
δ−→ Fa

δ−→ Fa−1 · · ·

F∗ : · · · → F ∗a−1
δ∗−→ F ∗a

δ∗−→ F ∗a+1 · · ·

Our assumption implies that δ∗(f∗r ) = 0. This implies that f∗r is a generator of

Ha(F∗) = Kerδ∗/Imδ∗, which is an R/I module.

On the other hand, if g1, ..., gm is a basis of Fa−1 and δ(fr) = c1g1 + ...+ cmgm, then

δ∗(g∗i ) = cif
∗
r +mi where each mi is a linear combination of the remaining basis elements

of F∗a. Let c ∈ I be a generator of maximal degree. Then by definition, degc = T1(I).

Since If∗r = 0 in Ha(F∗), there exist homogeneous elements si ∈ S such that cf∗r =

∑m
i=1 si(cif

∗
r + mi). This is only possible if T1 =degci+ degsi for some i. In particular,

degci ≤ T1. It follows that degfr =degci+ deggi ≤ T1 + Ta−1, as desired.

Corollary 5.5. Let I be a monomial ideal. Then Ta ≤ Ta−1 + T1 for all a ≥ 1.

For the proof of this result, we will use the restriction lemma as given in [4, Lemma

4.4]: let I be a monomial ideal with multigraded (minimal) free resolution F and let α ∈ Nn.
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Then the restricted complex F≤αwhich is the subcomplex of F for which (F≤α)i is spanned

by those basis elements of Fi whose multidegree is componentwise less than or equal to α,

is a (minimal) multigraded free resolution of the monomial ideal I≤α which is generated

by all monomials xb ∈ I with b ≤ α, componentwise.

Proof. Let F the minimal multigraded free R-resolution of R/I, and let f ∈ Fa be a

homogeneous element of multidegree α ∈ Nn whose total degree is Ta(I). We apply the

restriction lemma and consider the restricted complex F≤α.

Let f1, ..., fr be a homogeneous basis of (F≤α)a with fr = f . Since there is no basis

element of (F≤α)a+1 of multidegree whose coefficient is bigger than α, and since the

resolution F≤α is minimal, it follows that δ((F≤α)a+1) ⊂
⊕r−1

i=1 Rfi. Thus, we may apply

the above proposition and deduce that Ta(I≤α) ≤ Ta−1(I≤α) + T1(I≤α). Since Ta(I) ≤

Ta(I≤α), Ta−1(I≤α) ≤ Ta−1 and T1(I≤α) ≤ T1, the assertion follows.

Example 5.6. i2 : R = QQ[a,b,c,d,e,f,g,h]

o2 = R

o2 : PolynomialRing

i3 : ideal(a^2*b^3*c, a^3*b^3*c^3, d*f^2, e*f*c*a, g*h^2, g^3*h^3*a^2, g*h*a*c)

o3 = ideal(a^2b^3c, a^3b^3c^3, d*f^2, a*c*e*f, g*h^2, a^2 g^3h^3, a*c*g*h)

o3 : Ideal of R

i4 : betti res o3

0 1 2 3 4

o4 = total: 1 5 8 5 1
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0: 1 . . . .

1: . . . . .

2: . 2 . . .

3: . 2 1 . .

4: . . 3 . .

5: . 1 1 2 .

6: . . 2 . .

7: . . 1 2 .

8: . . . 1 1

o4 : BettiTally

Hence,

T1 ≤ T0 + T1 =⇒ 6 ≤ 6

T2 ≤ 2T1 =⇒ 9 ≤ 12

T3 ≤ T2 + T1 =⇒ 11 ≤ 15

T4 ≤ T3 + T1 =⇒ 12 ≤ 17.

As was stated at the beginning of the thesis, subadditivity does not work in general,

but no counter examples were found for Gorenstein and monomial ideals. Next, we give an

example for a non Gorenstein algebra and a non monomial ideal where the subadditivity

fails.

Example 5.7. i1 : R = QQ[x,y,z]
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o1 = R

o1 : PolynomialRing

i2 : I = ideal(x^12, y^12, z^12, x^5*y^5*z^2-x^6*y^6-y^6*z^6+x^6*z^6)

o2 = ideal(x^12, y^12, z^12, -x^6y^6 + x^5y^5z^2 + x^6z^6 - y^6z^6 )

o2 : Ideal of R

i3 : betti res o2

0 1 2 3

o3 = total: 1 4 10 7

0: 1 . . .

1: . . . .

2: . . . .

3: . . . .

4: . . . .

5: . . . .

6: . . . .

7: . . . .

8: . . . .

9: . . . .

10: . . . .

11: . 4 . .

12: . . . .
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13: . . . .

14: . . . .

15: . . . .

16: . . . .

17: . . . .

18: . . 1 .

19: . . 2 1

20: . . 1 .

21: . . 2 .

22: . . 3 2

23: . . . 1

24: . . 1 2

25: . . . 1

o3 : BettiTally

Subadditivity fails in this case since t2 � 2t1.
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