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An Abstract of the Thesis of

Lama Hanna Tannoury for Master of Science
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Title: Dynamic Origins of Entropic Force:

Thermodynamic Theory vs. Molecular Dynamics Simulations

The aim of this research is to study the dynamic origins of entropic forces acting
on semi-confined polymer chains. We make use of Molecular Dynamics Simulations
to study at first the global chain characteristics and relaxation times of fully confined
chains. Our results infer that we need to go to higher values of N and stronger con-
finement to reach the asymptotic limits of the relaxation times and the radial forces
acting on the chain. We eventually move on to study the dynamics of semi-confined
chains in two limiting cases. The results show that for both cases (infinite and finite
walls at the open end of the nanopore), the pulling force is only dependent on the
temperature T and the diameter D with fpull ⇠ B̃kBT/D. Our model proves to be in
agreemement with the theoretical predictions which state that the two limiting cases
should produce the same entropic force for given values of T and D. The value of B̃
is extracted it appears that for semi-confined chains the pulling force’s coefficient is
different than the universal model independent constant B = 5.79. Studies of the effect
of the length of the tail outside the nanopore were also administered. The change of
weights/concentrations of contacts and magnitudes of forces with the radial distance
were deduced from the Green’s function of a polymer near a plane and were found
to match our simulation results, and a final expression was obtained from the weights
that retrieves the force’s dependence on D theoretically. Finally, we provide a brief
comparison of our model to the ejection of a dsDNA from a bacteriophage T5.
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Chapter 1

Introduction

Polymers in solutions and in confined spaces have acquired a large amount of inter-

est in many areas of science. The pioneer in the field of polymer physics is P.J. Flory,

whose work laid down the building blocks for scientists to come. One of the countless

contributions of Flory’s studies was the universal law concerning the exponent n that

changes with dimensionality d, upon which numerous power laws defining the chains

characteristics are based. Furthermore, the Flory theory of polymers in good solvents

introduced the idea of an excluded volume parameter v for real chains which in turn

played a role in the birth of the expression of the free energy of real polymer chains

[4]. From the latter, he was able to deduce the power law governing the depedence of

the chain size of a free polymer to the degree of polymerization N (refer to §2.1.2).

Other great pioneers in the field of polymer physics and their scaling concepts are

P.G. de Gennes and M. Daoud. In a paper regarding the statistics of macromolecu-

lar solutions trapped in small pores [5], they study the scaling theory behind a chain

trapped in a slit and in a capillary, as well as the features of multiple chains and their

overlapping in confinement. They bring forth the concept of blobs and blob theory (re-
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fer to §2.2) to set up the scaling arguments of the free energy and the length of trapped

real chains, where T is the temperature, D is the diameter of confinement (cylindrical

in our case) and B is a model-independent constant of value 5.79.

Fcon f =
BkBT

D
Rcon f (1.1)

The above equation is the core of our research. Previous studies on the dynamics

of a polymer confined within a nanopore have shown that a fully confined flexible

chain experiences only random thermal kicks with zero mean resulting in a diffusive

center-of-mass motion; in contrast to that, a partially confined long polymer with a tail

outside the pore is subject to a steady mean ejecting force; derived from the free energy

equation. It is well known that confining a flexible polymer chain inside a narrow tube

leads to a reduction in configurational entropy and a corresponding increase in the free

energy [6]. Translation along an infinitely long tube does not result in a change in free

energy and thus does not generate a mean force. However, the free energy of a partially

confined chain is reduced if the inner chain end is displaced towards the tube opening

and more monomers escape the confinement. This free energy is that stated above and

can be rewritten as:

F =
BkBT

D
x (1.2)

where x is the distance from the inner chain end to the tube opening, or in other

words the length of the confined part of the chain, D is the tube diameter, kB is the

Boltzmann constant, T is the temperature, and B is a numerical prefactor close ⇠ 5

as predicted by Monte-Carlo simulations and renormalization-group theory [7]. This

implies that the inner end of the chain that is fixed in space should experience a mean

reaction force of the following magnitude:
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f =
BkBT

D
(1.3)

In this equation, we can see that the force depends on the temperature and the di-

ameter of the pore. Consequently, the force is predicted to be independent of the total

length of the pore, the length of the tail of the chain outside the pore and the details of

the boundaries at the open end of the tube.

Our aim, in this thesis, is to make use of molecular dynamics simulations to study

the dynamic origins of the entropic force and the effects due to the boundary shape

and the length of the tail. We take our nanopore to be a cylindrical tube of length L

with one end closed and the other one open. The chain end at the closed part is fixed

at a distance x = L from the open end. The tube has an inner dimaeter Din and an outer

diameter Dout . Then, we consider two limiting cases arising from the difference be-

tween these two diameters. The first limiting case has a very large difference between

both diameters, and accordingly we can think of the flat edge surface at the open end

of the tube as one that extends infinitely. On the other hand, in the second case, we

take the difference between the diameters to be very small. Due to that, the polymer

tail is free to access the space beyond the outer cylinder surface of the tube.

In a dynamical setting, the net istantaneous force that acts on all monomers can have

an axial (horizontal in our case) component only as a result to the monomers’ colli-

sions with the flat edge surface. The collisions with the inner and outer side walls can

only produce radial forces. Thus if one is to examine the two limiting cases, it would

seem natural that the frequency of collisions in the case of the infinite boundary should

exceed that of the finite boundary. From this perspective, one would deduce that there

would be a measurable difference in the magnitude of the mean ejection force. How-
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ever, theoretical predictions based on equilibrium entropy considerations suggests that

the mean ejection forces that emerge in the two limiting cases are the same and should

be given by eq.(1.3).

Now, we direct our study at certain goals. First, we intend to check how numerical

simulations agree with the theory [7, 8, 9] concerning global equilibrium statistics and

average chain size characteristics in fully confined chains. Concerning dynamic scal-

ing and relaxation times specifically, the theoretical scaling [10] has not been directly

confirmed by simulations, and MC and MD simulations administered by Arnold et

al. [11], have given different scaling laws than those of the theory. However, we will

proceed to study our model’s dynamic scaling and compare to those of the theory and

other simulations. Subsequently, we proceed to explore the semi-confined chain and

the resultant entropic force from the two limiting cases along with the change of the

latter with different sizes of the tail.

Before we present our results, a theoretical background of the subject is provided.
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Chapter 2

Theoretical Background

2.1 The Free Polymer Chain

A polymer which is etymologically written as (poly)-(mer) is translated from Greek

as (many)-(parts) and refers to macromolecules consisting of several repeating units.

These units are called monomers and are covalently (chemically) bonded to each other

in a process called polymerization during which the structure of a polymer is attained.

One of the basic characteristics of a polymer is the number of monomers in the chain

and is known as the degree of polymerization N. Depending on the nature of the poly-

mer’s repeating units, we can define two types of chains. Homopolymers are molecules

consisting of monomers which are made of identical repeating units. The second type

of macromolecules is heteropolymers. The latter is a combination of different types of

monomers into one chain. Biopolymers such as DNA are heteropolymers. They are

fabricated from four different types of monomers known as nucleotides. As for pro-

teins, also an example of biopolymers, they can be broken down to 20 distinct types of

monomers (amino acids) [12].

Different types of interactions arise from various constraints administered on the
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polymer chain. However, if we consider a free homopolymer chain with only covalent-

bond interactions, we end up with the simplest form known as ideal chains.

2.1.1 The Ideal Chain - A drunkard’s walk

The drunkard’s walk, or most commonly known as the simple random walk is

one of the models used to obtain a general picture of an ideal chain’s characteristics.

We make the following assumption: our chain has a high degree of flexibility and is

allowed to take on several configurations. As a consequence of that, we are able to

depict our polymer as a long string as in fig.(2.1).

Figure 2.1: The atomic structure of a polyethylene structure (left). The polymer chain
as a long flexible string (right) [1].

According to the drunkard’s walk, our polymer chain follow a regular lattice seen

in fig (2.2).In this picture, all directions taken by the chain have the same probability

and our chain’s movement along the lattice conforms with that of a random walk, thus

making it possible for us to exploit the latter’s statistical properties to derive those

related to our chain.

Let R be the ’end-to-end’ vector joining the two ends of the polymer, then

R =
N

Â
n=1

rn (2.1)

6



Figure 2.2: Random walk of a polymer chain on a two dimensional lattice [2]

where N is the number of bonds and rn is the vector of the nth bond. If we calculate

the average of the square of R , hR2
i, since hRi = 0, we get the following expression

from (2.1),

hR

2
i=

N

Â
n=1

N

Â
m=1

hrn · rmi (2.2)

However, since a single bond vector is independent of the direction of the other

bond vectors, then eq. (2.2) holds only for n = m and it turns out that,

hR

2
i=

N

Â
n=1

hr2
ni= Na2 (2.3)

where a is the length of the bond in our lattice model. What we actually seek from

this is the fact that the average value of the square of R is proportional to N, thus if

we take the square root of that we could clearly see that the size of the polymer, R, is

thereupon proportional to N1/2 . Let us from now on denote the end-to-end distance

of an ideal free chain by Ro ⇠ aN1/2 .

The probability distribution of the end-to-end distance is expressed by a Gaussian

function,
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P(R,N) =

 
3

2pNb2

!
exp

 
�

3R

2

2Nb2

!
(2.4)

It might be of interest to note that eq.(2.4) gives an expression for the entropy of

the polymer chain at a fixed elongation [6] in 3 dimensions

S(R) = S(0)� 3
2

k
R

2

R

2
o

(2.5)

As the elongation (Ro) increases, the entropy decreases. In terms of the free energy,

eq.(2.5) becomes,

F '

3
2

kT
R

2

R

2
o
'

3
2

kT
R

2

Na2 (2.6)

If we derive the free energy with respect to the distance R we get,

∂F

∂R

=
3kT
Na2 R = f (2.7)

We can deduce that we have an entropic force f acting on the chain to sustain its

configuration with an end-to-end distance, R. The expression of the force looks famil-

iar and the coefficient can be seen as analogous to a spring constant. Thus, 3kT/(Na2)

plays the role of an entropic spring constant [12]. The lower the number of monomers

N and the smaller the monomers (size a) are, the higher the ”stiffness” of the chain.

This fact is inversely true to the temperature T as well.It is also significant to note that

the force increases as the chain is stretched, causing it to go back to a more probable

configuration.

However, polymers are rarely ideal. If we inspect the ideal chain model care-

fully, we would realize that not only did we neglect any interactions between the chain

and its medium and interactions between non-bonded monomers, we did not prevent
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monomers from occupying the same space. The fact that two or more monomers

can exist in the same space is in this case physically impossible, thus scientists were

prompted to go further and investigate real polymer chains.

2.1.2 The Real Chain

For a more realistic approach, we must take into consideration long-range interac-

tions between monomers along the chain as well as define an excluded volume that

prohibits the overlap of monomers. Thus, instead of having a random walk, we are

now dealing with a self-avoiding walk (SAW). When long-range interactions are taken

into account, we will observe both attractive and hard-core repulsive forces in action.

However, it is important to clarify that as an effective repulsive energy comes into play,

the size of the real chain will become greater than that of an ideal chain, and it will

be subject to the swelling of the chain. The Flory theory [4] of a polymer in a good

solvent gives a beneficial evaluation of the free energy of a real chain, embracing both

interactive and entropic contributions (explained in eq. 2.10). Let us assume that the

swollen chain is of size R where R > R0 = aN1/2. P.J. Flory was aware that there is

a cost in energy when we prevent a monomer in being within the excluded volume of

another given monomer. The cost, which is known as the energy of excluded volume

interaction, is (per monomer) [12],

Fintper monomer ⇡ kT v
N
R3 (2.8)

To get the energy for the whole chain, we need only to multiply eq.(2.8) by the

number of monomers N and we get,

Fint =⇡ kT v
N2

R3 (2.9)
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where v is the excluded volume, and R3
⇡V with V being the volume occupied by

the chain. We have so far discussed the interactive contributions involved in evaluat-

ing the total free energy F of the real chain. The entropic contribution, as estimated

by Flory, is that associated with stretching an ideal chain to its end-to-end distance

[eq.2.6], which has been discussed in Section (2.1.1) . Getting all the needed ingredi-

ents to calculate Flory’s estimation of the total free energy, we arrive at the following,

F = Fentropic +Fint ⇡ kT

 
R2

Na2 + v
N2

R3

!
(2.10)

At the beginning of this section, we assumed that our swollen chain has a size R

different and greater than R0 . To retrieve the expression of R, we take the minimum

of the total free energy (i.e ∂F/∂R = 0) expressed in eq.(2.10) . Thus the Flory theory

produces RF :

RF ⇡ N3/5a2/5 (2.11)

It is important for the reader to appreciate the fact that the Flory theory delivers

a universal power law concerning the dependence of the size R on the number of

monomers in the chain N as follows,

R ⇠ Nn (2.12)

where n = 3/5 (known as the scaling exponent) appears for swollen chains and n =

1/2 for ideal linear chains. However, later theoritical and experimental investigations

have given a more accurate assessment for n when it comes to 3 dimensional linear

swollen chains [12]: n = 0.588 .
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2.1.3 Relaxation Times - A Harmonic Oscillator Approach

In order to understand the relaxation times of a real polymer chain, let us first take

the example of the harmonic oscillator. The potential in this case is

U =
1
2

k x2 (2.13)

(we take k in order not to confuse it later on with kB , the Boltzmann constant).

We can think of the stretching of the polymer to an un-equilibrium state as some dis-

placement in the oscillator where they both tend to go back to some equilibrium state.

It is important to note that:

hx2
i=

kBT
k

(2.14)

So, assuming x is similar to our polymer size R, in terms of k we get:

k =
kBT
hR2

i

'

1
N2n

'

1
N1.2 , n = 3/5 (2.15)

The equation of motion of a harmonic oscillator is,

mẍ+x ẋ+kx = 0 (2.16)

Similarly, we can say that a polymer chain follows the same dynamics with m = Nm0

where m0 = 1 is the mass of the monomer and N is the number of monomers in the

system. Whereas, x = Nx0 and x0 is the coefficient of friction per monomer.

Dividing by m we get:

ẍ+
x

m
ẋ+

k

m
x = 0 (2.17)

In order to check if our system is over-damped, critically damped or under-damped,
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let us compare the relaxation time of the polymer with the period of “oscillations”.

Using dimensional analysis, we consider the following:

x

m
=

1
TRel

,
k

m
=

1
T 2
(Osc.)

(2.18)

Then TRel
T(Osc.)

becomes,

TRel

T(Osc.)
=

p

mk

x

'

p

NN�2n

N
'

p

NN�1.2

N
⇠

1
N1 ⇠ N�1 (2.19)

It is clear from eq. (2.19) that,

TRel

T(Osc.)
< 1 TRel << T(Osc.) (2.20)

The above equation indicates that the relaxation time of the polymer in our system

is much less than the period of oscillations. In turn, this proves that our system is an

over-damped one. Following the analogy above, we can ignore the ẍ term in eq.(2.17),

and it becomes,

ẋ+
k

x

x = 0 (2.21)

with the following solution,

x ' exp�
k

x

t (2.22)

and the relaxation time t being,
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t =
x

k

'

N
N�2n

' NN2n

' N2.2 , n =
3
5

(2.23)

This indicates an existence of a power law between the relaxation times t and the

number of monomers N that goes like N2.2 . Now we know what to expect when solv-

ing and plotting for the t vs. N.

2.2 The Locked Up Polymer Chain

Now that we have a better understanding of basic polymer characteristics and dy-

namics, we move a step closer to our main topic. Let us examine how a a cylindrical

confinement (with diameter D) affects the characteristics we have discussed so far.

When brought under confinement, the spacial dimensions of a real chain are reduced

at large scales. The Flory exponent (n) changes accordingly [6],

n =
3

d +2
where d is the dimensionality (2.24)

We’ve stated before that for a single free chain, the ideal chain radius is R0 'N1/2a.

For a free real chain we defined RF where F stands for Flory. Let us redefine the latter

into RF3 ' Nn3
' N3/5 where 3 is for dimensionality. If we take this particular chain

into confinement, its conformational behavior will alter. Considering that the con-

finement is a cylindrical pore with diameter D, we will have different regimes when

comparing RF3 to D.

If D >> RF3 then we remain with d=3 and the chain acts as a free polymer in open

space.

If D << RF3 , the chain reveals one-dimensional behavior and a change in charac-
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teristics. Let us now bring about the notion of blobs, where our polymer is divided into

said blobs of diameter D. The number of monomers per blob is defined as,

gD '

✓
D
a

◆1/n3

'

✓
D
a

◆5/3
(2.25)

The blobs act as hard spheres and display one-dimensional behavior. Now, the shape

of the chain is outlined by a thickness D and a radius RF1 given by,

RF1 ' D

 
N
gD

!
n1

(2.26)

Replacing gD and n1 by their expressions we get,

RF1 ' Na

 
a
D

!2/3

(2.27)

Now that we have the expression for the optimum size of a confined real chain, let

us proceed and check what happens to the free energy of confinement.

Fcon f ' T h(y) where y =
RF3

D
(2.28)

If the polymer acts as a free chain then there is no energy of confinement and,

h(y) =

8
>><

>>:

0 for D >> RF3

yx for D << RF3

(2.29)

Note that even though the chain acts with dimensionality 1 we have used RF3 be-

cause this is the energy required to confine a free polymer chain of dimensionality

3.
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Fcon f ' kBT

 
N3/5a

D

!x

for D << RF3 (2.30)

We know that for d = 1 (blob picture), F should be linear in N and thus x = 5/3 and

the free energy of confinement becomes as follows [5],

Fcon f ' kBT N

 
a
D

!5/3

(2.31)

Since polymer physicists are extremely fond of scaling laws, Burkhardt and Guim

[13] have constructed a universal law for the relation between the energy of confine-

ment and the average end-to-end distance of a confined chain in the scaling regime

where Na >> D >> a:

Fcon f

RF1

= B
kBT
D

and Fcon f = B
kBT
D

RF1 (2.32)
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2.3 A Semi-Confined Polymer

Up until now (section 2.2), we have discussed a polymer entrapped in an infinitely

long nanopore. In this chapter, we will study a semi-confined polymer chain along with

its free energy of confinement and the entropic force acting on the confined part of the

chain. To proceed, we cut the pore into a finite known length L, with a certain diameter

D.The polymer will try to leave the pore and seek freedom. However, the means by

which the polymer leaves the tube and the time required for it to do so is dependent

on the size of the tail outside the pore. There exists a critical tail size N⇤ that defines

two ejection regimes; N > N⇤ and N < N⇤ . While both cases are equally important

when it comes to ejection kinetics of polymer chains, we will focus on the long chains

with tails (N > N⇤). N⇤ is defined to be L/al , where l is a strain parameter. In other

words, and concerning blob sizes, we need the length of the tail to exceed the size of

1 blob with diameter equal to D. We have already acquired an expression for the free

energy of confinement in an infinite pore, all we need to do in partial confinement is

to consider the end-to-end distance of the confined part (`) instead of RF1 in eq.(2.32)

[7]:

F = B
kBT
D

` (2.33)

It is well known that confining a flexible polymer chain inside a narrow tube leads to

reduction in the configurational entropy and a corresponding increase in the free energy

[6]. Studies by Klushin et al. [8] have also shown that the tail creates an entropically

driven pulling force that acts on the confined part of the chain. It turned out that the

force is independent of the size of the tail and can be understood as the slope of the

free energy vs. the end-to-end distance of the confined part ` :
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f = B
kBT
D

(2.34)

From eq.(2.34) we can deduce that the force is only dependent on the diameter and

in fact, it decreases while increasing the diameter. The coefficient B that appears in eqs.

(2.32, 2.33 and 2.34) is model-independent and is predicted to be 5.79 by Monte-Carlo

simulations and renormalization-group theory [7]. It might be of importance to state

that the dimensionality d (d=3 in our case), the monomer-tube interaction (repulsion,

adsorption,...), the tube geometry (we have a circular tube), and the universality class

of the monomer-monomer interaction (poor, good or q -solvent) all affect the value of

B.
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Chapter 3

Molecular Dynamics Simulations

In the previous chapters, we have covered the foundations upon which our work is

built, it is beneficial to try and illustrate in words how a Molecular Dynamics simula-

tion works. MD simulations is at the heart of what we do and it is a tool that elegantly

performs calculations we are incapable of carrying out analytically. It is a powerful

procedure to compute equilibrium and dynamical properties of many-body systems

[3]. If we look deep down into the backbone of this method, we would find that it

integrates numerically the classical equations of motion to give us information about

the positions and velocities of our atoms/monomers. Figure 3.1 is a flow diagram [14]

illustrating a basic molecular dynamics algorithm:

3.1 Equations of Motion

To start with the basics of MD simulations, let us consider a system of N interact-

ing molecules. We also assign to our system generalized coordinates and velocities,

{qi, q̇i} . Thus the Lagrangian L = L (qi, q̇i, t) of the system satisfies
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Figure 3.1: Diagram for an MD simulation algorithm [3]
.

d
dt

✓
∂L

∂ q̇i

◆
�

∂L

∂qi
= 0; i = 1,2, ...N (3.1)

L is defined by the potential and kinetic energies of the system. Ergo, if qi con-

notes a component of the Cartesian coordinates for any of the atoms, and assuming the

atoms have identical masses m we get [14],

L =
1
2

mÂ
i

q̇2
i �U({qi}) (3.2)

If fi is considered the force corresponding to atom i then (3.1) is reduced to Newton’s

second law,
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mq̈i =�

∂U
∂qi

= fi (3.3)

One of the most prominent properties of the classical equations of motion is the

conservation law [3] . If our potential and kinetic energies are independent of time

then our Hamiltonian H follows the same path, thus the change of H with respect to

time is zero.

Ḣ =
dH
dt

= 0 (3.4)

where the Hamiltonian is defined as,

H(p,q) = Â
k

q̇k pk �L (3.5)

In our simulations this is attained when all the forces acting on the system do not

depend explicitly on time or velocities. Now to be able to solve the equations of motion

we will have to integrate the 3N order differential equation i.e eq. (3.1). One should

keep in mind that ultimately we do not want an exact solution. What we seek from

a Molecular Dynamics simulation is to be able to envision thermodynamic properties

and calculate time correlation functions that describe the dynamics of our system, as

opposed to being able to track exact configurations of our atoms.

3.2 Verlet Methods

There exists more than one method to solve such a differential equation eq.(3.1).

The Verlet Method which engulfs the ”leapfrog” and velocity-Verlet algorithms is sim-

ple and time reversible. To acquire the Verlet equations we commence with a Taylor
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expansion of the coordinate of the atom at t +dt and t �dt, [15].

r(t +dt) = r(t)+v(t)dt + r̈
dt2

2
+

...r
dt3

6
+O(dt4) (3.6)

r(t �dt) = r(t)�v(t)dt + r̈
dt2

2
�

...r
dt3

6
+O(dt4) (3.7)

If we sum equations (3.6) and (3.7) we get the following,

r(t +dt) = 2r(t)� r(t �dt)+ r̈(t)dt2 +O(dt4) (3.8)

where r̈(t)⇡ f i .The Verlet Method can be modified in two different ways, produc-

ing the ”leapfrog” and velocity-verlet algorithms mentioned before. Our code employs

the latter.

3.2.1 Velocity Verlet

Unlike the ”leapfrog” algorithm where velocities and positions are not evaluated at

the same time, velocity-Verlet (which from now on we will refer to as VV algorithm),

allows us to compute both simultaneously. The VV algorithm adopts the previously

mentioned Taylor expansion for computing the positions i.e eq.(3.6) including only

second order derivatives and neglecting any higher order terms. Thus we get,

r(t +dt) = r(t)+v(t)dt + r̈(t)dt2

2
(3.9)

By taking the time derivative of the preceding equation we get the desired veloci-

ties. Consequently we have,

d
dt
⇥
r(t +dt) = r(t)+v(t)dt + r̈(t)dt2

2
⇤
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v(t +dt) = v(t)+ [r̈(t)+ r̈(t +dt)]
dt
2

(3.10)

and in force notations our position and velocity equations come to be,

r(t +dt) = r(t)+v(t)dt +
1

2m
f i(t)dt2 (3.11)

v(t +dt) = v(t)+ 1
2m

[f i(t)+ f i(t +dt)]dt (3.12)

3.2.2 Numerical Scheme

1. Given initial positions ri and velocities vi, we compute all the forces acting on

each atom/monomer

2. Use eq. (3.11) to update ri at t+dt

3. Since we do not have f i(t + dt) we carry out a partial update for the velocities

using fi(t); let’s call this a half-step at 1
2dt:

vi(t +
1
2

dt) = vi(t)+
f i

2m
dt (3.13)

4. Compute the new forces at t+dt

5. Having computed all the necessary components, we finally assess the velocities,

vi(t +dt)

6. Repeat 1 ! 5

22



3.3 Forces

We have mentioned so far a force fi acting on our monomer i. In this section we

will explore the types of forces and their corresponding potentials that said atom ex-

periences, leaving for later discussions the forces designed by our additional boundary

conditions. If we consider our polymer to be free and experiencing a random walk,

we are able to identify two types of interactions between our monomers: bonded and

non-bonded interactions. Our potential energy function U(r) is a combination of both.

3.3.1 Non-Bonded Interactions

Non-bonded interactions take place mainly between atoms of different molecules,

or between atoms that are on the same molecule but are not chemically bonded. In

other words, in our case, this interaction is between monomers of the same chain that

are not considered to be ”nearest neighbors” (adjacent monomers) and are at or smaller

than a certain interactive distance from each other. The potential used in our simula-

tions is the following [3]:

WCA Potential

The WCA potential is also known as the Weeks-Chandler-Anderson potential. It is

mainly the repulsive part of the Lennard Jones potential and has a cutoff radius at the

latter’s minimum i.e. rc(WCA) = 21/6
sLJ and is shown to be,

UWCA(ri j) =

8
>><

>>:

4e

✓
s

ri j

◆12
�

✓
s

ri j

◆6�
+ e for ri j < rc = 21/6

s

0 for ri j � rc

(3.14)
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3.3.2 Bonded Interactions

FENE Potential

Bonded interactions arise between atoms or monomers connected by chemical

bonds [3], and their values mostly depend on the fluctuations of the chemical bond

lengths and angles from equilibrium. In our system, we make use of the Kremer Grest

potential. The KG potential is a combination of the FENE potential and the WCA.

Assume our polymer is made of N monomers connected by an an-harmonic spring.

All monomers including bonded ones interact with a repulsive Lennard Jones (WCA),

and monomers that are nearest neighbors specifically interact by the Finite Extensible

Nonlinear Elastic Potential. Thus the FENE contribution to the interaction due to two

adjacent beads separated by ri j is,

UFENE(ri j) =

8
>><

>>:

�

1
2kR2

o ln


1�
✓

ri j
Ro

◆2�
for ri j  Ro

• for ri j � Ro

(3.15)

where k is the spring constant for the FENE bond, and Ro is the limit of the bond

extension.
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Chapter 4

Our Own Adventure - The Road

Taken

“It’s a dangerous business, Frodo, going out your door. You step

onto the road, and if you don’t keep your feet, there’s no

knowing where you might be swept off to.”

— J.R.R. Tolkien, The Lord of the Rings

It is convenient to remind the reader that we have made use of molecular dynamics

simulations (check Ch. 3 for more details on how an MD simulation works) to study

the dynamics origins of the entropic force of a partially confined polymer chain and

the effects brought by the boundary shape and the length of the tail. We proceeded

with adding the potential and the forces that arise from the walls of our tube. The

force acts on individual monomers as a function of their positions and proximity to

the walls. Afterwards, we move on to consider two limiting cases (discussed later on)

concerning the semi-confined polymer chain.
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4.1 Infinitely Long Pore

The first stepping stone we had to establish was to create the nanopore where we

would be able to place the polymer. However, since we wanted to study the charac-

teristics of a fully confined polymer chain as a first step, we start by constructing an

infinitely long pore. In the simulations the wall is represented by a force acting on

our monomers and inhibiting them from going outside. The walls are not permeable,

rather they are purely repulsive. We should keep in mind that the force exerted should

neither be too large so as to ”throw” the monomer outside the tube, nor too small such

that the monomer diffuses through the wall (in a one time step integration). One of

the potentials that have the ability to exert such a force is the Lennard-Jones Potential.

However, we only desire the repulsive part of the LJ potential (see fig. ??) which is

also known to be the WCA potential mentioned in section 3.3.1.

The force exerted by the latter potential is that of the LJ potential; however we

define a cutoff distance at ri j = 21/6
s that delivers a purely repulsive force.

FWCA/LJ =
24e

s


2
✓

s

ri j

◆13
�

✓
s

ri j

◆7�
(4.1)

The distance ri j is between the monomer and a corresponding point at the walls of

the pore. The function in the code responsible for calculating the force from the wall

boundaries on the monomer takes ri j as an argument, computes the force and imple-

ments it in the proper direction. The magnitude of the force in each direction (radially,

no axial component) is then added to the net force acting on each monomer. When the

latter is implemented in the velocity verlet process ( section 3.2.1), we are left at each

new time step (t) with new positions and velocities as an outcome of the forces at (t -

dt).

Testing that the forces are working accordingly and the polymer is kept inside the pore,
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we need only insert input variables analogous to the diameter and the length (infinite

in this case) of the tube to run the simulations and extract the characteristics from the

results obtained.

4.2 Assembling our Limiting Cases

Our main purpose was to inspect how different variables such as the diameter or

the length of the tail of the polymer outside a semi-confined chain affect the results of

studying the entropic forces acting on the confined poart of the chain. Previously, in

chapter 2, section 2.3 we discussed the thermodynamics background of the mentioned

force. As of now, we are left with the molecular dynamics part of this story to be able

to bring justice to the title of this thesis and finally compare the two.

I have stated earlier in this chapter that we consider two limiting cases here. The

chain’s environment now is made up of a cylindrical tube of length L (no longer infi-

nite), with one end closed and the other open. The tube has an inner diameter Din and

an outer diameter Dout . Our two cases arise from the difference between the inner and

outer diameter and are as follows,

4.2.1 Infinite Outer Boundaries

Here, the difference between both diameters is very large(see figure 4.1), and ac-

cordingly we can consider the flat edge surface at the open end of the tube to extend

infinitely.

We have already constructed the inner tube along with its diameter Din, we only

need now to incorporate a method in the simulations which is analogous to an infinite

wall at the boundaries. The easiest way is to take the exact same force used inside

the tube in the radial directions and implement it at the flat wall in the axial direction
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Figure 4.1: Sketch for a semi-confined polymer chain with infinite outer boundaries
(large difference between Din and Dout)

only. So once a monomer is outside and close to the wall, it triggers a function in the

simulation which calls for the WCA force to be evaluated. Thus, the particle will feel a

”push” in the axially with a certain magnitude relative to its closeness to the boundary.

Again, the force is purely repulsive, no adsorption or diffusion through the wall take

place. However, the reader might ask, what is meant by too close to the wall. Since

s = 1 in the simulations, we have rm = 21/6
s where rm ⇠ 1.12246 is the minimum

distance needed between the wall and the the monomer before the latter feels any kind

of force from the boundary (inter- and intra-molecular forces are not included in this

force). At any other distance above that, the monomer experiences no repulsion from

the wall. An input for an outer diameter Dout was not defined, we made the ”virtual”

wall extend in the yz-plane as far as the monomers tend to go.

4.2.2 Finite Outer Boundaries

In this second case, the difference between the diameters is very small and due to

that, the polymer tail is free to access the space beyond the outer cylinder surface of

the tube. All we have to do in the simulation is define a variable corresponding to the

thickness of the boundary which substantially plays the role of the difference between
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Dout and Din. When the polymer chain’s y and z positions flow beyond the second

diameter, the chain is at liberty to explore all the free space around the nano-pore

including the region close to the outer cylinder.

Figure 4.2: Sketch for a semi-confined polymer chain with finite outer boundaries
(small difference between Din and Dout)

If it happens that the chain is too close to the outer cylindrical boundary of the tube,

it experiences a repulsive force outwards and away from the boundary. All these forces

are added to the total force acting on each monomer (i) and accounted for during the

velocity verlet process.

4.2.3 The Inner and Outer Edges

As far as the edges are concerned, we assume that they are sharp corners. We use

the WCA potential and define our cutoff to be at 21/6. If the monomer lies anywhere

between the length of the pore (L) and L+cuto f f axially and between the diameter D

and D�cuto f f radially, then there exists a corresponding quarter circle with its center

lying on the corner. Knowing the monomer’s coordinates, we can calculate those of

the circle affiliated to it where the latter has a radius of 21/6 . This process delineates

the edges as curves rather than edges from the monomer’s point of view.
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4.3 Fixing the Polymer

We are almost done with the building blocks required to continue our research;

however, we have yet one more task to formulate before we commence to collecting

and analyzing results. If we mean to study the effects of the boundaries and the tail

of the polymer on the entropic force, then we need the simulation to maintain a cer-

tain environment such that we take sufficient data points for analysis. We expect that

during the simulation we always have collisions between the monomers and the outer

boundaries and a certain length of the tail is somehow maintained. Thus, leaving the

polymer to release itself from its constraints and allowing for a full ejection would

not be very relevant to our studies. This leads us to setup our ”apparatus” in such a

way that the polymer is fixed inside the pore. Taking into account that we are using

MD simulations and that there exists between the monomers of the same polymer inter

and intra-molecular forces, we can simply try to fix the first monomer in space with a

”harmonic oscillator”. Nonetheless, we must make sure that the force exerted by the

spring on the monomer is not high enough in magnitude to drag the polymer inside and

not low enough to render the polymer outside leaving us with the initial concern. The

reader should try and imagine that there is no actual spring attached to the monomer,

only a force exerted in the axial direction (the force may be either positive or nega-

tive) that keeps the first monomer within a certain range( around 1-2 monomer size)

from the origin. To implement this in our simulations, and to be able to use the same

spring constant for all changing variables, we had to run some tests. We start initially

with N monomers in an infinitely long pore with a given diameter D. We let the code

generate new positions for the N monomers which are equally and horizontally placed

on the x-axis. Since this is a highly improbable configuration, we run the simulation

for some time such that we get a more reasonable structure. The polymer has now
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diffused along the pore thus we shift the final coordinates produced in the initial run

back to the origin along the x-axis only and we switch the harmonic oscillator on. By

now we would have already defined an arbitrary value for the spring constant, given

that said value is somehow reasonable (Some trial and error runs were made to get

to a reasonable value). Currently, the first monomer should experience an axial force

equal to �kx where x is the distance from the origin (i.e the x coordinate of the first

monomer). All we need to do now is to cut the infinite pore so that we are acquire a

finite pore with length L. With a finite pore of length L, diameter D and fixed polymer

we run the simulation again for a final time and obtain a file containing the magnitudes

of the force felt by the first monomer. For statistical reasons, we go over the process

several times to be able to get an average of the values we have. As a consequence,

we now have several runs corresponding to different simulations (⇠ 2⇥106 iterations

with an integration time step equal to 5⇥ 10�4) stocked with the magnitude of the

force from the spring. From these values we can create a histogram shown in fig.(4.3)

and get an average of the force exerted on the fixed monomer.
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Figure 4.3: Histogram showing the frequency of the magnitudes of the force exerted
by the spring on the fixed monomer
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F =�kx (4.2)

The average force turns out to be equal to -1.3425. Our aim is to find an ideal

spring constant that only allows the first monomer to move 1 unit along the x direction

from the origin, thus in eq. (4.2) we need x to be equal to 1. With that, we end up with

a spring constant equal to 1.3425. We are currently almost at the top of the mountain.

I would like to add a few more comments before we move on to the most important

aspect of this thesis; the results.

4.4 Correlation Functions and Relaxation Times

In section 2.1.3 we discussed the notion of relaxation times of a free polymer chain

and we are now aware of its dependence on the degree of polymerization N. As for

a fully confined polymer chain we expect that the relaxation times would still depend

on N; however, they would also rely on the diameter D in some way. The scaling law

governing this dependence is,

t ⇠ N2D0.3 (4.3)

As you can see, the dependence on N is weaker than that of a free polymer chain and

we have an extra dependence on the diameter.

The code we have (original and added parts), does not calculate directly the relaxation

times of the chain. However, it does calculate the correlation function, and from that

we can determine the relaxation time t . The correlation function, as the name im-

plies, is the correlation of certain values of the system at different times or through the

whole simulation time. The relaxation times in polymers as mentioned before can be
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explained as the time it takes for the polymer to achieve an equilibrium state when it

had started with a perturbed one. That is why the correlation function eq. (4.4) we

have, calculates the association of the end-to-end distances of the chain throughout the

process.

C(t) =
h(RF1(t)�hRF1i)(RF1(0)�hRF1i)i

hR2
F1
i�hRF1i

2 (4.4)

Taking the data obtained of the correlation function and plotting with respect to

long-time behavior we get,

C(t)⇠ e�t/t (4.5)

Thus, to get the relaxation time t , after every simulation, we take the log-log plot of

the correlation function versus time. The relaxation time t is then �1/slope.
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Chapter 5

Results and Analysis

It is of importance to state that throughout the whole simulations we used the WCA

potential and force for non-bonded interactions and the KG potential and force for

the bonded interactions between monomers. As for the mass (per monomer) and the

temperature, we have m = T = 1 . The maximum bond length of the FENE potential

used in KG is Ro = 1.5 and its spring constant kspring = 30 .The friction coeffient used

for the calculation of the total forces acting on the monomers and in the generation of

the random noise component is g = 0.25 . The above parameters have these assigned

values in most simulations unless otherwise is stated.

5.1 Free Polymer Chain

Before adding our new environment for the provided MD code, we commenced

with some test runs to check the characteristics of a free polymer chain.

In figure (5.1) we see the depedence of the end-to-end distance of the polymer

chain on the degree of polymerization N. The code calculates the end-to-end distances

simply by getting the distance between the two end monomers of the chain; Ree =
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Figure 5.1: Plot of the end-to-end distances Ree and R2
ee for a free polymer chain for

different number of monomers N.

p
(xend � x0)2 +(yend � y0)2 +(zend � z0)2 . From theory we know that Ree ⇠ Nn and

R2
ee ⇠ N2n where n is 3/5 according to Flory and ⇠ 0.587 according to simulations.

In fact, this is what we can see from our simulations as well. We have n = 0.61±0.06

where the error is that on the fit, and the error bars on the data points are standard

deviations on the averages of the different runs for each N. We expect the dependence

of the square of the end-to-end distance to be nothing but the square of n and in fact,

this is what we obtain.

Concerning relaxation times, the code only provides us (as stated before) with the

time-depedent auto correlation functions eq.(4.4). However, we are able to get the

relaxation times trel by taking the log-log plots of C(t) with respect to time and getting

the slope of the linear part.

Our results of trelvs.N(log� log) agree with Eq. (2.23), where our simulations

give (2n +1) to be 2.27±0.08 .
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Figure 5.2: Plot of the relaxation times trel for a free polymer chain for different
number of monomers N.

5.2 The Fully Confined Polymer Chain

5.2.1 Average chain size characteristics

According to the blob picture, (refer to section 2.2), a polymer chain in a cylindrical

confinement acts as a one dimensional self-avoiding walk with a certain number of

blobs nb each of size D (diameter). Scaling theories predict the average end-to-end

distance to be (with n ⇠ 3/5 ),

RF1 ⇠ nbD ⇠ ND1�1/n

⇠ ND�2/3 (5.1)

Fig. (5.3a) and (5.3b) present the average lateral component of the end-to-end

distance (and R2
ee ), which we define in eq. (5.1) to be RF1 versus the degree of poly-

merization N. The two fits give us on average a power law dependence of (1.15±0.06)

and (2.32± 0.06) for Ree and R2
ee respectively. For the fully confined chain, in com-
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Figure 5.3: Power law governing Ree (a) and R2
ee (b) dependence on N.

1 1.2 1.4 1.6 1.8 2 2.2 2.4

Log D
eff

2

2.5

3

3.5

4

4.5

5

L
o

g
 R

e
e

R
ee

  D

N=70
 = -0.88  0.04

N=100
 = -0.80  0.08

N=150
 = -0.75  0.06

N=200
 = -0.71  0.07

N=70

N=100

N=150

N=200

(a)

1 1.2 1.4 1.6 1.8 2 2.2 2.4

Log D
eff

4

5

6

7

8

9

10

L
o

g
 R

2 e
e

R2
ee

  D

N=70
 = -1.44  0.11

N=100
 = -1.46  0.09

N=150
 = -1.41  0.05

N=200
 = -1.30  0.05

N=100
N=150
N=200
N=200

(b)

Figure 5.4: Power law governing Ree (a) and R2
ee (b) dependence on D.

parison with the free chain, we have an extra dependence of the end-to-end distance

on the diameter D. However, we must note that for all fits concerning the diameter

(including semi-confinement), we found out that there exists a nonuniversal correction

to the pore’s diameter D to D�d , which we will call the new effective diameter, with

d = 1.9 .

Figures (5.4) and (5.3) produce the following scaling arguments,

Ree ⇠CN1.1D�0.78
e f f (5.2)
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Figure 5.5: (a) shows the dependence of the relaxation times on N. (b) shows the
dependence of the relaxation times on the effective diameter.

where our simulations show that Ree ⇠Da

e f f with a =�0.78±0.04 and R2
ee ⇠D2a

e f f

with 2a = 1.4±0.03 . The model-dependent numerical prefactor, C, in eq. (5.2) has

been estimated in two ways and turns out to have the following values,

C =

8
>><

>>:

1.11±0.08 from y-intercept of log(De f f ) vs. log(Ree)

1.20±0.04 from plot of Ree vs. NDa

(5.3)

5.2.2 Relaxation time measurements

Now we attend to the global relaxation times trel of a confined polymer chain. For

weak confinements, we know that the behavior of the relaxation times falls back to

the scaling behavior of a free polymer. When strong confinement is concerned, we

expect the scaling result to go like trel ⇠ N2D2�1/n

⇠ N2D0.3 . Using the slowest

exponential decay of the autocorrelation function, the relaxation times we find in our

MD simulation scale approximately as (check fig. (5.5)),

trel ⇠ N2.03D1.14 (5.4)
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This results shows an agreement in the dependence on N; however, it demonstrates

a much stronger dependence on D. Relaxation times are associated with large scale

microscopic motion of the polymer chain. This type of motion can be affected by

the elastic characteristics of the chain and its surroundings. Other MD simulations by

Arnold et al. [11], show a lower dependence on N and a higher on D, with their re-

laxation times going as t ⇠ N1.75D1.3. However, they were able through their Monte

Carlo simulations to consider higher degrees of polymerization N and ended with the

same depedence on N yet with a slightly weaker depedence on D and in more agree-

ment with the theory (⇠ D0.75 ). This implies that it is possible for us to obtain a

scaling law close to the theory if we are able to go further into strong confinement

with higher N, especially concerning the dependence on D. It is not possible for us

to go to lower diameters, because then the pore would be too narrow ,considering the

effective diameter, (De f f ' sizeo f monomer ) and it would be almost impossible for

two monomers to move both radially and axially.

5.2.3 Free energy and force

A chain confined in a cylindrical pore consists of nb blobs each of size D. Each

blob contains a certain number of monomers g = (D/a)1/n depedent on the diameter,

which result in a total number of blobs nb = N/g ⇠ ND�1/n . The free energy of

confinement (in units of kBT ) is,

Fcon f = Anb = AND�1/n = AND�5/3 (5.5)

A, similarly to C in Ree , is dimensionless and a model-dependent numerical coef-

ficient. MD simulations do not directly calculate the energy, but we can get the radial

force acting on the wall. From our simulations, we need only to take the sum of the
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magnitude of the radial forces acting on each monomer at each time step and average

over all time-steps to get an average of fradial . The radial components of the force at

each time step and on average add to up zero, thus we only use the magnitudes. From

the confinement free energy, fradial is simply derived;

fradial =�

∂Fcon f

∂ r
= 2

∂Fcon f

∂D
=

2A
n

ND�1/n�1
e f f (5.6)

where (�1/n �1)⇠�2.67 .
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Figure 5.6: Variation of fradial with the scaling variable (2/n)ND�2.6
e f f

Figure (5.6) shows the radial force plot versus the scaling variable (2/n)ND�2.6
e f f

. The coefficient A from this plot is equivalent to A = 2.80± 0.09 . Eventhough we

are aware that A is model-depedent and there is no universal value governing it, we

know that a combination of A and C (A/C), produces a model-independent universal

prefactor B. For this reason, we go on to check the validity of the scaling argument

we used with our MD simulations. First, we check the depedence of fradial on D, and

it turns out that fradial ⇠ Db

e f f where b = �2.32± 0.04 instead of �2.67 . Using the

same plot (log(De f f ) vs log( f f radial )) we are able to deduce the value of A from the

y-intercept where,
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A =
ney�int.

2N
(5.7)

which results in A = 2.14±0.04 . This result is fairly similar to what we produced

before. It is prominent that eq. (5.7) depends still on only one variable; N. Exam-

ining the power law governing fradial and N, we find out that according to our MD

simulations, fradial is not linear in N, in fact, fradial ⇠ Nl where l = 0.78± 0.04 .

Checking again with eq. (5.7) but with our new N dependence, we get A = 6.45±0.46

. Now that we know how fradial acts like in terms on De f f and N according to our MD

simulations, we can temporarily change eq. (5.6) to be,

fradial =
2A
n

N0.78D�2.3
e f f (5.8)

Plotting fradial with the new scaling argument we get A = 6.13±0.14 .
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Figure 5.7: Variation of fradial with the scaling variable (2/n)N0.78D�2.3
e f f
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Taking the ratio of the radial force and the end-to-end distance we get,

fradial

Ree
=

2
n

BN�0.22D�1.7 (5.9)

where B = A/C = 5.79 as stated before, is a model independent universal constant.

From our simulation we can now deduce B in three different approaches.

1. Ratio of A and C evaluated from the y-intercepts of log(De f f ) vs. log( frad) and

log(De f f ) vs log(Ree) respectively

2. Ratio of A and C evaluated from the slopes of fradial vs. (2/n)N0.78D�2.3 and

Ree vs. ND�0.7 respectively

3. Get B directly from the plot of f f radial
Ree

vs. (2/n)N�0.22D�1.7

From equations (5.3) and (5.7), we have (B = 5.8±0.58 ) for case(1). For case(2)

we have B = 5.11± 0.2 . As for case(3), fig. (5.8) shows the value of B, for N =

150,200,300 , to be B = 6.6±0.2 .
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Figure 5.8: Variation of fradial/Ree with (2/n)N�0.22D�1.7 produces the constant B.

From our values of the end-to-end distances and the radial force, we can conclude

that we do not reach the asymptotic limits stated by the theory concerning the de-
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pendencies on N and D. The depedence on the diameter is different and we can still

observe a dependence on N. Therefore, concerning the value of B in this case, it might

not be significant to compare it to the universal constant and discuss the discripancies

we have.

5.3 The Semi-Confined Polymer Chain

As the reader might know by now, our main concern in this research is to study

the dynamic origins of the entropic force generated when a polymer chain is put into

semi-confinement. The source of the entropic force is the difference between the free

energies outside and inside. Since the free energy outside is less than that of the con-

fined part, the polymer chain tends to go outside,resulting in this entropic force acting

on the confined part. In an MD method, we are unable to calculate entropies and en-

ergies directly, thus we try to mimic the entropic force by a pulling force produced by

our potential at the walls. To understand this force more, we take a look at the free

energy of the confined part.

Since we have our polymer fixed inside the tube, then the distance from the inner chain

end to the tube’s opening is simply the length of the pore L.

F = B
kBT
De f f

L (5.10)

The force is consequently,

f = B
kBT
D

(5.11)

Initially we need to check that the magnitudes of the pulling force is in fact the

same for the two limiting cases. The first step we did was to check that the dynamics
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Table 5.1: Pulling Force (Infinite Boundaries)

Table 5.2: Pulling Force (Finite Boundaries)

are working properly each time we ran a simulation. At the end of each simulation,

we were presented with the total forces acting on the whole system. This total force

consists of the average inter and intra molecular interactions, the force from the spring

keeping our polymer in place, the radial forces inside the tube and the forces produced

from the outer boundaries. The last force encompasses the force from the inner edge

and the flat outer wall for the infinite boundary case, and the force from the inner and

outer edge as well as the wall with thickness h for the finite boundary case. We also

made sure that the total force is negligible and that the average position of the center

of mass of the polymer chain is stationary which results in no type of diffusion inside

or outside the pore.

5.3.1 Pulling Force

From eq. (5.11) we clearly see that the force is independent of the number of

monomers in the system, and in fact this is what our simulations show. Thus we are

able to present tables (5.1) and (5.2) of the pulling force as a function of D averaged

over several runs for different values of N.
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If one ignores the theoretical predictions concerning these two cases, one would

think that in a dynamical setting such as ours it seems logical that the frequency of

collisions with the wall in the case of the infinite boundary should be greater than

that in the case of finite boundaries. This reasoning leads to another assumption that

there should be a significant difference in the magnitude of the pulling force in the

two cases. However, the simulations clearly agree with the theoretical predictions that

suggest that both forces boil down to the same expression and dependencies in eq.

(5.11) .

One of these dependencies is that of the diameter D. We know that fpull ⇠ D�1
e f f .

Figure (5.9) shows the dependence of the pulling force on the diameter for finite

outer boundaries fpull ⇠ Dµ where µ = �1.057± 0.007 . As for the infinite bound-

aries figure (5.10) result in µ = �1.060± 0.006 . One way to explain this similarity

between the two cases is to consider that eventhough the finite boundary has less area

for collisions, the fact that there is free space beyond the boundary allows the chain to

get closer to the wall creating new interactions or generates higher magnitudes. This

topic will be discussed later, thus for now we move to check how the pulling force is

affected by the change in temperature.

We expect a rise in the pulling force in association with the increase of the system’s

temperature. The system’s temperature is kept constant using a Langevin thermostat;

however, with a temperature increase the molecules’ velocities are higher,thus if a

monomer is approaching the wall with temperature T2 > T1 for a certain time-step it

will approach with higher velocity. The latter leaves the monomer closer to the wall

and in turn creates a higher repulsive force resulting in a higher pulling force. The

opposite also applies for cases where T2 < T1 . (Assuming T1 is what we have worked

with up till now with T = 1 ).

Fig. (5.11) shows that if fpull ⇠ T f then f = 0.92± 0.02 , and table (5.3) shows
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Figure 5.9: Finite Boundary: The dependence of fpull on De f f for N = 150,200,300
in (a) , (b), and (c) respectively.

Table 5.3: Pulling Force dependence on T
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Figure 5.10: Infinite Boundary: The dependence of fpull on De f f for N = 150,200,300
in (a) , (b), and (c) respectively.
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Figure 5.11: The dependence of the pulling force on the temperature T for T =
1/2,1,2,5,7 .

numerical results for D = 5 . It occurs that for a semi-confined chain, unlike the full

confinement case, we are able to reach, in fpull , the asymptotic limits in T and D. We

do not find any dependencies on N and that of D is as expected thus we are able to

proceed with extracting the coefficient B.

For the infinite boundary case, (T = 1) we can see from fig. (5.12) that a plot of

fpull against 1/De f f yields B = 3.19±0.02 while for the finite boundaries we produce

fig. (5.13) whose results concur with those of an infinite boundary with B= 3.30±0.04

.

Up till now, we have assumed that the coefficient B in eq. (5.11) is the same as that

for a fully confined chain. However, that may not be the case, and the fact that B is a

model-independent universal constant might not be true in the case of semi-confined

chains under the effect of a pulling force.
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Figure 5.12: For infinite boundaries and for different values of N, we plot fpull against
1/De f f to extract the coefficient B
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Figure 5.13: For finite boundaries and for different values of N, we plot fpull against
1/De f f to extract the coefficient B
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5.3.2 Radial Force

If fpull =
∂F
∂L , then as in the case of full confinement, fradial = 2 ∂F

∂D .

fradial =
2BL
D2 =

2L fpull

D
(5.12)

If we start with the first equality in eq. (5.12) we can extract, using another method,

the coefficient B and check if it is consistent with the results we obtained before.
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Figure 5.14: Plot of fradial against 2L
D2 for a semi-confined chain produces the coeffi-

cient B.

In agreement with our previous results, fig. (5.14) gives B = 3.11± 0.02 , thus

from now on we will call the coefficient derived from the pulling force B̃ instead of B

. However, before we state whether the theoretical prediction about B is true for a case

like ours, let us proceed with another testing method.
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5.3.3 Confined Pull

To be able to study both B̃ and B simultaneously we go back to the case of a fully

confined chain. We keep the chain connected to the spring keeping it in place and we

apply a force to the other end. The final magnitude of the force is equal to the average

pulling force in the semi-confined case in terms of the diameter D.

We start with a given number of monomers N and diameter D in a confined tube.

We start with a zero magnitude pulling force and start increasing it until we get to

a maximum of fpullD . Simultaneously, we would be recording the force felt by the

spring and the changes in lengths at certain timesteps and increments of the force.

Thus now we have the change in length with respect to the force l( fpull) . We run for

each increment long enough such that we get to an equilibrium length before altering

the magnitude. If F is the total free energy of the system, we can write it as follows,

Ftotal = F0 +F1 (5.13)

where F0 is the free energy only due to confinement and F1 is that due to the pulling

force. The final length of the chain is,

l = l0(1+ e) (5.14)

where e = Dl/l0 . Dividing the free energy by the length we get,

F
L
=

F0 +F1

l0(1+ e)
(5.15)

Replacing F/l by the force f, which is the force felt by the spring,

and F1 = Bl0/D ,
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Table 5.4: Data for Confined Pull

f (1+ e) =
B
D
+

F1

l0
(5.16)

All the needed measurements are provided by the simulations and we apply a sim-

ple trapezoidal method of integration on l(f) vs. f to obtain F1 =
R

f dl . For a specific

N and D, we use eq. (5.16) to get B and we are also capable of deducing B̃ from

F1 = B̃l f /De f f . If the values we obtain for B are in agreement with the theory, then

we know that all the asymptotic limits we discussed before have been reached and then

it would be valid for us to extract the value for B̃ then compare with its previous values

in sections (5.3.2) and (5.3.1), with B and comment on the results.

Table (5.4) shows that B = 5.34± 0.07 compared to the theoretical value of 5.79

. Proceeding with the calculations of B̃ , from F1 we obtain B̃ = 3.1± 0.2 which is

consistent with the previous two results. It is clear that the free energy of confine-

ment in an infinite tube is different from the free energy of confinement of a chain in

semi confinement under the effect of a pulling force. Eventhough Ree switches to L

(length of pore) in semiconfinement, the amplitudes B and B̃ in turn are also modi-

fied. Thus it is safe to say that the model-independent universal constant B, is so for

fully confined chains in a tube; however this does not apply in our model. To explain

this discripancy between the two constants related to the free energies of fully and

semi-confined chains, we think of the free energy of full confinement as F0 and that
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Table 5.5: Data for radial force and pulling force for N=300 for semi-confined chain

of semi-confinement as F0 +DW . DW is the work done by the pulling force in both

semi-confinement and the confined pull method. The free energy per monomer shows

that F0/N < (F0 +DW )/N for the same number of monomers N. However, when tak-

ing the free energy per unit length, which is equal to the force we are calculating,

F0/L1 > (F0 +DW )/L2 where L1 is the length of a relaxed polymer chain and L2 is

that of a stretched chain due to a pulling force resulting in L2 > L1. From this we can

deduce that the free energy in a fully confined state is less than the free energy of a

polymer chain in semi-confinement; however, the difference between the free energy

per unit length discussed above results in the difference between the coefficients B̃ and

B.

5.3.4 Relation between radial and pulling force

Following from eq. (5.12), we possess a correlation between the pulling force fpull

and the radial force fradial for a chain in semi confinement. Plotting fradial against

fpullL/De f f , we get a slope of magnitude 2 as seen in fig.(5.15) .

Assuming we do not have the values for the pulling force, we can extract them and

compare to previously obtained values.

Table (5.5) shows the pulling force obtained from the simulations and the calcu-

lated values for N = 300 and D = 5,7,10,12 .
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Figure 5.15: Plot of fradial against fpull for a semi-confined chain.

5.3.5 Effects of the tail

A study, by Klushin et al. [8] investigated the dragging of a polymer chain inside

a nanotube. The study defines the end monomer position inside the tube to be x, and

they show that there exists a critical value for x called x⇤ . Relying on theory and MC

simulations, they prove that if the ratio of x
x⇤ > 1 , that is if the length of the polymer

inside the tube exceeds the critical length, the partial confinement is not longer an

equilbrium state and the chain is dragged inside and the free energy becomes that of

total imprisonement. If x
x⇤ < 1 , then the chain is in what is known to be as a partially

confined ”flower” state and the amplitude of the free energy, in affinity with out results,

is no longer the universal constant B ⇠ 5.79 but defined to be,

Ff l = 4.27x/D (5.17)
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There is a discripancy between the value of B̃ in eq.(5.17) and ours. This mismatch

may be due to the fact that the study uses Monte Carlo simulations and were able to

extract the value from values of the free energy. The parameter x is fixed in our case

and known to be L (the length of the tube). If we come to think about this in reverse,

then if there exists a length of the polymer inside the tube above which the chain is

drawn inside, then there most certainly exists a length outside below which the same

process also occurs and that length is known to be greater than a blob size.

In this section, instead of checking free energies, we will check whether the polymer

will experience a pulling force as we decrease the number of blobs outside the tube

until the tail is smaller than a blob, and whether the chain will be lured inside or keep

its partially confined state.

In our code, L is calculated by using the input values of the diameter and the number

of blobs desired outside. We administered the runs for N = 150 and D = 7 , and in

fig.(5.16) we can see that we get the same magnitude for the force even when the

size of the tail outside is less than 1 blob. The final configurations also show that the

polymer still has a tail outside and did not switch to full confinement.

L⇤ = 1.265
N

D1�1/n

(5.18)

To write L⇤ in terms of the number of blobs, multiply and divide eq.(5.18) [8] by

D1/n and take N/D1/n to be the number of blobs, we get

L⇤ = 1.265D�0.2nb (5.19)

Thus for N = 150 and D = 5, L⇤ = 0.913nb .

The last two columns of table(5.6) yield the ratio L/L⇤ = 1.02 > 1 and 1.06 > 1 ,

yet we still remain in the semi-confined state. However, it should be stated that nb is
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Table 5.6: The length of the polymer inside the tube in terms of the total number of
blobs

the seed we start with at the beginning of the simulation, and due to the pulling force

from the interaction between the tail and the boundary and the fact that our polymer

starts with a relaxed state, we end up with more than the initial number of monomers

outside throughout the simulation. Thus we are still above the critical number of blobs

outside.
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Chapter 6

Polymer Near a Plane

In our simulations we obtained data revealing the relationship between the densi-

ties outside the cylindrical pore (in the case of a semi-confined polymer) to the radial

distance r measured from the center of the cylinder. In this section, we look forward

to retrieve an analytical expression of the mentioned relationship and compare to our

results. However, it should be specified that the calculations are done for an ideal chain

near an infinite flat surface. Any notes concerning the corrections resulting from the

fact that our chain is non-ideal and from the finite boundary case will be discussed

later.

6.1 ”Grafted” Chain to a Non-Adsorbing Wall

Let us consider a chain with length N and one end fixed at height h(x,R), (refer

to fig.(6.1)) [16] The thermodynamic properties are represented by the propagator GN

that satisfies the following Edwards equation [17],

∂GN

∂N
=

a2

6
DGN (6.1)
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with the following boundary conditions,

8
>><

>>:

GN(r,r’)⌘ 0 (at the surface)

lim
N!0

GN(r,r’) = d (r� r’)
(6.2)

For the case of an ideal polymer with one end fixed at h the weight is found to be

the following using the method of images [18]

G(h,r,N) =

 
1

4pDN

!d/2

exp

 
�R2

4DN

!
⇥

"
exp

 
�

(x�h)2

4DN

!
�exp

 
�

(x+h)2

4DN

!#

(6.3)

with d dimensions, and D = a2

2d . If d = 3 (as in our case) then D = a2

6 . Replac-

ing in eq.(6.3) we get our general Green’s function in terms of x, R and the number

of monomers outside the pore, N. Let us assume that the size of the monomer a is

1, and the height h = (1,0). We can think of the weights as the probability of find-

ing a monomer at a certain distance from the plane and having the following general

expression,

G |h=(1,0)=

 
3

2pN

!3/2

exp

 
�3R2

2n

!
⇥

"
exp

 
�

3(x�1)2

2n

!
�exp

 
�

3(x+1)2

2n

!#

(6.4)

One essential property of the Green’s function that we are dealing with is the com-

position law,

GN(r,r’) = Â
s

GN(r’,s)GN(s,r) (6.5)

where s could be defined as the point of contact between the polymer chain and the

surface through some monomer i. Following this, we are able to divide our chain into
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two sections (see sketch in fig.(6.1)):

Section A: which we define as the loop, with one end fixed at h = (1,0) , ends at s

and includes n monomers.

Section B: which we define as the tail, starts at s, ends anywhere and includes N-n

monomers. (N being the total number of monomers in the chain).

Figure 6.1: Sketch of a grafted polymer chain near a non-adsorbing surface

6.1.1 The Loop

We know that the loop is fixed at one end at x = 1,R = 0 and should end at an

arbitrary R at s. However, we know that s is the point of contact so consequently,

the loop ends at x = 1 too. This gives us a specific form for the Green’s function

corresponding to the loop by replacing x by 1 in eq.(6.4). What we need to be doing

next is integrating the Green’s function to get the partition function. However, we

must note that to get the ”number of contacts” or the weight of a contact happening
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(WeightLoop) one must first multiply the Green’s function by the area of the ”ring” with

infinitesimal thickness at which the contact appears, then we integrate over q .

WeightLoop =
Z 2p

0

 
3

2pN

!3/2

exp

 
�3R2

2n

!
⇥

"
1� exp

 
�6
n

!#
RdRdq (6.6)

WeightLoop =
3p

p

6
2

 
1

pn

!3/2"
1� exp

 
�6
n

!#
exp

 
�3R2

2n

!
RdR (6.7)

If we use Taylor expansion on the first exponential term in eq.(6.7) for large n we

get the final form for the loop’s partition function,

WeightLoop =
9R

p

6
2

e

✓
�3R2

2n

◆

n5/2 dR (6.8)

We do not integrate over R and n yet because we still need the whole picture which

includes the second partition; the tail.

6.1.2 The Tail

We are aware that the tail starts at s (contact with the surface) and ends anywhere

in x and R. To produce its partition function we use the Green’s function in eq. (6.4);

however, x 6= 1 because we are not certain that the end monomer of the tail ends at the

surface. On this account, we integrate over x : 0 ! • , q : 0 ! 2p and R : 0 ! • .

WeightTail =
Z 2p

0

Z •

0

Z •

0
G |h=(1,0) RdRdxdq (6.9)
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Note that the number of monomers in the tail is N-n,

WeightTail = er f

 
1
2

r
6

N �n

!
(6.10)

To simplify eq. (6.10) we use Puiseux series to expand it for large values of N-n,

Weighttail =

r
6
p

r
1

N �n
(6.11)

6.1.3 Weight of Contact

Now that we have the weights for the two divisions (loop and tail), and following

from the composition law in eq.(6.5), we need only multiply their corresponding par-

tition functions that are thus far dependent on R and n. Additionally, we integrate over

n such that we end up with the distribution of contacts (let us call it C(R)) that has a

fixed total number of monomers N, with respect to the radial position R only.

C(R) =
Z N

0

54R
p

e

✓
�3R2

2n

◆

n5/2(N �n)1/2 dn (6.12)

As the reader can see, for small values of n we have a small loop and a large tail

and thus we have a contact close to the origin, and the opposite also holds for large

values of n. A simple change of variable where t = n/N would render the integral as

follows (where t 2 0 ! 1 for n 2 0 ! N),

C(R) =
Z 1

0

54R
p

e

✓
�3R2
2tN

◆

t5/2N2(1� t)1/2 dt (6.13)

Integrating would give us,
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C(R) = 6
r

6
p

(1+3R2/N)e�3R2/2N

R2
p

N
(6.14)

Studying eq. (6.14) along the radial direction would allow us to compare to the

results of densities of forces and contacts in our MD simulations; section (6.2).

Now, if we consider eq. (6.14) to describe the magnitude of the force along the radial

direction, then integrating over R should present us with an expression (let us call it f̂

) that portrays the average of that force which we call the pulling force. We integrate

from D!• since there is no possibility of contact at the opening of the cylinder where

R < D . The expression is as follows,

f̂ =
6
p

6e�3D2/2N

D
p

pN
(6.15)

To observe the importance of eq.6.15 let us recall the expression of fpull ,

fpull =
BkBT

D
(6.16)

It is remarkable that we were able to reproduce this dependence on 1/D without

deriving it from the free energies and without the help of scaling arguments.

6.2 Comparison with MD results

To obtain the ”concentration” of forces and contacts in our MD simulations we set

the total number of monomers, the diameter and the number of blobs we desire to be

outside. From the latter we get Nout which is the number of monomers outside the tube

and in contact with the outer flat plane. We use Nout in plotting later on the theoretical

concerntrations in eq.(6.14). During the simulation we record any ”contact” or inter-

action that happens with the outer boundary along with it position and magnitude. We
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then take the range of the radial distance on which interactions occur and segregate it

into bins of equal thickness. Afterwards, we sort the frequency and magnitude of the

interaction accordingly. The final step is to normalize all the data and the theoretical

curve such that the integral over the curves produce the magnitude of the total force

associated with diameter being used.

All the data shown is for N = 300 . Figures (6.2a) and (6.2b) show the concentra-

tion profile for the forces and contacts respectively, for D = 5 .

The results for D = 7 is shown in fig.(6.3), and those for D = 12 in fig.(6.4). The

first thing we notice from the figures below is that they all validate the value of De f f

we chose for our system in our previous studies. If we take for example a cylinder of

diameter 12, we expect the effective diameter to be De f f = D� 1.9 = 10.1 thus the

radius is ⇠ 5.05 , which is the case in fig.6.4. Another prominent point is the difference

between the infinite and finite outer boundaries. The radial distance at which the finite

curve ends is close to the outer edge of the outer cylinder which is at a distance equal

to D+ thickness+21/6 , with thickness = 5 in all three figures. The ”bumps” we see

at the end of the curve can be explained as follows: the polymer chain is getting closer

to the wall and experiencing repulsion, then it starts exploring greater radial distances

until it reaches the curve which is a partition between repulsive walls and free space to

explore. The polymer tends to explore the free space in the region close to the cutoff

distance of our potential and comes close enough such that the amplitude of contacts

and force is no longer zero.

This brings us to the subject of amplitudes. If we try to compare the curves of forces

to those of contacts, we can see that at the same radial distance r, we have greater

amplitudes for the contacts than for the forces. This indicates that even though we

have a large number of contacts, most of their contribution to the force is minimal.

Moreover, the fact that the two curves (infinite and finite) overlap answers the question
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of these limiting cases that we first asked in this thesis research; do the two cases result

in the same pulling force and do they have equal free energies?
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Figure 6.5: Log10 �Log10 plot of the force concentration against the radial distance
for N = 200 / D = 10 with finite boundaries of different thicknesses

Fig.(6.5) shows the force concentration for several values of the thickness h for the

finite boundary case. All these curves belong to D = 10 thus they produce the same

pulling force. Eventhough the curve with higher values of the thickness h extend to

larger radial distances, we can see that for each case there exists a sudden decrease in

the force making up for it.

The last remark concerning this topic deals with the discrepancies we see in figures

(6.2-6.4) between the theoretical curve and the simulation. We must note that while

calculating the theoretical results, we assumed that we are dealing with an ideal chain,

and all corrections of excluded volume were ignored. In addition to that, we assumed

that the chain is grafted at the center (0,0) of the opening of the tube and is not free
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to move across the diameter. The effects of the latter are easily seen as we go to

larger diameters where in real life the polymer has more space to explore and is free

to position itself at places other than the center. To support the latter claim we plot the

densities of the end monomers at the open end of the tube along the radial distance

and we see in fig.(6.6) that the end monomers as said before are free to move along the

radial direction at distances below re f f .
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Figure 6.6: A plot of the densities of monomers near the open end of the tube along
the radial direction for D = 5,7,10,12
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Chapter 7

A Brief Analogy to Biological Systems

A thorough understanding of entropic forces is important in various areas of both

science and technology. One can subsequently relate them to transfer of polymers in

biological systems such as the separation of DNA molecules in the course of meiosis

or the ejection of DNA from a bacteriophage. In this chapter, we will use the latter to

provide a biophysical analogy to the polymer physics we have studied this far, and to

demonstrate its application to other fields as well.

If we take a look at a bacteriophage’s structure fig.(7.1, we can see that the tail of

the phage closely resembles the cylindrical nanopore in our model. It has been shown

that the in vitro DNA ejection of a bacteriophage T5 can be provoked by the interac-

tion with its receptor. A T5 phage has a close resemblance to our model, because it

contains linear dsDNA along with a long non-contractile tail [19]. Once the trigger of

an in vitro T5 DNA ejection is administered, the base plate of the phage binds to the E.

coli receptor [20]. This process prompts a signal to the connector found between the

head and tail such that it opens and allows the release of the DNA. We are interested

in the process where the DNA is existing the end of the tail through the base plate and
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Figure 7.1: A 2D and 3D image of the structure of a bacteriophage

getting ready for the infection process. Recent in vitro studies show that the dsDNA

being ejected experiences a driving force fe ject ( fpull in our model). However, this

force can be repressed by external osmotic pressure creating a resistive force fresist

( fspring in ou model) prohibiting the entry of the DNA into the solution [21]. In vivo

experiments are hard to administer; however, comparing in vivo and in vitro ejections

to our limiting cases might help us in setting a model based prediction.

In vitro ejections usually take place from confinement (capsid) to salty solutions, where

the latter can ce considered as free space. This resembles the limiting case with in-

finitessimal outer boundaries, where the thickness of the wall h can be related to the

thickness of the protein layer surrounding the base plate and tail. Whereas in in-vivo

ejections the base plate attaches to the host cell and the ejection takes place in the

host cell’s cytoplasm, and the host cell walls act as ”infinite” boundaries to the DNA
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strand.

The results of our model’s limiting cases, along with their analogy to the biological

process stated above can help us predict that if a resistive force preventing ejection

can occur in in-vitro DNA ejection for an environment of certain characteristics, then

in-vivo DNA ejection would experience the same ejecting and resisting forces for the

same parameters.
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Chapter 8

Summary, Conclusion and Future

Work

In this thesis research we presented a study of fully and semi-confined polymer

chains placed in a nanopore of diameter D, length L (in semi-confined case), and with

impenetrable repulsive walls. We utilized MD simulations to retrieve global chain

characteristics in full confinement, along with extracting measurements and depen-

dencies of radial, pulling and entropic forces and free energies in semi-confined chains

for our two limiting cases (finite and infinite boundary walls at the open end). Our

results were briefly as follows:

1. Free Polymer Chain

• The end-to-end distance (Ree) dependence on N was extracted and shown

to be Ree ⇠ N0.61, where N is the number of monomers.

• The relaxation times of a free polymer demonstrated an agreement with

theoretical scaling laws concerning the dependence on N, trel = N2.27.

2. Fully Confined Chain
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• We found a nonuniversal correction to the pore’s diameter D that shifts it

to D�d (effective diameter De f f ) with d = 1.9.

• The dependence of the end-to-end distance (Ree) was deduced to scale as

Ree ⇠ CN1.1D�0.78 compared to the theoretical scaling law with Ree ⇠

CND�0.67 where C is a model dependent constant. Our simulations are

in agreement with the theory taking into account the errors on our data.

Extracting the constant C from our model, we got C = 1.11± 0.08 and

1.20±0.04 from two different methods.

• Studing the radial force acting on the confined polymer we deduced that

we were not able to reach the correct asympotic limits for the scaling law

,instead, we arrived at fradial ⇠ AN0.78D�2.3. fradial is not yet linear in N

and this leads to a dependence of the ratio of fradial/Ree on the number of

monomers N, whereas this dependence does not exist in theory. The model

dependent amplitude A was calculated and found to be A = 2.8±0.09 and

A = 2.14±0.04 from two different methods.

• We know that the ratio A/C should produce a universal constant B = 5.79,

yet the values we have do not manufacture that. Thus, we conclude that

we need to go to higher values of N and stronger confinement to retrieve

the theoretical value of B and the dependence of fradial on the number of

monomers and the diameter.

• The relaxation times of a confined chain in our model were shown to be

trel ⇠ N2.03D1.14 which agrees with the theory for the dependence on N

yet we observe a much stronger dependence of the diameter than expected.

Taking into consideration that other MC (Monte Carlo) simulations were

able to reach higher degrees of polymerization and stronger confinement
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but still were not able to reach the theoretical asymptotic limits, we cannot

be certain that going for larger N would eventually lead to the theoretical

scaling law. However, doing so is one of the viable solutions.

3. Semi-Confined Chain

• Theoretical predictions suggesting that the mean pulling force for our two

limiting cases is the same, are proven to be correct. Our results show homo-

geneity between the resultant pulling forces from the two cases for different

values of N and more importantly of the diameter.

• The pulling force’s dependence on the diameter and the temperature has

been obtained rather precisely and shown to be fpull ⇠ B̃T 0.92/D1.06.

• Using several methods we deduce that the coefficient B̃ in the expression

of the pulling force is not the universal model independent constant B, and

it turns out that B̃ ⇠ 3.2.

• We extract B from the fully confined pull method and our results show it to

be B = 5.34±0.07.

• We deduced that the free energy per unit length for full confinement is

larger than that for semi-confinement.

• Our simulations show a relation between fradial and fpull to be fradial =

2L fpull/D

4. Polymer Near a Plane

• From the Green’s function near a plane, we deduce the change of the den-

sities of forces and contacts with radial distance. From the latter we extract

an expression that retrieves the dependence of the force on the diameter D.
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• When comparing the theoretical expression of the densities to the simula-

tion results we find an overlap between the curves of the finite and infinite

boundaries resulting with an equal pulling force. The simulations further

support our choice of the effective diameter.

For future work, we could begin with reaching the asymptotic limits for confined

polymers with taking higher values of N (as much as affordable MD simulations would

allow). We also plan on enhancing the expression of the concentrations near the repul-

sive wall by removing the assumption that we have a grafted monomer at the center of

the open end, instead we leave it to move freely in a certain radial distance below the

diameter. Finally, I would hope that one day I would be able to build the environment

that replicates real biological systems and be able to simulate and study their physical

aspects.
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