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In this thesis, we have developed a theoretical model to predict the thermal 

conductivity for cylindrical and pristine nanowires. Boltzmann equation is solved 

including spatial dependence of the phonon distribution function and taking into 

account all the phonon scattering mechanisms and the differences in their physical 

nature. 

Vibrational parameters such as Debye temperature and Gr�̈�neisen parameter 

are derived as a function of temperature and crystallographic directions using the lattice 

dynamics approach to be employed in the calculation of the lattice thermal conductivity. 

Houston’s method is used for the calculation of the phonon spectrum, which will be 

involved further in the general formalism of the lattice thermal conductivity.  

 

In an attempt to draw an understanding of the effects of the size and surface on 

the lattice thermal conductivity, we have studied the effect of the scattering of the 

phonons by the boundaries of a nanowire with a circular cross section. Expression for 

the boundary scattering relaxation time of phonons in the presence of other anharmonic 

phonon scattering mechanisms are developed. The intrinsic phonon scattering rates are 

calculated from Fermi’s Golden Rule.  

 

With this presented model, the lattice thermal conductivity for cylindrical and 

pristine nanowires can be calculated. This model shows the different behavior of the 

lattice thermal conductivity for nanowires, in comparison to bulk, demonstrated with 

reference to experimental measurements. 
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CHAPTER I  
  

INTRODUCTION  

  

  

  

As the size of devices and structures has become smaller and smaller and 

entered the nanoscale, the physical principles governing their operation are changing 

dramatically [1]. Studying heat transfer in nanostructures has been of great interest to 

physicists and engineers for its high importance in many nanotechnology applications. 

With device or structure characteristic length scales becoming comparable to the mean 

free path and wavelength of heat carriers (electrons, photons, phonons, and molecules), 

classical laws are no longer valid [2]. While electrons are the major thermal and charge 

carriers in metals, phonons (i.e., atomic vibrations) dominate the thermal transport in 

crystalline semiconductors [3]. Heat transfer in nanostructures differs from their bulk 

counterparts. For example, thermal conductivity is no longer a material property at the 

nanoscale. Studies on thermal conductivity of materials and its management have been 

of great interest in the past years because of its technological importance. There are 

typically two types of problems. One is the management of heat generated in nanoscale 

devices to maintain the functionality of these devices and the other is to utilize 

nanostructures to manipulate the heat flow and energy conversion [4]. Examples of the 

thermal management of nanodevices are the heating issues in integrated circuits [5] and 

in semiconductor lasers [6]. Example in the manipulation of heat flow and energy 

conversion includes nanostructures for thermoelectric energy conversion [7, 8]. 

Correspondingly, high thermal conductivity materials are used in heat sink applications 
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and low thermal conductivity materials are needed for thermal insulation and power 

generation through thermoelectric conversion.   

 Studying heat transfer in solids requires an understanding of lattice vibrations. 

Atoms in solids are packed closely with a harmonic potential between them. They are 

not quite stationary but oscillate around their equilibrium positions giving rise to a set of 

vibrational propagating waves through the lattice. The interatomic forces bond nuclei 

together so that the vibration of the atoms inside the crystal is strongly coupled [1]. The 

picture can be visualized as a set of coupled harmonic oscillators where the lattice has a 

standing wave like solution upon solving equations of atomic motion. The atomic 

vibration can be decomposed into normal modes extending over the crystal and the 

basic energy quanta of each normal mode is called a phonon [1]. In other words, a 

phonon wave function is characterized by a vibrational frequency (energy) and a wave 

vector that corresponds to a single normal mode of the lattice vibration. The dependence 

of the phonon frequency on the wave vector is known as the dispersion relation. We 

have two types of phonons; acoustic and optical. Acoustic phonons are the main carriers 

of heat because of their high group velocity and they describe the coherent oscillations 

of atoms around their specific lattice sites. Acoustic phonons are low frequency 

phonons and exhibit a linear dispersion relation for long wavelengths. While optical 

phonons, out-of-phase movements of atoms, belong to the high frequency branch. In 

fact, due to their low group velocity optical phonons cannot contribute significantly to 

heat, so they decay into acoustic ones and affect the lattice thermal conductivity as was 

shown in nanowires.   

The general approach in calculating the thermal conductivity of materials in 

which heat is carried by phonons is to solve the Boltzmann equation under the 
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relaxation time approximation in which the scattering cross section is calculated by 

perturbation techniques. Boltzmann equation describes the statistical behavior of a 

system in a non-equilibrium state. The latter states the total rate of change of the phonon 

distribution function from equilibrium in the presence of temperature gradient and 

phonon scattering mechanisms.   

The behavior of the lattice thermal conductivity is early described by Debye 

and Peierls and is in good agreement with experiment. At very low temperatures the 

thermal conductivity depends on the size and shape of the crystals and increases with 

the temperature modeling the behavior of the specific heat (T3 dependence). The 

thermal conductivity reaches a peak where it is sensitive to imperfections such as 

impurities and defects and then starts to drop at temperatures above 0.1ƟD at which 

phonon umklapp scattering processes dominate. Following the early work of Debye and 

Peierls, several models have been proposed to calculate the lattice thermal conductivity. 

In 1959 Callaway developed a phenomenological model to calculate the lattice thermal 

conductivity at low temperatures. He assumed an isotropic, Debye-like phonon 

spectrum. He made no distinction between longitudinal and transverse phonons and the 

phonon branches are non-dispersive. Callaway represented the phonon scattering 

processes by frequency-dependent relaxation times. He assumed four scattering 

processes: (1) normal three phonon processes, (2) umklapp processes, (3) point 

impurities (isotope), and (4) boundary scattering. Three phonon normal processes for 

which Callaway assumed a relaxation time that goes like (B2 ω
2 T3)-1 where B2 is a 

parameter that depends on Gr�̈�neisen constant and the phonon velocity. Umklapp 

mechanism for which the relaxation time has an exponentially decaying behavior 

exp(ƟD/bT) at high temperature. The isotope scattering takes an independent 
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temperature form (ω4)-1. With respect to the boundary scattering, Callaway assumed a 

constant relaxation time L/c where L is the characteristic length of the sample and c is 

the average speed of sound in the crystal. Callaway distinguished between normal and 

resistive processes. Normal processes which conserve the total crystal momentum lead 

to a displaced Planck distribution, while resistive processes including umklapp 

scattering, impurity scattering and boundary scattering tend to return the phonon system 

to an equilibrium Planck distribution [9]. Through some assumptions, Callaway 

presented an integral expression of two terms k1 and k2 of the lattice thermal 

conductivity that pertains to longitudinal modes. k2 is considered an additional 

correction term to explain errors due to treating the normal processes as resistive ones 

and is usually neglected. The model predicts for germanium a thermal conductivity in 

the temperature range 50° -100°K. The results are in good agreement with experimental 

data but fails at the maximum of the curve. Therefore, the model is suitable for thermal 

conductivity only at low temperatures where the phonon spectrum is non-dispersive 

Debye-like and only the isotope and boundary scattering dominate.   

Following the work of Callaway, Holland presented an analysis of thermal 

conductivity in which he considered the contribution of both longitudinal and transverse 

phonons to heat conduction under the assumption k2=0. The scattering rates of isotope 

and boundary scattering mechanisms in the Holland model are the same as in the  

Callaway model, except that the boundary scattering is partially diffusive. In his model, 

Holland attempted to describe the lattice thermal conductivity behavior at high 

temperatures and he modified the normal and umklapp scattering relaxation times. 

Normal processes relaxation time corresponding to longitudinal phonons has the same 

Callaway form (BL ω2 T3)-1 while the transverse modes relaxation time goes like (BT ω 
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T4)-1. Note that, according to Callaway model only longitudinal acoustic phonons are 

taken into account in the normal processes. With respect to umklapp scattering, the 

Holland model considers only the transverse modes and divides the term into high 

frequency phonon region and low frequency one. For low-frequency transverse modes, 

ω < ω1, the umklapp process is absent. Transverse modes with frequencies between ω1 

and ω2 have a relaxation time that goes like ~ ω. The frequency at which U processes 

start is ω1 and ω2 is the highest transverse mode frequency [10]. With this approach, a 

good representation of the thermal conductivity of silicon and germanium at high 

temperatures is obtained.   

The fact that it is unreasonable to suppress the k2 term in Callaway’s model 

when normal scattering processes are included [11] is studied by Asen-Palmer et al. 

who presented a study on the thermal conductivity of germanium crystals with different 

isotopic compositions. The thermal conductivity measurements were made and 

experimental data was analyzed according to three models: Callaway’s model,  

Holland’s theory, and a modified Callaway/Holland model. In the framework of 

Callaway’s model, it was found that k2 is not only a correction term to k1 and its value is 

controlled by the concentration of defects and impurities. The calculations show that k2 

contributes by 20% to the total thermal conductivity in the case of pure 70Ge (99.99%) 

[11]. In other words, in highly defected samples where resistive processes dominate, 

only the k1 term is essential. However, in isotopically pure samples where the normal 

processes are of importance, the k2 term contributes significantly to the lattice thermal 

conductivity. A representation of the all the data was obtained below 30K using the full  

Callaway model. Applying Holland’s theory, an acceptable representation of the 

thermal conductivity of the samples under study is obtained for temperatures less than 
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200K using a set of fitting parameters. Asen-Palmer et al. presented a modification to 

the above models and replaced them with the modified Callaway/Holland model. The 

model keeps both terms k1 and k2 with a distinction between transverse and longitudinal 

phonons. An additional relaxation time corresponding to longitudinal umklapp 

processes is required for which the latter is responsible for the decay of the thermal 

conductivity at higher temperatures. Note that Holland neglected the longitudinal U 

processes in his model as he expected them not to hold at high temperatures. Dividing 

the transverse branch into two frequency regions is no more needed and the 

corresponding relaxation time is modified to have an exponential dependence rather 

than a hyperbolic sine term. The Callaway/Holland formalism provides analysis of the 

thermal conductivity of Ge samples with different isotopic compositions that fits the 

experimental data below 200K.   

Later on studies have been made by Morelli et al. on estimating the isotope 

effect in Ge, Si, and diamond on the lattice thermal conductivity [12]. The authors have 

applied the Callaway/Holland model but using more simplified phonon relaxation times. 

In this approach, the parameters are calculated from phonon dispersion relations of the 

studied crystals and are dependent on crystal properties such as Debye temperature, 

phonon velocities, volume and mass of the crystal, size of the sample and adjustable 

Gr�̈�neisen parameters. The model fits the experimental data of the thermal conductivity 

for silicon, germanium, diamond and silicon carbide in a wider temperature range. Note 

here that taking the Gr�̈�neisen parameter as a temperature-independent parameter seems 

physically unreasonable despite that it simplifies the calculations. Similarly, a constant 

Debye temperature is only reasonable at very low temperatures where the Debye theory 
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is still applicable. Thus, adopting a temperature-dependent Debye temperature widens 

the temperature range of the applied model as proved by previous experiments [13].   

In the discussed models, the boundary relaxation time is set to a constant value 

which depends on the phonon velocity and the characteristic length of the sample. 

However, when studying crystalline solids in the nanometer range, phonon transport is 

controlled by boundary conditions set by the sample size and shape, phonon 

confinement, and surface roughness. Thus, we can no more speak about a constant 

boundary relaxation time. Many studies have been made to explain the behavior of 

phonons at the boundary of the nanostructure. Some suggested specular transmission 

while others considered diffuse scattering [14]. In our model, we have derived 

expression for boundary scattering relaxation time for a cylindrical nanowire with a 

circular cross-section that governs specular and diffusive transmission in which the 

probability of each is determined by incident phonon frequency and velocity and surface 

irregularity.  

The main purpose behind this thesis is to develop a predictive model for the 

lattice thermal conductivity in cylindrical and pristine nanowires. A derived formalism 

for the lattice thermal conductivity in infinite crystals is modified to apply to low 

dimensional materials taking into account the effect of size, boundaries and surface 

properties on the variation of the lattice thermal conductivity. We apply this model to 

calculate the thermal conductivity of silicon, germanium, and silicon-germanium alloys.  

The thesis is organized as follows. The second chapter governs a literature 

review of the work done in the field of the lattice thermal conductivity in bulk crystals 

and nanowires including theories and experimental measurements.   
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The third chapter contains an overview of the phonon dispersion in bulk and 

the general formalism for the lattice thermal conductivity.   

Chapter 4 and 5 present a detailed description of our model for pristine and 

cylindrical nanowires respectively. These chapters will include the details of calculating 

the Debye temperature and specific heat for each as a function of temperature to be 

employed later in the thermal conductivity expressions.  

Chapter 6 is devoted to our obtained results with a comparison between 

calculations and reported experimental data.   

Finally, Chapter 7 will display the conclusion and future work.  
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CHAPTER II  
  

LITERATURE REVIEW  
  
  
  

The demand for controlling heat transfer rate across materials for its 

fundamental technological application in electronic and energy conversion devices 

makes the modeling of thermal conductivity of several materials a critical issue. With 

the revolutionary advances in technology and industry, nanotechnology has enabled the 

design and fabrication of hybrid devices in which semiconductors are nanostructured 

and fused together in an intricate fashion to obtain superior device functionality [3]. In 

this regard, semiconductor nanoscale devices are at the heart of technology and serve as 

a platform for nanoscience and engineering. It is, therefore, important to understand 

theoretically and experimentally the physics behind the heat conduction from bulk 

semiconductors up to the nanoscale size. Generally, the thermal conductivity varies as a 

function of temperature and material, however, the surface characteristics, the sample 

size and the sample boundary in nano-materials give the thermal conductivity a 

geometry dependence. In what follows, we will provide a literature review of the 

different studies of the thermal conductivity at the macro and nanoscale including 

theoretical modeling and experiments.  

A study of lattice thermal conductivity in which the heat is carried by the 

phonons is investigated through three approaches: relaxation time approximation, 

variational methods and Green function’s approach. The first two considers a solution 

of the Boltzmann equation as a step to study lattice thermal conductivity, while the  

Green’s function approach deals with the problem from a quantum statistics point of 

view. Studies and calculations to derive phonon relaxation times for different scattering 
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mechanisms were done by several researchers. Among them, we can mention the work 

of Casimir [15] who studied boundary scattering and proposed an equation, relating the 

boundary relaxation time to phonon velocity and sample size, known as Casimir limit. 

Klemens (1951) first provided the calculation of the phonon relaxation time due to 

phonon-point defect scattering where it is stronger than umklapp scattering [16]. 

Herring (1954) has calculated the contribution of low frequency longitudinal phonons to 

the thermal conductivity and obtained the expressions for phonon-phonon normal 

processes [17]. In his early work (1942), Pomeranchuk studied the effect of isotopes in 

phonon scattering and its impact on thermal conductivity [18]. Later on, Geballe and 

Hull [19] demonstrated the influence of isotopic composition on the maximum thermal 

conductivity and performed measurements on germanium samples.  

Thermal conduction was also studied by Leibfried and Schlomann [20] who 

gave an expression for the phonon mean free path, controlled by the three phonon 

scattering, in terms of Debye frequency and Gr�̈�neisen parameter. The authors used 

variational methods to derive the thermal conductivity as a function of average atomic 

mass, average atomic volume, Debye temperature and Gr�̈�neisen parameter.  

Callaway, in his model, presented a complete treatment of the problem as he 

derived an expression for the lattice thermal conductivity at low temperatures [9] in 

terms of adjustable parameters. The theory well fits experimental data at low 

temperatures. Later, several studies and modifications were presented by Holland, 

Asen-Palmer et al., and Morelli et al. The refined model provides a full theoretical 

description of the lattice thermal conductivity in bulk crystals and fits experimental data 

in wide temperature range.  
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Experimental techniques are in need for measuring the lattice thermal 

conductivity of solid materials. There are number of possible ways to measure the 

lattice thermal conductivity. At this point, we can list some basic ways of measurement. 

The steady-state technique performs measurement when the material under study is in 

equilibrium. The non-steady technique performs the measurement during the heat 

transfer process. The latter provides results quickly. The Comparative method is based 

on comparing thermal differences. In this technique, a sample of an unknown material is 

plugged between samples of known materials, where the heat flux through the unknown 

sample is to be calculated.  

Another widely used method is the Guarded Hot Plate Method. A material 

sample is sandwiched between two plates. Temperature of the plates is recorded until it 

sets into a constant. The steady-state temperatures, sample thickness, and the hot plate 

heat input are employed to calculate thermal conductivity. Another method to mention 

is the Laser Flash Diffusivity used to measure the thermal diffusivity of different 

materials. An energy pulse (laser, flash lamp) heats the sample from one side and a 

detector on the other side detects the time-dependent temperature rise.  

Till the moment, we have covered the main theories and models of the lattice 

thermal conductivity in bulk crystals and the accompanied experimental techniques.  

With the new developments in industry and the fabrication of nanostructured materials 

(nanowires, nanotubes, thin films, superlattices...), there is a growing interest in 

managing the thermal properties of such devices in the purpose of controlling its 

performance. Low dimensional materials show a clear reduction in the lattice thermal 

conductivity as the size of the sample, boundary conditions and surface asperities give 

the thermal conductivity a geometry dependence. In what follows, we will be interested 
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to discuss several studies carried out about the lattice thermal conductivity specifically 

in nanowires. Nanowires are materials that have different electrical, optical and thermal 

properties. Nanowires are candidates for photovoltaic devices, electrochemical energy 

storage, and thermoelectric applications. It has been found that low dimensional 

materials have higher thermoelectric property than their bulk counterparts what makes 

them extremely needed for power generation through thermoelectric conversion [21, 

22]. We will report in the coming section various studies carried out to discuss the 

effect of size, boundary scattering, phonon confinement, isotopic composition and 

surface roughness on the lattice thermal conductivity of nanowires.  

Ruf et al. [23] used a steady-state heat flow technique to measure the thermal 

conductivity in a bulk crystal of highly enriched silicon and natural silicon for 

temperatures between 2 and 310K. Thermal conductivity shows a maximum value of 

30,000 W.m-1K-1 around 20K which is six times larger than that of natural silicon. Their 

results reveal that the maximum thermal conductivity km is strongly affected by the 

isotopic composition. This fact is then well described by Asen-Palmer and co-workers 

[11] who have measured the thermal conductivity of germanium crystals with different 

isotopic compositions. The work of Li et al. [24] on the thermal conductivity of 

individual silicon nanowires with different diameters followed. Using a microfabricated 

suspended device, the thermal conductivities of individual silicon nanowires with 

diameters of 22, 37, 56 and 115 nm were measured over a temperature range of 20-

320K. The measurements showed a reduction of the lattice thermal conductivity up to 

two orders in comparison with the bulk value. The results show how the thermal 

conductivity in nanowires depends on the diameter, a factor that affects the phonon 

boundary scattering and phonon dispersion. Liang and Li [25] studied the size 
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dependence of thermal conductivity in nanoscale conducting systems. In their research, 

they presented a phenomenological theory for the size dependence of thermal 

conductivity and derived an analytical formula considering size confinement effects, 

surface scattering effects and mean free path. The model reveals that the size effect is 

dominant at the size about 5-100 nm and the surface scattering effect starts dominating 

at larger sizes. As the size reduces, the phonon-phonon interaction increases because of 

phonon confinement what decreases the thermal conductivity. The derived formula 

provides results that are in good agreement with experiments on Si and GaAs nanowires 

and thin films.  

Mingo and other researchers [26] attempted to theoretically predict the thermal 

conductivity versus temperature dependence of Si and Ge nanowires. To do so, they 

tried first to use the traditional Callaway and Holland models to model the nanowire 

case, but those two approaches fail to provide physical reasonable results even for the 

qualitative behavior. The results from using Callaway and Holland’s models for Silicon 

nanowires were shown as thermal conductivity versus temperature dependence curves 

for nanowires with different diameters. Their calculation using Callaway’s model 

clearly doesn’t agree with experimental results with a prediction error of 300% and 

more. With Holland’s model, they got slightly better predictions, but still inaccurate. 

The two main factors leading to inappropriate predictions are: the use of modelistic 

phonon dispersion relations and the unsuitable anharmonic scattering relaxation times. 

As a correction, Mingo and co-workers employed real dispersion relations for the 

nanowires and predicted the thermal conductivity expression with no fitting parameters 

to any nanowire measurements. As for the result, an agreement is found between 

theoretical predictions and experimental sets for wider nanowires ranging between 37 
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and 115 nm wide. The prediction error was less than 15%. The narrowest of the wires 

(less than 30 nm) presents a curve that increases almost linearly from 50K up and its 

second derivative is positive between 50K and 320K. This implies that the wire contains 

vibrational modes with frequencies higher than the highest frequency available in bulk 

Si. The higher the frequency, the higher the inflection temperature is. These modes 

might be linked to the oxidation of the nanowire’s surface, phonon confinement and 

nanowire low speed modes. 

Huang and co-workers [27] attempted to develop an analytical form of the 

phonon boundary scattering rate in a semiconductor nanowire. The authors examined 

the effect of size confinement on phonon dispersion relations, phonon distribution and 

Debye temperature. The results reveal the decrease in the lattice thermal conductivity of 

nanowires as their diameters decrease. Other factors responsible for the drop in the 

thermal conductivity include boundary scattering effect, smaller phonon velocities, and 

reduced Debye temperature.   

Hochbaum et al. [28] reported the decrease in the thermal conductivity of 

rough Si nanowires having Seebeck coefficient and electrical sensitivity values that are 

the same as doped bulk silicon but show a decrease in the thermal conductivity. The 

difference between the thermal conductivity experimental behavior in bulk silicon and 

nanowires, regarding their differences in size and surface properties, was not explained 

at that time. The results presented by the authors indicate that Si nanowires with smooth 

surface exhibit a boundary scattering which is far from completely diffusive, what 

shows that some phonon physical mechanisms were not taken into account. 

 The effect of isotopic composition, phonon confinement, and surface 

roughness on the lattice thermal conductivity of silicon bulk and nanowires was studied 
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by Kazan et al. [29]. In their research, the authors analyzed the thermal conductivity of 

bulk silicon and nanowires taking into account the physical nature of the acoustic and 

optical phonon mechanisms. They have used Callaway solution for Boltzmann equation 

and established a formalism for the thermal conductivity that takes into account the 

phonon incidence angles. A detailed treatment of the decay of optical phonons into 

acoustic ones is presented. The commonly used expression for phonon-boundary 

scattering is modified to include a phonon specularity factor that depends on phonon 

frequency, incidence angle and surface roughness. Namely, the investigated model 

accounts as an explanation to the previous unexplained results by Ruf et al. [23], Li et 

al. [24] and Hochbaum et al. [28].  

Later on, Kazan and Volz [30] presented a general model for the calculation of 

the lattice thermal conductivity in granular crystals. The interplay between boundary 

scattering and phonon anharmonic scattering is considered and the effect of the surface 

phonons on the thermal conductivity is taken into account. Boltzmann equation 

including spatial dependence of the phonon distribution function is solved and 

expressions of the scattering of the phonons by the boundaries are developed.  

Vibrational Parameters such as Debye temperature and Gr�̈�neisen parameter are derived 

as a function of temperature and crystallographic direction by using a lattice dynamics 

approach. In addition, the model provides a physical definition of the widely used 

phonon specularity factor. The accuracy of the model has been demonstrated with 

reference to experimental measurements taking into account the surface direction effect 

and the effect of grain size and shape on the lattice thermal conductivity tensor in 

granular crystals.  
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CHAPTER III  
  

PHONON DISPERSION IN BULK AND GENERAL  

FORMALISM OF THERMAL CONDUCTIVITY  

  
  
  

 In solids, heat energy is transmitted by phonons. In the presence of 

temperature gradient, phonons are responsible for the propagation of thermal energy in 

the crystal. In what follows, we will report on the phonon dispersion in bulk crystals and 

present the general formalism of the lattice thermal conductivity.  

  

A. Phonon Dispersion in Bulk  

In the classical picture within the harmonic approximation, the atoms in a solid  

crystal held together in the form of a lattice and considered as joined by springs. When 

one or more atoms is displaced from its equilibrium position, an elastic vibrational wave 

travels through the crystal lattice transporting thermal energy with it. The key to 

understand the problem of lattice dynamics in the harmonic approximation is to find the 

normal modes of a crystal. In other words, our goal is to calculate the functional relation 

between the phonon frequencies (energies) and their wave vectors. The latter is so 

called phonon dispersion. A single normal mode of vibration is expressed as a travelling 

wave of the form Aexp[i(q.r-ωt)], where q reveals the direction of wave propagation, ω 

is the frequency of the wave and A is the amplitude of vibration [30]. The energies of 

the elastic normal modes of a crystal are quantized:   

                                                        E = ħω (n+½)                                                       (1) 

 

Thus, a phonon is a quantum of energy accompanied with vibrations. As a matter of 

fact, the idea of a phonon comes from the relative motion of the atoms not the motion of 
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their center of mass, that’s why theoretically a phonon in a crystal does not carry 

momentum. In practice, a momentum ħq is assigned to a phonon in the qth mode.  

A phonon is a quasi-particle.  

  

1. Phonon Statistics  

The average number of phonons in the qth mode in thermal equilibrium at 

temperature T is given by the Bose-Einstein distribution function:  

                                          𝑛𝑞 = 
1

𝑒𝑥𝑝

ħ𝜔
𝑘𝐵T−1

                                                               (2) 

where kB is Boltzmann’s constant. We can deduce from this expression that at absolute 

zero temperature, there are no phonons in a crystal. At low temperatures, ħω >> kB, the 

phonon distribution function reduces to ~ 𝑒𝑥𝑝
−ħ𝜔

𝑘𝐵T i.e. a small probability for a phonon to 

occur. At high temperatures, kBT>> ħω, the expression deviates to ~ kBT/ħω and the 

concentration of phonons increases linearly with temperature.  

  

2. Lattice Dynamics of a Linear Chain  

  

a. Monoatomic Linear Chain  

Consider a monatomic linear chain of N atoms separated “a” apart. Periodic, 

cyclic, Born-von Karman boundary conditions are assumed, so that the chain is closed 

and the (N+1) th atom is the 1st atom. Only the contribution of the nearest-neighbor 

forces is taken into account.  
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      Figure 1: A monoatomic linear chain of N atoms separated “a” apart. [32] 

  

Suppose that the nth atom in the chain has a displacement 𝑢𝑛 from its equilibrium.  

Applying Newton’s second law and Hooke’s law, the equation of motion of the nth atom  

is:                            

                                  m 
𝑑𝑢𝑛

2

𝑑𝑡2  = ˄ [(un+1 – un) + (un-1 – un)]                                           (3) 

where m is the mass of an atom and ˄ is the nearest-neighbor force constant. We 

attempt a solution of the form 𝑢𝑛 = A𝑒𝑥𝑝[i(qx−ωt)]. Note that we only have one 

allowed mode of vibration here, either longitudinal or transverse. Replacing the 

attempted solution in the equation of motion, we get:   

                                               ω = 2 √
˄

𝑚
 | sin (qa/2) |                                          (4) 

This is known as the phonon dispersion relation for the monatomic linear chain.  

  

                                   

Figure 2: Phonon dispersion relation for the monoatomic linear chain. [33] 
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The Brillouin zone is the line segment between – π/a and π/a. It corresponds to the unit 

cell of a reciprocal lattice. The function ω (q) is a symmetric function between q and -q. 

It is trivial that there are N allowed values of q in the Brillouin zone of the linear chain. 

Therefore, there are N allowed normal modes of the linear chain.  

In the long wavelength limit, q→0, sin (qa/2) ~ qa/2, and the phonon frequency reduces 

to: ω   q, thus ω  . With the Young’s modulus E = 
𝜌

𝑎
, the dispersion   

relation converges to a linear one: w = 𝑣𝐿q , where 𝑣𝐿 is the longitudinal sound velocity. 

  

b. Diatomic Linear Chain  

The problem of the lattice dynamics of crystals with a basis of more than one 

atom can be understood by studying the dynamics of a diatomic linear chain. Consider a 

long chain of 2N atoms forming N unit cells, each of length 2a. Let m and M be the two 

masses of the basis. Similarly, Born-von Karman periodic boundary conditions is 

assumed and only neighbor forces are taken into account   

  

                      

Figure 3: Diatomic linear chain. [34] 
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The equations of motion of each atom are:  

                                  m [
𝑑𝑢2𝑛

2

𝑑𝑡2 ] = γ [𝑢2𝑛+1+ 𝑢2𝑛−1-2𝑢𝑛]                                         (5) 

and   

                                    M [
𝑑𝑢2𝑛+1

2

𝑑𝑡2 ] = γ [𝑢2𝑛+2+𝑢2𝑛– 2𝑢2𝑛+1]                                 (6) 

 

Trying solutions of the form:  𝑢2𝑛= A1 𝑒𝑥𝑝[i(2n𝐪a – ωt)] and  

𝑢2𝑛+1= A2𝑒𝑥𝑝[i(2n+1)𝐪a – ωt)] and substituting them in the equations of motion, we get:  

                                               (7) 

  

                                    

Figure:4 Phonon dispersion spectrum for a diatomic linear chain plotted in the 1st  

Brillouin zone. [35] 

(1) refers to the acoustic branch   

(2) refers to the optical branch   

with ω = [ 2γ ( .   

The gap (ω2-ω1) in the spectrum is due to different atomic masses in the unit cell. The 

number of allowed q-values is the number of unit cells that is 2N modes (2 accounts for 

acoustic and optical).  
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3. Elastic Waves in Cubic Crystals  

The equations of motion in a three-dimensional crystal in the long-wavelength  

limit can be expressed as:  

                                 ρüα =∑ 𝐶αβγδαβγδ   
𝜕𝑢γ 

2

𝜕𝑟δ ∂𝑟𝛽

                                                  (8) 

where ⍺,β,γ and δ are Cartesian coordinates, 𝑢⍺ is the displacement vector, k(γ(δ)) is the 

γ(δ) component of the wave vector, ρ is the mass density and Cαβγδ are the second-

order elastic constants of the crystal. Using the trial function:  

                                  u = U exp [i(𝐪 ⃗⃗  ⃗. 𝑟 )- ωt]                                                (9) 

and substituting it in the previous equation, we get:   

                                         ∑ ∑ 𝐶αβγδ𝒒γ𝑞δ − δαβ ρ𝜔
2)𝑢𝛽  = β δγ 0                            (10)                                     

where the first summation runs over β and the second one runs over δγ. These are 

known as the Green-Christoffel equations, whose solutions are obtained by solving 

the determinant:  

                                             | Σ Cαβγδ qγqδ - δαβ ρω2 | = 0                                           (11) 

The elastic tensor Cαβγδ is symmetric under the transpositions α→β, γ→δ, and αβ ↔ γδ.   

A simplified notation implies 11→1, 22→2, 33→3, 23, 32→4, 13, 31→5, 12, 21→6. 

The elastic constants of cubic crystals hold: 𝑐11 = 𝑐22=𝑐33 , 𝑐12 = 𝑐13 = 𝑐23= 𝑐31= 𝑐32 , 

𝑐44 = 𝑐55 = 𝑐66 and the others are zero.   
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On an attempt to find the longitudinal and transverse sound velocities, we 

consider waves where q is parallel to [100], [101], and [101]. Generally, v=√
𝑐𝑒𝑓𝑓

𝜌
, 

where ceff is an effective elastic constant, which is given for cubic crystals in the 

following table:  

  

  

Mode  q ‖ [100]  q ‖ [ 101]  q ‖ [ 111]  

L  C11  
 ½ ( C11+C12+C44 )   1/3(C11+2C12+4C44)   

T1  C44  C44  1/3 (C11-C12+C44)   

T2  C44  ½ ( C11-C12 )  1/3 (C11-C12+C44)  

Table 1. Elastic constants for cubic crystals for each branch along high symmetry 

directions.  

From what we have demonstrated, we can note that an elastic wave is 

considered two waves propagated independently. One is called the longitudinal wave, 

where the displacement (ux) is in the direction of propagation and is propagated with a 

velocity cl. In the other transverse wave, the displacement uy and uz is in a plane 

perpendicular to the direction of propagation and is propagated with velocity ct. The 

velocity of longitudinal waves is always greater than that of transverse waves. In an 

isotropic infinite crystal, elastic waves propagate along three different branches:   

1 longitudinal and 2 transverse.  
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B. General Formalism of the Lattice Thermal Conductivity  

The lattice thermal conductivity  T is defined as the ratio of the phonon heat 

current density to the temperature gradient. It can be shown to be 

                                     
 





j k

j

jjB

k
kNkVT

T

v~
                (12)   

where the summation runs over all phonon wave vectors k and polarizations j.  kj  and   

 kjv  are the frequency and group velocity corresponding to wave vector k and 

polarization j, BV  is the volume of the Brillouin zone, and  kN j

~
 is the deviation of the 

phonon distribution from equilibrium in the state k .  kN j

~
 is defined as the difference 

between the phonon distribution out of equilibrium  kN j  and the Planck phonon 

distribution at equilibrium  kN j . In order to evaluate  T , it is more convenient to deal 

with the frequency distribution function, or frequency spectrum  g , than with the 

individual phonon modes frequencies  kj . The total frequency distribution function is 

defined as  

                                   











j k

j

c

k
rN

g 22

3

2



               (13)        

where r is the number of atoms per unit-cell, cN is the number of unit-cells in the crystal 

and δ is the Dirac-Delta Function. It follows that the frequency distribution function of 

the jth phonon branch can be expressed as  

                           jg =
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where the integral is carried out through the first Brillouin zone. Now, if we change to 

spherical polar coordinates   ,,k , and use the relation 
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where  ix are simple zeros of  xf , Eq.14 is transformed into 
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where   ,,jk is the solution to   ,,kj . This means that the quantity 

 
   


,,,,

23
1 2

3 jj

B

dkk
Vr

 is the frequency distribution function per unit solid 

angle for the jth branch of the total phonon spectrum. Let us denote this quantity by 

  ,,jg . Expressing the phonon spectrum of the jth branch  jg  in the form of 

Eq.(16) allows evaluating  jg  by using Houston’s method. The idea behind Houston’s 

method is briefly as follows. The function   ,,jg has a cubic symmetry in  and 

because the normal mode frequencies are invariant with respect to any real orthogonal 

transformation of axes which takes the crystal to itself. This means that   ,,jg  can 

be expanded in terms of Kubic harmonics, mK  which have the symmetry of the lattice, 

                                          ,',,
0

mm

m

j Kag 




               (17)  

where 10 K and the prime on the summation means that the term corresponding to 

1m is omitted from the summation. The mK satisfy the orthogonality condition 
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where m is a normalization constant and mn  is the usual Kronecker symbol. The method 

for generating m  and the Kubic harmonics are reported. The first few m are  
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and the first six Kubic harmonics are  

,
5005

1
2431

3
1615

54
266

1
115

6

,
11

3
143

210
17

126
19

45

,
3

1
143

210
5

28

,
22

1

,
5

3

,0

,1

12

2

8

3

6

4

4

5

2444

6

10

2

6

3

4

4

2101010

5

8

2

4

3

2888

4

2

2222

3

4444

2

1

0

























KKKKzyxK

KKKzyxK

KKzyxK

KzyxK

zyxK

K

K

                                                                                                                  

(18c)  

where 
2222 zyx  . Now, if we substitute Eq.(17) into Eq.(16) and make use of 

Eq.(18a), we obtain  

                                                  04 ag j  .                                      (19) 
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The coefficient  0a can be obtained by following Houston’s procedures. It can be 

considered that there exist directions in Fourier space along which the cubic crystal 

dynamical matrix factors into equations of low degree in 2 which can be solved exactly 

for  as a function of the wave vector k. These directions are high symmetry directions 

such as (100), (110), and (111) directions. Along these directions, the equation 

  ,,kj  can be expressed as  sssj k  ,, . Since these equations can be 

inverted exactly to obtain k for simple enough models, it follows that  ssjg  ,, can be 

exactly obtained for these special directions. If we then retain as many terms in Eq.17 as 

the number of directions  ss  , , the  ma in Eq.17 are given as the solution of a set of 

simultaneous linear equations whose coefficients are the values of   ,,jg along the 

direction  ss  , . In particular, it follows from Eq.17, Eq.18, and Eq.19 that the total 

frequency distribution function for the jth branch can be expressed in terms of the 

frequency distribution functions along the (100), (110), (111), (210), (211), and (221) 

directions (which in principal can be obtained with satisfactory accuracy) as 
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                                                                                                                                   (20) 

Where the superscripts A, B, C, D, E, and F on g signify (100), (110), (111) (210), (211), 

and (221) respectively.  

The evaluation of 
   A

jg , 
   B

jg , 
   C

jg , 
  D

jg ,
  E

jg , and 
  F

jg  can be 

simplified by noting that Houston’s method illustrated above can be used for the 

approximate evaluation of any integral of the form 

                                           



2

00

,sin IddJ ,                                    (21) 

provided that   ,I has cubic symmetry. From the general form of a three-dimensional 

dynamical matrix one can find that the leading term in the expansion of  k
2

j  is of  2kO

For small values of k, which are the only excited wave vectors at low temperatures, we 

must have 
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      ...,, 42222  kDkC jjj  k ,                 (22)  

where the coefficients jC and jD have the symmetry of the lattice. Upon inverting Eq. 

(22), we find the frequency distribution function per unit solid angle for the jth branch of 

the spectrum 
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On the other hand, for small values of , the phonon spectrum of a three-dimensional 

crystal has the expansion 
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2   aag .              (24)  

Thus, from Eq.(16), Eq.(23), and Eq.(24) we find that  
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and 
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It is clear from Eq.(22) that the coefficients   ,jC are the phonon group velocities for 

a given direction   , of propagation. Thus, by applying Houston’s method Eq.(21) to 

the evaluation of the integral in Eq.(25), we find that the coefficients of the low frequency 

end of the phonon spectrum can be expressed in terms of directional phonon group 

velocities as      
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Where  hkljv , the group velocity of the phonon of the jth is branch along the direction  hkl

and  hkl is the weight of the contribution of the phonon spectrum in the direction  hkl  

to the total phonon spectrum according to Eq.(20). Hence, in view of Eq.(24), and 

assuming Debye-like dispersion relations, the phonon spectrum can be approximated by 
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g                (28)  

The total phonon frequency distribution function  g  can thus be approximated as a 

weighted average of phonon spectra in high symmetry directions. In view of Eq.(12), 

Eq.(27), and Eq.(28), we can express the lattice thermal conductivity as 
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Where the integrals upper limits  hkljD ,, are artificial limiting frequencies leading to 

correct normalization of 
   hkl

jg  , and hkl is the angle between the high-symmetry 

direction  hkl  and the temperature gradient. 
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CHAPTER IV 

THERMAL CONDUCTIVITY OF PRISTINE NANOWIRES 

 

In this chapter, we aim to draw a theoretical understanding of the effects of the 

size and surface on the lattice thermal conductivity. So far, we have been dealing with 

infinite crystals having no borders and the Boltzmann equation is solved where the 

phonon distribution function has no spatial dependence. The geometry of the nanowires 

provides them a greater surface to volume ratio than their bulk counterparts. Thus, the 

behavior of phonons at the boundaries (surfaces, interfaces) plays an important role in 

their thermal transport properties. A better understanding of phonon dynamics at the 

boundaries is vital seeking a complete picture of the heat transport in nanowires. This 

different trend in the behavior of phonons in nanowires gives rise to the modification of 

acoustic phonon dispersion due to spatial confinement and change in the non-

equilibrium phonon distribution function due to boundary scattering. As we will see, the 

phonon dispersion branches reveal a reduced average phonon group velocity. Heat 

transfer in pristine nanowires, nanowires with square cross-section, will be discussed in 

details in the following sections. 

 

A. Vibrations and Deformations in Rods 

Unlike bulk crystals, where phonons propagate along the longitudinal and 

transverse branches, phonons in a nanowire vibrate along three dispersion branches: 

longitudinal, torsional and bending.  
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1. Longitudinal Waves 

A longitudinal deformation of the rod, with no external force on its sides, is a 

simple extension or compression propagated along its length. The wave equation is 

represented by: 

                                                       
𝜕2𝑢𝑧

𝜕𝑧2
 - 

𝜌

𝐸
 
𝜕2𝑢𝑧

𝜕𝑡2
 = 0                                                  (30) 

Seeking a solution of the form: uz = constant×e [i (qz-ωt)]  

Upon substituting the solution in the wave equation, the velocity of propagation of 

longitudinal waves in nanowires is √
𝐸

𝜌
 , where E is bulk Young’s modulus and ρ is the 

bulk material’s density, and  

                                                           ω = √
𝐸

𝜌
  q                                                        (31) 

is the dispersion relation for the longitudinal branch. Comparing this velocity with the 

expression for cl = [ 
𝐸(1−𝜎)

𝜌(1+𝜎)(1−2𝜎)
 ] 1/2, we find that it is less than the velocity of 

propagation of longitudinal waves in an infinite medium. 

 

2. Bending Waves 

A bent rod is stretched at some points and compressed at others. Lines on the 

convex side of the bent rod are extended and those on the concave side are compressed. 

There is a neutral surface between both that undergoes neither extension nor 

compression. Bending in rods induces bending (flexural) waves with small bending 

deflections. Equations of equilibrium for a slightly bent rod are: 

                         ρSẌ = EIy 
𝜕4𝑋

𝜕𝑧4                and              ρSŸ = EIx 
𝜕4𝑌

𝜕𝑧4                         (32) 
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Where ρS is the mass per unit length, and Ix and Iy are the moments of inertia with 

respect to x and y directions respectively. 

We again seek a solution of the form: 

                          X= constant × ei (kz-ωt)       and       Y=constant ×ei (kz-ωt)                      (33) 

Substituting the solutions above in the corresponding equations, we get the following 

dispersion relations 

                                    ω = q2 [ 
𝐸𝐼𝑦

𝜌𝑆
] 1/2      and      ω = q2 [

𝐸𝐼𝑥

𝜌𝑆
] 1/2                                (34) 

For vibrations in the x and y directions respectively. The velocities of propagation are 

                                Vx = 2q [
𝐸𝐼𝑦

𝜌𝑆
] 1/2        and         Vy = 2q [

𝐸𝐼𝑥

𝜌𝑆
] 1/2                            (35) 

The bending wave speed is dispersive as it is proportional to the square root of 

frequency. Thus, higher frequency bending waves will travel faster than lower 

frequency ones. Flexural waves with different frequencies propagate with different 

speeds. 

 

3. Torsional Waves 

A torsional deformation is one in which each transverse section is rotated 

through some angle with respect to another one. The corresponding equation of motion 

is:  

                                                     C 
𝜕2ɸ

𝜕2 𝑧
 = ρI 

𝜕2ɸ

𝜕2 𝑡
                                                       (36) 

Where C is the torsional rigidity of the rod, ɸ being the angle of rotation of the cross-

section, and I is the moment of inertia of the cross-section about its center of mass.  

With the same approach, we can see that the velocity of propagation of torsional 

vibrations along the nanowire is  
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                                                            [ 
𝐶

𝜌𝐼
] ½                                                              (37) 

As we can see, acoustic phonon dispersion is modified in the case of nanowires. 

Longitudinal and transverse branches in bulk crystals are replaced by longitudinal, 

bending and torsional branches in nanowires. Note here that the surface phonons do not 

contribute to the phonon averaged group velocity and just the volume phonons that 

scatter by the surface do. 

 

B. Allowable Normal Modes 

Let us assume a rod of a square cross-section with dimensions 𝐿1×𝐿2×𝐿3. Let 

U = (u, v, w) be the components of the displacement of a point in the solid. The 

equations of motion of the solid are known as 

                                          ρ 
𝜕2𝑈

𝜕𝑡2  = µ ∇2U + (λ + μ) ∇⃗⃗  (∇⃗⃗ .U)                                      (38) 

Where ρ is the density of the solid, μ and λ are Lame constants. For the boundary 

conditions, we will assume that 

                         u = 0                      
𝜕𝑣

𝜕𝑥
 = 

𝜕𝑤

𝜕𝑥
 = 0                     x = 0, 𝐿1                          (39) 

                         v = 0                   
𝜕𝑢

𝜕𝑦
 = 

𝜕𝑤

𝜕𝑦
 = 0                     y = 0, 𝐿2                          (40) 

                         w= 0                   
𝜕𝑢

𝜕𝑧
 = 

𝜕𝑣

𝜕𝑧
 = 0                      z = 0, 𝐿3                          (41) 

These boundary conditions are particularly convenient for obtaining a simple solution to 

equation (38). They show that the shear stresses are zero on the boundary of the rod and 

that the motion perpendicular to the boundary is zero. Plugging in the boundary 

conditions, the displacement of a point in a solid is: 

                            U(x, y, z, t) = sin (
𝑛1𝜋𝑥

𝐿1
) sin (

𝑛2𝜋𝑦

𝐿2
) sin (

𝑛3𝜋𝑧

𝐿3
) e -iωt                          (42) 
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With substituting this solution in the equation of motion, we obtain the basic equation 

for determining the normal mode frequencies: 

      [
𝜌𝜔2

𝜋2
 – (λ+ 2μ) [(

𝑛1

𝐿1
) 2 + (

𝑛2

𝐿2
) 2 + (

𝑛3

𝐿3
) 2]] [

𝜌𝜔2

𝜋2
 - μ [(

𝑛1

𝐿1
) 2 + (

𝑛2

𝐿2
) 2 + (

𝑛3

𝐿3
) 2]]= 0        (43) 

The solutions of this equation are: 

                                 ωL
2  =  

𝐸

𝜌
 π2 [(

𝑛1

𝐿1
) 2 + (

𝑛2

𝐿2
) 2 + (

𝑛3

𝐿3
) 2]                                            (44) 

                                ωB
2  =  

𝐸𝐼𝑥,𝑦

𝜌𝑆
 π4 [(

𝑛1

𝐿1
) 2 + (

𝑛2

𝐿2
) 2 + (

𝑛3

𝐿3
) 2]2                                       (45) 

                                ωT
2  = 

𝐶

𝜌𝐼
 π2 [(

𝑛1

𝐿1
) 2 + (

𝑛2

𝐿2
) 2 + (

𝑛3

𝐿3
) 2]                                             (46) 

 

C. Phonon Distribution Function and Boundary Scattering Rate 

A pristine nanowire with a temperature gradient aligned parallel to the rod axis 

in the z direction. In such a geometry, the thermal gradient pumps the phonons in the z 

direction to every point of the cross-section of the nanowire at a rate independent of the 

location in the cross-section. In the volume of the nanowire, these phonons lose their 

momenta due to the resistive processes, while at a point close to the boundary of the rod 

phonons tend to be absorbed by the surface. The latter induces the dependence of the 

phonon heat flux on the distance from the boundary. The presence of borders allow the 

resistive processes to dominate the normal ones. So, the variation of the phonon 

distribution function with respect to position must be well considered in the Boltzmann 

equation.  

Spatial-dependent Boltzmann equation describing the rate of change in the 

steady state phonon distribution can be written as 

                                      -v. ∇𝑁 + 
𝜕𝑁

𝜕𝑡
 = 0                                                      (47) 
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The first and second terms describe the change in the phonon distribution due the 

presence of a temperature gradient and collision processes, respectively. It is customary 

to write the second term within the relaxation time approximation as  
𝑁𝑢−𝑁

𝜏𝑁
 + 

�̅�−𝑁

𝜏𝑈+𝐼
  to 

account for the difference between the physical nature of the phonon normal processes, 

which tend to displace the Planck distribution, and that of the resistive processes, which 

tend to restore the phonon distribution back to its equilibrium value. Here, is the 

distribution at “flowing equilibrium” (or a displaced Planck distribution by a vector 

having the dimension of energy times length) and the characteristic times 𝜏𝑁 and 𝜏𝑈+𝐼 

are relaxation times associated with the phonon normal processes and resistive 

processes, respectively. The relaxation time associated with the resistive processes 

𝜏𝑈+𝐼 is defined as 
1

𝜏𝑈+𝐼
 =  

1

𝜏𝑈
 +  

1

𝜏𝐼
 , where 𝜏𝑈 and 𝜏𝐼 are relaxation times associated with 

Umklapp processes and phonon scattering by localized mass-difference, respectively. 

Klemen’s theory can be used to calculate 𝜏𝐼 , and the conventional Fermi’s golden rule 

formula based on the cubic harmonic part of the crystal Hamiltonian as perturbation can 

be used to calculate 𝜏𝑁 and 𝜏𝑈. The Boltzmann equation takes the form 

                          vz 
𝑑𝑁

𝑑𝑇
 
𝜕𝑇

𝜕𝑧
 + vx 

𝜕𝑁

𝜕𝑥
 + vy 

𝜕𝑁

𝜕𝑦
 + 𝑁𝜏 = 0                                       (48) 

 It can be seen that the phonon distribution function has an explicit x and y dependence, 

with an implicit dependence on z through the temperature gradient. We can note here 

that in the very vicinity of the sample edge, parallel to the heat current, phonons are 

either at thermal equilibrium with the boundary or out of equilibrium due to interaction 

with surface phonons. At the opposite edge, phonons are either absorbed then reemitted 

back or reflected with opposite momentum and equilibrium phonon distribution. With 

these considerations, the solution takes the form [30] 
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         N = 
𝑃𝜏

2
[(1- exp (

−𝑥(𝑦)

𝜏 𝑣𝑥
)) + (1-exp (

−𝑦(𝑥)

𝜏 𝑣𝑦
))] + σz exp (

−𝑥(𝑦)

𝜏 𝑣𝑥
) + σz exp (

−𝑦(𝑥)

𝜏 𝑣𝑦
)]    (49) 

Where P = vz 
𝑑𝑁

𝑑𝑡
 
𝜕𝑇

𝜕𝑧
  is the negative of the rate at which phonons are delivered to a unit 

volume of the reciprocal space, x(y) is the y-dependent distance from the border parallel 

to the x-axis, y(x) is the x-dependent distance from the border parallel to the y-axis, and 

𝜎𝑧 is the deviation of the phonon distribution due to interactions between volume 

phonons and surface phonons [29]. Upon substituting equation (49) in (48), we find  

                                               P = (
1

𝜏𝐵,𝑥
 + 

1

𝜏𝐵,𝑦
 +

1

𝜏
 ) <�̃�>                                              (50) 

With  

                                                   
1

𝜏𝐵,⍺
 = 

∬𝑣⍺
𝜕�̃�

𝜕⍺
 𝑑𝑥 𝑑𝑦

∬  �̃�𝑑𝑥 𝑑𝑦
                                                     (51) 

Where ⍺ = x or y, and  

                                                   <�̃�> =    
∬�̃� 𝑑𝑥 𝑑𝑦

∬  𝑑𝑥 𝑑𝑦
                                                    (52) 

By using the equations above, the boundary scattering rates are given by [30]  

                                       
1

𝜏𝐵,𝑥
 = 

𝑣𝑥

𝑙𝑥
 

(1− 
2𝜎𝑧
𝜏𝑃

)(1−𝑒𝑥𝑝(
−𝑙𝑥
𝜏𝑣𝑥

))

2−[ ∑
𝜏𝑣⍺
𝑙⍺

⍺ (1−𝑒𝑥𝑝(
−𝑙⍺
𝜏𝑣⍺

)(1− 
2𝜎𝑧
𝜏𝑃

)]
                                     (53) 

                                       
1

𝜏𝐵,𝑦
 = 

𝑣𝑦

𝑙𝑦
 

(1− 
2𝜎𝑧
𝜏𝑃

)(1−𝑒𝑥𝑝(
−𝑙𝑦

𝜏𝑣𝑦
))

2−[ ∑
𝜏𝑣⍺
𝑙⍺

⍺ (1−𝑒𝑥𝑝(
−𝑙⍺
𝜏𝑣⍺

)(1− 
2𝜎𝑧
𝜏𝑃

)]
                                     (54) 

Where 𝑙𝑥 and 𝑙𝑦 label the dimensions along the x-axis and y-axis, respectively. Note 

here that τ is the relaxation time associated to resistive processes and that the borders 

add resistance to the heat flux. In the case of completely diffusive boundaries, σz is 

equal to zero. While, in the case of total specular phonon reflection, 
𝑃𝜏 

2
 must be remain 

equal to σz to ensure that N reduces to τP at any position in the rod. However, in the 

case of partial specular phonon reflection, the ratio of σ to τP must be equal to a positive 
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constant smaller than one so that N reduces fast to τP as the phonons move away from 

the boundaries of the nanowire. Thus, the term 
2𝜎

𝑃𝜏
 employed in the phonon boundary 

scattering rates is always independent of the position in the crystal and has a magnitude 

between zero and one. Roughness plays an important role in phonon dynamics at the 

surface. Surface irregularities reduce the lifetime of a surface phonon and consequently 

reduce σ. Therefore, the term 
2𝜎

𝑃𝜏
 has all the characteristics of the phonon specularity 

factor. The phonon specularity factor, which was originally derived by Ziman, depends 

on the characteristics of the incident phonon and surface asperities according to  

                                              p = exp (- 16π2λ2ω2/v2)                                                 (55) 

Where λ is the root mean square (rms) surface irregularity. [30] 

 

D. Relaxation Times for Various Phonon Processes 

In this section, we will consider three scattering mechanisms: 

-normal three phonon processes 

-umklapp processes 

-isotope scattering 

The normal processes conserve the crystal momentum, while the other two are 

resistive processes.  

 

1. Normal Three Phonon Processes 

The energy of the crystal is described by a Hamiltonian H. The Hamiltonian H 

in the harmonic approximation is: 

                      H = 
1

2
 ∑ 𝑀�̇�𝑚

2
𝑚  + 

1

2
 ∑ 𝐴𝑚𝑛

𝑖𝑗
𝑚,𝑛,𝑖,𝑗 𝑢𝑚

𝑖 𝑢𝑛
𝑗
                                  (56) 



38 
 

The eigenstates corresponding to H are non-interacting phonons. In order to account for 

the interaction between phonons, namely the creation of a new phonon because of the 

decay of higher energy ones, and the annihilation of two low energy phonons to give a 

higher energy one, a higher order term H (3) (q): 

        H (3) (q) = ∑ 𝑉(3)𝑞,𝑗,𝑞′,𝑗′,𝑞′′,𝑗′′ (q, j, q’, j’, q’’, j’’) a (q, j) a (q’, j’) a+ (q’’, j’’)   (57) 

Where a and a+ are creation and annihilation operators in which they operate on the 

harmonic oscillator coordinates. In the Hamiltonian above H (3) (q), we consider a 

normal process in which two phonons with wave vectors q and q’ and polarizations j 

and j’ merge into a higher energy phonon of wave vector q’’ and polarization j’’, such 

that q’’= q + q’. In this process, energy and crystal momentum are conserved. The 

appropriate expression for the relaxation time for longitudinal phonons was found to be 

[12]: 

                                                        𝜏𝑁,𝐿
−1  = 𝐵𝑁,𝐿𝜔

2𝑇3                                                 (58) 

And that for transversal phonons: 

                                                               𝜏𝑁,𝑇
−1   = 𝐵𝑁,𝑇𝜔𝑇4                                                  (59) 

The coefficients 𝐵𝑁,𝐿 and 𝐵𝑁,𝑇 depend on the phonon velocity as the following: 

                                         𝐵𝑁,𝐿= 
𝑘𝐵

3𝛾𝑇
2𝑉

𝑀ℎ2𝑣𝐿
5    and   𝐵𝑁,𝑇= 

𝑘𝐵
4𝛾𝑇

2𝑉

𝑀ℎ3𝑣𝑇
5                                            (60) 

Where γL and γT are the longitudinal and transversal Gr�̈�neisen constants. 

 

2. Umklapp Three Phonon Processes 

Umklapp process is a resistive process in which its presence induces a decay in 

the lattice thermal conductivity at high temperatures. In this process, the crystal 

momentum is not conserved, however the energy is. The vector sum of the initial 

phonon wave vectors is equal to the wave vector of the created phonon plus a reciprocal 
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lattice vector G. This process is described by the same anharmonic Hamiltonian term as 

the normal processes. It has been found that the corresponding scattering rate for 

phonons is given by [12]: 

                              𝜏𝑈,𝐿
−1  = 𝐵𝑈,𝐿𝜔

2T exp ( 
−Ɵ𝐷,𝐿

3𝑇
)                                            (61) 

for longitudinal process, and  

                                  𝜏𝑈,𝑇
−1  = 𝐵𝑈,𝑇𝜔

2T exp ( 
−Ɵ𝐷,𝑇

3𝑇
)                                           (62) 

where the constants 𝐵𝑈,𝐿 and 𝐵𝑈,𝑇 are given by: 

                                         𝐵𝑈,𝐿 = 
ℎ𝛾𝐿

2

𝑀Ɵ𝐷,𝐿𝑣𝐿
2  and  𝐵𝑈,𝑇= 

ℎ𝛾𝑇
2

𝑀Ɵ𝐷,𝑇𝑣𝑇
2                                         (63) 

The above relaxation times corresponding to umklapp processes decay exponentially in 

the large temperature limit. It has been demonstrated to fit the thermal conductivity k(T) 

curves with acceptable phonon dispersion curve characteristics.  

3. Isotope Scattering 

Mass-difference or Point-Defect scattering is one of the phonon processes that 

influence the phonon lifetime, through which the random presence of isotopes in the 

host crystal changes the average mass and creates point defects. Klemens in his theory 

suggested an expression describing the rate at which phonons scatter by point-defects. 

For a given phonon branch j, the isotope scattering rate is given by [12]: 

                                        𝜏𝐼,𝑗
−1 = 

𝑉 Г

4 𝜋𝑣𝑗
3 𝜔4                                                      (64) 

Where V is the volume per atom and Г is the mass-fluctuation-phonon scattering 

parameter given by: 

                                                Г = 
∑ (𝑐𝑖𝑀𝑖)

2−(∑ 𝑐𝑖𝑖 𝑀𝑖)
2

𝑖

(∑ 𝑐𝑖𝑖 𝑀𝑖)
2                                                  (65) 

Where 𝑐𝑖 and 𝑀𝑖 correspond to the concentration and the mass of the constituent isotope 

respectively. 
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E. Phonon Density of States 

Now we will derive the density of states g (ω), the fraction of normal modes 

with frequencies in the interval (ω, ω+dω). The number of longitudinal modes with 

frequencies less than ω is the number of positive integer lattice points (𝑛1, 𝑛2 , 𝑛3) 

which obey:  

                            π2 𝑣𝐿
2 [(

𝑛1

𝐿1
) 2 + (

𝑛2

𝐿2
) 2 + (

𝑛3

𝐿3
) 2] ≤ ω2                                    (66) 

That is, the number of lattice points lying within an octant of the ellipsoid specified by:  

                                                           
𝑥2

𝐿1
2+ 

𝑦2

𝐿2
2  +

𝑧2

𝐿3
2= 

𝜔2

 𝜋2 𝑣𝐿
2  

                                                   (67) 

This number is equal to the area in the  

 𝜋2𝑣𝐿
2

𝜔2𝐿1
2  x2 + 

𝜋2𝑣𝐿
2

𝜔2𝐿2
2 y2 + 

𝜋2𝑣𝐿
2

𝜔2𝐿3
2 z2  = 1                                                                                (68) 

Implies that                                     
𝑥2

𝜔2𝐿1
2

𝜋2𝑣𝐿
2

 + 
𝑦2

𝜔2𝐿2
2

𝜋2𝑣𝐿
2

 + 
𝑧2

𝜔2𝐿3
2

𝜋2𝑣𝐿
2

 = 1                                            (69)                         

NL (ω) = 
1

8 
× 

4

3
 π a b c           where   a=  

𝜔𝐿1

𝜋𝑣𝐿
 , b=  

𝜔𝐿2

𝜋𝑣𝐿
 , c =  

𝜔𝐿3

𝜋𝑣𝐿
 

                                                  NL (ω) = 
1

6
 
𝐿1 𝐿2𝐿3

𝜋2  
𝜔3

𝑣𝐿
3                                                   (70) 

From its definition, the frequency spectrum or the density of states is given in terms of 

N(ω) by the relation: 

gL(ω) dω = 
1

𝑟𝑁𝑐
 [N(ω+dω) - N(ω) ] = 

1

𝑟𝑁𝑐
 N’(ω) dω 

gL(ω) dω =  
1

2𝜋2 (𝐿1𝐿2𝐿3) 
1

𝑣𝐿
3 𝜔2dω = 

𝑉

2𝜋2 
1

𝑣𝐿
3 𝜔2dω                                                     (70a) 

With a similar approach, we can find that the number of torsional modes of frequencies 

less than ω and is given by 
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                                                 NT (ω) = 
1

6
 
𝐿1 𝐿2𝐿3

𝜋2  
𝜔3

𝑣𝑇
3                                                    (71) 

And gT (ω) dω = 
𝑉

2𝜋2
 
1

𝑣𝑇
3 𝜔2dω                                                                                    (71a) 

The number of bending modes with frequencies less than ω is the number of positive 

integer lattice points (𝑛1, 𝑛2 , 𝑛3) which obey: 

                                     π2 𝑐𝐵 [(
𝑛1

𝐿1
) 2 + (

𝑛2

𝐿2
) 2 + (

𝑛3

𝐿3
) 2] ≤ ω                                           (72) 

That is the number of lattice points lying within an octant of the ellipsoid specified by 

                                             
𝑥2

𝜔𝐿1
2

𝜋2𝑐𝐵

 + 
𝑦2

𝜔𝐿2
2

𝜋2𝑐𝐵

 + 
𝑧2

𝜔𝐿3
2

𝜋2𝑐𝐵

 = 1                                                  (73) 

                                              NB (ω) = 
1

6
 
𝑉

𝜋2 
𝜔3/2

𝑐𝐵
3/2                                                          (74) 

And gB (ω) dω = 
𝑉

4𝜋2 
1

𝑐𝐵
3/2 𝜔1/2dω                                                                              (74a) 

 

F. Formalism for the Lattice Thermal Conductivity in a Pristine Nanowire 

The lattice thermal conductivity in the nanowire is given by 

                                              K = -
1

𝑉
 ∑ ħ𝜔 �̃�𝑘  

𝑣𝐿

∇𝑇
                                                       (75) 

Where V is the volume of the first Brillouin zone, and thus  

K = -
1

𝑉
 [∫ ħ𝜔 �̃�

𝜔𝐷,𝐿

0
 
𝑣𝐿

∇𝑇
 gL (ω)dω +4∫ ħ𝜔 �̃�

𝜔𝐷,𝑇

0
 
𝑣𝐿

∇𝑇
 gT (ω) dω +2∫ ħ𝜔 �̃�

𝜔𝐷,𝐵

0
 
𝑣𝐿

∇𝑇
 gB(ω) dω                                                                                                                                                   

                                                                                                                                   (76) 

1. Derivation of the Deviated Phonon Distribution Function 

In order to find �̃�, we follow Callaway’s procedure. We know that the original 

Boltzmann equation is: 

                                          vz 
𝑑𝑁

𝑑𝑡
 
𝜕𝑇

𝜕𝑧
 + vx 

𝜕𝑁

𝜕𝑥
 + vy 

𝜕𝑁

𝜕𝑦
 + 𝑁𝜏 = 0                                     (77) 

Moreover, it can be written as: 
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                                            -𝑣𝐿 
𝜕𝑁

𝜕𝑧
 + 

𝑁𝑢−𝑁

𝜏𝑁
 + 

�̅�−𝑁

𝜏𝑅
 = 0                                                (78) 

Where    
1

𝜏𝑅
 =  

1

𝜏𝑈
 + 

1

𝜏𝐼
 + 

1

𝜏𝐵
  , and since N = �̅� + �̃� , we can write Boltzmann equation in 

the form: 

                                        -𝑣𝐿
𝑑�̅�

𝑑𝑇
 
𝜕𝑇

𝜕𝑧
 + 

𝑁𝑢−𝑁

𝜏𝑁
 - 

�̃�

𝜏𝑅
 = 0                                                    (79) 

On the other hand,  

                                        Nu = �̅� + 
�⃗⃗� .  𝑘𝑧⃗⃗ ⃗⃗ 

𝑘𝐵𝑇
 

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

                                                   (80) 

Where Nu is the displaced phonon distribution function due to normal processes and �⃗�  is 

a vector having the dimensions of energy x length describing the displacement of 

Planck distribution and 𝑘𝑧
⃗⃗⃗⃗  is a wave vector in the z-direction i.e. the direction of 

temperature gradient. Substituting equation (80) in (79), we get  

               -𝑣𝐿[
ħ𝜔

𝑘𝐵𝑇2

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

] 
𝜕𝑇

𝜕𝑧
 + 

1

𝜏𝑁
 [�̅� + 

�⃗⃗� .  𝑘𝑧⃗⃗ ⃗⃗ 

𝑘𝐵𝑇
 

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

− 𝑁] −
�̃�

𝜏𝑅
 = 0              (81) 

Through some simplifications, Boltzmann equation reduces to  

              -𝑣𝐿[
ħ𝜔

𝑘𝐵𝑇2

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

] 
𝜕𝑇

𝜕𝑧
 + 

1

𝜏𝑁

�⃗⃗� .  𝑘𝑧⃗⃗ ⃗⃗ 

𝑘𝐵𝑇
 

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

− (
1

𝜏𝑅
+

1

𝜏𝑁
) �̃� = 0                  (82) 

The combined relaxation time defined as:  

                                                         
1

𝜏𝑐
 = 

1

𝜏𝑁
 + 

1

𝜏𝑅
                                                         (83) 

With                             �̃� = −𝛼 𝑣𝐿
𝜕𝑇

𝜕𝑧
 

ħ𝜔

𝑘𝐵𝑇2 
𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

                                               (84) 

Where α has the dimensions of a relaxation time. Substituting (84) and (83) in (82),  
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    -𝑣𝐿
ħ𝜔

𝑘𝐵𝑇2

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 
𝜕𝑇

𝜕𝑧
 + 

1

𝜏𝑁

�⃗⃗� .  𝑘𝑧⃗⃗ ⃗⃗ 

𝑘𝐵𝑇
 

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

−
1

𝜏𝑐
 [−𝛼 𝑣𝐿

𝜕𝑇

𝜕𝑧
 

ħ𝜔

𝑘𝐵𝑇2
 

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

]= 0   (85) 

This equation simplifies to: 

                                    
�⃗⃗� .  𝑘𝑧⃗⃗ ⃗⃗ 

𝜏𝑁
 +

𝛼𝑣𝐿

𝜏𝑐
 
𝜕𝑇

𝜕𝑧
 
ħ𝜔

𝑇
 = 𝑣𝐿

ħ𝜔

𝑇
 
𝜕𝑇

𝜕𝑧
                                                (86) 

Since �⃗�  is a constant vector in the direction of temperature gradient, we can express it as  

                                          �⃗�  = - 
ħ

𝑇
 β 𝑣𝐿

2 
𝜕𝑇

𝜕𝑧
 �̂�                                                          (87) 

Where β has the dimension of a relaxation time and 𝑘𝑧 = 
𝜔

𝑣𝐿
 . 

Equation (86) can be written as: 

                                                   α = 𝜏𝑐 (1+
𝛽

𝜏𝑁
)                                                            (88) 

At this stage, we need to find β. That is why we make use of the fact that the normal 

processes conserve the crystal momentum. Thus, the rate of change of the total phonon 

momentum due to normal processes must be set equal to zero: 

∑ (
𝜕𝑁

𝜕𝑡𝑘 )N. �⃗⃗�  = 0                                                                                                           (89) 

Implies that  

∫ (
∂N

∂t
)N. K⃗⃗ 

ωD

0
 g(ω)dω = 0 

= ∫
1

𝜏𝑁,𝐿

𝜔𝐷

0
 [�̅� + 

1

𝑘𝐵𝑇
 ( 

−ħ𝜔

𝑇
𝛽𝑣𝐿

𝜕𝑇

𝜕𝑧
) 

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 - N].�⃗⃗�  gL (ω) dω = 0  

+ ∫
1

𝜏𝑁,𝑇

𝜔𝐷

0
 [�̅� + 

1

𝑘𝐵𝑇
 ( 

−ħ𝜔

𝑇
𝛽𝑣𝐿

𝜕𝑇

𝜕𝑧
) 

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 - N].�⃗⃗�  gT (ω) dω = 0                           (90) 
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+ ∫
1

𝜏𝑁,𝐵

𝜔𝐷

0
 [�̅� + 

1

𝑘𝐵𝑇
 ( 

−ħ𝜔

𝑇
𝛽𝑣𝐿

𝜕𝑇

𝜕𝑧
) 

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 - N].�⃗⃗�  gB (ω) dω = 0 

Considering every branch separately, where I1 + I2 + I3 = 0                                                                                                                            

I1 =  ∫
1

𝜏𝑁,𝐿

𝜔𝐷

0
 [�̅� + 

1

𝑘𝐵𝑇
 ( 

−ħ𝜔

𝑇
𝛽𝑣𝐿

𝜕𝑇

𝜕𝑧
) 

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 - N].�⃗⃗�  gL (ω) dω = 0       

    = ∫
𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 
𝜔𝐷

0

ħ𝜔

𝑘𝐵𝑇2
𝑣𝐿

𝜕𝑇

𝜕𝑧
(𝛼 − 𝛽)

�⃗⃗� 

𝜏𝑁,𝐿
 gL (ω) dω  

 

   = 𝑣𝐿
𝜕𝑇

𝜕𝑧
 ∫

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 
𝜔𝐷

0

ħ𝜔

𝑘𝐵𝑇2 (𝜏𝑐 (1 +
𝛽

𝜏𝑁
)  − 𝛽)

�⃗⃗� 

𝜏𝑁,𝐿
 gL (ω) dω                                 

     

    = 𝑣𝐿
𝜕𝑇

𝜕𝑧
 ∫

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 
𝜔𝐷,𝐿

0

ħ𝜔

𝑘𝐵𝑇2 (𝜏𝑐,𝐿 + 𝛽 (
𝜏𝑐,𝐿

𝜏𝑁,𝐿
− 1)

�⃗⃗� 

𝜏𝑁,𝐿
 gL (ω) dω                           (91) 

Similarly, 

I2 = 𝑣𝐿
𝜕𝑇

𝜕𝑧
 ∫

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 
𝜔𝐷,𝑇

0

ħ𝜔

𝑘𝐵𝑇2 (𝜏𝑐,𝑇 + 𝛽 (
𝜏𝑐,𝑇

𝜏𝑁,𝑇
− 1)

�⃗⃗� 

𝜏𝑁,𝑇
 gT (ω) dω                          (92) 

I3 = 𝑣𝐿
𝜕𝑇

𝜕𝑧
 ∫

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 
𝜔𝐷,𝐵

0

ħ𝜔

𝑘𝐵𝑇2 (𝜏𝑐,𝐵 + 𝛽 (
𝜏𝑐,𝐵

𝜏𝑁,𝐵
− 1)

�⃗⃗� 

𝜏𝑁,𝐵
 gB (ω) dω                         (93) 

Having I1 + I2 + I3 = 0 and substituting the wave vectors in terms of their dispersion 

relations: 

I1 + I2 + I3  

= 𝑣𝐿
𝜕𝑇

𝜕𝑧
 ∫

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 
𝜔𝐷,𝐿

0

ħ𝜔

𝑘𝐵𝑇2 (𝜏𝑐,𝐿 + 𝛽 (
𝜏𝑐,𝐿

𝜏𝑁,𝐿
− 1)

𝜔

𝑣𝐿

1

𝜏𝑁,𝐿
 gL (ω) dω 

+  𝑣𝐿
𝜕𝑇

𝜕𝑧
 ∫

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 
𝜔𝐷,𝑇

0

ħ𝜔

𝑘𝐵𝑇2 (𝜏𝑐,𝑇 + 𝛽 (
𝜏𝑐,𝑇

𝜏𝑁,𝑇
− 1)

𝜔

𝑣𝑇

1

𝜏𝑁,𝑇
 gT (ω) dω 
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+ 𝑣𝐿
𝜕𝑇

𝜕𝑧
 ∫

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 
𝜔𝐷,𝐵

0

ħ𝜔

𝑘𝐵𝑇2
(𝜏𝑐,𝐵 + 𝛽 (

𝜏𝑐,𝐵

𝜏𝑁,𝐵
− 1)

𝜔1/2

𝑐𝐵
1/2

1

𝜏𝑁,𝐵
 gB (ω) dω                      (94) 

=  ∫
𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 
𝜔𝐷,𝐿

0

ħ𝜔4

𝑘𝐵𝑇2 [
𝜏𝑐,𝐿

𝜏𝑁,𝐿
+ 𝛽 (

𝜏𝑐,𝐿−𝜏𝑁,𝐿

𝜏𝑁,𝐿
2 )]

1

𝑣𝐿
4 dω  

+ ∫
𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 
𝜔𝐷,𝑇

0

ħ𝜔4

𝑘𝐵𝑇2 [
𝜏𝑐,𝑇

𝜏𝑁,𝑇
+ 𝛽 (

𝜏𝑐,𝑇−𝜏𝑁,𝑇

𝜏𝑁,𝑇
2 )]

1

𝑣𝑇
4 dω  

+∫
𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 
𝜔𝐷,𝐵

0

ħ𝜔2

𝑘𝐵𝑇2
(
𝜏𝑐,𝐵

𝜏𝑁,𝐵
+ 𝛽 (

𝜏𝑐,𝐵−𝜏𝑁,𝐵

𝜏𝑁,𝐵
2 )

1

2𝑐𝐵
2 dω                                                   (95) 

=  
1

𝑣𝐿
4 

𝑘𝐵
3𝑇2

ħ3 ∫
𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 
𝜔𝐷,𝐿

0

ħ4𝜔4

𝑘𝐵
4𝑇4 [

𝜏𝑐,𝐿

𝜏𝑁,𝐿
+ 𝛽 (

𝜏𝑐,𝐿−𝜏𝑁,𝐿

𝜏𝑁,𝐿
2 )] dω +  

1

𝑣𝑇
4 

𝑘𝐵
3𝑇2

ħ3 ∫
𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 
𝜔𝐷,𝑇

0

ħ4𝜔4

𝑘𝐵
4𝑇4 [

𝜏𝑐,𝑇

𝜏𝑁,𝑇
+ 𝛽 (

𝜏𝑐,𝑇−𝜏𝑁,𝑇

𝜏𝑁,𝑇
2 )] dω +  

1

2𝑐𝐵
2 

𝑘𝐵

ħ
∫

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 
𝜔𝐷,𝐵

0

ħ2𝜔2

𝑘𝐵
2𝑇2 [

𝜏𝑐,𝐵

𝜏𝑁,𝐵
+ 𝛽 (

𝜏𝑐,𝐵−𝜏𝑁,𝐵

𝜏𝑁,𝐵
2 )] dω                                              (96) 

Introducing the dimensionless parameter x = 
ħ𝜔

𝑘𝐵𝑇
 ,  

=
1

𝑣𝐿
4 (

𝑘𝐵𝑇

ħ
)2 ∫

𝑥4𝑒𝑥

(𝑒𝑥−1   )2 
 

Ɵ𝐷,𝐿
𝑇

0
[
𝜏𝑐,𝐿

𝜏𝑁,𝐿
+ 𝛽 (

𝜏𝑐,𝐿−𝜏𝑁,𝐿

𝜏𝑁,𝐿
2 )] dx +  

1

𝑣𝑇
4 (

𝑘𝐵𝑇

ħ
)2 ∫

𝑥4𝑒𝑥

(𝑒𝑥−1   )2 
 

Ɵ𝐷,𝑇
𝑇

0
[
𝜏𝑐,𝑇

𝜏𝑁,𝑇
+ 𝛽 (

𝜏𝑐,𝑇−𝜏𝑁,𝑇

𝜏𝑁,𝑇
2 )] dx +  

1

2𝑐𝐵
2 ∫

𝑥2𝑒𝑥

(𝑒𝑥−1   )2 
 

Ɵ𝐷,𝐵
𝑇

0
[
𝜏𝑐,𝐵

𝜏𝑁,𝐵
+ 𝛽 (

𝜏𝑐,𝐵−𝜏𝑁,𝐵

𝜏𝑁,𝐵
2 )] dx                                                               (97) 

= 
1

𝑣𝐿
4 (

𝑘𝐵𝑇

ħ
)2 ∫

𝑥4𝑒𝑥

(𝑒𝑥−1   )2 
 

Ɵ𝐷,𝐿
𝑇

0

𝜏𝑐,𝐿

𝜏𝑁,𝐿
 𝑑𝑥 + β 

1

𝑣𝐿
4 (

𝑘𝐵𝑇

ħ
)2 ∫

𝑥4𝑒𝑥

(𝑒𝑥−1   )2 
 

Ɵ𝐷,𝐿
𝑇

0
(
𝜏𝑐,𝐿−𝜏𝑁,𝐿

𝜏𝑁,𝐿
2 )𝑑𝑥 +  

2

𝑣𝑇
4 (

𝑘𝐵𝑇

ħ
)2 ∫

𝑥4𝑒𝑥

(𝑒𝑥−1   )2 
 

Ɵ𝐷,𝑇
𝑇

0

𝜏𝑐,𝑇

𝜏𝑁,𝑇
 dx + β 

1

𝑣𝑇
4 (

𝑘𝐵𝑇

ħ
)2 ∫

𝑥4𝑒𝑥

(𝑒𝑥−1   )2 
 

Ɵ𝐷,𝑇
𝑇

0
(
𝜏𝑐,𝑇−𝜏𝑁,𝑇

𝜏𝑁,𝑇
2 )dx+ 

1

2𝑐𝐵
2 ∫

𝑥2𝑒𝑥

(𝑒𝑥−1   )2 
 

Ɵ𝐷,𝐵
𝑇

0

𝜏𝑐,𝐵

𝜏𝑁,𝐵
 𝑑𝑥 + β 

1

2𝑐𝐵
2 ∫

𝑥2𝑒𝑥

(𝑒𝑥−1   )2 
 

Ɵ𝐷,𝐵
𝑇

0
(
𝜏𝑐,𝐵−𝜏𝑁,𝐵

𝜏𝑁,𝐵
2 ) dx = 0                          (98) 
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So, 

β = 

1

𝑣𝐿
4 (

𝑘𝐵𝑇

ħ
)2 ∫

𝑥4𝑒𝑥

(𝑒𝑥−1   )2 
 

Ɵ𝐷,𝐿
𝑇

0

𝜏𝑐,𝐿
𝜏𝑁,𝐿

 𝑑𝑥 +
2

𝑣𝑇
4  (

𝑘𝐵𝑇

ħ
)2 ∫

𝑥4𝑒𝑥

(𝑒𝑥−1   )2 
 

Ɵ𝐷,𝑇
𝑇

0

𝜏𝑐,𝑇
𝜏𝑁,𝑇

 𝑑𝑥+
1

2𝑐𝐵
2  ∫

𝑥2𝑒𝑥

(𝑒𝑥−1   )2 
 

Ɵ𝐷,𝐵
𝑇

0

𝜏𝑐,𝐵
𝜏𝑁,𝐵

 𝑑𝑥  

1

𝑣𝐿
4 (

𝑘𝐵𝑇

ħ
)2 ∫

𝑥4𝑒𝑥

(𝑒𝑥−1   )2 
 

Ɵ𝐷,𝐿
𝑇

0
(
𝜏𝑐,𝐿−𝜏𝑁,𝐿

𝜏𝑁,𝐿
2 )𝑑𝑥+

1

𝑣𝑇
4  (

𝑘𝐵𝑇

ħ
)2 ∫

𝑥4𝑒𝑥

(𝑒𝑥−1   )2 
 

Ɵ𝐷,𝑇
𝑇

0
(
𝜏𝑐,𝑇−𝜏𝑁,𝑇

𝜏𝑁,𝑇
2 )𝑑𝑥

1

2𝑐𝐵
2  ∫

𝑥2𝑒𝑥

(𝑒𝑥−1   )2 
 

Ɵ𝐷,𝐵
𝑇

0
(
𝜏𝑐,𝐵−𝜏𝑁,𝐵

𝜏𝑁,𝐵
2 )

 

                                                                                                                  (99) 

Back to the thermal conductivity expression and plugging equations (70a), (71a), (74a), 

and (84) in (76), we get 

K = ∫ 𝜏𝑐,𝐿 (1 +
𝛽

𝜏𝑁,𝐿
)

𝜔𝐷,𝐿

0

1

𝑣𝐿
 

1

2𝜋2

ħ2𝜔4

𝑘𝐵𝑇2
 

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 dω +  

4∫ 𝜏𝑐,𝑇 (1 +
𝛽

𝜏𝑁,𝑇
)

𝜔𝐷,𝑇

0

𝑣𝐿
2

𝑣𝑇
3 

1

2𝜋2

ħ2𝜔4

𝑘𝐵𝑇2 
𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 dω +  

2∫ 𝜏𝑐,𝐵 (1 +
𝛽

𝜏𝑁,𝐵
)

𝜔𝐷,𝐵

0

𝑣𝐿
2

𝑐𝐵
3/2 

1

4𝜋2

ħ2𝜔5/2

𝑘𝐵𝑇2  
𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 dω                                                   (100) 

 =  
1

𝑣𝐿

 
1

2𝜋2 
𝑘𝐵

3𝑇2

ħ2 ∫ 𝜏𝑐,𝐿 (1 +
𝛽

𝜏𝑁,𝐿
)

𝜔𝐷,𝐿

0

ħ4𝜔4

𝑘𝐵
4𝑇2 

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 dω +  

2𝑣𝐿
2

𝑣𝑇
3  

1

𝜋2

𝑘𝐵
3𝑇2

ħ2 ∫ 𝜏𝑐,𝑇 (1 +
𝛽

𝜏𝑁,𝑇
)

𝜔𝐷,𝑇

0

ħ4𝜔4

𝑘𝐵
4𝑇4 

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 dω +  

+ 
𝑣𝐿

2

𝑐𝐵
3/2 

1

2𝜋2

𝑘𝐵
3/2

𝑇1/2

ħ1/2 ∫ 𝜏𝑐,𝐵 (1 +
𝛽

𝜏𝑁,𝐵
)

𝜔𝐷,𝐵

0

ħ5/2𝜔5/2

𝑘𝐵
5/2

𝑇5/2
 

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 dω                                    (101) 

Introducing the dimensionless parameter x = 
ħ𝜔

𝑘𝐵𝑇
 ,  

K = 
1

𝑣𝐿
 

1

2𝜋2
 
𝑘𝐵

3𝑇2

ħ2

𝑘𝐵𝑇

ħ
∫ 𝜏𝑐,𝐿 (1 +

𝛽

𝜏𝑁,𝐿
)

Ɵ𝐷,𝐿
𝑇

0

𝑥4𝑒𝑥

(𝑒𝑥−1   )2 
 dx +  

2𝑣𝐿
2

𝑣𝑇
3  

1

𝜋2

𝑘𝐵
3𝑇2

ħ2

𝑘𝐵𝑇

ħ
∫ 𝜏𝑐,𝑇 (1 +

𝛽

𝜏𝑁,𝑇
)

Ɵ𝐷,𝑇
𝑇

0
 

𝑥4𝑒𝑥

(𝑒𝑥−1   )2 
 dx +  

𝑣𝐿
2

𝑐𝐵
3/2 

1

2𝜋2

𝑘𝐵
3/2

𝑇1/2

ħ1/2

𝑘𝐵𝑇

ħ
∫ 𝜏𝑐,𝐵 (1 +

𝛽

𝜏𝑁,𝐵
)

Ɵ𝐷,𝐵
𝑇

0
 

𝑥5/2𝑒𝑥

(𝑒𝑥−1   )2 
 dx                                                   (102) 
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K = 
1

𝑣𝐿
 

1

2𝜋2 
𝑘𝐵

4𝑇3

ħ3  [I1,L + β I2,L] + 
2𝑣𝐿

2

𝑣𝑇
3  

1

𝜋2

𝑘𝐵
4𝑇3

ħ3  [ I1,T + β I2,T] + 
𝑣𝐿

2

𝑐𝐵
3/2 

1

2𝜋2

𝑘𝐵
5/2

𝑇3/2

ħ3/2 [I1,B+βI2,B]  

                                                                                                                                     (103) 

Where  

I1,L = ∫ 𝜏𝑐,𝐿 
Ɵ𝐷,𝐿

𝑇
0

𝑥4𝑒𝑥

(𝑒𝑥−1   )2 
 dx  

I2,L = ∫
𝜏𝑐,𝐿

𝜏𝑁,𝐿

Ɵ𝐷,𝐿
𝑇

0

𝑥4𝑒𝑥

(𝑒𝑥−1   )2 
 dx 

I1,T = ∫ 𝜏𝑐,𝑇 
Ɵ𝐷,𝑇

𝑇
0

 
𝑥4𝑒𝑥

(𝑒𝑥−1   )2 
 dx 

I2,T = ∫  
𝜏𝑐,𝑇

𝜏𝑁,𝑇

Ɵ𝐷,𝑇
𝑇

0
 

𝑥4𝑒𝑥

(𝑒𝑥−1   )2 
 dx 

I1,B = ∫ 𝜏𝑐,𝐵 
Ɵ𝐷,𝐵

𝑇
0

 
𝑥5/2𝑒𝑥

(𝑒𝑥−1   )2 
 dx                                                    

I2,B = ∫  
𝜏𝑐,𝐵

𝜏𝑁,𝐵

Ɵ𝐷,𝐵
𝑇

0
 

𝑥5/2𝑒𝑥

(𝑒𝑥−1   )2 
 dx                                                                                       (103a)      

                        

G. Derivation of the Crystal Vibrational Parameters 

 

1. Specific Heat and Debye Temperature 

The total energy associated with the nanowire normal modes can be written as  

                                               E = ∑ (
ħ𝜔

2𝑘  +
ħ𝜔

𝑒

ħ𝜔
𝑘𝐵𝑇−1    

)                                                   (104) 

The specific heat is given by: 

Cv = 
𝜕𝐸

𝜕𝑇
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     = ∑
𝜕

𝜕𝑇𝑘  (
ħ𝜔

𝑒

ħ𝜔
𝑘𝐵𝑇−1    

) 

    = ∑
ħ2𝜔2

𝑘𝐵𝑇2𝑘      
𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 

    = ∫  
ħ2𝜔2

𝑘𝐵𝑇2

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

𝜔𝐷

0
 g (ω) dω                                                                            (104a) 

 The specific heat due to longitudinal phonons: 

Cv,L = ∫  
ħ2𝜔2

𝑘𝐵𝑇2

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

𝜔𝐷

0
 gL (ω) dω  

      = ∫  
ħ2𝜔2

𝑘𝐵𝑇2

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

𝜔𝐷

0
[ 

1

2𝜋2 (𝐿1𝐿2𝐿3) 
1

𝑣𝐿
3 𝜔2] dω 

      = 
𝑉

2𝜋2 
1

𝑣𝐿
3  

𝑘𝐵 
3 𝑇2

ħ2  ∫  
ħ4𝜔4

𝑘𝐵
4𝑇4

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

𝜔𝐷

0
 dω 

      = 
𝑉

2𝜋2 
1

𝑣𝐿
3  

𝑘𝐵 
4 𝑇3

ħ3  ∫
𝑥4𝑒𝑥

(𝑒𝑥−1)2

Ѳ𝐷
𝑇

0
 dx 

We know that: NL (ω) = r 𝑁𝑐 = 
1

6
 
𝐿1 𝐿2𝐿3

𝜋2  
𝜔3

𝑣𝐿
3  ,  

Then, 𝜔𝐷
3 = r 𝑁𝑐 

𝑣𝐿
3 6𝜋2 

𝑉
 

And having  
ħ3𝜔𝐷

3

𝑘𝐵
3  = Ɵ𝐷

3   

So, Ɵ𝐷,𝐿
3 = 

ħ3

𝑘𝐵
3  r 𝑁𝑐 

𝑣𝐿
3 6𝜋2 

𝑉
  

𝐶𝑣,𝐿= 3 𝑘𝐵r 𝑁𝑐 
𝑇3

Ɵ𝐷,𝐿
3  ∫

𝑥4𝑒𝑥

(𝑒𝑥−1)2

Ѳ𝐷,𝐿
𝑇

0
 dx                                                                           (104b) 

In a similar way, 

The contribution of the torsional branch to the specific heat is 
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𝐶𝑣,𝑇= 3 𝑘𝐵r 𝑁𝑐 
𝑇3

Ɵ𝐷,𝑇
3  ∫

𝑥4𝑒𝑥

(𝑒𝑥−1)2

Ѳ𝐷,𝑇
𝑇

0
 dx                                                                           (104c) 

And that of the bending phonons is represented by: 

𝐶𝑣,𝐵 = ∫  
ħ2𝜔2

𝑘𝐵𝑇2

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

𝜔𝐷

0
 

𝑉

4𝜋2  
1

𝑐𝐵
3/2 𝜔1/2dω 

      = 
𝑉

4𝜋2  
1

𝑐𝐵
3/2 

𝑘𝐵 
3/2

𝑇1/2

ħ1/2  ∫  
ħ5/2𝜔5/2

𝑘𝐵
5/2

𝑇5/2

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

𝜔𝐷

0
 dω 

      = 
3

2
 𝑘𝐵r 𝑁𝑐 

𝑇3/2

Ɵ𝐷,𝐵
3/2  ∫

𝑥5/2𝑒𝑥

(𝑒𝑥−1)2

Ѳ𝐷,𝐵
𝑇

0
 dx     where  Ɵ𝐷,𝐵

3/2
= 

ħ3/2

𝑘𝐵
3/2 r 𝑁𝑐 

𝑐𝐵
3/2

 6𝜋2 

𝑉
                   (104d) 

 

2. Derivation of  ƟD as a function of Temperature 

The exact specific heat is given by  

                          Cv = 𝑘𝐵 ∑ ∑
(

ħ𝜔

2𝑘𝐵𝑇
)2

(𝑠𝑖𝑛ℎ
ħ𝜔

2𝑘𝐵𝑇
)
2𝑘𝑗                                                     (105) 

Where j stands for longitudinal, bending, and torsional branches and ω(k) can be 

obtained from the dispersion relations of the modes. In order to find Debye Temperature 

Ɵ𝐷,𝐿 , Ɵ𝐷,𝑇 and Ɵ𝐷,𝐵 

𝑘𝐵 ∑
(

ħ𝜔

2𝑘𝐵𝑇
)2

(𝑠𝑖𝑛ℎ
ħ𝜔

2𝑘𝐵𝑇
)
2𝑘 = 3 𝑘𝐵r 𝑁𝑐 

𝑇3

Ɵ𝐷,𝐿
3  ∫

𝑥4𝑒𝑥

(𝑒𝑥−1)2

Ѳ𝐷,𝐿
𝑇

0
 dx                                                       (106a) 

𝑘𝐵 ∑
(

ħ𝜔

2𝑘𝐵𝑇
)2

(𝑠𝑖𝑛ℎ
ħ𝜔

2𝑘𝐵𝑇
)
2𝑘 = 3 𝑘𝐵r 𝑁𝑐 

𝑇3

Ɵ𝐷,𝑇
3  ∫

𝑥4𝑒𝑥

(𝑒𝑥−1)2

Ѳ𝐷,𝑇
𝑇

0
 dx                                                      (106b) 

𝑘𝐵 ∑
(

ħ𝜔

2𝑘𝐵𝑇
)2

(𝑠𝑖𝑛ℎ
ħ𝜔

2𝑘𝐵𝑇
)
2𝑘 =  

3

2
 𝑘𝐵r 𝑁𝑐 

𝑇3/2

Ɵ𝐷,𝐵
3/2  ∫

𝑥5/2𝑒𝑥

(𝑒𝑥−1)2

Ѳ𝐷,𝐵
𝑇

0
 dx                                              (106c) 

And we solve for ƟD at each temperature. 
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3. Derivation of the Mode Gr�̈�neisen Parameter as a function of temperature 

The Gr�̈�neisen parameter γ describes how the volume change of a crystal 

affects the vibrational properties. It can be determined as a function of temperature by 

using the following formula:  

                                                     γ = 
∑ ∑ 𝛾𝑗 (𝑘)𝐶𝑣(𝑘)𝑘𝑗

∑ 𝐶𝑣𝑘 (𝑘)
                                                   (107) 

where 𝛾𝑗(𝑘) =
−𝛺

𝜔(𝑘)
 
𝜕𝜔𝑗(𝑘)

𝜕𝛺
                                                                                         (108) 

Where Ω is the volume of the nanowire under study.  

Since ωL
2  =  

𝐸

𝜌
 π2 [(

𝑛1

𝐿1
) 2 + (

𝑛2

𝐿2
) 2 + (

𝑛3

𝐿3
) 2] and since the volume change of the nanowire is 

due to both changes in both length and the cross-sectional area of the nanowire, we can 

write 

𝛾𝐿(𝑘)= 
−𝐿1

𝜔𝑗(𝑘)
 
𝜕𝜔𝐿(𝑘)

𝜕𝐿1
 × 

−𝐿2

𝜔𝑗(𝑘)
 
𝜕𝜔𝐿(𝑘)

𝜕𝐿2
 × 

−𝐿3

𝜔𝑗(𝑘)
 
𝜕𝜔𝐿(𝑘)

𝜕𝐿3
  

𝜕𝜔

𝜕𝐿1
 = - (

𝐸

𝜌
) 

𝜋2𝑛1
2

𝐿1
3𝜔𝐿(𝑘)

 

So, 𝛾𝐿(𝑘)= (
𝐸

𝜌
) 

𝜋2𝑛1
2

𝐿1
2𝜔𝐿

2(𝑘)
 × (

𝐸

𝜌
) 

𝜋2𝑛2
2

𝐿2
2𝜔𝐿

2(𝑘)
 × (

𝐸

𝜌
) 

𝜋2𝑛3
2

𝐿3
2𝜔𝐿

2(𝑘)
                                                       (109) 

Using a similar approach,  

𝛾𝑇(𝑘)= (
𝐶

𝜌𝐼
) 

𝜋2𝑛1
2

𝐿1
2𝜔𝑇

2(𝑘)
 × (

𝐶

𝜌𝐼
) 

𝜋2𝑛2
2

𝐿2
2𝜔𝑇

2(𝑘)
 × (

𝐶

𝜌𝐼
) 

𝜋2𝑛3
2

𝐿3
2𝜔𝑇

2(𝑘)
                                                         (110) 

𝛾𝐵(𝑘) =  
8

𝜔𝐵
3  𝑐𝐵

3/2
𝜋6× 

𝑛1
2𝑛2

2𝑛3
2

𝑉2                                                                            (111) 

At this point, the overall Gr�̈�neisen parameter γ can be obtained.  
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CHAPTER V 

 

THERMAL CONDUCTIVITY OF CYLINDRICAL 

NANOWIRES 

 

We present a general predictable model for the lattice thermal conductivity in 

cylindrical nanowires with a circular cross-section. The work accounts for modifying 

the model presented for pristine nanowires in cylindrical coordinates to explain the 

effect of the circular cross-section instead of a square one. Heat transfer in nanowires 

with diameters of only a few nanometers are under study. Having nanoscale dimensions 

in the radial direction, nanowires exhibit size confinement effects, induced by the 

boundaries that give them different physical properties as compared to bulk crystals. 

With no azimuthal dependence of the phonon distribution function, the two-dimensional 

geometry (r and z) of the rod simplifies the calculations. In a similar manner, the 

dispersion relations along with the boundary scattering rate and the crystal vibrational 

parameters are derived in cylindrical coordinates and employed later in the lattice 

thermal conductivity formalism. 

 

A. Dispersion Relations and Allowable Normal Modes 

On an attempt to find the allowable wave vectors for the phonon dispersion of 

a cylindrical nanowire, we planned a usual approach in solving the equations of motion 

of the solid under study in cylindrical coordinates taking into account the convenient 

boundary conditions for obtaining a simple solution.  

The equations of motion of a solid are: 

                                         ρ 
𝜕2𝑈

𝜕𝑡2
 = µ ∇2U + (λ+μ) ∇ (∇.U)                                          (112) 
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where ρ is the density of the solid, μ and λ are Lame constants. U is the displacement of 

a point in the solid. For the boundary conditions, we will assume that we have azimuthal 

symmetry and that at the boundary of the nanowire (r =R) the radial component of the 

displacement blows up to zero along with the derivative of the z-component with 

respect to the radial one. With the above assumptions, and solving the equation of 

motion in cylindrical coordinates by the separation of variable technique, the 

displacement of a point in a nanowire is described as 

                                   U(r, z, t) = Jm (
𝑧𝑚.𝑟

𝑅
) cos (nʘ) sin (

𝑛3𝜋𝑧

𝐿
) e-iωt                            (113) 

This is the polar analogous to  

                                  U(x, y, z, t) = sin (
𝑛1𝜋𝑥

𝐿1
) sin (

𝑛2𝜋𝑥

𝐿2
) sin (

𝑛3𝜋𝑥

𝐿3
) e-iωt                     (114) 

where the zeros of the sine function are replaced by the zeros of the Bessel’s function 

zm. The radial component in the cylindrical coordinates involves a solution in terms of 

Bessel’s function. Note that at the boundary of the wire i.e. r=R, Jm (zm) drops to zero. 

Ignoring the angular term i.e. azimuthal symmetry, the displacement of a point in a 

nanowire is  

                                           U(r, z, t) = Jm (
𝑧𝑚 𝑟

𝑅
) sin (

𝑛3𝜋𝑧

𝐿
) e-iωt                                           (115) 

On substituting this solution in the equation of motion above, we obtain the basic 

equation for determining the normal mode frequencies: 

                       [
𝜌𝜔2

𝜋2  – (λ+ 2μ) [(
𝑧𝑚

𝜋𝑅
) 2 + (

𝒏𝟑

𝑳
) 2]] [

𝜌𝜔2

𝜋2  - μ [(
𝑧𝑚

𝜋𝑅
) 2 + (

𝒏𝟑

𝑳
) 2]] = 0               (116) 

The solutions of the equation above are: 

                                             ωL
2  =  

𝐸

𝜌
 π2 [(

𝑧𝑚

𝜋𝑅
) 2 + (

𝒏𝟑

𝑳
) 2]                                              (117) 

                                             ωB
2  =  

𝐸𝐼𝑥,𝑦

𝜌𝑆
 π4 [(

𝑧𝑚

𝜋𝑅
) 2 + (

𝒏𝟑

𝑳
) 2]2                                        (118) 
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                                              ωT
2  = 

𝐶

𝜌𝐼
 π2 [(

𝑧𝑚

𝜋𝑅
) 2 + (

𝒏𝟑

𝑳
) 2]                                            (119) 

where L, B and T refers to longitudinal, bending and torsional branches. 

 

B. Phonon Distribution Function  

Assuming a temperature gradient along the z-direction, the distribution 

function for phonons in a pristine nanowire has an explicit dependence on x and y. The 

corresponding Boltzmann equation is  

                          vz 
𝑑𝑁

𝑑𝑇
 
𝜕𝑇

𝜕𝑧
 + vx 

𝜕𝑁

𝜕𝑥
 + vy 

𝜕𝑁

𝜕𝑦
 + 𝑁𝜏 = 0                                        (120) 

With  

         N = 
𝑃𝜏

2
[(1- exp (

−𝑥(𝑦)

𝜏 𝑣𝑥
)) + (1-exp (

−𝑦(𝑥)

𝜏 𝑣𝑦
))] + σz exp (

−𝑥(𝑦)

𝜏 𝑣𝑥
) + σz exp (

−𝑦(𝑥)

𝜏 𝑣𝑦
)]     (121) 

where P= vz 
𝑑𝑁

𝑑𝑡
 
𝜕𝑇

𝜕𝑧
  is the negative of the rate at which phonons are delivered to a unit 

volume of the reciprocal space [29]. The above distribution function is a solution of the 

Boltzmann equation for any cross section dimensions and shape. 

In the case of a nanowire with a circular cross section and with a temperature 

gradient aligned parallel to the rod axis in the z direction, the phonon distribution 

function deviates from equilibrium. The thermal gradient pumps the phonons in the z 

direction to every point of the cross section of the nanowire. For small deviations from 

equilibrium, the temperature gradient is assumed to depend on z only. With cylindrical 

coordinates (r, Ф, z) imposed on the system and considering azimuthal symmetry, the 

distribution function N has an explicit r dependence, with an implicit dependence on z 

through the temperature gradient: 

                              N = P τ [1- 
𝑟

𝑅
𝑒

−(𝑅−𝑟)

𝜏𝑣𝐵 ] + σ
𝑟

𝑅
𝑒

−(𝑅−𝑟)

𝜏𝑣𝐵
 
                                   (122) 
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Where τ is the total relaxation time associated with all the resistive processes and σ 

determines the deviation in the phonon distribution function at the boundary. In the very 

vicinity of the boundary, R = r, there is thermalization, which means that the phonon 

distribution function is a constant σ and is determined by the interaction between 

volume phonons and surface phonons. In infinite radial direction, big enough R, N 

restores back to Pτ as if we are dealing with a bulk material with no spatial dependence 

of the phonon distribution function.  

 

C. Derivation of the Phonon-Boundary Scattering Rate 

Using the expression of the phonon distribution function derived in the 

previous section, the boundary scattering rate is  

                                  
1

𝜏 𝐵
 =  

∬  𝑣 𝜕𝑁/𝜕𝑟 𝑑𝑆

∬ 𝑁 𝑑𝑆 
                                                               (123) 

Where dS is the differential cross-sectional area. We can now derive the rates at which 

phonons scatter by the boundaries as the following: 

  

𝜕𝑁

𝜕𝑟
 = - Pτ 

𝑟

𝑅
exp (

−𝑅

𝜏𝑣𝐵
) 

1

𝜏𝑣𝐵
 exp (

𝑟

𝜏𝑣𝐵
) – Pτ 

1

𝑅
 exp (

−(𝑅−𝑟)

𝜏𝑣𝐵
)+ σ 

𝑟

𝑅
exp (

−𝑅

𝜏𝑣𝐵
) 

1

𝜏𝑣𝐵
 exp (

𝑟

𝜏𝑣𝐵
) + 

σ 
1

𝑅
exp (

−(𝑅−𝑟)

𝜏𝑣𝐵
)                                                                                                            (124) 

And  

∫ 
𝜕𝑁

𝜕𝑟
 dS = (- Pτ + σ ) 

1

𝑅
 exp (

−𝑅

𝜏𝑣𝐵
) ∫ exp(

𝑟

𝜏𝑣𝐵
) dS + 

(−𝑃+
σ

𝜏
)

𝑅𝑣𝐵
 exp (

−𝑅

𝜏𝑣𝐵
) ∫ r exp(

𝑟

𝜏𝑣𝐵
) dS 

          = 
(− Pτ + σ )

𝑅
 𝑒𝑥𝑝 (

−𝑅

𝜏𝑣𝐵
) ∫ 2𝜋𝑟 𝑒𝑥𝑝(

𝑟

𝜏𝑣𝐵
) 𝑑𝑟 

𝑅

0
+ 

(−𝑃+
σ

𝜏
)

𝑅𝑣𝐵
exp (

−𝑅

𝜏𝑣𝐵
) ∫ 2𝜋𝑟2𝑒𝑥𝑝(

𝑟

𝜏𝑣𝐵
) 𝑑𝑟 

𝑅

0
 

         = 2π 
(− Pτ + σ )

𝑅
exp (

−𝑅

𝜏𝑣𝐵
) [τ2𝑣𝐵

2 + Rτ𝑣𝐵 exp (
𝑅

𝜏𝑣𝐵
) – τ2𝑣𝐵

2 exp (
𝑅

𝜏𝑣𝐵
)] + 

(−𝑃+
σ

𝜏
)

𝑅𝑣𝐵
 exp (

−𝑅

𝜏𝑣𝐵
) 

 [2τ3𝑣𝐵
3 exp (

𝑅

𝜏𝑣𝐵
) + R2τ𝑣𝐵 exp (

𝑅

𝜏𝑣𝐵
) – 2Rτ2𝑣𝐵

2 exp (
𝑅

𝜏𝑣𝐵
) - 2τ3𝑣𝐵

3]                               (125) 
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And computing ∫𝑁 𝑑𝑆 

∫N dS = ∫Pτ dS – P 
𝜏

𝑅
 exp (

−𝑅

𝜏𝑣𝐵
) ∫ r exp (

−𝑟

𝜏𝑣𝐵
) dS + 

σ

𝑅
 exp (

−𝑅

𝜏𝑣𝐵
) ∫ r exp (

𝑅

𝜏𝑣𝐵
) dS              (126) 

          = 2πPτ ∫ 𝑟𝑑𝑟
𝑅

0
 - 

2πPτ

𝑅
 exp (

−𝑅

𝜏𝑣𝐵
) ∫ 𝑟2 𝑒𝑥𝑝 (

𝑟

𝜏𝑣𝐵
 ) 𝑑𝑅 

𝑅

0
+ 

2πσ

𝑅
 (

−𝑅

𝜏𝑣𝐵
) ∫ 𝑟2𝑒𝑥𝑝 (

𝑟

𝜏𝑣𝐵
) 𝑑r 

 

Note here that P is the negative of the rate at which phonons are delivered to a unit 

volume of the reciprocal lattice and r is the variable cross-section radius varying 

between 0 and R (where R is the nanowire radius). 

Dividing equation (125) by equation (126) and performing some 

simplifications and arrangements, we get the phonon boundary scattering rates in a 

cylindrical nanowire of a circular cross-section: 

                  
1

𝜏𝐵
 = 

𝑣𝐵

𝑅
 . 

 [−𝜏𝑣𝐵𝑅 +𝜏2𝑣𝐵
2+3𝜏2𝑣𝐵

2𝑒𝑥𝑝(
−𝑅

𝜏𝑣𝐵
)+𝑅2] [1−

𝜎

𝑃𝜏
]

𝑅2− [𝜏𝑣𝐵 𝑅−2𝜏2𝑣𝐵
2  +

2𝜏3𝑣𝐵
3

𝑅
 − 

2𝜏3𝑣𝐵
3

𝑅
𝑒𝑥𝑝(

−𝑅

𝜏𝑣𝐵
)][1−

𝜎

𝑃𝜏
]

               (127) 

To evaluate this rate, we need to estimate a magnitude for the term 
𝜎

𝑃𝜏
. As a phonon 

strikes a boundary, it can undergo transmission, specular reflection or diffuse scattering 

with a random change of its propagation direction. In the case of surfaces, only 

reflection or backward scattering can take place, whereas for interfaces, transmission is 

also possible. The probabilities for a phonon to reflect, transmit or scatter at a surface or 

interface strongly depend on the characteristics of the sample boundary. A good 

understanding of the phonon dynamics at the surface provides a clear picture of phonon-

boundary interactions and their effect on the thermal transport. Examining the 

expression of the phonon distribution function in the case of a cylindrical nanowire of a 

circular cross-section, 
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                                            N = Pτ [1-
𝑟

𝑅
 𝑒

−(𝑅−𝑟)

𝜏𝑣𝐵 ] + σ 
𝑟

𝑅
𝑒

−(𝑅−𝑟)

𝜏𝑣𝐵
 
 

In the case of completely diffusive boundaries, σ is equal to zero. While, in the case of 

total specular phonon reflection, Pτ must be remain equal to σ to ensure that N reduces 

to τP at any position in the rod. However, in the case of partial specular phonon 

reflection, the ratio of σ to τP must be equal to a positive constant smaller than one so 

that N reduces fast to τP as the phonons move away from the boundaries of the 

nanowire. Thus, the term 
𝜎

𝑃𝜏
 employed in the phonon boundary scattering rates is always 

independent of the position in the crystal and has a magnitude between zero and one. As 

mentioned earlier, roughness plays an important role in phonon dynamics at the surface. 

Surface irregularities reduce the lifetime of a surface phonon and consequently reduce 

σ. Therefore, the term 
𝜎

𝑃𝜏
 has all the characteristics of the phonon specularity factor. The 

phonon specularity factor, which was originally derived by Ziman, depends on the 

characteristics of the incident phonon and surface asperities according to  

                                              p = exp (- 16π2λ2ω2/v2)                                                  (128) 

Where λ is the root mean square (rms) surface irregularity.  

 

D. Density of States 

We can now calculate the function g (ω), the fraction of normal modes with 

frequencies in the interval (ω, ω+dω). The number of longitudinal modes with 

frequencies less than ω is the number of positive integer lattice points (𝑧𝑚 and n3) 

which obey:  

                                          π2 𝑣𝐿
2

  [(
𝑧𝑚

𝜋𝑅
) 2 + (

𝒏𝟑

𝑳
) 2] ≤ ω2                                                 (129) 

that is, the number of lattice points lying within an octant of the ellipse specified by:  
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𝑥2

𝜋2𝑅2 + 
𝑦2

𝐿2  = 
𝜔2

 𝜋2 𝑣𝐿
2  

                                                        (130) 

To a first approximation, in the limit of a thick nanowire, this number is equal to the 

area in the  

                                       
𝜋2𝑣𝑙

2

𝜋2𝑅2𝜔
 x2 + 

𝜋2𝑣𝐿
2

𝐿2𝜔2
 y2 = 1 

 Implies that                              
𝑥2

𝑅2𝜔2

𝑣𝐿
2

 + 
𝑦2

𝐿2𝜔2

𝜋2𝑣𝐿
2

 = 1                                                         (131) 

N L (ω) = 
𝜋

4
 a b    where a = 

𝑅2𝜔2

𝑣𝐿
2  and b = 

𝐿2𝜔2

𝜋2𝑣𝐿
2  

                                                   N L (ω) = 
𝑅 𝐿 𝜔2

4 𝑣𝐿
2                                                          (132) 

With a similar approach, we can find that the number of torsional modes of frequencies 

less than ω and is given by 

                                                    N T (ω) = 
𝑅 𝐿 𝜔2

4 𝑣𝑇
2                                                         (133) 

The number of bending modes with frequencies less than ω is the number of positive 

integer lattice points (𝑧𝑚 and n) which obey: 

                                          π4 𝑣𝐵
2 [(

𝑧𝑚

𝜋𝑅
) 2 + (

𝒏𝟑

𝑳
) 2]2 ≤ ω2                                                (134) 

Implies that 

     π4 𝑣𝐵
2 [(

𝑧𝑚
2

𝜋2𝑅2
) 2 + (

𝑛3
2

𝐿2
) 2 + 

2𝑧𝑚
2 𝑛3

2

𝜋2𝑅2𝐿2
 ] ≤ ω2  

↔ [(
𝑧𝑚
2

𝜋2𝑅2) 2 + (
𝑛3

2

𝐿2) 2 + 
2𝑧𝑚

2 𝑛3
2

𝜋2𝑅2𝐿2 ] ≤  
𝜔2

𝜋4𝑣𝐵
2 

↔ 
𝜋4𝑣𝐵

2

𝜔2𝜋4𝑅4 x2 + 
𝜋4𝑣𝐵

2

𝜔2𝐿2 y2 + 
2𝜋4𝑣𝐵

2

𝜔2𝜋2𝑅2𝐿2 z2 = 1 
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↔ 
𝑥2

𝜔2𝑅4

𝑣𝐵
2

 + 
𝑦2

𝜔2𝐿4

𝜋4𝑣𝐵
2

 + 
𝑧2

𝜔2𝑅2𝐿2

2𝜋2𝑣𝐵
2

 = 1                                                                                       (135) 

With NB(ω) = 
1

8 
× 

4

3
 π a b c  

                                            NB (ω) = 
𝑅3𝐿3

6√2𝜋2 × 
𝜔3

𝑣𝐵
3                                                         (136) 

The total number of modes with frequencies less than ω is thus 

N (ω) = NL (ω) + NT (ω) + NB (ω)  

         = 
𝑅𝐿

4
 (

1

𝑣𝐿
2 +

1

𝑣𝑇
2) ω2 +  

𝑅3𝐿3

6√2𝜋2  
𝜔3

𝑣𝐵
3                                                                               (137) 

If we consider a single dispersion relation with a cut-off frequency ωD, we can say that 

the total number of modes is  

                                    N (ω) =
𝑅𝐿

4
 (

1

𝑣𝐿
2 +

1

𝑣𝑇
2) 𝜔𝐷

2 +  
𝑅3𝐿3

6√2𝜋2
  
𝜔𝐷

3

𝑣𝐵
3                                           (138) 

On the other hand, N (ω) =3rNc where r is the number of atoms in the unit cell and Nc is 

the number of unit cells in the nanowire 

                                    3rNc = 
𝑅𝐿

4
 (

1

𝑣𝐿
2 +

1

𝑣𝑇
2) 𝜔𝐷

2 +  
𝑅3𝐿3

6√2𝜋2  
𝜔𝐷

3

𝑣𝐵
3                                            (139) 

From its definition, we know that the density of states is given in terms of N (ω) by the 

relation: 

g(ω) dω = 
1

3𝑟𝑁𝑐
 [N(ω+dω) - N(ω) ] = 

1

3𝑟𝑁𝑐
 N’(ω) dω 

               = 
1

3𝑟𝑁𝑐
 [

𝑅𝐿

2
 (

1

𝑣𝐿
2 +

1

𝑣𝑇
2) ω + 

𝑅3𝐿3

2√2𝜋2 
𝜔2

𝑣𝐵
3  ]                                                                (140) 
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E. Formalism for the Lattice Thermal Conductivity in a Cylindrical Nanowire 

The lattice thermal conductivity in the nanowire is given by 

                                              K = -V ∑ ħ𝜔 �̃�𝑘  
𝑣𝐿

∇𝑇
                                                       (141) 

Where V is the volume of the first Brillouin zone, and thus  

                                        K = - ∫ ħ𝜔 �̃�
𝜔𝐷

0
 
𝑣𝐿

∇𝑇
 g (ω) dω                                               (142) 

Introducing the expression of the phonon density of states derived previously, the 

thermal conductivity expression reduces to  

K = - ∫ ħ𝜔 �̃�
𝜔𝐷

0
 
𝑣𝐿

∇𝑇
 

1

3𝑟𝑁𝑐
 [

𝑅𝐿

2
 (

1

𝑣𝐿
2 +

1

𝑣𝑇
2) ω + 

𝑅3𝐿3

2√2𝜋2 
𝜔2

𝑣𝐵
3  ] dω  

    =  
−𝑣𝐿 𝑅 𝐿

6𝑟𝑁𝑐
  (

1

𝑣𝐿
2 +

1

𝑣𝑇
2) ∫ ħ𝜔2𝜔𝐷

0
 
�̃�

∇𝑇
 dω - 

𝑣𝐿𝑅3𝐿3

6√2𝑟𝑁𝑐𝜋2 
1

𝑣𝐵
3 ∫ ħ𝜔3𝜔𝐷

0
 
�̃�

∇𝑇
 dω                            (143) 

The overall thermal conductivity can be seen as the sum of two conductivities; The first 

one is the thermal conductivity due to surface contribution described by an ellipse of 

area proportional to RL and the second term is the thermal conductivity due to the 

volume contribution described by an ellipsoid of volume proportional to R3L3. Equation 

(143) needs the expression of �̃� to be solved. 

 

1. Derivation of the Deviated Phonon Distribution Function 

In order to find �̃�, we follow Callaway’s procedure. We know that the original 

Boltzmann equation is: 

                                       -𝑣𝐿 
𝜕𝑁

𝜕𝑧
 - 𝑣𝑟 

𝜕𝑁

𝜕𝑟
 + 

𝑁𝑢−𝑁

𝜏𝑁
 + 

�̅�−𝑁

𝜏𝑈+𝐼
 = 0                                          (144) 

Moreover, it can be written as: 
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                                            -𝑣𝐿 
𝜕𝑁

𝜕𝑧
 + 

𝑁𝑢−𝑁

𝜏𝑁
 + 

�̅�−𝑁

𝜏𝑅
 = 0                                                 (145) 

Where    
1

𝜏𝑅
 =  

1

𝜏𝑈
 + 

1

𝜏𝐼
 + 

1

𝜏𝐵
  , and since N = �̅� + �̃� , we can write Boltzmann equation in 

the form: 

                                        -𝑣𝐿
𝑑�̅�

𝑑𝑇
 
𝜕𝑇

𝜕𝑧
 + 

𝑁𝑢−𝑁

𝜏𝑁
 - 

�̃�

𝜏𝑅
 = 0                                                     (146) 

On the other hand,  

                                        Nu = �̅� + 
�⃗⃗� .  𝑘𝑧⃗⃗ ⃗⃗ 

𝑘𝐵𝑇
 

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

                                                    (147) 

Where Nu is the displaced phonon distribution function due to normal processes and �⃗�  is 

a vector having the dimensions of energy x length describing the displacement of 

Planck distribution and 𝑘𝑧
⃗⃗⃗⃗  is a wave vector in the z-direction i.e. the direction of 

temperature gradient. Substituting equation (147) in (146), we get  

               -𝑣𝐿[
ħ𝜔

𝑘𝐵𝑇2

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

] 
𝜕𝑇

𝜕𝑧
 + 

1

𝜏𝑁
 [�̅� + 

�⃗⃗� .  𝑘𝑧⃗⃗ ⃗⃗ 

𝑘𝐵𝑇
 

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

− 𝑁] −
�̃�

𝜏𝑅
 = 0               (148) 

Through some simplifications, Boltzmann equation reduces to  

              -𝑣𝐿[
ħ𝜔

𝑘𝐵𝑇2

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

] 
𝜕𝑇

𝜕𝑧
 +

1

𝜏𝑁

�⃗⃗� .  𝑘𝑧⃗⃗ ⃗⃗ 

𝑘𝐵𝑇
 

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

− (
1

𝜏𝑅
+

1

𝜏𝑁
) �̃� = 0                    (149) 

The combined relaxation time defined as:  

                                                         
1

𝜏𝑐
 = 

1

𝜏𝑁
 + 

1

𝜏𝑅
                                                         (150) 

With                             �̃� = −𝛼 𝑣𝐿
𝜕𝑇

𝜕𝑧
 

ħ𝜔

𝑘𝐵𝑇2 
𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

                                                (151) 

Where α has the dimensions of a relaxation time. Substituting (151) and (150) in (149),  
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    -𝑣𝐿
ħ𝜔

𝑘𝐵𝑇2

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 
𝜕𝑇

𝜕𝑧
 + 

1

𝜏𝑁

�⃗⃗� .  𝑘𝑧⃗⃗ ⃗⃗ 

𝑘𝐵𝑇
 

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

−
1

𝜏𝑐
 [−𝛼 𝑣𝐿

𝜕𝑇

𝜕𝑧
 

ħ𝜔

𝑘𝐵𝑇2
 

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

]= 0  

This equation simplifies to: 

                                    
�⃗⃗� .  𝑘𝑧⃗⃗ ⃗⃗ 

𝜏𝑁
 +

𝛼𝑣𝐿

𝜏𝑐
 
𝜕𝑇

𝜕𝑧
 
ħ𝜔

𝑇
 = 𝑣𝐿

ħ𝜔

𝑇
 
𝜕𝑇

𝜕𝑧
                                                     (152) 

Since �⃗�  is a constant vector in the direction of temperature gradient, we can express it as  

                                          �⃗�  = - 
ħ

𝑇
 β 𝑣𝐿

2 
𝜕𝑇

𝜕𝑧
 �̂�                                                                (153) 

Where β has the dimension of a relaxation time and 𝑘𝑧 = 
𝜔

𝑣𝐿
 . 

Equation (152) can be written as: 

                                                   α = 𝜏𝑐 (1+
𝛽

𝜏𝑁
)                                                            (154) 

At this stage, we need to find β. That is why we make use of the fact that the normal 

processes conserve the crystal momentum. Thus, the rate of change of the total phonon 

momentum due to normal processes must be set equal to zero: 

∑ (
𝜕𝑁

𝜕𝑡𝑘 )N. �⃗⃗�  = 0                                                                                                           (155) 

Implies that  

∫ (
∂N

∂t
)N. K⃗⃗ 

ωD

0
 g(ω)dω  

= ∫
1

𝜏𝑁

𝜔𝐷

0
 [�̅� + 

1

𝑘𝐵𝑇
 ( 

−ħ𝜔

𝑇
𝛽𝑣𝐿

𝜕𝑇

𝜕𝑧
) 

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 - N].�⃗⃗�  g(ω) dω = 0                               (156) 

With  N - �̅� = �̃�  
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= ∫
𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 
𝜔𝐷

0
[
−ħ𝜔

𝑘𝐵𝑇2
𝛽𝑣𝐿

𝜕𝑇

𝜕𝑧
) +𝑣𝐿

𝜕𝑇

𝜕𝑧
 

ħ𝜔

𝑘𝐵𝑇2
] 

�⃗⃗� 

𝜏𝑁
 g (ω) dω = 0  

= ∫
𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 
𝜔𝐷

0

ħ𝜔

𝑘𝐵𝑇2 (𝛼 − 𝛽)
�⃗⃗� 

𝜏𝑁
 g (ω) dω = 0  

= ∫
𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 
𝜔𝐷

0

ħ𝜔

𝑘𝐵𝑇2 (𝜏𝑐 (1 +
𝛽

𝜏𝑁
)  − 𝛽)

�⃗⃗� 

𝜏𝑁
 g (ω) dω = 0                   

= ∫
𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 
𝜔𝐷

0

ħ𝜔

𝑘𝐵𝑇2
𝜏𝑐

�⃗⃗� 

𝜏𝑁
 g (ω) dω + β ∫

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 
𝜔𝐷

0

ħ𝜔

𝑘𝐵𝑇2
(
𝜏𝑐

𝜏𝑁
− 1)

�⃗⃗� 

𝜏𝑁
 g (ω) dω =0 

So,                                

                                β = 

∫
𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 
𝜔𝐷
0

ħ𝜔

𝑘𝐵𝑇2𝜏𝑐
�⃗⃗⃗� 

𝜏𝑁
 𝑔(𝜔) 𝑑𝜔

∫
𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 
𝜔𝐷
0

ħ𝜔

𝑘𝐵𝑇2(
𝜏𝑐
𝜏𝑁

−1)
�⃗⃗⃗� 

𝜏𝑁
 𝑔(𝜔)𝑑𝜔 

                                          (157) 

With  

�⃗⃗� .g (ω) = ⅓ [
𝜔

𝑣𝐿
 + 

𝜔

𝑣𝑇
 +√

𝜔

𝑣𝐵
 ] × 

1

3𝑟𝑁𝑐
 [

𝑅𝐿

2
 (

1

𝑣𝐿
2 +

1

𝑣𝑇
2) ω + 

𝑅3𝐿3

2√2𝜋2 
𝜔2

𝑣𝐵
3  ] 

             = 
1

9𝑟𝑁𝑐
 [

𝑅𝐿

2
 (

1

𝑣𝐿
2 +

1

𝑣𝑇
2) (

𝜔2

𝑣𝐿
 + 

𝜔2

𝑣𝑇
 + 

𝜔3/2

√𝑣𝐵
) + 

𝑅3𝐿3

2√2𝜋2 
1

𝑣𝐵
3 (

𝜔3

𝑣𝐿
 + 

𝜔3

𝑣𝑇
 + 

𝜔5/2

√𝑣𝐵
)]                   (158) 

Finally,  

K =  
𝑣𝐿 𝑅 𝐿

6𝑟𝑁𝑐
  (

1

𝑣𝐿
2 +

1

𝑣𝑇
2) ∫ ħ𝜔2𝜔𝐷

0
𝜏𝑐 (1+

𝛽

𝜏𝑁
) 𝑣𝐿 

ħ𝜔

𝑘𝐵𝑇2 
𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 dω +  
𝑣𝐿𝑅3𝐿3

6√2𝑟𝑁𝑐𝜋2 
1

𝑣𝐵
3 ∫ ħ𝜔3𝜔𝐷

0
 𝜏𝑐 

(1+
𝛽

𝜏𝑁
) 𝑣𝐿 

ħ𝜔

𝑘𝐵𝑇2
 

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 dω  
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  =  
𝑣𝐿

2 𝑅 𝐿

6𝑟𝑁𝑐
  (

1

𝑣𝐿
2 +

1

𝑣𝑇
2) [ ∫ ħ𝜔2𝜔𝐷

0
𝜏𝑐

ħ𝜔

𝑘𝐵𝑇2
 

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 dω+ β∫ ħ𝜔2𝜔𝐷

0

𝜏𝑐

𝜏𝑁

ħ𝜔

𝑘𝐵𝑇2
 

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

dω] + 

𝑣𝐿
2𝑅3𝐿3

6√2𝑟𝑁𝑐𝜋2 
1

𝑣𝐵
3 [ ∫ ħ𝜔3𝜔𝐷

0
𝜏𝑐

ħ𝜔

𝑘𝐵𝑇2 
𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 dω+ β∫ ħ𝜔3𝜔𝐷

0

𝜏𝑐

𝜏𝑁

ħ𝜔

𝑘𝐵𝑇2 
𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

dω]       (159) 

With x = 
ħ𝜔

𝑘𝐵𝑇
 , dx= 

ħ

𝑘𝐵𝑇
 dω  

K = 
𝑣𝐿

2 𝑅 𝐿

6𝑟𝑁𝑐
  (

1

𝑣𝐿
2 +

1

𝑣𝑇
2) [ 

𝑘𝐵
3𝑇2

ħ2  ∫ 𝜏𝑐
𝑥3𝑒𝑥

(𝑒𝑥−1)2

Ѳ𝐷
𝑇

0
 dx + β 

𝑘𝐵
3𝑇2

ħ2  ∫
𝜏𝑐

𝜏𝑁

𝑥3𝑒𝑥

(𝑒𝑥−1)2

Ѳ𝐷
𝑇

0
 dx] + + 

𝑣𝐿
2𝑅3𝐿3

6√2𝑟𝑁𝑐𝜋2 
1

𝑣𝐵
3 

[
𝑘𝐵 

4 𝑇3

ħ3  ∫ 𝜏𝑐
𝑥4𝑒𝑥

(𝑒𝑥−1)2

Ѳ𝐷
𝑇

0
 dx +β 

𝑘𝐵 
4 𝑇3

ħ3  ∫
𝜏𝑐

𝜏𝑁

𝑥4𝑒𝑥

(𝑒𝑥−1)2

Ѳ𝐷
𝑇

0
 dx] 

K = 
𝑣𝐿

2 𝑅 𝐿

6𝑟𝑁𝑐
  (

1

𝑣𝐿
2 +

1

𝑣𝑇
2) 

𝑘𝐵
3𝑇2

ħ2  [∫ 𝜏𝑐
𝑥3𝑒𝑥

(𝑒𝑥−1)2

Ѳ𝐷
𝑇

0
 dx + β ∫

𝜏𝑐

𝜏𝑁

𝑥3𝑒𝑥

(𝑒𝑥−1)2

Ѳ𝐷
𝑇

0
 dx] + + 

𝑣𝐿
2𝑅3𝐿3

6√2𝑟𝑁𝑐𝜋2 
1

𝑣𝐵
3

𝑘𝐵 
4 𝑇3

ħ3  

[∫ 𝜏𝑐
𝑥4𝑒𝑥

(𝑒𝑥−1)2

Ѳ𝐷
𝑇

0
 dx +β∫

𝜏𝑐

𝜏𝑁

𝑥4𝑒𝑥

(𝑒𝑥−1)2

Ѳ𝐷
𝑇

0
 dx]                                                                        (160) 

 

The result above shows 3 terms, the first two with a square dependence on temperature 

and the other with a cubic one. The first one corresponds to the contribution of 

longitudinal phonons with no significance about the nature of the material. The second 

term corresponds to torsional phonons with also no significance about the material 

having the ratio of longitudinal speed to the torsional one very close i.e.almost one. As 

the radius of the nanowire is big enough the last term dominates eq. (160) and the first 

two terms vanish, and when the nanowire radius gets very small the thermal 

conductivity expression is determined by the first two terms. This generalizes that at 

very small radius, the nanowire can be treated as a one-dimensional axial wire and that 

all nanowires with very small radii have the same thermal conductivity. 
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F. Derivation of the Crystal Vibrational Parameters 

 

1. Specific Heat and Debye Temperature 

The total energy associated with the nanowire normal modes can be written as  

                                               E = ∑ (
ħ𝜔

2𝑘  +
ħ𝜔

𝑒

ħ𝜔
𝑘𝐵𝑇−1    

)                                                   (161) 

The specific heat is given by: 

Cv = 
𝜕𝐸

𝜕𝑇
 

     = ∑
𝜕

𝜕𝑇𝑘  (
ħ𝜔

𝑒

ħ𝜔
𝑘𝐵𝑇−1    

) 

    = ∑
ħ2𝜔2

𝑘𝐵𝑇2𝑘      
𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 

   = ∫  
ħ2𝜔2

𝑘𝐵𝑇2

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

𝜔𝐷

0
 g (ω) dω                                                                               (162) 

   = ∫  
ħ2𝜔2

𝑘𝐵𝑇2

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

𝜔𝐷

0
 {

1

3𝑟𝑁𝑐
 [

𝑅𝐿

2
 (

1

𝑣𝐿
2 +

1

𝑣𝑇
2) ω + 

𝑅3𝐿3

2√2𝜋2 
𝜔2

𝑣𝐵
2  ]} dω 

   = 
1

3𝑟𝑁𝑐
 ∫  

ħ2𝜔2

𝑘𝐵𝑇2

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

𝜔𝐷

0
 
𝑅𝐿

2
 (

1

𝑣𝐿
2 +

1

𝑣𝑇
2) ω dω + 

1

3𝑟𝑁𝑐
 ∫  

ħ2𝜔2

𝑘𝐵𝑇2

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

𝜔𝐷

0
 

𝑅3𝐿3

2√2𝜋2 
𝜔2

𝑣𝐵
2  dω 

 = 
𝑅𝐿

6𝑟𝑁𝑐
 (

1

𝑣𝐿
2 +

1

𝑣𝑇
2) 

𝑘𝐵 
2 𝑇

ħ
 ∫

ħ3𝜔3

𝑘𝐵
3𝑇3

𝜔𝐷

0
 

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

 dω +  
𝑅3𝐿3

6√2𝜋2𝑟𝑁𝑐
 
1

𝑣𝐵
3 

𝑘𝐵 
3 𝑇2

ħ2  ∫  
ħ4𝜔4

𝑘𝐵
4𝑇4

𝑒

ħ𝜔
𝑘𝐵𝑇

(𝑒

ħ𝜔
𝑘𝐵𝑇−1   )2 

𝜔𝐷

0
 dω 

Change of variable x = 
ħ𝜔

𝑘𝐵𝑇
  then dx = 

ħ

𝑘𝐵𝑇
  dω and dω = 

𝑘𝐵𝑇

ħ
 dx and  𝑥𝐷 = 

ħ𝜔𝐷

𝑘𝐵𝑇
 = 

Ѳ𝐷

𝑇
  

Cv = 
𝑅𝐿

6𝑟𝑁𝑐
 (

1

𝑣𝐿
2 +

1

𝑣𝑇
2) 

𝑘𝐵 
3 𝑇2

ħ2  ∫
𝑥3𝑒𝑥

(𝑒𝑥−1)2

Ѳ𝐷
𝑇

0
 dx + 

𝑅3𝐿3

6√2𝜋2𝑟𝑁𝑐
 
1

𝑣𝐵
3 

𝑘𝐵 
4 𝑇3

ħ3  ∫
𝑥4𝑒𝑥

(𝑒𝑥−1)2

Ѳ𝐷
𝑇

0
 dx                   (163) 
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2. Derivation of  ƟD as a function of Temperature 

The exact specific heat is given by  

                          Cv = 𝑘𝐵 ∑ ∑
(

ħ𝜔

2𝑘𝐵𝑇
)2

(𝑠𝑖𝑛ℎ
ħ𝜔

2𝑘𝐵𝑇
)
2𝑘𝑗                                                     (164) 

Where j stands for longitudinal, bending, and torsional branches and ω(k) can be 

obtained from the dispersion relations of the modes. In order to find Debye Temperature 

ƟD we write:  

𝑘𝐵 ∑ ∑
(

ħ𝜔

2𝑘𝐵𝑇
)2

(𝑠𝑖𝑛ℎ
ħ𝜔

2𝑘𝐵𝑇
)
2𝑘𝑗  = 

𝑅𝐿

6𝑟𝑁𝑐
 (

1

𝑣𝐿
2 +

1

𝑣𝑇
2) 

𝑘𝐵 
3 𝑇2

ħ2  ∫
𝑥3𝑒𝑥

(𝑒𝑥−1)2

Ѳ𝐷
𝑇

0
 dx + 

𝑅3𝐿3

6√2𝜋2𝑟𝑁𝑐
 
1

𝑣𝐵
3 

𝑘𝐵 
4 𝑇3

ħ3  ∫
𝑥4𝑒𝑥

(𝑒𝑥−1)2

Ѳ𝐷
𝑇

0
 dx 

And we solve for ƟD at each temperature. 

 

3. Derivation of the Mode Gr�̈�neisen Parameter as a function of temperature 

The Gr�̈�neisen parameter γ describes how the volume change of a crystal 

affects the vibrational properties. It can be determined as a function of temperature by 

using the following formula:  

                                                     γ = 
∑ ∑ 𝛾𝑗 (𝑘)𝐶𝑣(𝑘)𝑘𝑗

∑ 𝐶𝑣𝑘 (𝑘)
                                                   (165) 

where 𝛾𝑗(𝑘) =
−𝛺

𝜔(𝑘)
 
𝜕𝜔𝑗(𝑘)

𝜕𝛺
  

Where Ω is the volume of the nanowire under study.  

Since   ωL
2  =  

𝐸

𝜌
 π2 [(

𝑧𝑚

𝜋𝑅
) 2 + (

𝒏𝟑

𝑳
) 2] and since the volume change of the nanowire is due 

to both changes in both length and the cross-sectional area of the nanowire, we can 

write 
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𝛾𝐿(𝑘)= 
−𝐿

𝜔𝑗(𝑘)
 
𝜕𝜔𝐿(𝑘)

𝜕𝐿
 × 

−𝜋𝑅2

𝜔𝐿(𝑘)
 
𝜕𝜔𝐿(𝑘)

𝜕(𝜋𝑅2)
 

         = ( (√
𝐸

𝜌
 )2 

𝜋2𝑛3
2

𝐿2𝜔𝐿
2(𝑘)

 ) × ( (√
𝐸

𝜌
 )2 

𝑧𝑚
2

2𝑅2𝜔𝐿
2(𝑘)

 )                                                           (166) 

Using a similar approach,  

𝛾𝑇(𝑘)=  ( (√
𝐶

𝜌𝐼
 )2 

𝜋2𝑛3
2

𝐿2𝜔𝐿
2(𝑘)

 ) × ( (√
𝐶

𝜌𝐼
 )2 

𝑧𝑚
2

2𝑅2𝜔𝐿
2(𝑘)

 )                                                       (167) 

With respect to the bending mode 

ωB
2  =  

𝐸𝐼𝑥,𝑦

𝜌𝑆
 π4 [(

𝑧𝑚

𝜋𝑅
) 2 + (

𝒏𝟑

𝑳
) 2]2 

𝛾𝐵(𝑘)= 
−𝐿

𝜔𝐵(𝑘)
 
𝜕𝜔𝐵(𝑘)

𝜕𝐿
 × 

−𝜋𝑅2

𝜔𝐵(𝑘)
 
𝜕𝜔𝐵(𝑘)

𝜕(𝜋𝑅2)
 

         = [
2𝐸𝐼𝜋4

𝜌𝑆𝜔𝐵
2 (𝑘)

 ( 
𝑧𝑚
2

𝜋2𝑅2 + 
𝑛3

2

𝐿2  ) 
𝑛3

2

𝐿2  ] [
𝐸𝐼𝜋2

𝜌𝑆𝜔𝐵
2 (𝑘)

 ( 
𝑧𝑚
2

𝜋2𝑅2 + 
𝑛3

2

𝐿2  ) 
𝑧𝑚
2

𝑅2  ]                                      (168) 

At this point, the overall Gr�̈�neisen parameter γ can be obtained.  
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CHAPTER VI 

RESULTS 

 

In chapters 4 and 5, we have developed a predictable model for the lattice 

thermal conductivity in pristine and cylindrical nanowires respectively. Boundary 

scattering rates, induced by the low-dimensionality of the materials, have been derived 

along with the appropriate modification of the phonon dispersion relations due to 

phonon confinement. The formalism for the lattice thermal conductivity is formulated 

following Callaway’s procedure. Crystal vibrational parameters including specific heat, 

Debye temperature and Gr�̈�neisen parameter are derived.  

Using this approach, we have computed using MATLAB the thermal 

conductivity of silicon cylindrical and pristine nanowires using silicon bulk values as 

parameters to predict properties of nanowires. The integrals were calculated using 

Simpson’s quadrature method. The predictions from our model were compared to 

experimental values reported on these structures. 

Shown in figure 5 are the measured thermal conductivities for Si nanowires of 

different diameters (22, 37, 56, and 115 nm) in comparison to the thermal conductivity 

of bulk Si. It can be seen that the thermal conductivities are about two orders of 

magnitude lower than that of bulk silicon which is bell-shaped. And the figure shows 

that as the wire diameter is decreased, the corresponding thermal conductivity is 

reduced [24]. The predictions for silicon cylindrical nanowire as predicted by our model 

is shown in figure 6 compared to experimental data reported by Li and co-workers [24].  
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A strong agreement with experimental values is reached within our framework which 

does not contain any adjustable parameter except the specularity factor which varies 

from one surface to another according to its asperities and roughness. 

 

 

 

 

Figure 5: Thermal conductivity of bulk silicon versus that of nanowires with different 

diameters 

 



69 
 

 

Figure 6: Plot of the predicted and measured thermal conductivity of different diameter 

Si nanowires. 

 

The reduction in the thermal conductivity indicates the effect of boundary 

scattering on the transport of phonons in the silicon nanowires. The nanowires with 

diameters 37, 56 and 115 nm have thermal conductivities with peak values around 210, 

160, and 130K, respectively. On the other hand, the thermal conductivity of bulk silicon 

reaches its peak at around 25K. The shift of the thermal conductivity peak indicates that 

as the diameter of the nanowire is reduced the phonon-boundary scattering process 

dominates over the resistive umklapp scattering mechanism, which is in turn responsible 

of the decrease in the lattice thermal conductivity at high temperatures. An exception 

here for the 22 nm diameter nanowire that does not show a peak. An additional 

important feature is the temperature dependence of the nanowires’ thermal 

conductivities at low temperatures. The thermal conductivity data of 115 and 56 nm 
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diameter nanowires exhibits a T3 dependence mirroring the specific heat behavior. As 

the nanowire diameter is reduced, the thermal conductivity of 37 nm wire deviates from 

T3 to T2 dependence and the 22 nm wire shows a linear temperature dependence of K. 

The 22 nm wire values could be explained by some other effects at this small scale. 

In what follows, we are interested to show our model results of the thermal 

conductivities of pristine nanowires with different length sides. A comparison is 

presented through figure 7 between the data for cylindrical versus pristine nanowires.  

Note here that in both cases, cylindrical and pristine nanowires, the only adjustable 

parameter is the specularity factor and is taken to be equal to 0.5.  

 

 

Figure 7: Thermal conductivities of cylindrical and pristine nanowires with different 

cross-section dimensions. 
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As for the case of cylindrical nanowires, pristine nanowires curve deviates 

from the bell-shape and shows a reduction in the lattice thermal conductivity. Similarly, 

as the nanowire cross-section length side decreases, the corresponding thermal 

conductivity reduces. As for comparison with cylindrical nanowires, the 115 nm 

diameter cylindrical nanowire shows a higher thermal conductivity than the pristine 

nanowire below a temperature around 200K. In the region above 200K, pristine 

nanowires show a higher thermal conductivity instead. Same results for 56 and 37 nm 

diameter cylindrical wires and pristine ones are found but with a shift in the inflection 

temperature point. The thermal conductivities for pristine nanowires indicate from the 

figure peak values at higher temperatures than the cylindrical nanowire. This can be 

explained by the presence of boundary scattering process in pristine nanowires for a 

wider temperature range due to the edges of the cross-section that enhance boundary 

scattering. 
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CHAPTER VII 

SUMMARY AND FUTURE WORKS 

 

A. Conclusions 

The thesis was mainly devoted to develop a theoretical predictable model to 

find the lattice thermal conductivity in cylindrical and pristine nanowires. The approach 

involves analytical solution by Boltzmann Transport Equation with the relaxation time 

approximation following Callaway’s procedure to derive the lattice thermal 

conductivity expression. Phonon confinement effects and low-dimensionality allow the 

modification of the phonon dispersion relations. Phonon transport is described along 

three modes: longitudinal, torsional and bending branches. Allowable normal modes 

have been found in cartesian and cylindrical coordinates to describe the allowable wave 

vectors in pristine and cylindrical nanowires. Boundary scattering relaxation times have 

been derived in both cases and studied in terms of the specularity factor p. Crystal 

vibrational parameters such as Debye temperature and Gr�̈�nesien parameter are 

calculated. Comparison with experimental values for silicon nanowires revealed a 

strong agreement with the calculated values that we reported from our model. A good 

knowledge concerning the difference in thermal conductivities of cylindrical and 

pristine nanowires is presented.  

 

B. Future Work 

This model in hand is expected to predict the lattice thermal conductivity for 

nanotubes taking into consideration modifications to the normal modes and 

corresponding boundary conditions imposed on the problem. This topic will be studied. 
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