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 In-Band Full-Duplex (IBFD) has emerged as a technology to increase throughput 

and spectral efficiency for the users. It is a key potential technology expected to be a part 

of the future enhancements on the next generation cellular networks. Nodes operating at 

IBFD can transmit and receive simultaneously at the same time/frequency resource 

blocks, without the need to orthogonalize the Uplink/Downlink (UL/DL) frequency 

bands. Transceivers of such users implement Self-Interference Cancellation (SIC) 

techniques, and are able to route incoming and outgoing signals while transmitting at the 

same network resources, thus potentially doubling the capacity of the wireless channel. 

 Stochastic geometry, a field focusing on the study of random spatial patterns, 

provides an elegant way of analyzing the performance of wireless networks and its 

technologies. In view of that, we develop approaches using this tool to derive network 

performance metrics. We use stochastic geometry to study the performance of a possible 

deployment scheme of IBFD in cellular networks. Mainly, we make use of the 

mathematical tools used in stochastic geometry to tackle two topics. At first, we study the 

Base Stations (BSs) locations in real cellular networks. We use data for the Evolved 

NodeB (eNB) locations from real deployed LTE networks in specific urban areas. We 

start our analysis by obtaining the spatial density distribution of these eNBs. Then, we try 

to fit this distribution with some candidate distributions, in which we determine the 

distribution that best fits with the actual density and gives the lowest Root Mean Square 

Error (RMSE). The aim from this procedure is to use this fitted density distribution in a 

framework that derives general performance metrics for the whole studied network. 

Henceforth, these metrics give a general idea about how the spatial density distribution 

can affect the network in general. Among these metrics, we show that the exact closed 

form expressions for the interference power PDF can be obtained for some cases. 

Then, we study the performance of the users operating at IBFD in a general 

cellular network model. We assume that this network uses Fractional Frequency Reuse 

(FFR) and some sort of shared channel resources or unperfect orthogonal channel 

resources i.e. non-orthogonal transmissions between the users such as Non-Orthogonal 

Multiple Access (NOMA). The first technology is already in LTE networks while the 

second is one of the potential candidates. Markedly, the use of shared network resources 
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is aligned with the vision for future networks. With this intention, we analyze the 

performance of the network using two different approaches based on the Poisson Point 

Process (PPP) and the inner-city model, and we show the effect of using such network 

configuration. Also, we show the decrease in the Signal to Interference plus Noise Ratio 

(SINR) experienced by the users operating at IBFD, and how FFR can mitigate this 

decrease for the cell edge users that experience weaker signal than the cell core users. 

Given these points, we compare the performance of IBFD users to that of half duplex 

users, and we show how much throughput is gained in the IBFD case. 
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CHAPTER I 

INTRODUCTION 

 

Stochastic geometry [1] is a necessary tool to analyze random spatial patterns in the 

plane ℝ2 or higher. It has recently emerged as a powerful tool to study the performance of 

wireless networks, which created an interesting field of study named Stochastic Geometry for 

Wireless Networks. This field is very useful in wireless communication, especially in 

characterizing the interference statistics. It allows to study the average behavior of a network 

whose nodes are placed according to some probability distribution. 

In a wireless network, data transmission through the wireless channel is defined 

through some input parameters including, transmit (Tx) power, frequency, bandwidth, 

modulation, channel coding scheme and protocols to schedule transmission… In transmission, 

the signal undergoes attenuation due to the propagation in the wireless medium with an inverse 

power law that is mainly dependent on the distance traveled in the medium. A general path loss 

model is the singular path loss model 𝑟−𝜂, where 𝑟 is the distance traveled by the signal and 𝜂 

is the path loss exponent that is related to the type of the medium that the signal is traveling 

through (desert, urban area, …). The distance between the transmitter and the receiver depends 

on how the network is deployed; it is affected by the size of the cells and the density of the 

Base Stations (BS) deployed. Also, the signal experiences interference from other transmitters 

in the network, this interference depends on the resource allocation scheme used to separate 

the transmitters from each other and how much common channel resources are used between 

them. It mainly depends on the deployment plan of the transmitters in the network. Again, the 

geometry of the network is greatly affecting its performance. Hence, the tools introduced by 

stochastic geometry to study the performance of the network, and the effectiveness of 

deployment patterns and transmission schemes in enhancing the performance are very 
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important. Therein, the Signal to Interference Plus Noise Ratio (SINR) is widely used as a 

performance metric. A user receiving signal with SINR above a specific threshold 𝑇 called 

𝑆𝐼𝑁𝑅 threshold, will be assumed in the coverage area. In the whole analysis of stochastic 

geometry, it is not common to consider the receiver operations (error correction, equalization, 

etc). 

The analysis of the performance of a network of specific configurations requires a 

network model that determines the geometry of the network. Since each network has a different 

geometry, choosing a network model may be hard. In fact, the transmitters in a network are 

very random which makes modeling the exact locations an impossible task. Even if we tried to 

capture the exact locations of the transmitters, we would get a network model that can’t be 

applied on a general network type or configuration. Additionally, the model will not be able to 

derive performance metrics for the network due to the resulted complexity of the model. For 

that, some convenient network models are used to model the transmitters and the receivers. 

Some models may be more convenient for some network types (example: ad-hoc networks), or 

for some specific types of areas (example: urban areas). Instantly, probabilistic models called 

point processes are used to model the network nodes (transmitters and receivers) locations and 

to capture their properties. The probabilistic models can account for the randomness of the 

available network nodes while preserving many important characteristics that ensure that the 

model is still reliable. Such characteristics include but are not limited to MAC layer behavior, 

nodes density, some conditions on the positions of the network nodes. Important network 

models are homogeneous PPP, PHP, Poisson Cluster Processes (PCP) which includes two 

important processes, which are Matérn Cluster Process (MCP) and Thomas Cluster Process 

(TCP)… Each model can be convenient for a specific scenario for the network. But in general, 

PPP is the most famous one due to its high tractability, and it is a widely-used and accepted 

network model. PPP model defines an intensity 𝜆, which is the number of nodes in a certain 
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area 𝐴. Furthermore, PPP models the network nodes’ locations randomly and provides an easy 

and flexible statistical model. PPP is commonly used as a mathematical model across numerous 

disciplines due to its highly tractable and well-studied nature. PPP is also used for extended 

analyses, including the impact of power control, spread-spectrum, interference cancellation 

techniques, and the derivation of interference correlation coefficients. 

 

A. Point Processes 

A point process 𝛷 is a collection of mathematical points randomly located on some 

underlying mathematical space such as the real line, the Cartesian plane, or more abstract 

spaces. We use point processes in wireless networks to model the nodes (transmitters, 

receivers, relays…) locations, and then we use tools from wireless communication and 

information theory to study the performance of this network, specific communication schemes, 

or solve some problems related to the network performance. 

In this section, we briefly present simple definitions [2] for some of the point processes 

used in wireless communication. 

Definition 1.1: (Homogeneous Poisson Point Process PPP) A homogeneous PPP is a point 

process that has an intensity λ in general dimensions ℝd such that: 

- For every compact set B, N(B) has a Poisson distribution with mean λ|B|, where |.| 

denotes the Lebesgue measure (standard way of assigning a measure to subsets of n-

dimensional Euclidean space) or simply the area/volume of B. 

- If B1, B2, …, Bm are disjoint bounded sets, then N(B1), N(B2), …, N(Bm) are independent 

random variables. 

Here, the intensity 𝜆 is the expected number of points of the process per unit area or volume. 

The probability of having 𝑘 nodes in the compact set B is: 
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𝑃[𝑁(𝐵) = 𝑘] =

(𝜆|𝐵|)𝑘

𝑘!
𝑒−𝜆|𝐵| 

(1.1) 

Surely, we are interested in the study of point processes on the 2D plane, so with circular sets 

we get |𝐵| = 𝜋𝑟2. 

Definition 1.2: (Cluster Processes) A cluster process is composed of two processes, a parent 

point process and a daughter point processes, one per parent with translating the daughter 

processes to the position of their parents. The cluster is then the union of all the daughter points. 

Denote 𝛷𝑝 = {𝑥1, 𝑥2, … } as the parent process and let 𝑛 ∈ ℕ be the number of these points, and 

𝛷𝑖 be the family of finite daughter processes. The cluster process is the union of the translated 

clusters 𝑁𝑥𝑖: 

 𝛷𝑐 =⋃𝑁𝑥𝑖
𝑖∈𝑛

=⋃𝛷𝑖 + 𝑥𝑖
𝑖∈𝑛

 
(1.2) 

There are many types of point processes depending on the properties and the way these 

processes are generated, i.e. stationary, independent, homogenous clustering … If the parent 

process is a lattice, the process is called Lattice Cluster Process, and similarly if the parent 

process is Poisson the process is called Poisson Cluster Process (PCP). We will mention two 

important processes that are subtypes of PCP and belongs to the class of Nyman-Scott process. 

A point process belongs to this class when the parent process is PPP and the daughter points 

are independent and identically distributed (iid). These two processes are the following: 

1- Matérn Cluster Process (MCP): a point process where the daughter points are 

independently and uniformly scattered on the ball of radius 𝑎 centered at each parent point 

with mean number of points of 𝑐̅. Since all the formed clusters are identically distributed, 

we can talk about a representative cluster N0 with the same distribution as that of the 

clusters of the process. The daughter points of this N0 are scattered independently with an 

identical spatial distribution around the origin: 
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𝐹𝑐(𝐴) = ∫ 𝑓𝑐(𝑥)𝑑𝑥

𝐴

,    𝐴 ⊂ ℝ2 

(1.3) 

where  

 

𝑓𝑐(𝑥) = {
1

𝜋𝑎2
, ‖𝑥‖ ≤ 𝑎

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(1.4) 

‖. ‖ is the Euclidean distance. 

2- Thomas Cluster Process: is generated like MCP, but with daughter points scattered using a 

symmetric normal distribution with variance 𝜎2 around the parent point. So: 

 
𝑓𝑐(𝑥) =

1

2𝜋𝜎2
𝑒
− 
‖𝑥‖2

2𝜎2  
(1.5) 

Definition 1.3: (Hard Core Point Process HCPP) are point processes where points are 

forbidden to be closer than a certain distance. One way to achieve such a minimum distance is 

to start with a point process that has no restrictions and then remove points that violate the 

condition. Some types of HCPP are the Matérn Type I and Type II which differs in how the 

point process is constructed and produce different models. 

Definition 1.4: (Poisson Hole Process PHP) is a type of point processes that is very useful to 

study some network types like cognitive radios in which some network nodes are considered 

primary users and other as secondary. The secondary users can transmit if they are at least at 

distance a from the primary users and therefore does not cause interference. This point process 

is created from two independent homogeneous PPP Φ1 and Φ2 with intensities λ1 and λ2 

respectively. We define the germ-grain model 𝛯𝑎: 

 𝛯𝑎 =≜∪ {𝑥 ∈ Φ1: 𝑏(𝑥, 𝑎)} (1.6) 

It consists of the circles 𝑏(𝑥𝑖, 𝑎) centered at each point of Φ1 and having radius a. Now we 

define the PHP as: 

 Φ𝑃𝐻𝑃 = {𝑥 ∈ Φ2: 𝑥 ∉ 𝛯𝑎} = Φ2\𝛯𝑎 (1.7) 
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So, every point from Φ1 is curving out a circle of radius 𝑎 from Φ2. This means the points of 

Φ2 inside these holes do not exist in the resulted PHP. Such a model will produce an intensity 

formulation: 

 𝜆𝑃𝐻𝑃 = 𝜆2𝑒
−𝜆1𝜋𝑟

2
 (1.8) 

 

In addition to the defined point processes, there are other point processes. The use of 

a specific process depends on the network configuration, and the amount of tractability the 

model can produce for the network performance metrics that will be introduced next. 

 

B. Mathematical Preliminaries 

Stochastic geometry allows to study the average behavior over many spatial 

realizations of a network whose nodes are placed according to some probability distribution. It 

is a strong mathematical tool that provides spatial averages, i.e. averages taken over large 

number of nodes at different locations or over many network realizations. The aim of using 

stochastic geometry in wireless networks is to analyze the network performance and to give 

statistical results for it. 

 

1. SINR in downlink 

The SINR is the main quantity of interest that determines the reliability and the 

maximum throughput that could be achieved in a communication system. Higher SINR means 

that the signal is stronger in relation to the noise and interference levels, which allows better 

performance, higher data rates and fewer retransmissions. SINR is influenced mainly by the 

locations of the nodes and the path loss law being used. 

To study the average SINR, we model the BSs according to a specific point process that can 

mostly represent the network geometry. We use PPP with intensity λ to represent the BSs 
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locations. And without loss in generality, the analysis is conducted for a test receiver (we will 

call it a typical user) located at the origin. We note that according to Slivnyak’s theorem [1], 

any location in the space has an identical statistical behavior to the origin.  

The SINR of a typical user at a random distance 𝑟 from its associated BS can be expressed as: 

 
𝑆𝐼𝑁𝑅 =

𝑆

𝑃𝑛 + 𝐼𝑟
=

𝑃𝑡𝐿𝑝ℎ𝑟
−𝜂

𝑃𝑛 + 𝑃𝑡𝐿𝑝 ∑ 𝑔𝑖𝑖∈𝛷/𝐵𝑆0 𝑅𝑖
−𝜂 

(1.9) 

where 𝑆, 𝑃𝑛 and 𝐼𝑟 are the received signal, noise and interference powers respectively. 𝑃𝑡 is the 

transmit power, 𝑟 is the distance separating the user to its serving BS denoted by 𝐵𝑆0, and 𝜂 is 

the path loss exponent. 𝐿𝑝 is a constant that can account for transmitter and receiver 

characteristics and transmission frequency, a simple formula for it can be: 

 
𝐿𝑝 = 𝐺𝑡𝐺𝑟 (

𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ

4𝜋
)
2

 
(1.10) 

Other expressions from Ray tracing path loss models can be used to characterize a specific 

technology or specific environments. The cumulative effect of shadowing and fading in signal 

power domain is denoted by ℎ and it is assumed independent and non-distorting. When the 

fading experienced by the signal is Rayleigh fading, the power of the fading has exponential 

distribution with mean 1/𝜇, which is denoted as ℎ~exp (𝜇). Moreover, the noise power 𝑃𝑛 is 

assumed additive with constant value. Besides, the interference is written as 𝐼𝑟 =

𝑃𝑡𝐿𝑝 ∑ 𝑔𝑖𝑖∈𝛷/𝑏0 𝑅𝑖
−𝜂

in which contains unbounded path-loss model like the received signal 

power. 𝑔𝑖 is the fading value for the interference, and it follows a general distribution that can 

include fading, shadowing, and any other desired effects. 
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In the next table, we present typical used path loss exponents for some environments: 

Environment Type Path Loss Exponent η 

Free space 2 

Urban area cellular radio 2.7 to 3.5 

Shadowed urban cellular radio 3 to 5 

In building line-of-sight 1.6 to 1.8 

Obstructed in building 4 to 6 

Obstructed in factories 2 to 3 

Table 1.1: Used path loss exponents for different environments [3]. 

 

The distances 𝑟 and 𝑅𝑖 in the SINR formula depend on the location of the nodes in the network, 

and thus on the point process used to model them. A first step in performance analysis is to 

derive the probability density function (PDF) of the distance 𝑟. If we assume that the typical 

user is connected to the nearest BS. This means that there is no BS nearest than the serving BS 

to user, which means 𝑟 < 𝑅𝑖 for all 𝑖 ∈ 𝛷𝐵𝑆\𝑏0. 

In the case where the transmitters locations are modeled using PPP, the pdf of 𝑟 can be 

expressed using the null probability of a 2-D Poisson process in an area A. 

 𝑃[𝑟 > 𝑅] = 𝑃[𝑁𝑜 𝐵𝑆 𝑐𝑙𝑜𝑠𝑒𝑟 𝑡ℎ𝑎𝑛 𝑅] = 𝑒−𝜆𝜋𝑅
2
 (1.11) 

The Cumulative Distribution Function (CDF) is given by: 

 𝑃[𝑟 ≤ 𝑅] = 𝐹𝑟[𝑅] = 1 − 𝐶𝐶𝐷𝐹 (1.12) 

So, the Probability Density Function (PDF) will be: 𝑓𝑟(𝑟) =
𝑑𝑓𝑟(𝑟)

𝑑𝑟
 resulting in: 

 𝑓𝑟(𝑟) = 2𝜋𝜆𝑟𝑒−𝜆𝜋𝑟
2
 (1.13) 

   

2. Probability of Coverage 

The probability of coverage for a typical user located in the network is defined as the 

probability of the user receiving SINR greater than a threshold value 𝑇. The threshold value 

determines the starting value at which the received signal is considered useful so that the user 
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can decode and use it. If the received signal is below the threshold, it is considered not useful 

and the sent data will be unreadable. The threshold depends on the type of services delivered 

in the system, the ability of the receiver to extract the signal (Forward Error Correction (FEC) 

being used) and the needed system performance.  

The probability of coverage is defined as: 

𝑝𝑐(𝑇, 𝜂, … ) = 𝔼𝑟[ℙ[𝑆𝐼𝑁𝑅 > 𝑇|𝑟]] = ∫ ℙ[𝑆𝐼𝑁𝑅 > 𝑇|𝑟]𝑓𝑟(𝑟)𝑑𝑟
𝑟>0

= ∫ ℙ[
𝑃𝑡𝐿𝑝ℎ𝑟

−𝜂

𝑃𝑛 + 𝑃𝑡𝐿𝑝 ∑ 𝑔𝑖𝑖∈𝛷/𝑏0 𝑅𝑖
−𝜂 > 𝑇|𝑟] 𝑓𝑟(𝑟)𝑑𝑟

𝑟>0

 

 
𝑝𝑐(𝑇, 𝜂, … ) = ∫ ℙ[ℎ >

𝑇

𝑃𝑡𝐿𝑝
𝑟𝜂(𝑃𝑛 + 𝑃𝑡𝐿𝑝𝐼𝑟)|𝑟] 𝑓𝑟(𝑟)𝑑𝑟

𝑟>0

 
(1.14) 

If the useful signal experiences Rayleigh fading, therefore the power of the fading ℎ has 

exponential distribution with mean 1/𝜇. So: 

ℙ [ℎ >
𝑇

𝑃𝑡𝐿𝑝
𝑟𝜂(𝑃𝑛 + 𝑃𝑡𝐿𝑝𝐼𝑟)|𝑟] = 𝔼𝐼𝑟 [ℙ [ℎ >

𝑇

𝑃𝑡𝐿𝑝
𝑟𝜂(𝑃𝑛 + 𝑃𝑡𝐿𝑝𝐼𝑟)|𝑟, 𝐼𝑟]]

= 𝔼𝐼𝑟 [𝑒𝑥𝑝 (−𝜇
𝑇

𝑃𝑡𝐿𝑝
𝑟𝜂(𝑃𝑛 + 𝑃𝑡𝐿𝑝𝐼𝑟)) |𝑟] 

 
ℙ [ℎ >

𝑇

𝑃𝑡𝐿𝑝
𝑟𝜂(𝑃𝑛 + 𝑃𝑡𝐿𝑝𝐼𝑟)|𝑟] = 𝑒

−𝜇
𝑇

𝑃𝑡𝐿𝑝
𝑟𝜂𝑃𝑛

𝐿𝐼𝑟(𝜇𝑇𝑟
𝜂) 

(1.15) 

 

The Laplace Transform (LT) for the interference appears naturally into the formula for the 

probability of coverage. So, even if we can’t know or write a formula for the distribution of 

interference experienced in a network, we can still evaluate the LT and get the results for the 
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probability of coverage. Now, the LT of the interference 𝐼𝑟 should be evaluated. It is evaluated 

at 𝑠 = 𝜇𝑇𝑟𝜂 conditioned on the distance to the nearest BS from the origin. It is equal to: 

𝐿𝐼𝑟(𝑠) =  𝔼𝐼𝑟[𝑒
−𝑠𝐼𝑟] = 𝔼𝛷,𝑔𝑖 [𝑒𝑥𝑝(−𝑠 ∑ 𝑔𝑖𝑅𝑖

−𝜂

𝑖∈𝛷\{𝑏0}

)] 

= 𝔼𝛷,{𝑔𝑖} [ ∏ exp (−𝑠𝑔𝑖𝑅𝑖
−𝜂)

𝑖∈𝛷\{𝑏0}

] = 𝔼𝛷 [ ∏ 𝔼𝑔[exp (−𝑠𝑔𝑅𝑖
−𝜂)]

𝑖∈𝛷\{𝑏0}

] 

where, as stated before, g is the fading power for the interfered signal and it has arbitrary but 

identical distribution for all 𝐼, and 𝑅𝑖
−𝜂 is the path loss model. The last term follows from the 

independence of the fading. We note that the 2 variables 𝑅 and 𝑔 are independent. 

In the normal case, when homogenous PPP is used we can write the formula as: 

𝐿𝐼𝑟(𝑠) = 𝔼𝛷 [ ∏ 𝔼𝑔[exp(−𝑠𝑔𝑅𝑖
−𝜂)]

𝑖∈𝛷\{𝑏0}

] = 𝔼𝛷 [ ∏ 𝔼𝑔[exp(−𝑠𝑔𝑅𝑖
−𝜂)]

𝑖∈𝛷\{𝑏0}

] 

 

𝐿𝐼𝑟(𝑠) = exp(−2𝜋𝜆𝑖∫(1 − 𝔼𝑔[exp(−𝑠𝑔𝑥
−𝜂)])𝑥𝑑𝑥

∞

𝑟

) 

(1.16) 

Where this step follows from the probability generating functional (PGFL) of the PPP of 

intensity λ. The formula is 𝔼𝛷[ ∏ 𝑓(𝑥)𝑥∈𝛷 ] = exp (−𝜆 ∫ (1 − 𝑓(𝑥))𝑑𝑥
ℝ2

) 

After that we substitute 𝑠 = 𝜇𝑇𝑟𝜂, and we use 

 
𝔼𝑔[exp(−𝜇𝑇𝑟

𝜂𝑔𝑥−𝜂)] = ∫ exp(−𝜇𝑇𝑟𝜂𝑔𝑥−𝜂) 𝑓(𝑔)𝑑𝑔
𝑔>0

 
(1.17) 

where 𝑓(𝑔) is the pdf for the fading 𝑔, and it depends on the type of fading experienced by the 

interfering signal. Important to realize, 𝑥 and 𝑔 are independent. After evaluating the Laplace 

transform, the resulted expression will be in terms of μ, T, r, η, g, and other parameters related 
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to the distribution of λ. And after the substitution of the LT in equation (1.15), the probability 

of coverage is obtained. 

 

3. Mean achievable Rate 

The average achievable rate is another important metric related to the system 

performance. It is indeed related to the density and the location of the transmitters. We derive 

the formula for the rate for the network users such that they achieve the Shannon bound for 

their instantaneous SINR. Thus, we study the mean achievable rate for a typical user, which is 

an outage-based metric that is used in stochastic geometry. The unit of measure is in nats/Hz 

because we are using 𝑙𝑛 in the formula, and we have 1 bit = ln(2) ~ 0.69315 nats. The presented 

results and formulas are for the Rayleigh fading i.e. exponential distribution for the fading 

power. 

The mean achievable rate for a typical user is: 

 𝜏 = 𝔼[ln(1 + 𝑆𝐼𝑁𝑅)] (1.18) 

In a PPP network, the ergodic rate for a typical user depends on the spatial PPP and the 

fading distribution.  

𝜏 = 𝔼[ln(1 + 𝑆𝐼𝑁𝑅)] = ∫ 𝔼[ln (1 +
𝑃𝑡𝐿𝑝ℎ𝑟

−𝜂

𝑃𝑛 + 𝐼𝑡
)] 𝑓𝑟(𝑟)𝑑𝑟

𝑟>0

= ∫ 𝑓𝑟(𝑟)∫ ℙ [ln (1 +
𝑃𝑡𝐿𝑝ℎ𝑟

−𝜂

𝑃𝑛 + 𝑃𝑡𝐿𝑝𝐼𝑟
) > 𝑡] 𝑑𝑡

𝑡>0

𝑑𝑟

𝑟>0

= ∫ 𝑓𝑟(𝑟)∫ ℙ [
𝑃𝑡𝐿𝑝ℎ𝑟

−𝜂

𝑃𝑛 + 𝑃𝑡𝐿𝑝𝐼𝑟
> 𝑒𝑡 − 1] 𝑑𝑡

𝑡>0

𝑑𝑟

𝑟>0
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= ∫ 𝑓𝑟(𝑟)∫ ℙ [ℎ >

𝑟𝜂

𝑃𝑡𝐿𝑝
(𝑃𝑛 + 𝑃𝑡𝐿𝑝𝐼𝑟)(𝑒

𝑡 − 1)] 𝑑𝑡

𝑡>0

𝑑𝑟

𝑟>0

 
(1.19) 

Using the fact that ℎ~exp (𝜇), i.e. signal experiences Rayleigh fading. 

𝜏 = ∫ 𝑓𝑟(𝑟)∫ 𝔼 [𝑒𝑥𝑝(−𝜇
𝑟𝜂

𝑃𝑡𝐿𝑝
(𝑃𝑛 + 𝑃𝑡𝐿𝑝𝐼𝑟)(𝑒

𝑡 − 1))] 𝑑𝑡

𝑡>0

𝑑𝑟

𝑟>0

 

 
= ∫ 𝑓𝑟(𝑟)∫ 𝑒−𝜇𝑟

𝜂𝜎2(𝑒𝑡−1)𝐿𝐼𝑟(𝜇𝑟
𝜂(𝑒𝑡 − 1))𝑑𝑡

𝑡>0

𝑑𝑟

𝑟>0

 
(1.20) 

 

C. Literature 

In this section, we present a general literature about stochastic geometry for wireless 

networks. In the literature, the transmitters' locations have been modeled using different 

mathematical models. The standard assumption is that the transmitters, BSs or access nodes, 

are represented by idealized points in some space, usually in a plane ℝ2, in which they form a 

stochastic or random structure known as a spatial point process. At first, a two-dimensional 

hexagonal grid model was used. The grid model at first glance consists an ideal and logical 

model for BSs distribution, but in fact this is far from the real scenarios. In grid model, the area 

is sectored into grids and each transmitter is located at the center or on one side of the grid. 

Unfortunately, SINR formulas resulted from such models are hard to estimate and depend on 

multiple random variables [4]. 

Several point processes have been also suggested. Among these, the most frequently 

and famous used one is the homogeneous PPP. PPP is commonly used as a mathematical model 

across numerous disciplines. It simplifies the analysis and provides insights about the operation 

of networks. On the other side, PPP fails to represent some network configurations study, like 
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hotspot, heterogenous cellular networks, and other network configurations or scenarios that 

contains some clustering properties or needed minimum distance between nodes [5]. 

Many researches have applied stochastic geometry tools in wireless networks. Such 

works are present in cellular clustered networks [6][7], narrowband and ultra-wideband 

wireless nodes [8], cognitive radio [9][10], femtocells [11][12] and relay networks [13][14]. 

The authors in [15] and [16] provided a wide overview about stochastic geometry for wireless 

networks. They presented a comprehensive survey for stochastic geometry models for single-

tier as well as multi-tier and cognitive cellular wireless networks. Also, different important 

techniques for modeling interference are presented in general. This has been complemented by 

the analysis and modeling of interference in different works [17][18]. 

Analytically speaking, a good analysis for coverage and rate in downlink for cellular 

networks is presented in [19]. The authors used PPP to model the BS locations by deriving 

quickly-computable integrals for SINR and desired received signal power distribution. Some 

of the works like in [20] evaluated the uplink cellular networks. In uplink analysis, the locations 

of the mobile users are modeled as PPP and then the BSs corresponding to each mobile user is 

located uniformly in its Voronoi cell. Compared to the downlink analysis, the uplink differs in 

many key features. For example, the dependence between user and BSs point process is 

different. 

A simple Poisson Tree model for analyzing a hierarchical backhaul of a hyper-dense 

heterogeneous network is introduced in [21]. The model contains traffic concentrators, BSs 

(Macro and small) and users. The aim of the model is to study the impact of the finite user 

density (load) on the network performance and the distribution of the SINR. A key element 

here is modeling the impact of the backhaul on the network. The distributional properties of 

the interference are derived in [22] using PCP (Matern and Thomas). The Interference 

complementary cumulative distribution function CCDF is obtained for different path loss 
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models and different types of fading using Monte Carlo Simulation. The authors also showed 

that when the transmitter-receiver distance is large, the success probability is greater than that 

of a Poisson arrangement. In addition, [23] and [24] presented an analysis for the coverage 

analysis for the scenario of BS-centric user clustering using MCP. The aim was to account for 

the influence of BS-centric user clustering in small cells. 

A tractable framework for SINR analysis in downlink heterogeneous cellular 

networks with flexible cell association policies is developed in [25]. What is remarkable in this 

work is that the authors assumed the user connects to the BS that offers the maximum long-

term averaged received power (with biasing), and not the BS that offers the highest SINR. 

Moreover, simple approximate approaches to the SIR distribution of general heterogeneous 

cellular networks are presented [26]. 

PPP and hexagonal model are compared in [27] with real cellular networks in urban 

areas; the data used for the comparison is taken from OpenCellID community project [28]. This 

project consists a collaborative community project that collects GPS positions of cell towers, 

available for commercial and private purposes free of charge. The data supplied may have some 

limitations compared to data obtained from network operators, but is very useful and can be 

used many works. Results showed that PPP model is more accurate than the hexagonal grid 

model. Recently, it has been shown [29] that heavy tailed distributions can most precisely fit 

the actual BS spatial density distribution. Among many distributions (Poisson, Lognormal, 

Generalized Pareto, etc), α-stable distribution was the best distribution that can fit for the 

density of BSs and matches the empirical PDF. These results were obtained based on realistic 

deployment information of BSs from on-operating cellular networks. Another study was done 

in [30] on data for real deployed BS across urban, rural, and coastal zones. The results have 

shown that the BS spatial distributions follow α-stable distribution in urban scenarios, and 

Lognormal and Weibull distributions in rural and coastal scenarios. Furthermore, the authors 
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in [32] considered two realistic case studies from a European country (one urban and one rural). 

Then, they computed the spatial distribution of the BSs and they fit the candidate distributions 

to the real data. They take into account Poisson, Pareto, Lognormal, Weibull and α-Stable as 

possible candidates. Results showed that lognormal is the best distribution in a rural scenario, 

while the α-Stable is the most realistic one in an urban case. 
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CHAPTER II 

DENSITY DISTRIBUTION OF BASE STATIONS 

 

In this chapter, we take data for the Evolved NodeB (eNB) locations from real 

deployed LTE networks in specific areas containing highly populated urban cities. We start our 

analysis by obtaining the spatial density distribution of these eNBs. Then, we try to fit this 

distribution with candidate distributions, in which we determine the distribution that best fits 

and gives the lowest Root Mean Square Error (RMSE). The aim from this procedure is to use 

this fitted density distribution in a framework that derives a general performance metrics for 

the whole huge studied area. These metrics give a general idea for the network operators about 

how the spatial density distribution can affect the network in general. 

 

A. Density Distribution 

We present some statistical analysis for the spatial density distribution for real 

deployed LTE networks of Evolved NodeB (eNB). These networks are deployed in urban areas 

and contain big cities. To conduct the analysis, we use an open source code in [29][30], and 

data taken from the OpenCellID community project [28]. The aim from this analysis is to check 

some of the distributions used for modeling the density of Base Stations (BS) in a cellular 

network and to shed the light on the importance of the spatial density distribution in network 

study. With this intention, the main problem here turns out to find the best suitable Probability 

Density Function (PDF) of the spatial density distribution in each network. Then, this 

information can be used to develop a network model that considers the density distribution. 

To achieve this, we take the locations of eNBs in three main areas, two of them contain 

big city with high population. We start the analysis by calculating the densities in a randomly 

chosen 2x2 𝑘𝑚2 regions in each area. As seen in the dimension, the regions are of square 
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shape, where we take 10000 randomly chosen regions with random boundaries that can be any 

boundary inside the studied area. The reason for choosing the size of the region as 2x2 𝑘𝑚2 is 

that we see it as a good size to account for the non-negligible interference signals for a typical 

user located at the center of the region taken in the cellular network. Then, the resulted densities 

are compared to potential candidate distributions. Mainly, and coupled with the literature we 

consider the following candidates: α-stable, Poisson, lognormal, Generalized Pareto, and 

Weibull distribution. 

 

1. Area 1 

 

Figure 2.1: BS towers across area 1. 
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Figure 2.2: BS density distribution in area 1 for 𝟐x𝟐 𝒌𝒎𝟐 randomly chosen regions. 

We have considered the area shown in Figure 2.1, while the results of the BS density 

distribution, according to the described scenario, are shown in Figure 2.2. From the graph, the 

Weibull distribution gives the best fitting shape for this area. Thus, on average, we can assume 

that a developed model using Weibull for the spatial density will better fit as a representation 

for this area. Obviously, this result is clearly seen by analyzing the Root Mean Square Error 

(RMSE) between the data and the fitted distribution, where the Weibull distribution has the 

smallest RMSE. In Table 2.1, we show different RMSE values with the corresponding 

distribution fitted parameters. 

Legend 𝜶-Stable PPP Lognormal GPareto Weibull 

RMSE 0. 007463 0. 037801 0. 004999 0. 006096 0. 003889 

Fitted 

Parameters 

𝛼 = 1.321487 

𝛽 = 1 

𝛾 = 5.321872 

𝛿
= 21.163042 

𝜆 = 59.9031 

𝑚𝑒𝑎𝑛
= 2.325125 

𝑠𝑡𝑑. 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
= 0.95672 

𝑡𝑎𝑖𝑙 𝑖𝑛𝑑𝑒𝑥 (𝑠ℎ𝑎𝑝𝑒)
= −0.108722 

𝑠𝑐𝑎𝑙𝑒
= 16.578036 

𝑠𝑐𝑎𝑙𝑒
= 16.034311 

𝑠ℎ𝑎𝑝𝑒
= 1.217128 

Table 2.1: RMSE results for different distributions for area 1. 
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2. Area 2 

We continue our analysis for another area of bigger size that contains lower density regions 

and many empty locations. 

 

Figure 2.3: BS towers across area 2. 

 

Figure 2.4: BS density distribution in area 2 for 𝟐x𝟐 𝒌𝒎𝟐 randomly chosen regions. 
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Again, by analyzing Figure 2.4 and the RMSE in Table 2.2, we can see that the 

Lognormal and Generalized Pareto are the most accurate among the other distributions. 

Moreover, we can see that most of the candidate distributions are giving higher RMSE values 

than area 1. 

Legend 𝜶-Stable PPP Lognormal GPareto Weibull 

RMSE 0.115955 0.159556 0.036942 0.038822 0.054487 

Fitted 

Parameters 

𝛼 = 1.146562 

𝛽 = 1 

𝛾 = 0.440456 

𝛿 = 2.819257 

𝜆 = 5.656916 

𝑚𝑒𝑎𝑛
= −0.175598 

𝑠𝑡𝑑. 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
= 0.975887 

𝑡𝑎𝑖𝑙 𝑖𝑛𝑑𝑒𝑥 (𝑠ℎ𝑎𝑝𝑒)
= 0.196047 

𝑠𝑐𝑎𝑙𝑒 = 1.130071 

𝑠𝑐𝑎𝑙𝑒
= 1.391299 

𝑠ℎ𝑎𝑝𝑒
= 0.969809 

Table 2.2: RMSE results for different distributions for area 2. 

 

 

3. Area 3 

 

Figure 2.5: BS towers across area 3. 
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Figure 2.6: BS density distribution in area 3 for 𝟐x𝟐 𝒌𝒎𝟐 randomly chosen regions. 

In the third analyzed area, the fitted shape and the RMSE in Table 2.3 show the 

accuracy of the α-stable distribution. Undoubtedly, the fitted parameters for this distribution 

are very close to the subclass of the α-stable distribution, which is called the Lévy distribution 

which has the parameters 𝛼 = 0.5 and 𝛽 = 1. 

This simple analysis shows that the BS density does not necessarily have the same 

distribution in all the networks of different sizes, type (urban, rural, …) and studied regions. 

Also, it shows that the information about the density distribution is important to give an 

accurate model for a whole network (not just a small area). This means that a deeper analysis 

of the different situations should be done. This will be achieved in the next sections. 

Legend 𝜶-Stable PPP Lognormal GPareto Weibull 

RMSE 0.004780 0.090961 0.024048 0.024370 0.033486 

Fitted 

Parameters 

𝛼 = 0.643739 

𝛽 = 1 

𝛾 = 0.309647 

𝛿
= −0.145156 

𝜆 = 9.399914 

𝑚𝑒𝑎𝑛
= −0.059201 

𝑠𝑡𝑑. 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
= 1.195194 

𝑡𝑎𝑖𝑙 𝑖𝑛𝑑𝑒𝑥 (𝑠ℎ𝑎𝑝𝑒)
= 0.544306 

𝑠𝑐𝑎𝑙𝑒 = 1.062577 

𝑠𝑐𝑎𝑙𝑒
= 1.779881 

𝑠ℎ𝑎𝑝𝑒
= 0.730365 

Table 2.3: RMSE results for different distributions for area 3. 
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B. Analysis: Coverage and Rate 

 In the previous section, we have seen the importance of the spatial density distribution 

and we have shed the light on some candidate distributions that can be used to model the 

density. Hence, we use this information about the best fitted distributions in a network model 

to study the performance of such network. 

 

1. Network Model 

 Modeling the same scenario described in the previous section is a complex operation. 

As an illustration, the interference experienced by a user located in a specific region will depend 

on many things related to this region, like its shape, size, density and the location of the user 

within this region. Besides, many questions arise. How many regions should we consider and 

what about their boundaries, should we choose them with overlaps or not? Also, in a developed 

mathematical model, should we consider the interference from the neighboring regions or 

assume it totally negligible? However, this imposes an important disadvantage of such 

developed model according to this specific scenario. This disadvantage is that such model is 

not stationary in space, so the different performance metrics depend on the spatial location of 

the user. Consequently, the notion of “typicality” of the user does not apply. For that, we 

propose to use a different model for the locations of the BSs. This model uses PPP but with a 

random density, which is a good representation for the average performance of the network. 

Given these points, we suppose that the average density of the network is a non-negative 

number taken from a specific distribution. Such a network model is a PPP conditioned on the 

intensity measure, and is referred to as a Cox process or doubly stochastic Poisson process [2]. 

 We consider a baseline bi-directional cellular network with BSs arranged as a Poisson 

Point Process (PPP) 𝛷 ⊂ ℝ2 with density 𝜆𝑖. Additionally, we use three candidate distributions 
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to model the density of the PPP. More precisely, we consider the Lévy distribution (a specific 

case of the α-Stable distribution), Generalized Pareto distribution and the Weibull distribution. 

We note that the α-Stable distribution does not have a closed form expression for its PDF, but 

it contains a family of distributions for specific parameters that have PDF closed form such as 

the Lévy distribution. Moreover, we assume that each BS is using the same transmit power P, 

and the BSs are using omnidirectional antennas, with a single transmit and single receive 

antenna. Furthermore, the users are associated with the nearest BS that is at distance 𝑟 and is 

called the serving BS and denoted by 𝐵𝑆0. 

 

2. Signal to Interference plus Noise Ratio 

The SINR of a typical user located at the origin and at a random distance 𝑟 from its 

associated BS can be expressed as: 

 𝑆𝐼𝑁𝑅 =
𝑆

𝑃𝑛+𝐼𝑟
=

𝑃𝑡𝐿𝑝ℎ𝑟
−𝜂

𝑃𝑛+𝑃𝑡𝐿𝑝∑ 𝑔𝑖𝑖∈𝛷/𝐵𝑆0 𝑅𝑖
−𝜂 

(2.1) 

where 𝑆, 𝑃𝑛 and 𝐼𝑟 are the received signal, noise and interference powers respectively. The 

cumulative effect of fading in the signal power domain is denoted by ℎ. In our work, we focus 

on the case when the signal 𝑆 experiences Rayleigh fading, which means ℎ follows exponential 

distribution with mean 1 𝜇⁄ . 𝐼𝑟 is the aggregate interference from the other BSs having 

distances 𝑅𝑖 to the typical user. We assume a simple or a singular path loss model, 𝜂 is the PLE 

such that 𝜂 > 2, and 𝑔𝑖 is the fading value for the interfering signals from the BSs. 𝑃𝑡 is the 

transmit power of the BSs, and 𝐿𝑝 is a constant that depends on the characteristics of the 

transmitter, receiver and the frequency used. Since each user communicates with the closest 

BS, no other BS can be closer than 𝑟. So, to get the PDF of 𝑟, we first express the 

Complementary Cumulative Distribution Function (CCDF) using the null probability of a 2-D 

PPP in a small area 𝐴𝑖 with density 𝜆𝑖. 
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 𝑃[𝑟 > 𝑅/𝜆 = 𝜆𝑖] = 𝑃[no BS closer than R/𝜆 = 𝜆𝑖] = 𝑒
−𝜆𝑖𝜋𝑅

2
 (2.2) 

Then, we can write: 

 𝑝(𝑟 > 𝑅) = ∫ 𝑓(𝑥/𝑦𝑖)𝑓(𝑦𝑖) = ∫ 𝑝(𝑟 > 𝑅/𝜆 = 𝜆𝑖)𝑝(𝜆 = 𝜆𝑖)𝑑𝜆 (2.3) 

  

a. Lévy Distribution: 

The Lévy distribution is a subclass of the α-Stable distribution family, and it is a distribution 

that has four parameters, that are the stability 𝛼 = 0.5, skewness 𝛽 = 1, scale 𝛾 ∈ (0,∞) and 

location parameter 𝛿 ∈ (−∞,∞). Moreover, the Lévy distribution has a closed form expression 

for the PDF, which is defined as follows: 

 𝑓(𝜆) = √
𝛾

2𝜋

1

(𝜆−𝛿)3 2⁄ exp (−
𝛾

2(𝜆−𝛿)
) 

(2.4) 

For our calculations, we will use the Lévy distribution with 𝛿 = 0 to represent the density 

distribution. Thus, the CCDF becomes: 

 𝑃[𝑟 > 𝑅] = ∫ 𝑒−𝜆𝜋𝑅
2
𝑝(𝜆 = 𝜆𝑖)𝑑𝜆

∞

0
= ∫ 𝑒−𝜆𝜋𝑅

2
√
𝛾

2𝜋

1

𝜆3 2⁄ exp (−
𝛾

2𝜆
)

∞

0
=

−
𝑒−𝜋𝛿𝑅

2

2
[𝑒−√2𝛾𝜋𝑅 (𝑒𝑟𝑓 (

−2√𝜋𝑅𝜆+√2𝛾

2√𝜆
) + 1) + 𝑒√2𝛾𝜋𝑅 (𝑒𝑟𝑓 (

2√𝜋𝑅𝜆+√2𝛾

2√𝜆
) − 1)]

0

∞

=

𝑒−√2𝛾𝜋𝑅 

(2.5) 

where 𝑒𝑟𝑓(𝑧) =
2

√𝜋
∫ 𝑒−𝑡

2
𝑑𝑡

𝑧

0
 is the error function. 

The CDF is given by: 

𝑃[𝑟 ≤ 𝑅] = 𝐹𝑟(𝑅) = 1 − 𝐶𝐶𝐷𝐹 = 1 − 𝑒−√2𝛾𝜋𝑅 

This leads to the PDF: 

 𝑓𝑟(𝑟) =
𝑑𝐹𝑟(𝑟)

𝑑𝑟
= √2𝜋𝛾𝑒−√2𝛾𝜋𝑟 (2.6) 
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b. Generalized Pareto Distribution: 

The PDF of the GPareto distribution is defined as follows: 

 𝑓(𝜆) =
1

𝛾
(1 + 𝑘 (

𝜆−𝜃

𝛾
))

−1−
1

𝑘

 

(2.7) 

where 𝜃 ∈ (−∞,∞) is the location (or the threshold) of the distribution, 𝛾 ∈ (0,∞) is the scale 

parameter, and 𝑘 ∈ (−∞,∞) is the shape parameter. In our analysis, the density of the 

transmitters can't be negative, so the threshold 𝜃 is set to zero. 

Applying the same calculations where 𝜃 = 0, we get the following PDF for the distance 𝑟: 

 𝑓𝑟(𝑟) =
1

𝛾
[
2𝛾2(𝑘+1)𝜋

1
𝑘𝑟𝑒

𝜋𝛾𝑟2

𝑘 (
𝛾𝑟2

𝑘
)

1
𝑘
−1

𝛤(−
𝑘+1

𝑘
,
𝜋𝑟2𝛾

𝑘
)

𝑘4
−
2𝛾2(𝑘+1)𝑟(

𝛾𝑟2

𝑘
)
−2

𝜋𝑘3
+

2𝛾2(𝑘+1)𝜋
1
𝑘
+1
𝑟𝑒

𝜋𝛾𝑟2

𝑘 (
𝛾𝑟2

𝑘
)

1
𝑘
𝛤(−

𝑘+1

𝑘
,
𝜋𝑟2𝛾

𝑘
)

𝑘3
+

2

𝜋𝑟3
] 

(2.8) 

  

c. Weibull Distribution: 

The PDF of the Weibull distribution is defined as: 

 𝑓(𝜆) = {
𝑛

𝑚
(
𝜆

𝑚
)
𝑛−1

exp (−(
𝜆

𝑚
)
𝑛

) , 𝜆 ≥ 0

0, 𝜆 < 0
 

(2.9) 

where 𝑚 ∈ (0,∞) is the scale of the distribution and 𝑛 ∈ (0,∞) is the shape of the distribution. 

Working with the distribution with variables 𝑚 and 𝑛 alongside with our calculations leads to 

unsolvable mathematical formulas. For that, in our calculations we assume the shape 𝑛 = 1 

and variable scale 𝑚. 

Hence, the PDF for the distance 𝑟: 
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 𝑓𝑟(𝑟) =
2𝜋𝑚𝑟

(1+𝜋𝑚𝑟2)2
 (2.10) 

  

C. Network Coverage 

 The probability of coverage for a typical user located in the network is defined as the 

probability of the user receiving SINR greater than a threshold value 𝑇. The threshold value 

determines the starting value at which the received signal is considered useful so that the user 

can decode and use it. If the received signal is below the threshold, it is considered not useful 

and the sent data will be unreadable. The threshold depends on the type of services delivered 

in the system, the ability of the receiver to extract the signal and the needed system 

performance. The probability of coverage is defined as follows: 

 𝑝𝑐 = 𝔼𝑟[ℙ[𝑆𝐼𝑁𝑅 > 𝑇|𝑟]] (2.11) 

In Table 2.4, we provide the probability of coverage for a typical user located at the center of 

the network. In this table, we are assuming that the fading coefficient 𝑔 has an arbitrary 

distribution. 

Density 

Distribution 
Coverage Probability for the case of an arbitrary fading distribution 

Lévy 

𝑝𝑐(𝑇, 𝛾, 𝛿 = 0, 𝜂, 𝜇, 𝜎)

= √2𝜋𝛾∫ exp (−𝜇
𝑇

𝑃𝑡𝐿𝑝
𝑟𝜂𝑃𝑛 − √2𝜋𝛾𝑟 − √2𝛾(𝜉1)

1
2⁄ )𝑑𝑟

∞

0

 

(2.12) 

with 𝜉1 = 𝜋𝑟
2 −

2𝜋(𝜇𝑇)
2
𝜂⁄ 𝑟2

𝜂
∫ 𝑔

2
𝜂⁄ [𝛤 (−

2

𝜂
, 𝑔𝑇𝜇) − 𝛤 (−

2

𝜂
)] 𝑓(𝑔)𝑑𝑔

∞

0
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GPareto 

𝑝𝑐(𝑇, 𝛾, 𝑘, 𝜂, 𝜇, 𝜎)

=
1

𝛾2
∫ 𝑒

−𝜇
𝑇

𝑃𝑡𝐿𝑝
𝑟𝜂𝑃𝑛

∞

0
[
 
 
 
1

𝜉1

−
𝛾(𝑘 + 1)𝑒

𝛾𝜉1
𝑘 (

𝛾
𝑘
𝜉1)

1
𝑘
𝛤 (−

𝑘 + 1
𝑘

,
𝛾
𝑘
𝜉1)

𝑘2

]
 
 
 

[
 
 
 
 

−
2𝛾2(𝑘 + 1)𝑟 (

𝛾𝑟2

𝑘
)
−2

𝜋𝑘3

+
2𝛾2(𝑘 + 1)𝜋

1
𝑘𝑟𝑒

𝜋𝛾𝑟2

𝑘 (
𝛾𝑟2

𝑘
)

1
𝑘
−1

𝛤 (−
𝑘 + 1
𝑘

,
𝜋𝑟2𝛾
𝑘

)

𝑘4

+
2𝛾2(𝑘 + 1)𝜋

1
𝑘
+1𝑟𝑒

𝜋𝛾𝑟2

𝑘 (
𝛾𝑟2

𝑘
)

1
𝑘
𝛤 (−

𝑘 + 1
𝑘

,
𝜋𝑟2𝛾
𝑘

)

𝑘3
+

2

𝜋𝑟3

]
 
 
 
 

𝑑𝑟 

(2.13) 

 

Weibull 
𝑝𝑐(𝑇, 𝑎, 𝜂, 𝜇, 𝜎) = ∫ 𝑒

−𝜇
𝑇

𝑃𝑡𝐿𝑝
𝑟𝜂𝑃𝑛

∞

0

(
1

1 + 𝑎 𝜉1
)

2𝜋𝑎𝑟

(1 + 𝜋𝑎𝑟2)2
𝑑𝑟 

(2.14) 

 

Table 2.4: Probability of coverage for the different considered density distributions for an arbitrary 

distribution for 𝒈. 

Proof: See Appendix II.A. 

 When the interfering signals experience Rayleigh fading, i.e. power of the fading 

follows exponential distribution of mean 1 𝜇⁄ , the terms for the fading become:  

𝜉1 = 𝜋𝑟
2𝑇

2
𝜂⁄ ∫

1

𝑦
𝜂
2⁄ + 1

𝑑𝑦

∞

𝑇
−2

𝜂⁄

 
(2.15) 

This can be also verified by re-solving the Laplace transform of the interference in which we 

have 𝔼𝑔[exp(−𝑠𝑔𝑅𝑖
−𝜂)] =

𝜇

𝜇+𝑠𝑅𝑖
−𝜂. 

 

D. Mean Achievable Rate 

 The average data rate is another important metric related to system performance. It is 

indeed related to the density and location of the transmitters. We derive the formula for the 

data rate for each user such that they achieve the Shannon bound for their instantaneous SINR. 

Thus, we study the mean achievable rate for a typical user, which is an outage-based metric 

used in stochastic geometry. The mean achievable rate is defined as: 
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 𝜏 = 𝔼[ln(1 + 𝑆𝐼𝑁𝑅)] (2.16) 

In Table 2.5, we present the mean achievable for the network model with location of BSs 

arranged as PPP with random 𝜆. The results are for the Rayleigh fading case i.e. exponential 

distribution for fading power. 

Density 

Distribution 
Mean achievable rate for the case of Rayleigh fading 

Lévy 

𝜏 = √2𝜋𝛾 ∫ ∫ exp (−𝜇
𝑃𝑛
𝑃𝑡𝐿𝑝

𝑟𝜂(𝑒𝑡 − 1) − √2𝜋𝛾𝑟 − √2𝛾(𝜉2)
1
2⁄ )𝑑𝑡

∞

0

𝑑𝑟

∞

0

 
(2.17) 

With 𝜉2 = 𝜋𝑟2(𝑒𝑡 − 1)
2
𝜂⁄ ∫ (

1

𝑦
𝜂
2⁄ +1
) 𝑑𝑦

∞

(𝑒𝑡−1)
−2

𝜂⁄
 

GPareto 

𝜏 =
1

𝛾2
∫

[
 
 
 
 
2𝛾2(𝑘 + 1)𝜋

1
𝑘𝑟𝑒

𝜋𝛾𝑟2

𝑘 (
𝛾𝑟2

𝑘
)

1
𝑘
−1

𝛤 (−
𝑘 + 1
𝑘

,
𝜋𝑟2𝛾
𝑘

)

𝑘4
−
2𝛾2(𝑘 + 1)𝑟 (

𝛾𝑟2

𝑘
)
−2

𝜋𝑘3

∞

0

+
2𝛾2(𝑘 + 1)𝜋

1
𝑘
+1𝑟𝑒

𝜋𝛾𝑟2

𝑘 (
𝛾𝑟2

𝑘
)

1
𝑘
𝛤 (−

𝑘 + 1
𝑘

,
𝜋𝑟2𝛾
𝑘

)

𝑘3

+
2

𝜋𝑟3

]
 
 
 
 

∫ 𝑒
−𝜇𝑟𝜂

𝑃𝑛
𝑃𝑡𝐿𝑝

(𝑒𝑡−1)

[
 
 
 
1

𝜉2

∞

0

−
𝛾(𝑘 + 1)𝑒

𝛾𝜉2
𝑘 (

𝛾
𝑘
𝜉2)

1
𝑘
𝛤 (−

𝑘 + 1
𝑘

,
𝛾
𝑘
𝜉2)

𝑘2

]
 
 
 

𝑑𝑡 𝑑𝑟 

(2.18) 

 

Weibull 𝜏 = ∫
2𝜋𝑎𝑟

(𝜋𝑎𝑟2 + 1)2
∫

exp (−𝜇𝑟𝜂
𝑃𝑛
𝑃𝑡𝐿𝑝

(𝑒𝑡 − 1))

1 + 𝑎𝜉2
𝑑𝑡

∞

0

𝑑𝑟

∞

0

 

(2.19) 

 

Table 2.5: Mean achievable rate for the different considered density distributions when interference 

experiences Rayleigh fading. 

Proof: See Appendix II.B. 

 

E. Numerical Results 

 From the simulation in section II, we can see that the Generalized Pareto distribution is 

the most accurate among the candidates in area 2 (classified as rural or a mixed urban-rural 

area as it contains empty regions). The other two distributions were the best in areas 1 and 2, 

classified as urban dense areas. In this section, we present some simulation results to give an 
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overview about the changes in the performance metrics. Unless specified in the figures, the 

evaluation is done using the simulation parameters specified in Table 2.6: 

Parameter Value 

𝑷𝒕 15 𝑑𝐵𝑚 

𝒇, 𝑮𝒕, 𝑮𝒓 1800 𝑀𝐻𝑧, 10 𝑑𝐵, 5 𝑑𝐵 

𝑳𝒑 
𝐺𝑡𝐺𝑟
(4𝜋)2

(
𝑐

𝑓
)
2

 

𝑷𝒏 −20 𝑑𝐵𝑚 

𝝁 1 

Table 2.6: Common simulation parameters; unless specified. 

where 𝐺𝑡 and 𝐺𝑟 are the gains of the BS and the typical user respectively, 𝑓 is the operating 

frequency, and 𝑐 is the speed of light. 

 We note that for the Generalized Pareto case, the mean data rate does not simulate 

because it requires huge amount of computation time. For the other two models, we have 

simulated different use cases for both the coverage probability and the mean achievable rate 

for different 𝜂. In Figure 2.7, we plot the probability of coverage when the density follows 

Levy distribution for 𝛾 = 0.3 and 𝛾 = 1.2 (dashed). The distribution parameters are near the 

values for the fitted α-stable distribution in Area 3 in Section II. Comparatively, we see how 

the coverage increases with 𝛾. This increase is less observable at lower noise power 𝑃𝑛, because 

when there is no noise, the distance from the user to serving BS and to the nearest interferer 

both scales and cancel each other (increasing the density also increases the interference power). 

This is better observed when we plot the mean achievable rate which, at small 𝑃𝑛 , does not 

change with the density. Important to realize, this is consistent with the literature about the 

models using the homogeneous PPP network model. However, surely this result is not the case 

for a single studied user at a specific fixed distance to their serving BS independent from the 

density of the BSs. 
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Figure 2.7: Probability of coverage when the density follows Levy distribution, and the interference 

experiences Rayleigh fading. Normal plot (𝜸 = 𝟎. 𝟑), dashed (𝜸 = 𝟏. 𝟐). 

 

 Similarly, we plot the coverage probability when the density follows the Weibull 

distribution in Figure 2.8. The figure shows the increase in the coverage when 𝑚 increases 

from 0.5 to 20. Moreover, in Figure 2.9 we show the results when the density follows the 

Generalized Pareto distribution. The parameters’ values are near those obtained in the fitting 

in Section II. As seen in the figures, the coverage shape changed because we have changed two 

parameters for the distribution. 

 

Figure 2.8: Probability of coverage when density follows Weibull distribution (shape n=1), and the 

interference experiences Rayleigh fading. Normal plot (𝒎 = 𝟎. 𝟓), dashed (𝒎 = 𝟐𝟎). 
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Figure 2.9: Probability of coverage when the density follows Generalized Pareto distribution, and the 

interference experiences Rayleigh fading. Normal plot (𝜸 = 𝟏, 𝒌 = 𝟎. 𝟓𝟒), dashed (𝜸 = 𝟏. 𝟐, 𝒌 = 𝟐). 

 

 As for the mean achievable rate, we observe that when there is no noise (at very small 

noise power), the mean data rate does not depend on the density distribution parameters, which 

is consistent with the literature about PPP. As seen in the mean rate figures, for the no noise 

(small noise) case, the mean achievable rate in the Lévy case is 1.7116 𝑛𝑎𝑡𝑠/𝐻𝑧 =

2.4693 𝑏𝑖𝑡𝑠/𝐻𝑧 and  2.6502 𝑛𝑎𝑡𝑠/𝐻𝑧 =  3.8235 𝑏𝑖𝑡𝑠/𝐻𝑧 for 𝜂 = 3 and 𝜂 = 4 respectively. 

As for the Weibull case, it is 1.2119 𝑛𝑎𝑡𝑠/𝐻𝑧 = 1.7484 𝑏𝑖𝑡𝑠/𝐻𝑧 and 1.967 𝑛𝑎𝑡𝑠/𝐻𝑧 =

2.8378 𝑏𝑖𝑡𝑠/𝐻𝑧 for 𝜂 = 3 and 𝜂 = 4 respectively. Notably, the Lévy case gives higher mean 

achievable rate than that of the Weibull case, and higher than that of the uniform PPP model 

available in literature [19], which was 1.49 𝑛𝑎𝑡𝑠/𝐻𝑧 for 𝜂 = 4 and no noise. Also, in reference 

[64], the author claimed that the mean data rate is 2.45 𝑛𝑎𝑡𝑠/𝑠𝑒𝑐/𝐻𝑧 in an Matérn Cluster 

Process (MCP) network, with no noise, 𝜂 = 4, and two-tier network with two parent cells and 

20 daughter nodes in each of them. Hence for this specific configuration of MCP model, the 

mean data rate for the Levy case is higher while the Weibull case is lower. This shows that for 

the studied areas that the MCP could be an underestimate for the average metrics for the 

deployment of Figure 2.5 and overestimate for that in Figure 2.1. 
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Figure 2.10: Mean data rate when 𝜼 = 𝟑 the density follows Levy distribution, and the interference 

experiences Rayleigh fading. 

 

Figure 2.11: Mean data rate when 𝜼 = 𝟒, the density follows Levy distribution, and the interference 

experiences Rayleigh fading. 

 

Figure 2.12: Mean data rate when 𝜼 = 𝟑, the density follows Weibull distribution (shape b=1), and the 

interference experiences Rayleigh fading. 
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Figure 2.13: Mean data rate when 𝜼 = 𝟒, the density follows Weibull distribution (shape b=1), and the 

interference experiences Rayleigh fading. 

 

  

F. Conclusion 

 As a conclusion, we have analyzed the spatial density distribution in three network 

areas. We have determined the best fitted distributions for the densities in these areas among 

several candidate distributions. Then, we have used these distributions to obtain the probability 

of coverage and the mean achievable rate for such areas when we model them using a Cox 

Process. Mainly for the density, we have considered the Lévy, Weibull and the Generalized 

Pareto distribution. 
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CHAPTER III 

PROBABILITY DENSITY FUNCTION OF THE INTERFERENCE 

POWER IN PPP NETWORKS 

 

In this chapter, we provide closed form expressions for the probability density 

functions (PDF) of the interference power in a network whose transmitters are arranged 

according to the Poisson Point Process (PPP). These expressions apply for any integer path 

loss exponent 𝜂 greater than 2. Using the stretched exponential or Kohlrausch function, we 

show that the PDF formulas can be obtained as long as the Laplace transform (LT) for the PDF 

follows a specific common (exponential) formulation. Also, as the obtained PDF formulas are 

complex, we propose to approximate them using the Generalized Extreme Value (GEV) 

distribution, whose parameters can be determined through Maximum Likelihood, or 

Probability Weighted Moments. Simulations and numerical analysis validated the proposed 

analytical derivations and showed that the GEV gives good approximations. 

In wireless networks, operators spend huge efforts on their network planning in order 

to provide better services and performance to their customers. Nonetheless, these efforts are 

more effective when the operators have reliable analytical formulation for the network 

performance metrics. The derivation of the interference analytical models, distribution, and 

characteristics, will therefore give network planners the needed tools for deriving the network 

performance in different scenarios and conditions. Additionally, as the wireless networks are 

becoming increasingly denser and experiencing higher traffic load, as defined by the 

connection density and area traffic capacity in the requirements of 5G access technologies [33], 

the need to characterize interference becomes more critical. 
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In stochastic geometry, the LT for the interference power distribution is used 

extensively to get many performance metrics for the network [15], where it is commonly 

employed as a tool for network evaluation (coverage, data rate, etc). On the other hand, the 

PDF gives an extensible method for the network operators to understand interference behavior 

and trends (distribution shape, lower-bound, upper bound, and other possible statistics). Most 

of the works that analyzed interference stated that no closed form expressions for the PDF of 

the interference power has been found, except for the specific case of path loss exponent (PLE) 

[17]. This is clearly seen in the PPP network, the most common model in network analysis 

using stochastic geometry. The authors of [34] gave a summary of the main approaches for 

approximating the PDF of the aggregate interference and showed that the approximations are 

wide varying between normal, log-normal, gamma, etc. To the best of the authors' knowledge, 

the general PDF of the interference power in PPP networks has not been addressed, that is, 

except for the case mentioned above and given in [17]. 

In this chapter, we state that exact closed form PDF expressions for interference power 

exist as long as we can write their formulas in the Laplace domain in a specific exponential 

structure. Our main contribution lies in showing that the stretched exponential function is a 

suitable choice for obtaining the formulas of the interference distribution. We illustrate that 

this distribution can be written in terms of a modified L\'evy distribution, a specific type of 

alpha-stable functions. We also show how the Generalized Extreme Value (GEV) distribution 

can be used as an approximation for the interference power. 

The work we present is important for performing further analysis of the network 

performance, and specifically for directly obtaining the interference statistics and thus deriving 

the signal to interference and noise ratio (SINR) in PPP networks. This in turn helps in 

understanding network enhancement techniques that can better tune the interference 

distribution. Besides, a compact closed form expression allows for plugging parameters and 
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deriving network performance measures in an infinite number of scenarios. This is the first 

work dealing with exact expressions of the interference PDFs for any integer value of the PLE. 

 

A. Mathematical Background 

The stretched exponential function, which is the Kohlrausch function, or the 

Kohlrausch-Williams-Watts (KWW) function [35][36], is defined as: 

 𝐹𝛽(𝑠) = 𝑒−𝑠
𝛽

 (3.1) 

It is directly related to the Laplace domain of the Lévy distribution as: 

 

𝐿𝑓𝛽(𝑠) = ∫ 𝑒−𝑠𝐼𝑓𝛽(𝐼)𝑑𝐼 =

∞

0

𝑒−𝑠
𝛽
 

(3.2) 

where 𝑓𝛽(𝐼) is a stable PDF having a stretching exponent for 0 < 𝛽 < 1, where 𝛽 =
𝛽1

𝛽2
 is 

usually assumed and whose the two fraction terms are integers. For 𝛽1 = 1 and 𝛽2 = 2, we 

have the simplest case: 

 

𝑓1
2

(𝐼) =
exp (−

1
4𝐼)

2√𝜋𝐼
3
2

 

(3.3) 

which is the PDF of a subclass of stable distributions called the Lévy distribution1. The random 

variable 𝐼 is a random variable with a Lévy distribution having the following parameters: 

𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝛼 = 0.5, 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 𝜖 = 1, 𝑠𝑐𝑎𝑙𝑒 𝜎 = 0.5 and 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑙 = 0. 

The Lévy distribution and its scaled Laplace version 𝑒−𝑡𝑠
𝛽

 are very important in different 

fields, particularly the Inverse unilateral Laplace Transform (ILT) for 𝑒−𝑡𝑠
𝛽

 which could be 

directly obtained from a simple scaling weight, as defined in the Laplace properties. 

Hence, the main problem is to derive the ILT of 𝑒−𝑠
𝛽

 for different 𝛽 values, which is 

not an easy task to achieve. This will be elaborated later.  

                                                           
1 Some authors use Lévy distribution for all sum stable laws 
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In the literature, and mainly in wireless communications using stochastic geometry 

approaches, the use of KWW functions is very useful, although the analysis has been limited 

to 𝛽 = 1 2⁄ . The ILT for the KWW with different 𝛽 values was not considered due to the lack 

of closed form expressions. This chapter fills that gap, where we use a transitive property to 

obtain the ILT for other 𝛽 values. 

Property 3.1: the PDF 𝑓{𝛽𝑎,𝛽𝑏}(𝐼) can be obtained from 𝑓𝛽𝑎 and 𝑓𝛽𝑎 through a simple 

integration given by [37]: 

 

𝑓{𝛽𝑎,𝛽𝑏}(𝐼) = ∫
1

𝑡
1
𝛽𝑎

𝑓𝛽𝑎 (
𝐼

𝑡
1
𝛽𝑎

)𝑓𝛽𝑏(𝑡)𝑑𝑡

∞

0

= ∫
1

𝑡
1
𝛽𝑏

𝑓𝛽𝑏 (
𝐼

𝑡
1
𝛽𝑏

)𝑓𝛽𝑎(𝑡)𝑑𝑡

∞

0

 

(3.4) 

where 𝛽𝑎 and 𝛽𝑏 are two lower order stable distributions that follow the same rules of 𝛽. This 

equation becomes very useful when getting different values for 𝛽. For example, 𝛽 =
1

4
 can be 

obtained by setting 𝛽𝑎 =
1

2
 and 𝛽𝑏 =

1

2
 which are given by (3.3), and then substituting them in 

(3.4). The step-by-step derivations of the PDF for different 𝛽 values are out of scope of this 

letter but can be simply obtained by combining KWW and Laplace properties from one side 

and the expression in (3.4) from the other side. Using this strategy, we provide in Table 3.1 

some important formulas for the sake of their applications in interference power analysis in 

PPP networks. 

𝜷 PDF of 𝑰 

𝟏

𝟐
 

1

𝑡2
𝜌1
2
(
𝐼

𝑡2
) =

1

𝑡2

exp (−
𝑡2

4𝐼)

2√𝜋 (
𝐼
𝑡2
)

3
2

=
t exp (−

𝑡2

4𝐼)

2√𝜋𝐼
3
2

 

𝟏

𝟑
 

1

𝑡3
𝜌1
3
(
𝐼

𝑡3
) =

𝑡
3
2

3𝜋𝐼
3
2

𝐾1
3

(

 
2

3√
3𝐼
𝑡3)

  

Where 𝐾𝑣(𝑧) is the modified Bessel function of the second kind. 
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𝟐

𝟑
 

1

𝑡
3
2

𝜌2
3
(
𝐼

𝑡
3
2

) =
2√3𝑡3

27𝜋𝐼3
𝑒𝑥𝑝 (−

2𝑡3

27𝐼2
)(𝐾1

3
(
2𝑡3

27𝐼2
) + 𝐾2

3
(
2𝑡3

27𝐼2
))

=
𝛤 (
2
3) 𝑡

√3𝜋𝐼
5
3

𝐹11 (
5

6
;
2

3
;−

22

33
𝑡3

𝐼2
)+

2
9 𝑡

2

𝛤 (
2
3) 𝐼

7
3

𝐹11 (
7

6
;
4

3
;−

22

33
𝑡3

𝐼2
) 

Where 𝐹𝑞𝑝 (𝑎1, … , 𝑎𝑝; 𝑏1, … , 𝑏𝑞; 𝑥) is the generalized hypergeometric function. 

𝟏

𝟒
 

1

𝑡4
𝜌1
4
(
𝐼

𝑡4
) =

𝑡3

64𝜋𝐼
7
4

(
8√2𝐼

𝑡2
Γ (
1

4
) 𝐹20 (;

1

2
,
3

4
;−

𝑡4

256𝐼
)

− √2Γ (
−1

4
) 𝐹20 (;

5

4
,
3

2
;−

𝑡4

256𝐼
) − 16√𝜋

𝐼
1
4

𝑡
𝐹20 (;

3

4
,
5

4
;−

𝑡4

256𝐼
)) 

𝟏

𝟓
 

1

𝑡5
𝜌1
5
(
𝐼

𝑡5
) =

1

𝑡5
∑

𝑏𝑚(5,1)

(
𝐼
𝑡5
)
1+
𝑚
5

4

𝑚=1

𝐹52 ([1, 𝛥 (1,1 +
𝑚

5
)] ; [𝛥(5,1 + 𝑚)];

𝑡5

55𝐼
) 

Where 𝛥(𝑎, 𝑏) =
𝑏

𝑎
,
𝑏+1

𝑎
, … ,

𝑏+𝑎−1

𝑎
 and 

𝑏1(5,1) =
√5𝛤 (

1
5
)

20𝜋 sin (
2𝜋
5
)
 

 𝑏2(5,1) =
−√5𝛤(

2

5
)

20𝜋 sin(
𝜋

5
)
 

𝑏3(5,1) =
√5𝛤 (

3
5
)

40𝜋 sin (
𝜋
5
)
 

 𝑏4(5,1) =
−√5𝛤(

4

5
)

120𝜋 sin(
2𝜋

5
)
 

 

𝟐

𝟓
 

1

𝑡
5
2

𝜌2
5
(
𝐼

𝑡
5
2

) =
1

𝑡
5
2

∑
𝑏𝑚(5,2)

(
𝐼

𝑡
5
2

)

1+
2𝑚
5

𝐹53

(

  
 
1, 𝛥 (2,1 +

2𝑚

5
) ; 𝛥(5,1 + 𝑚);

22

55 (
𝐼

𝑡
5
2

)

2

)

  
 

4

𝑚=1

 

Where  

𝑏1(5,2) =
2
2
5√5𝛤 (

1
5
)

10√𝜋𝛤 (
3
10) sin (

2𝜋
5
)
 

𝑏2(5,2) =
−2

4
5√5𝛤 (

2
5
)

10√𝜋𝛤 (
1
10) sin (

𝜋
5
)
 



53 
 

𝑏3(5,2) =
−2

1
5√5𝛤 (

3
5
)

100√𝜋𝛤 (
9
10) sin (

𝜋
5
)
 

𝑏4(5,2) =
2
3
5√5𝛤 (

4
5
)

100√𝜋𝛤 (
7
10) sin (

2𝜋
5
)
 

 

𝟏

𝟔
 

1

𝑡6
𝜌1
6
(
𝐼

𝑡6
) =

2−
1
33−

3
2√𝜋𝑡

(𝛤 (
2
3))

2

𝐼
7
6

𝐹40 ([];
1

3
,
1

2
,
2

3
,
5

6
;−

𝑡6

66𝐼
)

−
𝑡2

6𝛤 (
2
3) 𝐼

4
3

𝐹40 ([];
1

2
,
2

3
,
5

6
,
7

6
;−

𝑡6

66𝐼
)

+
𝑡3

12√𝜋𝐼
3
2

𝐹40 ([];
2

3
,
5

6
,
7

6
,
4

3
;−

𝑡6

66𝐼
)

−
√3𝑡4𝛤 (

2
3)

72𝜋𝐼
5
3

𝐹40 ([];
5

6
,
7

6
,
4

3
,
3

2
;−

𝑡6

66𝐼
)

+

3−
3
2𝑡5 (𝛤 (

2
3))

2

2
17
3 𝜋

3
2𝐼
11
6

𝐹40 ([];
7

6
,
4

3
,
3

2
,
5

3
; −

𝑡6

66𝐼
) 

Table 3.1: Inverse Laplace for scaled KWW 𝑭(𝒔) = 𝒆𝒙𝒑 (−𝒕𝒔𝜷) for mostly needed β indexes 

 

 

B. Interference Power PDF Analysis 

The analysis of the interference Laplace transformations in different PPP 

environments concludes that it can be written as a KWW, hence the importance of the formulas 

in Table 3.1. For this purpose, we consider two particular cases for interference analysis. The 

first is the common interference model in PPP [19], while the second considers the case when 

the base station (BS) distribution has a random density 𝜆. Here, we are interested in obtaining 

the PDF of the interference power when fading is Rayleigh (i.e., fading power is exponential), 

while a typical user is connected to the nearest BS in the network. We start from the common 

system model given in [19] where the probability of coverage defined as 𝑃𝑐 = 𝑃𝑟(𝑆𝐼𝑁𝑅 > 𝑇) 

is given in terms of 𝐿𝐼𝑟(𝑠); the LT of the aggregate interference power 𝐼𝑟 defined by: 
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 𝐼𝑟 = ∑ 𝑔𝑖𝑅𝑖
−𝜂

𝑖∈𝛷\𝑇𝑥𝑠𝑒𝑟𝑣𝑖𝑛𝑔

 
(3.5) 

where 𝛷 represents the locations of the BSs that are modeled as a PPP with density 𝜆, 𝜂 is the 

PLE, 𝑇 is the SINR threshold to guarantee the coverage, 𝑔𝑖 is the fading channel coefficient 

for the Rayleigh fading case, 𝑅𝑖 is the distance from the user to the interfering BSs. It should 

be noted that 𝑃𝑐 is averaged over all channel coefficients 𝑔𝑖, the distance 𝑟 to the serving BS, 

and then over the interference 𝐼𝑟. The probability of coverage (which depends on 𝑇) is then 

given in terms of 𝐿𝐼𝑟(𝑠), where 𝑠 = 𝜇𝑇𝑟𝜂, as: 

 𝑃𝑐 = 𝔼𝑟[ℙ[𝑔 > 𝑇𝑟
𝜂(𝜎2 + 𝐼𝑟)|𝑟, 𝐼𝑟]] = 𝔼𝑟[exp(−𝜇𝑇𝑟

𝜂𝜎2)𝐿𝐼𝑟(𝑠)|𝑟] (3.6) 

where 1 𝜇⁄  is the mean of the fading power, 𝜎2 is the noise power. The PDF of the aggregate 

interference can be obtained using the ILT of 𝐿𝐼𝑟(𝑠). In this work, we consider the cases where 

the LT is written as modified KWW function. This is a common case in stochastic geometry, 

in which 𝛽 is related to the PLE 𝜂 as seen in the next subsection. However, as 𝐿𝐼𝑟(𝑠) depends 

on 𝑇, the PDF of the aggregate interference will be conditioned on 𝑇, i.e., it can be written as: 

 𝑓𝐼𝑟(𝐼𝑟) = 𝑃𝑟(𝐼𝑟|𝑆𝐼𝑁𝑅 > 𝑇) (3.7) 

Hence, the problem reduces to finding the PDF of the aggregate interference independently of 

𝑇. To do so, we use a property from the conditional expectation theory. 

Property 3.2: if 𝔼[𝑋 𝑌⁄ ] = 0, i.e., if the conditional expectation of the random term 

𝑋 is the same for all terms of the population 𝑌, then 𝑋 and 𝑌 are independent. 

Using Property 2 in (3.6), the PDF of interference becomes independent of 𝑇, i.e., 

deconditioned on 𝑇, if and only if the expectation becomes zero, i.e. when 𝑇 tends to ∞. Note 

that in this work, we provide the PDF of the general case of the interference including those 

conditioned on 𝑇. In summary, the PDF of the interference can be obtained from the ILT of 
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interference power using Table 3.1, conditioned on the SINR threshold 𝑇. When 𝑇 tends to ∞, 

the PDF of the interference becomes independent of 𝑇. 

In order to verify our analytical derivations, we provide in this work a numerical 

solution given by Talbot's method, widely used in the literature to get numerical values of ILT 

[38]. Talbot's method is one of the best approaches to compute the ILT by deforming the 

standard contour in the Bromwich inversion integral. The reader might refer to [38][17] for 

more details. We also summarize the simulation parameters used in the analysis in Table 3. 2: 

Parameter Definition Case 1 (Fig 3.1) Case 2 (Fig 3.2) 

𝜼 Path loss exponent 3 6 

𝝁 1 𝜇⁄  is the mean of the fading power  1 1 

𝝀 Density of PPP 2 Not used 

𝜸 Scale parameter of Lévy distribution Not used 0.4 

𝜷 Index of scaled KWW 2/3 1/6 

Table 3. 2: Simulation Parameters 

 

 

1. The PDF of the Interference Power in Homogeneous PPP 

In a network whose transmitters are distributed according to homogeneous PPP, the 

LT of the interference power is [19]: 

 

𝐿𝐼𝑟(𝑠) = exp(−𝜋𝜆 (
𝑠

𝜇
)

2
𝜂

∫
1

𝑦
2
𝜂 + 1

𝑑𝑦

∞

𝑇
−2

𝜂⁄

) 

(3.8) 

Equation (3.8) can be written as KWW function where 𝑡 is the scaling factor of 𝑠 and 𝛽 =

2 𝜂⁄ . Hence, its ILT (i.e. PDF) will be a simple plugin in Table 3.1, depending on 𝜂. 
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Figure 3.1: Interference power PDF (conditioned and decondition on 𝑻). 

In Figure 3.1, we provide and compare the results of the PDF of the interference power obtained 

analytically as in Table 3.1, and numerically from the ILT numerical Talbot's method for 𝜂 =

3. To get the analytical PDF, 𝑡 can be obtained by solving the inner integral in (3.8), and 

inserting the result in the third row of Table 3.1 (case 𝛽 = 2 3⁄ ). It is given by: 

 

𝑡 =
𝜆𝜋

3𝜇
2
3

(√3𝜋 + 2√3 tan−1(
−2 + 𝑇

1
3

√3𝑇
1
3

) + ln(
𝑇
2
3 + 2𝑇

1
3 + 1

𝑇
2
3 − 𝑇

1
3 + 1

)) 

(3.9) 

It is clear from this equation that the interference PDF depends on 𝑇. When 𝑇 = ∞, 𝑡 =

𝜆𝜋

3𝜇
2
3

(√3𝜋 + 2√3 tan−1 (
1

√3
)), which gives the PDF of the interference deconditioned on 𝑇 for 

𝜂 = 3.  

By following the same approach for 𝜂 = 4, it can be easily verified that the exact 

analytical expression of the interference PDF [17] where 𝑡 =
𝜋2𝜆

2√𝜇
 is obtained. Hence, we claim 

that our approach tackles the general case of the aggregate interference PDF as long as the LT 

can be expressed as a KWW form, i.e., exp(−𝑡𝑠𝛽). 
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2. The PDF of the Interference Power in a Cox Process 

In this section, we suppose that the average density of the network is a non-negative 

number taken from a specific distribution. Such a network model is a PPP conditioned on the 

intensity measure, and is referred to as a Cox process [2]. For a reliable study, this random 

distribution must mostly characterize the spatial density statistics of the transmitters across the 

network, such as the work done in [29], where it has been shown that the density follows a 

stable distribution. Also, from our fitting results for the density distribution done in CHAPTER 

II, we have showed the parameters for the fitted alpha-stable, where in some studied areas it 

was near a subclass of alpha-stable distribution, which is the Lévy distribution. Without loss 

of generality, assuming that the realized random density 𝜆 is taken from a Lévy distribution 

with location parameter = 0 (a special case of the stable distribution), the LT of the average 

interference experienced by a random user in the network with Rayleigh fading is: 

 

𝐿𝐼𝑟(𝐼𝑟) = exp

(

 
 
−√2𝛾𝜋 (

𝑠

𝜇
)

1
𝜂
( ∫

1

𝑦
2
𝜂 + 1

𝑑𝑦

∞

𝑇
−2

𝜂⁄

)

1
2

)

 
 

 

(3.10) 

where 𝛾 is the scale parameter for the distribution of 𝜆. 

Proof: it was done in CHAPTER II. 



58 
 

 

Figure 3. 2: PDF when density follows Levy distribution. 

Again, it is very clear that in this particular case, the LT of the interference power 

distribution can be written as a scaled KWW function (similar to (3.1)). Hence, we can get its 

ILT from Table 3.1. Figure 3. 2 sketches the PDF at 𝜂 = 6 obtained analytically and 

numerically through Talbot's method for accuracy comparison. The PDF of the aggregate 

interference independent of 𝑇 is shown (𝑇 = ∞ case). 

 

C. Approximating interference PDF using GEV 

In the previous sections, we provided the exact formulas for the interference 

distributions in different network environments. However, as Table 3.1 shows, these formulas 

may still be complex to use, as they include Hypergeometric or Bessel functions. Hence, to 

simplify their use, we propose to approximate them with the Generalized Extreme Value 

(GEV) distribution, which is normally used to model the maximum or minimum of a series of 

i.i.d. random variables. In a PPP network and in an interference limited scenario (which is the 

case of our network), the use of GEV approximation could be justified by the fact that in order 
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to get an SINR greater than a threshold 𝑇, and for a fixed signal and noise power, the 

interference must be upper-bounded within a confidence interval. The GEV PDF is: 

 
𝑓𝑋(𝑥) =

1

𝜎
𝑢(𝑥)𝜉+1𝑒−𝑢(𝑥) 

(3.11) 

where 

 

𝑢(𝑥) =

{
 
 

 
 
(1 + 𝜉 (

𝑥 − 𝑙

𝜎
))

−1 𝜉⁄

, 𝜉 ≠ 0

𝑒−(
𝑥−𝑙
𝜎
), 𝜉 = 0

 

(3.12) 

and shape 𝜉 ∈ ℝ, scale 𝜎 > 0 and location 𝑙 ∈ ℝ. 

To prove the feasibility in using GEV for approximating the interference power PDF, we 

propose both the maximum likelihood (ML) and the probability weighted moments (PWMs) 

methods. ML works by maximizing the GEV log-likelihood function with the sample data for 

the interference, while the PWMs give a simple generalization of the weighted moments of a 

distribution, but are less accurate in fitting. In fact, the defined PWMs method is more accurate 

for −0.5 < 𝜉 < 0.5 with 𝜉 ≠ 0. The PWMs are defined in [39]: 

 
𝑤𝑖 =

1

1 + 𝑖
[1 −

𝜎

𝜉
(1 − (1 + 𝑖)𝜉𝛤(1 − 𝜉))] , 𝑖 = 0,1,2 

(3.13) 

They can be obtained from the ordered interference power variable 𝐼𝑗: 

 
�̂�𝑖 =

1

𝑛
∑𝐼𝑗 (

𝑗

𝑛
)
𝑖𝑛

𝑗=1

 
(3.14) 

Once obtained, the estimated parameters for the fitted GEV can be calculated as follows: 

 3�̂�2 − �̂�0
2�̂�1 − �̂�0

=
3�̂� − 1

2�̂� − 1
 

(3.15) 

 
2�̂�1 − �̂�0 =

�̂�

𝜉
[𝛤(1 − 𝜉)(2�̂� − 1)] 

(3.16) 
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𝑙 = �̂�0 +

�̂�

𝜉
[1 − 𝛤(1 − 𝜉)] 

(3.17) 

The results show that GEV provides a small root mean square error (RMSE) with the true 

distribution of the interference, as shown for this particular example 𝑇 = 0 𝑑𝐵. Figure 3. 3 

shows different fittings for the PPP interference power for 𝜂 = 3 and 𝜂 = 5. Both cases show 

a good fitting. For the case of 𝜂 = 3, we have an RMSE of 2.6331x10−4 (ML) and 

1.5989x10−3 (PWMs), with ML giving better performance. The PWMs fitting performance is 

limited because the shape 𝜉 is not within the needed boundaries to apply the PWM 

approximations [39]. But, as a general result, we observe that GEV fits well for many different 

system configurations with a small error, which makes it an effective candidate for 

approximating the interference power distribution. 

 

Figure 3. 3: Fitting interference power distribution in a PPP network with GEV distribution when 𝝁 = 𝟏 

and 𝝀 = 𝟐. (Upper) Case 𝜼 = 𝟑, 𝑻 = 𝟎 𝒅𝑩. ML: 𝞷 = 𝟎. 𝟖𝟒𝟐𝟗𝟔, 𝛔 = 𝟏𝟕. 𝟐𝟏𝟒𝟑, 𝐥 = 𝟐𝟏. 𝟗𝟎𝟏𝟓, PWMs: 𝞷 =
𝟎. 𝟓𝟑𝟏𝟒𝟑, 𝛔 = 𝟐𝟐. 𝟒𝟖𝟖𝟖, 𝐥 = 𝟐𝟒. 𝟔𝟗𝟗𝟔. (Lower) Case 𝜼 = 𝟓, 𝑻 = 𝟎 𝒅𝑩. ML: 𝞷 = 𝟏. 𝟐𝟗𝟐𝟕𝟗, 𝛔 =
𝟗. 𝟓𝟑𝟕𝟒𝟒, 𝐥 = 𝟔. 𝟖𝟎𝟔𝟖𝟗, PWMs: 𝞷 = 𝟎. 𝟒𝟗𝟏𝟒𝟕, 𝛔 = 𝟏𝟖. 𝟓𝟎𝟐𝟖, 𝐥 = 𝟏𝟏. 𝟕𝟔𝟎𝟑. 
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D. Conclusion 

In this chapter, we have shown that the distribution of interference power in a stochastic 

geometry framework does have exact closed forms, as long as its LT could be written as a 

KWW function. We have presented the closed form expressions for different path loss 

exponents when the interference experiences Rayleigh fading, and evaluated the accuracy of 

the formulas using numerical analysis. Finally, we have shown that the interference power PDF 

could be also approximated by the GEV distribution, which may be used for simplicity.  
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CHAPTER IV 

IN-BAND FULL-DUPLEX (IBFD) SHARED CHANNEL ACCESS 

 

A. Introduction: 

In this chapter, we study the performance of users operating at IBFD in a cellular 

network. We assume that this network uses Fractional Frequency Reuse (FFR) and that the 

resources used by the users are not totally isolated nor orthogonal between each other. That is, 

there is some sort of shared channel resources i.e. non-orthogonal transmissions between the 

users such as Non-Orthogonal Multiple Access (NOMA). Markedly, the use of shared network 

resources is aligned with the vision for future networks. With this intention, we analyze the 

performance of a network configuration using two approaches and we show the effect of using 

such configuration on different networks parameters. The first approach is achieved by 

tweaking the PPP network analysis while the second approach is based on inner-city model 

which is the reverse model if the Poisson Hole Process (PHP). For multiple reusability, we try 

to keep the presented system model as abstract as possible. Thus, we do not restrict it with a 

specific resource allocation scheme, but we illustrate and give an example on how the network 

model and calculations can be used for a specific scheme. We show that the SINR degrades 

due to IBFD in both core and edge users while a gain in system throughput is obtained. We 

provide extensive simulation results in terms of SINR outage threshold, full duplex region, 

throughput, etc. We also show, as expected, how FFR can mitigate this decrease for the cell 

edge users. 
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B. In-Band Full-Duplex: 

IBFD has emerged as a technology to increase the throughput and the spectral 

efficiency for users. It is a key potential technology that is expected to be part of the future 

enhancements applied on the next generation mobile cellular networks. Particularly, it is 

considered as an advanced technology for increasing the spectral efficiency. Nodes operating 

at IBFD are expected to transmit and receive simultaneously at the same time/frequency 

resource blocks, without the need to orthogonalize the Uplink/Downlink (UL/DL) frequency 

bands. Transceivers using IBFD must be able to route incoming and outgoing signals and 

transmit them at the same network resources thus potentially doubling the capacity of the 

wireless channel. The basic advantage from using IBFD is its ability to increase the throughput 

and to reduce the transmission feedback and the end-to-end delay. This technology has been 

applied for a long time in radar systems [40], but it is still not deployed in wireless 

communication systems like mobile cellular or WiFi systems. 

Yet, the application of IBFD in wireless communication systems faces challenges 

related to the design of a transmission system that can receive and transmit frames at the same 

channel resource (a principle known as reciprocity). Other important challenges are related to 

the design of the used protocols, access layer and transmission scheduling and management. 

Besides, systems using IBFD experiences self-interference. The latter occurs when the signal 

being transmitted by the node is received by its own receiver thus causing interference. Such 

problem can’t be avoided in IBFD, but it can be suppressed using Self-Interference 

Cancellation SIC techniques, equalization, physical separation of Tx and Rx antennas (if 

possible) and beamforming-based self-interference nulling [41]-[44]. 

SIC techniques can be divided into three types [45] related to the domain that they work 

on. The first type works on the propagation domain isolation and it uses combinations of 
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separate antenna systems, cross-polarization, antenna directionality and antenna cancellation 

[46]. The second works on the analog circuit domain in which the self-interference is 

suppressed before it passes through an analog to digital converter, and it includes circulators, 

circuits that tap and cancel the interfering transmit signal and some antenna isolation methods. 

These circuits can be divided into channel-aware and channel-unaware. The third type works 

on the digital domain, and it includes applying the needed gain/phase/delay adjustments 

digitally based on the knowledge of the transmitted signal, digital signal processing techniques, 

and other physical layer algorithms and equalizations. For more details, the readers can refer 

to [47]. 

Applying IBFD in cellular systems is even more challenging due to longer distances 

between the transmitter and the receiver node. Moreover, as the network is larger, the effect of 

interference is more significant. This challenge increases also with shared resources scenario, 

which decreases the effectiveness of SIC techniques. Anyhow, IBFD definitely includes 

additional interference to the end-user hence its application may not be a good solution for 

users receiving weak signal, such as the users far from their serving Base Station (BS). 

 

C. Fractional Frequency Reuse: 

FFR is a non-conventional Inter-Cell Interference Coordination (ICIC) technique that aims 

to reduce the interference within and between the network cells. FFR provides better spectral 

efficiency for the network than conventional frequency reuse.  Mainly, FFR divides a cell into 

edge and core regions, and applies different frequency reuse schemes for these regions, i.e. 

FFR divides the users into cell-edge users 𝑈𝑒 and cell-core user 𝑈𝑐. Then, different FFR 

schemes are applied so that interference is reduced between the two user types and mainly for 

the cell-edge users 𝑈𝑒. 
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Notable types of FFR schemes are Strict-FFR (St-FFR) and Soft-FFR(So-FFR). In Figure 4.1 

(left), we depict the St-FFR scheme with a reuse factor 𝑁 = 3. The users 𝑈𝑐 are allocated a 

common part of the band 𝐵1, while the edge-users 𝑈𝑒 take the remaining bandwidth divided 

across the neighboring cells according to the reuse factor 𝑁. This means for 𝑁 = 3, the three 

neighboring cells will not be using the same bands to serve the 𝑈𝑒. Thus, a typical 𝑈𝑒 in cell 1, 

will not experience neither interference from the BSs in cells 2 and 3, nor interference from 

any 𝑈𝑒 operating at IBFD in the bands of cells 2 and 3. On the other side, Figure 4.1 (right) 

depicts the So-FFR scheme, where we can observe that So-FFR requires less bandwidth than 

St-FFR leading to a better spectral efficiency, but it suffers from larger interference levels. In 

So-FFR, the users 𝑈𝑐 can share the bandwidth with the edge users 𝑈𝑒 from the neighboring 

cells, but they transmit with a lower power than 𝑈𝑒. This is done through power control 

schemes. In this work, we will consider only St-FFR, but the work can be easily extended to 

So-FFR. 

 

Figure 4.1: Left: St-FFR. Right: So-FFR.  Possible interference experienced by a typical user operating at 

IBFD (core 𝐔𝐜,𝐈𝐁𝐅𝐃, edge 𝐔𝐞,𝐈𝐁𝐅𝐃) in a network implementing FFR schemes with N = 3 reuse factor in a 

hexagonal cell. Frequency Plans are also shown for different schemes. Note: Typical studied users are 

shown in bold. 
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D. Related Work: 

Different full-duplex schemes and models have been investigated in stochastic 

geometry. Using stochastic geometry tools, the authors in [48] studied the throughput in a 

wireless network that contains both IBFD and half-duplex nodes. The network model supposed 

that a node may operate at IBFD with some probability. A novel duplexing scheme for IBFD 

targeting cellular networks is studied in [49]. The scheme assumed that there is a partial overlap 

between the DL and UL frequency bands, and showed that the optimal overlap depends on the 

network parameters and the design objective. The authors in [50] investigated the performance 

of a basic OFDM based cellular system that is using IBFD and proposed a scheduling algorithm 

that enhances its performance. Moreover, [51] proposed a power and user allocation schemes 

with a manageable signaling overhead to improve capacity. 

The authors of [52] proposed a coupled and decoupled user association schemes for 

IBFD to improve the transmission rate. In [53], IBFD operation for device-to-device (D2D) 

communication is studied. The work in [54] analyzed IBFD in a network where nodes are using 

perfect/imperfect carrier sensing and RTS/CTS signaling. The use of IBFD in small cells has 

been also studied. The authors in [55] analyzed the performance of IBFD in small cells with 

some multiple antennas configuration, in which the performance has been compared with half-

duplex. Also, [56] studied IBFD in backhauling small cells to macro cells over the wireless 

network. 

On the other hand, the effect of the FFR has been analyzed in stochastic geometry. The 

authors in [57] analyzed the effect for using two FFR schemes (strict and soft) in a single tier 

cellular network, and showed the advantages of each scheme. Similarly, [58] analyzed the 

performance of a specific FFR scheme in a heterogeneous cellular network. In the literature, 

the results showed that the strict FFR provides better coverage and achievable rate for users. 
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On the contrary, the soft FFR provides better spectrum efficiency. Moreover, [59] studied the 

effect of FFR alongside with using Multiple Input Multiple Output (MIMO) technology. 

Likewise, the authors of [60] studied the effect of using FFR in Femto-cells, in which a novel 

metric is used to determine the optimal inner region radius and frequency allocation. 

Furthermore, [61] studied an adaptation process that better tunes the FFR scheme (inner region 

radius and frequency allocation) for a better performance and cell throughput. 

 

E. General Network Model: 

We present a cellular network model in which the BS are arranged according to a 

uniform PPP 𝛷𝐵𝑆 with a density 𝜆𝐵𝑆 on ℝ2. Also, we assume that the mobile users in this 

network are arranged according to another PPP 𝛷𝑈 with a density 𝜆𝑈 on ℝ2. Both 𝛷𝐵𝑆 and 𝛷𝑈 

are considered independent with 𝜆𝑈 > 𝜆𝐵𝑆 so that at least one user is connected to each BS. 

Besides, each user is connected to the nearest BS that is the serving BS denoted as 𝐵𝑆0. In 

addition, we assume that all users have SIC capabilities and can operate in IBFD mode. Since 

operating at IBFD causes more interference especially in the presence of shared channel 

resources between the users, it is preferred to make users who are near their serving BS use 

IBFD. Thus, we define IBFD regions around each BS, and the users inside these regions will 

be operating at IBFD. For simplicity, we define these regions as disks with radius 𝑑𝐹 around 

each BS. This definition can be also translated into the user having a specific long-term average 

power received (APR) which depends mainly on the distance to its 𝐵𝑆0. 

In the network, there will be some users operating at IBFD and others using half-duplex. 

In this general network model, we assume that there exist non-orthogonal transmissions 

between IBFD users, so these users are using some sort of shared channel resources. This is 

aligned with novel resources allocation schemes proposed in 5G networks. For the st-FFR 



68 
 

scheme a user 𝑈𝑒 uses one of the total available sub-bands reserved for the edge users, where 

a served user takes a frequency band 𝑛0, and experiences new interference value 𝐼′ with new 

fading value 𝑔′. The BSs other than the serving one can use the band 𝑛0 of that 𝑈𝑒 depending 

on the reuse threshold 𝑁 in St-FFR scheme. When 𝑁 = 1, all BSs use 𝑛0, and when 𝑁 > 1, 

one BS in each BS-cluster of size 𝑁 uses 𝑛0. We define two SINR thresholds; 𝑇𝑒𝑑𝑔𝑒 which is 

the threshold required to separate between 𝑈𝑐 or 𝑈𝑒 i.e. user ∈ 𝑈𝑐 if  𝑆𝐼𝑁𝑅 > 𝑇𝑒𝑑𝑔𝑒 else it is 

considered 𝑈𝑒 [57]. The second threshold is the detection threshold 𝑇 to consider the user 

connected i.e. any user receiving 𝑆𝐼𝑁𝑅 > 𝑇 is considered receiving useful signal and covered 

by the network. 

Depending on the network configuration, we may have 𝑈𝑐 using either IBFD or half-

duplex, or 𝑈𝑒 using either IBFD or half-duplex. So, there is no user considered 𝑈𝑒 and 𝑈𝑐 at 

the same time, and no user operating at IBFD and Half-duplex at the same time. So, these 

modes are mutually exclusive. In Figure 4.2, we show a PPP representation for this model, in 

which the users are connected to the nearest BS, which consists a Voronoi tessellation coverage 

areas. Moreover, in Figure 4.1, we show the St-FFR scheme and some of the different possible 

interference sources due to IBFD operation and the shared network resources model. As stated, 

in this model we are using the St-FFR scheme. 
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Figure 4.2: Network Model for 𝛌𝐁𝐒 = 𝟎. 𝟓 𝐁𝐒 𝐤𝐦𝟐⁄ , 𝛌𝐔 = 𝟐𝟎𝟎 𝐮𝐬𝐞𝐫𝐬 𝐤𝐦𝟐⁄ , 𝐝𝐅 = 𝟎. 𝟑 𝐤𝐦, 𝐓𝐞𝐝𝐠𝐞 = −𝟏 𝐝𝐁 

In Table 4.1, we present the summary for the different notations used in this chapter for the 

sake of clarification: 

Notation Meaning 

𝝓𝑩𝑺; 𝝀𝑩𝑺 PPP modeling the locations of the BSs; density of 𝜙𝐵𝑆 

𝝓𝑼; 𝝀𝑼 PPP modeling the locations of the users; density of 𝜙𝑈  

𝑷𝒔𝟏 , 𝑷𝒔𝟐; 𝑷𝒏 Transmit power of:  BSs, users; power of noise 

𝒉, 𝒈𝒊; 𝝁 Exponential fading power with mean 1/μ (Rayleigh fading case) 

𝑳𝒑𝟏 , 𝑳𝒑𝟐  Constant that depends on the transmitter, receiver characteristics and frequency 

𝑹𝒊 Distance from a typical user to the interfering BS i 

𝜼 Path loss exponent > 2 

𝜷 
A coefficient that determines the efficiency of the self-interference cancellation 

(SIC) technique used. It is between 0 (best SIC) and 1 (no SIC)). 

𝑼𝒆 , 𝑼𝒄 Cell-edge user, Cell-core user 
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𝑼𝑰𝑩𝑭𝑫 , 𝑼𝒆,𝑰𝑩𝑭𝑫, 𝑼𝒄,𝑰𝑩𝑭𝑫 All users operating at IBFD, 𝑈𝑒 operating at IBFD, 𝑈𝑐 operating at IBFD 

𝑰𝒙
′ 

Interference experienced by 𝑈𝑒 from source 𝑥 due to the FFR scheme (notice the 

prime sign on 𝐼) 

Table 4.1: Notations used 

In the sequel, we define the IBFD regions defined as disks of radius 𝑑𝐹 around each BS. Any 

user inside these disks will be operating at IBFD. 

Definition 1: Let us consider the following random set which represents the germ-grain model 

[2] for a union of all disks of radius 𝑑𝐹 centered at a point of 𝜙𝐵𝑆: 

𝛯 ≜∪ {𝑥 ∈ Φ𝐵𝑆: 𝑏(𝑥, 𝑑𝐹)} 

The users 𝜙𝑈𝐼𝐵𝐹𝐷  using IBFD, and the users Φ𝑈𝐻 using half duplex are defined as: 

Φ𝑈𝐼𝐵𝐹𝐷 = {𝑥 ∈ Φ𝑈: 𝑥 ∈ 𝛯} = Φ𝑈 ∩ 𝛯 

Φ𝑈𝐻 = {𝑥 ∈ Φ𝑈: 𝑥 ∉ 𝛯} = Φ𝑈\𝛯 

By this we get both the so called inner-city model and the Poisson Hole Process (PHP), each 

having an intensity given by: 

 𝜆𝑈𝐼𝐵𝐹𝐷 = 𝜆𝑈(1 − exp(−𝜆𝐵𝑆𝜋𝑑𝐹
2)) (4.1) 

 𝜆𝑈𝐻 = 𝜆𝑈 exp(−𝜆𝐵𝑆𝜋𝑑𝐹
2) (4.2) 

A further verification can be done by setting 𝑑𝐹 to 0 and ∞ and checking the output. When 

studying the performance for the IBFD users we use the inner-city model. This model 

represents all the points of 𝛷𝑈 that are inside the disks created by 𝛯. 

This definition alongside the FFR scheme leads to these three possible interference sources 

shown in Figure 4.3, depending on the users that may be sharing resources with the typical 

user. 
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Figure 4.3: Schema showing different possible types of interference sources from the users operating at 

IBFD, and the distance from a typical user to the serving BS and the other nearest BS. (a) IBFD users, (b) 

core users operating at IBFD, (c) edge users operating at IBFD. 

 

F. Coverage of Users Operating at IBFD: 

In this section, we study the probability of coverage for a typical user operating at IBFD 

in the general network model. Then, we analyze this model using two approaches briefly 

explained thereafter. Then, a possible use case is considered. It allows providing different 

transmission metrics and schemes depending on the SINR. To sum up, the aim here is to 

develop a general model for different use-cases offering a wider range of network performance 

evaluation hence the importance of this work. 

 

1. Cell-Edge Users: 

Without loss of generality, we analyze the network performance of a typical user taken 

as the reference user, located at the origin. According to Slivnyak’s theorem [2], any other 
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location in the space has an identical statistical behavior to the origin. Due to the FFR scheme, 

the users are identified as either 𝑈𝑒 or 𝑈𝑐, where different interference is experienced in each 

case. As we stated, the classification of the user as 𝑈𝑒 or 𝑈𝑐 is dependent on having 𝑆𝐼𝑁𝑅1 less 

than or greater than 𝑇𝑒𝑑𝑔𝑒 respectively. Then, we define the probability of coverage or the 

success probability for 𝑈𝑒 operating at IBFD, as the user having an 𝑆𝐼𝑁𝑅 > 𝑇 given it is an 

edge user 𝑈𝑒. For that, we use a common condition to classify users as 𝑈𝑒 or 𝑈𝑐 operating at 

IBFD, given by: 

 
𝑆𝐼𝑁𝑅1 =

𝑆

𝑁 + 𝐼1 + 𝐼2 + 𝑆𝐼
=

𝑃𝑠1ℎ2𝐿𝑝1𝑟
−𝜂

𝑃𝑛 + 𝑃𝑠1𝐿𝑝1𝐼𝐵𝑆 + 𝑃𝑠2𝐿𝑝2𝐼𝑈𝐼𝐵𝐹𝐷 + 𝛽𝑃𝑠2
 (4.3) 

The notations of (4.3) are available in Table 4.1. 𝑆𝐼𝑁𝑅1 is defined as the ratio of the received 

signal power over the sum of the following: the noise power 𝑁; the interference 𝐼1  from the 

BSs other than the serving one before applying the FFR scheme (user still not identified as  𝑈𝑒 

or 𝑈𝑐); the interference from all the users operating at IBFD 𝐼2 and sharing the same resources 

i.e. inside the IBFD regions; and the remaining self-interference 𝑆𝐼. Our definition differs from 

[57] because of the different interference sources found. Besides, to simplify the calculations, 

all the power and constant terms (𝑃𝑠𝑖𝐿𝑝𝑖) are kept outside the interference definitions 𝐼𝐵𝑆 and 

𝐼𝑈𝐼𝐵𝐹𝐷 terms. The latter are defined as: 

𝐼𝐵𝑆 = ∑ 𝑔𝑖𝑅𝑖
−𝜂

𝑖∈𝛷𝐵𝑆\{𝐵𝑆0}

, 𝐼𝑈𝐼𝐵𝐹𝐷 = ∑ 𝑔𝑖𝑅𝑖
−𝜂

𝑖∈𝛷𝑈𝐼𝐵𝐹𝐷\𝑡𝑦𝑝𝑖𝑐𝑎𝑙 𝑢𝑠𝑒𝑟

 

Thus, the probability of coverage for 𝑈𝑒 operating at IBFD is defined as: 

 
𝑝𝑈𝑒

st−FR = ℙ(
𝑃𝑠1ℎ1𝐿𝑝1𝑟

−𝜂

𝑃𝑛 + 𝑃𝑠1𝐿𝑝1𝐼𝐵𝑆
′ + 𝑃𝑠2𝐿𝑝2𝐼𝑈𝑒,𝐼𝐵𝐹𝐷

′ + 𝛽𝑃𝑠2
> 𝑇|𝑆𝐼𝑁𝑅1 < 𝑇𝑒𝑑𝑔𝑒) =

∫ E1𝑓𝑟(𝑟)𝑑𝑟𝑟>0

∫ E2𝑓𝑟(𝑟)𝑑𝑟𝑟>0

 
(4.4) 

where 𝑓𝑟(𝑟) is the widely known pdf of the distance 𝑟 between the user and its serving BS. It is 

derived according to the null probability of a 2D Poisson process and equals: 
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 𝑓𝑟(𝑟) = 2𝜋𝜆𝐵𝑆𝑟𝑒
−𝜋𝜆𝐵𝑆𝑟

2
 (4.5) 

The two functions 𝐸1 and 𝐸2 are defined by: 

𝐸1

= 𝑒
−𝜇

𝑟𝜂𝑇(𝑃𝑛+𝛽𝑃𝑠2)

𝑃𝑠1𝐿𝑝1 𝐿𝐼𝐵𝑆′(𝜇𝑟
𝜂𝑇) 𝐿𝐼𝑈𝑒,𝐼𝐵𝐹𝐷

′ (𝜇
𝑃𝑠2𝐿𝑝2𝑟

𝜂𝑇

𝑃𝑠1𝐿𝑝1
)

− 𝑒
−𝜇

𝑟𝜂((𝑃𝑛+𝛽𝑃𝑠2)𝑇+(𝑃𝑛+𝛽𝑃𝑠2)𝑇𝑒𝑑𝑔𝑒)

𝑃𝑠1𝐿𝑝1 𝐿𝐼𝐵𝑆′,𝐼𝐵𝑆(𝜇𝑟
𝜂𝑇, 𝜇𝑟𝜂𝑇𝑒𝑑𝑔𝑒). 𝐿𝐼𝑈𝑒,𝐼𝐵𝐹𝐷

′,𝐼𝑈𝐼𝐵𝐹𝐷
(𝜇
𝑃𝑠2𝐿𝑝2𝑟

𝜂

𝑃𝑠1𝐿𝑝1
𝑇, 𝜇

𝑃𝑠2𝐿𝑝2𝑟
𝜂

𝑃𝑠1𝐿𝑝1
𝑇𝑒𝑑𝑔𝑒) 

𝐸2 = 1 − 𝑒
−𝜇

𝑟𝜂𝑇𝑒𝑑𝑔𝑒(𝑃𝑛+𝛽𝑃𝑠2)

𝑃𝑠1𝐿𝑝1 𝐿𝐼𝐵𝑆(𝜇𝑟
𝜂𝑇𝑒𝑑𝑔𝑒) 𝐿𝐼𝑈𝐼𝐵𝐹𝐷

(𝜇
𝑃𝑠2𝐿𝑝2𝑟

𝜂

𝑃𝑠1𝐿𝑝1
𝑇𝑒𝑑𝑔𝑒) 

The LT of the interference terms will be defined later due to their complexity. 

In our network, as power allocation schemes are not assigned, a user 𝑈𝑒 takes a sub-band 𝑛0 

with uniform probability 
1

𝑁
, according to the FFR strategy. This user 𝑈𝑒 experiences fading 

power and out-of-cell interference denoted by 𝑔′ and 𝐼𝐵𝑆
′ respectively. 𝐼𝑈𝑒,𝐼𝐵𝐹𝐷

′ is the 

interference from all the 𝑈𝑒 operating at IBFD and using the FFR scheme. 

In order to define the LTs above, i.e. 𝐿𝐼𝐵𝑆′,𝐼𝐵𝑆 and 𝐿𝐼𝑈𝑒,𝐼𝐵𝐹𝐷
′,𝐼𝑈𝐼𝐵𝐹𝐷

, the following s domains are 

defined: 

𝑠1 = 𝜇
𝑃𝑠1𝐿𝑝1

𝑟𝜂

𝑃𝑠1𝐿𝑝1

𝑇, 𝑠2 = 𝜇
𝑃𝑠1𝐿𝑝1

𝑟𝜂

𝑃𝑠1𝐿𝑝1

𝑇𝑒𝑑𝑔𝑒 , 𝑠3 = 𝜇
𝑃𝑠2𝐿𝑝2

𝑟𝜂

𝑃𝑠1𝐿𝑝1

𝑇, 𝑠4 = 𝜇
𝑃𝑠2𝐿𝑝2

𝑟𝜂

𝑃𝑠1𝐿𝑝1

𝑇𝑒𝑑𝑔𝑒. 

Proof: See Appendix IV.A 

 

2. Cell-Core Users: 

The probability of coverage for the users 𝑈𝑐 operating at IBFD is defined as: 
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𝑝𝑈𝑐

st−FR = ℙ(
𝑃𝑠1ℎ1𝐿𝑝1𝑟

−𝜂

𝑃𝑛 + 𝑃𝑠1𝐿𝑝1𝐼𝐵𝑆 + 𝑃𝑠2𝐿𝑝2𝐼𝑈𝑐,𝐼𝐵𝐹𝐷 + 𝛽𝑃𝑠2
> 𝑇|𝑆𝐼𝑁𝑅1 > 𝑇𝑒𝑑𝑔𝑒) =

∫ E3𝑓𝑟(𝑟)𝑑𝑟𝑟>0

∫ E4𝑓𝑟(𝑟)𝑑𝑟𝑟>0

 
(4.6) 

where 

𝐸3 = 𝑒
−𝜇

𝑟𝜂((𝑃𝑛+𝛽𝑃𝑠2)(max {𝑇,𝑇𝑒𝑑𝑔𝑒}+𝑇𝑒𝑑𝑔𝑒))

𝑃𝑠1𝐿𝑝1 𝐿𝐼𝐵𝑆(𝜇𝑟
𝜂(max {𝑇, 𝑇𝑒𝑑𝑔𝑒}

+ 𝑇𝑒𝑑𝑔𝑒)) 𝐿𝐼𝑈𝑐,𝐼𝐵𝐹𝐷,𝐼𝑈𝐼𝐵𝐹𝐷
(𝜇
𝑃𝑠2𝐿𝑝2𝑟

𝜂

𝑃𝑠1𝐿𝑝1
max {𝑇, 𝑇𝑒𝑑𝑔𝑒}, 𝜇

𝑃𝑠2𝐿𝑝2𝑟
𝜂

𝑃𝑠1𝐿𝑝1
𝑇𝑒𝑑𝑔𝑒) 

𝐸4 = 𝑒
−𝜇

𝑟𝜂𝑇𝑒𝑑𝑔𝑒(𝑃𝑛+𝛽𝑃𝑠2)

𝑃𝑠1𝐿𝑝1 𝐿𝐼𝐵𝑆(𝜇𝑟
𝜂𝑇𝑒𝑑𝑔𝑒) 𝐿𝐼𝑈𝐼𝐵𝐹𝐷

(𝜇
𝑃𝑠2𝐿𝑝2𝑟

𝜂

𝑃𝑠1𝐿𝑝1
𝑇𝑒𝑑𝑔𝑒) 

where 𝐼𝐵𝑆 is the interference from all BSs in the network as they share the same resources for 

the cell-core users, as shown in Figure 4.1. 𝐼𝑈𝑐,𝐼𝐵𝐹𝐷 is the interference from all the 𝑈𝑐 operating 

at IBFD. 

Proof: See Appendix IV.B. 

To analyze the probability of coverage, we need to characterize the LT of the different 

interference signals experienced by the typical user, either core or edge. 

As the different schemes are too complicated to be analytically evaluated, we propose in this 

work two different approaches: 

1- Approach I: it approximates the IBFD regions Φ𝑈𝐼𝐵𝐹𝐷  as a PPP with a modified density 

value derived from the inner-city model i.e., PPP with a density 𝜆𝑈𝐼𝐵𝐹𝐷 . 

2- Approach II: it uses the actual inner-city model, but gives lower and upper bounds for 

the probability of coverage. This is because getting the exact formula for such model is 

very hard and can result in un-tractable results as we will see later. 
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It is worth mentioning that the BSs distributions are not changing for any approach, hence the 

LTs of the interferences 𝐼𝐵𝑆 and 𝐼𝐵𝑆
′ are derived according to PPP as long as their density is 

updated accordingly. The joint LT of 𝐼𝐵𝑆
′, 𝐼𝐵𝑆: 

 

𝐿𝐼𝐵𝑆′,𝐼𝐵𝑆(𝑠1, 𝑠2) = exp

(

 
 
−2𝜋𝜆𝐵𝑆𝑟

2∫

(

  
 
1−

1

1 +
𝑃𝑠1𝐿𝑝1𝑇𝑒𝑑𝑔𝑒
𝑃𝑠1𝐿𝑝1

𝑦−𝜂

(

 
 
1−

1

N

(

 1 −
1

1 +
𝑃𝑠1𝐿𝑝1𝑇
𝑃𝑠1𝐿𝑝1

𝑦−𝜂
)

 

)

 
 

)

  
 
𝑦𝑑𝑦

∞

1

)

 
 

 

(4.7) 

Proof: See Appendix IV.C. 

The LT of 𝐼𝐵𝑆
′ is given by: 

 

𝐿𝐼𝐵𝑆′(𝑠1) = exp

(

  
 
−
𝜋𝜆𝐵𝑆
𝑁

𝑟2 (
𝑃𝑠1𝐿𝑝1𝑇

𝑃𝑠1𝐿𝑝1
)

2
𝜂⁄

∫
1

1 + 𝑦
𝜂
2⁄
𝑑𝑦

∞

(
𝑃𝑠1𝐿𝑝1𝑇

𝑃𝑠1𝐿𝑝1
)

−2
𝜂⁄

)

  
 

 

(4.8) 

This equation can be viewed as a thinning operation on PPP, in which the density became 
𝜆𝐵𝑆

𝑁
. 

Proof: See Appendix IV.D. 

The Laplace of 𝐼𝐵𝑆: 

 

𝐿𝐼𝐵𝑆 (𝜇
𝑃𝑠1𝐿𝑝1𝑟

𝜂

𝑃𝑠1𝐿𝑝1
𝑇𝑒𝑑𝑔𝑒) = exp(−𝜋𝜆𝐵𝑆𝑟

2(𝑇𝑒𝑑𝑔𝑒)
2
𝜂 ∫ (

1

𝑦
𝜂
2⁄ + 1

)𝑑𝑦

∞

𝑇𝑒𝑑𝑔𝑒
−2

𝜂⁄

) 

(4.9) 

Proof: this formula is derived similarly to the conventional LT in a homogenous PPP. 

 

3. Approach I: 

In approach I, we approximate the IBFD regions by a PPP with density 𝜆𝑈𝐼𝐵𝐹𝐷 . This 

approximation is optimistic because in the inner-city model the distances between the different 

interferers increase (including the condition to classify the user as 𝑈𝑒 or 𝑈𝑐). 
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i. Coverage for edge users operating at IBFD: 

We start with the LT of 𝐼𝑈𝐼𝐵𝐹𝐷, using the inner-city model with a PPP of density 𝜆𝑈𝐼𝐵𝐹𝐷 , updated 

as per the conventional homogeneous PPP model. It is given by: 

 
𝐿𝐼𝑈𝐼𝐵𝐹𝐷

(𝜇
𝑃𝑠2𝐿𝑝2𝑟

𝜂

𝑃𝑠1𝐿𝑝1
𝑇𝑒𝑑𝑔𝑒) = exp(−𝜋𝜆𝑈𝐼𝐵𝐹𝐷𝑟

2 (
𝑃𝑠2𝐿𝑝2𝑇𝑒𝑑𝑔𝑒

𝑃𝑠1𝐿𝑝1
)

2
𝜂

∫
𝑑𝑦

1 + 𝑦
𝜂
2⁄

∞

0

) 

(4.10) 

Proof: It is like the proof of 𝐼𝐵𝑆 except that we are evaluating at a different 𝑠 and the integral 

starts at 0 in the Probability Generating Functional (PGFL) of the PPP. 

Thus, we can write the term found in the denominator of 𝑝𝑈𝑒
st−FR as: 

∫ E2𝑓𝑟(𝑟)𝑑𝑟

𝑟>0

= 1 − 𝑝
𝑐2
= 1 −∫ 𝑓

𝑟
(𝑟)

∞

0

𝑒
−𝜇
𝑟𝜂𝑇𝑒𝑑𝑔𝑒(𝑃𝑛+𝛽𝑃𝑠2)

𝑃𝑠1𝐿𝑝1 𝐿𝐼𝐵𝑆(𝜇𝑟
𝜂𝑇𝑒𝑑𝑔𝑒) 𝐿𝐼𝑈𝐼𝐵𝐹𝐷 (𝜇

𝑃𝑠2𝐿𝑝2
𝑟𝜂

𝑃𝑠1𝐿𝑝1

𝑇𝑒𝑑𝑔𝑒) 𝑑𝑟

= 1 − 2𝜋𝜆𝐵𝑆∫ 𝑟𝑒

−𝜇
𝑟𝜂𝑇𝑒𝑑𝑔𝑒(𝑃𝑛+𝛽𝑃𝑠2)

𝑃𝑠1𝐿𝑝1
−𝜋𝜆𝐵𝑆𝑟

2(1+(
𝑃𝑠1𝐿𝑝1

𝑇𝑒𝑑𝑔𝑒

𝑃𝑠1𝐿𝑝1
)

2

𝜂

∫
𝑑𝑦

1+𝑦
𝜂
2⁄

∞

𝑇𝑒𝑑𝑔𝑒
−2

𝜂⁄
)−𝜋𝜆𝑈𝐼𝐵𝐹𝐷𝑟

2(
𝑃𝑠2𝐿𝑝2

𝑇𝑒𝑑𝑔𝑒

𝑃𝑠1𝐿𝑝1
)

2

𝜂

∫
𝑑𝑦

1+𝑦
𝜂
2⁄

∞

0

𝑑𝑟

∞

0

 

where 𝑝𝑐2 is the probability of having 𝑆𝐼𝑁𝑅1 greater than 𝑇𝑒𝑑𝑔𝑒. It will be used to get the other 

interference terms experienced by the typical user. For example, 𝑝𝑐2 can be used to get the 

percent of the possible 𝑈𝑐 users, as we see later in the joint LT for 𝐼𝑈𝑒,𝐼𝐵𝐹𝐷
′, 𝐼𝑈𝐼𝐵𝐹𝐷: 

The joint LT for 𝐼𝑈𝑒,𝐼𝐵𝐹𝐷
′, 𝐼𝑈𝐼𝐵𝐹𝐷 is given by: 
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 𝐿𝐼𝑈𝑒,𝐼𝐵𝐹𝐷
′,𝐼𝑈𝐼𝐵𝐹𝐷

(𝜇
𝑃𝑠2𝐿𝑝2𝑟

𝜂

𝑃𝑠1𝐿𝑝1
𝑇, 𝜇

𝑃𝑠2𝐿𝑝2𝑟
𝜂

𝑃𝑠1𝐿𝑝1
𝑇𝑒𝑑𝑔𝑒)

= exp

(

 
 
−2𝜋𝜆𝑈𝐼𝐵𝐹𝐷𝑟

2∫

(

  
 
1

∞

0

−
1

1 +
𝑃𝑠2𝐿𝑝2𝑇𝑒𝑑𝑔𝑒
𝑃𝑠1𝐿𝑝1

𝑦−𝜂

(

 
 
1

− (
1− exp (−

𝜆𝐵𝑆
𝑁
𝜋𝑑𝐹

2)

1 − exp(−𝜆𝐵𝑆𝜋𝑑𝐹
2)
)(1 − 𝑝𝑐2)

(

 1 −
1

1 +
𝑃𝑠2𝐿𝑝2𝑇
𝑃𝑠1𝐿𝑝1

𝑦−𝜂
)

 

)

 
 

)

  
 
𝑦𝑑𝑦

)

 
 

 

(4.11) 

Proof: See Appendix IV.E. 

The LT of 𝐼𝑈𝑒,𝐼𝐵𝐹𝐷
′ is given by: 

 
𝐿𝐼𝑈𝑒,𝐼𝐵𝐹𝐷

′ (𝜇
𝑃𝑠2𝐿𝑝2𝑟

𝜂

𝑃𝑠1𝐿𝑝1
𝑇)

= exp(−𝜋𝜆𝑈𝐼𝐵𝐹𝐷 (
1 − exp (−

𝜆𝐵𝑆
𝑁
𝜋𝑑𝐹

2)

1 − exp(−𝜆𝐵𝑆𝜋𝑑𝐹
2)
) (1

− 𝑝𝑐2)𝑟
2 (
𝑃𝑠2𝐿𝑝2𝑇

𝑃𝑠1𝐿𝑝1
)

2
𝜂⁄

∫
𝑑𝑦

1 + 𝑦
𝜂
2⁄

∞

0

) 

(4.12) 

Proof: It is similar to 4.10 and available in Appendix IV.F. 

This concludes the probability of coverage for edge-user operating at IBFD: 

 𝑝𝑈𝑒
st−FR =

𝑝𝑐1 − 𝑝𝑐3
1 − 𝑝𝑐2

 (4.13) 

with  

𝑝𝑐1

= 2𝜋𝜆𝐵𝑆𝑟 ∫ 𝑒

−𝜇
𝑟𝜂𝑇(𝑃𝑛+𝛽𝑃𝑠2)

𝑃𝑠1𝐿𝑝1
−𝜋𝜆𝐵𝑆𝑟

2(1+
1
𝑁
𝑇
2
𝜂⁄ ∫ ρ1∞

𝑇
−2

𝜂⁄
)−𝜋𝜆𝑈𝐼𝐵𝐹𝐷(

1−𝑒
−
𝜆𝐵𝑆
𝑁 𝜋𝑑𝐹

2

1−𝑒−𝜆𝐵𝑆𝜋𝑑𝐹
2)(1−𝑝𝑐2)𝑟

2(
𝑃𝑠2𝐿𝑝2𝑇

𝑃𝑠1𝐿𝑝1
)

2
𝜂⁄

∫
𝑑𝑦

1+𝑦
𝜂
2⁄

∞
0

𝑑𝑟

∞

0
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𝑝𝑐2 = 2𝜋𝜆𝐵𝑆𝑟∫ 𝑒
−𝜇

𝑟𝜂𝑇𝑒𝑑𝑔𝑒(𝑃𝑛+𝛽𝑃𝑠2)

𝑃𝑠1𝐿𝑝1
−𝜋𝜆𝐵𝑆𝑟

2(1+𝑇𝑒𝑑𝑔𝑒

2
𝜂 ∫

𝑑𝑦

1+𝑦
𝜂
2⁄

∞

𝑇𝑒𝑑𝑔𝑒
−2

𝜂⁄
)−𝜋𝜆𝑈𝐼𝐵𝐹𝐷𝑟

2(
𝑃𝑠2𝐿𝑝2𝑇𝑒𝑑𝑔𝑒

𝑃𝑠1𝐿𝑝1
)

2
𝜂
∫

𝑑𝑦

1+𝑦
𝜂
2⁄

∞
0

𝑑𝑟

∞

0

 

𝑝𝑐3 = 2𝜋𝜆𝐵𝑆𝑟∫ 𝑒
−𝜇

𝑟𝜂((𝑃𝑛+𝛽𝑃𝑠2)𝑇+(𝑃𝑛+𝛽𝑃𝑠2)𝑇𝑒𝑑𝑔𝑒)

𝑃𝑠1𝐿𝑝1
 −𝜋𝜆𝐵𝑆𝑟

2(1+2ρ1
(𝑃𝑠1𝐿𝑝1,𝑇,𝑇𝑒𝑑𝑔𝑒)

)−2𝜋𝜆𝑈𝐼𝐵𝐹𝐷𝑟
2ρ2

(𝑃𝑠2𝐿𝑝2,𝑇,𝑇𝑒𝑑𝑔𝑒)𝑑𝑟

∞

0

 

ρ1
(𝑃𝑠𝑗𝐿𝑝𝑗 ,𝑇,𝑇𝑒𝑑𝑔𝑒)

= ∫

(

 
 
1 −

1

1+
𝑃𝑠𝑗𝐿𝑝𝑗

𝑇𝑒𝑑𝑔𝑒

𝑃𝑠1𝐿𝑝1

𝑦−𝜂
(1 −

1

N
(1 −

1

1+
𝑃𝑠𝑗𝐿𝑝𝑗

𝑇

𝑃𝑠1𝐿𝑝1

𝑦−𝜂
))

)

 
 
𝑦𝑑𝑦

∞

1
  for 𝑗 ∈ {1,2} 

ρ2
(𝑃𝑠𝑗𝐿𝑝𝑗 ,𝑇,𝑇𝑒𝑑𝑔𝑒)

= ∫

(

 
 
1 −

1

1+
𝑃𝑠𝑗

𝐿𝑝𝑗
𝑇𝑒𝑑𝑔𝑒

𝑃𝑠1𝐿𝑝1
𝑦−𝜂

(1 − (
1−𝑒−

𝜆𝐵𝑆
𝑁 𝜋𝑑𝐹

2

1−𝑒−𝜆𝐵𝑆𝜋𝑑𝐹
2)(1 − 𝑝𝑐2)(1 −

1

1+
𝑃𝑠𝑗

𝐿𝑝𝑗
𝑇

𝑃𝑠1𝐿𝑝1
𝑦−𝜂
))

)

 
 
𝑦𝑑𝑦

∞

0
 for 𝑗 ∈ {1,2} 

 

ii. Coverage for core users operating at IBFD: 

For the 𝑈𝑐 the LT of 𝐼𝐵𝑆 is evaluated at 𝑠 = 𝜇
𝑃𝑠1𝐿𝑝1

𝑟𝜂

𝑃𝑠1𝐿𝑝1

(max {𝑇, 𝑇𝑒𝑑𝑔𝑒} + 𝑇𝑒𝑑𝑔𝑒), thus the formula is: 

 
𝐿𝐼𝐵𝑆 (𝜇

𝑃𝑠1𝐿𝑝1𝑟
𝜂

𝑃𝑠1𝐿𝑝1
(max {𝑇, 𝑇𝑒𝑑𝑔𝑒} + 𝑇𝑒𝑑𝑔𝑒))

= exp

(

 
 
 
−𝜋𝜆𝐵𝑆𝑟

2 (
𝑃𝑠1𝐿𝑝1(max {𝑇, 𝑇𝑒𝑑𝑔𝑒} + 𝑇𝑒𝑑𝑔𝑒)

𝑃𝑠1𝐿𝑝1
)

2
𝜂

∫
𝑑𝑦

1 + 𝑦
𝜂
2⁄

∞

(
𝑃𝑠1𝐿𝑝1(max {𝑇,𝑇𝑒𝑑𝑔𝑒}+𝑇𝑒𝑑𝑔𝑒)

𝑃𝑠1𝐿𝑝1
)

−2
𝜂⁄

)

 
 
 

 

(4.14) 

Also, in St-FFR we don’t apply the frequency scheme on the core users, thus bands for core-

user are used by all BSs. So, the core user will not experience a new interference 𝐼𝐵𝑆
′.  

To get 𝐿𝐼𝑈𝑐,𝐼𝐵𝐹𝐷,𝐼𝑈𝐼𝐵𝐹𝐷
, the same approximation for the inner-city model is followed using a 

density 𝜆𝐼𝐵𝐹𝐷. We have 
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𝐿𝐼𝑈𝑐,𝐼𝐵𝐹𝐷,𝐼𝑈𝐼𝐵𝐹𝐷
(𝜇
𝑃𝑠2𝐿𝑝2𝑟

𝜂

𝑃𝑠1𝐿𝑝1
max{𝑇, 𝑇𝑒𝑑𝑔𝑒} , 𝜇

𝑃𝑠2𝐿𝑝2𝑟
𝜂

𝑃𝑠1𝐿𝑝1
𝑇𝑒𝑑𝑔𝑒) = 𝔼𝐼𝑟[exp(−𝑠5𝐼𝑈𝑐,𝐼𝐵𝐹𝐷 − 𝑠4𝐼𝑈𝐼𝐵𝐹𝐷)]

= (𝑎)𝔼𝜙𝑈𝐼𝐵𝐹𝐷 ,𝑔𝑖
′,𝑔𝑖
[ ∏ exp(−𝑠4𝑔𝑖𝑅𝑖

−𝜂) (1 − 𝔼[𝟏(𝑈𝑖 ∈  𝑈𝑐, 𝐼𝐵𝐹𝐷)](1 − exp(−𝑠5𝑔𝑖
′𝑅𝑖

−𝜂)))

𝑖∈𝜙𝑈𝐼𝐵𝐹𝐷\𝑈0

] 

Thus 

 𝐿𝐼𝑈𝑐,𝐼𝐵𝐹𝐷,𝐼𝑈𝐼𝐵𝐹𝐷 (
𝜇
𝑃𝑠2𝐿𝑝2𝑟

𝜂

𝑃𝑠1𝐿𝑝1
max{𝑇, 𝑇𝑒𝑑𝑔𝑒} , 𝜇

𝑃𝑠2𝐿𝑝2𝑟
𝜂

𝑃𝑠1𝐿𝑝1
𝑇𝑒𝑑𝑔𝑒)

= (𝑏) exp

(

  
 
−2𝜋𝜆𝑈𝐼𝐵𝐹𝐷𝑟

2∫

(

 
 
 
1

∞

0

−
1

1 +
𝑃𝑠2𝐿𝑝2𝑇𝑒𝑑𝑔𝑒
𝑃𝑠1𝐿𝑝1

𝑦−𝜂

(

  
 
1− 𝑝𝑐2

(

 
 
1−

1

1 +
𝑃𝑠2𝐿𝑝2max{𝑇, 𝑇𝑒𝑑𝑔𝑒}

𝑃𝑠1𝐿𝑝1
𝑦−𝜂

)

 
 

)

  
 

)

 
 
 
𝑦𝑑𝑦

)

  
 

 

(4.15) 

 

with 

𝑠5 = 𝜇
𝑃𝑠2𝐿𝑝2

𝑟𝜂

𝑃𝑠1𝐿𝑝1

max {𝑇, 𝑇𝑒𝑑𝑔𝑒} 

The indicator function 𝟏(𝑈𝑖 ∈  𝑈𝑐, 𝐼𝐵𝐹𝐷) in (a) is present because only the core users generate 

interference (not all of them). (b) is obtained by substituting the expectation of the indicator 

function which is the probability to have 𝑆𝐼𝑁𝑅1 > 𝑇𝑒𝑑𝑔𝑒. 

This concludes the probability of coverage for core-user operating with IBFD: 

 𝑝𝑈𝑐
st−FR =

𝑝𝑐4
𝑝𝑐2

 (4.16) 

With  

𝑝𝑐4

= 2𝜋𝜆𝐵𝑆𝑟∫ 𝑒

−𝜇
𝑟𝜂((𝑃𝑛+𝛽𝑃𝑠2)(max{𝑇,𝑇𝑒𝑑𝑔𝑒}+𝑇𝑒𝑑𝑔𝑒))

𝑃𝑠1𝐿𝑝1
 −𝜋𝜆𝐵𝑆𝑟

2(1+(max{𝑇,𝑇𝑒𝑑𝑔𝑒}+𝑇𝑒𝑑𝑔𝑒)
2
𝜂 ∫

𝑑𝑦

1+𝑦
𝜂
2⁄

∞

(max{𝑇,𝑇𝑒𝑑𝑔𝑒}+𝑇𝑒𝑑𝑔𝑒)
−2

𝜂⁄
)−2𝜋𝜆𝑈𝐼𝐵𝐹𝐷𝑟

2ρ3

𝑑𝑟

∞

0

 

where 
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ρ3 = ∫

(

  
 
1 −

1

1 +
𝑃𝑠2𝐿𝑝2𝑇𝑒𝑑𝑔𝑒
𝑃𝑠1𝐿𝑝1

𝑦−𝜂

(

 
 
1 − 𝑝𝑐2

(

 1 −
1

1 +
𝑃𝑠2𝐿𝑝2max {𝑇, 𝑇𝑒𝑑𝑔𝑒}

𝑃𝑠1𝐿𝑝1
𝑦−𝜂

)

 

)

 
 

)

  
 
𝑦𝑑𝑦

∞

0

 

 

4. Approach II: 

In this section, we adopt a more realistic model where an overlap between the IBFD regions 

(disks) might exist. This is because the BSs PPP model (the centers of the disks) does not have 

a minimum separating distance between the BSs, and is independent from the radius of the 

IBFD disks 𝑑𝐹. Henceforth, we derive tight lower and upper bounds of the LT interference. To 

tackle this problem, we extend the work in [63] based on the PHP where the typical user is 

outside the disks. However, contrarily to [63], the users of interest are within the IBFD disks 

and adapt those techniques accordingly. 

Before we define the lower and the upper bounds, we use Figure 4.4 to clarify the terms used 

in the upper bound definition (definition 2). In the figure, we show the two nearest disks that 

contain the users causing interference on the typical user. The first disk center is at distance r0 

from the typical user and of radius 𝑑𝐹, and the second is at r1 and with same radius 𝑑𝐹. 

 

Figure 4.4: Upper bound for LT of interference. For case 1, we consider one disk 𝐛(𝐫𝟎, 𝐝𝐅), and for case 2 

we consider two disks 𝐛(𝐫𝟎, 𝐝𝐅) and 𝐛(𝐫𝟏, 𝐝𝐅). 

 

x

xTypical user

r0

r1

dF

dF

Interfering users

BS
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Definition 2, Upper Bound for the LT: In an inner-city model, we have the upper bound for 

the LT of the interference when we are underestimating the interference. An easy underestimate 

for the interference is to consider only 𝑛 finite number of disks that contain the interfering 

sources rather considering them all. These finite disks are the 𝑛 nearest ones to the typical user, 

so they have the strongest interference effect due to the lower path loss. However, this creates 

a problem in the approximation due to the possible overlapping regions among the interfering 

sources. More importantly, for 𝑛 > 1, the interference from the overlapped region should be 

considered once. If we do not do this, we will be taking the interference in the overlapped 

regions two\many times depending on the number of the overlapped disks. This means that the 

definition will not be valid if the possible overlapped regions are not handled. As we will see 

later, an easy solution is to just avoid the possible overlap between the disks, and this still holds 

as an underestimate for the interference. In our analysis, to calculate the LT of the different 

interferences (𝐼𝑈𝐼𝐵𝐹𝐷 , 𝐼𝑈𝑒,𝐼𝐵𝐹𝐷
′, 𝐼𝑈𝑐,𝐼𝐵𝐹𝐷), we take two cases for the upper bound. The first 

version or case (case 1) is to consider the interference source only from the same disk where 

the typical user is located (𝑛 = 1) (consider the disk of radius 𝑟0 in Figure 4.4). Similarly, the 

second case (case 2) is to consider these sources from the same disk 𝑏(𝑟0, 𝑑𝐹) and from the 

nearest disk 𝑏(𝑟1, 𝑑𝐹) i.e. (𝑛 = 2). The second case gives a tighter bound, and can be easily 

extended to 𝑛 points, but requires more time to evaluate. 

Definition 3, Lower Bound for the LT: the lower bound for the LT is when we overestimate 

the interference. A simple overestimate is to consider all the IBFD disks without canceling the 

possible overlap. So, the interference sources in the overlapped regions, if it exists, will be 

calculated many times depending on the number of the overlapped disks. Such definition can 

give the exact formula for the LT if the network model input is configured so that no overlap 

between disks exists; this is particularly true when we have both small density 𝜆𝐵𝑆 and small 

IBFD radius 𝑑𝐹. 
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i. Coverage for edge users operating at IBFD: 

As a summary, we provide the upper and the lower bound for the LTs of the different 

interferences in the network in the following table: 

LT Term Expression 

𝑳𝑰𝑼𝑰𝑩𝑭𝑫
(𝒔𝟒) upper 

bound case 1 

𝐿𝐼𝑈𝐼𝐵𝐹𝐷
(𝑠4) ≤ ∫ 2𝜋𝜆𝐵𝑆𝑟0 exp(−𝜋𝜆𝐵𝑆𝑟0

2) exp(−2𝜆𝑈𝐴1(𝑠4, 𝑟0, 𝑑𝐹)) 𝑑𝑟0

∞

0

 
(4.17) 

 

with 𝐴1(𝑠4, 𝑟0, 𝑑𝐹) = ∫
cos−1(

𝑥2+𝑟0
2−𝑑𝐹

2

2𝑟0𝑥
)

1+
𝜇𝑥𝜂

𝑠4

𝑥𝑑𝑥
𝑟0+𝑑𝐹
𝑟0−𝑑𝐹

 

where 𝑟0 is the center of the same disk that the typical user exists in 

and contains users causing interference. 

𝑳𝑰𝑼𝑰𝑩𝑭𝑫
(𝒔𝟒) upper 

bound case 2 

𝐿𝐼𝑈𝐼𝐵𝐹𝐷
(𝑠4)

≤ ∫ ∫(2𝜋𝜆𝐵𝑆)
2𝑟0𝑟1 exp(−𝜋𝜆𝐵𝑆𝑟1

2) exp (−2𝜆𝑈(𝐴1(𝑠4 , 𝑟0, 𝑑𝐹)

∞

𝑟0

∞

0

+ 𝐴2(𝑠4, 𝑟1, 𝑑𝐹 , 𝑟0))) 𝑑𝑟1𝑑𝑟0 

(4.18) 

with 𝐴2(𝑠4, 𝑟1, 𝑑𝐹 , 𝑟0) = ∫
cos−1(

𝑥2+𝑟1
2−𝑑𝐹

2

2𝑟1𝑥
)

1+
𝜇𝑥𝜂

𝑠4

𝑥𝑑𝑥
𝑟1+𝑑𝐹
max(𝑟1−𝑑𝐹,𝑟0+𝑑𝐹)

 

𝑟1 is the center of the nearest disk (other than the same disk) that contains users 

causing interference, and the boundaries of the area 𝐴2 are set to avoid any possible 

overlap between the two disks. 

𝑳𝑰𝑼𝑰𝑩𝑭𝑫
(𝒔𝟒) lower 

bound 

𝐿𝐼𝑈𝐼𝐵𝐹𝐷
(𝑠4) ≥ exp [−2𝜋𝜆𝐵𝑆∫ (1 − exp(−2𝜆𝑈𝐴1(𝑠4, 𝑦, 𝑑𝐹))) 𝑦𝑑𝑦

∞

0

] 
(4.19) 

 

𝑳𝑰𝑼𝒆,𝑰𝑩𝑭𝑫
′(𝒔𝟑) upper 

bound case 1 

𝐿𝐼𝑈𝑒,𝐼𝐵𝐹𝐷
(𝒔𝟑) ≤ ∫ 2𝜋

𝜆𝐵𝑆
𝑁
𝑟0 exp (−𝜋

𝜆𝐵𝑆
𝑁
𝑟0
2) exp (−2𝜆𝑈(𝐴1(𝒔𝟑, 𝑟0, 𝑑𝐹)

∞

0

− 𝐴1(𝒔𝟑, 𝑟0, 𝑎1))) 𝑑𝑟0 

(4.20) 
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with 𝑎1 = 𝑝𝑐2
′𝑑𝐹 = 𝑑𝐹

ℙ[𝑆𝐼𝑁𝑅1>𝑇𝑒𝑑𝑔𝑒 ,𝑟<𝑑𝐹]

ℙ[𝑟<𝑑𝐹]
= 𝑑𝐹

2𝜋𝜆𝐵𝑆𝑟

1−exp(−𝜋𝜆𝐵𝑆𝑑𝐹
2)
× 

∫ 𝑒
−𝜇

𝑟𝜂𝑇𝑒𝑑𝑔𝑒(𝑃𝑛+𝛽𝑃𝑠2)

𝑃𝑠1𝐿𝑝1
 −𝜋𝜆𝐵𝑆𝑟

2(1+(𝑇𝑒𝑑𝑔𝑒)
2
𝜂 ∫

𝑑𝑦

1+𝑦
𝜂
2⁄

∞

𝑇𝑒𝑑𝑔𝑒
−2

𝜂⁄
)−𝜋𝜆𝑈𝐼𝐵𝐹𝐷𝑟

2(
𝑃𝑠2𝐿𝑝2𝑇𝑒𝑑𝑔𝑒
𝑃𝑠1𝐿𝑝1

)

2
𝜂
∫

𝑑𝑦

1+𝑦
𝜂
2⁄

∞

0

𝑑𝑟

𝑑𝐹

0

 

For simplification, we have approximated the region of the edge users as a circular 

region. 

𝑳𝑰𝑼𝒆,𝑰𝑩𝑭𝑫
′(𝒔𝟑) upper 

bound case 2 

𝐿𝐼𝑈𝑒,𝐼𝐵𝐹𝐷
(𝒔𝟑)

≤ ∫ ∫ (2𝜋
𝜆𝐵𝑆
𝑁
)
2

𝑟0𝑟1 exp (−𝜋
𝜆𝐵𝑆
𝑁
𝑟1
2) exp (−2𝜆𝑈(𝐴1(𝒔𝟑, 𝑟0, 𝑑𝐹)

∞

𝑟0

∞

0

− 𝐴1(𝒔𝟑, 𝑟0, 𝑎1))) exp (−2𝜆𝑈(𝐴2(𝒔𝟑, 𝑟1, 𝑑𝐹 , 𝑟0)

− 𝐴3(𝒔𝟑, 𝑟1, 𝑎1, 𝑟0, 𝑑𝐹))) 𝑑𝑟1 𝑑𝑟0 

(4.21) 

With 𝐴3(𝑠3, 𝑟1, 𝑎1, 𝑟0, 𝑑𝐹) = ∫
cos−1(

𝑥2+𝑟1
2−𝑎1

2

2𝑟1𝑥
)

1+
𝜇

𝑠3
𝑥𝜂

𝑥𝑑𝑥
max(𝑟1+𝑎1,𝑟0+𝑑𝐹)

max(𝑟1−𝑎1,𝑟0+𝑑𝐹)
 

𝑳𝑰𝑼𝒆,𝑰𝑩𝑭𝑫
′(𝒔𝟑) lower 

bound 

𝐿𝐼𝑈𝑒,𝐼𝐵𝐹𝐷
′(𝒔𝟑) ≥ 𝔼𝜙𝐵𝑆 [ ∏ exp (−2𝜆𝑈(𝐴1(𝑠3, 𝑦, 𝑑𝐹)

𝑦∈𝜙𝐵𝑆

− 𝐴1(𝑠3, 𝑦, 𝑎1)))]

= exp [−2𝜋
𝜆𝐵𝑆
𝑁
∫ (1

∞

0

− exp (−2𝜆𝑈(𝐴1(𝑠3, 𝑦, 𝑑𝐹) − 𝐴1(𝑠3, 𝑦, 𝑎1)))) 𝑦𝑑𝑦] 

(4.22) 

 

𝑳𝑰𝑼𝒆,𝑰𝑩𝑭𝑫
′,𝑰𝑼𝑰𝑩𝑭𝑫

(𝒔𝟑, 𝒔𝟒) 

upper bound case 1 

𝐿𝐼𝑈𝑒,𝐼𝐵𝐹𝐷
′,𝐼𝑈𝐼𝐵𝐹𝐷

(𝑠3, 𝑠4)

≤ ∫ 2𝜋𝜆𝐵𝑆𝑟0 exp(−𝜋𝜆𝐵𝑆𝑟0
2) exp(−2𝜆𝑈𝐴1(𝑠4, 𝑟0, 𝑑𝐹)) [1

∞

0

−
1

𝑁
(1 − exp (−2𝜆𝑈(𝐴1(𝑠3, 𝑟0, 𝑑𝐹) − 𝐴1(𝑠3, 𝑟0, 𝑎1))))] 𝑑𝑟0 

(4.23) 
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𝑳𝑰𝑼𝒆,𝑰𝑩𝑭𝑫
′,𝑰𝑼𝑰𝑩𝑭𝑫

(𝒔𝟑, 𝒔𝟒) 

upper bound case 2 

𝐿𝐼𝑈𝑒,𝐼𝐵𝐹𝐷
′,𝐼𝑈𝐼𝐵𝐹𝐷

(𝑠3, 𝑠4)

≤ ∫ ∫(2𝜋𝜆𝐵𝑆)
2𝑟0𝑟1 exp(−𝜋𝜆𝐵𝑆𝑟1

2) exp (−2𝜆𝑈(𝐴1(𝑠4, 𝑟0, 𝑑𝐹)

∞

𝑟0

∞

0

+ 𝐴2(𝑠4, 𝑟1, 𝑑𝐹, 𝑟0))) [1

−
1

𝑁
(1

− exp (−2𝜆𝑈(𝐴1(𝑠3, 𝑟0, 𝑑𝐹) − 𝐴1(𝑠3, 𝑟0, 𝑎1) + 𝐴2(𝑠3, 𝑟1, 𝑑𝐹, 𝑟0)

− 𝐴3(𝑠3, 𝑟1, 𝑎1, 𝑟0, 𝑑𝐹))))] 𝑑𝑟1 𝑑𝑟0 

(4.24) 

 

𝑳𝑰𝑼𝒆,𝑰𝑩𝑭𝑫
′,𝑰𝑼𝑰𝑩𝑭𝑫

(𝒔𝟑, 𝒔𝟒) 

lower bound 

𝐿𝐼𝑈𝑒,𝐼𝐵𝐹𝐷
′,𝐼𝑈𝐼𝐵𝐹𝐷

(𝑠3, 𝑠4) ≥ exp [−2𝜋𝜆𝐵𝑆∫(1 − ξ(y))𝑦𝑑𝑦

∞

0

] 
(4.25) 

Where ξ(𝑦) = exp(−2𝜆𝑈𝐴1(𝑠4 , 𝑦, 𝑑𝐹)) [1 −
1

𝑁
(1 − exp (−2𝜆𝑈(𝐴1(𝑠3, 𝑦, 𝑑𝐹) −

𝐴1(𝑠3, 𝑦, 𝑎1))))] 

Table 4.2: Upper and lower bounds of the LT of the different interference evaluated using Approach 2. 

Proof: See Appendix IV.G. 

In Figure 4.5, we depict the lower and upper bounds for the LT of 𝐿𝐼𝑈𝑒,𝐼𝐵𝐹𝐷
′(𝑠3) including noise 

i.e. we plot 𝑒
−𝜇

𝑟𝜂𝑇(𝑃𝑛+𝛽𝑃𝑠2)

𝑃𝑠1𝐿𝑝1 𝐿𝐼𝑈𝑒,𝐼𝐵𝐹𝐷
′(𝑠3) at a specific 𝑑𝐹 and distance 𝑟 to the serving BS. It is very 

clear that the lower and upper bounds are tight from one side and case 2 is even tight as the 

interference is considered from two different disks. 
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Figure 4.5: Lower and upper bounds for the LT of 𝐋𝐈𝐔𝐞,𝐈𝐁𝐅𝐃
′(𝐬𝟑) plus noise. The more disks we take the 

tighter the upper bound becomes. 

The probability of coverage can be deduced from the different LTs provided earlier. The lower 

bound of the probability of coverage of an edge user 𝑈𝑒 is then given by: 

 𝑝𝑈𝑒(𝑟)

≥
𝑒
−𝜇

𝑟𝜂𝑇(𝑃𝑛+𝛽𝑃𝑠2)

𝑃𝑠1𝐿𝑝1 𝐿𝐼𝐵𝑆′(𝒔𝟏) 𝐿𝐼𝑈𝑒,𝐼𝐵𝐹𝐷
′
𝑙𝑜𝑤𝑒𝑟(𝒔𝟑)

1 − 𝑒
−𝜇

𝑟𝜂𝑇𝑒𝑑𝑔𝑒(𝑃𝑛+𝛽𝑃𝑠2)

𝑃𝑠1𝐿𝑝1 𝐿𝐼𝐵𝑆(𝒔𝟐) 𝐿𝐼𝑈𝐼𝐵𝐹𝐷
𝑢𝑝𝑝𝑒𝑟(𝒔𝟒)

−
𝑒
−𝜇

𝑟𝜂((𝑃𝑛+𝛽𝑃𝑠2)𝑇+(𝑃𝑛+𝛽𝑃𝑠2)𝑇𝑒𝑑𝑔𝑒)

𝑃𝑠1𝐿𝑝1 𝐿𝐼𝐵𝑆′,𝐼𝐵𝑆(𝒔𝟏, 𝒔𝟐). 𝐿𝐼𝑈𝑒,𝐼𝐵𝐹𝐷
′,𝐼𝑈𝐼𝐵𝐹𝐷

𝑢𝑝𝑝𝑒𝑟(𝒔𝟑, 𝒔𝟒)

1 − 𝑒
−𝜇

𝑟𝜂𝑇𝑒𝑑𝑔𝑒(𝑃𝑛+𝛽𝑃𝑠2)

𝑃𝑠1𝐿𝑝1 𝐿𝐼𝐵𝑆(𝒔𝟐) 𝐿𝐼𝑈𝐼𝐵𝐹𝐷
𝑢𝑝𝑝𝑒𝑟(𝒔𝟒)

 

(4.26) 

The upper bound of the probability of coverage can be also deduced by inverting the lower and 

the upper bounds for the LTs expressions in the formulation above. 
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ii. Coverage for core users operating at IBFD: 

For the core user, we need to additionally write the formula for the joint LT of 𝐼𝑈𝑐,𝐼𝐵𝐹𝐷 , 𝐼𝑈𝐼𝐵𝐹𝐷, 

which is the joint LT between the core users operating at IBFD and between all the IBFD users. 

Different from approach I, we now use the definitions 2 and 3 to compute this LT:  

LT Term Expression 

𝑳𝑰𝑼𝒄,𝑰𝑩𝑭𝑫 ,𝑰𝑼𝑰𝑩𝑭𝑫
(𝒔𝟓, 𝒔𝟒) 

upper bound case 1 

𝐿𝐼𝑈𝑐,𝐼𝐵𝐹𝐷 ,𝐼𝑈𝐼𝐵𝐹𝐷
(𝑠5, 𝑠4)

≤ ∫ 2𝜋𝜆𝐵𝑆𝑟0 exp(−𝜋𝜆𝐵𝑆𝑟0
2) exp (−2𝜆𝑈(𝐴1(𝑠5, 𝑟0, 𝑎1)

∞

0

+ 𝐴1(𝑠4, 𝑟0, 𝑑𝐹))) 𝑑𝑟0 

(4.27) 

 

𝑳𝑰𝑼𝒄,𝑰𝑩𝑭𝑫 ,𝑰𝑼𝑰𝑩𝑭𝑫
(𝒔𝟓, 𝒔𝟒) 

upper bound case 2 

𝐿𝐼𝑈𝑐,𝐼𝐵𝐹𝐷 ,𝐼𝑈𝐼𝐵𝐹𝐷
(𝑠5, 𝑠4)

≤ ∫ ∫(2𝜋𝜆𝐵𝑆)
2𝑟0𝑟1 exp(−𝜋𝜆𝐵𝑆𝑟1

2) exp (−2𝜆𝑈(𝐴1(𝑠5, 𝑟0, 𝑎1)

∞

𝑟0

∞

0

+ 𝐴2(𝑠5, 𝑟1, 𝑎1, 𝑟0) + 𝐴1(𝑠4, 𝑟0, 𝑑𝐹) + 𝐴2(𝑠4, 𝑟1, 𝑑𝐹 , 𝑟0))) 𝑑𝑟1 𝑑𝑟0 

(4.28) 

 

𝑳𝑰𝑼𝒄,𝑰𝑩𝑭𝑫 ,𝑰𝑼𝑰𝑩𝑭𝑫
(𝒔𝟓, 𝒔𝟒) 

lower bound 

𝐿𝐼𝑈𝑐,𝐼𝐵𝐹𝐷 ,𝐼𝑈𝐼𝐵𝐹𝐷
(𝑠5, 𝑠4)

≥ exp [−2𝜋𝜆𝐵𝑆∫ (1

∞

0

− exp (−2𝜆𝑈(𝐴1(𝑠5, 𝑦, 𝑎1)

+𝐴1(𝑠4, 𝑦, 𝑑𝐹)))) 𝑦𝑑𝑦] 

(4.29) 

 

Table 4.3: Upper and lower bounds of the joint LT of 𝐈𝐔𝐜,𝐈𝐁𝐅𝐃 , 𝐈𝐔𝐈𝐁𝐅𝐃  interference using Approach 2. 

Proof: See Appendix IV.H. 

Using Table 4.3, the lower bound for the probability of coverage for 𝑈𝑐 is: 

  

𝑝𝑈𝑐(𝑟) ≥
𝑒
−𝜇

𝑟𝜂((𝑃𝑛+𝛽𝑃𝑠2)(max{𝑇,𝑇𝑒𝑑𝑔𝑒}+𝑇𝑒𝑑𝑔𝑒))

𝑃𝑠1𝐿𝑝1 𝐿𝐼𝐵𝑆(𝒔𝟓) 𝐿𝐼𝑈𝑐,𝐼𝑈𝐼𝐵𝐹𝐷
𝑙𝑜𝑤𝑒𝑟(𝑠6, 𝑠4)

𝑒
−𝜇

𝑟𝜂𝑇𝑒𝑑𝑔𝑒(𝑃𝑛+𝛽𝑃𝑠2)

𝑃𝑠1𝐿𝑝1 𝐿𝐼𝐵𝑆(𝒔𝟐) 𝐿𝐼𝑈𝐼𝐵𝐹𝐷
𝑢𝑝𝑝𝑒𝑟(𝒔𝟒)

 

(4.30) 

with 𝒔𝟓 = 𝜇𝑟𝜂(max{𝑇, 𝑇𝑒𝑑𝑔𝑒} + 𝑇𝑒𝑑𝑔𝑒) and 𝑠6 = 𝜇
𝑃𝑠2𝐿𝑝2𝑟

𝜂

𝑃𝑠1𝐿𝑝1
max{𝑇, 𝑇𝑒𝑑𝑔𝑒} 
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The upper bound is similarly obtained by using the upper bound for the LT of 𝐿𝐼𝑈𝑐,𝐼𝑈𝐼𝐵𝐹𝐷 in the 

numerator and the lower bound for the LT of 𝐿𝐼𝑈𝐼𝐵𝐹𝐷 in the denominator. 

 

5. A Use Case for the General Model: 

In this section, we present a general model including both IBFD and FFR schemes. The 

target here is an easy generalization of the different resource sharing schemes. We show the 

use case model for the channel resources scheme in Table 4.4. 

Bands Frequencies # in each band 𝒇#
𝒃𝒂𝒏𝒅 Codes for UL Codes for DL 

Band 1 𝑓1
1, 𝑓2

1, … , 𝑓𝑛
1 𝐶1 𝐶2,𝐶3,… , 𝐶𝑚 

Band 2 𝑓1
2, 𝑓2

2, … , 𝑓𝑛
2 𝐶1 𝐶2,𝐶3,… , 𝐶𝑚 

Band 3 𝑓1
3, 𝑓2

3, … , 𝑓𝑛
3 𝐶1 𝐶2,𝐶3,… , 𝐶𝑚 

Band 4 𝑓1
4, 𝑓2

4, … , 𝑓𝑛
4 𝐶1 𝐶2,𝐶3,… , 𝐶𝑚 

Table 4.4: Use case channel resources allocation. 

To illustrate, we give in Figure 4.6 an example about the resources distributed in a cell: 

 

Figure 4.6: Resources allocation example in cell 1; same scheme is used in each 𝐍𝐭𝐡 neigbor cell according 

to the FFR. 

We assume that the condition to classify the user as 𝑈𝑒 or 𝑈𝑐 still holds. the number of the used 

frequencies and the orthogonal codes will determine the density of the users that are causing 

interference which will be used in the LT of 𝐼𝑈𝑒,𝐼𝐵𝐹𝐷
′. This scheme protects the uplink from the 

𝐶3 , 𝑓2
1

𝐶1 , 𝑓2
1

𝐶2 , 𝑓1
1

𝐶1 , 𝑓1
1

𝐶3 , 𝑓1
1

𝐶1 , 𝑓1
1

𝐶4, 𝑓1
1

𝐶1 , 𝑓1
1

𝐶2 , 𝑓2
1

𝐶1 , 𝑓2
1

Users’ Set I:

𝐵𝑆1 𝑈1, 𝐵𝑆1 𝑈2, 𝐵𝑆1 𝑈3

Set II:

𝐵𝑆1 𝑈4, 𝐵𝑆1 𝑈5
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downlink by using different orthogonal codes, so the downlink and the uplink analysis are 

different. An uplink analysis will lead to the following SINR, where the LT formulas are 

already calculated in the general model: 

 
𝑝𝑈𝑒

st−FR = ℙ(
𝑃𝑠2ℎ1𝐿𝑝1𝑟

−𝜂

𝑃𝑛 + 𝑃𝑠2𝐿𝑝2𝐼𝑈𝑒,𝐼𝐵𝐹𝐷
′ + 𝛽𝑃𝑠2

> 𝑇|𝑆𝐼𝑁𝑅1 < 𝑇𝑒𝑑𝑔𝑒) 
(4.31) 

 

G. Mean Achievable Rate: 

IBFD increases the spectral efficiency and thus the data rate for a specific user due to 

the simultaneous use of the band in both UL and DL. On the other side, users operating at IBFD 

experience higher interference than those operating at Half-duplex resulting in a degraded 

SINR values hence reduced capacity. Hence, appropriate definition of the IBFD regions should 

be found. This will be a compromise between the probability of coverage loss and capacity 

increase. In this section, we study the mean achievable rate for a typical user, which is an 

outage-based metric. 

The achievable rate is defined as: 

 𝜏 = 𝔼[ln(1 + 𝑆𝐼𝑁𝑅𝐻−𝑑𝑢𝑝𝑙𝑒𝑥)] (4.32) 

For a typical user operating at IBFD, it is defined by: 

 𝜏 = 𝔼[2 ln(1 + 𝑆𝐼𝑁𝑅𝐼𝐵𝐹𝐷)]          (𝑛𝑎𝑡𝑠/𝐻𝑧) (4.33) 

𝜏 = 𝔼[2 ln(1 + 𝑆𝐼𝑁𝑅𝐼𝐵𝐹𝐷)] = ∫ 2𝜋𝜆𝐵𝑆𝑟𝑒
−𝜋𝜆𝐵𝑆𝑟

2
ℙ[ln(1 + 𝑆𝐼𝑁𝑅𝐼𝐵𝐹𝐷) >

𝑡

2
] 𝑑𝑟

∞

0

= ∫ 2𝜋𝜆𝐵𝑆𝑟 𝑒
−𝜋𝜆𝐵𝑆𝑟

2
∫ ℙ[𝑆𝐼𝑁𝑅𝐼𝐵𝐹𝐷 > 𝑒

𝑡
2 − 1]

∞

0

𝑑𝑡𝑑𝑟

∞

0

= ∫ ∫ 2𝜋𝜆𝐵𝑆𝑟 𝑒
−𝜋𝜆𝐵𝑆𝑟

2
ℙ[𝑆𝐼𝑁𝑅𝐼𝐵𝐹𝐷 > 𝑒

𝑡
2 − 1] 𝑑𝑟

∞

0

𝑑𝑡

∞

0
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Similarly to the probability of coverage, the mean achievable rate for an edge user operating at 

IBFD: 

𝜏𝑈𝑒 = ℙ [𝑆𝐼𝑁𝑅𝐼𝐵𝐹𝐷 > 𝑒
𝑡

2
−1]

= ℙ(
𝑃𝑠1ℎ1𝐿𝑝1

𝑟−𝜂

𝑃𝑛 + 𝑃𝑠1𝐿𝑝1
𝐼𝐵𝑆

′ + 𝑃𝑠2𝐿𝑝2
𝐼𝑈𝑒,𝐼𝐵𝐹𝐷

′ + 𝛽𝑃𝑠2

> 𝑒
𝑡
2 − 1|

𝑃𝑠1ℎ2𝐿𝑝1
𝑟−𝜂

𝑃𝑛 + 𝑃𝑠1𝐿𝑝1
𝐼𝐵𝑆 + 𝑃𝑠2𝐿𝑝2

𝐼𝑈𝐼𝐵𝐹𝐷 + 𝛽𝑃𝑠2
< 𝑇𝑒𝑑𝑔𝑒) 

=

ℙ(
𝑃𝑠1ℎ1𝐿𝑝1𝑟

−𝜂

𝑃𝑛 + 𝑃𝑠1𝐿𝑝1𝐼𝐵𝑆
′ + 𝑃𝑠2𝐿𝑝2𝐼𝑈𝑒,𝐼𝐵𝐹𝐷

′ + 𝛽𝑃𝑠2
> 𝑒

𝑡
2−1,

𝑃𝑠1ℎ2𝐿𝑝1𝑟
−𝜂

𝑃𝑛 + 𝑃𝑠1𝐿𝑝1𝐼𝐵𝑆 + 𝑃𝑠2𝐿𝑝2𝐼𝑈𝐼𝐵𝐹𝐷 + 𝛽𝑃𝑠2
< 𝑇𝑒𝑑𝑔𝑒)

ℙ(
𝑃𝑠1ℎ2𝐿𝑝1𝑟

−𝜂

𝑃𝑛 + 𝑃𝑠1𝐿𝑝1𝐼𝐵𝑆 + 𝑃𝑠2𝐿𝑝2𝐼𝑈𝐼𝐵𝐹𝐷 + 𝛽𝑃𝑠2
< 𝑇𝑒𝑑𝑔𝑒)

 

 

𝜏𝑈𝑒 = ∫
𝑝
𝑐1
(𝑡) − 𝑝

𝑐3
(𝑡)

1 − 𝑝
𝑐2

𝑑𝑡

∞

0

 

(4.34) 

In this expression, we replaced 𝑇 by 𝑒
𝑡

2 − 1. 

Similarly, for the core user operating at IBFD we have: 

 

𝜏𝑈𝑐 = ∫
𝑝
𝑐4
(𝑡)

𝑝
𝑐2

𝑑𝑡

∞

0

 

(4.35) 

   

H. Simulation Results: 

In this section, we numerically simulate the derived formulas and we show how the network 

performance changes with respect to the different network configurations. We also compare 

the performance of the network to that of the model found in [57] that uses the FFR for simple 

half-duplex users. Unless mentioned in the figures, we present in Table 4.5 the general 

simulation parameters, where the terms 𝐿𝑝1 and 𝐿𝑝2 were defined as follows: 𝐿𝑝1 = 𝐿𝑝2 =

𝐺𝑡𝐺𝑟 (
𝑐

4𝜋𝑓
)
2

. 
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Parameter Value 

𝑷𝒔𝟏; 𝑷𝒔𝟐; 𝑷𝒏 37 𝑑𝐵𝑚; 17 𝑑𝐵𝑚;−104 𝑑𝐵𝑚 

𝑮𝒕; 𝑮𝒓; 𝒇 20 𝑑𝐵; 5 𝑑𝐵; 1800 𝑀𝐻𝑧 

𝑵 3 

𝒅𝑭 0.2 𝑘𝑚  

𝝀𝑩𝑺; 𝝀𝑼 2; 100 

𝜼 4 

𝑻𝒆𝒅𝒈𝒆 1 𝑑𝐵 

𝜷 0.1 

𝝁 1 

Table 4.5: Simulation Parameters. 

In Figure 4.7, and using approach 1, we present the probability of coverage 𝑝𝑐 for the 

typical edge user 𝑈𝑒 operating at IBFD versus the SINR threshold 𝑇. As 𝑑𝐹 increases, the 

probability of coverage 𝑝𝑐 decreases because higher interference from the edge uses is 

experienced by the typical edge users. Moreover, we can see that 𝑝𝑐 saturates as 𝑑𝐹 increases. 

Indeed, increasing 𝑑𝐹 does not result in an increase in the number of interfering users. 

Furthermore, setting 𝑑𝐹 to a very small value gives the same 𝑝𝑐 of edge users in a network 

using only half duplex (𝑠𝑡 − 𝐹𝐹𝑅, 𝑈𝑒 , 𝐻). In Figure 4.8, we present 𝑝𝑐 for a core user operating 

at IBFD. In Figure 4.9, we compare the 𝑝𝑐 for the edge and core users’ cases. As seen, the 𝑝𝑐 

for core users is higher than that of the edge users, and for the edge users it is increasing with 

the BS density. As for the core users, it is not always increasing with the BS density, the reason 

for this may be related to the fact that the strict FFR scheme is giving better ICIC to the edge 

user than that of the core that is benefiting less from the strict FFR scheme. 

Additionally, in Figure 4.10 we show the effect of increasing the reuse factor 𝑁 on the 

probability of coverage for the edge user. We can see how FFR is beneficial for the edge users. 

On the other hand, the strict FFR scheme increases the coverage for the core users by separating 
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them from the edge users, but does not give them benefits, because 𝑁 applies only for the edge 

users. 

 

Figure 4.7: Coverage probability using approach 1 for 𝐔𝐞 operating at IBFD at different 𝐝𝐅, and for half-

duplex 𝐔𝐞. 

 

Figure 4.8: Coverage probability using approach 1 for 𝐔𝐜 operating at IBFD at different 𝐝𝐅, and for half-

duplex 𝐔𝐜. 
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Figure 4.9: Coverage probability using approach 1 comparison between 𝐔𝐞 and 𝐔𝐜  at different 𝛌𝐁𝐒. 

 

Figure 4.10: Coverage probability using approach 1 for 𝐔𝐞 with respect to different 𝐍. 

In Figure 4.11, we plot the mean achievable rate using Approach 1. The rate for the 

typical edge user operating at IBFD at 𝑇 = −20 𝑑𝐵 is 2.3765 𝑛𝑎𝑡𝑠/𝐻𝑧 = 3.4285 𝑏𝑖𝑡𝑠/𝐻𝑧. 

It is 1.2508 𝑛𝑎𝑡𝑠/𝐻𝑧 = 1.8045 𝑏𝑖𝑡𝑠/𝐻𝑧 for the half-duplex case. Thus, operating at IBFD 

with the shared network resources scheme has increased the mean achievable rate by a factor 

of 1.71. On higher 𝑇, this increase is lower, as expected, by a factor of 1.22 times. As for the 

core user operating at IBFD at 𝑇 = −20 𝑑𝐵, the rate is 1.9442 𝑛𝑎𝑡𝑠/𝐻𝑧 = 2.8049 𝑏𝑖𝑡𝑠/𝐻𝑧, 

while for the core user operating at half-duplex, it is 1.5038 𝑛𝑎𝑡𝑠/𝐻𝑧 = 2.1695 𝑏𝑖𝑡𝑠/𝐻𝑧, 

which means it increased by a factor of 1.29. Besides, at higher T, 𝑇 = 20 𝑑𝐵, it increased by 
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a factor of 1.95. On the other side, when we increase the radius 𝑑𝐹 of the IBFD region, we 

observe a decrease in the mean rate for the edge user. As for the core user, the variation strongly 

depends on 𝑇𝑒𝑑𝑔𝑒 that is used. For the edge user, this decrease was big enough in which their 

mean rate became lower than that of half duplex users. The reason for this is that the SINR 

became very low and the user is not benefitting from the IBFD operation, which was reflected 

on the mean rate. This shows that we should carefully determine the region of IBFD operation 

which mainly depends on the system inputs, and if we don’t do this we will not be benefiting 

from the IBFD. Moreover, at low 𝑇𝑒𝑑𝑔𝑒, the mean rate for the core user is now greater than the 

half-duplex core user by a factor of 1.0224 at 𝑇 = −20 𝑑𝐵 and a factor of 2.4380 at 𝑇 =

20 𝑑𝐵. This shows that our model can get the best radius for the IBFD region that can be used 

for a specific network configuration. It also shows the limit of this radius, in which the edge 

user will not benefitting from IBFD operation. 

 

Figure 4.11: Mean achievable rate for 𝐔𝐞 and 𝐔𝐜 operating at IBFD compared to the half-duplex case 

without any shared resources. 
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Figure 4. 12: Mean achievable rate for 𝐔𝐞 and 𝐔𝐜 operating at IBFD with 𝒅𝑭 = 𝟎. 𝟓 𝒌𝒎 compared to the 

half-duplex case without any shared resources. 

 

In Figure 4.13 and Figure 4.14, we present the probability of coverage expected by the two 

approaches, with the different used approximations, for an edge and core user respectively. We 

plot the probability of coverage for a typical user at a specific distance 𝑟 from its serving BS. 

This is because for approach 2, the results are quicker to be computed at a specific 𝑟 and takes 

much less time than that evaluated at a random 𝑟. Equally important, we plot the case 1 of the 

upper bound which account only for the interferers in the same disk. The case 2 can be obtained, 

but it needs more evaluation time even at a specific 𝑟. In Figure 4.5, we show how case 2 can 

produce tighter upper bound, similar results can be obtained for each LT and for the entire 

analysis. The analysis shows that approach 2 succeeds in deriving the probability of coverage 

in which the lower and upper bounds holds by the definition of the probability of coverage in 

equations (4.26) and (4.30). Also, it shows the near results of both approach 1 and 2, which 

concludes the performance of the typical edge and core users operating at IBFD in the abstract 

system model. 
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Figure 4.13: Probability of coverage for a typical edge user at distance 𝐫 = 𝟎. 𝟏𝟕 𝐤𝐦 > 𝐚𝟏 using Approach 

1 and 2. 

 

Figure 4.14: Probability of coverage for a typical core user at distance 𝐫 = 𝟎. 𝟏𝟒 𝐤𝐦 < 𝐚𝟏 using Approach 

1 and 2. 

 

Figure 4.15: Probability of coverage for a typical edge user at distance 𝐫 = 𝟎. 𝟑 𝐤𝐦 > 𝐚𝟏, 𝛌𝐁𝐒 =
𝟎. 𝟓𝐁𝐒 𝐤𝐦𝟐⁄ , 𝛌𝐔 = 𝟓𝟎𝐮𝐬𝐞𝐫𝐬 𝐤𝐦𝟐⁄ , 𝐝𝐅 = 𝟎. 𝟒𝐤𝐦 using Approach 1 and 2. 
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Figure 4.16: Probability of coverage for a typical core user at distance 𝐫 = 𝟎. 𝟐𝟑 𝐤𝐦 < 𝐚𝟏, 𝛌𝐁𝐒 =
𝟎. 𝟓𝐁𝐒 𝐤𝐦𝟐⁄ , 𝛌𝐔 = 𝟓𝟎𝐮𝐬𝐞𝐫𝐬 𝐤𝐦𝟐⁄ , 𝐝𝐅 = 𝟎. 𝟒 𝐤𝐦 using Approach 1 and 2 

 

I. Conclusion: 

We have presented a network model to analyze the performance in a network that uses 

FFR scheme, and contains users operating at IBFD with some shared resources between the 

users. We have analyzed this model using two approaches and we have shown the decrease in 

the coverage probability experienced by the network for the users operating at IBFD. Also, we 

have shown the increase in the mean achievable gained by these users compared to the half-

duplex ones. 
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CONCLUSION 

In this thesis, we have tackled many topics using stochastic geometry tools. We have 

studied the spatial density distribution of the evolved NodeB (eNB) in LTE networks. Mainly, 

we compared this distribution in three huge areas to a set of candidate distributions. Using the 

best fitted distributions, we developed three network models and derived performance metrics 

for the network. These metrics are the probability of coverage and the mean achievable rate 

that the network can provide for its users, where we have showed how these metrics change 

with the different network configuration. As a part of deriving the performance metrics, we 

analyze the Probability Density Function (PDF) of the interference power in Poisson Point 

Process (PPP) networks when the fading experienced by the user is Rayleigh fading. By the 

help of the Kohlrausch-Williams-Watts (KWW) and its properties, we provided closed form 

expressions for the interference power. In addition to that, the second main part of the thesis 

was to study the effect of in-Band Full-Duplex (IBFD) in cellular networks. IBFD is a 

technology that is expected to be used in future networks. We have developed a network model 

to analyze the performance of users operating at IBFD in a cellular network that uses Fractional 

Frequency Reuse (FFR). In the developed model, we hadn’t restricted ourselves to totally 

isolated transmissions between the users i.e. we have assumed that there exist shared network 

resources between the users. Markedly, the use of shared network resources is aligned with the 

vision for future networks. With this intention, we analyzed the performance of an IBFD 

network configuration using two approaches and we showed the effect of using such 

configuration. We derived the performance metrics of users operating at IBFD, and we 

compared their performance to the half-duplex users. The users operating at IBFD experiences 

decrease in their received SINR, which is reflected in having lower coverage probability than 

the half-duplex users, in which we have provided the comparison between these two types of 

users. On the other side, in the used network configuration, the IBFD users gain throughput 

and spectral efficiency. As provided by our results, the resulted throughput is not simply the 

double that of a half-duplex user because the IBFD users experience a decrease in the SINR. 
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Appendix II.A 

The probability of coverage is defined as follows: 

𝑝𝑐 = 𝔼𝑟[ℙ[𝑆𝐼𝑁𝑅 > 𝑇|𝑟]] = ∫ ℙ[𝑆𝐼𝑁𝑅 > 𝑇|𝑟]𝑓𝑟(𝑟)𝑑𝑟

∞

0

= ∫ ℙ [
𝑃𝑡𝐿𝑝ℎ𝑟

−𝜂

𝑃𝑛 + 𝐼𝑟
> 𝑇|𝑟] 𝑓𝑟(𝑟)𝑑𝑟

∞

0

= ∫ ℙ [ℎ >
𝑇

𝑃𝑡𝐿𝑝
𝑟𝜂(𝑃𝑛 + 𝐼𝑟)|𝑟] 𝑓𝑟(𝑟)𝑑𝑟

∞

0

 

where ℎ is the fading coefficient or the power of the fading for the Rayleigh fading case, so we 

have:  

ℙ [ℎ >
𝑇

𝑃𝑡𝐿𝑝
𝑟𝜂(𝑃𝑛 + 𝐼𝑟)|𝑟] = 𝔼𝐼𝑟 [ℙ [ℎ >

𝑇

𝑃𝑡𝐿𝑝
𝑟𝜂(𝑃𝑛 + 𝐼𝑟)|𝑟, 𝐼𝑟]]

= 𝔼𝐼𝑟 [𝑒𝑥𝑝 (−𝜇
𝑇

𝑃𝑡𝐿𝑝
𝑟𝜂(𝑃𝑛 + 𝐼𝑟)) |𝑟] = 𝑒

−𝜇
𝑇

𝑃𝑡𝐿𝑝
𝑟𝜂𝜎2

𝐿 𝐼𝑟
𝑃𝑡𝐿𝑝

(𝜇𝑇𝑟𝜂) 

where 𝐿 𝐼𝑟

𝑃𝑡𝐿𝑝

(𝑠) is the Laplace Transform of the random variable 𝐼𝑟 evaluated at 𝑠 conditioned 

on the distance to the nearest BS from the origin, and because 𝑃𝑡𝐿𝑝 is a constant we can put it 

outside the Laplace Transform formula and it will be canceled with the same term found in the 

signal power 𝑆. The density of the PPP follows one of the candidate distributions, so we should 

also condition the interference on 𝜆. So, the formula for the interference becomes: 

𝐿 𝐼𝑟
𝑃𝑡𝐿𝑝

(𝑠) =  𝔼 𝐼𝑟
𝑃𝑡𝐿𝑝

[𝑒−𝑠𝐼𝑟] = 𝔼𝜆,𝛷,𝑔𝑖 [𝑒𝑥𝑝(−𝑠 ∑ 𝑔𝑖𝑅𝑖
−𝜂

𝑖∈𝛷\{𝐵𝑆0}

)] 

= 𝔼𝜆,𝛷,{𝑔𝑖} [ ∏ exp (−𝑠𝑔𝑖𝑅𝑖
−𝜂)

𝑖∈𝛷\{𝐵𝑆0}

]

= 𝔼𝜆,𝛷 [ ∏ 𝔼𝑔[exp (−𝑠𝑔𝑅𝑖
−𝜂)]

𝑖∈𝛷\{𝐵𝑆0}

] =
(a)
𝔼𝜆 [𝔼𝛷 [ ∏ 𝔼𝑔[exp(−𝑠𝑔𝑅𝑖

−𝜂)]

𝑖∈𝛷\{𝐵𝑆0}

]] 
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=
(b)
𝔼𝜆 [exp(−2𝜋𝜆𝑖∫(1

∞

𝑟

− 𝔼𝑔[exp(−𝑠𝑔𝑥
−𝜂)])𝑥𝑑𝑥)] =

(c)
∫ exp(−2𝜋𝜆𝔼𝑔 [∫(1

∞

𝑟

∞

0

− exp(−𝑠𝑔𝑥−𝜂))𝑥𝑑𝑥])𝑓𝜆(𝜆)𝑑𝜆 

where (a) follows from the independence between the variables, and (b) follows from the 

Probability Generating Functional (PGFL) of PPP, and in (c) we use the definition of the 

expectation for 𝜆. In a same fashion, to get the final results, (c) is evaluated according to the 

used distribution for 𝜆, then we substitute 𝑠 = 𝜇𝑇𝑟𝜂 and apply a change of variable 𝑥−𝜂 → 𝑦. 

At last, we substitute the formula for the Laplace in the coverage probability formula to get the 

different results for each density distribution. 

 

Appendix II.B 

In a PPP network with random density, the ergodic rate for a typical user depends on the 

spatial PPP and the fading distribution. 

𝜏 = 𝔼[ln(1 + 𝑆𝐼𝑁𝑅)] = ∫ 𝔼 [ln (1 +
𝑃𝑡𝐿𝑝ℎ𝑟

−𝜂

𝑃𝑛 + 𝐼𝑡
)] 𝑓𝑟(𝑟)𝑑𝑟

𝑟>0

= ∫ 𝑓𝑟(𝑟) ∫ ℙ [ln (1 +
𝑃𝑡𝐿𝑝ℎ𝑟

−𝜂

𝑃𝑛 + 𝑃𝑡𝐿𝑝𝐼𝑟
) > 𝑡] 𝑑𝑡

𝑡>0

𝑑𝑟

𝑟>0

= ∫ 𝑓𝑟(𝑟) ∫ ℙ [
𝑃𝑡𝐿𝑝ℎ𝑟

−𝜂

𝑃𝑛 + 𝑃𝑡𝐿𝑝𝐼𝑟
> 𝑒𝑡 − 1] 𝑑𝑡

𝑡>0

𝑑𝑟

𝑟>0

 

= ∫ 𝑓𝑟(𝑟) ∫ ℙ [ℎ >
𝑟𝜂

𝑃𝑡𝐿𝑝
(𝑃𝑛 + 𝑃𝑡𝐿𝑝𝐼𝑟)(𝑒

𝑡 − 1)] 𝑑𝑡

𝑡>0

𝑑𝑟

𝑟>0

 

Using the fact that h ~ exp(μ), i.e. signal experiences Rayleigh fading. 
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𝜏 = ∫ 𝑓𝑟(𝑟) ∫ 𝔼 [𝑒𝑥𝑝 (−𝜇
𝑟𝜂

𝑃𝑡𝐿𝑝
(𝑃𝑛 + 𝑃𝑡𝐿𝑝𝐼𝑟)(𝑒

𝑡 − 1))] 𝑑𝑡

𝑡>0

𝑑𝑟

𝑟>0

 

= ∫ 𝑓𝑟(𝑟) ∫ 𝑒−𝜇𝑟
𝜂𝜎2(𝑒𝑡−1)𝐿𝐼𝑟(𝜇𝑟

𝜂(𝑒𝑡 − 1))𝑑𝑡

𝑡>0

𝑑𝑟

𝑟>0

 

 

Appendix IV.A 

𝑝𝑈𝑒
st−FR = ℙ(

𝑃𝑠1ℎ1𝐿𝑝1𝑟
−𝜂

𝑃𝑛 + 𝑃𝑠1𝐿𝑝1𝐼𝐵𝑆
′ + 𝑃𝑠2𝐿𝑝2𝐼𝑈𝑒,𝐼𝐵𝐹𝐷

′ + 𝛽𝑃𝑠2
> 𝑇|

𝑃𝑠1ℎ2𝐿𝑝1𝑟
−𝜂

𝑃𝑛 + 𝑃𝑠1𝐿𝑝1𝐼𝐵𝑆 + 𝑃𝑠2𝐿𝑝2𝐼𝑈𝐼𝐵𝐹𝐷 + 𝛽𝑃𝑠2
< 𝑇𝑒𝑑𝑔𝑒) 

=

ℙ(
𝑃𝑠1ℎ1𝐿𝑝1𝑟

−𝜂

𝑃𝑛 + 𝑃𝑠1𝐿𝑝1𝐼𝐵𝑆
′ + 𝑃𝑠2𝐿𝑝2𝐼𝑈𝑒,𝐼𝐵𝐹𝐷

′ + 𝛽𝑃𝑠2
> 𝑇,

𝑃𝑠1ℎ2𝐿𝑝1𝑟
−𝜂

𝑃𝑛 + 𝑃𝑠1𝐿𝑝1𝐼𝐵𝑆 + 𝑃𝑠2𝐿𝑝2𝐼𝑈𝐼𝐵𝐹𝐷 + 𝛽𝑃𝑠2
< 𝑇𝑒𝑑𝑔𝑒)

ℙ (
𝑃𝑠1ℎ2𝐿𝑝1𝑟

−𝜂

𝑃𝑛 + 𝑃𝑠1𝐿𝑝1𝐼𝐵𝑆 + 𝑃𝑠2𝐿𝑝2𝐼𝑈𝐼𝐵𝐹𝐷 + 𝛽𝑃𝑠2
< 𝑇𝑒𝑑𝑔𝑒)

=

∫ 𝔼𝐼𝑟 [exp(−𝜇
𝑟𝜂𝑇

𝑃𝑠1𝐿𝑝1
(𝑃𝑛 + 𝑃𝑠1𝐿𝑝1𝐼𝐵𝑆

′ + 𝑃𝑠2𝐿𝑝2
𝐼𝑈𝑒,𝐼𝐵𝐹𝐷

′ + 𝛽𝑃𝑠2)) (1 − exp(−𝜇
𝑟𝜂𝑇𝑒𝑑𝑔𝑒
𝑃𝑠1𝐿𝑝1

(𝑃𝑛 + 𝑃𝑠1𝐿𝑝1𝐼𝐵𝑆 + 𝑃𝑠2𝐿𝑝2𝐼𝑈𝐼𝐵𝐹𝐷 + 𝛽𝑃𝑠2))) |𝑟] 𝑓𝑟(𝑟)𝑑𝑟𝑟>0

∫ 𝔼𝐼𝑟 [1 − exp(−𝜇
𝑟𝜂𝑇𝑒𝑑𝑔𝑒
𝑃𝑠1𝐿𝑝1

(𝑃𝑛 + 𝑃𝑠1𝐿𝑝1𝐼𝐵𝑆 + 𝑃𝑠2𝐿𝑝2
𝐼𝑈𝐼𝐵𝐹𝐷 + 𝛽𝑃𝑠2)) |𝑟] 𝑓𝑟(𝑟)𝑑𝑟𝑟>0

=
∫ E1𝑓𝑟(𝑟)𝑑𝑟𝑟>0

∫ E2𝑓𝑟(𝑟)𝑑𝑟𝑟>0

 

Where 

 𝐸1 = 𝔼𝐼𝑟 [exp (−𝜇
𝑟𝜂𝑇

𝑃𝑠1𝐿𝑝1
(𝑃𝑛 + 𝑃𝑠1𝐿𝑝1𝐼𝐵𝑆

′ + 𝑃𝑠2𝐿𝑝2𝐼𝑈𝑒,𝐼𝐵𝐹𝐷
′ + 𝛽𝑃𝑠2)) − exp (−𝜇

𝑟𝜂𝑇

𝑃𝑠1𝐿𝑝1
(𝑃𝑛 + 𝑃𝑠1𝐿𝑝1𝐼𝐵𝑆

′ +

𝑃𝑠2𝐿𝑝2𝐼𝑈𝑒,𝐼𝐵𝐹𝐷
′ + 𝛽𝑃𝑠2)) exp (−𝜇

𝑟𝜂𝑇𝑒𝑑𝑔𝑒

𝑃𝑠1𝐿𝑝1
(𝑃𝑛 + 𝑃𝑠1𝐿𝑝1𝐼𝐵𝑆 + 𝑃𝑠2𝐿𝑝2𝐼𝑈𝐼𝐵𝐹𝐷 + 𝛽𝑃𝑠2)) |𝑟] 

= 𝔼𝐼𝑟 [𝑒
−𝜇

𝑟𝜂𝑇(𝑃𝑛+𝛽𝑃𝑠2)

𝑃𝑠1𝐿𝑝1 exp (−𝜇
𝑟𝜂𝑇

𝑃𝑠1𝐿𝑝1
(𝑃𝑠1𝐿𝑝1𝐼𝐵𝑆

′ + 𝑃𝑠2𝐿𝑝2𝐼𝑈𝑒,𝐼𝐵𝐹𝐷
′))

− 𝑒
−𝜇

𝑟𝜂((𝑃𝑛+𝛽𝑃𝑠2)𝑇+(𝑃𝑛+𝛽𝑃𝑠2)𝑇𝑒𝑑𝑔𝑒)

𝑃𝑠1𝐿𝑝1 exp (−𝜇
𝑟𝜂

𝑃𝑠1𝐿𝑝1
((𝑃𝑠1𝐿𝑝1𝐼𝐵𝑆

′ + 𝑃𝑠2𝐿𝑝2𝐼𝑈𝑒,𝐼𝐵𝐹𝐷
′)𝑇

+ (𝑃𝑠1𝐿𝑝1𝐼𝐵𝑆 + 𝑃𝑠2𝐿𝑝2𝐼𝑈𝐼𝐵𝐹𝐷)𝑇𝑒𝑑𝑔𝑒)) |𝑟]
(𝑎)
=
𝑒
−𝜇

𝑟𝜂𝑇(𝑃𝑛+𝛽𝑃𝑠2)

𝑃𝑠1𝐿𝑝1 𝐿𝐼𝐵𝑆′(𝜇𝑟
𝜂𝑇) 𝐿𝐼𝑈𝑒,𝐼𝐵𝐹𝐷

′ (𝜇
𝑃𝑠2𝐿𝑝2𝑟

𝜂𝑇

𝑃𝑠1𝐿𝑝1
)

− 𝑒
−𝜇

𝑟𝜂((𝑃𝑛+𝛽𝑃𝑠2)𝑇+(𝑃𝑛+𝛽𝑃𝑠2)𝑇𝑒𝑑𝑔𝑒)

𝑃𝑠1𝐿𝑝1 𝐿𝐼𝐵𝑆′,𝐼𝐵𝑆(𝜇𝑟
𝜂𝑇, 𝜇𝑟𝜂𝑇𝑒𝑑𝑔𝑒). 𝐿𝐼𝑈𝑒,𝐼𝐵𝐹𝐷

′,𝐼𝑈𝐼𝐵𝐹𝐷
(𝜇
𝑃𝑠2𝐿𝑝2𝑟

𝜂

𝑃𝑠1𝐿𝑝1
𝑇, 𝜇

𝑃𝑠2𝐿𝑝2𝑟
𝜂

𝑃𝑠1𝐿𝑝1
𝑇𝑒𝑑𝑔𝑒) 

And  

𝐸2 = 𝔼𝐼𝑟 [1 − exp (−𝜇
𝑟𝜂𝑇𝑒𝑑𝑔𝑒

𝑃𝑠1𝐿𝑝1
(𝑃𝑛 + 𝑃𝑠1𝐿𝑝1𝐼𝐵𝑆 + 𝑃𝑠2𝐿𝑝2𝐼𝑈𝐼𝐵𝐹𝐷 + 𝛽𝑃𝑠2)) |𝑟]

= 1 − 𝑒
−𝜇

𝑟𝜂𝑇𝑒𝑑𝑔𝑒(𝑃𝑛+𝛽𝑃𝑠2)

𝑃𝑠1𝐿𝑝1 𝐿𝐼𝐵𝑆(𝜇𝑟
𝜂𝑇𝑒𝑑𝑔𝑒) 𝐿𝐼𝑈𝐼𝐵𝐹𝐷

(𝜇
𝑃𝑠2𝐿𝑝2𝑟

𝜂

𝑃𝑠1𝐿𝑝1
𝑇𝑒𝑑𝑔𝑒) 
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Where (a) follows from the independence of 𝜙𝐵𝑆 and 𝜙𝑈. Each 

𝐿𝐼𝐵𝑆′,𝐼𝐵𝑆 (𝜇
𝑃𝑠1𝐿𝑝1𝑟

𝜂

𝑃𝑠1𝐿𝑝1
𝑇, 𝜇

𝑃𝑠1𝐿𝑝1𝑟
𝜂

𝑃𝑠1𝐿𝑝1
𝑇𝑒𝑑𝑔𝑒) and 𝐿𝐼𝑈𝑒,𝐼𝐵𝐹𝐷

′,𝐼𝑈𝐼𝐵𝐹𝐷
(𝜇

𝑃𝑠2𝐿𝑝2𝑟
𝜂

𝑃𝑠1𝐿𝑝1
𝑇, 𝜇

𝑃𝑠2𝐿𝑝2𝑟
𝜂

𝑃𝑠1𝐿𝑝1
𝑇𝑒𝑑𝑔𝑒) are the joint 

Laplace transforms evaluated at 𝑠1 = 𝜇
𝑃𝑠1𝐿𝑝1

𝑟𝜂

𝑃𝑠1𝐿𝑝1

𝑇, 𝑠2 = 𝜇
𝑃𝑠1𝐿𝑝1

𝑟𝜂

𝑃𝑠1𝐿𝑝1

𝑇𝑒𝑑𝑔𝑒 , 𝑠3 = 𝜇
𝑃𝑠2𝐿𝑝2

𝑟𝜂

𝑃𝑠1𝐿𝑝1

𝑇, 𝑠4 =

𝜇
𝑃𝑠2𝐿𝑝2

𝑟𝜂

𝑃𝑠1𝐿𝑝1

𝑇𝑒𝑑𝑔𝑒. 

Appendix IV.B 

𝑝𝑈𝑐
st−FR = ℙ(

𝑃𝑠1ℎ1𝐿𝑝1𝑟
−𝜂

𝑃𝑛 + 𝑃𝑠1𝐿𝑝1𝐼𝐵𝑆 + 𝑃𝑠2𝐿𝑝2𝐼𝑈𝑐,𝐼𝐵𝐹𝐷 + 𝛽𝑃𝑠2
> 𝑇|

𝑃𝑠1ℎ2𝐿𝑝1𝑟
−𝜂

𝑃𝑛 + 𝑃𝑠1𝐿𝑝1𝐼𝐵𝑆 + 𝑃𝑠2𝐿𝑝2𝐼𝑈𝐼𝐵𝐹𝐷 + 𝛽𝑃𝑠2
> 𝑇𝑒𝑑𝑔𝑒) 

=

ℙ(
𝑃𝑠1ℎ1𝐿𝑝1𝑟

−𝜂

𝑃𝑛 + 𝑃𝑠1𝐿𝑝1𝐼𝐵𝑆 + 𝑃𝑠2𝐿𝑝2𝐼𝑈𝑐,𝐼𝐵𝐹𝐷 + 𝛽𝑃𝑠2
> max {𝑇, 𝑇𝑒𝑑𝑔𝑒},

𝑃𝑠1ℎ2𝐿𝑝1𝑟
−𝜂

𝑃𝑛 + 𝑃𝑠1𝐿𝑝1𝐼𝐵𝑆 + 𝑃𝑠2𝐿𝑝2𝐼𝑈𝐼𝐵𝐹𝐷 + 𝛽𝑃𝑠2
> 𝑇𝑒𝑑𝑔𝑒)

ℙ (
𝑃𝑠1ℎ2𝐿𝑝1𝑟

−𝜂

𝑃𝑛 + 𝑃𝑠1𝐿𝑝1𝐼𝐵𝑆 + 𝑃𝑠2𝐿𝑝2𝐼𝑈𝐼𝐵𝐹𝐷 + 𝛽𝑃𝑠2
> 𝑇𝑒𝑑𝑔𝑒)

=
∫ E3𝑓𝑟(𝑟)𝑑𝑟𝑟>0

∫ E4𝑓𝑟(𝑟)𝑑𝑟𝑟>0

 

Where 𝐼𝐵𝑆 𝑎𝑛𝑑 𝐼𝑈𝑐,𝐼𝐵𝐹𝐷 are the interference from all other BSs and from all Uc using IBFD 

respectively, because both are using common band. 

Regarding the powers 𝐼𝑈𝑐,𝐼𝐵𝐹𝐷  and 𝐼𝑈𝐼𝐵𝐹𝐷, These parameters changes with dF. If dF is big enough, 

𝐼𝑈𝑐,𝐼𝐵𝐹𝐷 < 𝐼𝑈𝐼𝐵𝐹𝐷. And for a certain value of dF, the power of 𝐼𝑈𝑐,𝐼𝐵𝐹𝐷 = 𝐼𝑈𝐼𝐵𝐹𝐷, and this equality 

will hold for any number bigger than this certain value. 

By following the same steps, we get: 

𝐸3 = 𝑒
−𝜇

𝑟𝜂((𝑃𝑛+𝛽𝑃𝑠2)(max {𝑇,𝑇𝑒𝑑𝑔𝑒}+𝑇𝑒𝑑𝑔𝑒))

𝑃𝑠1𝐿𝑝1 𝐿𝐼𝐵𝑆(𝜇𝑟
𝜂(max {𝑇, 𝑇𝑒𝑑𝑔𝑒}

+ 𝑇𝑒𝑑𝑔𝑒)) 𝐿𝐼𝑈𝑐,𝐼𝐵𝐹𝐷,𝐼𝑈𝐼𝐵𝐹𝐷 (𝜇
𝑃𝑠2𝐿𝑝2𝑟

𝜂

𝑃𝑠1𝐿𝑝1
max {𝑇, 𝑇𝑒𝑑𝑔𝑒}, 𝜇

𝑃𝑠2𝐿𝑝2𝑟
𝜂

𝑃𝑠1𝐿𝑝1
𝑇𝑒𝑑𝑔𝑒) 

Appendix IV.C 

𝐿𝐼𝐵𝑆′,𝐼𝐵𝑆(𝑠1, 𝑠2) = 𝔼𝐼𝑟[exp(−𝑠1𝐼𝐵𝑆
′ − 𝑠2𝐼𝐵𝑆)]

= 𝔼𝜙𝐵𝑆,𝑔𝑖′,𝑔𝑖 [exp(−𝑠1 ∑ 𝑔𝑖
′𝑅𝑖

−𝜂𝟏(n𝑖 = n0)

𝑖∈𝜙𝐵𝑆\𝐵𝑆0

− 𝑠2 ∑ 𝑔𝑖𝑅𝑖
−𝜂

𝑖∈𝜙𝐵𝑆\𝐵𝑆0

)]

= 𝔼𝜙𝐵𝑆,𝑔𝑖′,𝑔𝑖 [exp(− ∑ (𝑠1𝑔𝑖
′𝑅𝑖

−𝜂𝟏(n𝑖 = n0) + 𝑠2𝑔𝑖𝑅𝑖
−𝜂)

𝑖∈𝜙𝐵𝑆\𝐵𝑆0

)] 

where 𝟏(n𝑖 = n0) is the indicator function, that takes the value 1 if base station i is 

transmitting to an edge user on the same sub-band n0 that the serving BS0 reserved for the 

typical user Ue. 1(.) is the indicator function which takes the value 1 if the statement (.) is true 

and takes the value 0 otherwise. 
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= 𝔼𝜙𝐵𝑆,𝑔𝑖′,𝑔𝑖 [ ∏ exp(−(𝑠1𝑔𝑖
′𝑅𝑖

−𝜂𝟏(n𝑖 = n0) + 𝑠2𝑔𝑖𝑅𝑖
−𝜂))

𝑖∈𝜙𝐵𝑆\𝐵𝑆0

]

= 𝔼𝜙𝐵𝑆,𝑔𝑖′,𝑔𝑖 [ ∏ exp(−𝑠2𝑔𝑖𝑅𝑖
−𝜂) (1 − 𝔼[𝟏(n𝑖 = n0)](1 − exp(−𝑠1𝑔𝑖

′𝑅𝑖
−𝜂)))

𝑖∈𝜙𝐵𝑆\𝐵𝑆0

]

= 𝔼𝜙𝐵𝑆 [ ∏
𝜇

𝜇 + 𝑠2𝑅𝑖
−𝜂 (1 −

1

N
(1 −

𝜇

𝜇 + 𝑠1𝑅𝑖
−𝜂))

𝑖∈𝜙𝐵𝑆\𝐵𝑆0

]

= exp (−2𝜋𝜆𝐵𝑆∫ (1 −
𝜇

𝜇 + 𝑠2𝑥
−𝜂
(1 −

1

N
(1 −

𝜇

𝜇 + 𝑠1𝑥
−𝜂
))) 𝑥𝑑𝑥

∞

𝑟

) 

The results follow from the independence of fading, and the last term from the PGFL of PPP. 

Plugging 𝑠1 = 𝜇
𝑃𝑠1𝐿𝑝1

𝑟𝜂

𝑃𝑠1𝐿𝑝1

𝑇, 𝑠2 = 𝜇
𝑃𝑠1𝐿𝑝1

𝑟𝜂

𝑃𝑠1𝐿𝑝1

𝑇𝑒𝑑𝑔𝑒: 

𝐿𝐼𝐵𝑆′,𝐼𝐵𝑆 (𝜇
𝑃𝑠1𝐿𝑝1𝑟

𝜂

𝑃𝑠1𝐿𝑝1
𝑇, 𝜇

𝑃𝑠1𝐿𝑝1𝑟
𝜂

𝑃𝑠1𝐿𝑝1
𝑇𝑒𝑑𝑔𝑒)

= exp

(

 
 
−2𝜋𝜆𝐵𝑆∫

(

  
 
1

∞

𝑟

−
1

1 +
𝑃𝑠1𝐿𝑝1𝑟

𝜂

𝑃𝑠1𝐿𝑝1
𝑇𝑒𝑑𝑔𝑒𝑥

−𝜂

(

 
 
1 −

1

N

(

 1 −
1

1 +
𝑃𝑠1𝐿𝑝1𝑟

𝜂

𝑃𝑠1𝐿𝑝1
𝑇𝑥−𝜂

)

 

)

 
 

)

  
 
𝑥𝑑𝑥

)

 
 

 

By making changing of variable 𝑟𝜂𝑥−𝜂 → 𝑦−𝜂 we get the final result. 

Appendix IV.D 

𝐿𝐼𝐵𝑆′(𝑠1) = 𝔼𝐼𝑟[exp(−𝑠1𝐼𝐵𝑆
′)] = 𝔼𝜙𝐵𝑆,𝑔𝑖′ [ ∏ (1 − 𝔼[𝟏(n𝑖 = n0)](1 − exp(−𝑠1𝑔𝑖

′𝑅𝑖
−𝜂)))

𝑖∈𝜙𝐵𝑆\𝐵𝑆0

]

= 𝔼𝜙𝐵𝑆 [ ∏ (1 −
1

N
(1 −

𝜇

𝜇 + 𝑠1𝑅𝑖
−𝜂))

𝑖∈𝜙𝐵𝑆\𝐵𝑆0

]

= exp (−2𝜋𝜆𝐵𝑆∫ (1 − (1 −
1

N
(1 −

𝜇

𝜇 + 𝑠1𝑥
−𝜂
))) 𝑥𝑑𝑥

∞

𝑟

)

= exp (−2𝜋𝜆𝐵𝑆∫
1

N
(1 −

𝜇

𝜇 + 𝑠1𝑥
−𝜂
) 𝑥𝑑𝑥

∞

𝑟

) 

𝐿𝐼𝐵𝑆′ (𝜇
𝑃𝑠1𝐿𝑝1𝑟

𝜂𝑇

𝑃𝑠1𝐿𝑝1
) = exp

(

 −2𝜋𝜆𝐵𝑆∫
1

N

(

 1 −
1

1 +
𝑃𝑠1𝐿𝑝1𝑟

𝜂𝑇
𝑃𝑠1𝐿𝑝1

𝑥−𝜂
)

 𝑥𝑑𝑥

∞

𝑟
)

  

By making changing of variable (
𝑥

𝑟(
𝑃𝑠1𝐿𝑝1𝑇

𝑃𝑠1𝐿𝑝1
)

1
𝜂⁄
)

2

→ 𝑦 we get the final result. 
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Appendix IV.E 

The Laplace transform for the interference from edge users is evaluated in similar fashion, 

details are below: 

𝐿𝐼𝑈𝑒,𝐼𝐵𝐹𝐷
′,𝐼𝑈𝐼𝐵𝐹𝐷

(𝑠3, 𝑠4) = 𝔼𝐼𝑟[exp(−𝑠3𝐼𝑈𝑒,𝐼𝐵𝐹𝐷
′ − 𝑠4𝐼𝑈𝐼𝐵𝐹𝐷)]

= 𝔼𝜙𝑈𝐼𝐵𝐹𝐷 ,𝑔𝑖
′,𝑔𝑖
[exp(−𝑠3 ∑ 𝑔𝑖

′𝑅𝑖
−𝜂𝟏(Un𝑖 = Un0)

𝑖∈𝜙𝑈𝐼𝐵𝐹𝐷\𝑈0

− 𝑠4 ∑ 𝑔𝑖𝑅𝑖
−𝜂

𝑖∈𝜙𝑈𝐼𝐵𝐹𝐷\𝑈0

)] 

= (𝑎) exp

(

 
 
−2𝜋𝜆𝑈𝐼𝐵𝐹𝐷∫

(

  
 
1

∞

𝑟

−
𝜇

𝜇 + 𝑠4𝑥
−𝜂

(

 
 
1 − (

1 − exp (−𝜆𝐵𝑆
𝑁
𝜋𝑑𝐹

2
)

1 − exp (−𝜆𝐵𝑆𝜋𝑑𝐹
2
)
) (1 − 𝑝𝑐2) (1 −

𝜇

𝜇 + 𝑠3𝑥
−𝜂
)

)

 
 

)

  
 
𝑥𝑑𝑥

)

 
 

 

With 

ℙ[𝑆𝐼𝑁𝑅 < 𝑇𝑒𝑑𝑔𝑒  ] = 1 − ℙ[𝑆𝐼𝑁𝑅 > 𝑇𝑒𝑑𝑔𝑒  ] = 1 − 𝑝𝑐2
= 1

− 2𝜋𝜆𝐵𝑆𝑟 ∫ 𝑒
−𝜇

𝑟𝜂𝑇𝑒𝑑𝑔𝑒(𝑃𝑛+𝛽𝑃𝑠2)

𝑃𝑠1𝐿𝑝1
−𝜋𝜆𝐵𝑆𝑟

2(1+(𝑇𝑒𝑑𝑔𝑒)
2
𝜂ρ1

(𝑃𝑠1𝐿𝑝1,𝑇𝑒𝑑𝑔𝑒)
)−𝜋𝜆𝑈𝐼𝐵𝐹𝐷𝑟

2(
𝑃𝑠2𝐿𝑝2𝑇𝑒𝑑𝑔𝑒

𝑃𝑠1𝐿𝑝1
)

2
𝜂
ρ1

(𝑃𝑠2𝐿𝑝2,𝑇𝑒𝑑𝑔𝑒)𝑑𝑟

∞

0

 

Which comes from the calculated pc2 in the same expression. 

Where 𝑆𝐼𝑁𝑅 < 𝑇𝑒𝑑𝑔𝑒  =
𝑃𝑠1ℎ2𝐿𝑝1𝑟

−𝜂

𝑃𝑛+𝑃𝑠1𝐿𝑝1𝐼𝐵𝑆+𝑃𝑠2𝐿𝑝2𝐼𝑈𝐼𝐵𝐹𝐷+𝛽𝑃𝑠2
< 𝑇𝑒𝑑𝑔𝑒 

Where (a) follows from the fact that the FFR scheme is making thinning on the λBS that consists 

the disks centers of the inner-city model, so the density evaluated on s3 becomes 𝜆𝑈𝐼𝐵𝐹𝐷
′ =

𝜆𝑈 (1− exp (−
𝜆𝐵𝑆
𝑁
𝜋𝑑𝐹

2
)) (1 − 𝑝𝑐2). Where the functionality of (1 − 𝑝𝑐2) is to select only the 

edge users from those operating at IBFD, and the functionality of the 
𝜆𝐵𝑆

𝑁
 term is to select the 

edge users working on the same FFR bands. And by this, we are approximating the inner-city 

model 𝜙𝑈𝐼𝐵𝐹𝐷 by a PPP of density 𝜆𝑈 (1 − exp (−
𝜆𝐵𝑆

𝑁
𝜋𝑑𝐹

2)) with choosing only the edge 

users from this model. This approximation consists an underestimate for the interference, 

because the distance between the interferers is relaxed. 
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Appendix IV.F 

𝐿𝐼𝑈𝑒,𝐼𝐵𝐹𝐷
′(𝑠3) = 𝔼𝐼𝑟[exp(−𝑠3𝐼𝑈𝑒,𝐼𝐵𝐹𝐷

′)]

= 𝔼𝜙
𝑈𝐼𝐵𝐹𝐷,𝑔𝑖

′ [ ∏ (1 − 𝔼[𝟏(𝑈n𝑖 = 𝑈n0)](1 − exp(−𝑠3𝑔𝑖
′𝑅𝑖

−𝜂)))

𝑖∈𝜙𝑈𝐼𝐵𝐹𝐷\𝑈0

]

= 𝔼𝜙𝑈𝐼𝐵𝐹𝐷

[
 
 
 
 

∏

(

 
 
1 − (

1 − exp (−
𝜆𝐵𝑆
𝑁
𝜋𝑑𝐹

2)

1 − exp(−𝜆𝐵𝑆𝜋𝑑𝐹
2)
) (1 − 𝑝𝑐2) (1 −

𝜇

𝜇 + 𝑠3𝑅𝑖
−𝜂)

)

 
 

𝑖∈𝜙𝑈𝐼𝐵𝐹𝐷\𝑈0
]
 
 
 
 

= (𝑎) exp

(

 
 
−2𝜋𝜆𝑈𝐼𝐵𝐹𝐷∫

(

  
 
1

∞

𝑟

−

(

 
 
1 − (

1 − exp (−
𝜆𝐵𝑆
𝑁
𝜋𝑑𝐹

2)

1 − exp(−𝜆𝐵𝑆𝜋𝑑𝐹
2)
) (1 − 𝑝𝑐2) (1 −

𝜇

𝜇 + 𝑠3𝑥
−𝜂
)

)

 
 

)

  
 
𝑥𝑑𝑥

)

 
 

 

Where it is solved similarly to 𝐿𝐼𝐵𝑆′ (𝜇
𝑃𝑠1𝐿𝑝1𝑟

𝜂𝑇

𝑃𝑠1𝐿𝑝1
), where (a) the density 𝜆𝑈𝐼𝐵𝐹𝐷 =

𝜆𝑈(1 − exp(−𝜆𝐵𝑆𝜋𝑑𝐹
2)). 

Appendix IV.G 

Upper bound for the LT of 𝐼𝑈𝐼𝐵𝐹𝐷case 2: 

We start by the LT conditioned on the distances 𝑟0 and 𝑟1. Where 𝑟0 is the distance between the 

typical user and the center of the same IBFD disk that contains the interfering users i.e. this 

center is the location of the serving BS. And 𝑟1 is the distance between the typical user and the 

second BS that forms the center of the second nearest IBFD disk. Figure 4.4 (a) clarifies these 

distances, where we use the terms 𝑏(𝑟0, 𝑑𝐹) and 𝑏(𝑟1, 𝑑𝐹) to describe these disks. 

𝐿𝐼𝑈𝐼𝐵𝐹𝐷|𝑟0,𝑟1
(𝑠) ≤ 𝔼 [exp(−𝑠 ∑ 𝑔𝑖𝑅𝑖

−𝜂

𝑖∈𝛷𝑈∩𝑏(𝑟0,𝑑𝐹)+𝑖∈𝛷𝑈∩𝑏(𝑟1,𝑑𝐹)

)]

= 𝔼𝛷𝑈 [ ∏ 𝔼𝑔𝑖[exp(−𝑠𝑔𝑖𝑅𝑖
−𝜂)]

𝑖∈𝛷𝑈∩𝑏(𝑟0,𝑑𝐹)+𝑖∈𝛷𝑈∩𝑏(𝑟1,𝑑𝐹)

] 

= 𝔼𝛷𝑈 [ ∏
𝜇

𝜇 + 𝑠𝑅𝑖
−𝜂

𝑖∈𝛷𝑈∩𝑏(𝑟0,𝑑𝐹)+𝑖∈𝛷𝑈∩𝑏(𝑟1,𝑑𝐹)

] = (𝑎) exp(−𝜆𝑈 ∫
1

1 +
𝜇𝑥𝜂

𝑠

𝑑𝑥

𝑏(𝑟0,𝑑𝐹)+𝑏(𝑟1,𝑑𝐹)

)

= exp(−𝜆𝑈 ( ∫
1

1 +
𝜇𝑥𝜂

𝑠

𝑑𝑥

𝑏(𝑟0,𝑑𝐹)

+ ∫
1

1 +
𝜇𝑥𝜂

𝑠

𝑑𝑥

𝑏(𝑟1,𝑑𝐹)

)) 

Where both terms in (a) follows from the PGFL of PPP of ΦU. 
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= (𝑏) exp

(

  
 
−𝜆𝑈

(

 
 
2𝜋 ∫

1
𝜋
cos−1 (

𝑥2 + 𝑟0
2 − 𝑑𝐹

2

2𝑟0𝑥
)

1 +
𝜇𝑥𝜂

𝑠

𝑥𝑑𝑥

𝑟0+𝑑𝐹

𝑟0−𝑑𝐹

+ 2𝜋 ∫

1
𝜋
cos−1 (

𝑥2 + 𝑟1
2 − 𝑑𝐹

2

2𝑟1𝑥
)

1 +
𝜇𝑥𝜂

𝑠

𝑥𝑑𝑥

𝑟0+𝑑𝐹

𝑟0−𝑑𝐹

)

 
 

)

  
 

= exp (−2𝜆𝑈(𝐴1(𝑠, 𝑟0, 𝑑𝐹) + 𝐴1(𝑠, 𝑟1, 𝑑𝐹))) 

Where 𝐴1(𝑠, 𝑟0, 𝑑𝐹) = ∫
cos−1(

𝑥2+𝑟0
2−𝑑𝐹

2

2𝑟0𝑥
)

1+
𝜇𝑥𝜂

𝑠

𝑥𝑑𝑥
𝑟0+𝑑𝐹
𝑟0−𝑑𝐹

 

Where second term in (b) follows from the cosine law: 𝑥2 + 𝑟0
2 − 2𝑥𝑟0𝑐𝑜𝑠𝜃(𝑥) = 𝑑𝐹

2 in which 

𝜆(𝑥) =
𝜆𝑈

𝜋
cos−1 (

𝑥2+𝑟0
2−𝑑𝐹

2

2𝑟0𝑥
) [63]. 

We note that this formula does not account for the overlap between the two holes. So, at big 

dF or high density of the points at center (ΦBS), the formula will not give a lower bound because 

the users in the shared area between the two disks will be accounted two times. 

Next, we decondition on the distances ||r0|| and ||r1||. This is done by getting the joint PDF of 

the distance: 

 𝑓𝑅0,𝑅1(𝑟0, 𝑟1) = 𝑓𝑅1(𝑟1|𝑟0)𝑓𝑅0(𝑟0, 𝑟 < 𝑑𝐹) = 2𝜋𝜆𝐵𝑆𝑟1
exp(−𝜋𝜆𝐵𝑆𝑟1

2)

exp(−𝜋𝜆𝐵𝑆𝑟02)
2𝜋𝜆𝐵𝑆𝑟0 exp(−𝜋𝜆𝐵𝑆𝑟0

2) =

(2𝜋𝜆𝐵𝑆)
2𝑟0𝑟1 exp(−𝜋𝜆𝐵𝑆𝑟1

2)  

Then, we decondition the result on r0 and r1 by using the joint PDF: 

𝐿𝐼𝑈𝐼𝐵𝐹𝐷
(𝑠) ≤ ∫ ∫(2𝜋𝜆𝐵𝑆)

2𝑟0𝑟1 exp(−𝜋𝜆𝐵𝑆𝑟1
2) exp (−2𝜆𝑈(𝐴1(𝑟0, 𝑑𝐹) + 𝐴1(𝑟1, 𝑑𝐹))) 𝑑𝑟1𝑑𝑟0

∞

𝑟0

𝑑𝐹

0

    (1) 

To account for the possible overlap between the two disks, we can follow two ways, either 

subtract the overlap and this will lead to some complexity in the formula because the overlap 

will depend on many conditions. Or, we can simply avoid it, so instead of trying to incorporate 

the exact effect of overlaps, we say that the nearest disk is bounded by: 

𝐴2(𝑠, 𝑟1, 𝑑𝐹 , 𝑟0) = ∫
cos−1(

𝑥2+𝑟12−𝑑𝐹
2

2𝑟1𝑥
)

1+
𝜇𝑥𝜂

𝑠

𝑥𝑑𝑥
𝑟1+𝑑𝐹
max(𝑟1−𝑑𝐹,𝑟0+𝑑𝐹)

 instead of 𝐴1(𝑠, 𝑟1, 𝑑𝐹) =

∫
cos−1(

𝑥2+𝑟12−𝑑𝐹
2

2𝑟1𝑥
)

1+
𝜇𝑥𝜂

𝑠

𝑥𝑑𝑥
𝑟1+𝑑𝐹
𝑟1−𝑑𝐹

 

Upper bound for the LT of 𝐼𝑈𝐼𝐵𝐹𝐷case 1: 

Is similar to case 2, but we calculate the interference from one disk 𝑏(𝑟0, 𝑑𝐹). So, 𝑟1 does not 

exist which leads to less tighter result. 

Lower bound for the LT of 𝐼𝑈𝐼𝐵𝐹𝐷: 

𝐿𝐼𝑈𝐼𝐵𝐹𝐷
(𝑠) = 𝔼 [exp(−𝑠 ∑ 𝑔𝑖𝑅𝑖

−𝜂

𝑖∈𝜙𝑈𝐼𝐵𝐹𝐷

)] = (𝑎)𝔼𝜙𝐵𝑆 [exp(−𝜆𝑈 ∫
1

1+
𝜇𝑥𝜂
𝑠

𝑑𝑥
𝛯

)] 
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Where (a) comes from the PGFL of PPP 𝜙𝑈 given 𝛯 which represents all the disks created by 

𝜙𝐵𝑆 with radius dF and covers the users of 𝜙𝑈 operating at IBFD. 

The exact integral over 𝛯 is not easy to compute due to the possible overlap between the disks. 

So, we compute the interference from the users in the IBFD disks without accounting for the 

overlaps which results in overestimate in interference. For that the lower bound is used in our 

case (inner-city model) which is: 

∫
1

1+
𝜇𝑥𝜂

𝑠

𝑑𝑥
𝛯

≤ ∑ ∫
1

1+
𝜇𝑥𝜂

𝑠

𝑑𝑥
𝑏(𝑖,𝑑𝐹)𝑖∈𝜙𝐵𝑆   −∫

1

1+
𝜇𝑥𝜂

𝑠

𝑑𝑥
𝛯

≥ −∑ ∫
1

1+
𝜇𝑥𝜂

𝑠

𝑑𝑥
𝑏(𝑖,𝑑𝐹)𝑖∈𝜙𝐵𝑆  

Where we have an equality when there is no overlap between the disks, i.e. dF and density 

λBS are small. Thus: 

𝐿𝐼𝑈𝐼𝐵𝐹𝐷
(𝑠) ≥ 𝔼𝜙𝐵𝑆 [exp (−𝜆𝑈 ∑ ∫

1

1 +
𝜇𝑥𝜂

𝑠

𝑑𝑥

𝑏(𝑦,𝑑𝐹)𝑦∈𝜙𝐵𝑆

)] = (𝑏)𝔼𝜙𝐵𝑆 [ ∏ exp(−2𝜆𝑈𝐴1(𝑠, 𝑦, 𝑑𝐹))

𝑦∈𝜙𝐵𝑆

]

= exp [−2𝜋𝜆𝐵𝑆∫ (1 − exp(−2𝜆𝑈𝐴1(𝑠, 𝑦, 𝑑𝐹))) 𝑦𝑑𝑦

∞

0

] 

With 𝐴1(𝑠, 𝑦, 𝑑𝐹) = ∫
cos−1(

𝑥2+𝑦2−𝑑𝐹
2

2𝑦𝑥
)

1+
𝜇𝑥𝜂

𝑠

𝑥𝑑𝑥
𝑦+𝑑𝐹
𝑦−𝑑𝐹

 

Upper bound for the LT of 𝐼𝑈𝑒,𝐼𝐵𝐹𝐷
′case 2: 

At first, following the same approach we get the interference upper bound for 

𝐿𝐼𝑈𝑒,𝐼𝐵𝐹𝐷
(𝜇

𝑃𝑠2𝐿𝑝2𝑟
𝜂𝑇

𝑃𝑠1𝐿𝑝1
) which is the interference from edge users operating at IBFD without 

applying the FFR scheme. 

Then we apply the FFR scheme which will get 𝐿𝐼𝑈𝑒,𝐼𝐵𝐹𝐷
′ (𝜇

𝑃𝑠2𝐿𝑝2𝑟
𝜂𝑇

𝑃𝑠1𝐿𝑝1
) 

These users are in the region of disk dF and outside the region of 𝑆𝐼𝑁𝑅1 > 𝑇𝑒𝑑𝑔𝑒, to keep 

ourselves dealing with inner city models (areas of disks) and to simply things we approximate 

this region (SINR>Tedge) with a disk of radius 𝑎1 = 𝑝𝑐2
′𝑑𝐹 = 𝑑𝐹

ℙ[𝑆𝐼𝑁𝑅1>𝑇𝑒𝑑𝑔𝑒 ,𝑟<𝑑𝐹]

ℙ[𝑟<𝑑𝐹]
=

𝑑𝐹
2𝜋𝜆𝐵𝑆𝑟

1−exp(−𝜋𝜆𝐵𝑆𝑑𝐹
2)
∫ 𝑒

−𝜇
𝑟𝜂𝑇𝑒𝑑𝑔𝑒(𝑃𝑛+𝛽𝑃𝑠2)

𝑃𝑠1𝐿𝑝1
 −𝜋𝜆𝐵𝑆𝑟

2(1+(𝑇𝑒𝑑𝑔𝑒)
2
𝜂 ∫

𝑑𝑦

1+𝑦
𝜂
2⁄

∞

𝑇𝑒𝑑𝑔𝑒
−2

𝜂⁄
)−𝜋𝜆𝑈𝐼𝐵𝐹𝐷𝑟

2(
𝑃𝑠2𝐿𝑝2𝑇𝑒𝑑𝑔𝑒

𝑃𝑠1𝐿𝑝1
)

2
𝜂
∫

𝑑𝑦

1+𝑦
𝜂
2⁄

∞
0

𝑑𝑟
𝑑𝐹
0

 

Where 𝑝𝑐2
′ is obtained from the probability of having 𝑆𝐼𝑁𝑅1 greater than 𝑇𝑒𝑑𝑔𝑒 inside the IBFD 

disk, and we assume this by using one of the definitions of the probability of coverage. Which 

is the average fraction of the network area that has 𝑆𝐼𝑁𝑅 greater than 𝑇𝑒𝑑𝑔𝑒 at any time. We 

understand that such approximation may not be very accurate because the coverage region is 

not circular due to the fading and different interferers, but we see it as a necessary 

approximation to keep the tractability of the model. Furthermore, such definition will work 

with any network configuration, and it will fit as a statistical approximation. In Figure 4.17, we 

compare this approximation to the real edge and core users existing in the network, the same 

accuracy holds for a lot of different network inputs. 
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Figure 4.17: Approximating the region separating the core-edge users as circular for the network 

configuration 𝐝𝐅 = 𝟎. 𝟑 𝐤𝐦 and 𝐓𝐞𝐝𝐠𝐞 = −𝟏 𝐝𝐁. 

So, we approximate the edge users operating at IBFD in the same disk by 𝑏0 = 𝑏(𝑟0, 𝑑𝐹) −

𝑏(𝑟0, 𝑎1) and the other nearest disk by 𝑏1 = 𝑏(𝑟1, 𝑑𝐹) − 𝑏(𝑟1, 𝑎1). This can be clarified by 

checking Figure 4.3. 

𝐿𝐼𝑈𝑒,𝐼𝐵𝐹𝐷|𝑟0,𝑟1
(𝜇
𝑃𝑠2𝐿𝑝2𝑟

𝜂𝑇

𝑃𝑠1𝐿𝑝1
) ≤ 𝔼 [exp(− 𝑠2 ∑ 𝑔𝑖𝑅𝑖

−𝜂

𝑖∈𝛷𝑈∩𝑏0+𝑖∈𝛷𝑈∩𝑏1

)]

= 𝔼𝛷𝑈 [ ∏ 𝔼𝑔𝑖[exp(−𝑠2𝑔𝑖𝑅𝑖
−𝜂)]

𝑖∈𝛷𝑈∩𝑏0+𝑖∈𝛷𝑈∩𝑏1

] = (𝑎)𝔼𝛷𝑈 [ ∏
1

1 +
𝑠2𝑅𝑖

−𝜂

𝜇𝑖∈𝛷𝑈∩𝑏0+𝑖∈𝛷𝑈∩𝑏1

] 

= exp

(

 
 
−𝜆𝑈( ∫

1

1 +
𝜇𝑥𝜂

𝑠2

𝑑𝑥

𝑏0𝑈𝑏1

)

)

 
 
= exp

(

 
 
−𝜆𝑈(∫

1

1 +
𝜇𝑥𝜂

𝑠2

𝑑𝑥

𝑏0

+ ∫
1

1 +
𝜇𝑥𝜂

𝑠2

𝑑𝑥

𝑏1

)

)

 
 

 

= (𝑏) exp

(

 
 
−𝜆𝑈 ( ∫

1

1 +
𝜇𝑥𝜂

𝑠2

𝑑𝑥

b(r0,dF)

− ∫
1

1 +
𝜇𝑥𝜂

𝑠2

𝑑𝑥

𝑏(𝑟0,𝑎1)

+ ∫
1

1 +
𝜇𝑥𝜂

𝑠2

𝑑𝑥

b(r1,dF)

− ∫
1

1 +
𝜇𝑥𝜂

𝑠2

𝑑𝑥

𝑏(𝑟1,𝑎1)

)

)

 
 

 

Where (a) follows from Rayleigh fading and (b) follows from the definition of the regions 𝑏0 

and 𝑏1. 

𝐿𝐼𝑈𝑒,𝐼𝐵𝐹𝐷|𝑟0,𝑟1
(𝜇
𝑃𝑠2𝐿𝑝2𝑟

𝜂𝑇

𝑃𝑠1𝐿𝑝1
)

≤ exp (−2𝜆𝑈(𝐴1(𝑠3, 𝑟0, 𝑑𝐹) − 𝐴1(𝑠3, 𝑟0, 𝑎1))) exp (−2𝜆𝑈(𝐴2(𝑠3, 𝑟1, 𝑑𝐹 , 𝑟0) − 𝐴3(𝑠3, 𝑟1, 𝑎1, 𝑟0, 𝑑𝐹))) 
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𝐴1(𝑠3, 𝑟0, 𝑑𝐹) = ∫

cos−1(
𝑥2+𝑟0

2−𝑑𝐹
2

2𝑟0𝑥
)

1+ 𝜇
𝑠3
𝑥𝜂

𝑥𝑑𝑥𝑟0+𝑑𝐹
𝑟0−𝑑𝐹

 and 𝐴2(𝑠3, 𝑟1, 𝑑𝐹 , 𝑟0) =

∫

cos−1(
𝑥2+𝑟1

2−𝑑𝐹
2

2𝑟1𝑥
)

1+ 𝜇
𝑠3
𝑥𝜂

𝑥𝑑𝑥𝑟1+𝑑𝐹
max(𝑟1−𝑑𝐹,𝑟0+𝑑𝐹)

 

Where 𝐴3(𝑠3, 𝑟1, 𝑎1, 𝑟0, 𝑑𝐹) = ∫
cos−1(

𝑥2+𝑟1
2−𝑎1

2

2𝑟1𝑥
)

1+
𝜇

𝑠3
𝑥𝜂

𝑥𝑑𝑥
max(𝑟1+𝑎1,𝑟0+𝑑𝐹)

max(𝑟1−𝑎1,𝑟0+𝑑𝐹)
 

We similarly decondition on 𝑟0 and 𝑟1 to get the final results for the two cases. 

Lower bound for the LT of 𝐼𝑈𝑒,𝐼𝐵𝐹𝐷
′: 

Lower bound can be derived similarly as that in 𝐼𝑈𝐼𝐵𝐹𝐷 case. 

Define the difference between the inner-city model of radius 𝑑𝐹 and the disks which consists 

another inner-city model with radius  𝑎1 = 𝑝𝑐2𝑑𝐹 as 𝛯𝑐1 = 𝛯𝑑𝐹 − 𝛯𝑎1 

𝐿𝐼𝑈𝑒,𝐼𝐵𝐹𝐷
(𝜇
𝑃𝑠2𝐿𝑝2𝑟

𝜂𝑇

𝑃𝑠1𝐿𝑝1
) = 𝐿𝐼𝑈𝑒,𝐼𝐵𝐹𝐷

(𝑠3) = 𝔼 [exp(−𝑠3 ∑ 𝑔𝑖𝑅𝑖
−𝜂

𝑖∈𝛯𝑐1

)]

= 𝔼𝜙𝐵𝑆 [exp(−𝜆𝑈 ∫
1

1 +
𝜇𝑥𝜂

𝑠3

𝑑𝑥

𝛯𝑐1

)]

= 𝔼𝜙𝐵𝑆

[
 
 
 
 

exp

(

 
 
−𝜆𝑈 ( ∫

1

1 +
𝜇𝑥𝜂

𝑠3

𝑑𝑥

𝛯𝑑𝐹

− ∫
1

1 +
𝜇𝑥𝜂

𝑠3

𝑑𝑥

𝛯𝑎1

)

)

 
 

]
 
 
 
 

≥ (𝑎)𝔼𝜙𝐵𝑆 [ ∏ exp (−2𝜆𝑈(𝐴1(𝑠3, 𝑦, 𝑑𝐹)−𝐴1(𝑠3, 𝑦, 𝑎1)))
𝑦∈𝜙𝐵𝑆

] 

= exp [−2𝜋𝜆𝐵𝑆∫ (1 − exp (−2𝜆𝑈(𝐴1(𝑠3, 𝑦, 𝑑𝐹)−𝐴1(𝑠3, 𝑦, 𝑎1)))) 𝑦𝑑𝑦

∞

0

] 

And we get 𝐼𝑈𝑒,𝐼𝐵𝐹𝐷
′ from 𝐼𝑈𝑒,𝐼𝐵𝐹𝐷 by substituting 𝜆𝐵𝑆 by 

𝜆𝐵𝑆

𝑁
 

𝐿𝐼𝑈𝑒,𝐼𝐵𝐹𝐷
′ (𝜇

𝑃𝑠2𝐿𝑝2𝑟
𝜂𝑇

𝑃𝑠1𝐿𝑝1
) ≥ 𝔼𝜙𝐵𝑆 [ ∏ exp (−2𝜆𝑈(𝐴1(𝑠3, 𝑦, 𝑑𝐹)−𝐴1(𝑠3, 𝑦, 𝑎1)))

𝑦∈𝜙𝐵𝑆

]

= exp [−2𝜋
𝜆𝐵𝑆
𝑁
∫ (1 − exp (−2𝜆𝑈(𝐴1(𝑠3, 𝑦, 𝑑𝐹)−𝐴1(𝑠3, 𝑦, 𝑎1)))) 𝑦𝑑𝑦

∞

0

] 

Where (a) is the same as before, it is greater than because we are not accounting for the 

overlap between the disks. And (b) from the PGFL of PPP ΦBS. 

Upper and Lower bounds for the LT of 𝐼𝑈𝐼𝐵𝐹𝐷 

The joint LT of 𝐼𝑈𝑒,𝐼𝐵𝐹𝐷
′, 𝐼𝑈𝐼𝐵𝐹𝐷 is derived in a similar fashion. 

Upper bound for the LT of 𝐼𝑈𝑒,𝐼𝐵𝐹𝐷
′, 𝐼𝑈𝐼𝐵𝐹𝐷case 2 and 1: 
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𝐿𝐼𝑈𝑒,𝐼𝐵𝐹𝐷
′,𝐼𝑈𝐼𝐵𝐹𝐷|𝑟0,𝑟1

(𝜇
𝑃𝑠2𝐿𝑝2𝑟

𝜂

𝑃𝑠1𝐿𝑝1
𝑇, 𝜇

𝑃𝑠2𝐿𝑝2𝑟
𝜂

𝑃𝑠1𝐿𝑝1
𝑇𝑒𝑑𝑔𝑒)

≤ 𝔼 [exp( 𝑠3 ∑ 𝑔𝑖
′𝑅𝑖

−𝜂

𝑦∈𝛷𝑈∩(𝑏0+𝑏1)

𝟏(Un0) + 𝑠4 ∑ 𝑔𝑖𝑅𝑖
−𝜂

𝑦∈𝛷𝑈∩(𝑏(r0,,𝑑𝐹)+𝑏(r1 ,,𝑑𝐹))

)] 

= (𝑎) exp

(

 
 
−𝜆𝑈( ∫

1

1 +
𝜇𝑥𝜂

𝑠4

𝑑𝑥

b(r0,dF)

+ ∫
1

1 +
𝜇𝑥𝜂

𝑠4

𝑑𝑥

𝑏(r1,𝑑𝐹)

)

)

 
 

[
 
 
 
 

1 − 𝔼[𝟏(Un0)]

(

 
 
1 − exp

(

 
 
−𝜆𝑈(∫

1

1 +
𝜇𝑥𝜂

𝑠3

𝑑𝑥

𝑏0

+ ∫
1

1 +
𝜇𝑥𝜂

𝑠3

𝑑𝑥

𝑏1

)

)

 
 

)

 
 

]
 
 
 
 

= (𝑏) exp

(

 
 
−𝜆𝑈( ∫

1

1 +
𝜇𝑥𝜂

𝑠4

𝑑𝑥

b(r0,dF)

+ ∫
1

1 +
𝜇𝑥𝜂

𝑠4

𝑑𝑥

𝑏(r1,𝑑𝐹)

)

)

 
 

[
 
 
 
 

1

−
1

𝑁

(

 
 
1− exp

(

 
 
−𝜆𝑈 ( ∫

1

1 +
𝜇𝑥𝜂

𝑠3

𝑑𝑥

b(r0,dF)

− ∫
1

1 +
𝜇𝑥𝜂

𝑠3

𝑑𝑥

𝑏(r0,𝑎1)

+ ∫
1

1 +
𝜇𝑥𝜂

𝑠3

𝑑𝑥

b(r1,dF)

− ∫
1

1 +
𝜇𝑥𝜂

𝑠3

𝑑𝑥

𝑏(r1,𝑎1)

)

)

 
 

)

 
 

]
 
 
 
 

= (𝑐) exp (−2𝜆𝑈(𝐴1(𝑠4, 𝑟0, 𝑑𝐹) + 𝐴2(𝑠4, 𝑟1, 𝑑𝐹 , 𝑟0))) [1

−
1

𝑁
(1 − exp (−2𝜆𝑈(𝐴1(𝑠3, 𝑟0, 𝑑𝐹) − 𝐴1(𝑠3, 𝑟0, 𝑎1) + 𝐴2(𝑠3, 𝑟1, 𝑑𝐹 , 𝑟0) − 𝐴3(𝑠3, 𝑟1, 𝑎1, 𝑟0, 𝑑𝐹))))] 

 

With  

𝐴1(𝑠4, 𝑟0, 𝑑𝐹) = ∫
cos−1(

𝑥2+𝑟0
2−𝑑𝐹

2

2𝑟0𝑥
)

1+
𝜇

𝑠4
𝑥𝜂

𝑥𝑑𝑥
𝑟0+𝑑𝐹

𝑟0−𝑑𝐹
 and  

𝐴2(𝑠4, 𝑟1, 𝑑𝐹 , 𝑟0) = ∫
cos−1(

𝑥2+𝑟1
2−𝑑𝐹

2

2𝑟1𝑥
)

1+
𝜇

𝑠4
𝑥𝜂

𝑥𝑑𝑥
𝑟1+𝑑𝐹

max(𝑟1−𝑑𝐹,𝑟0+𝑑𝐹)
  

𝐴3(𝑠3, 𝑟1, 𝑎1, 𝑟0, 𝑑𝐹) = ∫
cos−1 (

𝑥2 + 𝑟1
2 − 𝑎1

2

2𝑟1𝑥
)

1 +
𝜇
𝑠3
𝑥𝜂

𝑥𝑑𝑥

max(𝑟1+𝑎1,𝑟0+𝑑𝐹)

max(𝑟1−𝑎1,𝑟0+𝑑𝐹)

 

the same applies for other A1 and A2 with different parameters 

Where in (a) we have used the same approach to account for the FFR scheme, and in (b) the 

expectation of indicator function is equivalent to making thinning N on the density of the disks 

(i.e. the disk center i.e. λBS). In (c) we have used again A3 which is needed because sometimes 

r0+dF may be bigger than r1+a1 or r1-a1, so the disk b(r1,a1) may not exist or we may need to 

not account all of it (see previous figure second drawing which shows that r0+dF is bigger than 

r1+a1 so in second disk we only account for the area from r0+dF to r1+dF and we don’t need 

to subtract any area from disk b(r1,a1) ). 

We note that in (a) we can use a different approach to account for nearest interfering disk with 

applying the FFR with reuse N. This approach is to don’t use the indicator function 1(.), but 

rather use the nearest ‘N’ disk rather than the first nearest disk with the indicator function. But, 

such an approach will require to use a joint pdf for the distance of the centers of the disks r0,r1 

and rN (when we de-condition the Laplace formula on r), which will result in a complex 

equation, and I don’t know if such PDF exists. Thus, we see that using the indicator function 

will be better because it will make thinning on the density λBS by N. Which will account for 

the FFR scheme. 

Then, we de-condition on r0 and r1 to get the final result. 
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Lower bound for the LT of 𝐼𝑈𝑒,𝐼𝐵𝐹𝐷
′, 𝐼𝑈𝐼𝐵𝐹𝐷: 

We take all the disks of the inner-city model 𝛯𝑐1 = 𝛯𝑑𝐹 − 𝛯𝑎1 where from the definition 

dF>a1, else they do not exist. And we apply 
𝜆𝐵𝑆

𝑁
 on I-{Ue-IBFD}’ which will account for the 

st-FFR. 

𝐿𝐼𝑈𝑒,𝐼𝐵𝐹𝐷
′,𝐼𝑈𝐼𝐵𝐹𝐷

(𝜇
𝑃𝑠2𝐿𝑝2𝑟

𝜂

𝑃𝑠1𝐿𝑝1
𝑇, 𝜇

𝑃𝑠2𝐿𝑝2𝑟
𝜂

𝑃𝑠1𝐿𝑝1
𝑇𝑒𝑑𝑔𝑒)

= (𝑎) 𝔼 [exp(−𝑠3 ∑ 𝑔𝑦
′𝑅𝑦

−𝜂𝟏(n𝑦 = n0)

𝑦∈𝛯𝑐1

− 𝑠4 ∑ 𝑔𝑦𝑅𝑦
−𝜂

𝑦∈𝛯𝑑𝐹

)]

= 𝔼𝜙𝐵𝑆

[
 
 
 
 

exp

(

 
 
−𝜆𝑈 (𝟏(Un0) ∫

1

1 +
𝜇𝑥𝜂

𝑠3

𝑑𝑥

𝛯𝑐1

+ ∫
1

1 +
𝜇𝑥𝜂

𝑠4

𝑑𝑥

𝛯𝑑𝐹

)

)

 
 

]
 
 
 
 

 

Where the indicator function in (a) indicates that only the edge users that uses the same FFR 

bands are causing interference.  

≥ (𝑏)𝔼𝜙𝐵𝑆 [ ∏ exp(−2𝜆𝑈𝐴1(𝑠4, 𝑦,𝑑𝐹)) [1 − 𝔼[𝟏(Un0)] (1 − exp (−2𝜆𝑈(𝐴1(𝑠3, 𝑦,𝑑𝐹) − 𝐴1(𝑠3, 𝑦,𝑎1))))]
𝑦∈𝜙𝐵𝑆

]

= 𝔼𝜙𝐵𝑆 [ ∏ exp(−2𝜆𝑈𝐴1(𝑠4, 𝑦,𝑑𝐹)) [1
𝑦∈𝜙𝐵𝑆

−
1

𝑁
(1 − exp (−2𝜆𝑈(𝐴1(𝑠3, 𝑦,𝑑𝐹) − 𝐴1(𝑠3, 𝑦,𝑎1))))]] 

 

𝐿𝐼𝑈𝑒,𝐼𝐵𝐹𝐷
′,𝐼𝑈𝐼𝐵𝐹𝐷

(𝜇
𝑃𝑠2𝐿𝑝2𝑟

𝜂

𝑃𝑠1𝐿𝑝1
𝑇, 𝜇

𝑃𝑠2𝐿𝑝2𝑟
𝜂

𝑃𝑠1𝐿𝑝1
𝑇𝑒𝑑𝑔𝑒) ≥ exp [−2𝜋𝜆𝐵𝑆∫(1 − ξ(y))𝑦𝑑𝑦

∞

0

] 

Where ξ(𝑦) = exp(−2𝜆𝑈𝐴1(𝑠4, 𝑦,𝑑𝐹)) [1 −
1

𝑁
(1 − exp (−2𝜆𝑈(𝐴1(𝑠3, 𝑦,𝑑𝐹) − 𝐴1(𝑠3, 𝑦,𝑎1))))] 

 

 

Appendix IV.H 

Upper bound for the LT of 𝐼𝑈𝑐,𝐼𝐵𝐹𝐷 , 𝐼𝑈𝐼𝐵𝐹𝐷 case 2 and 1: 

The interference 𝐼𝑈𝐼𝐵𝐹𝐷  and 𝐼𝑈𝑐,𝐼𝐵𝐹𝐷 are shown in Figure 4.3 (a) and (b) respectively. Its joint 

LT is obtained in a similar manner, where for case 2, 𝐼𝑈𝑐,𝐼𝐵𝐹𝐷 is evaluated at 𝑏(𝑟0, 𝑎1) and 

𝑏(𝑟1, 𝑎1), while 𝐼𝑈𝐼𝐵𝐹𝐷  is evaluated at b(r0, 𝑑𝐹) and b(r1, 𝑑𝐹). For case 1, we only evaluate at 

r0. 

Lower bound for the LT of 𝐼𝑈𝑐,𝐼𝐵𝐹𝐷 , 𝐼𝑈𝐼𝐵𝐹𝐷: 
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We have the inner-city model for the core users operating at IBFD 𝛯𝑎1of radius 𝑎1, and the 

inner city model for the IBFD users 𝛯𝑑𝐹of radius dF. 

𝐿𝐼𝑈𝑐,𝐼𝐵𝐹𝐷,𝐼𝑈𝐼𝐵𝐹𝐷 (
𝜇
𝑃𝑠2𝐿𝑝2𝑟

𝜂

𝑃𝑠1𝐿𝑝1
max {𝑇, 𝑇𝑒𝑑𝑔𝑒}, 𝜇

𝑃𝑠2𝐿𝑝2𝑟
𝜂

𝑃𝑠1𝐿𝑝1
𝑇𝑒𝑑𝑔𝑒)= 𝔼 [exp(−𝑠5 ∑ 𝑔𝑖

′𝑅𝑖
−𝜂

𝑖∈𝛯𝑎1

−𝑠4 ∑ 𝑔𝑖𝑅𝑖
−𝜂

𝑖∈𝛯𝑑𝐹

)]

= (𝑎)𝔼𝜙𝐵𝑆

[
 
 
 
 

exp

(

 
 
−𝜆𝑈( ∫

1

1+ 𝜇𝑥
𝜂

𝑠5

𝑑𝑥
𝛯𝑎1

+ ∫
1

1+ 𝜇𝑥
𝜂

𝑠4

𝑑𝑥
𝛯𝑑𝐹

)

)

 
 

]
 
 
 
 

≥ 𝔼𝜙𝐵𝑆 [exp( ∏ exp (−2𝜆𝑈 (𝐴1(𝑠5, 𝑦,𝑎1)+𝐴1 (𝑠4, 𝑦,𝑑𝐹)))
𝑦∈𝜙𝐵𝑆

)]

= exp [−2𝜋𝜆𝐵𝑆∫ (1− exp (−2𝜆𝑈 (𝐴1(𝑠5,𝑦,𝑎1)+𝐴1 (𝑠4, 𝑦,𝑑𝐹))))𝑦𝑑𝑦
∞

0

] 

With 𝐴1(𝑠, 𝑦, 𝑑𝐹) = ∫
cos−1(

𝑥2+𝑦2−𝑑𝐹
2

2𝑦𝑥
)

1+
𝜇𝑥𝜂

𝑠

𝑥𝑑𝑥
𝑦+𝑑𝐹
𝑦−𝑑𝐹

 and 𝐴1(𝑠, 𝑦, 𝑎1) = ∫
cos−1(

𝑥2+𝑦2−𝑎1
2

2𝑦𝑥
)

1+
𝜇𝑥𝜂

𝑠

𝑥𝑑𝑥
𝑦+𝑎1
𝑦−𝑎1
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