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  Sensor placement for physical fault detection on convex plane surfaces is a 

quick spreading technology that has been used in evolving industrial firms for structural 

health monitoring purposes. A set of sensors is allocated on the surface understudy and 

ultrasonic guided waves are excited between sensor pairs to detect and allocate possible 

damage. The cost of installation and maintenance of such structural health monitoring 

systems has been reported to grow exponentially as the size of the structure increases. 

Hence, several techniques for optimizing sensor networks have been presented in 

literature to improve coverage and fault detection while reducing the number of sensors 

needed and hence reducing cost. In this paper, a demonstration of the preceding sensor 

network optimization approaches is presented and an advanced geometrical 

optimization approach for fault detection and sensor placement is proposed. The 

approach is formulated as a Mixed Integer Non-Linear program (MINLP) with user 

defined parameters to simulate actual geometrical conditions of the surface understudy 

and sensor coverage characteristics. The model is tested in several real case studies with 

different scenarios of coverage levels for both symmetrical and optimized sensor arrays 

and assures the efficiency and strong performance of the aforementioned approach. 

Data fusion is also carried out for the optimal sensor locations determined by the 

experimentation scenarios and the results confirm the paper findings. 
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CHAPTER I 

INTRODUCTION 

 

Complex engineering systems like buildings, bridges, aircrafts and many 

others constitute the basis of our everyday economy. Manuals of codes and standards 

have been compiled for numerous regions to ensure the safety of these facilities and 

their serviceability. Nevertheless, design codes and methodologies have not been 

sufficient to prevent the deterioration or damage of engineered facilities and products 

upon exposure to severe environmental conditions. Recent seismic activities have 

revealed the real vulnerability of these civil structures to damage during catastrophes 

like earthquakes. Having these risks taken into consideration, engineering communities 

have pushed further to innovate and implement proactive sensing technologies that aim 

to rapidly detect the onset of structural damage in instrumented structural systems using 

analytical methods. Hence, the process of estimating the state of structural health by 

combining damage detection algorithms with structural monitoring systems is called the 

structural health monitoring process (SHM). 1 In general, SHM is a mimic of the human 

nervous system by which a group of sensors act together as one sensing network to 

detect and localize faults within a surface or a body. It is a continuous process that aims 

to detect anything from ambient vibrations, wind and live loadings on the structure to 

large scale vibrations, earthquakes and severe damages or local structural failures.2 

SHM systems are widely used in monitoring cracks in concrete, strain and pressure 

sensing, detection of seismic activity and crash investigations.  
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Nevertheless, conventional SHM systems installed in tall buildings have been 

reported in literature to cost excess of 5000$ per sensing channel.3 This means these 

systems costs grow at rates faster than regular linear rates upon increase in structure 

size. A tradeoff exists between SHM feasibility and SHM system costs.  For instance, a 

decent SHM system for a bridge can cost more than $8 million (USD).4 On the other 

hand, small numbers of sensors can barely detect structural damage, the fact that 

provoked sensor network optimization. In this paper, previous sensor network 

optimization approaches are demonstrated and an advanced optimization approach for 

sensor networks is proposed. 
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CHAPTER II 

LITERATURE REVIEW 

 

Several optimization approaches have been demonstrated in the field of SHM. 

Many scholars have focused on determining the minimum number of sensors required 

to achieve full plate coverage without the need of sensor allocation. Others have 

developed algorithms that follow an information based approach that depends on the 

experimental conditions of each sensor. Genetic algorithms and less advanced 

geometric approaches have also been presented in previous work. The demonstration of 

the various optimization approaches in literature is summarized in this section. 

 

A.  Iterative Optimization 

  Iterative Optimization is also known as the “trial and error” optimization 

approach. The process starts with a fixed number of sensors distributed over the entire 

network then evolves by removing a single sensor at a time and assessing the new 

coverage. An opposite approach for the iterative optimization method starts by finding 

the optimal 1-sensor patterns over the plate surface and evolves by adding sensors and 

evaluating the optimal coverage in each case. In some experiments, for instance, the 

analysis starts by having 20 sensor locations distributed over the plate. Afterwards, one 

sensor is removed and the remaining 19 sensors are left with 20 possibilities. The 20 

sensor locations are tested and the 19th sensor distribution having the best fitness 

measure is selected. The sensor location that was not selected is permanently deleted 



4 

 

and a similar assessment is carried out for the following sensor distribution.  This has 

proven to be a more cost effective method that results in a lower number of sensors and 

lower probability of error. Evaluation of the effectiveness of the iterative optimization 

approach is defined by a measure of fitness. This fitness measure can be considered the 

normalized mean square error (MSE) between the desired network responses and the 

initial network training responses. K. Worden in his experiments on iterative 

optimization incorporates two factors into the fitness measure and evaluates fitness 

based on a scoring method. For instance, a sensor distribution to be considered optimal, 

had to have the lowest score resulting from the sum of the average MSE and the 

Maximum MSE for each sensor network distribution. The justification is that having 

two factors defined in the fitness measure makes it less subject to local minima 

problems.5 Successful patterns demonstrate lowest average error and lowest maximum 

error and no misclassifications. 

 

B. Combinatorial Optimization: Information-Based Approach 

  Combinatorial optimization is usually expressed in forms of Quadratic Non-

linear programs such as the travelling salesman problem. A traditional information-

based approach for a sensor placement problem places sensors near the anti-nodes of 

the low frequency vibration modes of the system. The distribution of sensors is assessed 

in terms of the covariance matrix [C]. The covariance matrix is the inverse of the Fisher 

information matrix [F]. Usually, minimizing [C] maximizes [F] and the outcome is the 

determinant of matrix [F]. Sensors location process is guided by an FE model and the 
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sensors are located according to their Average Driving Point Residue. Sensors with the 

highest ADPR are selected and contribute to high mode shapes.6 

A second approach is the Guyan model reduction where master sensor locations are 

selected by the algorithm and are deleted until the required number of sensors is 

reached. The objective function is related to the degrees of freedom of the master nodes 

and their moments of inertia. Both methods illustrated earlier can be either assessed 

with the modal assurance criterion (MAC) or the condition number of the mode shape 

matrix that measure the extent of linear dependence between mode shape vectors. The 

MAC method produces two objective functions. The first objective function Z1 the sum 

of the off-diagonal elements and Z2 that contains weighting factors for amplification of 

the desired modes.5 Sequential deleting of the sensors leaves the sensors producing 

highest off diagonal matrix. 

A third information-based approach for the sensor optimization problem is the Effective 

independence (EI). It is based EI distribution vector E. The optimization process is 

iterative, terms in E are sorted and the least important sensor is deleted and the 

determinant of the Fisher information matrix is maintained.7 

 

C. Genetic Algorithms 

  Genetic algorithms are optimization algorithms that work by encoding the sets 

of possible parameters in a solution space as a gene. Usually, genes are represented as 

binary strings ex: 01001001 each gene represents a case of sensor allocation pattern in 

which the 0 describes absence of sensor allocated and 1 its presence. The optimization 

starts by randomly generating a set of possible solution genes and selects the fittest 
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genes based on a predefined fitness function usually the inverse of the probability of 

misclassification. Then it evolves in a Darwinian manner by which the genes selected in 

the earlier phase are crossed over to produce the next generation of genes. Crossing 

over occurs by selecting a specific position along a gene pair and switching of the 

following substrings. Afterwards, the fitness of the genes is compared against the sum 

of fitness of all genes of the population. The higher the fitness factor the higher the 

probability of selection. Genes with very high fitness scores are probably to be selected 

several times for mating and thus are isolated initially from mating and kept for 

advanced crossover stages in order to guarantee optimal sensor allocation solutions with 

high objective functions in a process called elitism, a good demonstration of elitism is 

presented in (Lars Junghans, Nicholas Darde, 2015).8 On the other hand, new genes can 

also be introduced to prevent the population from stagnating. The process of mating 

continues until few elite genes dominate the population. Genetic algorithms have been 

used a lot in previous work and tend to produce realistic results when compared to other 

optimization approaches as demonstrated in (K. Worden, A.P. Burrows, 2000).5  

A good demonstration of the GA approach work mechanism is presented in Shiyuan 

Jin’s paper in which a population of genes is defined along with crossover and mutation 

rates. The population of 80 sensors undergoes crossing over to produce 800 new 

generations and the fittest genes are sorted out according to a predefined fitness 

function that focuses on minimizing the communication distance between sensors after 

dividing the plate into numerous clusters.9 This approach has demonstrated good 

coverage results yet seems to utilize high number of sensors in order to minimize the 

transmission distance and energy loss, the fact that makes it an expensive approach as 
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demonstrated in (Celebi, 2002).3 

 

D. Simulated Annealing  

Most sensor network optimization techniques tend to move downwards with 

the objective function in an attempt to reduce the number of sensors needed; therefore, 

there is a great possibility that the optimization converges to a local minimum.  

Optimization with Simulated Annealing (SA) is very similar to the concept of metal 

annealing by which a metal is heated and left to cool down and tends to increase and 

decrease the objective function instead of strictly decreasing it to avoid local minima. A 

good example of optimization via SA is presented in (A.A. Kannan et al, 2005) 10 in 

which the optimization starts with a fixed number of 200 nodes and a cost function is 

defined as the difference between the anticipated distance (usually the transmission 

distance) and actual distance between an anchor node and a non-anchor node . More 

than 200 nodes are randomly spread out at first and SA evolves by shifting the locations 

of non-anchor nodes while maintaining a distance equal to the transmission distance 

between sensors and with a probability of 80% of accepting a bad uphill move if 

needed. Iterations are carried out for sets of nodes to attain equilibrium for each and 

minimal cost function. The advantage of this approach is that it outperforms the regular 

GA approaches and is capable of achieving global solutions for complex objective 

functions. For instance, SA can deal with n- sensors and achieve optimality levels of 

99.5% correct classification (K. Worden, A.P. Burrows, 2000).5 Nevertheless, this 

approach is very time consuming and needs numerous iterations to achieve global 

optimality. A good demonstration of the performance of GA along and a hybrid 
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algorithm mix between GA and SA is presented in (Lars Junghans, Nicholas Darde, 

2015)8  that demonstrates that GA alone may not achieve global optimality and 

proposes a new hybrid algorithm that highlights the importance of using SA in thermal 

building optimization problems. 

 

E. Mixed Integer Non-linear Programming (MINLP) 

  The sensor network optimization problem is formulated as a mixed integer non-

linear program (MINLP) having quadratic constraints. MINLP problem constraints are 

characterized by having continuous and discrete variables simultaneously along with 

non-linear functions. Applications of MINLP problems exist in a wide range of fields 

including OR, Chemical engineering, finance etc.  

The general form of MINLP is as following: 

Min 𝒇(𝒙, 𝒚)  

𝑺𝒕:     

𝐜𝒊(𝐱, 𝐲) = 𝟎  ∀ 𝒊 ∈ 𝑬  

 𝐜𝒊(𝐱, 𝐲) < 𝟎 ∀ 𝒊 ∈ 𝑰 

 𝒙 ∈ 𝑿  

𝒚 ∈ 𝒀  Integer 

Each c𝑖(x, y) is a mapping from Rn to R, and E and I are index sets for equality and 

inequality constraints, respectively. Typically, the functions 𝑓 and  c𝑖 have some 

smoothness properties, i.e., once or twice continuously differentiable.11 Additional 

details on MINLP and other types of optimization problems can be found at the NEOS 

online guide. NEOS is an online free internet-based service for solving numerical 



9 

 

optimization problems by the help of a rich variety of state of the art optimization 

solvers. In general, MINLP problems are difficult to solve since they combine the 

difficulties of both Mixed Integer programming and Nonlinear Programing.  
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CHAPTER III 

PROPOSED OPTIMIZATION APPROACH 

 

  In this section, an advanced MINLP geometric approach for the sensor network 

placement optimization problem is studied based on optimizing the distance between 

the sensor path and the control points understudy. The approach is not only formulated 

but also modeled as a mixed integer non-linear program via AMPL. Additional 

information concerning mixed integer non-linear program with quadratic constraints, 

AMPL software and the problem formulation itself are presented in the subsections that 

follow.  

 

A. Problem Formulation 

  Several approaches for sensor network optimization discussed in literature have 

been demonstrated earlier in this paper, however there are other geometric approaches 

presented in literature for determining the level of coverage in a sensor network and aim 

to provide a tool for sensor network assessment and not optimization. A good example 

of the geometric approach in literature is presented in (Chi-Fu Huang, Yu-Chee Tseng, 

2005).12 The authors in this paper allocate sensors randomly and assume that the 

covering parameter of each sensor is a circular disk of a given radius “r” according to its 

coverage range. Then the assessment proceeds by defining the areas and points that fall 

within one or more transmission parameter of sensors and classifies their coverage into 

levels accordingly. This method was translated into a computerized interface that is 
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capable of highlighting the coverage characteristics of the various areas of the plate by 

identifying the redundancy of coverage parameters of various sensors but does not seem 

to identify the exact location of sensors to achieve optimal coverage nor the ability to 

manipulate the problem parameters such as the minimum number of sensors needed and 

the designated coverage levels. Thus this method is classified as a method of sensor 

network assessment rather than optimization. In this paper, the problem of sensor 

network placement for SHM is formulated as a MINLP with an objective function of 

maximizing coverage while being constrained by the number of sensors available, the 

plates’ dimensions and geometry, the coverage range of each sensor path and other 

geometrical constraints that are demonstrated in details below. 

 

1. Parameters 

 𝐾: Set of Control points 

 (𝑥𝑘, 𝑦𝑘): Coordinates of control point 𝑘, 𝑘 ∈ 𝐾 

 𝑁: Set of sensors to be placed 

 𝑀: A large number 

 𝜏𝑖𝑗𝑘: Positive random variable between 0 and 1 

 𝑑𝑖𝑚𝑥 ≥ 0 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑃𝑙𝑎𝑡𝑒 𝑖𝑛 𝑋 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛  

 𝑑𝑖𝑚𝑦 ≥ 0 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑃𝑙𝑎𝑡𝑒 𝑖𝑛 𝑌 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

 

2. Decision Variables 

 𝐶𝑘 = {
0 𝑖𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑜𝑖𝑛𝑡 𝑘 𝑖𝑠 𝑛𝑜𝑡 𝑐𝑜𝑣𝑒𝑟𝑒𝑑

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 𝑘 ∈ 𝐾 
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 (𝑥𝑖, 𝑦𝑖): Coordinates of sensor 𝑖, 𝑖 ∈ 𝑁 

 𝐶𝑖𝑗𝑘 = {
0 𝑖𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑜𝑖𝑛𝑡 𝑘 𝑖𝑠 𝑛𝑜𝑡 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝑠𝑒𝑛𝑠𝑜𝑟 𝑙𝑖𝑛𝑒 (𝑖, 𝑗)

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 𝑖 ∈ 𝑁, 𝑗 ∈

𝑁, 𝑘 ∈ 𝐾, 𝑖 < 𝑗 

 𝑑𝑖𝑗 = Distance between sensor 𝑖 and sensor 𝑗, 𝑖, 𝑗 ∈ 𝑁, 𝑖 < 𝑗 

 𝑑𝑖𝑗𝑘 = Distance between sensor line (𝑖, 𝑗) and sensor 𝑘, 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑖 <

𝑗  

 𝑑𝑖𝑘 = Distance between sensor 𝑖 and control point 𝑘, 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾 

 

3. Formulation Model 

max ∑ 𝐶𝑘

𝑘∈𝑁

 

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

 

𝑑𝑖𝑗
2 = (𝑥𝑖 − 𝑥𝑗)

2
+ (𝑦𝑖 − 𝑦𝑗)

2
  ∀ 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑖 < 𝑗     (1) 

                   

𝑑𝑖𝑘
2 = (𝑥𝑖 − 𝑥𝑘)2 + (𝑦𝑖 − 𝑦𝑘)2 ∀ 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾      (2) 

                    

𝑑𝑖𝑗𝑘 ≤ 1 + 𝑀(1 − 𝐶𝑖𝑗𝑘)             ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑖 < 𝑗    (3) 

                  

(∑ ∑ 𝐶𝑖𝑗𝑘𝑗∈𝑁:𝑖<𝑗𝑖∈𝑁 ≥  𝐶𝑘)  ∀ 𝑘 ∈ 𝐾, 𝑖 < 𝑗       (4) 
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𝑑𝑖𝑗𝑘
2 ≥ (𝜏𝑖𝑗𝑘𝑥𝑖 + (1 − 𝜏𝑖𝑗𝑘)𝑥𝑗 − 𝑥𝑘)

2
+  (𝜏𝑖𝑗𝑘𝑦𝑖 + (1 − 𝜏𝑖𝑗𝑘)𝑦𝑗 − 𝑦𝑘)

2
 (5) 

 𝑖, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑖 < 𝑗 

                      

𝑑𝑖𝑘 − 𝑑𝑖𝑗 = 𝑎𝑖𝑗𝑘
+ − 𝑎𝑖𝑗𝑘

−   𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑖 < 𝑗    (6) 

                    

𝑑𝑗𝑘 − 𝑑𝑖𝑗 = 𝑏𝑖𝑗𝑘
+ − 𝑏𝑖𝑗𝑘

−   𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑖 < 𝑗    (7) 

                    

𝑎𝑖𝑗𝑘
+ ≤ 𝑀(1 − 𝐶𝑖𝑗𝑘) 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑖 < 𝑗      (8) 

                    

𝑏𝑖𝑗𝑘
+ ≤ 𝑀(1 − 𝐶𝑖𝑗𝑘) 𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑖 < 𝑗      (9) 

                    

− ∑ ∑ 𝐶𝑖𝑗𝑘 + 2 ≤ 2(1 −𝑗∈𝑁:𝑖<𝑗𝑖∈𝑁 𝐶𝑘) ∀ 𝑘 ∈ 𝐾, 𝑖 < 𝑗    (10) 

                  

∑ 𝐶𝑖𝑗𝑘 ≤ 1𝑗∈𝑁:𝑖<𝑗    ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑖 < 𝑗      (11) 

                   

∑ 𝐶𝑖𝑗𝑘 ≤ 1𝑖∈𝑁:𝑖<𝑗    ∀𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾, 𝑖 < 𝑗      (12) 

                   

𝑥𝑖 ≤ 𝑑𝑖𝑚𝑥       (13) 

               

𝑦𝑖 ≤ 𝑑𝑖𝑚𝑦       (14) 
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𝑑𝑖𝑗, 𝑑𝑖𝑗𝑘, 𝑑𝑖𝑘, 𝜏𝑖𝑗𝑘 , 𝑎𝑖𝑗𝑘
+ , 𝑎𝑖𝑗𝑘

− , 𝑏𝑖𝑗𝑘
+ , 𝑏𝑖𝑗𝑘

−  𝑑𝑖𝑚𝑥, 𝑑𝑖𝑚𝑦 >0  

 

𝐶𝑖𝑗𝑘, 𝐶𝑘 Binary Variables  

  The first two equations in the optimization approach aim to calculate the 

distance between sensors i and j and the distance between sensor i and control point k 

respectively according to the typical distance equation between two points. In equation 

3, for a specific control point k to be covered, the distance between the sensor path and 

this control point  𝑑𝑖𝑗𝑘 must be less than 1 unit which is considered to be the coverage 

distance of all sensor paths in this problem. This parameter is a user defined attribute 

which can be altered as needed to fulfill the problem requirements. Equation 5 serves to 

calculate the distance between the sensor path ij and the control point k. Equations 6, 7, 

8 and 9 represent the triangular inequality equations between a sensor pair and a control 

point. These equations ensure that the control points covered fall within the sensor pair 

path and not at the extension of this path. Equation 10 is one of the most significant 

equations of the model and aims to define the level of coverage required to solve the 

problem. Currently this equation is for level 2 coverage by which 2 sensor paths are 

required for the equation to hold and can be user defined to any coverage level needed 

at the expense of longer computational time. Equations 11 and 12 have demonstrated 

the ability to improve the performance of the model. These equations state that the 

summation of sensor path for a given sensor and a given control point to all other 

sensors should not exceed 1 path. This prevents the code from overlapping sensors and 

covering a control point by two lines passing through the same sensor. Equations 13 and 

14 are also user defined attributes for the aim of defining the plates’ dimensions.  
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As mentioned earlier, it is possible to classify coverage into levels according to the 

number of sensor pair paths providing coverage to every control point. In this approach, 

the control point is not considered to be covered unless the required coverage level is 

achieved.  Level-1 coverage is considered to be the first step of sensor placement 

optimization problems and aims to recognize the presence or absence of material 

deformation along the available sensor pair paths. Level-2 coverage is also known as 

localization coverage that permits fault localization by locating the possible material 

deformation through the intersection of 2 or more guided waves near each control point. 

Level-3 coverage used for “Evaluation” since this level evaluates the severity of the 

localized damage by providing improved coverage of 3 or more sensor pair path to 

every control point and hence is considered to be a more accurate method. Huang and 

Tseng state that accurate localization of damage requires coverage of three sensor paths, 

according to triangulation protocols (Chi-Fu Huang, Yu-Chee Tseng, 2005). 12 In this 

paper, level “n” will be referred to the case of coverage by “n” sensor pair paths.  

After identifying the nature of the problem and formulating it, prolonged search and 

testing of convenient solvers capable of solving non-linear and non-convex problems 

suggested that the Basic Open Source Non-linear Mixed Integer Programming Solver 

(Bonmin) was one of the most efficient solvers for this type of problems and has been 

used in literature thoroughly in dealing with this type of problems.13 Bonmin is a hybrid 

solver for mixed integer non-linear programming based on an outer-approximation-

based branch-and-cut-based algorithm and a pure branch-and-bound algorithm. Bonmin 

defines a node search tree and branches on its variables solving for feasible and optimal 

solutions.14 It implements six different algorithms in solving MINLPs including branch 
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and bound, an outer approximation based decomposition algorithm, an outer 

approximation based branch and bound algorithm and a hybrid outer approximation for 

non-linear programming based branch and cut algorithms and other techniques that are 

highlighted in the Bonmin User Manual.15 Additional details regarding the non-linear 

branch and bound approach and its different types can be found in (Belotti, P. et al, 

2013).16 Problems to be solved with Bonmin can be coded in AMPL; a computer based 

language used for solving large scale optimization problems and is capable of 

incorporating and supporting a wide range of solvers. The software offers an interactive 

interface that facilitates model building for users of different optimization background. 

Detailed description of the design and implementation of AMPL is provided in (Robert 

Fourer et al, 1990) .17 In general, there is no universal global optimizer for MINLP 

problems. These problems have demonstrated lack of performance efficiency and 

insufficient numerical robustness and a good example is highlighted in (Ausen, 2012).18 

However, four major key factors have been implemented in our optimization approach 

to ensure the optimality and robustness of our proposed solution.  

  First of all, the sensor network optimization problem is known to be complex 

and computationally demanding since there exist an infinite number of points along the 

x and y axis to be assessed. The initial approach to the problem was to relax the 

coverage of the sensor path 𝑪𝒊𝒋𝒌 and solve for sensor locations, then to feed the 

preliminary results of the relaxed problem as an initial solution to the actual problem, 

hence requiring less computational time for solving. The plate understudy was divided 

into a definite set of control points in order to boost the computational efficiency of the 

solver by reducing the processing time required. The actual coverage of these control 
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points provided by the proposed optimization approach was assessed on a separate code 

after each run with higher number of control points to validate the robustness of the 

results. It was observed that the optimizer had provided consistent optimization results 

for various sensor network problems. Another key factor for enhancing the model’s 

robustness is integrated within the solver itself. In dealing with MINLP, Bonmin offers 

two options within the branch and bound tree at root and at node for solving the root 

node or each node of the tree, respectively, with a user-specified number of different 

randomly-chosen starting points, saving the best solution found. Bonmin provides the 

option of allowing continuous branching even if the solution value to the current node is 

worse than the best-known solution, hence exploring the entire feasible region and all 

possible solutions of the problem, the fact that overcomes the local optimality dilemma 

in regular optimization approaches. 
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CHAPTER IV 

SIMULATION CASES 

 

A. Simulation Cases Studied 

  After modeling the problem as a MINLP via AMPL several cases were studied 

as listed below. 

1. List of Simulation Cases 

 Optimizing a sensor network on a square 10x10 units2 plate 

 Optimizing a sensor network on a circular plate of diameter 10 units 

 Optimizing a sensor network level 2 on a triangular plate of side 10 units 

 Optimizing a sensor network level 3 on a triangular plate of side 10 units 

 Optimizing a sensor network with 20mm coverage 

 Optimizing a sensor network with increased control points 

  The aim behind the optimization of sensor networks on Square, Circular and 

Triangular plates in the first three sets of experiments is twofold. First of all, it is 

necessary to demonstrate how the optimization code will allocate the sensor network 

along various geometric shapes having different boundaries. Second, it is essential to 

study how the optimization behavior varies as the pattern of the control point 

distribution changes.  

Moreover, level 3 optimization cases are also studied to highlight the effect of 

increasing the number of intersecting sensor pair paths on the coverage of the plate 

itself and hence improving fault localization chances. It is also essential to study the 
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change in the optimization behavior when higher coverage levels are required with low 

number of sensors available. Coverage of a sensor path was taken to be 40mm from 

each side of the path as demonstrated in earlier SHM work in literature.19 However, the 

case of 20 mm coverage for each sensor path is also considered to demonstrate the 

flexibility in choosing the sensor types and the effect of each on the optimization 

process as the required number of sensors to achieve complete coverage differs.  The 

case of adding control points to the plate understudy is also considered in order to 

demonstrate how increasing the control points in a selected area of the plate increases 

the coverage of this area. In addition to studying the effect on the computational time 

for processing the problem and on the precision of coverage provided by the sensor 

locations determined. A detailed summary of the scenarios coded and the optimization 

results is illustrated in the section below. In general the most important aim of these sets 

of experiments was to understand and validate how the optimization process 

outperforms the normal and symmetric distributions of the un-optimized sensor sets.  

 

B. Optimization for Square Plates 

  In the aim of evaluation of the performance of optimized sensor networks, a 

comparison of the coverage of both symmetric and optimized sensor networks was 

carried out on a square plate 400x400 mm. In normal cases the average coverage of the 

piezoelectric sensor pair path is considered to be 40 mm from each side of the path in an 

elliptic manner.  In an attempt to simulate the dimensions and coverage of our problem, 

a scaled code was prepared. The dimensions of the plate were scaled down to 10x10 

units and the coverage of the sensor pair path was also scaled to 1 unit. Control points 

were allocated 2 units away from the boundary of the plate and coverage was assessed 
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on the base of being covered by two sensor pairs (level 2). An initial assessment for 

level “2” coverage was carried out by placing 8 symmetric sensor pairs on a 10x10 

square plate and evaluating control points coverage as shown in Figure 1. This initial 

assignment was then compared to an optimized one. The case of 8 sensors was 

simulated and the optimized sensor locations were determined as shown in Figure 2. 

The strong symmetric distribution of the 8-sensor array gives full plate coverage of all 

control points similar to the optimized sensor network that was tested and produced 

equivalent optimal coverage with different sensor locations. Accordingly, it can be 

noted that multiple optimal solutions exist for large number of sensors and that the 

optimized sensor network is not completely random but has a unique symmetry of its 

own similar to the symmetric distribution across the plate edges. Therefore it is 

recommended to reduce the number of sensors used. 

 

 

 

Figure 1: 8-Sensor Symmetric Network-Square Plate 
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Figure 2: 5-Sensor Optimized Network-Square Plate 

 

 

A quick assessment of the plate coverage showed that seven and six sensors gave full 

plate coverage as well; hence, the number of sensors was reduced to five to be able to 

better understand how the optimization deals with the insufficiency of sensors and 

optimizes the plate coverage level. The details of both the symmetric and optimized 

sensor networks are shown in Figures 3 and 4 respectively. 

 

 

 

Figure 3: 5-Sensor Symmetric Network-Square Plate 
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Figure 4: 5-Sensor Optimized Network-Square Plate 

 

 

 

After assessing coverage for both plates, it is shown that the optimized set of sensors 

provides improved coverage to the plates’ control points covering 75% control points 

when compared to the initial set of symmetric sensors that was able to cover 50% of the 

plate. The approach of optimization used in solving the sensor allocation problem is to 

branch and bound the problem in numerous iterations experimenting on various solution 

branches until a global optimal is reached. Therefore, it can be concluded that five 

sensors are not enough to cover all control points of the square plate but optimization 

will improve the overall coverage of the plate when compared to a regular symmetric 

allocation. 

 

C. Optimization for Triangular Plates 

  Optimization for triangular sensor networks is an important process for 

structural health monitoring since most irregular shapes can be divided into triangular 

shapes. Optimization of triangular sensor networks produces high quality results in half 
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the computational time required for square and rectangular shaped plates due to their 

geometric nature. Eric B. Flynn. Michael D. Todd, 2010 have developed a genetic 

algorithm that is able to optimize the sensor placement process and is able to allocate 

sensors on plates of various shapes and dimensions based on the distribution of Bayes 

risk of sensor networks as a fitness function and assigning penalties to false alarms and 

missed detections.20 The algorithm also incorporates sensor characteristics and 

surrounding network noise and is considered to be a top performer reaching 99.8% 

optimality levels. In their approach, Eric and Michael experiment on a right isosceles 

triangular plate of 125 cm side dimension and study how their algorithm is able to 

determine the location of 8 piezoelectric sensors to obtain optimal locations for full 

plate coverage. In our study, a comparison is undertaken to evaluate how our code 

performs against Eric and Michael’s algorithm for sensor network optimization on a 

triangular plate having to scale-dimensions and similar geometric characteristics while 

using the same number of sensors. The results are presented below. 

 

 

 

Figure 5: Michael and Eric Genetic Algorithm Optimized 8-Sensor Network 
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Figure 6: Advanced Geometric Approach Optimized 8-Sensor Network 

 

 

 

The previous figures show the sensor locations based on the Bayes risk genetic 

algorithm approach Figure 5 compared to our optimization method results in Figure 6. 

Testing demonstrates that both optimization methods achieve full plate coverage and 

tend to allocate the majority of the sensors near the peripherals of the plate. It is also 

noted that only one sensor is allocated at the inside in both cases the fact that validates 

our approach in sensor network optimization. Another set of optimization experiments 

has been conducted on a right isosceles triangle with side dimensions of 10x10 units 

representing a 40x40 cm triangular plate. The dimensions and coverage have been 

scaled to the actual plate size tested that was cut diagonally in half to produce two 

identical triangles. The modeling code has been modified by adding the following 

equation:  𝑥𝑖 + 𝑦𝑖 <= 10        (15)  

Such that x𝑖 and y𝑖 represent the coordinates of the sensors to be allocated. 

18 control points have been assigned on the surface of the triangle understudy and both 

initial and optimized solutions of eight sensors were enough to achieve full plate 
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coverage. Therefore, the number of sensors was reduced to five sensors in order to 

evaluate how the optimization will cope with this sensor deficiency. The results of the 

experiments are shown hereunder. 

 

 

 

Figure 7: Initial 5-Sensor Network Triangular Plate 
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Figure 8: Optimized 5-Sensor Network-Triangular Plate 
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A strong initial solution of 5 sensors set at the corners of the plate yields a fair coverage 

of 60% yet is not sufficient to achieve acceptable SHM levels. On the other hand, the 

use of the optimization code allocates the 5-sensor network in a scientific manner that 

achieves a high coverage level of 90%. This proves that as the number of sensors 

becomes scarce and the decision of allocation becomes more critical, the output of the 

optimization code becomes more valuable by outperforming the regular allocation 

process. A good example that facilitates the role of the optimization process is that for a 

small number of control points a primitive solution of 3 sensors allocated on the corners 

of a triangle produces 10% coverage whereas a much stronger solution of 70% is 

achieved by the optimization code. The fact that demonstrates that for a given level of 

coverage, a smaller optimized sensor network can be produced, hence reducing the 

overall cost of the structural health monitoring process. 

 

D. Sensor Network Optimization for Circular Plates 

  In this section, the effect of sensor network optimization is studied on circular 

plates having a radius of 5 units. The code has been modified by adding the following 

equation  

(x𝑖 − 5)2 + (y𝑖 − 5)2 ≤  25         (16) 

Such that x𝑖 and y𝑖 represent the coordinates of the sensors to be allocated. This 

equation represents the boundary of the circular plate understudy and forces the code to 

allocate sensors within this boundary. The comparison between random and optimized 

sensor allocation is demonstrated in Figures 9 and 10 respectively. 

In this comparison it was shown that both sensor networks were able to achieve 

complete level 2-coverage of the selected control points on the plate.  It was also noted 
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that the random allocation by engineering sense and the optimization both had similar 

sensor network distribution within the circumference of the plate. Therefore, the 

number of sensors in this study was reduced to 5 along with 12 control points to be able 

to identify the effect of sensor insufficiency on the performance of the optimization. 

 

 

 

Figure 9: Initial 6-Sensor Network-Circular Plate 

 

 

 

Figure 10: Optimized 6-Sensor Network 

 

 

 

By using common engineering sense 5 sensors were allocated at the major centerlines 

of the circular plate along with 1 central sensor inside. The sensor network was able to 
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outperform the normal sensor distribution by achieving coverage of 92%, both 

distributions are shown in the figures below: 

 

 

 

Figure 11: Initial 5-Sensor Network-Circular Plate 

 

 

 

 

 

It is concluded that the optimized sensor network produces higher coverage rates than 

the random sensor network allocated. Another interesting remark was observed is that 

when the number of sensors decreases the optimization code tends to allocate two 

sensors close to each other, the purpose of this allocation is to achieve level 2 coverage 

for the maximum number of points possible. Hence it can be concluded that the 

optimization prefers quality coverage of small number of control points rather than poor 

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3 4 5 6 7 8 9 10

Sensors

Ck

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3 4 5 6 7 8 9 10

Sensors

Ck

Figure 12: Optimized 5-Sensor Network-Circular Plate 
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coverage to a greater amount of points. This conclusion is best demonstrated in the 

relaxed version of the problem where the optimization is allowed to bypass this 

constraint and the sensors are allocated freely, it is noticed that the optimization will 

deploy the sensors in a sparse manner providing poor quality coverage to a wider area 

as concluded earlier the fact that explains the optimization behavior. 

 

E. Optimization for Level 3 Coverage 

  Previous work in the field of sensor network placement focused on the 

assessment of coverage of various surface areas. Good work has been done to come up 

with genetic algorithms that could improve and assess coverage in polynomial time yet 

none seems to scientifically prove the number of sensors required for complete plate 

coverage nor the exact sensor locations. In this paper, advanced research has been done 

to identify the minimum number of sensors required for coverage, the exact locations of 

sensors to be deployed to maximize coverage and most importantly to be able to 

localize faults in triangular plates. In general, C. Huang and Y. Tseng demonstrate in 

their work that the accurate localization of faults requires level 3-coverage, in other 

words, control points should be covered by 3 or more sensor pair paths in order to 

correctly localize damage according to triangulation protocols.12 In our approach, 

localization coverage (level 3) can be reached by setting the coverage parameter to 3. 

As mentioned earlier, the level of coverage in the sensor network optimization model is 

a user defined attribute that can be manipulated to achieve higher levels of coverage at 

the cost of longer computational time. This method provides improved coverage and 

fault detection accuracy to the plate understudy. For the sake of demonstration, 
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optimization of a level 3 sensor network for a triangular plate was studied. The code 

was altered by changing equation 10 as follows: 

− ∑ ∑ 𝐶𝑖𝑗𝑘 + 3 ≤ 3(1 −𝑗∈𝑁:𝑖<𝑗𝑖∈𝑁 𝐶𝑘) ∀ 𝑘 ∈ 𝐾, 𝑖 < 𝑗    (10-a)       

 Experimentation has been performed on the previous triangular plate to verify the 

number and location of sensors required, testing starts with 4 sensors and 10 control 

points were selected. It is found that 70% localization is achieved for the optimized 

locations of sensors when compared against the random allocation that covers 20% only 

of the selected control points. One sensor is then added to the experiment and the code 

is run again to achieve global localization. The results of level 3-coverage for both types 

of sensor networks are shown in the figures below: 

 

 

 

Figure 13: Initial 4-Sensor Network-Level 3 Triangular Plate 
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Figure 14: Optimized 4-Sensor Network-Level 3 Triangular Plate 

 

It is noticed that the 4 sensors were allocated symmetrically along a line passing 

through the center of the triangular plate. Increasing the number of sensors to 5 

produces 80% level 3-coverage for the optimized allocation compared to the regular and 

random allocation that produces only 40% level 3-coverage for the selected control 

points. The distribution and localization results are shown in the figures below: 

 

 

 

Figure 15: Initial 5-Sensor Network Level 3-Triangular Plate 

 

 

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3 4 5 6 7 8 9 10

Sensors

Ck

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3 4 5 6 7 8 9 10

Sensors

CK



32 

 

 

Figure 16: Optimized 5-Sensor Network-Level 3 Triangular Plate 

 

 

Hence it is clear that the optimized 5-sensor array is enough to achieve level 3 coverage 

for all the selected control points of the plate. In this experiment, the optimization 

behavior becomes more complex and the optimization tends to place sensors in 

symmetry with the plate’s center and in pairs in order to achieve level 3 coverage for 

specific control points rather than to disperse the sensors throughout the plate area. 

  

0
1
2
3
4
5
6
7
8
9

10

0 1 2 3 4 5 6 7 8 9 10

Sensors

CK



33 

 

CHAPTER V 

DATA FUSION 

  Data fusion of sensor networks is the process of aggregation of the coverage 

generated by every sensor pair path along the plate surface. Data fusion is carried out 

for the optimized sensor locations in order to assess the levels of coverage at the 

selected control points. The assessment was conducted along with proper normalization 

of coverage to the area of interest. The data fusion results are shown below. 

 

 

 

 

 

 

 

 

 

A. Square Plate 

  As shown earlier, 6 sensors are enough to provide level 2-coverage to the square 

plate understudy. Data fusion carried out for square plates of 8, 7 and 6 sensors 

confirms our previous findings. Data fusion of an insufficient number of sensors such as 

5 sensors demonstrates how the optimized allocation outperforms the regular sensor 

network allocation. The results of the data fusion are shown in the figures below. 

Figure 17: Circular Plate-Area of Coverage Assessment 
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The paths used for image reconstruction are also visualized to provide a better 

understanding of how coverage is being provided in terms of sensor pair paths.  

Figure 18 represents the paths used for image construction using 8 sensors while Figure 

19 represents the data fusion of the preceding sensor pair paths.  It can be noted that the 

optimized sensor locations have a unique distribution throughout the plate with highest 

concentration in the plate center due to the nature of the damage detection and 

allocation problem that requires the distribution of the sensors around the peripherals of 

the plate in order to ensure maximum coverage levels to the control points inside. This 

phenomenon is noticed in Figure 19 in which the data fusion highlights this high 

coverage level with a yellowish orange color close to the plate center.  The reduction of 

number of sensors to 7 and 6 sensors respectively will gradually start to reduce the 

coverage concentration from the center of the plate and will generate a uniform 

coverage to the maximum area possible while maintaining the minimum coverage level 

required to all control points.  

 

 

 

 
Figure 18: Paths Used for Image Construction-8 Sensors 
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Figure 19: Data Fusion-8 Sensors 

 

 

 

Figure 20: Paths Used for Image Construction-7 Sensors 
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Figure 21: Data Fusion-7 Sensors 

 

 

 

Figure 22: Paths Used for Image Construction-6 Sensors 
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Figure 23: Data Fusion-6 Sensors 

 

 

Further reduction to the number of sensors utilized will require the optimization to take 

critical decisions in terms of determining the optimal number of control points covered 

while making use of the insufficient number of sensors. A comparison between the 

random and optimized allocation in terms of data fusion and coverage is provided in the 

figures below for a 5 sensor network. 
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Figure 24: Paths Used for Image Construction-5 Sensors Random Allocation 

 

 

 

Figure 25: Data Fusion-5 Sensors Random Allocation 
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Figure 26: Paths Used for Image Construction-5 Sensors Optimized Allocation 

 

 

 

Figure 27: Data Fusion-5 Sensors Optimized Allocation 

 

 

It is noticed that the optimized allocation of 5 sensors provides better coverage with 

increased uniformity than the random sensors network allocation that has demonstrated 

the existence of coverage dead zones at the peripherals of the square plate represented 

in dark blue color. 
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B. Circular Plate 

  The optimization of sensor networks on a circular plate was also considered. Six 

sensors were determined analytically to provide full coverage to the control points 

understudy. This number was then reduced to 5 in order to carry out a comparison 

between the random and optimized allocation. The performance of the model and the 

efficiency of the proposed approach are demonstrated in terms of extended coverage 

provided to all control points while having minimal dead zones. The sensor pair paths 

and the data fusion figures of both random and optimized cases are represented below. 

 

 

 

Figure 28: Paths Used for Image Construction-6 Sensors Random Allocation 
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Figure 29: Data Fusion-6 Sensors Random Allocation 

 

 

 

Figure 30: Paths Used for Image Construction-6 Sensors Optimized Allocation 
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Figure 31: Data Fusion-6 Sensors Optimized Allocation 

 

 

It can be noted that for the same number of sensors and for complete control point’s 

coverage, the optimized allocation provides a more uniform and distributed coverage 

throughout the circular plate, unlike the random allocation that tends to leave some 

corner areas with lower coverage levels than other areas. The reduction of sensors to 5 

highlights the vast difference between the efficiency of the optimized allocation when 

compared to the random allocation. The comparison is represented in the following 

figures. 
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Figure 32: Paths Used for Image Construction-5 Sensors Random Allocation 

 

 

 

 

Figure 33: Data Fusion-5 Sensors Random Allocation 
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Figure 34: Paths Used for Image Construction-5 Sensors Optimized Allocation 

 

 

 

 

Figure 35: Data Fusion-5 Sensors Optimized Allocation 

 

 

Optimization allocates new coordinates for the 5 sensors utilized and does not refer to 

the previous optimization of 6 sensors. Hence optimization of the sensor network is 

studied independently to provide the best scenario for each case by itself. Data fusion of 

both optimized and random allocation demonstrates the improved coverage provided by 

the optimized sensor set..   
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C. Triangular Plate 

  It has been demonstrated in the previous sections that the level 2-optimization of 

the sensor networks using the advanced geometric approach has outperformed the 

regular and random allocation of sensors by providing improved coverage and reduced 

dead zones to the plate understudy. Another scenario worth studying is the effect of 

setting the coverage parameter to level 3 towards the sensor network behavior and 

coverage. Therefore, a comparison is presented between triangular plates having 

optimized sensor networks of levels 2 and 3 respectively. 

 

 

 

Figure 36: Paths Used for Image Construction-8 Sensors Level 2 Optimized Allocations 

 

 

 

 

 

 

 

 Figure 37: Data Fusion-8 Sensors Level 2 Optimized Allocations 
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Figure 38: Paths Used for Image Construction-8 Sensors Level 3 Optimized Allocations 

 

 

 

 

 

 

 

 

 

 

For the same number of sensors, the optimization problem is solved differently. The 

optimization with level 3 coverage provides coverage with 3 sensor pair path. This fact 

makes the sensor network optimization problem more complex and computationally 

demanding as the problem solving time will increase exponentially with the increase in 

this parameter. Nevertheless, it is clear that for the same number of sensors the coverage 

provided by the level 3 optimization model provide uniform and improved coverage to 

 

Figure 39: Data Fusion-8 Sensors Level 3 Optimized Allocations 
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the entire plate including the corners. Therefore, the number of sensors was reduced to 5 

and the assessment was repeated. 

 

 

 

Figure 40: Paths Used for Image Construction-5 Sensors Level 2 Optimized Allocations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41: Data Fusion-5 Sensors Level 2 Optimized Allocations 
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Figure 42: Paths Used for Image Construction-5 Sensors Level 3 Optimized Allocations 

 

 

 

 

 

 

 

 

 

 

 

The comparison between levels 2 and 3 optimization of the 5-sensor network highlights 

major remarks. The first remark is that 5 sensors is the minimum number of sensors 

required to provide control point coverage in both cases due to the strong contrast in the 

coverage levels within the same plate and at specific areas as revealed by normalization. 

Another important remark is that the optimization prefers quality coverage of control 

points rather than poor coverage of the entire plate as demonstrated in the data fusion of 

level 3 sensor locations.  

 

Figure 43: Data Fusion-5 Sensors Level 3 Optimized Allocations 
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D. 20mm Coverage 

  The coverage of the sensor pair path was reduced to 20 mm from each side, 

which is equivalent to half unit coverage for the scaled optimization model and the case 

of optimizing the sensor network on a triangular plate is studied. As demonstrated 

earlier, 6 sensors were needed to achieve full plate coverage of level 2. In the following 

sets of experiments, a triangular plate having 6 sensors with 20 mm coverage is studied 

and the number of sensors is afterwards increased and coverage is re-assessed until full 

plate coverage is achieved. The aim behind these sets of experiments is to be able to 

demonstrate the flexibility in integration of the problem parameters including the sensor 

pair path coverage characteristics in addition to highlighting how the behavior of the 

optimizer varies as the coverage distance becomes less. 

 

 

 

Figure 44: Paths Used for Image Reconstruction 6 Sensors 40mm Coverage 
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Figure 46: Paths Used for Image Reconstruction 6 Sensors 20mm Coverage 

 

 

 

 

 

 

Figure 45: Data Fusion of 6 Sensor Network with 40mm Coverage 
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The use of 6 sensors provides full coverage to the triangular plate with 40 mm coverage 

of sensor path but provides only 50% coverage of the plate for the case of 20mm 

coverage. If the correlation between the number of sensors and coverage provided is 

linear, 12 sensors with 20mm coverage are needed to provide full plate coverage again. 

Hence the number of sensors is increased to 7 sensors and the results are shown below. 

 

 

 

Figure 48: Paths Used for Image Reconstruction 7 Sensors 20mm Coverage 

 

Figure 47: Data Fusion of 6 Sensor Network with 20mm Coverage 
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The assessment of coverage for a 7 sensor network with 20 mm coverage of sensor 

paths demonstrates that the plate is 80% covered with having a dead zone represented in 

dark blue. Hence additional sensors are needed for the experiment. The use of 8 sensor 

network along with the optimization results are demonstrated in the figures below. 

 

 

 

Figure 50: Paths Used for Image Reconstruction 8 Sensors 20mm Coverage 

 

 

Figure 49: Data Fusion of 7 Sensor Network with 20mm Coverage 
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The use of an 8-sensor network for the triangular plate produces 100% level 2-coverage. 

Nevertheless, it is clear that the coverage demonstrated by the data fusion figures of 

both the 20mm and 40 mm sensor networks demonstrates that a higher level coverage 

with improved uniformity is provided by the 40mm sensor network. This is fairly 

justified by the increased aggregation of sensor pair path covering larger areas despite 

the allocation and number of sensors used in each problem. The advantage of the 

optimization algorithm is that it acts as a sensor reduction tool providing efficient 

coverage with lower number of sensors. 

 

E. Additional Control Points 

  The advanced geometric approach assumes that the plate is divided into a 

specific number of control points user defined initially. The level 2 optimization for 

instance focuses on maximizing the number of control points covered by 2 pairs of 

sensor paths. In this section, the same triangular plate is studied twice before and after 

 

Figure 51: Data Fusion of 8 Sensor Network with 20mm Coverage 
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increasing the number of control points and the effect is translated in terms of the new 

sensor locations and improved coverage.  The first experiment is carried out on a 

triangular plate with 7 sensors and 10 control points for level 2 coverage as shown in 

the figure below. 

 

 

 

Figure 52: 10Ck Optimized 7-Sensor Network 
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Figure 53: 10Ck Optimized 7-Sensor Network Data Fusion 
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The sensor network optimization is then carried out for the same triangular plate with 

16 control points distributed in a uniform manner and the results are represented below. 

 

 

 

Figure 54: 16Ck Optimized 7-Sensor Network 

 

 

 

Figure 55: 16Ck Optimized 7-Sensor Network Data Fusion 
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It is noticed that both cases demonstrate full plate coverage with higher coverage levels 

concentrated in the middle in the case of additional control points. It is also noted that 

the computational time has increased for solving the optimization problem. 

Another experiment is carried out to analyze the optimization behavior upon increasing 

the number of control points of a level 3 8 sensor network. Similar to the previous 

cases, the optimization begins with a 10 control point network which evolves into a 16 

control point network and the results are demonstrated in the figures below. 

 

 

 

Figure 56: 10Ck Optimized Level 3 8S Network 
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Figure 57: 10Ck Level 3 Optimized 8S Network Data Fusion 

 

 

 

Figure 58: 16Ck Optimized Level 3 8S Network 
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Figure 59: 16Ck Level 3 Optimized 8S Network Data Fusion 

 

 

Increasing the number of control points to 16 instead of 10 has generated new sensor 

locations along the triangular plate. The new sensor locations when tested have 

demonstrated improved coverage with increased uniformity. Nevertheless, both cases 

have demonstrated full plate coverage. Therefore, increasing the number of control 

points is a user defined attribute that is capable of producing better coverage with higher 

uniformity levels along the plate. However this option has also demonstrated increased 

computational time and effort. 

 

F. Discussion 

  After presenting the proposed optimization algorithm for sensor network 

placement, the algorithm was tested on several cases. The first set of experiments was 

conducted on plates with varying geometry such as Square, Circular and Triangular 

having predefined control points. The control points were selected in a manner 
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simulating the geometry of the plate understudy. The first observation was that as the 

number of control points increases the computational time for solving the optimization 

problem increases exponentially.  The triangular shaped sensor networks were 

optimized faster than the square and circular plates due to their non-symmetric 

geometry and fewer control points. Data fusion was carried out to evaluate the actual 

coverage produced by the optimized sensor locations after aggregation of the coverage 

produced by each sensor pair path. Coverage was defined by the number of intersecting 

sensor pair path at every control point. For instance, level 3 coverage required the 

overlap of the coverage area produced by 3 independent sensor pair path. The first 

assessment was conducted on a square plate with 16 control points. The optimization 

was time demanding and several optimal results were found covering all control points 

due to the symmetric geometry of the problem. Since 8 sensors were enough to achieve 

full coverage of the preselected control points, the number of sensors was reduced 

gradually to 5 until it was insufficient to produce full coverage. The optimization was 

conducted on 5 sensors and better coverage was produced using the optimization 

algorithm. Similar work was conducted on the circular plate and on the triangular plate. 

Validation of the proposed algorithm was experimented on a triangular plate with 8 

sensors against an existing top performer for sensor network optimization and both 

algorithms converged to global optimality using 8 sensors only with very similar 

distribution. Nevertheless, coverage levels were defined and level 3 coverage was 

experimented on triangular plates and the results demonstrated that additional sensors 

were needed to achieve level 3 coverage especially for the control points along the 

peripheral of the plate. Control points at the center of the plate were naturally covered 

by several sensor pair paths due to the spider web structure of the sensor locations that 
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demonstrated highest overlap levels at the center. For adequate number of sensors, level 

3 coverage was achieved and data fusion results produced demonstrated clear 

uniformity between the coverage of the control points throughout the plate. Lower 

number of sensors used left areas of the plate uncovered while having areas completely 

covered the fact that described the algorithm behavior focusing on quality coverage of 

smaller areas rather than poor coverage of larger areas. Additional experimentation on 

the behavior of the sensor network optimization algorithm confirmed that the 

optimization tends to determine new positions of sensors used in the sensor networks 

when subject to any change in one of the formulation parameters such as the coverage 

distance, coverage levels, number of sensors and number of control points studied. For 

instance, the sensor locations determined for an 8-Sensor network are completely 

different and independent of the optimized sensor locations for a 7-Sensor network. 

Networks with same number of sensors and same number of control points produced 

different sensors locations when optimized for coverage of levels 2 and 3 respectively. 

Furthermore, the optimization behavior was tested with sensors having 20 mm coverage 

instead of 40 mm and the results demonstrated that new sensors locations were 

determined for the same number of sensors and control points used. Even though it 

additional sensors were needed in the 20 mm cases to achieve equivalent coverage to 

the 40mm sensors networks however the number of additional sensors needed was 

reduced to more than half indicating the efficiency of the optimizer . The case of adding 

control points was also studied for triangular sensor networks and the optimization 

behavior was highlighted. It was shown that new sensor locations were determined 

along the triangular plate understudy when the number of control points was increased. 

The new sensor locations when tested have demonstrated improved coverage with 
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increased uniformity keeping in mind that both cases have demonstrated full plate 

coverage. It was concluded that increasing the number of control points, which can be 

categorized as one of the user defined attributes, is capable of producing better coverage 

with higher uniformity levels along the plate. The key contribution of this user defined 

attribute is that it provides a tool to achieve higher coverage and improved uniformity 

levels to specific and critical areas of the plate understudy. However, this option has 

also demonstrated increased computational time required for solving the optimization 

problem and thus it is to be used with limitations in the number of control points to be 

analyzed. The results demonstrated in each optimization experiment cannot be labeled 

as the global optimal results of the problem since there exist multiple optimal solutions 

to the infinite sensor locations along the x and y axis in addition to the nature of the 

non-linear optimization problem. Nevertheless, several measures were followed to 

guarantee the robustness of the optimization results as mentioned earlier. 
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CHAPTER VI 

CONCLUSION 

 

  An advanced optimization method for sensor network placement has been 

presented in this paper. The research has introduced a non-linear geometric approach 

capable of assessing and optimizing sensor network efficiency in terms of improving 

coverage level; number of sensors needed and fault localization. The main approaches 

for sensor network optimization presented in literature have also been demonstrated in 

this paper. Iterative optimization has proven to be preliminary and time consuming 

providing results that are dependent on the previous optimization stages of n+ 1 sensors. 

Genetic algorithms are also strong approaches that outperform the regular iterative 

approaches and are able to cope with the optimization problem of sensor allocation; 

however, GA’s have demonstrated long computational time and near optimal results yet 

many problems converged to local minima due to the nature of these algorithms that 

strictly allow one directional motion of the objective function. The Simulated Annealing 

approach has also been discussed briefly in this paper and tends to give global optimal 

results for optimization problems in general since this method allows the objective 

function to take steps in both upwards and downward directions even after convergence 

in order to determine the global optimal solution of the problem. This makes the 

solutions of the SA approach very trustworthy and reliable. Nevertheless, the approach 

we propose has been capable of: assessing and optimizing sensor network efficiency in 

terms of improving coverage level; number of sensors needed and fault localization. 

The optimization algorithm is also capable of eliminating the human interference in the 
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allocation process of sensors by determining the optimal location (Cartesian 

Coordinates) of sensors utilized as part of the major decision variables of the 

optimization process. This is unlike most of the previous work done in the SHM field in 

which the sensors are initially set and sensor network coverage is assessed accordingly. 

In addition to translating the geometric optimization approach into a digitized algorithm 

available for users and capable of modeling the problem according to three different 

types of convex shaped plates and optimizing it. More work in this field is to be done in 

the near future including enhancing the model performance and computational time 

required, upgrading the optimization approach to accommodate for non-convex 

surfaces, maximizing intersecting paths and considering the case of sensor failure. 
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