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The modeling of complex nonlinear structures is always accompanied with 

different sources of uncertainties. These uncertainties become significant when the 

structural system is subjected to regular aging factors or to some extreme events that 

could alter its behavior unexpectedly. Thus to reduce failure risks, and improve the 

knowledge of the system state and parameters, Structural Health Monitoring (SHM) 

techniques are employed for early detecting the damage of such structural systems. This 

process relies on analyzing collected real time measurements using Data Assimilation 

techniques. The Kalman Filter (KF) method and its different variations fall in the class 

of Sequential Data Assimilation techniques; these techniques start by calibrating the 

model parameters and then update them in response to any change in the material’s 

behavior, based on an optimal probabilistic framework that minimizes the mismatch 

between the predicted values and actual measurements. In this dissertation, a highlight 

on the importance of uncertainty quantification is presented through a comparative 

study between intrusive and non-intrusive ways in quantifying uncertainties. A 

comparison between two different variations of the Kalman filter technique, the 

Ensemble Kalman Filter (EnKF) and the Polynomial Chaos based Ensemble Kalman 

Filter (PCKF), is performed for this purpose. The comparison is based on the ability and 

efficiency of each technique in quantifying the present uncertainties and in properly 

identifying the state and parameters of the system under consideration. 

 

A four-degrees of freedom (DOFs) system subjected to El-Centro earthquake 

ground excitation is used to compare the EnKF to the PCKF in representing the 

uncertainties for SHM purposes. A preset damage of the first degree-of-freedom of the 

system is imposed. The Bouc-Wen model is used for the forecast and analysis steps of 

both KF variations as well as for synthetically generating the measurements of 

displacements and velocities at each DOF for parametric calibration. The comparison of 

the EnKF and the PCKF techniques is based on the accuracy of the results when 

compared to the actual data, the computational burden, and the ability of each technique 

in representing the uncertainty of the system for structural health monitoring purposes. 

 

SHM used to be an impractical and time consuming technique when it was 

based on visual inspections, but as technology advances, the deployment of sensors and 
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monitoring devices in structures made it easier and more abundant. One may assume 

that the ideal scenario for placing these sensors is on every corner of the structure to 

collect as much observations as possible, but the problem of dealing with the 

humongous online data generated arises. Thus to extract the most informative data with 

the least time and cost, the optimal sensors configuration of the structure should be 

determined. This study combines the Genetic Algorithm (GA) technique with the 

ensemble Kalman filter method to form a robust optimal sensor placement (OSP) 

methodology for identifying the optimal sensor locations in a structure for the purpose 

of damage detection and system identification. The GA approach is first used to 

generate a random initial set of sensor locations, then through a minimization 

procedure, the best locations of the sensors are determined. In this study, the fitness 

function to be minimized is taken to be the difference between the actual measurement 

data and their respective predicted values, where these predicted values are calculated 

using the EnKF method through estimating and updating the state and model parameters 

of the system. 

 

The proposed OSP methodology based on combining the GA with the EnKF 

techniques is applied to determine the best sensor locations of a fixed and pre-defined 

number of available sensors, of a ten-story shear building subjected to El-Centro 

earthquake excitation at its base. Synthetic measurements of displacements and 

velocities of the different floors are generated and their respective estimated values are 

calculated using the EnKF, to evaluate the required objective function to be minimized. 
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CHAPTER 1 

INTRODUCTION AND RESEARCH OBJECTIVES 

1.1 Introduction 

Structural Heath Monitoring is a multi-disciplinary field used for damage 

identification of structures based on periodically spaced real time measurements. 

Traditionally, this process used to be very impractical and time consuming as it was 

based on visual inspections, but with the recent development of numerous monitoring 

devices, it became more practical and easily implementable. 

Although SHM is nowadays a fast and accurate method for the detection of 

damage in different structures, it still faces some major challenges mainly exhibited 

when applied to structural systems with significant physical complexities. Such systems 

exhibit strong nonlinear dynamical behavior with uncertain and complex governing 

laws. Therefore, the challenge lies in developing a robust system identification 

technique that can be used for characterizing the mathematical model of the structure to 

enhance SHM for damage detection. 

Moreover, with the recent developments in monitoring technologies such as 

high performance sensors, optical or wireless networks, and the global positioning 

system, SHM measurement data became very abundant which leads to the problem of 

dealing with the large flow of data. Data assimilation (DA) techniques are commonly 

adopted to characterize the state and parameters of unknown systems using observed 

measurements. The data assimilation techniques are classified into two main categories: 

variational data assimilation and sequential data assimilation. While variational data 
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assimilation techniques solve optimization problems through the minimization of an 

objective function representing the difference between predicted and exact data, 

sequential data assimilation techniques, including the Bayesian probabilistic framework 

and the Kalman filtering (KF) techniques, propagate the system state forward in time to 

approximate the unknown model parameters. The methods falling in the second 

category are more used in the literature for damage detection and system identification 

purposes, than the methods falling in the first class of data assimilation techniques, 

because of their accuracy and computational efficacy. 

To avoid having an unnecessary humongous flow of measurements and 

observations and to extract the most informative measurement data with the least cost 

and time, the sensors used for SHM purposes should be placed on their optimal 

locations. There are many methods used in the literature to determine these optimal 

sensor locations. These methods can be classified into two main categories: 

optimization-based methods, mainly including the Genetic Algorithm, the Particle 

Swarm Optimization (PSO), the Tabu Search (TS) and the Simulated Annealing (SA) 

methods, and selection-based methods primarily relying on information theory 

measures. 

In this PhD thesis, a review of the existing SHM mathematical models and a 

comparative study between two variations of the Kalman filter technique, the ensemble 

Kalman filter and the polynomial chaos Kalman filter, are presented. The comparison of 

these KF approaches is based on the ability of each method in quantifying the different 

sources of uncertainties present, on the accuracy of the results when compared to the 

actual data, and on the computational burden. In addition, a robust methodology is 

proposed in this work based on combining the ensemble Kalman filter method and the 
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genetic algorithm technique for optimal sensors placement identification. The ensemble 

Kalman filter is used as a history matching method to predict and update the state and 

parameters of the system, whereas the Genetic Algorithm approach is applied to 

determine the optimal sensor locations in the structure through the minimization of the 

mismatch between the predicted and measured values. 

 

1.2 Research Objectives 

 
There are two main objectives for this proposed dissertation. The first objective 

is to perform a comparative study between intrusive and non-intrusive ways in 

quantifying uncertainties through two different variations of the KF technique, the 

ensemble Kalman filter and the polynomial chaos Kalman filter. The comparison is 

chosen to be between these two specific techniques because in this study the system 

under consideration is a complex highly nonlinear system. Consequently, the standard 

KF cannot be applied since it is only used for the case of linear systems perturbed by 

Gaussian white noise. Similarly, the extended Kalman filter is not applied in this work 

because of its high computational expediency and low accuracy especially when dealing 

with high nonlinear systems and significant non-Gaussian noise (Ghanem & Ferro, 

2006). Likewise, the unscented Kalman filter was shown to require higher 

computational burden than other KF extensions, in many works in the literature, 

although it provides good enough estimates of the unknown system state and parameters 

(St-Pierre & Gingras, 2004; Chowdhary & Jategaonkar, 2010). The EnKF and the 

PCKF techniques played the role of good estimators in previous works dealing with 

complex nonlinear systems subjected to many sources of uncertainties (Ghanem & 
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Ferro, 2006; Saad, Ghanem, & Masri, 2007). The EnKF, based on Monte Carlo 

simulation, is a non-intrusive technique in quantifying uncertainties. Accordingly, the 

forward problem under consideration is solved using a black-box model. For complex 

problems, the EnKF unfortunately requires a high number of ensemble, and 

consequently a high computational burden, to properly approximate the model state and 

parameters. However, the PCKF requires lower computational cost for propagating 

uncertainties in the system, but being an intrusive method arises the need to go through 

the black-box. The PCKF method relies on representing the system state and parameters 

by their respective polynomial chaos decompositions and propagating the uncertainty in 

the system using the Galerkin projection method. 

The second objective is to devise a robust mathematical tool to optimize the 

sensor locations for data management purposes and therefore get the necessary 

measurements and observations needed to assess the state and parameters of the 

structure with the least computational burden. This tool is formulated based on 

combining the ensemble Kalman filter, which is used to estimate the system state and 

parameters and update them each time observation data is available, and the Genetic 

Algorithm approach that is a search technique used to solve the problem of sensor 

placement optimization through a minimization procedure of the mismatch between the 

calculated and exact results. 

 

1.3. Dissertation Organization 

 
This dissertation is composed of six chapters. Chapter 2 gives a general 

background on Structural Health Monitoring (SHM) techniques and shows how these 
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methods evolved over the past years. This chapter also summarizes the major obstacles 

faced by the Structural Health Monitoring techniques presented in the literature, mainly 

related to the uncertainty quantification issue and the optimal sensor placement 

problem. Separate literature reviews along with the different methods respectively used 

for uncertainty quantification and optimal sensor placement purposes are also presented 

in chapter 2.   

In Chapter 3, the focus is mainly on the mathematical formulation details of the 

Kalman filter (KF) technique, used with linear systems subjected to Gaussian noise, and 

its different extensions, used with nonlinear systems or with systems subjected to non-

Gaussian noise. 

Chapter 4 presents a comparative analysis between intrusive and non-intrusive 

methods in quantifying uncertainty through two different extensions of the Kalman 

filter method, the ensemble Kalman filter (EnKF) and the polynomial chaos Kalman 

filter (PCKF). The system under consideration in this chapter is a complex nonlinear 

four-DOF system subjected to El-Centro earthquake excitation. The comparison 

between these two methods is based on the ability of each method in quantifying the 

uncertainty for system identification and SHM purposes.  

Chapter 5 presents a novel methodology based on combining the ensemble 

Kalman filter technique with the genetic algorithm (GA) for the purpose of determining 

optimal sensor locations in structures. The robustness and efficiency of this proposed 

methodology are illustrated through a numerical example consisting of a ten-story 

building and tested through a sensitivity analysis on the initial positions of the sensors, 

where the percentages of convergence of the proposed scheme to the optimal solutions, 

calculated using the brute-force method, are analyzed. 
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Chapter 6 summarizes and concludes the research outcomes and presents some 

suggestions for future work and research. 
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CHAPTER 2 

STRUCTURAL HEALTH MONITORING 

2.1 Structural Health Monitoring Background 

   Structural Health Monitoring is a method used in many engineering fields to 

estimate the health conditions of structures based on periodically spaced observations. 

Traditionally, this process was very impractical and time consuming as it was based on 

visual inspections, but recently it became more abundant and easily implementable with 

the development of numerous monitoring devices. Many works presenting reviews of 

the existing SHM techniques are available in the literature. Doebling, et al., worked on a 

report summarizing the SHM literature and the damage detection techniques (Doebling, 

Farrar, Prime, & Shevitz, 1996). The authors first categorized the available SHM 

methods based on the type of measured data used and the techniques used to detect the 

damage from the observed data, then classified the literature based on the type of the 

structure under analysis. Sohn, et al., presented an updated review of the SHM literature 

produced in the previously mentioned report, covering the years 1996 till 2001 (Sohn, 

Farrar, Hemez, & Czarnechi, 2002). The authors suggested a statistical pattern 

recognition paradigm summarizing the different damage detection studies available in 

the literature. Chang, et al., presented a global literature review on the techniques used 

for SHM and damage detection purposes, focusing on the methods used for the special 

case of civil infrastructures (Chang, Faltau, & Liu, 2003). In this review paper, the 

authors also categorized the different types of sensors used for the purpose of damage 

detection. Farrar and Worden presented a summarized overview of the different SHM 

techniques used and discussed the statistical pattern recognition paradigm introduced in 
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previous works (Farrar & Worden, 2007). The major challenges associated with the 

SHM process are also presented in this aforementioned study. Goyal and Pabla recently 

presented a state-of-the-art review on the newest vibration monitoring and signal 

processing methods used to analyze the collected measured data for structural health 

monitoring and damage detection purposes (Goyal & Pabla, 2015). 

   Although SHM techniques became precise and fast methods used for system 

identification and damage detection purposes in different structures, they still encounter 

major challenges when used with complex nonlinear structural systems. Hence, the 

challenge lies in devising a robust system identification technique that can be used for 

characterizing the mathematical model of the structure to enhance SHM for damage 

detection. Many researchers have investigated this topic in a number of publications in 

the past years. Masri, et al., generated a procedure for state equation identification for 

complex nonlinear systems as a generalization of the Restoring Force Method and 

tested its efficiency on three single-degree-of-freedom nonlinear oscillators’ examples: 

the Duffing oscillator, the Noisy-Duffing-Van der Pol oscillator and the Bouc-Wen 

hysteretic oscillator (Masri, Caffrey, Caughey, Smyth, & Chassiakos, 2004). The 

implementation of the proposed procedure only requires the knowledge of the applied 

excitation and the resulting acceleration. Kerschen, et al., presented a detailed literature 

review on the different methods used for the purpose of nonlinear system identification 

in structural dynamics (Kerschen, Worden, Vakakis, & Golinval, 2006). The paper 

classifies these methods into seven categories: by-passing nonlinearity linearization, 

time-domain methods, frequency-domain methods, modal methods, time-frequency 

analysis, black-box modeling, and structural model updating. The authors also presented 

literature reviews on the methods used for nonlinearity detection and on the 
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characterization of the nonlinearity, including the location, the type and the functional 

form of the nonlinearity present. Ghanem and Ferro proposed a method based on 

combining the ensemble Kalman filter method with a non-parametric modeling 

technique for the purpose of Structural Health Monitoring for strongly nonlinear 

systems (Ghanem & Ferro, 2006). The methodology is applied on a four-story shear 

building subjected to El Centro seismic excitation at its base. A comparison between the 

ensemble Kalman filter and the extended Kalman filter (ExKF) techniques is presented, 

resulting in an outperformance of the proposed methodology over the ExKF method in 

parameters and state estimations. Masri, et al., suggested a procedure based on Monte 

Carlo simulations and Restoring Force Method to analyze the response of uncertain 

nonlinear systems (Masri, Ghanem, Arrate, & Caffrey, 2009). The proposed approach is 

investigated on a single-degree-of-freedom system with bilinear hysteretic 

characteristics. Saad and Ghanem combined the polynomial chaos Kalman filter method 

with a non-parametric representation of the nonlinearities for state and parameters 

estimation and structural health monitoring purposes (Saad & Ghanem, 2011). The 

method relies on expressing the parameters by their respective polynomial chaos 

representations. It was applied on a four story shear building subjected to seismic 

excitation and was successfully able to locate the damage in time and space. The 

advantage of this proposed methodology is not only limited to the low computational 

cost needed, but also in providing the user with all the statistical information of the 

uncertain parameters and variables. 

   Furthermore, SHM measurement data became abundantly available due to the 

recent developments in the monitoring devices and optical networks, leading to the 

problem of dealing with the large flow of observational data. As previously mentioned, 
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the data assimilation techniques are therefore adopted to estimate the system state and 

parameters using these measurement data. They were first developed for weather 

forecasting and ocean state estimation (Daley, 1997; Kalnay, 2003), then started to be 

used for many other applications including the system identification and SHM fields. 

The data assimilation techniques are classified into two main categories: variational data 

assimilation and sequential data assimilation. The first class aims at minimizing a 

certain cost function that describes the misfit between the model and actual data to find 

a solution to a numerical forecast model, using gradient-based optimization and adjoint 

methods (Navon, Zou, Derber, & Sela, 1992; LeDimet & Talagrand, 1986). The main 

drawback of this class of data assimilation methods is that it is computationally 

expensive. Whereas the second class, Sequential Data Assimilation, is based on 

predicting information forward in time to estimate the state of the system using its 

probabilistic framework and therefore overcoming the need to derive an inverse model 

and saving computational burden (Evensen, 1994; Bertino, Evensen, & Wackernagel, 

2003).  

   The sequential data assimilation techniques, consisting mainly of the Bayesian 

probabilistic approach and the Kalman filter technique and its different variations, are 

used more abundantly in the literature for damage detection and system identification 

purposes than the variational data assimilation methods, since they are computationally 

more efficient. Figure 1 below summarizes the most common sequential data 

assimilation techniques used in the literature for SHM and damage detection purposes. 
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Figure 1. Sequential Data Assimilation Techniques 

   Vanik, et al., introduced a global continual on-line structural health monitoring 

method based on the Bayesian probabilistic approach to solve the problem of ill-

conditioning present in the process of identifying the model parameters from the modal 

data (Vanik, Beck, & Au, 2000). The proposed methodology is applied on two 

illustrative examples, a 2-degrees of freedom (DOF) and a 10-DOF structure models. 

The authors proved that their approach allows the detection of small levels of damage 

through the observation of the structure for a long period of time. Yuen, et al., presented 

a structural health monitoring method consisting of two stages (Yuen, Au, & Beck, 

2004). In the first stage, modal identification is performed using measured structural 

response from the undamaged and damaged system. Using the modal parameters 

identified in the first stage, updated probability density functions (PDF) for the stiffness 

parameters are constructed in stage II by employing a Bayesian statistical approach. The 

proposed methodology was applied on Phase I International Association for Structural 
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Control-American Society of Civil Engineers (IASC-ASCE) benchmark structure and 

was able to identify the location and severity of the damage of a 4-DOF linear shear 

building and a 3 dimensional (3D) 12-DOF linear shear building models. Ching and 

Beck then used the previously mentioned two-step Bayesian probabilistic structural 

health monitoring methodology in (Ching & Beck, 2004) and applied it on Phase II 

IASC-ASCE experimental benchmark studies. The experimental Phase II benchmark 

problem consists of 6 damage configurations involving the damage detection of a 3D 

12-DOF shear building model, and 3 damage configurations based on testing the ability 

of the proposed method in detecting the damage of a 3D 36-DOF model. The authors 

also introduced a robust expectation-maximization algorithm in their work to determine 

the optimal values of the parameters. Beck applied probability logic with Bayesian 

updating methodology, for the purpose of system identification and uncertainty 

quantification, on IASC-ASCE structural health monitoring benchmark structure model 

consisting of a 4-story steel frame structure (Beck, 2010). Zhang, et al., used a recently 

developed fast Bayesian method to identify the response and modal parameters, mainly 

the natural frequencies, damping ratios and mode shapes, of an operational super tall 

building, the Shanghai Tower, located in Shanghai, China (Zhang, Xiong, Shi, & Ou, 

2016). The identified results are compared with modal parameters obtained from finite 

element models. After the completion of the main structure, the mode shapes are 

investigated through a field test and the variation of modal properties with changing 

environment is inspected through temperature and humidity records.  

   The ordinary Kalman filter is a recursive Bayesian filter used for the limited 

case of linear systems subjected to Gaussian errors. Extensions of the original KF to the 

extended Kalman filter (ExKF) based on some linearization techniques are suggested in 
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the literature to handle more general cases (Chui & Chen, Kalman Filtering with Real 

Time Applications, 1991). Ljung in (Ljung, 1979) suggested a convergence analysis of 

the original extended Kalman filter algorithm, for parameter estimation of linear 

systems, to overcome the common problem of divergent and biased estimates. Then, 

Hoshiya and Saito in (Hoshiya & Saito, 1984) proposed to incorporate a weighted 

global iteration procedure into the ExKF to give more stable and convergent solutions 

for system identification problems of seismic structural systems. Corigliano and Mariani 

used the ExKF in (Corigliano & Mariani, 2004) for state estimation and parameter 

identification, and investigated the possible sources of the inaccurate performance of 

this filter in case of softening through the analysis of single-degree-of-freedom and 

multi-degree-of-freedom systems subjected to dynamic loadings. Yang, et al., proposed 

to apply an adaptive tracking technique on the ExKF (Adaptive Extended Kalman 

Filter: AEKF) so it becomes more powerful in identifying time-varying parameters 

(Yang, Lin, Huang, & Zhou, 2006). This aforementioned technique was applied on 

structures with unknown inputs (excitation) in (Yang, Pan, & Huang, 2007) to identify 

the parameters and their variations and determine the unknown excitations. Some 

experimental studies of the AEKF applied to a small-scale three-story building model 

were then presented in (Zhou, Wu, & Yang, 2008) for damage identification purposes. 

Ghosh, et al., proposed two new forms of the ExKF for SHM purposes in (Ghosh, Roy, 

& Manohar, 2007) by performing transversal linearization. They applied these new 

algorithms on single-degree-of freedom and multi-degree-of-freedom problems and 

showed that they outperform the conventional ExKF. Ebrahimian, et al., recently 

combined a novel nonlinear finite element model updating framework with the ExKF 

method to approximate time-invariant parameters used in the finite element model of 
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the system under consideration (Ebrahimian, Astroza, & Conte, 2015). A direct 

differentiation method is employed to facilitate the work of the ExKF in estimating the 

parameters. The efficiency of this proposed framework in material parameters 

estimation is tested on two numerical examples, a cantilever steel bridge column and a 

three-story three-bay moment resisting steel frame. For highly nonlinear models and for 

models subjected to significant non-Gaussian noise, the ExKF does not provide 

consistent estimations of the state and model parameters of such systems. Other 

variations of the standard KF were suggested in the literature to overcome the major 

drawbacks of the ExKF, mainly the unscented Kalman filter (UKF) and the ensemble 

Kalman filter. 

   The UKF uses the “unscented transform” sampling technique to select a set of 

points, called sigma points, and propagates these points through the nonlinear functions, 

instead of linearizing the functions as in the case of the ExKF. New mean and 

covariance estimates are then calculated from the propagated set of points. Many works 

presenting a comparison between the UKF and ExKF techniques in estimating the 

system state and parameters are available in the literature. St-Pierre and Gingras 

compared these two techniques (St-Pierre & Gingras, 2004) for estimating the position 

module of an integrated navigation information system, where the UKF slightly 

outperformed the ExKF although it required higher computational burden. Kandepu, et 

al., applied the ExKF and the UKF techniques on four different numerical examples, a 

Van der Pol oscillator, a state estimation problem in an induction machine, a state 

estimation on a reversible reaction example and a solid oxide fuel cell (SOFC) gas 

turbine (GT) hybrid system (Kandepu, Foss, & Imsland, 2008). The UKF outperformed 

the ExKF in terms of robustness and time of convergence, while maintaining 
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comparable computational burden to the ExKF. Chowdhary and Jategaonkar compared 

the performance of the UKF and the ExKF methods in estimating aerodynamic 

parameters from aircraft flight data (Chowdhary & Jategaonkar, 2010). While the 

performance and accuracy of the two filters was found to be comparable, the UKF 

needed a greater computational cost and lower time to converge than the ExKF. Chatzi 

and Smyth compared the UKF to two different particle filter (PF) techniques, the 

generic PF and the Gaussian mixture sigma point particle filter (GMSPPF), based on the 

computational expediency and the efficiency in estimating the state and parameters of 

nonlinear complex systems (Chatzi & Smyth, 2009). The numerical problem consists of 

a 3-DOF system subjected to seismic excitation and including a Bouc-Wen hysteretic 

element, where the displacement of the first DOF and the accelerations of the second 

and third DOFs are assumed to be available. While the UKF was found to be the most 

computationally efficient method, the GMSPPF was the most accurate and robust 

technique in estimating the model parameters. These aforementioned authors then 

proposed a novel method, the mutated PF (MPF), for nonlinear, non-Gaussian online 

state and parameter estimations for SHM purposes (Chatzi & Smyth, 2013). The 

proposed algorithm outperformed the standard PF and the UKF in both computational 

cost and efficiency. Al-Hussein and Haldar proposed a novel concept indicated as 

unscented Kalman filter with unknown input and weighted global iterations (UKF-UI-

WGI) to assess the health conditions of large nonlinear structural systems (Al-Hussein 

& Haldar, 2016). This framework combines the general steps of the traditional UKF to 

identify the state of nonlinear system with a substructure concept used to generate the 

information on the excitation and the unknown initial state vector. A weighted multiple 

global iterations procedure is also introduced in this proposed methodology to cover 
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large structures subjected to defective states. The outperformance of the UKF-UI-WGI 

method over the traditional UKF and the ExKF methods, in accurately identifying the 

nonlinear and large systems’ defect-free and defective states, is tested on single and 

multiple substructures examples. 

   Another extension of the discrete Kalman filter, the ensemble Kalman filter 

(EnKF), based on Monte Carlo method was developed in the past to cover the nonlinear 

models subjected to non-Gaussian noises (Evensen, 1994) and to avoid the inversion of 

a large error covariance matrix, as in the case of the ExKF. Hommels, et al., applied the 

EnKF and the UKF on a conceptual nonlinear case study based on the construction of a 

road embankment (Hommels, Murakami, & Nishimura, 2009). The authors found that 

while both methods needed the same computational time, the EnKF outperformed the 

UKF. Ghanem and Ferro proved that the EnKF plays a role of a good estimator of the 

system state (Ghanem & Ferro, 2006). In their work, they combined the EnKF with a 

non-parametric modeling technique and applied it to a four-story shear building 

subjected to seismic loading, then compared it to the ExKF technique to show the 

benefits of their method. Evensen in (Evensen, 2009) presented a detailed literature on 

the applications of the EnKF as a sequential Monte Carlo (MC) method and 

concentrated on its use for state and parameter estimation through a number of 

numerical examples. Sajeeb, et al., proposed to use a conditionally linearized Monte 

Carlo filter for state and parameter estimation of nonlinear structural systems and 

showed that this method, although being computationally expensive, works as a good 

estimator for large systems (Sajeeb, Manohar, & Roy, 2009). Nasrellah and Manohar 

then combined the Monte Carlo filter with the finite element method (FEM) (Nasrellah 

& Manohar, 2011), which increased the range of capabilities of this method when used 
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for system identification. Slika and Saad developed a robust non-destructive SHM 

method for assessing the health conditions of a structure and predicting its remaining 

service life without corrosion using a finite element/finite difference scheme (Slika & 

Saad, 2016). The authors used the EnKF approach to propagate the system forward in 

time and calibrate the parameters using synthetically generated chloride concentration 

measurements. The robustness of the proposed methodology is tested on 1-D and 2-D 

chloride ingress numerical examples. In case of highly nonlinear systems, the EnKF 

requires a large number of ensemble to properly approximate the model state statistics.  

   To solve this problem, many methods were proposed in the literature, one 

method was presented by Saad and Ghanem (Saad & Ghanem, 2011; Saad, Ghanem, & 

Masri, 2007; Saad & Ghanem, 2009) that was based on combining the polynomial 

chaos with the ensemble Kalman filter to introduce the Polynomial Chaos Kalman Filter 

(PCKF). First, polynomial chaos decompositions of the uncertain parameters are 

produced. Then, the model is propagated forward in time using the Galerkin projection 

approach (Saad & Ghanem, 2011; Saad & Ghanem, 2009; Ghanem & Spanos, 2003; 

Ghanem, 1999). Finally, the uncertain parameters are updated using the polynomial 

chaos Kalman filter (PCKF) technique every time measurements are available. This 

approach was applied to a four-story shear building subjected to El-Centro excitation at 

its base. Li (Li & Xiu, 2009) presented a variation of the PCKF where he proposed to 

use a set of EnKF algorithms based on generalized polynomial chaos (gPC) expansion. 

The method is a two-step approach, where the author offered two different routines to 

solve the system of state equations in the first step (forecast step), the stochastic 

Galerkin approach and the stochastic Collocation approach. In addition, the gPC 

expansion was applied to generate arbitrarily large ensemble of realizations to find the 
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state estimates in the second step (analysis step) for both approaches. Li examined the 

efficiency of his approach through a number of linear and nonlinear problems. A third 

method was proposed by Blanchard (Blanchard, Sandu, & Sandu, 2007; Blanchard, 

Sandu, & Sandu, 2010; Blanchard, Sandu, & Sandu, 2010), where he solved parameter 

estimation problems using the Polynomial Chaos (PC) theory with direct stochastic 

collocation. This approach was tested on a four degree-of-freedom roll plane model of a 

vehicle, where the Bayesian theorem was used to obtain the maximum likelihood 

estimates that are then compared to the exact results. These exact states were created 

from a proposed experimental setting. Spiridonakos, et al., suggested a new method, 

based on combining the polynomial chaos expansion (PCE) method with the 

independent component analysis (ICA) algorithm, to monitor the health conditions of 

structures subjected to operational variability (Spiridonakos, Chatzi, & Sudret, 2016). 

The method was found to be efficient and robust when applied to two real and large-

scale case studies, the Überführung Bärenbohlstrasse Bridge (Switzerland) subjected to 

operational conditions and an actual damaged case, the Z24 Bridge (Switzerland). 

 

   One main challenge associated with the aforementioned existing sequential 

data assimilation methods is the presence of various sources of uncertainties when 

dealing with complex and nonlinear systems. The first objective of this thesis is to show 

the importance of quantifying these uncertainties in data assimilation techniques for 

SHM purposes, for that reason a comparison between the Ensemble Kalman Filter 

(EnKF) and the Polynomial Chaos Kalman Filter (PCKF) is conducted based on the 

ability of each method in quantifying these uncertainties with the least computational 

burden and resulting in the most accurate results. 
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   Another main challenge associated with SHM techniques is to determine the 

optimal locations of the monitoring devices on the structures to avoid having an 

enormous and unnecessary flow of measured data that requires lots of time and cost to 

be processed and analyzed and get only the most informative data required to estimate 

the system state and parameters and detect the damage in the structures. Therefore, the 

second objective of this dissertation is to present a novel methodology used to solve 

optimal sensor locations problems. 

 

2.2. Overview of the Challenges faced by SHM 

2.2.1. Uncertainty Quantification 

The modeling of complex nonlinear structures is always accompanied with 

different forms of uncertainties due to many sources of errors. These errors are 

magnified due to regular aging factors and deterioration of the structure or due to 

extreme events, such as earthquakes, that could alter its behavior unexpectedly. The 

randomness facing the modeling of such complicated systems may be due to many 

possible sources, mainly the presence of model errors coming from the inadequacy of 

the mathematical model in describing the true physics of the system under 

consideration, parameter uncertainty and parametric variability coming respectively 

from the model parameters of the system and the input variables of the model that have 

unknown exact values, and experimental or observational uncertainty coming from the 

variability in the experiments’ measured data (Kennedy & O'Hagan, 2001). The 

different sources of randomness in physical phenomena can be classified into two main 

categories, aleatoric and epistemic uncertainty (Helton, 2000; Helton & Davis, 2002; 

Helton & Oberkampf, 2004; Ghanem & Spanos, 2003; Der Kiureghiana & Ditlevsen, 
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2009). The first category is due to natural randomness inherent in the behavior or 

environment of the system. The aleatoric uncertainty is also called irreducible 

uncertainty since it cannot be reduced by performing more experimental testing. The 

second category, the epistemic uncertainty or reducible uncertainty, is mainly due to the 

lack of knowledge and available observational data. It can be reduced by conducting 

additional experimental studies or implementing a new better physical model, leading to 

an increased amount of knowledge about the behavior of the system under 

consideration.  

A range of different uncertainty representation methods are available in the 

literature to properly address and accurately quantify this wide variety of uncertainties 

and sources of randomness present in such complex structural models (Lin, Engel, & 

Esliner, 2012). These techniques can be categorized into two large groups, statistical 

methods directly applied to the models, such as Monte Carlo (MC) simulation, random 

sampling methods, response surface methods and many others, and deterministic 

methods used to solve stochastic partial differential equations representing the 

mathematical model of the physical process, mainly the Karhunen-Loeve expansion 

(KLE) and the polynomial chaos expansion (PCE) (Lin, Engel, & Esliner, 2012). It 

should be noted that a huge number of methods used for the purpose of uncertainty 

representation is available in the literature, but this subsection only discusses, in what 

follows, the most popular techniques.        

 

2.2.1.1. Monte Carlo Simulation 

Monte Carlo method was first introduced by Stanislway Ulam in the late 1940s 

and then developed by John Von Neumann and Nicholas Metropolis (Metropolis & 
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Ulam, 1949). It is named after Monte Carlo Casino in Monaco that is famous for its 

gambling games that are based on random outputs and luck, as much as any modeling 

method. 

Monte Carlo simulation is the most common technique used in the literature for 

quantifying uncertainties by propagating the input parameters uncertainties through the 

model into uncertainties in the output. The method starts by generating a large number 

of realizations of the system parameters based on their probability distributions. 

Deterministic computations on the stochastic inputs are then performed, resulting in a 

large number of independent possible future paths for the system. Finally, these output 

results, coming from different sets of stochastic values, are assembled to produce 

probability distributions of possible outcome values and determine the system response 

(Christian & Casella, 2013; Cunha, Nasser, Sampaio, Lopes, & Breitman, 2014).  

Although the Monte Carlo method is general and simple to implement, which 

makes it the most popular method used for uncertainty quantification purposes, it faces 

some major challenges especially that it requires a large number of realizations to 

adequately describe the statistical behavior of the random system under consideration 

and consequently demanding a high computational effort.      

 

2.2.1.2. Random Sampling Methods 

 Simple Random Sampling (SRS): is the most widely used probability 

sampling method, where each member of a subset of individuals of an entire statistical 

population is randomly chosen and has an equal chance to be selected. In addition, each 

subset of a fixed number k of individuals also has an equal probability to be chosen among 

all other subsets of k members from the total population. Although the SRS method is 
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extensively used in the literature because of its ease of use, implementation and analysis, 

the robustness and practicality of this method are only guaranteed when dealing with 

small and homogenous populations (Yates, Moore, & Starnes, 2008). 

 Systematic Random Sampling (Interval Sampling): systematic sampling 

consists of randomly selecting a first sample element from the population as a starting 

point of the sampling process. A fixed periodic sampling interval k is then calculated by 

dividing the total population size by the chosen sample size, and consequently the method 

continues by selecting every kth member of the population (Explorable.com, 2009; Black, 

2004). As in the case of SRS, systematic sampling must only be used with homogeneous 

populations. Although systematic sampling is easy to implement when compared to other 

probability sampling methods, the researcher applying this method must take into 

consideration any hidden pattern or any periodicity related to the sampling interval used 

causing threats to the randomness of the sample and resulting in an unrepresentative 

sample of the population. 

 Stratified Sampling: in stratified sampling, the researcher divides the entire 

population into smaller groups, known as “strata”, each containing elements sharing 

specific characteristics and attributes (i.e. age, gender, religion …). A simple random 

sampling or a systematic sampling are usually applied within each stratum and the 

resulting samples are then combined into an overall random sample (Explorable.com, 

2009; Shahrokh Esfahani & Dougherty, 2014). Stratified sampling method results in more 

precise and accurate estimates of heterogeneous populations, partitioned into 

homogeneous subgroups, than the simple random sampling method applied on the entire 

population, because the variability within each stratum is much lower when compared to 

the variability of the whole population. Due to the precision and accuracy accompanied 
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with the stratified sampling method, the sample size needed can be reduced, resulting in 

cheaper sampling cost and computational burden. This is true when the stratified 

sampling is applied on populations characterized by a diversity of traits, but this method 

becomes inefficient and impractical if the strata are difficult to be formed disjointedly.  

  Cluster Sampling: the researcher using cluster sampling, first divides the 

population into subgroups, called “clusters”. A simple random sampling or a systematic 

random sampling method is then applied on the available clusters to select a simple 

random sample. Two types of cluster samples are available in the literature, the one-stage 

cluster sample, including all elements in each sampling cluster and the two-stage cluster 

sample, including only a finite number of elements from each cluster using SRS or 

systematic sampling. The main advantage of cluster sampling over all other sampling 

methods lies in the computational cost reduction for preparing sampling frames. On the 

other side, this method may suffer from high sampling errors and results in 

unrepresentative samples of the entire population since it abandons a significant part of 

the clusters and leave them outside the sample (Explorable.com, 2009). 

 Latin Hypercube Sampling (LHS): LHS is a widely used statistical model, 

implemented for the purpose of generating controlled random samples of points for a 

probability distribution, ensuring that each distribution in the model under consideration 

is evenly sampled. One main advantage of this sampling method lies in the gain of 

accuracy and precision, especially when used with Monte Carlo method for numerical 

integration problems. Unfortunately, this improvement in the level of accuracy is mostly 

modest and comes at the cost of additional memory space required to achieve the 

sampling process (McKay, Beckman, & Conover, 1979; Iman, Davenport, & Zeigler, 

1980). 
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 Importance Sampling: The main idea behind importance sampling method is 

to appropriately select an alternative distribution from which samples are generated to 

estimate the targeted distribution. This method can be used for Monte Carlo integration 

and can result in a reduction in the computational burden in case the researcher chooses 

a good importance sampling function. On the other side, this sampling technique requires 

longer sampling process time than the standard Monte Carlo method in case of a bad 

choice of the proposal distribution. Therefore, the choice of the distribution from which 

the samples are generated to estimate the properties of the distribution of interest is a key 

issue in importance sampling. In other words, sampling 𝑥 from the distribution 𝑓(𝑥) is 

similar to sampling 𝑥 × 𝜔(𝑥)  from the distribution  𝑔(𝑥) , where 𝜔(𝑥) =
𝑓(𝑥)

𝑔(𝑥)
 is the 

importance sampling weight (Geweke, 1989; Veach & Guibas, 1995; Neal, 2001). 

 

2.2.1.3. Karhunen-Loeve Expansion 

   It is difficult to deal with random processes; therefore special techniques 

should be used to solve stochastic differential equations. One of the most practical tools 

is the Karhunen-Loeve (KL) expansion that is a continuous representation technique for 

stochastic processes using a superposition of orthonormal random variables weighted by 

the eigenfunctions of the covariance of these random processes (Ghanem & Spanos, 

2003; Sudret & Der Kiureghian, 2000).  

   The KL expansion of a random field (x, θ) is based on the spectral 

decomposition of its covariance function      2

0

121 , xfxfxxC n

n

nn




  , which is 

bounded, symmetric and positive definite. The eigenvalue (λn) and the eigenvector (fn) 



 
 
 

25 
 
 

of the covariance C(x1, x2) are the solution to the Fredholm integral equation 

(eigenvalue problem) (Ghanem & Spanos, 2003): 

 


D

𝐶(𝑥1, 𝑥2)𝑓𝑛(𝑥2)𝑑𝑥2 = 𝜆𝑛𝑓𝑛(𝑥1)
 (1) 

 

   Having  x being the expected value of the random field (x, θ) and   n  

denoting the coordinates of the realization of the random field with respect to the set

 nf , (x, θ) can be written as: 

 
𝜔(𝑥, 𝜃) = 𝜔̅(𝑥) + ∑ 𝜉(𝜃)√𝜆𝑛

∞

𝑛=0

𝑓𝑛(𝑥) (2) 

Truncating the series in the previous equation at the Mth term results in the following 

equation: 

 
𝜔(𝑥, 𝜃) = 𝜔̅(𝑥) + ∑ 𝜉(𝜃)√𝜆𝑛

𝑀

𝑛=0

𝑓𝑛(𝑥) (3) 

EigenValue Problem 

   Taking the one-Dimensional autocorrelation function as follow: 

  b

xx

exxC
21

21 ,



 , where b is the correlation length and the domain D is [-a, a], the 

eigenvalues ( n ) and eigenfunctions (fn(x)) are solutions of the following integral 

equation: 

 ∫ 𝑒−𝑐|𝑥1−𝑥2|
𝑎

−𝑎

𝑓(𝑥2)𝑑𝑥2 = 𝜆𝑓(𝑥1) (4) 

 ⇒ ∫ 𝑒−𝑐(𝑥1−𝑥2)
𝑥1

−𝑎

𝑓(𝑥2)𝑑𝑥2 + ∫ 𝑒−𝑐(𝑥1−𝑥2)
𝑎

𝑥1

𝑓(𝑥2)𝑑𝑥2 = 𝜆𝑓(𝑥1) (5) 

Differentiating with respect to x1:  
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 ⇒ 𝜆𝑓′(𝑥1) = −𝑐 ∫ 𝑒−𝑐(𝑥1−𝑥2)
𝑥1

−𝑎

𝑓(𝑥2)𝑑𝑥2 + 𝑓(𝑥1) + 𝑐 ∫ 𝑒−𝑐(𝑥1−𝑥2)
𝑎

𝑥1

𝑓(𝑥2)𝑑𝑥2 

−𝑓(𝑥1) 

(6) 

Differentiating a second time with respect to x1:  

 ⇒ 𝜆𝑓′′(𝑥1) = −𝑐2 ∫ 𝑒−𝑐(𝑥1−𝑥2)
𝑥1

−𝑎

𝑓(𝑥2)𝑑𝑥2 − 𝑐𝑓(𝑥1) + 𝑐2 ∫ 𝑒𝑐(𝑥1−𝑥2)
𝑎

𝑥1

𝑓(𝑥2)𝑑𝑥2 

−𝑐𝑓(𝑥1) 

(7) 

⇒ 𝜆𝑓′′(𝑥1) = 𝑐2𝜆𝑓(𝑥1) − 2𝑐𝑓(𝑥1) (8) 

⇒ 𝜆𝑓′(𝑥) = (−2𝑐 + 𝑐2𝜆)𝑓(𝑥) (9) 

⇒ 𝑓′′(𝑥) + 𝜔2𝑓(𝑥) = 0,−𝑎 ≤ 𝑥 ≤ +𝑎 (10) 

The boundary conditions are the following: 
   

   







0'

0'

afacf

afacf
 

⇒ 𝑓(𝑥) = 𝑎1𝑐𝑜𝑠(𝜔𝑥) + 𝑎2𝑠𝑖𝑛(𝜔𝑥) (11) 

⇒ {
𝑎1(𝑐 − 𝜔𝑡𝑎𝑛(𝜔𝑎)) + 𝑎2(𝜔 + 𝑐𝑡𝑎𝑛(𝜔𝑎)) = 0

𝑎1(𝑐 − 𝜔𝑡𝑎𝑛(𝜔𝑎)) − 𝑎2(𝜔 + 𝑐𝑡𝑎𝑛(𝜔𝑎)) = 0
 (12) 

⇒ {
𝑐 − 𝜔𝑡𝑎𝑛(𝜔𝑎) = 0
𝜔 + 𝑐𝑡𝑎𝑛(𝜔𝑎) = 0

 (13) 

 For n odd: ( n ≥ 1) 

  is the solution of: 
1

𝑏
− 𝜔𝑡𝑎𝑛(𝜔𝑎) = 0  in the range [(𝑛 − 1)

𝜋

𝑎
, (𝑛 −

1

2
)

𝜋

𝑎
]  

 𝜆𝑛 =
2𝑏

1+𝜔𝑛
2𝑏2 

 𝑓𝑛(𝑥) =
𝑐𝑜𝑠(𝜔𝑛𝑥)

√𝑎+
𝑠𝑖𝑛(2𝜔𝑛𝑎)

2𝜔𝑛

 

For n even: ( n ≥ 2) 

 * is the solution of:  
1

𝑏
− 𝜔∗𝑡𝑎𝑛(𝜔∗𝑎) + 𝜔∗ = 0 in the range [(𝑛 −

1

2
)

𝜋

𝑎
, 𝑛

𝜋

𝑎
] 
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 𝜆𝑛
∗ =

2𝑏

1+𝜔𝑛
∗2𝑏2 

 𝑓𝑛
∗(𝑥) =

𝑠𝑖𝑛(𝜔𝑛
∗ 𝑥)

√𝑎−
𝑠𝑖𝑛(2𝜔𝑛

∗ 𝑎)

2𝜔𝑛
∗

 

Numerical Solution 

   The Fredholm equation of the second kind:      12221 , xfdxxfxxC nnn
D

 , is 

solved using the Galerkin method. 

First, each Eigenfunction of  21, xxC  is written as follows: 



N

i

i

k

ik xhdxf
1

)( )()( , where 

hi(x) represents a complete set of functions in the Hilbert space H. 

Second, since the previous summation is truncated at the Nth term, this will result in an 

error that can be represented as: 

∈𝑁= ∑𝑑𝑖
(𝑘)

[ 
D

𝐶(𝑥1, 𝑥2)ℎ𝑖(𝑥2)𝑑𝑥2 − 𝜆𝑛ℎ𝑖(𝑥1)]

𝑁

𝑖=1

 (14) 

This error should be minimized   Njxh jN ,...,1;0)(,   

⇒ ∑𝑑𝑖
(𝑘)

[ 
D

[ 
D

𝐶(𝑥1, 𝑥2)ℎ𝑖(𝑥2)𝑑𝑥2] ℎ𝑗(𝑥1)𝑑𝑥1 − 𝜆𝑛 
D

ℎ𝑖(𝑥)ℎ𝑗(𝑥)𝑑𝑥1]

𝑁

𝑖=1

= 0 (15) 

 

   The preceding procedure will result in the following generalized algebraic 

Eigenvalue Problem that should be solved for the eigenvalues (λ) and eigenvectors 

(columns of matrix D) (Ghanem & Spanos, 2003; Sudret & Der Kiureghian, 2000): 

𝐶𝐷 = Λ𝐵𝐷 (16) 

where:   𝐶𝑖𝑗 =  
D D

𝐶(𝑥1, 𝑥2)ℎ𝑖(𝑥2)𝑑𝑥2ℎ𝑗(𝑥1)𝑑𝑥1 
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   𝐵𝑖𝑗 = 
D

ℎ𝑖(𝑥)ℎ𝑗(𝑥)𝑑𝑥 

   𝐷𝑖𝑗 = 𝑑𝑖
(𝑗)

 

   Λ𝑖𝑗 = 𝛿𝑖𝑗𝜆𝑖         

         

2.2.1.4. Polynomial Chaos Expansion 

   N. Wiener (Wiener, 1938) was the first one to introduce the Polynomial chaos 

theory in the form of Homogeneous Chaos Expansion that uses Hermite polynomials to 

model stochastic processes with Gaussian random variables. Every source of uncertainty 

in the system under consideration is represented by a vector of random variables ξ. All 

these independent random variables are then correlated with an individual random event 

θ. 

   Any random process 𝑢(𝑥, 𝜃) with prescribed probability density function, can 

be expanded as a polynomial function of Multi-dimensional Hermite polynomials in 

Gaussian random variables (Ghanem & Spanos, 2003), as 

 
𝑢(𝑥, 𝜃) = ∑𝑢𝑖(𝑥)𝜓𝑖(𝜉(𝜃))

∞

𝑖=0

 (17) 

where  {𝑢𝑖 , 𝑖 = 0,… ,∞} are deterministic expansion coefficients that can be evaluated 

using different methods (Projection Method, Collocation Method,…), 𝜓𝑛(𝜉𝑖1, … , 𝜉𝑖𝑛) is 

the nth order Polynomial Chaos in the Gaussian variables (𝜉𝑖1, … , 𝜉𝑖𝑛)  and {𝜓𝑖 , 𝑖 =

0,… ,∞} are the orthogonal multidimensional Hermite polynomials. 

   After truncating the polynomial chaos expansion at the Pth term, the above 

relation becomes 
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𝑢(𝑥, 𝜃) = ∑𝑢𝑖(𝑥)𝜓𝑖(𝜉(𝜃))

𝑃

𝑖=0

 (18) 

where P+1 is the total number of terms in a polynomial chaos expansion. For an order less 

than or equal to p and a dimension equals to M, P+1 is equal to 

 𝑃 + 1 =
(𝑝 + 𝑀)!

𝑝!𝑀!
 (19) 

 

2.2.2. Optimal Sensor Placement 

Another challenge faced by SHM techniques is to place the monitoring devices 

on their optimal locations on the structure to get the most necessary and informative 

data for damage detection and avoid having an unnecessary humongous flow of 

measurement data. 

The problem of optimally placing sensors on a structure was rigorously 

investigated in the literature. Many optimal sensor placement (OSP) methods were 

suggested to determine the best sensor locations for damage detection and parameter 

estimation purposes. These optimal sensor placement methods can be classified into two 

main categories, as shown in Figure 2 below: Optimization-based and Selection-based 

procedures (Staszewski & Worden, 2001). The most used optimization-based methods 

available in the literature include the Genetic Algorithm (GA), the Particle Swarm 

Optimization (PSO), the Simulated Annealing (SA), the Tabu Search (TS) approaches 

and other machine learning algorithms. On the other hand, selection-based methods rely 

mainly on information theory measures. 
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Figure 2. Optimal Sensor Placement Methods 

The GA is a search technique used to solve optimization problems using the 

theory of natural evolution that includes some random operations such as: selection, 

crossover, and mutation. The algorithm starts by generating a random set of solutions, 

called “population of chromosomes”, and by determining a certain fitness function to be 

optimized. The fitness of each solution is evaluated and the best ones are selected as 

“parents”. A series of natural operations is performed on the “parents” and a new better 

population is created. The algorithm is repeated, each time starting with the new created 

population, until some predefined termination condition is satisfied. Many researchers 

used the GA to determine the best sensor locations for the purpose of system 

identification. Yao, et al., used the GA to determine the optimal sensor placement for a 

space structure and a photo-voltaic array, and defined the fitness function to be the 

determinant of the Fisher information matrix (Yao, Sethares, & Kammer, 1993). Guo, et 

al., proposed an improved version of the GA by improving the crossover and mutation 

operations and applied the new proposed methodology on a SHM system consisting of a 

two-dimensional (2D) truss structure to determine the optimal sensor configuration 
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(Guo, Zhang, Zhang, & Zhou, 2004). A recent unsupervised and nonparametric genetic 

algorithm for decision boundary analysis (GADBA) approach,  combined with a novel 

concentric hypersphere (CH) algorithm, was proposed by Silva, et al., for damage 

detection in bridges, in the presence of environmental and operational variability (Silva, 

et al., 2016). 

The particle swarm optimization is a stochastic optimization method sharing 

many similarities with the genetic algorithm technique. The algorithm starts by 

randomly generating a population of solutions (called ‘particles’), then updates the 

generations to get the optimum particles. Rao and Anandakumar proposed a new hybrid 

PSO method based on combining a self-configurable PSO with the Nelder-Mead 

algorithm for the purpose of optimal sensor placement identification (Rao & 

Anandakumar, 2007). The main objective of the proposed algorithm is to identify the 

modal frequencies as well as the mode shapes. The authors used two distinct fitness 

functions in their work, the total Mean Square Error (MSE) and the determinant of the 

Fisher Information Matrix (FIM). The effectiveness of the presented hybrid PSO 

algorithm in determining the optimal numbers and placement of sensors is tested on 

three numerical examples, a cantilever beam, a slab bridge, and a girder bridge. These 

examples show the outperformance of the proposed algorithm over some iterative 

information-based approaches and other PSO implementations in generating optimal 

solutions as well as faster convergence. Begambre and Laier also used a combination 

between the basic PSO and the Nelder-Mead algorithm for damage identification 

purposes (Begambre & Laier, 2009). The fitness function used in this work is based on 

the Frequency Response Functions (FRF) of the system. According to the study results, 

the hybrid PSO algorithm outperformed the basic PSO and the simulated annealing 
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algorithms in locating the global optimum using a lower number of function 

evaluations, when applied on three different numerical problems, a 10-bar truss, a free-

ends steel beam, and a nonlinear oscillator. Seyedpoor generated a two stage method for 

detecting damage in structures (Seyedpoor, 2012). A model strain energy based index 

(MSEBI), calculated using the modal analysis information extracted from a finite 

element modeling, is used in the first stage to locate the eventual structural damage. 

Then, a particle swarm optimization technique is used in the second stage of the 

proposed method to determine the extent of the actual damage, using the results of the 

first stage. The efficiency of this two stage method in identifying the multiple damage in 

structural systems is tested on two numerical examples, a 15-element cantilevered beam 

and a 31-bar planar truss.  

The simulated annealing is another optimization based method; it is named 

after the physical process of annealing in thermodynamics and used for finding a global 

optimum for problems having multiple local minima and maxima. Chiu and Lin used 

the simulated annealing (SA) algorithm to optimize the sensor locations for small and 

large sensor fields (Chiu & Lin, 2004). 

The fourth optimization-based method is the tabu search, which is a “meta-

heuristic” optimization approach used to avoid being trapped at a local minimum or 

maximum in neighborhood search problems. The main step in the TS method is to 

create a “tabu list” of previously considered solutions to prohibit visiting them again. 

There are limited studies on the use of TS for OSP purposes in the literature. 

   In the past couple of years, many researchers resorted to machine learning 

algorithms for developing robust system identification techniques. While the direct 

objective of the studies was for damage detection only, some of the techniques 
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presented in them may be useful for OSP purposes. Salehi, et al., proposed a study 

aiming at developing global interpretation algorithms using discrete binary data for 

damage identification purposes (Salehi, Das, Chakrabartty, Biswas, & Burgueno, 2015). 

Figueiredo, et al., presented a comparative study between four machine learning 

algorithms: auto-associative neural network (AANN), factor analysis (FA), 

Mahalanobis squared distance (MSD) and singular value decomposition (SVD), where 

the MSD was found to be the best method for damage detection in the presence of 

operational and environmental variability (Figueiredo, Park, Farrar, Worden , & 

Figueiras, 2011). Zhou, et al., presented an approach based on combining the posterior 

probability support vector machines (PPSVM) based method, and Dempster-Shafer 

(DS) evidence theory for damage identification of structures (Zhou, et al., 2015).  

One common challenge facing optimization-based methods is selecting the 

appropriate fitness function for minimization purposes. This is typically problem 

dependent, and the efficacy of the used optimization approach hinges on the suitability 

of the selected fitness function. 

 

The second category of solvers used for OSP methods, selection-based 

procedures, is based on selecting the best sensor locations using information theory 

measures (i.e. entropy or mutual information) which quantify the uncertainty associated 

with random variables. The optimal locations of the sensors are the ones having good 

information content and the bad locations are where sensors have low information 

content. Yuen, et al., applied the Bayesian method to compute the uncertainty in model 

parameters and the information entropy to get the optimal sensor configuration. The 

proposed approach was applied on two numerical examples with uncertain excitations: 
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an 8 DOF chain mass-spring model and a 40 DOF truss model (Yuen, Katafygiotis, 

Papadimitriou, & Mickleborough, 2001). While these selection-based methods 

generally yield good results, they suffer in most of the cases from high computational 

burden when compared to the optimization-based methods. 

Many methods based on a combination between the GA approach and the 

Bayesian framework are extensively used in the literature for optimally placing sensors 

on a structure. The Bayesian approach is first used to compute the uncertainty in the 

parameters, then the GA is applied to minimize the information entropy over the set of 

possible sensor configurations. Papadimitriou, et al., combined these two methods to 

determine the best sensor locations of a 9-story building and a 29 DOF truss structure 

(Papadimitriou, Beck, & Au, 2000). Flynn and Todd applied this same approach to 

determine the best locations of sensors in the field of active sensing (Flynn & Todd, 

2010). Chow, et al., and Lam, et al., combined the GA and the Bayesian approaches to 

determine the optimal sensor configuration of a 3D finite element model of a 

transmission tower modeled in ANSYS (Chow H. , Lam, Yin, & Au, 2011; Lam, Yang, 

& Hu, 2011). Papadimitriou used the information entropy to determine the optimal 

sensor configuration in (Papadimitriou , 2004),  where he proposed an approach, 

sequential sensor placement (SSP), that is used to sequentially determine the best sensor 

locations by placing one sensor at a time, and compared it with the GA. The first sensor 

is placed in a location that results in the highest reduction in the information entropy for 

the case of one sensor only. The location of the second sensor is next determined that 

gives the highest reduction in the information entropy for the case of two sensors, given 

that the first sensor is fixed in its optimal location found in the first step. The approach 

continues in a similar fashion until the optimal configuration of the fixed number of 
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available sensors is reached. The comparison is based on the computational burden 

needed to determine the optimal sensor locations of two numerical examples, a 10 DOF 

chain-like spring-mass model and a 240 DOF three-dimensional (3D) truss structure. 

 

This dissertation presents a methodology based on combining the GA and the 

EnKF methods to tackle the problem of optimal sensor placement. In the presented 

framework, the GA is used to randomly generate possible sensor locations, and the 

EnKF is employed to identify the system state and parameters based on the selected 

sensor locations. Within the GA framework, the fitness function to be minimized is 

taken to be the difference between synthetically generated actual measurement data and 

their respective predicted values, calculated using the state and model parameters 

estimated via EnKF. In some recent works, the GA and the EnKF methods were 

combined together for purposes other than the optimal sensor placement. Li, et al., 

combined these two techniques to determine the optimal permeability distribution of a 

3D model of landfills (Li, Qin, Tsotsis, & Sahimi, 2012), where the GA was first used 

to generate initial ensembles of the permeability distribution of the landfill model and 

the EnKF was then used to approximate this distribution and update it based on 

synthetic real-time measurements. Lyons and Nasrabadi used the EnKF for history 

matching and updating a reservoir model, then combined it with the GA method for 

well placement optimization (Lyons & Nasrabadi, 2013). 
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CHAPTER 3 

SEQUENTIAL DATA ASSIMILATION 

 

The main challenge encountered with the existing sequential data assimilation 

methods is the presence of various sources of uncertainties and errors when dealing with 

complex and nonlinear systems. This dissertation presents a general overview of the 

existing Kalman filtering techniques and shows the importance of quantifying the 

uncertainties in these data assimilation techniques when used to estimate the unknown 

system state and parameters for damage identification and SHM purposes. The 

concentration of this dissertation is mainly on the ensemble Kalman filter and the 

polynomial chaos Kalman filter to compare intrusive versus non-intrusive techniques 

for uncertainty quantification in a KF setting of complex and highly nonlinear systems.  

 

3.1. Kalman Filter 

   The Kalman Filter (Kalman, 1960; Burgers, Leeuwen, & Evensen, 1998; Welch 

& Bishop, 2006; Grewal & Andrews, 2008) is an optimal recursive data processing 

estimator that approximates the state of linear dynamical systems perturbed by Gaussian 

white noise, using observations that are subjected to Gaussian errors. This process 

involves two stages, the first stage is the forecast or predictive stage, where the model 

state at time k is propagated forward in time, and the second stage is the update or 

corrective stage, where the variables describing the state of the system are adjusted based 

on the actual measurements at time k+1. 
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   In the forecast step, a dynamical linear system is considered and characterized 

by a model state vector kx  at time k, the predicted state is given by the following 

equation, 

 𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝜀𝑘    𝑥𝑘 , 𝜀𝑘𝜖𝑅
𝑛,     𝐴𝑘 ∈ 𝑅𝑛×𝑛 (20) 

where n is the dimension of the model state vector, 𝐴𝑘 is a constant matrix and 𝜀𝑘 is a 

Gaussian white noise vector due to the modeling uncertainties. The error covariance and 

the forecasted error covariance matrices are defined, respectively, as 

 𝑃𝑘 = 𝐸[(𝑥𝑘
𝑡 − 𝑥𝑘)(𝑥𝑘

𝑡 − 𝑥𝑘)
𝑇]       𝑃𝑘 ∈ 𝑅𝑛×𝑛 (21) 

 𝑃𝑘+1 = 𝐴𝑃𝑘𝐴
𝑇 + 𝑄          𝑃𝑘+1, 𝑄 ∈ 𝑅𝑛×𝑛 (22) 

where 𝑥𝑘 
𝑡 is the true state vector at time instant k, and Q is the covariance matrix of the 

model noise 𝜀𝑘 . 

   In the update step, the predictions are corrected at each time measurements are 

recorded. The state model analysis, xa, and its respective covariance matrix, Pa, are given 

as functions of the state model forecast, xf, and its respective covariance matrix, Pf, as 

 𝑥𝑎 = 𝑥𝑓 + 𝐾𝐺(𝑑 − 𝐻𝑥𝑓) (23) 

 𝑃𝑎 = (𝐼 − 𝐾𝐺 × 𝐻)𝑃𝑓     𝐼, 𝐾𝐺,𝐻 ∈ 𝑅𝑛×𝑛 (24) 

where I is the identity matrix, 𝑑 ∈ 𝑅𝑚 is the observation vector, H is the measurement 

operator connecting the true state model xt and the measurements vector d as follows 

 𝑑 = 𝐻𝑥𝑡 + 𝜖 (25) 

𝜖 is the measurement noise vector, 

KG is the Kalman gain given by the following equation, 
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 𝐾𝐺 = 𝑃𝑓𝐻𝑇(𝐻𝑃𝑓𝐻𝑇 + 𝑅)−1 (26) 

where R is the error covariance matrix of the measurement noise 𝜖. 

 

3.2. Extended Kalman Filter 

 As mentioned in the previous subsection, the standard Kalman Filter is only 

used for the case of linear dynamic systems subjected to Gaussian white noise. For the 

case of nonlinear systems (nonlinear state and observations) or for the case of systems 

subjected to non-Gaussian noise, many variations of the Kalman Filter can be used 

instead of the traditional KF approach. Such nonlinear dynamical models have the 

following system state and measurement equations: 

 𝑥𝑘+1 = 𝑓𝑘(𝑥𝑘) + 𝜀𝑘    𝑥𝑘 , 𝜀𝑘 𝜖𝑅
𝑛,     𝑓𝑘 ∈ 𝑅𝑛×𝑛 (27) 

 𝑦𝑘 = ℎ𝑘(𝑥𝑘) + 𝜖   𝑥𝑘 , 𝜖 𝜖𝑅
𝑛,     ℎ𝑘 ∈ 𝑅𝑛×𝑛 (28) 

where 𝜀𝑘𝑎𝑛𝑑 𝜖 are Gaussian white noise vectors due to the modeling and measurement 

uncertainties, respectively (Ribeiro, 2004). 

The most widely used approximate technique is the Extended Kalman Filter 

(ExKF) that was first introduced by Chui and Chen (Chui & Chen, 1991) and clearly 

discussed in (Ghanem, Masri, Pellissetti, & Wolfe, 2005). ExKF is based on calculating 

an approximation of the optimal estimate using some linearization processes. A real 

time linear Taylor series expansion method can be first used to recursively linearize the 

nonlinear system dynamics under consideration, 𝑥𝑘+1 = 𝑓(𝑥𝑘) + 𝜀𝑘  around the last 

filtered state estimate 𝑥̂𝑘,𝑘.  
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In the forecast step, the prediction step of the traditional KF method is applied 

to the linearized system yielding the following predicted system state and error 

covariance equations: 

 𝑥̂𝑘+1,𝑘 = 𝑓𝑘(𝑥̂𝑘,𝑘) (29) 

 𝑃𝑘+1,𝑘 = 𝐹𝑘𝑃𝑘,𝑘𝐹𝑘
𝑇 + 𝑄𝑘 (30) 

where Q is the covariance matrix of the model noise 𝜀𝑘 and Fk is the Jacobian matrix of 

f(.): 

 𝐹𝑘 = ∇𝑓𝑘(𝑥̂𝑘,𝑘) (31) 

   In the update step, the observation matrix yk is linearized around 𝑥̂𝑘+1,𝑘 and the 

predicted state dynamics are corrected each time measurements are available yielding: 

 𝑥̂𝑘+1,𝑘+1 = 𝑥̂𝑘+1,𝑘 + 𝐾𝐺[𝑦𝑘+1 − ℎ𝑘+1(𝑥̂𝑘+1,𝑘)] (32) 

 𝑃𝑘+1,𝑘+1 = [𝐼 − 𝐾𝐺(𝐻𝑘+1)]𝑃𝑘+1,𝑘 (33) 

where I is the identity matrix, KG is the same Kalman gain of the traditional KF and it is 

given by the following equation:  

 𝐾𝐺 = 𝑃𝑘+1,𝑘𝐻𝑘+1
𝑇 [𝐻𝑘+1𝑃𝑘+1,𝑘𝐻𝑘+1

𝑇 + 𝑅𝑘+1]
−1

 (34) 

Hk is the Jacobian matrix of h(.), given by: 

 𝐻𝑘+1 = ∇ℎ(𝑥̂𝑘+1,𝑘) (35) 

The ExKF showed some drawbacks, especially regarding its high 

computational cost and its failure to be a good estimator in the case of highly nonlinear 

systems and/or in the case of significant non-Gaussian noise. Therefore, other variations 

of the KF were suggested in the literature to overcome the major drawbacks of the 

ExKF, mainly the unscented Kalman filter and the Ensemble Kalman filter. 
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3.3. Unscented Kalman Filter 

The Unscented Kalman filter uses the “unscented transform” sampling 

technique to select a set of points, called sigma points, around the mean and propagates 

these points through the nonlinear functions, instead of linearizing the functions as in 

the case of the ExKF. The number of sigma points is equal to 2M+1, with M being the 

dimension of the state vector 𝑥. New mean and covariance estimates are then calculated 

from the propagated set of points (St-Pierre & Gingras, 2004; Kamdepu, Foss , & 

Imsland, 2008; Chatzi & Smyth, 2009; Chowdhary & Jategaonkar, 2010; Laviola, 

2003).  

The columns of the sigma points matrix, corresponding to the random variable 

𝑥 with mean 𝑥̂ and covariance 𝑃𝑥𝑥 , are calculated as follows (Laviola, 2003; Chatzi & 

Smyth, 2009) 

 𝒳0 = 𝑥̂; 𝑊0 =
𝜆

𝑀+𝜆
  

𝒳𝑖 = 𝑥̂ + (√(𝑀 + 𝜆)𝑃𝑥𝑥)
𝑖
 ;𝑊𝑖 =

1

2(𝑀 + 𝜆)
;  𝑖 = 1…𝑀 

𝒳𝑖 = 𝑥̂ − (√(𝑀 + 𝜆)𝑃𝑥𝑥)
𝑖−𝑀

;𝑊𝑖 =
1

2(𝑀 + 𝜆)
;  𝑖 = 𝑀 + 1…2𝑀 

(36) 

where 𝜆 is a scaling parameter and 𝑊𝑖 is the weight corresponding to the ith point. 

These selected sigma points are next propagated through the nonlinear process model 

function as follows 

 𝒳𝑖(𝑘+1,𝑘) = 𝑓[𝒳𝑖(𝑘,𝑘)] (37) 

 In the prediction step, the predicted mean and error covariance matrix are 

computed as follows (Laviola, 2003; Chatzi & Smyth, 2009) 
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𝑥̂(𝑘+1,𝑘) = ∑𝑊𝑖 𝒳𝑖(𝑘+1,𝑘)

2𝑀

𝑖=0

 (38) 

 
𝑃(𝑘+1,𝑘) = ∑𝑊𝑖 [𝒳𝑖(𝑘+1,𝑘) − 𝑥̂(𝑘+1,𝑘)]

2𝑀

𝑖=0

[𝒳𝑖(𝑘+1,𝑘) − 𝑥̂(𝑘+1,𝑘)]
𝑇

+ 𝑄 (39) 

where Q is the process noise covariance matrix. 

The observation model and the predicted observation are given as 

 𝒴𝑖(𝑘+1,𝑘) = ℎ[𝒳𝑖(𝑘+1,𝑘)] (40) 

 
𝓎̂(𝑘+1,𝑘) = ∑𝑊𝑖 𝒴𝑖(𝑘+1,𝑘)

2𝑀

𝑖=0

 (41) 

In the update step, the corrected state estimate and the corresponding error 

covariance matrix are represented by (Laviola, 2003; Chatzi & Smyth, 2009) 

 𝑥̂(𝑘+1,𝑘+1) = 𝑥̂(𝑘+1,𝑘) + 𝐾𝐺(𝓎(𝑘+1) − 𝓎̂(𝑘+1,𝑘)) (42) 

 𝑃(𝑘+1,𝑘+1) = 𝑃(𝑘+1,𝑘) − (𝐾𝐺)𝑃𝑦𝑦(𝑘+1,𝑘)(𝐾𝐺)𝑇 (43) 

 
𝑃𝑦𝑦(𝑘+1,𝑘) = ∑𝑊𝑖 [𝒴𝑖(𝑘+1,𝑘) − 𝓎̂(𝑘+1,𝑘)]

2𝑀

𝑖=0

[𝒴𝑖(𝑘+1,𝑘) − 𝓎̂(𝑘+1,𝑘)]
𝑇

+ 𝑅 (44) 

 
𝑃𝑥𝑦(𝑘+1,𝑘) = ∑𝑊𝑖 [𝒳𝑖(𝑘+1,𝑘) − 𝑥̂(𝑘+1,𝑘)]

2𝑀

𝑖=0

[𝒴𝑖(𝑘+1,𝑘) − 𝓎̂(𝑘+1,𝑘)]
𝑇

 (45) 

where R is the measurement noise covariance matrix and KG is the Kalman gain given 

by 

 𝐾𝐺 = (𝑃𝑥𝑦(𝑘+1,𝑘))(𝑃𝑦𝑦(𝑘+1,𝑘))
−1

 (46) 
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3.4. Particle Filter 

In this subsection, a brief overview of the particle filter (PF) method is 

presented for completeness purposes. The particle filter methodology is similar to the 

sequential importance sampling approach with a re-sampling step, and is also known as 

sequential Monte Carlo method (SMC). It consists of approximating the posterior 

probability distributions of the system state, given a weighted set of random samples 

and noisy measurements (Chatzi & Smyth, 2009; Chatzi & Smyth, 2013). This Monte 

Carlo-based methodology can be used instead of some Kalman filter variations 

methods, such as the ensemble Kalman filter and the unscented Kalman filter, in 

estimating the state and parameters of the dynamical system given some noisy 

observations, in case the number of samples used is large enough (Roth, Fritsche, 

Hendeby, & Gustafison, 2015). In such a case, the particle filter is able to represent the 

actual posterior distributions and the solution reaches the optimal Bayesian estimate. 

Unfortunately, this increase in the number of samples will definitely lead to an increase 

in the computational burden. Another drawback of the particle filter is dealing with the 

“degeneracy” problem, where particles with negligible weights are taken into account to 

approximate the PDF. This deficiency in the particle filter can be solved using the 

resampling technique that throws out the particles with negligible weights and preserves 

the ones with larger contributions (Arulampalam, Maskell, Gordon, & Clapp, 2002). 

 

3.5. Ensemble Kalman Filter 

The Ensemble Kalman Filter (EnKF) was introduced by Evensen (Evensen, 

1994) to overcome some of the limitations of the standard Kalman Filter and the 

Extended Kalman Filter, and then improved and developed in many works (Burgers, 
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Leeuwen, & Evensen, 1998; Evensen, 2003; Welch & Bishop, 2006; Gillijns S. , et al., 

2006; Evensen, 2009). The EnKF is based on Monte Carlo sampling; it propagates an 

ensemble of realizations forward in time and then corrects them whenever 

measurements are available. 

   The EnKF consists of first evaluating the ensemble matrix A, holding the 

ensemble members xi, (Chatzi & Smyth, 2009) 

 𝐴 = (𝑥1, 𝑥2, … , 𝑥𝑁)     𝐴 ∈ 𝑅𝑛×𝑁, 𝑥𝑖 ∈ 𝑅𝑛 (47) 

where n is the size of the model state vector and N is the number of ensemble members. 

The ensemble mean and ensemble perturbation matrices are respectively evaluated as 

follows, 

 𝐴̅ = 𝐴1𝑁      𝐴̅ ∈ 𝑅𝑛×𝑁 (48) 

 𝐴′ = 𝐴 − 𝐴̅ = 𝐴(𝐼 − 1𝑁)     𝐴′ ∈ 𝑅𝑛×𝑁 (49) 

where 1𝑁 ∈ 𝑅𝑁×𝑁 is a matrix having its elements equal to 1/N. 

The ensemble covariance matrix is next calculated by 

 𝑃 =  
1

𝑁 − 1
𝐴′𝐴′𝑇     𝑃 ∈ 𝑅𝑛×𝑛 (50) 

The analysis equation is the following 

 𝐴𝑎 = 𝐴𝑓 + 𝐾𝐺(𝐷 − 𝐻𝐴𝑓) (51) 

where KG is the same Kalman Gain used in the standard KF 

 𝐾𝐺 = 𝑃𝑓𝐻𝑇(𝐻𝑃𝑓𝐻𝑇 + 𝑅)−1 (52) 

D is the ensemble of observation matrix holding the measurement vectors 𝑑 ∈ 𝑅𝑚 

 𝐷 = (𝑑1, 𝑑2, … , 𝑑𝑁)     𝐷 ∈ 𝑅𝑚×𝑁 (53) 
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where m is the number of measurements, and  

 𝑑𝑗 = 𝑑 + 𝜖𝑗    𝑗 = 1,… ,𝑁 (54) 

H is the measurement operator connecting the true state to the observations. 

R is the measurement error covariance matrix defined by 

 𝑅 =
1

𝑁 − 1
𝛾𝛾𝑇     𝑅 ∈ 𝑅𝑚×𝑚 (55) 

where 𝛾 is the ensemble of perturbations expressed as 

 𝛾 = (𝜖1, 𝜖2, … , 𝜖𝑁)     𝛾 ∈ 𝑅𝑚×𝑁 (56) 

 

3.6. Polynomial Chaos Kalman Filter 

Although the EnKF solves the major limitations of the standard KF and the 

ExKF, it faces some challenges in accurately approximating the model state when a 

small ensemble size is used. So for highly nonlinear problems, the EnKF requires a 

large ensemble size which increases the computational cost, that’s why the Polynomial 

Chaos Kalman Filter (PCKF) was proposed to be used instead (Saad, Ghanem, & Masri, 

2007; Saad & Ghanem, 2009; Saad & Ghanem, 2011). It should be noted here that a 

good number of works used the polynomial chaos theory for different purposes in the 

past years. A stochastic finite element procedure (SFEP) has been proposed by R. 

Ghanem and P.D. Spanos, then investigated by B. Sudret et al. (Sudret & Der 

Kiureghian, 2000; Ghanem & Spanos, 2003; Sudret, Berveiller, & Lemaire, 2006). The 

method represents the input random variables by Hermite series expansion and the 

response by the polynomial chaos expansion. It is proven that the proposed 

methodology is a convenient non-sampling method giving acceptable results while 
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reducing the computational burden needed. R. Ghanem et al. proposed a robust 

methodology to predict the dynamical system evolution in the presence of stochastic 

uncertainty by representing the random quantities in the dynamical system by their 

polynomial chaos representations (Ghanem, Masri, Pellissetti, & Wolfe, 2005). L. 

Nechak et al. used both intrusive and non-intrusive methods based on the polynomial 

chaos theory to study the dynamical behavior of friction systems (Nechak, Berger, & 

Aubry, 2011). V. Keshavarzzadeh et al. suggested a method based on nonlinear 

sequence transformations to improve the accuracy and convergence of polynomial 

chaos solutions when dealing with high-dimensional problems (Keshavarzzadeh, 

Ghanem, Masri, & Aldraihem, 2014). 

In the PCKF (Saad, Ghanem, & Masri, 2007; Saad & Ghanem, 2009; Saad & 

Ghanem, 2011), the forecast step is based on Galerkin projection method.  

The matrix holding the chaos coefficients is as follow, 

 𝐴 = (𝑥0, 𝑥1, … , 𝑥𝑃)     𝐴 ∈ 𝑅𝑛×(𝑃+1) (57) 

are the  {𝑥1, … , 𝑥𝑃}, A, stored in the first column of xis the mean of the model state 0 xhere w

model state perturbations, stored in the remaining columns of A, P+1 is the total number of 

terms in the polynomial chaos representation of the model state, n is the size of the model 

state vector x that is represented as 

 
𝑥 = ∑𝑥𝑖(𝑥)𝜓𝑖(𝜉(𝜃))

𝑃

𝑖=0

     𝑥 ∈ 𝑅𝑛 (58) 

where {𝜓𝑖} is the set of Hermite polynomial functions of the Gaussian random variables 𝜉. 

The model state error covariance matrix is given by 
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𝑃 = ∑𝑥𝑖𝑥𝑖

𝑇〈𝜓𝑖
2〉

𝑃

𝑖=1

     𝑃 ∈ 𝑅𝑛×𝑛 (59) 

where the operator 〈. 〉 represents the expected value. 

Given a measurements vector d, its polynomial chaos representation is as follows 

 
𝑑 = ∑𝑑𝑖𝜓𝑖(𝜉(𝜃))

𝑃

𝑖=0

     𝑑 ∈ 𝑅𝑚 (60) 

is the mean, given from the actual  0dis the total number of measurements,  mhere w

measurement vector, and {𝑑1, … , 𝑑𝑃} are the measurement uncertainties. The polynomial 

chaos representation of d can be stored in matrix B 

 𝐵 = (𝑑0, 𝑑1, … , 𝑑𝑃)     𝐵 ∈ 𝑅𝑚×(𝑃+1) (61) 

The measurement error covariance matrix can then be represented as 

 
𝑅 = ∑𝑑𝑖𝑑𝑖

𝑇〈𝜓𝑖
2〉

𝑃

𝑖=1

     𝑅 ∈ 𝑅𝑚×𝑚 (62) 

The analysis/corrector step is stated as follows 

 𝐴𝑎 = 𝐴𝑓 + 𝐾𝐺(𝐵 − 𝐻𝐴𝑓) (63) 

where H is the observation matrix and KG is the Kalman gain, having the same formulation 

as the one used in the standard KF,  

 𝐾𝐺 = 𝑃𝑓𝐻𝑇(𝐻𝑃𝑓𝐻𝑇 + 𝑅)−1 (64) 
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CHAPTER 4 

COMPARISON BETWEEN THE ENSEMBLE AND THE 

POLYNOMIAL CHAOS KALMAN FILTERS FOR 

UNCERTAINTY QUANTIFICATION 
 
 
    

   The difficulty in modeling complex and nonlinear structural systems lies in the 

presence of different independent sources of uncertainties. Emphasis on the importance 

of uncertainty quantification is illustrated in this chapter through a numerical problem 

presenting a comparison between intrusive techniques, represented by the Polynomial 

Chaos Kalman filter, and non-intrusive techniques, represented by the Ensemble 

Kalman filter, in quantifying uncertainties due to parametric, model and measurement 

errors. While the EnKF method is based on Monte Carlo simulation and uses a black-

box model to propagate an ensemble of realizations forward in time, the PCKF 

approach propagates the polynomial chaos representations of the unknown states and 

parameters to identify the system responses and detect the damage. 

 

4.1. Numerical Example 

   The numerical problem in this chapter consists of a four-degrees of freedom 

system as shown in Figure 3 below. The performance and robustness of both the ensemble 

Kalman filter and the polynomial chaos Kalman filter methods are tested on this 

numerical problem through the estimation of the displacement and velocity of each DOF 

as well as the system’s unknown parameters. The displacements and velocities of the 

different DOFs of the system are assumed to be all monitored. A pre-defined damage of 
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the first DOF is imposed 10 seconds after the excitation hits the system. Additionally, all 

DOFs are assumed to undergo hysteretic behaviors characterized by the Bouc-Wen 

model. The mass for each DOF is assumed to be equal such that 𝑀1 = 𝑀2 = 𝑀3 = 𝑀4 =

2 𝐾𝑔  and the system is assumed to be subjected to El-Centro earthquake ground 

excitation (Ghanem & Ferro, 2006; Chatzi & Smyth, 2009; Saad & Ghanem, 2011). 

 

 

Figure 3. Four-DOF System 

 
   This numerical problem is composed of two main models. For both filters, the 

EnKF and the PCKF, the first model consists of the forward model, which is represented 

by the Bouc-Wen model that is used to synthetically generate the measurements data. 

Therefore the equation of motion is expressed as 
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 𝑀𝑢̈ + 𝐶𝑢̇(𝑡)+∝ 𝐾𝑒𝑙𝑢(𝑡) + (1−∝)𝐾𝑖𝑛𝑧(𝑥, 𝑡) = −𝑀𝜏𝑢̈𝑔(𝑡) (65) 

   

 

[

𝑀1 0 0 0
0 𝑀2 0 0
0 0 𝑀3 0
0 0 0 𝑀4

] [

𝑢̈1

𝑢̈2

𝑢̈3

𝑢̈4

] + [

𝑐1 + 𝑐2 −𝑐2 0 0
−𝑐2 𝑐2 + 𝑐3 −𝑐3 0
0 −𝑐3 𝑐3 + 𝑐4 −𝑐4

0 0 −𝑐4 𝑐4

] [

𝑢̇1

𝑢̇2

𝑢̇3

𝑢̇4

] 

+𝛼 [

𝑘1 + 𝑘2 −𝑘2 0 0
−𝑘2 𝑘2 + 𝑘3 −𝑘3 0
0 −𝑘3 𝑘3 + 𝑘4 −𝑘4

0 0 −𝑘4 𝑘4

] [

𝑢1

𝑢2

𝑢3

𝑢4

] 

+(1 − 𝛼) [

𝑘1 + 𝑘2 −𝑘2 0 0
−𝑘2 𝑘2 + 𝑘3 −𝑘3 0
0 −𝑘3 𝑘3 + 𝑘4 −𝑘4

0 0 −𝑘4 𝑘4

] [

𝑧1

𝑧2

𝑧3

𝑧4

] =

[
 
 
 
𝐹1(𝑡)

𝐹2(𝑡)

𝐹3(𝑡)

𝐹4(𝑡)]
 
 
 
 

 

(66) 

where M is the mass matrix, C is the damping matrix, 𝐾𝑒𝑙 and 𝐾𝑖𝑛 are respectively the 

elastic and inelastic stiffness matrices and are both assumed to be equal to the ordinary 

stiffness matrix of the system, ∝ is the ratio of the post yielding stiffness to the elastic 

stiffness and is taken to be equal to 0.15 for this special numerical problem, 𝜏 is an 

influence vector, u is the displacement vector and z is the evolutionary hysteretic vector 

of dimension n and whose ith component is expressed by the Bouc-Wen model by 

 𝑧̇𝑖 = 𝐴𝑖𝑥̇𝑖 − 𝛽𝑖|𝑥̇𝑖||𝑧𝑖|
𝑛𝑖−1𝑧𝑖 − 𝛾𝑖𝑥̇𝑖|𝑧𝑖|

𝑛𝑖      𝑖 = 1,… , 𝑛 (67) 

where 𝐴 = 1, x is the inter-story drift vector and  𝛽, 𝑛 𝑎𝑛𝑑  𝛾 are the Bouc-Wen hysteretic 

model parameters. Parameter n is taken to be equal to 1 for simplicity reasons to avoid 

using Taylor series approximations for the power of a non-polynomial for the PCKF 

method. The purpose of this numerical problem is to identify the states of the system as 
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well as the parameters  𝛽𝑖 , 𝛾𝑖 , 𝑘 𝑎𝑛𝑑 𝑐 , where 𝑖 = 1,… ,4  is the number of degrees of 

freedom.  

   To synthetically generate the measured data, the stiffness is assumed to be 

constant and equal to 𝑘 = 8.5 𝑁/𝑚 on all the degrees of freedom, the damping is also 

assumed to be constant for all DOFs such that 𝑐 = 0.27, and the values of the Bouc-Wen 

hysteretic parameters, before the damage occurs at the first DOF of the system, are 

assumed to be 𝛽1 = 𝛽2 = 𝛽3 = 𝛽4 = 2 𝑎𝑛𝑑  𝛾1 = 𝛾2 = 𝛾3 = 𝛾4 = 1 (Chatzi & Smyth, 

2009). An increase of 50% to the values of hysteretic parameters of the first DOF is added 

once the damage is imposed to create a softening character (Shen, Golnaraghi, & Heppler, 

2005). Therefore, the values of 𝛽 𝑎𝑛𝑑 𝛾 of the first DOF ten seconds after the excitation 

hits the system under consideration become  𝛽1 = 3 𝑎𝑛𝑑 𝛾1 = 1.5. Measurements are 

assumed to available every 20 time steps with a fixed time step dt = 0.01 seconds. It 

should be noted that a sensitivity analysis was performed to select this time step value. 

An additive Gaussian white noise perturbation with a standard deviation equals to 3% of 

the exact data is added to the simulated displacements and velocities of the system’s 

DOFs to represent the measurement errors. The fourth-order Runge-Kutta integration is 

used to solve the differential equation (66) to determine the system responses of the 

displacements and velocities. 

 

   The state variable vector and its first order derivative are respectively 

represented in the following two equations as 

 𝑋 = [𝑢1  𝑢2  𝑢3  𝑢4  𝑢̇1  𝑢̇2  𝑢̇3  𝑢̇4  𝑧1  𝑧2  𝑧3  𝑧4  𝛽1  𝛽2  𝛽3  𝛽4  𝛾1  𝛾2  𝛾3  𝛾4  𝑘  𝑐]𝑇 (68) 
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𝑋̇

= [𝑋̇1 𝑋̇2 𝑋̇3 𝑋̇4 𝑋̇5 𝑋̇6 𝑋̇7 𝑋̇8𝑋̇9 𝑋̇10 𝑋̇11 𝑋̇12 𝑋̇13 𝑋̇14 𝑋̇15 𝑋̇16 𝑋̇17 𝑋̇18 𝑋̇19 𝑋̇20 𝑋̇21 𝑋̇22]
𝑇

 

= [𝑢̇1 𝑢̇2 𝑢̇3 𝑢̇4 𝑢̈1 𝑢̈2 𝑢̈3 𝑢̈4 𝑧̇1 𝑧̇2 𝑧̇3 𝑧̇4 𝛽̇1 𝛽̇2 𝛽̇3 𝛽̇4  𝛾̇1  𝛾̇2 𝛾̇3 𝛾̇4 𝑘̇  𝑐̇]
𝑇

 

 

 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑋5

𝑋6

𝑋7

𝑋8

−
1

𝑀1
[

−𝑢̈𝑔 + (𝑋17 + 𝑋18)𝑋5 − 𝑋18𝑋6

+𝛼[(𝑋13 + 𝑋14)𝑋1 − 𝑋14𝑋2]

+(1 − 𝛼)[(𝑋13 + 𝑋14)𝑋9 − 𝑋14𝑋10]

]

−
1

𝑀2
[

−𝑢̈𝑔 − 𝑋18𝑋5 + (𝑋18 + 𝑋19)𝑋6 − 𝑋19𝑋7

+𝛼[−𝑋14𝑋1 + (𝑋14 + 𝑋15)𝑋2 − 𝑋15𝑋3]

+(1 − 𝛼)[−𝑋14𝑋9 + (𝑋14 + 𝑋15)𝑋10 − 𝑋15𝑋11]

]

−
1

𝑀3
[

−𝑢̈𝑔 − 𝑋19𝑋6 + (𝑋19 + 𝑋20)𝑋7 − 𝑋20𝑋8

+𝛼[−𝑋15𝑋2 + (𝑋15 + 𝑋16)𝑋3 − 𝑋16𝑋4]

+(1 − 𝛼)[−𝑋15𝑋10 + (𝑋15 + 𝑋15)𝑋11 − 𝑋16𝑋12]

]

−
1

𝑀4
[

−𝑢̈𝑔 − 𝑋20𝑋7 + 𝑋20𝑋8

+𝛼[−𝑋16𝑋3 + 𝑋16𝑋4]

+(1 − 𝛼)[−𝑋16𝑋11 + 𝑋16𝑋12]

]

𝑋5 − 𝑋13|𝑋5|𝑋9 − 𝑋17𝑋5|𝑋9|

𝑋6 − 𝑋14|𝑋6|𝑋10 − 𝑋18𝑋6|𝑋10|

𝑋7 − 𝑋15|𝑋7|𝑋11 − 𝑋19𝑋7|𝑋11|

𝑋8 − 𝑋16|𝑋8|𝑋12 − 𝑋20𝑋8|𝑋12|
0
0
0
0
0
0
0
0
0
0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

(69) 

where 𝑢̈𝑔is the El-Centro earthquake ground excitation. 
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   For both filters, the EnKF and the PCKF methods, the second model consists of 

an inverse model that is used to detect the behavior of the system under consideration. 

The inverse model is also expressed by the Bouc-Wen model. 

 

   The initial values of the displacements  𝑢𝑖 , velocities 𝑢̇𝑖  and evolutionary 

hysteretic vector 𝑧𝑖 (𝑖 = 1,… ,4 ) are assumed to be the following  

 𝑢1
0 = 𝑢2

0 = 𝑢3
0 = 𝑢4

0 = 0; 

 𝑢̇1
0 = 𝑢̇2

0 = 𝑢̇3
0 = 𝑢̇4

0 = 0; 

𝑎𝑛𝑑 𝑧1
0 = 𝑧2

0 = 𝑧3
0 = 𝑧4

0 = 0 

(70) 

 

   The initial guesses of the unknown parameters of the system are assumed to have 

the following mean values  

 𝛽1
0 = 2.5; 𝛽2

0 = 2.5; 𝛽3
0 = 2.5; 𝛽4

0 = 2.5; 

 𝛾1
0 = 1.2; 𝛾2

0 = 1.2; 𝛾3
0 = 1.2; 𝛾4

0 = 1.2; 

𝑘0 = 7 𝑎𝑛𝑑 𝑐0 = 0.4 

(71) 

and a standard deviation of 5% of the initial assumptions. 

   A fourth order Runge-Kutta time integrating method is implemented once again 

to propagate the system state forward in time. An additive Gaussian white noise having a 

standard deviation equals to 0.5% of the forecasted state vector and 1% of the forecasted 

parameters, is used every 5 time steps to represent the model uncertainty. The perturbed 

synthetic measurements of the displacements and velocities of the DOFs are used to 

calibrate the model parameters and estimate the response of the system under 

consideration. 
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   For the PCKF method, The Galerkin projection method is used to solve the 

equation (66) to determine the acceleration 𝑢̈𝑖 (𝑖 = 1,… , 4). On the other hand, to solve 

equation (67) and determine the evolutionary hysteretic vector  𝑧𝑖 (𝑖 = 1,… , 4) , the 

Galerkin projection cannot be used because of the presence of the absolute value in the 

equation, and a linear fitting method (i.e. regression method) is used instead although it 

requires more computational effort than the Galerkin projection approach. It should be 

noted that this non-intrusive method used to solve for 𝑧𝑖 is an approximation method, 

suffering from errors due to the truncation. 

 

Representation of the Different Sources of Uncertainty 

   Regarding the PCKF method, the dimension is specified based on the number 

of independent sources of uncertainty available in the system under consideration. 

Therefore, one major challenge faced in this numerical problem was the increase in the 

dimensionality of the PCE due to the presence of different independent sources of 

uncertainties, i.e. every time a measurement is recorded or a model error is implemented 

in the system to account for the physical and mathematical model simplifications, an 

additional increase in the dimensionality of the PCE is incorporated. To solve this 

problem, the PCE bases are assumed to be limited to finite terms while maintaining a 

good enough approximate propagation of the covariance matrix and the parameters’ 

means, leading to a relative decrease in the dimensionality of the PCE under 

consideration (Slika & Saad, 2016; Slika & Saad, 2016). 

Therefore, the errors due to model uncertainty are first assumed to be correlated for 

each state (𝑢, 𝑢̇ 𝑎𝑛𝑑 𝑧) and each parameter (𝛽, 𝛾, 𝑐 𝑎𝑛𝑑 𝑘), resulting in a total of 7 

independent sources of model errors. Next, the errors due to measurement uncertainties 
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are also assumed to be respectively correlated for u and 𝑢̇, leading to two additional 

independent sources of errors. Finally, the initial guess errors are taken to be correlated 

for each parameter (𝛽, 𝛾, 𝑐 𝑎𝑛𝑑 𝑘) respectively, resulting in 4 additional independent 

sources of errors. Therefore, the minimum allowed dimension of the PCKF method is 

34, i.e. a minimum of 4 finite terms are taken for the model error and 1 finite term is 

assumed for the measurement uncertainty. 

   It should be noted that for this case, both filters faced a challenge in accurately 

estimating parameters 𝛽 𝑎𝑛𝑑 𝛾 for each DOF. To solve this problem, errors 

representing the model uncertainties in 𝛽 𝑎𝑛𝑑 𝛾 are respectively assumed to be 

independent. Therefore, the total number of independent sources of errors due to model 

uncertainty becomes 13 instead of 7 and the minimum dimension of the PCKF method 

turns out to be 45 (i.e. a minimum of 3 finite terms are taken for the model error and 1 

finite term for the measurement error). Although this assumption results in an increase 

in the minimum allowed dimension of the PCKF method from 34 to 45, both filters are 

now able to accurately approximate the unknown system state and parameters and to 

adequately locate the imposed prescribed damage in time and space. 

 

4.2. Results and Discussions 

   Before proceeding with the results, it should be noted that sensitivity analyses 

on the ensemble size of the EnKF method and on the order and dimension of the PCKF 

method were performed. The mean of the predicted hysteretic parameter 𝛽1 and its 

standard deviation, ten seconds after the damage is imposed on the first DOF, are 

calculated for this purpose, for different sizes of the EnKF approach and different orders 

and dimensions of the PCKF method. While the PCKF method gives the same 
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outcomes for different simulation runs having same order and dimension of the PCE, 

the results of the EnKF method slightly vary between different simulation runs for the 

same ensemble size. For this reason, five simulation runs were respectively executed for 

each ensemble size. Figures 4 and 5 respectively represent the values of the mean and 

standard deviation of the predicted parameter 𝛽1 at ten seconds post-damage, calculated 

using the EnKF and PCKF approaches.  

   It can be seen from figure 4 that as the ensemble size increases, the variability 

between the means of the predicted parameters 𝛽1 of the different simulation runs 

decreases to attain an acceptable variability for a 10,000 ensemble size. This 

observation is also valid for figure 5, where the results of the standard deviations of the 

predicted parameters 𝛽1, at ten seconds after the damage is imposed on the first DOF, 

attain acceptable errors between different simulation runs for an EnKF method with 

10,000 ensemble size. 

   Similarly, as the order of the PCKF method is increased from 1 to 2, the 

method results in a closer approximation of the mean of the parameter 𝛽1 to the assumed 

exact measured value, as shown in figure 4, and in a slightly smaller standard deviation 

of parameter 𝛽1, as shown in figure 5. In addition, for PCKF order 2, a rough plateau in 

the values of the mean and standard deviation of parameter 𝛽1 is noticeable for different 

dimensions of the PCE. Therefore, a PCE with order 2 and dimension 45 plays the role 

of a good parameter estimator. It should be noted that the results for PCE with order 3 

are not presented in this dissertation for practicality reasons, since for this case the 

computational burden of the simulation runs becomes unreasonably expensive and 

impractical. As a conclusion, an EnKF with 10,000 ensemble size and a PCE with order 

2 and dimension 45 can be used for the comparative study in this numerical problem.  
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Figure 4. Mean of predicted parameter 𝛽1 vs. Ensemble size and PCKF dimension and 

order, 10 seconds after the damage 

 

 

Figure 5. Standard deviation of predicted parameter 𝛽1 vs. Ensemble size and PCKF 

dimension and order, 10 seconds after the damage 
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   Furthermore, while the duration for the PCKF parameter and state 

identification with dimension 45 and order 2 was 3.0618x103 seconds, the 

computational time for the EnKF identification with size 10,000 ensemble of 

realizations was 7.1455x103 seconds. As a result, for high accuracy requirements, while 

both filters are able to approximate the system state and unknown parameters and 

identify the damage in space and time, the PCKF method outperforms the EnKF 

approach, that requires high ensemble size to attain high precisions, in terms of 

computational expenses.  

 

   Figures 6 to 9 respectively represent for each DOF, a comparison between the 

EnKF and PCKF estimates of the displacement (part (a) of each figure), velocity (part 

(b) of each figure) and evolutionary hysteretic vector (part (c) of each figure), and their 

respective synthetic actual measured values. It can be clearly seen that there is a very 

good match between the three plots in each figure, which implies that both variations of 

the Kalman filter method play the role of very good estimators of the system state. 
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Figure 6. First DOF (a) displacement, (b) velocity and (c) evolutionary hysteretic 

vector 

 

 
Figure 7. Second DOF (a) displacement, (b) velocity and (c) evolutionary hysteretic 

vector 
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Figure 8. Third DOF (a) displacement, (b) velocity and (c) evolutionary hysteretic 

vector 

 

 
Figure 9. Fourth DOF (a) displacement, (b) velocity and (c) evolutionary hysteretic 

vector 
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   The EnKF and PCKF estimates of the hysteretic model parameters 𝛽 and 𝛾 of 

each DOF are respectively presented in figures 10 and 11. A perfect match between the 

EnKF and PCKF estimates of the different hysteretic model parameters can be 

obviously noticed in each figure. Furthermore, both KF filter variations were able to 

locate the imposed damage in time and space, which is represented by the jump of the 

different parameters at 10 seconds, followed by a correction and matching with the true 

values after few time steps. 

   Same conclusions can be drawn for parameter k, represented in figure 12 part 

(a) and parameter c, represented in Figure 12 part (b). Both filters were able to estimate 

the true values of parameters k and c, even when starting from relatively far initial guess 

values, and to locate the damage imposed 10 seconds after the excitation hits the system 

under consideration.  

 

 
Figure 10. EnKF and PCKF estimates of Parameter 𝛽 (a) first DOF; (b) second DOF, 

(c) third DOF and (d) fourth DOF 
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Figure 11. EnKF and PCKF estimates of Parameter 𝛾 (a) first DOF; (b) second DOF, 

(c) third DOF and (d) fourth DOF 
 

 

 
Figure 12. (a) Parameter k, and (b) Parameter c 
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   Figure 13 represents the hysteretic loop corresponding to the first DOF. The 

nearly perfect match between the actual hysteretic loop and its EnKF and PCKF 

estimates, authenticates the validity of parameter approximation of both filters.   

 

Figure 13. Hysteresis Loop of the first DOF 
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CHAPTER 5 

OPTIMAL SENSOR PLACEMENT USING A COMBINED 

GENETIC ALGORITHM – ENSEMBLE KALMAN FILTER 

FRAMEWORK  
 

With the recent technological advances, the deployment of monitoring devices 

in structures is becoming more abundant. In an ideal scenario, one would deploy sensors 

on every corner of a structure, but the problem of dealing with the humongous online 

data generated arises. As previously mentioned, the second objective of this dissertation 

is to present a novel framework based on combining Genetic Algorithm techniques with 

the Ensemble Kalman filter approach to identify the optimal sensor locations for 

structural system identification and damage detection purposes. The GA approach is 

first used to generate a random initial set of sensor locations, then through a 

minimization procedure, the best locations of the sensors are determined. The fitness 

function to be minimized is taken to be the difference between synthetically generated 

actual measurement data and their respective predicted values, calculated using EnKF 

through estimating and updating the system state and model parameters.  

   The proposed framework is general enough to allow applicability to a wide 

range of structural problems exhibiting hysteretic behaviors and suffering from limited 

real-time measured data. The use of the EnKF for evaluating the fitness function for the 

GA allows for quantifying the uncertainty within the system by relying on a Monte 

Carlo scheme. Although the GA might not rapidly converge to the optimal solution; in 

the presented setting, the Genetic Algorithm-Ensemble Kalman Filter (GA-EnKF) 

framework is carried out in the planning and design stages where ample time is 
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available for optimization purposes. A limitation on the use of the GA-EnKF approach 

may be encountered if the presented algorithm is to be used for online identification 

purposes. The robustness and efficiency of the suggested methodology are tested 

through a sensitivity analysis on the initial positions of the sensors of a ten-story shear 

building subjected to El-Centro earthquake excitation at its base, where the percentages 

of convergence of the GA-EnKF scheme to the optimal solutions, calculated using the 

brute-force search method, are analyzed. The sensitivity of the presented framework to 

the population size of the GA is also assessed. 

 

5.1. The Genetic Algorithm (GA) 

The genetic algorithm is a search technique that uses random natural evolution 

operations to solve optimization problems. It was first introduced by John Holland in 

1975 (Holland, 1975). The algorithm starts by randomly creating a population of 

individuals, from which fittest parents are selected. These initial parents undergo a 

series of natural evolution operations to create new better offsprings, from which the 

best new parents are selected based on their fitness. This is repeated until a certain 

termination criterion is satisfied. 

 

The GA can be summarized in the following outline (Chow H. , Lam, Yin, & Au, 

2011; Lam , Yang, & Hu, 2011; Chou & Ghabboussi, 2001): 

1. Initialization: The algorithm starts by randomly generating an initial set of 

individuals or solutions (Population), where each individual is represented by a 

chromosome. There are many encoding methods in the literature to represent the 

individuals of a population, but the most used way is the binary string (1 or 0) 
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where each chromosome is represented by one binary string. For the case of 

optimal sensor location problems, if for example two sensors are available to be 

placed on a four-story building and the individual is encoded as 1010, this means 

that one sensor is placed on the first floor and the second sensor is placed on the 

third floor. 

2. Fitness evaluation: The next step is to determine the fitness or objective function 

to be optimized, that is problem dependent, and evaluate the fitness of each 

individual of the initial population. 

3. Creation of new solutions: The following steps must be repeated until 

convergence: 

i. Selection: In this step, two parents (sub-population) are selected from 

the population based on their fitness values to produce new 

offsprings (children). The fitter the chromosome, the better it has 

chance to be selected to propagate its genetic information. 

ii. Crossover (Recombination): This operation is used to create new 

offsprings by recombining genes from the selected parent 

chromosomes. A crossover point or site should be randomly selected, 

the part of the strings before this point of the first parent is combined 

with the part of the strings after this point of the second parent to 

create the first offspring, whereas the second offspring is created by 

combining the remaining two parts of the strings from the two 

parents. Figure 14 below shows a simple crossover example. 
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Figure 14. Crossover Example 

 

iii. Mutation: This operation randomly changes some of the portions of 

the new individuals to avoid being trapped into a local optimum. For 

binary encoding, mutation randomly flips some bits from 0 to 1 or 

from 1 to 0. Figure 15 illustrates a simple mutation example. 

 

Figure 15. Mutation Example 

iv. The new, hopefully better, solutions are used as parents now. The 

fitness of the new offsprings should be evaluated and the loop should 

be repeated until convergence to the best individuals. 

4. Termination conditions: For each problem, many termination conditions can be 

predefined, those may include: number of generations, time of the run, plateau 

(no more improvement of the best solution), and many others. 
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The general outline of the GA approach is shown in Figure 16 below. 

 

Figure 16. GA general outline 

 

 

5.2. Genetic Algorithm-Ensemble Kalman Filter (GA-EnKF) Methodology for 

Optimal Sensor Placement 
 
 

The main objective of this study is to identify the optimal placement of a fixed 

number of sensors within a structure. Once a finite number of sensors is selected, an 

initial population of sensor locations is randomly generated as a first step in the GA 

approach. The EnKF is then employed to assimilate data for each set of sensor locations 

identified by the GA independently. The EnKF first propagates an ensemble of 
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realizations forward in time using the Runge-Kutta time integration scheme, then update 

and correct the system states and parameters whenever measurements data are available. 

The aim of the filtering is to estimate the model state and parameters using 

measurement data from selected sensors only. The updated model parameters are then 

used to forecast the future response of the structure. The mismatch between the 

predicted structural response (e.g. displacements, velocities, acceleration …) and the 

synthetically measured data serves as the objective function for the GA optimization.  

Once the objective functions corresponding to all individuals within the initial 

population of sensor locations are evaluated, the ones having the best fitness values (the 

least mismatch between the measured and predicted data) are selected as the “Parents”. 

New better “Offsprings” (new sensor locations) are created after performing some 

natural evolution operations, the crossover and mutation operations, on the old parents 

(old sensor locations). The introduction of these natural evolution operations in the 

proposed scheme makes the population of sensor locations more diverse in each 

generation and increases its immunity against being trapped in local minima and thus 

leading to undesirable premature convergence.  

The real-time measured data and the EnKF predicted data corresponding to the 

new sensor locations are next calculated and the fitness of each of the new solutions 

(new sensor locations) is evaluated. The best individuals of the population, having the 

least mismatch between predicted and measured data, are selected as new parents for a 

new loop. The algorithm is repeated until one of the predefined convergence conditions 

is satisfied and the best locations of the sensors are determined.  

The chart, presented in Figure 17, summarizes the general steps used in the 

aforementioned methodology. 
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Figure 17. GA-EnKF Methodology Summary Chart 

 

 

5.3. Numerical Example 

The numerical problem in this chapter consists of a ten-degree-of-freedom 

shear building, as shown in Figure 18, subjected to an El-Centro earthquake excitation 

at its base. The floor mass corresponding to stories one, two and three is taken to be 
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50,000 Kg each, stories from four till eight have a floor mass of 40,000 Kg each, and 

stories nine and ten have a 30,000 Kg floor mass each. All structural elements of this 

building are assumed to undergo hysteretic behaviors. To simplify the analysis, a non-

parametric model is assumed to simulate the hysteretic behavior where the restoring 

force function is represented as a truncated polynomial function of the inter-story drifts 

and velocities of the different floors of the building (Ghanem & Ferro, 2006; Saad, 

Ghanem, & Masri, 2007; Saad & Ghanem, 2011). Consequently, the equation of motion 

becomes  

     tuMuuFtuM g
  ,  (72) 

where M is the mass matrix and F is the non-parametric representation of the 

nonlinearity (nonlinear restoring force), whose ith  component is given by 
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where floorsi #,...,1  and        iiii dandcba ,,,  are the coefficients related to the floor 

i damping and stiffness properties. Coefficients {ai}, multiplying the inter-story drift of 

floor i, are directly related to the stiffness corresponding to floor i. Coefficients {ci}, 

multiplying the inter-story velocity of floor i, are directly related to the damping of floor 

i. Coefficients {bi} and {di}, respectively multiplying the cube of inter-story drift and 

the product of inter-story drift and velocity of floor i, are indirectly related to the 

damping and stiffness properties of floor i. It should be noted that an adaptive 

refinement procedure was performed to select suitable basis functions for the restoring 

force F, which is a trade-off between the size of the basis and the accuracy of the 

results. 
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Figure 18. Ten-story shear building 

 

   A simpler case study consisting of a four-story shear building subjected to 

seismic excitation at its base was investigated in an earlier study (Nasr & Saad, 2015). 

The current study builds on the previous work and is geared to test the efficiency and 

robustness of the proposed GA-EnKF methodology in determining the best sensor 

locations for higher dimensional structures through a sensitivity analysis on the initial 

locations of the sensors (the starting point of the optimization algorithm). In this study, 

an exhaustive search procedure, taking into account every single possible combination 

of sensor locations, is performed to determine the optimal scenario and consequently 

assess the accuracy of the proposed algorithm. 
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Due to the lack of real time measurement data of the displacement and velocity 

of each floor, the model parameters listed in table 1 are used to synthetically generate 

the measured displacements and velocities of the different floors. The parameters are 

assumed stationary and equal for all floors. However, to represent measurement errors, 

an additive Gaussian white noise perturbation having a standard deviation equal to 0.5% 

of the actual data is added to the simulated floors displacements and velocities. 

Within the optimization framework, it is assumed that the model parameters are 

unknown a priori, and the approach starts from an initial assumption for the restoring 

force parameters. The assumed model parameters used for optimization purposes are 

Gaussian random variables with the initial guess having the mean values shown in table 

2 and a standard deviation of 10% of the initial assumption.  The perturbed synthetic 

data are used to calibrate the model parameters and predict the response of the building. 

The MATLAB’s genetic algorithm function (ga) (Mathworks) is combined with an 

EnKF algorithm to identify the optimal sensor locations. As a base case, the number of 

individuals in each population is taken to be 50, from which two elite individuals having 

the best fitness functions are selected. Two main stopping criteria are considered for this 

problem: (1) the algorithm stops in case the number of generations exceeds 100 

generations, or (2) in case after 20 successive generations (stall generations “Stall (G)”), 

the average change in the fitness function value is less than the function tolerance. An 

adaptive refinement analysis is performed on the value of the tolerance and the best 

value for the problem at hand is found to be equal to 10-10. 

 

 

 



 
 
 

73 
 
 

Table 1. Model parameters used to generate synthetic measurements in forward model 
 

Model 

Parameters 

Values 

a 1e8 

b 2e5 

c 9.4e5 

d 4.5e5 

 

Table 2. Initial model parameters used within the optimization 
 

Model 

Parameters 

Initial Mean 

Values 

a 1e7 

b 1e4 

c 4.7e4 

d 1.5e4 

 

Within the framework of the EnKF, an ensemble of state vectors is used to 

represent the uncertainty within the system. Sensitivity analysis is conducted to 

optimally select the number of ensembles to be used for the model parameter calibration 

process. Based on the analysis results, it was decided to use an ensemble size of 400 for 

adequate representation of the system noise. The initial ensemble is propagated forward 

in time using the fourth order Runge-Kutta time integration scheme. The model error is 

represented via an additive Gaussian white noise having a standard deviation equal to 

1% of the forecasted state vectors. Whenever measurements are available, the model 
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state vectors are updated using the Ensemble Kalman Filter equations. After performing 

a sensitivity analysis on the time step value, a time step of 0.01 seconds is chosen and 

the measurements are assumed to be available every 10 time steps. 

The EnKF updated state vector is used to predict the response of the structure. 

The L2-norm of the difference between the mean predicted displacement and velocity 

and the respective measured displacement and velocity for all floors, divided by the 

synthetically measured data is adopted as the fitness function for the GA optimization. 

The penalty value is therefore calculated as: 

Penalty value = 
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where, floorsi #,...,1 , ui and vi correspond to the displacement and velocity of floor i 

respectively, and the subscripts p and m correspond to the predicted and measured 

values, respectively. The fittest individuals, having the lowest mismatch between the 

predicted and actual data, have a better chance to be selected as they will produce better 

offsprings after undergoing the crossover and mutation processes. 

 

5.4. Results and Discussions 

Four different scenarios of available number of sensors are tested, two, three, 

four and five sensors case studies. For each scenario, the objective is to identify the 

optimal sensors placement using the GA-EnKF framework so as to minimize the 

mismatch between the measured and predicted displacement and velocity of each floor. 
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The brute-force search approach is used to test the convergence of the proposed GA-

EnKF framework to the optimal sensor locations. This exhaustive search technique 

consists of systematically calculating the penalty value corresponding to each possible 

combination of sensor locations for the four different cases of available sensors. 

Moreover, a sensitivity analysis study is conducted to evaluate the robustness of the 

presented approach through random selection of initial locations of the sensors for the 

four previous cases. For each case, 100 simulations of the GA-EnKF framework are 

conducted starting with a different initial guess of sensor positions each time, and the 

percentage of convergence of this proposed methodology to the brute-force search’s 

optimal sensor location is calculated. 

5.4.1. Two sensors case 

For the case of two available sensors, the penalty values corresponding to the 

45 possibilities of sensors placement are calculated using the brute-force search method 

and the lowest fitness value corresponded to the case where the sensors are placed on 

floors 1 and 10. For the base case of 50 individuals within each population, 88% of the 

simulations using the proposed GA-EnKF framework, starting each time from a 

different random initial guess of sensor locations, converged to the brute-force optimal 

result.  

Figure 19 represents the results of the proposed GA-EnKF framework starting 

from an initial population of sensors locations randomly selected to be floors 8 and 10 

(Initial Population = [8 10]). The best penalty values (dots) and the mean penalty values 

(circles) at each generation are presented in part (a) of Figure 19. The best sensor 

locations for this case are found to be on floors 1 and 10 (Figure 19 part (b)). This 
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finding matches the result found using the brute-force search and is very logical since 

one can expect that the best scenario is to place one sensor at the top of the structure and 

the other at the bottom, when a limited number of sensors are available, to cover all the 

building and get the most informative measured data. It can be noticed that the 

algorithm converged before attaining the maximum number of generations because 

there was no improvement in the value of the fitness function for 20 successive stall 

generations (Stall(G)), as shown in part (c) of Figure 19. For this problem, the time and 

the Stall time limit (Stall (T)), which is the time over which the fitness function exhibits 

no improvement, are not included as stopping criteria.  

 

Figure 19. Two Sensors Scenario: (a) Best and mean fitness values at each generation, 

(b) Best Individuals (Optimal Sensor Locations), and (c) Stopping Criteria 

 

Figures 20 and 21 show the displacement and velocity estimates of floor 8 

based on measurements obtained from sensors placed according  to the first generation 
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guess [8 10] and last generation estimate [1 10], respectively. The comparison between 

these two figures shows good improvement in the mismatch between the EnKF 

predictions and the synthetic measurement values for both the displacement and the 

velocity when the sensors are placed at their optimal locations. 

 

Figure 20. Estimates of the eighth floor displacement and velocity at first generation: 

sensors placed at 8th and 10th floors 
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Figure 21. Estimates of the eighth floor displacement and velocity at final generation: 

sensors placed 1st and 10th floors 

 

5.4.2. Three sensors case 

   For the case of three available sensors, the smallest penalty value among the 

120 possible combinations of sensor locations, found using the brute-force search 

method, corresponded to the candidate [1 7 10] and an 84% convergence to this optimal 

solution using the proposed framework was recorded for the base case scenario. 

Figure 22 represents the results of the GA-EnKF algorithm starting by randomly placing 

the three available sensors on floors 2, 5 and 6. Similar to the previous case, Figure 22 

part (a) shows the comparison between the best and mean values of the fitness function. 

The best sensor configuration is found to be on floors 1, 7 and 10, as shown in Figure 

22 part (b). This result matches the brute-force search’s best sensor configuration of 

three available sensors placed on the ten-story building under consideration. In this 
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case, the algorithm also converges before reaching the maximum number of generations 

as shown in part (c) of Figure 22.  

 

 

Figure 22. Three Sensors Scenario: (a) Best and mean fitness values at each generation, 

(b) Best Individuals (Optimal Sensor Locations), and (c) Stopping Criteria 
 

 

Comparing the EnKF displacement and velocity estimates of the eighth floor 

with their respective synthetic real-measured data between the first generation guess    

[2 5 6] (Figure 23) and the final generation estimate [1 7 10] (Figure 24), an obvious 

improvement in the mismatch between the real synthetic values and their respective 

estimates calculated using the EnKF can be noticed when the sensors are placed at their 

optimal locations. 
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Figure 23. Estimates of the eighth floor displacement and velocity at first generation: 

sensors placed at 2nd, 5th and 6th floors 

 

 

Figure 24. Estimates of the eighth floor displacement and velocity at final generation: 

sensors placed 1st, 7th and 10th floors 
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5.4.3. Four sensors case 

   For the case of four available sensors, the total number of possible candidates 

of sensor places is 210 and the optimal locations found using the brute-force search 

were on floors 1, 2, 7 and 10. For the base case of 50 individuals per population, the 

GA-EnKF methodology converged 92% of the times to this optimal scenario when 

starting from different random initial positions at each simulation. 

   The results of the GA-EnKF framework randomly starting with an initial 

population of sensor locations corresponding to floor 1, 3, 4 and 6 are shown in figure 

23. Same observations can be made concerning the best and mean values of the fitness 

function (Figure 25 part (a)) and the stopping criteria (Figure 25 part (c)) as the previous 

two cases. The best sensor locations are found to be on floors 1, 2, 7 and 10 (Figure 25 

part (b)). This configuration of sensor placement is the same as the optimal one found 

using the exhaustive search technique.  
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Figure 25. Four Sensors Scenario: (a) Best and mean fitness values at each generation, 

(b) Best Individuals (Optimal Sensor Locations), and (c) Stopping Criteria 

 

 
   An excellent improvement in the mismatch between the synthetically generated 

actual displacement and velocity of floor 8 and their respective predicted values 

calculated using the EnKF is shown when comparing the results of Figure 26 (first 

generation [1 3 4 6]) and Figure 27 (final generation [1 2 7 10]). 
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Figure 26. Estimates of the eighth floor displacement and velocity at first generation: 

sensors placed at 1st, 3rd, 4th and 6th floors 
 
 
 

 

Figure 27. Estimates of the eighth floor displacement and velocity at final generation: 

sensors placed at 1st, 2nd, 7th and 10th floors 
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5.4.4. Five sensors case 

   Finally, for the case of five available sensors, a total of 252 combinations of 

sensor locations are possible and the best positions to place the sensors on are found to 

be the floors 1, 2, 5, 7 and 10, using the exhaustive search method. The proposed 

framework converged 82% of the times to the brute-force’s optimal solution when 

starting from different initial random positions. 

   Figure 28 represents the GA-EnKF results, where the initial sensor locations 

are randomly chosen to be on floors 3, 5, 6, 9 and 10. The best sensor positions are 

found to be on floors 1, 2, 5, 7 and 10 (Figure 28 part (b)), which are similar to the 

findings of the brute-force search technique for the case of five available sensors. Since 

the number of available sensors is larger in this case, the best places of these monitoring 

devices become at the middle of the building in addition to the top and bottom 

locations. 
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Figure 28. Five Sensors Scenario: (a) Best and mean fitness values at each generation, 

(b) Best Individuals (Optimal Sensor Locations), and (c) Stopping Criteria 
 
    

   Figures 29 and 30 show a comparison between the mismatch between actual 

and predicted displacement and velocity of floor 8 when the sensors are placed at their 

random initial locations ([3 5 6 9 10]) and at their best locations ([1 2 5 7 10]), 

respectively. 
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Figure 29. Estimates of the eighth floor displacement and velocity at first generation: 

sensors placed at 3rd, 5th, 6th, 9th and 10th floors 

 

 

Figure 30. Estimates of the eighth floor displacement and velocity at final generation: 

sensors placed 1st, 2nd, 5th, 7th and 10th floors 
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   Table 3 shows the percentage convergence of the GA-EnKF framework for the 

base case of 50 individuals per population for the different number of sensors used. 

Table 4 presents the sensitivity of this convergence rate to population size for the four 

different scenarios. The data in Table 4 is also graphically presented in Figure 31 

showing the percentages of convergence of the proposed GA-EnKF framework to the 

brute force solutions versus the size of population used. It is noted that, the larger the 

population size is, the higher the percentage of convergence for the four cases of 

available sensors. A trade-off between the accuracy of the results and the computational 

cost should be performed to select the best size of population in each generation. 

 

Table 3. Percentage of Convergence of GA-EnKF Results to Optimal Brute Force 

Result Starting from Different Initial Sensor Locations 

Number of 

Sensors Used 

Total Number of 

Sensor Location 

Combinations 

Brute Force 

OSP Results 

% of Convergence of 

GA-EnKF Results to 

Optimal Brute Force 

Result 

2 Sensors 45 [ 1 10] 88% 

3 Sensors 120 [1 7 10] 84% 

4 Sensors 210 [1 2 7 10] 92% 

5 Sensors 252 [1 2 5 7 10] 82% 
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Table 4. Percentage of Convergence of GA-EnKF Results to Optimal Brute Force 

Result Using Different Population Sizes 

Number of 

Sensors Used 

% of Convergence of GA-EnKF Results 

to Optimal Brute Force Result 

Population Size 

10 30 50 70 100 

2 Sensors 26 % 48% 88% 92% 94% 

3 Sensors 24% 42% 84% 86% 94% 

4 Sensors 22% 52% 92% 94% 98% 

5 Sensors 20% 48% 82% 92% 96% 

 

 

 

Figure 31. Percentage of Convergence of GA-EnKF method to Brute-Force’s optimal 

solutions versus population size 
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In Figure 32, the penalty values corresponding to the optimal sensor locations 

are plotted versus the available number of sensors. It can be seen that this best fitness 

value, which is nothing but the mismatch between predicted and measured data 

corresponding to the optimal sensor locations, decreases as the number of available 

sensors increases, to reach its lowest value when the sensors are placed on all the floors 

of the building under consideration. It should be noted that the logical optimum scenario 

is to place sensors everywhere on a structure (on each floor), resulting in a total of 10 

sensors in this case, to get the most accurate results and the least mismatch between 

predicted and measured displacements and velocities. However as aforementioned, 

although this solution provides the most accurate results, it comes at a higher cost. 

 

 

Figure 32. Best Penalty value versus number of available sensors 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

 

   In this dissertation, the importance of uncertainty quantification is highlighted 

through a comparative study between intrusive and non-intrusive techniques used to 

quantify and represent the available uncertainties. For this reason, a comparison between 

two different variations of the Kalman filter technique, Ensemble Kalman Filter and 

Polynomial Chaos Kalman Filter, is performed. The comparison is based on the 

computational burden of the simulation runs required by each method to identify the 

system state and parameters and on the accuracy and performance of each filter in 

quantifying the uncertainty for SHM purposes. This is illustrated through a numerical 

example, consisting of a 4-degrees of freedom nonlinear system subjected to seismic 

excitation and suffering from hysteretic behaviors represented by the Bouc-Wen model. 

A pre-defined damage of the first degree of freedom is imposed ten seconds after the 

excitation hits the system.  

   A sensitivity analysis was performed on the ensemble size for the EnKF method 

and a relatively large ensemble size equals to 10,000 was selected to attain a sufficiently 

high accuracy in estimating the parameters and response of this complex and highly 

nonlinear system for damage detection purposes. On the other hand, an exhaustive 

analysis was performed on the dimensionality of the PCE used that is increased every 

time an independent source of error, due to model or measurement uncertainty, is 

incorporated in the system. For this reason, the PCE bases were limited to finite terms 

while maintaining a good approximate propagation of the covariance matrix, resulting in 
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a minimum dimension equals to 45 for the PCKF method. This minimum dimension of 

the PCE was used along with an order equals to 2 in the comparative analysis. 

While both variations of the Kalman filter method were able to locate the damage in space 

and time and to accurately approximate the system state and unknown parameters for 

SHM purposes, the PCKF method outperformed the ordinary EnKF approach in terms of 

computational effort.  

   As a conclusion, since the EnKF belongs to the class of non-intrusive methods 

that use black-box models to solve forward problems, it is easily implementable if 

compared to the intrusive methods such as the PCKF approach. On the other hand, for 

highly nonlinear and complex systems, the EnKF approach requires a relatively large 

ensemble size to attain a comparable high accuracy with the PCKF method and 

consequently a higher computational burden. 

 

In addition, a novel optimal sensor placement methodology based on 

combining the genetic algorithm and the ensemble Kalman filter approaches is 

presented in this thesis. This combination improves the applicability of the method to a 

wider range of structural problems with hysteretic behaviors and with limited available 

real-time measured data.  

The efficiency and robustness of the proposed method are illustrated through a 

numerical example consisting of a ten-story shear building subjected to seismic 

excitation. The GA is first applied to randomly generate an initial population of sensor 

locations from which the individuals with the best fitness functions are selected as the 

parents, then through a minimization procedure, the best locations of the sensors are 

determined. The fitness function in this dissertation is taken to be the difference 
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between the synthetically generated measurements of the displacements and velocities 

of the different floors of the building and their respective predicted data calculated using 

the EnKF method. It was shown in the presented numerical example that even for a 

small number of available sensors and consequently a limited amount of measured data, 

the EnKF was successfully able to approximate and update the system state and 

parameters. Subsequently, the GA was able to converge to the optimal locations of the 

sensors corresponding to the lowest penalty function. 

The accuracy of the results obtained via the proposed methodology is assessed 

by comparing these results with the optimal ones identified using a brute-force search 

approach. This exhaustive search consists of systematically calculating the fitness value 

of each possible combination of sensor locations for the four different cases of available 

sensors, 2, 3, 4 and 5 sensors cases. A sensitivity analysis on the initial guesses of 

sensor locations is performed and the percentages of convergence of the proposed GA-

EnKF methodology to the brute-force search’s optimal results are calculated. High 

percentages of convergence are recorded, ascertaining the robustness and accuracy of 

the proposed framework for OSP. Furthermore, a sensitivity analysis is conducted to 

assess the dependence of the presented framework on the size of the population of the 

GA. Results show a systematic increase in the GA-EnKF convergence rate to the 

optimal brute force solution as the size of the population increases to reach a minimum 

of 94% convergence, for all cases studied, for a population of 100 individuals.  

To summarize the analysis results, the best locations of the available sensors 

are identified as: (1) floors 1 and 10 for the two sensors case, (2) floors 1, 7 and 10 for 

the three sensors case, (3) floors 1, 2, 7 and 10 for the four sensors case, and (4) floors 

1, 2, 5, 7 and 10 for the five sensors case. Consequently, for a limited number of 
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available sensors, the best sensor locations are at the lowest and highest floors of the 

building, and for a higher number of available sensors, the optimal locations are at the 

bottom, middle and top of the building to cover all the structure under consideration and 

provide the user with the most informative needed data.  

It is proven in this dissertation that placing the sensors at their optimal 

locations reduces the mismatch between the synthetically measured displacements and 

velocities of the different floors of the building and their respective predicted values 

calculated using the EnKF.  

Furthermore, it is shown that as the number of available sensors is increased, 

the value of the penalty function is lower, until reaching the lowest value when all the 

floors are monitored by sensors. Therefore, a trade-off between the accuracy needed and 

the cost and time should be taken into account to determine the number of sensors 

required. 

 

Future work may consist of respectively acquiring the synthetic real data and 

the predicted data from two different mathematical models, instead of using the same 

model as in the case of Chapter 4 of this dissertation, where the Bouc-Wen model was 

used in the forward and inverse problems to get the synthetic real displacements and 

velocities of the different DOFs of the system under consideration and their respective 

predicted values; or as in the case of Chapter 5, where the non-parametric model was 

used to synthetically generate the measured displacements and velocities of the different 

floors of the 10-story building as well as their respective predicted values. A great care 

should be taken when selecting the appropriate error values coming from the 

parametric, measurement and model uncertainties. 
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On the other hand, future work may also include dealing with experimental real 

models to extract the true state of the system under consideration, instead of 

synthetically generating the true responses using approximate numerical models. In this 

case, the expected main challenge that will be faced lies in accurately predicting the 

errors coming from the initial guess uncertainty of the unknown parameters, the model 

error depending on how accurately can the mathematical model describe the true 

physics of the real system, and from the variability coming from the real collected 

measured data.  
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APPENDICES 
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APPENDIX 1  

1.1. Ensemble Kalman Filter Codes for Parameters and State Characterization of 

the 4-DOF system 

clear all 
close all 
clc 

  
load('un11');  % Measurements Perturbed 
load('unn11'); % Measurements Not Perturbed 

  

  
dt = 0.01; 

  

 
ie  = 0.05;  % initial guess error 
Me1 = 0.005; % model error for state 
Me2 = 0.01;  % model error for parameters 
mme = 0.03;  % measurement error 

  
NumTimeSteps=2000; 

  

  
% Number of DOF 
ndof = 4; 

  
% Mass and Stiffness 
M = 2*eye(ndof,ndof); 

  

 
k = 8.5; 
c = 0.27; 

  
K = zeros(ndof,ndof); 
C = zeros(ndof,ndof); 

  
B = [2;2;2;2]; 
gamma = [1;1;1;1]; 

  
N=10000; 

 
for i = 1 
    K(i,i)   = 2*k; 
    K(i,i+1) = -k; 
    C(i,i)   = 2*c; 
    C(i,i+1) = -c; 
end 
for i = 2:(ndof-1) 
    K(i,i-1) = -k; 
    K(i,i) = 2*k; 
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    K(i,i+1) = -k; 
    C(i,i-1) = -c; 
    C(i,i)   = 2*c; 
    C(i,i+1) = -c; 
end 
for i = ndof 
    K(i,i-1)  = -k; 
    K(i,i) = k; 
    C(i,i-1) = -c; 
    C(i,i)   = c; 
end 

  

 
% Generalized Loading 
read = fopen('El Centro 1940 data.txt', 'r'); 
ElCentro = zeros(NumTimeSteps*(dt/0.02),1); 
P = zeros(NumTimeSteps*(dt/0.02),1); 
for t = 0:dt:(NumTimeSteps*(dt/0.02)*dt) 
    d = t/dt; 
    j = int32(d) + 1; 
    ElCentro(j) = fscanf(read,'%f',1); 
    P(j) = ElCentro(j)*9.81*10; 
end 

  
% Linear Interpolation of Excitation 
if (dt==0.02) 
    Pinterp = P; 
else 
    n  = 0:0.02:(NumTimeSteps*(dt/0.02)*0.02); 
    n2 = 0:dt:(NumTimeSteps*(dt/0.02)*0.02); 
    Pinterp = interp1(n',P,n2','linear'); 
end 

  
alpha = 0.15; 

  
% Measurements from the Bouc-Wen Model 

  
un1(:,1)=zeros(ndof,1); 
udotn1(:,1)=zeros(ndof,1); 
zn1(:,1)=zeros(ndof,1); 
xall1=[zeros(3*ndof,1);B;gamma;k;c]; 

 
for i=1:NumTimeSteps-1 
    tinit = (i-1)*dt; 
    tf = (i)*dt; 
[un1(:,i+1),udotn1(:,i+1),zn1(:,i+1)] = 

PredictedData2Damage(un1(:,i),udotn1(:,i),zn1(:,i),xall1(:,i),Pinter

p,M,ndof,dt,alpha,tinit,tf,i); 
xall1(:,i+1)=[un1(:,i+1);udotn1(:,i+1);zn1(:,i+1);B;gamma;k;c]; 
end 

  
%Measurements Not Perturbed 

  
unn11=[un1' udotn1']; % if not load 
% [unn11]=unn11; % if load 
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% Measurements perturbed 

  
for nnn=1:NumTimeSteps-1 
un1(:,nnn)=un1(:,nnn)+un1(:,nnn)*randn*mme; 
udotn1(:,nnn)=udotn1(:,nnn)+udotn1(:,nnn)*randn*mme; 
end 

  
[un11] = [un1' udotn1'];% if not load 
% [un11] = un11; % if load 

  
% Check when we have measurements 
TimeMeasurement=zeros(NumTimeSteps,2); 

  
for i=1:NumTimeSteps-1 
    TimeMeasurement(i,1)=(i-1)*dt; 

     
   if (mod(i,20)==0) % Measurement at every 20 time steps 
       TimeMeasurement(i,2)=1; 
   end 

    
end 

  
% Ensemble Kalman Filtering 
% ------------------------- 

  
%Ensemble Size 

  
Au1 = zeros(5*ndof+2,N); % 22x10000 
Af1 = zeros(5*ndof+2,N); % 22x10000 

  

  
% Observation Matrix 
% H: 8x22 
H = zeros(2*ndof,5*ndof+2);  

  
% All DOFs observed (u and udot) 
for i = 1:1:2*ndof 
    H(i,i) = 1; 
end 

  

  
% Initial Matrix 

 
uint      = 0*ones(ndof,1); 
udotint   = 0*ones(ndof,1); 
zinit     = 0*ones(ndof,1); 
Binit     = [2.5;2.5;2.5;2.5]; 
gammainit = [1.2;1.2;1.2;1.2]; 
Kinit     = 7; 
Cinit     = 0.4; 

  
x0 = [uint;udotint;zinit;Binit;gammainit;Kinit;Cinit]; 

  
counter1 = 1; 
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% 1) Initial Guess Error 

 
for j = 2:N 
    randd=randn; 
    for i=3*ndof+1:4*ndof 
    Au1(i,1) = x0(i);     

  
        Au1(i,j)=x0(i)+ie*x0(i)*randd; 
    end 
end 

  
for j = 2:N 
    randd=randn; 
    for i=4*ndof+1:5*ndof 
    Au1(i,1) = x0(i);     

  
        Au1(i,j)=x0(i)+ie*x0(i)*randd; 
    end 
end 

  
for j = 2:N 
%     randd=randn; 
    for i=5*ndof+1:5*ndof+2 
    Au1(i,1) = x0(i);     

  
        Au1(i,j)=x0(i)+ie*x0(i)*randn; 
    end 
end 

  
Saved1{counter1, 1} = Au1; 
counter1 = counter1 +1; 

  

 
un2 = zeros(NumTimeSteps,ndof); 
udotn2 = zeros(NumTimeSteps,ndof); 
zn2 = zeros(NumTimeSteps,ndof); 

  
tic; 

  
% 2) Model Error & 3) Measurement Error (to u and udot only) 

 
rr=1; 
for io=1:NumTimeSteps-1 
    io 

     
    tinit = (io-1)*dt; 
    tf = (io)*dt; 
    t(io)=tf; 
    for s = 1:1:N   
        s; 
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        [un2,udotn2,zn2] = 

PredictedData2(Au1(1:1:ndof,s),Au1(ndof+1:1:2*ndof,s),Au1(2*ndof+1:3

*ndof,s),Au1(:,s),Pinterp,M,ndof,dt,alpha,tinit,tf,io); 
        un2;  
        udotn2; 
        zn2; 

  
        for j = 1:1:ndof 
            Af1(j,s) = un2(j); 
        end 
        mnn = 1; 
        for j = ndof+1:1:2*ndof 
            Af1(j,s) = udotn2(mnn); 
            mnn = mnn+1; 
        end 
        mn = 1; 
        for j = 2*ndof+1:1:3*ndof 
            Af1(j,s) = zn2(mn); 
            mn = mn+1; 
        end 
    end 
    Af1(3*ndof+1:5*ndof+2,:)=Au1(3*ndof+1:5*ndof+2,:); 
 

if (mod(t(io),0.05)==0&&t(io)>0.45) 
     for it=1:5*ndof+2 
    meanxT(it,:)=mean(Af1(it,:)); 
     end 

 
for j = 1:N 
    randd=randn; 
    for i=1:1*ndof 

  
        Af1(i,j)=Af1(i,j)+Me1*meanxT(i,1)*randd; 
    end 
end   

  
for j = 1:N 
    randd=randn; 
    for i=1*ndof+1:2*ndof 

  
        Af1(i,j)=Af1(i,j)+Me1*meanxT(i,1)*randd; 
    end 
end 

  
for j = 1:N 
    randd=randn; 
    for i=2*ndof+1:3*ndof 

  
        Af1(i,j)=Af1(i,j)+Me1*meanxT(i,1)*randd; 
    end 
end 

  
for j = 1:N 
    randd=randn; 
    for i=3*ndof+1:4*ndof 

  
        Af1(i,j)=Af1(i,j)+Me2*meanxT(i,1)*randn; 
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    end 
end 

  
for j = 1:N 
    randd=randn; 
    for i=4*ndof+1:5*ndof 

  
       Af1(i,j)=Af1(i,j)+Me2*meanxT(i,1)*randn; 
    end 
end 

  
for j = 1:N 
%     randd=randn; 
    for i=5*ndof+1:5*ndof+2 
    Au1(i,1) = x0(i); 

  
      Af1(i,j)=Af1(i,j)+Me2*meanxT(i,1)*randn; 
    end 
end 
end 

     
    for klm = 1:2*ndof 
        umeasured (1,klm) = un11(counter1,klm); 
    end 

     
if((TimeMeasurement(io,2)==1)&&t(io)>0.5) 

  
tin(rr)=t(io); 
            [Au1, Gke, Pe, Re,e]= 

EnkFCorrect2(Af1,un11(counter1,:),H,mme); 

  rr=rr+1    

  
    else 
                Au1 = Af1; 
    end     

  
    Saved1{counter1,1}=Au1;       
    counter1=counter1+1;   
end 

  
TimeofRun = toc 

 
for i=1:NumTimeSteps 

     
for j=1:5*ndof+2 

   

  
    Au1=Saved1{i,1}; 

            
    vector(j,i)= mean(Au1(j,:)); 
    stdvect(j,i) = std(Au1(j,:)); 

     
end 
end 
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1.2. Polynomial Chaos Kalman Filter Codes for Parameters and State 

Characterization of the 4-DOF system 

clear all 
close all 
clc 

  
tic; 

  
load('un11');  % Measurements Perturbed 
load('unn11'); % Measurements Not Perturbed 

  
store=0; 
stop=0; 

  
options.TolFun = 1e-9; 
options.MaxFunEvals=2000000; 
options.TolX=10e-9; 

  
% Dimension 45 
num1=3; 
num2=1; 

  
% % Dimension 58 
% num1=4; 
% num2=1; 

  
% % Dimension 71 
% num1=5; 
% num2=1; 

  
count1=1; 
count2=1; 

  
dt = 0.01; 

  
% load('dim45order1') % 4 Floors; num1=3 and num2=1 
load('dim45order2') % 4 Floors; num1=3 and num2=1 

  
% load('dim58order1') % 4 Floors; num1=4 and num2=1 
% load('dim58order2') % 4 Floors; num1=4 and num2=1 

  
% load('dim71order1') % 4 Floors; num1=5 and num2=1 
% load('dim71order2') % 4 Floors; num1=5 and num2=1 

   
OrderU=2; 
% OrderU=1; 
% OrderU=3; 

  
ie  = 0.05;  % initial guess error 
Me1 = 0.005; % model error for state 
Me2 = 0.01;  % model error for parameters 
mme = 0.03;  % measurement error 
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NumTimeSteps=2000; 

  
% Number of DOF 
ndof = 4; 

  

  
% Mass and Stiffness 
M = 2*eye(ndof,ndof); 

  
k = 8.5; 
c = 0.27; 

  
K = zeros(ndof,ndof); 
C = zeros(ndof,ndof); 

  
B = 2*ones(ndof,1); 
gamma = 1*ones(ndof,1); 

  
for i = 1 
    K(i,i)   = 2*k; 
    K(i,i+1) = -k; 
    C(i,i)   = 2*c; 
    C(i,i+1) = -c; 
end 
for i = 2:(ndof-1) 
    K(i,i-1) = -k; 
    K(i,i) = 2*k; 
    K(i,i+1) = -k; 
    C(i,i-1) = -c; 
    C(i,i)   = 2*c; 
    C(i,i+1) = -c; 
end 
for i = ndof 
    K(i,i-1)  = -k; 
    K(i,i) = k; 
    C(i,i-1) = -c; 
    C(i,i)   = c; 
end 

  

  
% Generalized Loading 
read = fopen('El Centro 1940 data.txt', 'r'); 
ElCentro = zeros(NumTimeSteps*(dt/0.02),1); 
P = zeros(NumTimeSteps*(dt/0.02),1); 
for t = 0:dt:(NumTimeSteps*(dt/0.02)*dt) 
    d = t/dt; 
    j = int32(d) + 1; 
    ElCentro(j) = fscanf(read,'%f',1); 
    P(j) = ElCentro(j)*9.81*10; 
end 

  
% Linear Interpolation of Excitation 
if (dt==0.02) 
    Pinterp = P; 
else 
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    n  = 0:0.02:(NumTimeSteps*(dt/0.02)*0.02); 
    n2 = 0:dt:(NumTimeSteps*(dt/0.02)*0.02); 
    Pinterp = interp1(n',P,n2','linear'); 
end 

  
alpha = 0.15; 

  
% Measurements from the Bouc-Wen Model 

 
un1(:,1)=zeros(ndof,1); 
udotn1(:,1)=zeros(ndof,1); 
zn1(:,1)=zeros(ndof,1); 
xall1=[zeros(3*ndof,1);B;gamma;k;c]; 
for i=1:NumTimeSteps-1 
    tinit = (i-1)*dt; 
    tf = (i)*dt; 
[un1(:,i+1),udotn1(:,i+1),zn1(:,i+1)] = 

PredictedData2Damage(un1(:,i),udotn1(:,i),zn1(:,i),xall1(:,i),Pinter

p,M,ndof,dt,alpha,tinit,tf,i); 
xall1(:,i+1)=[un1(:,i+1);udotn1(:,i+1);zn1(:,i+1);B;gamma;k;c]; 
end 

  
%Measurements Not Perturbed 

  
% unn11=[un1' udotn1']; % if not load 
[unn11]=unn11; % if load 

  

  
% Measurements perturbed 

  
for nnn=1:NumTimeSteps-1 
un1(:,nnn)=un1(:,nnn)+un1(:,nnn)*randn*mme; 
udotn1(:,nnn)=udotn1(:,nnn)+udotn1(:,nnn)*randn*mme; 
end 

  

  
% [un11] = [un1' udotn1']; % if not load 
[un11] = un11; % if load 

  

  
% Check when we have measurements 
TimeMeasurement=zeros(NumTimeSteps,2); 

  
for i=1:NumTimeSteps 
    TimeMeasurement(i,1)=(i-1)*dt; 

     
   if (mod(i,20)==0) % Measurement at every 20 time steps 
       TimeMeasurement(i,2)=1; 
   end 

    
end 

  
rr=1;%for tracking updates number 
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% Polynomial Chaos Kalman Filtering 
% --------------------------------- 

  
% Observation Matrix 
% H: 8x22 
H = zeros(2*ndof,5*ndof+2);  

  
% All Floors Observed 
for i = 1:1:2*ndof 
    H(i,i) = 1; 
end 

  

 
uint      = 0*ones(ndof,1); 
udotint   = 0*ones(ndof,1); 
zinit     = 0*ones(ndof,1); 
Binit     = [2.5;2.5;2.5;2.5]; 
gammainit = [1.2;1.2;1.2;1.2]; 
Kinit     = 7; 
Cinit     = 0.4; 

  

 
x0 = [uint;udotint;zinit;Binit;gammainit;Kinit;Cinit]; 

 
counter1 = 1; 

  
% Initial Guess Error  

  
locB=2; 
locgamma=3; 
lock=4; 
locc=5; 

  
locf=locc; 

 
finitememory = 1; 
DimU = 4+(5+2*ndof)*num1+2*num2; 

  
stdB = ie*Binit; 
stdgamma = ie*gammainit; 
stdk1 = ie*Kinit; 
stdc1 = ie*Cinit; 

  

  
BasisU=Basis(DimU,OrderU); 
HermitePolD= Hermite(OrderU); 

  
% nsample=100;   % dim45order1: 46x45  
nsample=1200; % 1100 or 1200 dim45order2: 1081x45  

  
% nsample=60;   % dim58order1: 59x58 
% nsample=1800; % 1800 or 2000 dim58order2: 1770x58 

  
% nsample=80;   % dim71order1: 72x71 
% nsample=2700;   % dim71order1: 2628x71 
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s=latin_hs(zeros(DimU,1),ones(DimU,1),nsample,DimU); 
for i= 1:nsample 
i 
rndd=s(i,:)'; 
[basis(:,i)]=evalPC_N(BasisU,rndd(:,1)',HermitePolD); 
end 

  
coefB=cell([1,ndof]); 
coefgamma=cell([1,ndof]); 
coefk=cell([1,1]); 
coefc=cell([1,1]); 

  

  
coefk{1}=zeros(1,size(BasisU,1));    
coefk{1}(1,1)=Kinit(1); 
coefk{1}(1,lock)=stdk1(1); 

  
coefc{1}=zeros(1,size(BasisU,1)); 
coefc{1}(1,1)=Cinit(1); 
coefc{1}(1,locc)=stdc1(1); 

  
for i=1:ndof 
coefB{i}=zeros(1,size(BasisU,1)); 
coefB{i}(1,1)=Binit(i); 
coefB{i}(1,locB)=stdB(i); 

  
coefgamma{i}=zeros(1,size(BasisU,1)); 
coefgamma{i}(1,1)=gammainit(i); 
coefgamma{i}(1,locgamma)=stdgamma(i); 

  
U{i}(:,1)=zeros(size(BasisU,1),1); 
Udot{i}(:,1)=zeros(size(BasisU,1),1); 
Z{i}(:,1)=zeros(size(BasisU,1),1); 
end 

  
% If not load('dimord') 
% To load dimension and order of PCE 

  
% [Cat,List,L,F]= Out2(BasisU); 
% [DD]= categories(BasisU,OrderU,DimU,Cat,List,L,F); 

  

  
NormU=NormPC(BasisU,DimU); 

  
for i=1:ndof 
          Au1(i,:)=U{i}(:,1)'; 
          Au1(ndof+i,:)=Udot{i}(:,1)'; 
          Au1(2*ndof+i,:)=Z{i}(:,1)'; 
          Au1(3*ndof+i,:)=coefB{i}; 
          Au1(4*ndof+i,:)=coefgamma{i}; 

           
end 
Au1(5*ndof+1,:)=coefk{1}; 
Au1(5*ndof+2,:)=coefc{1}; 
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Saved1{counter1, 1} = Au1; 
counter1 = counter1 +1; 

  

  
% 2) Model Error & 3) Measurement Error (to u and udot only) 
 

for i=1:NumTimeSteps-1 
    i 

     

     
    tinit = (i-1)*dt; 
    tf = (i)*dt; 
    t(i)=tf; 
    Af1=Au1; 
    [un2,udotn2,zn2] = 

PredictedData2PC(Au1(1:1:ndof,:),Au1(ndof+1:1:2*ndof,:),Au1(2*ndof+1

:3*ndof,:),Au1,Pinterp,M,ndof,dt,alpha,DD,NormU,tinit,tf,i,basis,Bas

isU,nsample); 

 

  
        Af1(1:ndof,:) = un2; 

    
        Af1(ndof+1:2*ndof,:) = udotn2; 

 
        Af1(2*ndof+1:1:3*ndof,:) = zn2; 

         

     
if (mod(t(i),0.05)==0&&t(i)>0.45) 
   t(i)  
if (stop<1) 
if count1==num1 
    count1=0; 
    stop=1; 
end 
for nn=1:3 
    KK{i}(nn,:)=find(BasisU(:,(locf-1+nn*num1-count1))); 
    Af1(:,KK{i}(nn,:))=0; 
    Af1((nn-1)*ndof+1:nn*ndof,locf+nn*num1-count1)=Me1*Af1((nn-

1)*ndof+1:nn*ndof,1); 
end 

  
for nn=4:3+2*ndof 
    KK{i}(nn,:)=find(BasisU(:,(locf-1+nn*num1-count1))); 
    Af1(:,KK{i}(nn,:))=0; 
    Af1(3*ndof+nn-3,locf+nn*num1-count1)=Me2*Af1(3*ndof+nn-3,1); 
end 
cc=1; 
for nn=4+2*ndof:5+2*ndof 
    KK{i}(nn,:)=find(BasisU(:,(locf-1+nn*num1-count1))); 
    Af1(:,KK{i}(nn,:))=0; 
    Af1(5*ndof+cc,locf+nn*num1-count1)=Me2*Af1(5*ndof+cc,1); 
    cc=cc+1; 
end 

  
count1=count1+1; 
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else 
A2=Af1(:,2:DimU+1).^2; 
A3=sum(A2); 
A3=sqrt(A3); 
[A3d Indd]=sort(A3,'descend'); 
[A3a Inda]=sort(A3,'ascend'); 
Indd=Indd+1; 
Inda=Inda+1; 

  
     count1=0; 
    for nn=1:5+2*ndof 
    KK{i}(nn,:)=find(BasisU(:,(locf-1+nn*num1-count1))); 
    remvdBas=Af1(:,KK{i}(nn,:)); 
    end 

     
   fstInMax= max(List{2}); 

    
   

fstInR=[KK{i}(KK{i}<=fstInMax);((5+2*ndof)*(num1)+locf+1:(5+2*ndof)*

(num1)+locf+2*num2)'];%adding location of sensor error; 

  
   B1=calCov(Af1(:,2:end),NormU(2:end)); 

    
   fstAll=2:fstInMax; 

  
   fstStay=fstAll((ismember(fstAll,fstInR)==0)); 

    
   Ab=Af1; 
   Z1=length(fstStay); 

  
   

XX1=fsolve(@(X)PaDiff1(X,NormU,5*ndof+2,Z1,B1),Af1(:,Indd(1:length(f

stStay))),options);%only first order 

 
   Asol1=reshape(XX1,5*ndof+2,Z1); 

    
   Af1(:,2:end)=0;%only first order 

    
   Af1(:,fstStay)=Asol1;   

  
    for nn=1:5+2*ndof 
    Af1(:,KK{i}(nn,:))=0; 
    end 
   Aa=Af1; 
for nn=1:3 
    Af1((nn-1)*ndof+1:nn*ndof,locf+nn*num1-count1)=Me1*Af1((nn-

1)*ndof+1:nn*ndof,1); 
end 

     
for nn=4:3+2*ndof 
    Af1(3*ndof+nn-3,locf+nn*num1-count1)=Me2*Af1(3*ndof+nn-3,1); 
end 

  
cc=1; 
for nn=4+2*ndof:5+2*ndof 
    Af1(5*ndof+cc,locf+nn*num1-count1)=Me2*Af1(5*ndof+cc,1); 
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    cc=cc+1; 
end 

  
end 
end 

  
 if((TimeMeasurement(i,2)==1)&&t(i)>0.5) 
      counter1 
 if count2==num2 
    count2=0; 
 end 

  
 for nn=1:2 
    KK{i}(nn,:)=find(BasisU(:,locf-1+(5+2*ndof)*(num1)+nn*num2-

count2)); 
    Afl(:,KK{i}(nn,:))=0; 
end 

  
       B=zeros(2*ndof,length(BasisU)); 
       B(:,1)=un11(counter1,:); 

       
       B(1:ndof,locf+(5+2*ndof)*num1+num2-count2)=mme*B(1:ndof,1); 
       B(ndof+1:2*ndof,locf+(5+2*ndof)*num1+2*num2-

count2)=mme*B(ndof+1:2*ndof,1);  

     

  
       count2=count2+1; 
      Pa=zeros(5*ndof+2,5*ndof+2); 
      R=zeros(2*ndof,2*ndof); 

       
      for ii=2:length(BasisU) 
          Pa=Pa+Af1(:,ii)*Af1(:,ii)'*NormU(ii); 
          R=R+B(:,ii)*B(:,ii)'*NormU(ii); 
      end 

       

       
      Au1=Af1+Pa*H'/(H*Pa*H'+R)*(B-H*Af1); 

       
     tin(rr)=t(i); 
     rr=rr+1; 
  else 
      Au1 = Af1; 
  end 

   

      
    for ii=1:ndof 
        U{ii}(:,counter1) = Au1(ii,:)'; 
        Udot{ii}(:,counter1)=Au1(ndof+ii,:)'; 
        Z{ii}(:,counter1)=Au1(2*ndof+ii,:)'; 
        coefB{ii}(counter1,:)=Au1(3*ndof+ii,:); 
        coefgamma{ii}(counter1,:)=Au1(4*ndof+ii,:); 
    end 
    coefk{1}(counter1,:)=Au1(5*ndof+1,:); 
    coefc{1}(counter1,:)=Au1(5*ndof+2,:); 

 
    Saved1{counter1,1}=Au1; 
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    counter1=counter1+1;    

     
end 

  
stdvect = zeros(5*ndof+2,NumTimeSteps); 

  
for i=1:NumTimeSteps 

     
    Au1=Saved1{i,1};            
    vector(:,i)= (Au1(:,1)); 

  
    stdvect(:,i) = (Au1(:,2:end).^2)*NormU(2:end)'; 

  
end 
stdvect=sqrt(stdvect); 
TimeofRun = toc 
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APPENDIX 2  

2.1. Genetic Algorithm-Ensemble Kalman Filter Framework for Optimal Sensor 

Placement of the 10-Story Building 

function [ x,output ] = GaRun() 
  

 
% 10 Floors 
% 5 sensors case 
LowerBound = zeros(10,1);  
UpperBound = ones(10,1);  

  
A = [1 1 1 1 1 1 1 1 1 1; -1 -1 -1 -1 -1 -1 -1 -1 -1 -1]; 
b = [5; -5]; 

  
Options = 

gaoptimset('PopulationSize',50,'EliteCount',2,'Generations',100,'Sta

llGenLimit',20,'TolFun',1e-10, 'Display','iter','PlotFcns', 

{@gaplotbestf,@gaplotbestindiv,@gaplotstopping}); 

  
[x,fval,exitflag,output] = 

ga(@myfunctiondt2,10,A,b,[],[],LowerBound,UpperBound,[],[1 2 3 4 5 6 

7 8 9 10],Options);  

 

  
end 

 

 

 

function [Fval] = myfunctiondt2(x) 
x 
x1=find(x==1) 

  

     
% The input x is related to the observation matrix H. For example if 

floors 
% 1 and 4 are observed, H(1,1) = 1 & H(4,4) = 1 & H(5,5) = 1 & 

H(8,8) = 1. 
% So x is [1 4] 

  
sense_vect=500; 
tic; 

  
for jjj=1:length(sense_vect) 

  
zz=1; 
dt = 0.01; 
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ie  = 0.1;    % initial guess error 
me1 = 0.01;   % me = 0.01 model error for state 
me2 = 0.005;  % me = 0.005 model error for parameters 
mme = 0.005;  % measurement error 

  
NumTimeSteps=500; 

  
% Number of DOF 
ndof = 10; 

  
% Mass and Stiffness 

  
M = eye(ndof,ndof); 
k = eye(ndof,ndof); 

  
for i = 1:3 
    M(i,i) = 50000; 
    k(i,i) = 40e6; 
end 
for i = 4:8 
    M(i,i) = 40000; 
    k(i,i) = 35e6; 
end 
for i = 9:10 
    M(i,i) = 30000; 
    k(i,i) = 20e6; 
end 

  
K = zeros(ndof,ndof); 
for i = 1 
    K(i,i) = k(i,i)+k(i+1,i+1); 
    K(i,i+1) = -k(i+1,i+1); 
end 
for i = 2:(ndof-1) 
    K(i,i-1) = -k(i,i); 
    K(i,i) = k(i,i)+k(i+1,i+1); 
    K(i,i+1) = -k(i+1,i+1); 
end 
for i = ndof 
    K(i,i-1) = -k(i,i); 
    K(i,i) = k(i,i); 
end 

  
C  = 19000;     

  
% Generalized Loading 
% El Centro Earthquake Excitation 
read = fopen('El Centro 1940 data.txt', 'r'); 
ElCentro = zeros(NumTimeSteps,1); 
P = zeros(NumTimeSteps,1); 
for t = 0:dt:(NumTimeSteps*dt) 
    d = t/dt; 
    j = int32(d) + 1; 
    ElCentro(j) = fscanf(read,'%f',1); 
    P(j) = ElCentro(j)*9.81*10; 
end 
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% Linear Interpolation of Excitation 
if (dt==0.02) 
    Pinterp = P; 
else 
    n  = 0:0.02:(NumTimeSteps*0.02); 
    n2 = 0:dt:(NumTimeSteps*0.02); 
    Pinterp = interp1(n',P,n2','linear'); 
end 

 

% Check when we have measurements 
TimeMeasurement=zeros(2*NumTimeSteps,2); 

  
for i=1:2*NumTimeSteps 
    TimeMeasurement(i,1)=(i-1)*dt; 

     
   if (mod(i,10)==0) % Measurement at every 10 time steps 
       TimeMeasurement(i,2)=1; 
   end 

    
end 

 

%Ensemble Size 
N=400;  
Au1 = zeros(6*ndof,N); 

  
% Observation Matrix 
% H 
H = zeros(2*ndof,6*ndof); 

  
% Floors Observed 
H(x1(1),x1(1)) = 1; 
H(x1(2),x1(2)) = 1; 
H(x1(3),x1(3)) = 1; 
H(x1(4),x1(4)) = 1; 
H(x1(5),x1(5)) = 1; 

  
for iii = 1:ndof 
    if (H(iii,iii) == 1) 
        H(iii+ndof,iii+ndof) = 1; 
    end 
end 

 
% Initial Matrix 
uint    = 0*ones(ndof,1); 
udotint = 0*ones(ndof,1); 

  
a = 1e7*ones(ndof,1); 
b = 1e4*ones(ndof,1); 
c = 4.7e4*ones(ndof,1); 
d = 1.5e4*ones(ndof,1); 

  
x0 = [uint;udotint;a;b;c;d]; 

  
counter1 = 1; 
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% 1) Initial Guess Error 
for i=2*ndof+1:6*ndof 
    Au1(i,1) = x0(i); 

     
    for j = 2:N 
        seed = j^2; 
        randn('seed',seed); 
        Au1(i,j)=x0(i)+ie*x0(i)*randn(1); 
    end 
end 
Saved1{counter1, 1} = Au1; 
counter1 = counter1 +1; 

  
% Measurements from non-parametric model 
A1=[uint;udotint;1e8*ones(ndof,1);2e5*ones(ndof,1);9.4e5*ones(ndof,1

);4.5e5*ones(ndof,1)]; 

 
for s = 1:1:2*NumTimeSteps-1 
        tinit = (s-1)*dt; 
        tf = (s)*dt; 

  

             
       [A1(1:ndof,s+1), A1(ndof+1:2*ndof,s+1)] =  

rungekuttamult(@funudoubledotmult,tinit,A1(1:ndof,s),A1(ndof+1:2*ndo

f,s),A1(:,s),M,Pinterp,dt,ndof); 
        A1(2*ndof+1:6*ndof,s+1)= A1(2*ndof+1:6*ndof,s); 
end 

  
for kk = 1:2*ndof 
    A11measurement(kk,:) = A1 (kk,:); 
End 

 
% Measurements perturbed 
randn('seed',10); 
A1measurement = A11measurement + 

mme.*A11measurement.*randn(2*ndof,2*NumTimeSteps); 

 
 

 

% 2) Model Error & 3) Measurement Error (to u and udot only) 

 
for i=1:2*NumTimeSteps-1 

         
    tinit = (i-1)*dt; 
    tf = (i)*dt; 

     
    for s = 1:1:N         

         
        [Af1(1:ndof,s) Af1(ndof+1:2*ndof,s)] = 

rungekuttamult(@funudoubledotmult,tinit,Au1(1:ndof,s),Au1(ndof+1:2*n

dof,s),Au1(:,s),M,Pinterp,dt,ndof);  
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Af1(1:2*ndof,s)=Af1(1:2*ndof,s)+me1*randn(2*ndof,1).*Af1(1:2*ndof,s)

; 
 

          

Af1(2*ndof+1:6*ndof,s)=Au1(2*ndof+1:6*ndof,s)+me2*randn(4*ndof,1).*A

u1(2*ndof+1:6*ndof,s); 

                       
      end 

          

    
if((TimeMeasurement(i,2)==1)) 
 [Au1 Gke Pe Re]= EnkFCorrect2(Af1,A1measurement(:,counter1),H,mme);  

  
    else 
        Au1 = Af1; 
    end      

    

      
    for j = 2*ndof+1:3*ndof 
        for k = 1:N 
            if (Au1(j,k)<500) 
                seed = seed +1; 
                randn('seed',seed); 
                Au1(j,k) = 500 + abs(10*randn); 
            end 
        end 
    end 

     
    for j = 3*ndof+1:6*ndof 
        for k = 1:N 
            if (Au1(j,k)<1) 
                seed = seed +1; 
                randn('seed',seed); 
                Au1(j,k) = 1 + abs(randn); 
            end 
        end 
    end 

     

  
    Saved1{counter1,1}=Au1; 
    counter1=counter1+1;    

     
end 

 
for j=1:6*ndof 
for i=1:2*NumTimeSteps 

     
    Au1=Saved1{i,1};            
    vector(j,i)= mean(Au1(j,:)); 
    stdvect(j,i) = std(Au1(j,:)); 

  
end 
end 

  
end 
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for i = 1:2*ndof 
    vector2(i,:) = vector(i,:); 
end 
Fval = norm((vector2-A1measurement)/A1measurement) 

  
ST = fclose('all'); 

  
end 

 

 

 

 

function udoubledotmult=funudoubledotmult(t,u,udot,vect,M,P,dt,ndof) 
 

u=[u;0]; 
udot=[udot;0]; 
a=[vect(2*ndof+1:3*ndof);0]; 
b=[vect(3*ndof+1:4*ndof);0]; 
c=[vect(4*ndof+1:5*ndof);0]; 
d=[vect(5*ndof+1:6*ndof);0]; 

  
cc = fix(t/dt); 

  
%calcultig F; 
if(ndof==1) 
F(1)=a(1)*u(1)+b(1)*u(1)^3+c(1)*udot(1)+d(1)*u(1)*udot(1); 
udoubledotmult(1,1)=(-F(1)-M(1)*P(cc+1))/M(1,1); 
else 
    for n=1:ndof 
           if (n==1) 
           F(n)=a(n)*(u(n)-0)+a(n+1)*(u(n)-u(n+1))+b(n)*(u(n)-

0)^3+b(n+1)*(u(n)-u(n+1))^3+c(n)*(udot(n)-0)+c(n+1)*(udot(n)-

udot(n+1))+d(n)*(u(n)-0)*(udot(n)-0)+d(n+1)*(u(n)-u(n+1))*(udot(n)-

udot(n+1)); 
           else 
           F(n)=a(n)*(u(n)-u(n-1))+a(n+1)*(u(n)-u(n+1))+b(n)*(u(n)-

u(n-1))^3+b(n+1)*(u(n)-u(n+1))^3+c(n)*(udot(n)-udot(n-

1))+c(n+1)*(udot(n)-udot(n+1))+d(n)*(u(n)-u(n-1))*(udot(n)-udot(n-

1))+d(n+1)*(u(n)-u(n+1))*(udot(n)-udot(n+1)); 
           end 
        udoubledotmult(n,1)=(-F(n)-M(n,n)*P(cc+1))/M(n,n); 
    end 

     
end 
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function [Anew, Gke, Pe, Re, D]=EnkFCorrect2(A,d,H,z) 

  

  
[dummy, N]=size(A); 
ONEN=(1/N).*ones(N,1); 
n=length(d'); 

  
for k=1:N; 
Abar(:,k)=A*ONEN; 
End 

 
Apurt=A-Abar; 

 
Pe=(Apurt*(Apurt)')./(N-1); 

  
for i=1:N 
    for j=1:n 

  
        e(j,i)=d(j)*z.*randn; 
        D(j,i)=d(j)+e(j,i); 
    end 
end 

  
Re=(e*e')./(N-1); 

  
Gke=(Pe*H')/((H*Pe*H'+Re)); 

  
Anew=A+Gke*(D-H*A); 

  
end 
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