
AMERICAN UNIVERSITY OF BEIRUT

CONTEXT-AWARE DYNAMIC DESIGNS
FOR ENERGY EFFICIENT MOBILE

SENSING

by

SIRINE HASSAN TALEB

A dissertation
submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy
to the Department of Electrical and Computer Engineering

of the Faculty of Engineering and Architecture
at the American University of Beirut

Beirut, Lebanon
April 2017

Acknowledgements

First and foremost, my profound praises and thanks to the Almighty, Allah,
for His showers of blessings throughout my research work, and for bestowing upon
me the knowledge to reach my goals.

There are no proper words to convey my sincere gratitude and respect for my
thesis advisors, Professor Hazem Hajj and Professor Zaher Dawy, for their con-
tinuous guidance, patience, advice and encouragement throughout my doctoral
study. They have always encouraged me to strive to overcome the challenges I
thought unsolvable. Both provided me with exceptional mentorship which has
positively influenced my problem-solving and research skills. Their profound
knowledge and dedication will remain an inspiration for me throughout my fu-
ture career. It has been an honor and privilege to work under their guidance.

I would like to acknowledge my thesis committee members, Prof. Ayman
Kayssi, Prof. Fadi Karameh, Prof. Wassim El Hajj, Prof. Brian Evans, and
Prof. Rached Zantout for generously granting me their time, support, guidance,
and constructive comments. I would also like to thank the American University of
Beirut for offering me the opportunity to join its accelerated PhD track, the De-
partment of Electrical and Computer Engineering, the AUB University Research
Board (URB), King Abdulaziz City for Science and Technology (KACST), and
the National Council for Scientific Research - Lebanon (CNRS-L) which granted
me the CNRS-L/AUB doctoral scholarship to support my PhD study.

I am extremely grateful to my parents, Hassan and Samia, for their love and
prayers. They have taught me, and showed me, the meaning of hard work and
persistence. Thank you both for always expressing how proud you are of me.
To my mother, thank you for being my first teacher, for providing me with un-
flinching support. To my father, thank you for being my source of inspiration
and strength throughout my life. I am also truly grateful for the love, encour-
agement, and patience of my husband, Ali. Thank you for joining me in this
journey. Without you by my side, it would not have been possible to accomplish
this dream. My very special thanks go to my baby, Karim, who was growing
inside me while writing this thesis. He was, and still is, the guiding light which
made all the difference in my life, and who motivated me to successfully finish
this work.

v

I also express my thanks to my entire extended family for always showing
confidence in me, and supporting me to complete this thesis successfully. I owe
thanks to a very special person, my Aunt, Samira for her generous care and
valuable prayers. I appreciate the love and unconditional support of my in-laws.

Last, but certainly not least, I would like to gratefully acknowledge the sup-
port of my friends and colleagues. Special thanks go to my friend and sister,
Nadine, for her frequent support and help. To my roommate and sister, Maya,
thank you for helping me get through difficult times. I am indebted to my many
colleagues who provided a stimulating and inspiring work environment. I am
grateful to Rasha, Lama, Gilbert, Ramy, Reem, Carine, and Wissam. Special
thanks to my AUB friends: Nour, Al Zahraa, Nadine, Layal, and Raneem. I
would also like to thank my best friends since school: Eman, Zainab, Nouhad,
Mariam, Lamis, Fatima, and Sara.

Finally, my deep gratitude goes to all the people who have encouraged me to
complete this scholarly journey.

An Abstract of the Dissertation
of

Sirine Hassan Taleb for Doctor of Philosophy
Major: Electrical and Computer Engineering

Title: Context-Aware Dynamic Designs for Energy Efficient Mobile Sensing

Technological advances in the past decade have driven a significant evolu-
tion of various technologies towards Internet of Things (IoT) in domains such
as sensing, communications, and computing. In particular, today’s smart mo-
bile devices have become equipped with various specialized sensors and can be
augmented with external wearable sensors to collect vital data. As a result, new
context recognition applications have been developed to understand and analyze
user’s context such as activity, location or health conditions. Often times, mul-
tiple context applications are running simultaneously on smart devices placing
strenuous demands on their battery-limited resources. As a result, to support the
growing requirement and proliferation of such applications in IoT, there is a need
to optimize the usage of the limited computing and sensing resources. To this
end, this dissertation proposes a novel context-aware dynamic sensing framework
that enhances the trade-off between energy consumption and accuracy in con-
text detection and recognition. The goal is to have decisions customized for each
context, and thus develop optimized context-aware designs for three aspects of
sensor usage: how many samples to collect every time a sensor is triggered, when
to schedule sensors’ data collection, and which sensors to use. For the choice of
sensors’ samples, we propose two sampling mechanisms, where one is based on
information theory, and the second is based on recent advances in deep learning.
For sensor scheduling, we design an optimized real-time strategy based on the
Viterbi algorithm with customized rewards to decide dynamically on when to
trigger the sensors for data collection. Finally, for sensor selection, we develop
a new mechanism to alleviate the energy limitations by considering synergy in
sensor usage in multi-context setting. A new context ontology is built to sup-
port the framework selection strategy and the extraction of commonalities and

vii

differences between multiple context recognition models along with descriptive
specifications for each model. The ontology enables the framework generaliza-
tion and application to any context already captured. Performance evaluations
of the proposed framework components for a wide range of scenarios demonstrate
their effectiveness and applicability compared to state-of-the-art techniques from
the literature.

Contents

Acknowledgements v

Abstract vii

List of Figures xii

List of Tables xvi

1 Introduction 1

1.1 Motivation . 1

1.2 Challenges . 4

1.3 Thesis Overview and Proposed Framework 5

1.4 Dissertation Structure . 8

1.4.1 Chapter 2: Background and Literature Review 9

1.4.2 Chapter 3: Sensor Sampling 9

1.4.3 Chapter 4: Sensor Scheduling 10

1.4.4 Chapter 5: Sensor Selection 10

1.4.5 Chapter 6: Conclusion and Future Work 11

2 Background and Literature Review 12

2.1 Background . 12

2.1.1 Defining Context and Context Awareness 12

2.1.2 Inferring Contextual Information 14

2.1.3 Recent Works in Context-Aware Applications 16

2.2 Literature Survey . 20

2.2.1 Context-Aware Sensing Framework Design 20

2.2.2 Energy Efficient Mobile Sensing 24

2.2.3 Sensor Sampling Approaches 24

2.2.4 Sensor Scheduling Approaches 25

2.2.5 Sensor Selection Approaches 26

2.3 Summary . 28

ix

3 Sensor Sampling: Trade-off Energy and Accuracy for Activity
Mobile Sensing 29
3.1 Entropy-based Optimization to Trade-off Energy and Accuracy for

Activity Mobile Sensing . 30
3.1.1 Proposed Method . 30
3.1.2 Experiments and Results 36
3.1.3 Summary . 40

3.2 Deep Learning with Ensemble Classification Method for Sensor
Sampling Decisions . 41
3.2.1 Proposed Method . 42
3.2.2 Experiments and Results 47
3.2.3 Summary . 50

3.3 Comparison and Summary . 50

4 Sensor Scheduling: Viterbi-based Context Aware Mobile Sens-
ing to Trade-off Energy and Delay 52
4.1 System model and Components 54

4.1.1 The Sensing Schedule . 56
4.1.2 Survival Probability pj(ti) 58

4.1.3 Choice of Time Limit T̂j 59
4.1.4 Choice of Sampling Interval δj 59

4.2 The Proposed Viterbi-based Method 60
4.2.1 Viterbi Algorithm Background 60
4.2.2 Rewards . 62
4.2.3 Viterbi-based Algorithm for Optimized Sensing Schedule . 65
4.2.4 Triggering of VCAMS Learning Mode 67
4.2.5 Computational Complexity Analysis 68

4.3 Evaluation Using a Context Simulator 69
4.3.1 Simulation Experiments’ Setup 70
4.3.2 Sensing Energy and Detection Delay Evaluation 70
4.3.3 Effect of Energy-Delay Weighting Coefficients α and β . . 71
4.3.4 Impact of False Positive in Context Classification 73
4.3.5 Effect of Sampling Interval δj 75

4.3.6 Effect of Time Limit T̂j . 76
4.3.7 Choice of Probability Distribution pj(ti) and its Parameters 77
4.3.8 Performance Analysis and Comparison 78

4.4 Case Study with Real Activity Context 82
4.4.1 Setup . 83
4.4.2 Applicability of VCAMS on Real Data Traces 83
4.4.3 Comparison of VCAMS to Other Methods with Real Data

Traces . 86
4.4.4 Computational Complexity 87

4.5 Summary . 88

5 Sensor Selection: Optimized Sensor Selection for Multi-Context
Aware Applications with an Ontology for Recognition Models 90
5.1 Proposed Framework . 92

5.1.1 Framework Overview . 92
5.1.2 Ontology for Context Recognition Models 95
5.1.3 Group Sensor Selection . 97
5.1.4 Integration and Synchronization with Optimized Sensor Sched-

uler . 103
5.2 Evaluation of Sensor Selection Using Simulated Dynamic Environ-

ment . 106
5.2.1 Ontology Development . 107
5.2.2 Comparison Systems for Context Sensing 108
5.2.3 Performance Metrics . 109
5.2.4 Performance based on Sensor Availability 110
5.2.5 Context Recognition Accuracy 112
5.2.6 Energy-Accuracy Trade-off 114
5.2.7 Impact of Integration with Optimized Sensing 114

5.3 Case Study with Real Implementation of Multi-context Operation:
Activity and Emotion . 117
5.3.1 Experimental Setup . 118
5.3.2 Parameter Estimation . 119
5.3.3 Comparison of EGO to Other Methods with Real Data Traces121
5.3.4 Energy Gains of VCAMS with EGO in a Real Application 123

5.4 Summary . 123

6 Conclusion and Future Work 125
6.1 Thesis Summary and Contributions 125

6.1.1 Objective 1: Energy Efficient Sensor Sampling Strategy . . 126
6.1.2 Objective 2: Context-Aware Sensor Scheduling to Trade-off

Energy and Delay . 127
6.1.3 Objective 3: Ontology-Based Sensor Selection for Simulta-

neous Execution of Multiple Context-Aware Applications . 129
6.1.4 Objective 4: An Integration Strategy Towards a Holistic

Dynamic Sensing Approach 130
6.2 Future Work . 130

6.2.1 Integrating Sensing Strategies: A Holistic Approach for Dy-
namic Sensing . 130

6.2.2 Fusing Multiple Sensors for Context Recognition 132
6.2.3 Open Research Directions 132

A Abbreviations 134

Bibliography 136

List of Figures

1.1 An operational overview of context. 3

1.2 Challenges addressed in thesis framework. The boxes in the middle
capture the three areas of challenges: how long to sense (Chapter
3), when to sense (Chapter 4), and which sensors (Chapter 5). . . 6

1.3 A unified model for user context and smartphone sensing: first
timeline reflects the real state change, predicted user model de-
fines the derived system parameters needed for the sensing de-
signs, the “for how long?” shows the sensor-specific and state-
dependent sampling parameters, the “when?” timeline shows the
sensing schedule which presents the instants at which sensing should
be triggered for each of the M selected sensors. 8

2.1 An overview of mobile context awareness from low-level raw data
generated by sensors in mobile devices to high-level meaningful
contextual information. 13

2.2 Standard context recognition layers and tasks for traditional ma-
chine learning algorithms and deep learning algorithms. 15

2.3 The flow of data in mHealth domain 19

3.1 Modeling user activity and phone sensing. 31

3.2 Energy consumption versus sampling frequency. 37

3.3 Classification error and its entropy upper bound (3.10) for different
sampling frequency levels. 38

3.4 Average classification accuracy for different activities versus sam-
pling frequency. 39

3.5 Finding optimal weighting factor λ. 40

3.6 Proposed deep learning with ensemble classification for optimized
sampling decision. 41

3.7 Modeling user state and sensing. 42

3.8 Restricted Boltzmann Machine with one hidden layer. 44

3.9 The sampling frequency resets to fmax with state transitions. . . . 46

3.10 Average classification accuracy versus machine learning algorithms
for each activity. 48

xii

3.11 Average classification accuracy for different activities versus sam-
pling frequency. 49

3.12 Energy and accuracy for our proposed sensor sampling approaches
and continuous sensing. 50

4.1 The general work flow of the proposed method. 54
4.2 A unified model for user context and smartphone sensing: real

model reflects the real state change, user model defines the derived
system parameters needed for the algorithm, the Viterbi trellis
shows the evolution of the algorithm, and the sensing schedule
presents the instants at which sensing should be triggered. 56

4.3 State and reward diagram. 61
4.4 Viterbi-based algorithm resets when detecting new state. 65
4.5 Strategy to decide when to trigger VCAMS’s learning mode com-

putations. 68
4.6 VCAMS sensing schedule for different (α,β) combinations. 72
4.7 Effect of different choices of α and β on energy (a) and delay (b). 73
4.8 Pareto effect. 74
4.9 False positives (FP) versus false negatives (FN). 74
4.10 Percentage of undesired periods versus the classification accuracy. 75
4.11 Energy, delay, and computational time for different δjs. 76

4.12 Energy and delay for different choices of T̂js. 77
4.13 Energy and delay for different choices of survival probability dis-

tributions. 78
4.14 Energy and delay for different choices of decaying hazard rate hj. 79
4.15 Illustration of VCAMS’s aim versus state-of-the-art methods. . . . 79
4.16 Energy and delay for VCAMS and state-of-the-art sensing schedules. 80
4.17 Comparison between VCAMS and best energy prior work for sim-

ilar delay (a) and best delay prior work for similar energy (b). . . 81
4.18 Dynamic real-time illustration of applying VCAMS to detecting

transitions for s1 and s6 activities. 84
4.19 Energy for activities considering two different δs. 85
4.20 Delay for activities considering two different δs. 85
4.21 Computational time for activities considering two different δs. . . 86
4.22 Energy and delay for optimal VCAMS and prior state-of-the-art

sensing schedules for sleeping activity s1. 87
4.23 Energy, delay and computational time for VCAMS trigger strategy

and other strategies. 88

5.1 The flow diagram of the optimized selection and operation of sen-
sors for multi-context applications. The applications send their
context requests upon which sensor choices are generated from the
ontology and optimized sensors are selected to recognize the contexts. 92

5.2 The general framework architecture of the proposed method. The
colored blocks represent the core components of our framework.
The ontology is the knowledge repository used by the framework
to examine the different sensor options for each application. The
sensor selection block selects the optimal group of sensors that
trades-off the energy consumption and the accuracy of context
recognition. The synchronization manager outputs an optimized
synchronized sensing schedule which decides when to trigger each
of the selected sensors for data collection. 94

5.3 The core of the ontology for context recognition models. 96

5.4 Example of single-context setting: location sensor selection. 102

5.5 Protégé interface showing the ontology’s classes, relationships, and
a graphical illustration. 107

5.6 The group of sensors for each context cl. 109

5.7 The effect of varying the number of available sensors on the fraction
of recognized contexts. Our proposed selection mechanism proves
to adapt itself to dynamic availability of sensors. 111

5.8 Increasing the number of available sensors increases the consumed
energy since more contexts are being recognized. 112

5.9 The average context recognition accuracy varies depending on the
contextual state of the user. 113

5.10 The trade-off between the overall average consumed energy and
the average context recognition accuracy. 113

5.11 The generated sensing schedules after integrating and synchroniz-
ing with optimized sensor scheduler. The dots mean the time in-
stants at which sensing is triggered. Our proposed synchronization
approach saves sensor triggers. 115

5.12 The range threshold and the probability threshold reflect the rela-
tive effect of synchronizing the sensing schedules generated by the
optimized sensing scheduler. These thresholds represent the limits
beyond which sensing should be triggered. 115

5.13 The effect of using the optimized sensing scheduler on energy. The
figure shows 76% energy gains when compared to continuous sensing.116

5.14 The effect of using the optimized sensing scheduler on delay. The
figure shows a slight delay increase of 0.5 time unit when synchro-
nizing the sensing schedules of the different sensors. 116

5.15 The experimental setup of our energy efficient and accurate ac-
tivity and emotion monitoring system. EGO framework is imple-
mented on commercially available sensors and mobile devices. The
subject holds a smartphone and wears different external sensors
from which raw data is extracted. 118

5.16 Energy, accuracy and number of recognized context for EGO and
conventional context-aware sensor selection systems. EGO gives a
balance between energy, accuracy and number of recognized contexts.122

5.17 The effect of integrating and synchronizing with an optimized sen-
sor scheduler. 124

6.1 Framework approaches for sensing strategies. 131

List of Tables

2.1 Examples of sensor-based commercial applications 16
2.2 Important proposed framework designs 23
2.3 Comparing the dissertation’s proposed framework with other prior

framework designs . 28

3.1 Numerical example for classification model 33
3.2 Classification accuracy for different values of τ 39
3.3 Optimal sensing parameters for each activity 40
3.4 LUT of optimized sampling frequency for each activity 49

4.1 Table of parameters . 55
4.2 Energy, delay, and recognition components. 62
4.3 Computational power . 82
4.4 Time properties of activities . 83

5.1 Sample of the ontology showing samples of selected papers that
detect activity and emotion . 99

5.2 Table of parameters . 100
5.3 Energy consumption for sensor groups 120
5.4 Classification accuracy of sensor groups in classifying different states

in activity context . 120
5.5 Classification accuracy of sensor groups for emotion context . . . 120

xvi

Chapter 1

Introduction

Nearly 20 years ago, the founder of ubiquitous computing -Mark Weiser- foresaw
that in the 21st century the technology revolution will move into the everyday, the
small and the invisible [1, 2]. By invisible, he meant profound technologies that
weave themselves into everyday life until they are indistinguishable. In a way,
Weiser foresaw an environment with the Internet of Things (IoT) that includes
invisible tiny processors which ubiquitously communicate with each other without
us noticing. IoT environment will embrace everyday objects, which will become
smart and invisibly interconnected. According to Intel’s analysts [3], more than
50 billion devices will be connected by 2020. As part of the IoT framework, smart
mobile devices have evolved into multi-purpose devices equipped with multiple
sensors. Cisco’s annual report stated that by 2021, there will be nearly 1.5 mo-
bile devices per capita, and more than 929 million wearable devices will be in
use [4]. Today, we live in a ubiquitous computing environment where computing
devices are present anywhere and at anytime. In support of this evolution, com-
puting power has also been evolving to having pocket-size mobile devices with
powerful processing capabilities at widely accessible prices [5]. These advances
have enabled mobile devices to pervasively recognize and analyze the human con-
text such as activity, location or health conditions. This environment has led to
several opportunities and challenges which are further discussed in this chapter.

1.1 Motivation

User’s context, such as activity, location and emotions, has gained popularity in
recent decades with the increase use of pervasive computers and mobile devices in
everyday life. Context awareness is a concept which has been firstly introduced
in 1994 by Schilit et al. [6] as the ability of computers to sense and react to a
user’s situation. Therefore, context awareness has been a popular research topic
for a number of years now. Furthermore, the use of mobile devices, and partic-
ularly smartphones, has been growing exponentially so that they have become

1

the central computing and accompanying device in peoples’ lives. Therefore, mo-
bile devices took a prominent place in the progress of context awareness where
the concept of mobile context awareness has been introduced and has become a
popular research trend in the field of ubiquitous computing.

Recent smartphones have evolved from being mobile devices used only for
communications into multi-purpose devices combining a plethora of functional-
ities. A recent smartphone can be described as a gateway which connects the
user with several domains including healthcare, activity detection, and naviga-
tion. Today’s smartphone hosts a growing set of small size, cheap and powerful
embedded sensors such as GPS, accelerometer, light, temperature, a high quality
microphone and a camera. These sensors collect physical data about the user and
her environment to support personalized analytic services. Therefore, more sen-
sors are being deployed on a large scale and it is predicted that the numbers will
continue to grow rapidly [4]. Moreover, wearable external sensors such as ECG
and EEG offer sensory data which can be collected by mobile devices through
short range wireless communication technologies such as Bluetooth or ZigBee.
Recently, users are carrying more mobile devices besides the smartphone such as
wearing smartwatches or smartglasses. For example, the number of smartwatch
users is expected to reach 28.5 million units sale this year, and vendors expect
this number to reach 54 million units by 2021 [7].

As a result of this wide deployment of sensors, large amounts of raw data
will be generated and present a wealth of information for extracting context that
describes the circumstances surrounding the user such as user’s activity, health
condition, and location. In other words, context recognition refers to the auto-
mated identification of the following aspects related to the user: what is the user
doing? Who is the user interacting with? How is the user achieving the task
at hand? When is the user in a particular condition? Each context can have
several states; for example, user’s activity can be running, meeting, or shopping
as shown in Figure 1.1. Extracting context allows understanding of the human
behavior and facilitates both user-to-machine and machine-to-machine communi-
cations. Studies show that people’s behaviors and lifestyles are highly dependent
on their own context, their surrounding environment, and their interaction with
others [8]. Furthermore, people are driven by desire for self reflection and self
improvement to understand themselves and self-organize their daily lives [9].

The emergence of wearable devices such as the Apple Watch [10], has facili-
tated the development of new applications that infer context from smartwatches
and external sensors [11, 12]. These advances have provided a fertile ground for
researchers to explore efficient solutions for automated recognition of user’s con-
text such as activities, social interactions or emotions. There has been a growth
of context-aware applications and systems, that go beyond context recognition to
make optimized decisions based on the extracted context. Such applications first
extract contexts, and then make decisions based on the context to assist users in
improving their lifestyles, and providing them with personalized situation-specific

2

Context

What? When?

Where? Who?

Figure 1.1: An operational overview of context.

services. A multitude of such applications is currently distributed through com-
mercial app stores such as Apple App Store and Google Play.

Research in this field has recently evolved where several systems and frame-
works have been proposed by researchers to make use of context at multiple scales.
For example, context information plays a key role that drastically enriches fast
developing fields such as automated driving [13], drones, mobile health, etc. Of
particular interest is the emergence of context-aware applications for the health
industry which has been considered as a cornerstone technology. Using perva-
sive mobile healthcare, the patient can monitor her own health condition and
the doctor can check remotely the patients’ health and provide immediate urgent
care services in case of emergency. Furthermore, healthy users can also exploit
the advantages of pervasive mobile healthcare through monitoring their bodies,
improving their lifestyles, and early diagnosing any health problem. Smart health
applications depend on physiological data collected from sensors which are either
wearable or embedded in mobile devices. This data (blood pressure, temperature,
heart rate, etc...) is used either for patients’ treatment procedures [14, 15] or for
chronic disease monitoring such as heart problems [16]. Statistics show that by
2020, IoT healthcare market segment will be worth 117 million dollars [17]. By
2018, 200 million people will use wearable devices that measure heart rates [18].

Another trending research is the use of sensors to improve the general lifestyle
of users. For example, wearable physiological sensors are used to test the fitness
level of users [19, 20]. In addition, fitness level has been tested against weight
loss and dietary programs by tracking the user’s activity [21]. In [22], the au-
thor investigates the possibility of recognizing bipolarity from behavior changes

3

using smartphone sensors. In addition, the users’ psychological life is studied
through measuring stress using the smartphone’s built-in accelerometer to detect
behaviour and correlate with stress levels and emotions [23]. One cannot easily
overstate the magnitude of the capabilities provided by recent sensors. Due to the
importance and potential of mobile sensing in the activity tracking and emotion
recognition fields, we aim to use activity and emotion as the requested contexts
in our case study for implementing and evaluating the thesis’s proposed sensing
designs.

A rapidly growing research is to design context-aware systems which enhance
the sensing functionality so that it provides advanced sensing decisions to opti-
mize the usage of the limited mobile computing and sensing resources while still
meeting the applications’ requirements. Since each context has its own comput-
ing and sensing requirements, there is a great opportunity for devising strategies
to optimize usage of resources based on context.

1.2 Challenges

Despite the rapid evolution of embedded and external sensors in recognizing
context, there are several challenges that face the full deployment of available
sensors in context recognition applications. Continuous and extensive sensing to
support context recognition places a heavy workload on smartphones and sensing
devices with limited battery capacity. Unfortunately, the recent developments in
smartphone sensing and computing have not been accompanied by comparable
advancements in battery lifetime enhancement.

Furthermore, deploying embedded and wearable sensors for context recogni-
tion impose additional heavy workloads on smartphone’s limited resources; hence,
the battery depletes faster when turning on sensors. For example, a typical GPS
consumes 166 mW power which completely drains the smartphone’s battery in
six hours [24]. In addition, machine learning algorithms used for context detec-
tion require sufficient raw data from sensors in order to extract accurate context.
Therefore, an efficient sensing system should decide on the amount of raw data
samples to extract from each sensor such that accurate classification is obtained.

There have been some approaches to solve the battery drainage problem where
early efforts tended to avoid continuous sensing through assigning lower sampling
frequencies to sensors which help reduce energy consumption. However, in most
cases, using a lower sampling frequency gives a less accurate classification and
causes delays in detecting a context state change. Moreover, the response of some
critical applications should be almost real-time. For example, fall detection of
elderly people requires the fastest possible detection of any change in the body’s
posture to avoid risks [25]. Such applications rely on continuous recognition of
the user’s current state and fast detection of any critical context change. In such
cases, one can run sensing continuously to ensure best accuracy and lowest delay;

4

however, that strategy incurs high energy consumption. Therefore, a dynamic
sensing schedule is required to decide when to trigger sensors and trade-off energy,
accuracy and delay.

While the above challenges exist for every context-aware application, the prob-
lems become more significant when multiple applications are running simulta-
neously. The multiple sources of raw data present the curse of dimensionality
challenge [26]. Hence, to alleviate the energy limitation with mobile devices in
multi-context setting, a smart sensor selection algorithm is needed to choose the
right sensors to achieve synergy across applications.

1.3 Thesis Overview and Proposed Framework

Although sensors’ widespread adoption has led to enormous advancements in de-
veloping more context applications, they come with challenge of limited resources.
Therefore, the thesis of this dissertation is:

A novel smart dynamic sensing framework can be designed for the
collection of data from external and embedded sensors while trading
off resource consumption, application accuracy, and recognition delay.

Building energy efficient context-aware sensing strategies requires deciding how
many samples to collect every time a sensor is triggered, when to schedule sensors’
data collection, and which sensors to turn on. Finally, the proposed system
will use a case study among multiple context-aware applications to evaluate the
feasibility and benefits of the proposed efficient sensing strategies. Therefore, the
research questions are:

1. How many samples to collect upon triggering a sensor and for how long
should it be kept running to achieve the right balance between energy con-
sumption and application accuracy?

2. When to trigger a sensor for data collection while using energy efficiently
and minimizing the delay in detecting a context state change?

3. Which sensors to trigger in a multi-context setting such that the required
context is achieved while trading off resource consumption and application
accuracy?

4. How to integrate the different proposed context-aware designs so that it
provides a more cohesive solution?

To answer the question “How long to collect data?”, we intend to study the
sensors’ properties and the requirements of each state where some states might
require less samples to detect context; thus, less energy consumption. To answer

5

When to sense?

Feature

extraction/

Context

detection

Compute

rewards

Application

Sensor

Sensing

schedule

Sensor

data

S
ta

te

Run Viterbi-

based

algorithm

How long to sense?

Model system

energy and

accuracy

Solve sensor

sampling

problem

Sampling

strategy

Per sensor

Which sensors?

Classify

sensors

Solve sensor

selection

problem

Sensor 1

User model

Application

constraints

Sensor specs

Update

Performance

metrics

Sensors

1, … ,N

Context

required

Sensor 2

Sensor M

Optimized

per sensor

operation
Sensors

data
Ontology

repository

Figure 1.2: Challenges addressed in thesis framework. The boxes in the middle capture the
three areas of challenges: how long to sense (Chapter 3), when to sense (Chapter 4), and which
sensors (Chapter 5).

the question “When to trigger sensing?”, we intend to explore the idea that non-
stop continuous data sensing is not essential for context detection since human
context (such as health condition, activity, or location) does not change all the
time. Instead, we just need the sensing devices to be ready to collect data when
needed. For example, results in [27] showed that people move only 20% of the
time during a day; sensing below this frequency will likely result in inaccuracies.
Finally, to answer the question “Which sensors to operate?”, we intend to choose
sensors which add value to the process of detecting multiple contexts simulta-
neously. We propose an integration strategy towards a holistic approach that
combines sensor scheduling and sensor selection.

The thesis goal is to optimize the trade-off between: the sensing energy, the
delay in detecting contextual state change, and the accuracy of extracting the
correct contextual state. Figure 1.2 provides the general work flow of the thesis’s
objectives. The inputs to this system are: 1) the user model which captures user
transition model such as the probabilities of transition from one state to another
at any time instant, 2) the developed context ontology repository which captures
context recognition models along with descriptive specifications for each context
recognition model such as required sensors and machine learning parameters, 3)
the different available embedded and wearable sensors, 4) the required context
for each application, 5) the application constraints where some applications can
tolerate errors whereas other applications require the minimum delay possible
such as real-time health applications, 6) specifications for each sensor such as
its required operating time to obtain a feature and its sleeping time; and 7) the
performance metrics: energy, delay and accuracy which are used to define costs

6

and gains. The output of this system is the set of chosen sensors with their
corresponding sensing schedules and sampling strategies.

The upper block “Which sensors?” shows how we intend to select sensors. The
selection is based on the required context and the application accuracy require-
ments. Recently, users are carrying more mobile devices besides the smartphone
such as wearing smart watches or smart glasses. Hence, multiple alternatives exist
for sensing and recognizing the same context. Several contexts can be retrieved
via different multi-modal embedded and wearable sensor combinations [28]. For
example, a recent study by Miao et al. [29] aimed at monitoring the ECG signal
to prevent cardiovascular disease and detect symptomatic signs. They proposed
combining ECG with built-in kinematic sensors (accelerometer, gyroscope, and
magnetic sensor) so that the system would recognize user’s physical activities
and identify ECG abnormal patterns. For each selected sensor, we have two ad-
ditional main objectives: the first “When to sense?” is to derive an optimized
sensing strategy that decides when to turn the sensor on. The second objec-
tive “How long to sense?” is to derive an efficient sampling strategy providing
the number of samples needed and the sufficient duration of sampling to obtain
informative features.

The extracted sensor data then goes through the Feature extraction/ Context
detection block which detects the contextual state and feeds it to the correspond-
ing application. Each context can have several states. For example, the location
of the user can be in her home, her work, or in a given mall. Our system is
adaptive in that each time the recognition system detects a state, the user model
is updated with the current state as shown by the feedback from the output to
update the user model input.

Figure 1.3 provides an example output in relation to a user’s timeline. The
first timeline of the figure shows the actual user states. The user is in the first
contextual state for a specific actual time such as the user walking. Then, the
user state switches to the second state and stays for another actual time period
such as sitting. The second axis contains the estimated user model which is
learned from user behavior based on historical data. This timeline holds the
estimated time periods for the current state and the probabilities of switching
to another state at any time instant. The remaining timelines show examples
of the decision outputs from the proposed framework for the different selected
sensors. The system chooses which sensors to be triggered. For each sensor, the
system decides when to trigger data collection. These are represented in the figure
by the impulse arrows. Additionally, the sensor-specific sampling frequency and
the window size decide on the amount of data collected each time the sensor is
triggered.

In the remaining of this section, we provide an overview of the dissertation.

7

State 1

Predicted user

model

Actual time

periodActual user

state

For how long?

Probabilities

𝑡1 𝑡2 𝑡4 𝑡5𝑡3
When?

𝑡

𝑡1 𝑡2 𝑡3

Context

For how long?

𝑡1 𝑡2 𝑡4 𝑡5𝑡3
When?

𝑡

𝑡1 𝑡2 𝑡3

.

Sensor 1

Sensor M

..

State 2

Estimated time

period

Sampling

frequency

Window size

Figure 1.3: A unified model for user context and smartphone sensing: first timeline reflects the
real state change, predicted user model defines the derived system parameters needed for the
sensing designs, the “for how long?” shows the sensor-specific and state-dependent sampling
parameters, the “when?” timeline shows the sensing schedule which presents the instants at
which sensing should be triggered for each of the M selected sensors.

1.4 Dissertation Structure

The rest of the dissertation is organized as follows. Chapter 2 includes back-
ground information, and introduces some existing context-aware sensing frame-
work designs and recent existing context-aware applications. Chapter 3 includes
two proposed sampling mechanisms that determine for how long the data needs
to be collected once the sensor is triggered. The first mechanism is based on
information theory, and the second is based on recent advances in deep learning.
Chapter 4 provides a mechanism for sensor scheduling based on using Viterbi
algorithm with customized rewards to decide on when to trigger the sensors for
data collection. Chapter 5 describes our sensor selection mechanism which is
ontology-based to enable the determination of commonalities and differences be-
tween several context recognition models.

8

1.4.1 Chapter 2: Background and Literature Review

This chapter introduces the main concepts that we use in this dissertation such as
defining context and context awareness. In particular, we focus on how context
awareness has evolved through years to serve as the core feature of ubiquitous
and pervasive computing systems [30]. Many researchers have studied context
awareness and proposed several approaches to capture contextual information to
be deployed in fields such as assisted living, smart cities, automated driving, etc.
Hence, in this chapter, we also analyze some existing context-aware frameworks
along with context-aware available applications. Moreover, thorough analyses of
existing energy efficient designs are provided in this chapter to compare with our
proposed context-aware sensing designs.

1.4.2 Chapter 3: Sensor Sampling

This chapter proposes two methods to decide on how many samples to collect
upon triggering a sensor. These methods build upon the fact that continuous
sensing mechanisms in sensors cost high energy consumption to support accu-
rate contextual detection. However, lowering sampling frequency may lead to
the misclassification of critical contextual events which results in lower accuracy.
Hence, there is a trade-off between the classification accuracy and the energy
consumption. In the first method, we formulate the energy-accuracy trade-off
as an entropy-based optimization problem, in order to propose an efficient algo-
rithm based on user activity and phone sensor parameters. The ultimate goal
of this method is to design and evaluate an optimized sampling mechanism that
trades-off energy and accuracy based on the current physical activity of the user.
Experiments demonstrate the gains of the proposed algorithm with 43% reduc-
tion in energy consumption for a case study based on real data traces. In the
second method, we exploit the advantages of Deep Neural Network (DNN) with
ensemble classification of other complementary machine learning approaches to
determine the best sensor sampling frequency for the recognition of a given con-
text. DNN relies on raw data for classification while the other complementary
methods (such as Decision Tree and Näıve Bayes) use feature recognition to clas-
sify data. Therefore, our approach provides a range of granularity from raw data.
We prove the robustness of our approach in experiments which show high accu-
racy in context recognition. In addition, real experiments demonstrate the energy
gains of the proposed algorithm which reach 87% reduction in energy consump-
tion when compared to continuous sensing. Finally, this chapter is summarized
by providing a comparison between these two proposed methods. This chapter
is based on the following publications: [31] and [32].

9

1.4.3 Chapter 4: Sensor Scheduling

This chapter proposes a context-aware mechanism to optimize the trade-off be-
tween delay in sensing context change and energy consumption via deciding when
to trigger the sensors for data collection based on the user’s behavior. Monitor-
ing context depends on continuous collection of raw data from sensors which are
either embedded in smart mobile devices or worn by the user. However, continu-
ous sensing constitutes a major source of energy consumption; on the other hand,
lowering the sensing rate may lead to missing the detection of critical contextual
events. Hence, deciding on when to trigger sensors becomes very critical for en-
ergy reduction. In this manner, this chapter proposes VCAMS: a Viterbi-based
Context Aware Mobile Sensing mechanism that adaptively finds an optimized
sensing schedule to decide when to trigger the sensors for data collection while
trading off the sensing energy and the delay to detect a state change. Each con-
text can have several states; for example, the location of the user might be at
home, at work, or in mall. For a given user in a specific state, the objective of the
system is to dynamically provide the time instants at which a sensor needs to be
triggered, also called the sensing schedule for the specific user and the particular
state. The sensing schedule is adaptive from two aspects: 1) the decision rules
are learned from the user’s past behavior, and 2) these rules are updated over
real time whenever there is a significant change in the user’s behavior. VCAMS is
validated using multiple experiments, which include evaluation of model success
when considering binary and multi-user states. VCAMS is also implemented on
an Android-based device to estimate its computational costs under realistic op-
erational conditions. In conclusion, test results show that the proposed strategy
provides better trade-off than previous state-of-the-art methods under compa-
rable conditions and provides 78% energy saving when compared to continuous
sensing. This chapter is based on the following publication: [33].

1.4.4 Chapter 5: Sensor Selection

This chapter proposes a context-aware sensor selection mechanism that allevi-
ates the energy limitation with mobile devices in multi-context setting. Exten-
sive sensing may cause fast battery drainage for mobile devices. Furthermore,
running multiple context recognition simultaneously will cause an even more ex-
tensive energy drain. In this sense, this chapter proposes an ontology-based
framework for group sensor selection to achieve synergy across applications and
thus reduce energy consumption while trading off accuracy and delay in context
recognition. A new context recognition ontology is designed to capture context
recognition models along with descriptive specifications for each context recogni-
tion model such as required sensors and machine learning parameters. Reliability
of the ontology data is ensured by selecting data sources that have been tested
and validated from existing literature publications. It captures the alternative

10

groups of sensors for each context, the feature set, and the parameters for context
recognition models. The framework also provides integration and synchroniza-
tion with an optimized sensor scheduling mechanism. The proposed framework
is implemented on an Android platform that provides accessibility to on-board
mobile sensors and external wearable sensors, and the sensor selection strategy is
tested in a multi-context setting to simultaneously detect activity and emotion
contexts. The results show that our proposed strategy provides better trade-off
between energy consumption, number of recognized contexts, accuracy of context
recognition and delay in detecting a state change. Furthermore, the method pro-
vides 39% energy saving with comparable accuracy when compared to the most
accurate group of sensors. This chapter is based on the following publications:
[34] and [35].

1.4.5 Chapter 6: Conclusion and Future Work

Finally, in chapter 6, we summarize the main contributions of this dissertation.
In addition, we present open research challenges and topics that need future
investigation.

11

Chapter 2

Background and Literature
Review

This chapter first provides a background that introduces the concepts of context
and context awareness, with a focus on the mobile context awareness concept.
The second part of this chapter provides a literature survey of state-of-the-art
research in this field. Finally, Section 2.3 presents a summary which highlights
the limitations of the studies conducted in the literature.

2.1 Background

The objective of this background section is to give a general overview about some
important concepts related to the thesis work. We start by giving an overview
about context and context awareness. Then, we explore the required tasks to infer
relevant context. Application-specific frameworks have been proposed in various
domains including healthcare, location detection, and activity recognition. We
present some recent works in this field in Section 2.1.3.

2.1.1 Defining Context and Context Awareness

Figure 2.1 illustrates the concepts described in this section. It provides an
overview of mobile context awareness starting from the sensory raw data ex-
tracted from mobile devices which undergoes several functionalities to recognize
the context, then context is processed to develop meaningful context-aware ap-
plications which provide the users with recommendations, alerts or anticipations
of future states.

A context is defined by Dey as:

Context is any information that can be used to characterize the sit-
uation of an entity. An entity is a person, place, or object that is

12

Mobile Devices

Time

Activity

Location

Emotion

Health

Voice

Context Context Awareness

Recommendations

Alerts

Anticipations

Databases

Figure 2.1: An overview of mobile context awareness from low-level raw data generated by
sensors in mobile devices to high-level meaningful contextual information.

considered relevant to the interaction between a user and an applica-
tion, including the user and applications themselves.[36]

This definition of context is regarded as the standard description; however, it
can be further particularized depending on the application. Following Dey’s
definition, the context covers a vast collection of information such as the user’s
activities, plans, emotions, health conditions, etc. Furthermore, the definition of
context also describes the environment surrounding the user such as the location,
surrounding people, social interactions, noises around, etc. Therefore, context
encompasses two levels: personal and environmental.

In this dissertation, we refer to context as the representation of a user or
entity’s situation; therefore, we capture both personal and environmental contex-
tual levels. Moreover, each context can be further categorized into states. For
example, if the requested context is emotion, the states may be either neutral,
happy or angry. The contextual states can sometimes be related to different
granularity levels; for instance, the location of the user can be either described
by GPS coordinates (latitude and longitude) or by user-defined terminologies and
fingerprints such as at home, at work, or in mall.

Once the context is recognized, smart applications often make use of the
inferred context to provide beneficial decisions to the mobile user. This interpre-
tation and usage of context is known as context awareness. Context awareness
was first introduced by Schilit and Theimer [6] in 1994. Later, Abowd et al. [37]
criticized Schilit’s definition as being too specific and defined context awareness
as:

A system is context-aware if it uses context to provide relevant infor-
mation and/or services to the user, where relevancy depends on the
user’s task. [37]

Following Abowd’s definition, any system which proactively provides the user

13

with valuable information, enhances the user’s life and provides tailor-made ser-
vices to this user, is a context-aware system. The existence of context-aware
systems created an interaction gateway between users and smart devices which
is inevitable nowadays and will persist for future technologies.

The usage of mobile devices, mobile phones in particular, is constantly in-
creasing. Today, mobile devices can be found everywhere such as Personal Device
Assistants (PDAs), mobile phones, laptops and notebooks. According to Manish
[38], mobile devices can be divided into three classes: mobile phones, portable
computers and wearable computers. More wearable external devices are being
also deployed and used in everyday life such as smartwatches, smartglasses, fitness
wearables and clothing sensors. The vast majority of these mobile devices have
embedded small-size sensors which are continuously developing to provide per-
vasive recognition of contextual information. Today, users own multiple mobile
devices and move seamlessly between them throughout the day. The advance-
ments in the mobile device technology facilitated the recognition of context and
the development of a new class of context-aware applications. Therefore, the con-
cept of context awareness has been extensively used along within mobile sensing
domain; thus introducing the concept of mobile context awareness.

2.1.2 Inferring Contextual Information

The general aim of context-aware applications is to evaluate the user’s situation
and then take the necessary actions and decisions based on the contextual in-
formation. However, to obtain the contextual information, raw data collected
from sensors undergoes several stages to infer the required context. Figure 2.2
shows the different layers that the sensory readings undergo to reach the appli-
cation layer. The figure shows the flow for two context recognition techniques:
the traditional machine learning approach and the deep learning approach.

For the traditional machine learning flow, the low level sensor layer identifies
the sensors needed to provide the required context, then it triggers those sensors
for data acquisition and obtains the raw sensory data. Different sensors have
different data collection specifications such as the frequency by which data is
collected and the sliding window which defines the time length needed for context
recognition. In addition, some applications prefer to have an overlap between two
subsequent window readings to help detect changes in the state. At the signal
level, raw data is preprocessed to filter out signal variability and it is sampled
based on the application’s requirement.

At the features layer, feature extraction is applied to each time window to
exploit hidden patterns inside the raw data. Different characteristics can be ob-
tained from raw data such as the time domain features and frequency domain
features. Time domain features use signal processing primitives such as comput-
ing the mean, standard deviation, peak and range. On the other hand, frequency
domain features require more computational power to calculate characteristics

14

Sensor

layer

Signal

layer

Feature

layer

Recognition

layer

Application

layer

Sensors

Data

acquisition

Raw data

Preprocessing

Sampling

Extraction

Selection

Fusion

Classification

Actions

Feedback

Learning

Deep neural network

Deep learning flow

Traditional machine learning flow

Input

layer

Output

layer

Hidden

layers

Figure 2.2: Standard context recognition layers and tasks for traditional machine learning
algorithms and deep learning algorithms.

such as the Fast Fourier Transform (FFT). Several contexts can be retrieved via
different multi-modal embedded and wearable sensor combinations [28]. There-
fore, sensor fusion is being investigated by researchers [39]. Sensor fusion is the
process of combining data extracted from multiple sensors so that it forms a more
accurate and relevant information [38]. This sensor fusion might happen at dif-
ferent layers through the context recognition process such as sensor level, feature
level, or decision level [40].

At the recognition layer, the previously collected data and its corresponding
annotations are used to train the classifier. In real-time, the derived model is used
to recognize the contextual state of the user. In this regard, several classifiers have
been used by researchers. Some of the commonly used classification algorithms
are: Näıve Bayesian, Support Vector Machines, and Decision Trees.

Extracting features and selecting relevant ones are time consuming and labori-
ous tasks [41]; therefore, deep learning has been introduced as a new breakthrough
research field. Deep learning methods eliminate the need for tedious feature en-
gineering as shown in Figure 2.2. It provides an end-to-end computation starting
from the sensory raw data all the way to the final recognized context. Deep neu-
ral network (DNN) is a deep learning architecture that contains many layers of
non-linear hidden units. There are three main steps in deep learning [42]. The
first step is to define the number of hidden layers to construct the Deep Neural
Network (DNN). Each hidden layer’s output serves as the input to the subse-
quent layer. The second step is the unsupervised pre-training where each layer is
trained to learn weights. The third task of deep learning includes supervised fine
tuning where the learned weights are fine tuned using backpropagation algorithm.

15

Table 2.1: Examples of sensor-based commercial applications

Application Context
ElectricSleep [48] Record sleep cycles
Smart Thermometer [49] Check temperature near the phone
GPSLogger [50] Check location updates
MapMyRun [51] Record daily workout details including location
Muse [52] Meditation
EpSMART [53] Monitoring epileptic seizure

2.1.3 Recent Works in Context-Aware Applications

Mobile devices have gone far beyond their traditional voice communication usage.
These devices introduced intelligence into their behavior and they are currently
known as smart devices. They have introduced context recognition by embedding
a large number of sensors that can detect user’s context such as activity, emo-
tion and location. Therefore, smart devices can run heterogeneous context-aware
applications that are used to assist the users in their lives and provide person-
alized services. In addition, external wearable sensors have been introduced and
they are advancing the level of technology and providing a boom of context.
Hence, diverse context-aware applications have emerged to monitor various con-
texts including healthcare [43], emotion recognition [44], location detection [45],
activity recognition [46] and social interactions [47]. The proposed methods in
this dissertation tackle applications that request sensor data from any embed-
ded or external sensor. In this section, context-aware applications are introduced
for the following contexts: activity, location, emotion and health. We limit this
context-aware applications’ survey to publications since year 2010 with a focus
on the most recent trends in each field. Furthermore, Table 2.1 shows examples
of recent commercial context-aware applications each with its requested context.

Activity

Human activity recognition is one of the most important topics studied by an
innumerable researchers. Activity recognition aims at recognizing the real-time
behavior of the user and the activities that she is performing. It has been used
in many aspects such as offering a better lifestyle, monitoring the fitness level or
providing an ambient assisted living environment for elderly people [54]. There
are studies that recognize the user’s activities using solely the smartphone since
it accompanies its user almost most of the time. An experiment conducted by
Dey et al. [55] shows that smartphones are found in the same room as the user
almost 90% of the time.

There are recent research directions in activity recognition. For example, re-
searchers are currently investigating the use of recent machine learning algorithms
such as neural networks and deep learning. Extreme Learning Machine (ELM)
has been used in [56] to recognize activities. ELM is a recently introduced term

16

in machine learning which is a form of feed-forward neural network. Another
example is the use of deep learning and active learning from Hasan et al. [57].
The introduction of such revolutionized machine learning algorithms has been
discussed thoroughly in [58]. The authors describe using deep learning in mobile
computing as game-changing trend that exploits both the CPU and DSP of a
mobile device. Hence, the field of context-aware computing is making the best
use of technological advances.

Another recent trend in activity recognition is the shift from application-
dependent solutions into more general solutions that can be applied to a diverse
range of situations and users. For example, the work presented in [59] aims at
collecting an extensive amount of data by proposing a newly developed virtual
environment simulation modeling (VESM) that generates datasets suitable for
testing. In [60], the authors use embedded smartphone sensors to implement a
HAR scheme. They generalize their method by proposing a position-independent
scheme where the proposed work deals with different positions. In [61], the au-
thors use accelerometer-embedded mobile phones to monitor one’s daily physical
activities. They intend to recognize the physical activities where the mobile
phone’s position and orientation are varying. Using the accelerometer data,
Capela et al. build a robust classifier that can be generalized and automated
to all cases of elderly people [62]. Furthermore, a recent activity recognition ap-
proach is the use of more complex sensors than the accelerometers. There is a
huge amount of work for the use of external sensors and devices such as the use
of visual features and videos [63, 64].

Location

A variety of applications focus on obtaining the user’s location to provide location-
based services [65] that extract the user’s whereabouts to provide directions, rec-
ommendations, and “check in” services. Most of these applications use exclusively
the GPS to recognize the user’s longitude and latitude which gives the location
of the user with location accuracy of around 10 meters [66]. Several researchers
focus on GPS traces to extract location and merge it with activities of users [67].
The authors in [76] use the GPS and knowledge about the transportation network
(such as bus locations, spatial rail and spatial bus stop information) in order to
infer the means of transportation [68]. However, GPS is an energy-hungry sensor
which consumes enormous amounts of energy [69]. For instance, the operation
time of Nexus 4 declines from 170 hours to 7 hours when using GPS [70]. In
addition, GPS is not available in indoor scenarios.

Researchers have recently focused on finding alternatives that are less energy-
hungry and can detect location in both indoor and outdoor scenarios. Most
researchers are using radio fingerprints which are obtained either from WiFi [71]
or from cellular networks [72]. Other studies propose using lower power sensors
such as the barometer which is a relatively new sensor now present in devices [73].

17

Furthermore, some location aware applications use short range communication
such as Bluetooth when probing a user’s adjacent surrounding [74].

Some researchers proposed selecting new novel features for more accurate
recognition of location and transportation mode. The authors in [75] conclude
that features such as the heading change rate, the velocity change rate, and
the stop rate are more robust and informative than the traditional speed and
acceleration features. Another recent study which is based on location is the
community sensing such as monitoring traffic on highways to offer the user with
real-time traffic conditions and reroute in case of congestion [76]. In addition,
researchers are making use of multi-modal sensor availability where recent efforts
have been made to incorporate multiple sensors to recognize location [77, 78].

Emotion

Emotion recognition is by itself a recent field introduced into mobile computing
area. The developments of wearable and sensing technologies are driving the emo-
tion recognition where its market size is expected to grow from 6.72 billion dollars
in 2016 to 36.07 billion by 2021 [79]. Pervasive sensing has facilitated measuring
our feelings and monitoring our affective states. Emotions affect our everyday
life and our performance since the human body responds to different emotions
by several psychological and physiological expressions, biological changes, and
mental thoughts. The most deployed mechanism for emotion detection is the
facial recognition where a camera captures the person’s face to know the current
expressed emotion. For example, MoodMeter is an application which uses facial
expressions to know the collective emotional conditions by counting smiles on a
college campus [80].

Recently, researchers are using biosensors to detect emotions. For instance,
some researchers use several biosensors through a biosignal acquisition apparatus
that collects multimodal data, such as combining the Electromyography (EMG),
Electrocardiography (ECG), Electrodermal Activity (EDA), Blood Volume Pulse
(BVP), Peripheral Temperature (SKT), and Respiration (RESP) in [81]. Other
studies prefer using cheap and low-power sensors such as the accelerometers to de-
tect the sitting position of the user which reflects the current emotional state [82].
In [83], the authors detect emotion from gestures based on the arm movements
using 3D inertial sensors.

Smartphones offer a rich set of user interaction and signals that can be used for
emotion recognition. For example, the user’s typing characteristics, applications
being used, and interactions with others on the phone, are all indicators that can
reflect the user’s emotional state. MoodScope [84] is a system that studies the
communication patterns of the user on the phone and associates it with certain
moods. Furthermore, many companies are developing commercial sensors that
can be used to monitor the user’s emotions and provide meditation sessions such
as Affectiva sensors [85], BMS smartband [86], and Muse [87].

18

Through recommendations,

the hospital was able to

reduce its 30-day

readmissions by 10% that

was a 40% improvement

over their baseline.

Global mobile health

market is expected to grow

annually at a rate of 33.5%

between 2015 and 2020.

o 80% of physicians use

smartphones and medical

apps.

o 93% of physicians find value

in having a mobile health

app connected to Emergency

Health.

o 52% of smartphone users

gather health-related

information on their phones.

o 91% of adults have their

mobile device within arm’s

reach 24/7.

o 61% of people have

downloaded an mHealth app.

Mobile health (mHealth)

services is predicted to be a $26

billion market globally by 2017.

Figure 2.3: The flow of data in mHealth domain

Health

The traditional health services and caregivers are usually available within hospi-
tals. Patients along with their families need to contact doctors to know about the
patient’s health condition. The patient cannot monitor his health context state.
However, this is inconvenient since the patient should track her health condition
to help improve her overall health and track how her body is affected by new
medicine, exercise, and changes in diet. Therefore, pervasive mobile comput-
ing gave practical solutions where patients can be monitored remotely in certain
health conditions. The integration of context-aware applications in the health
domain has led to the appearance of a recent active research field which is mobile
health or mHealth [88]. Figure 2.3 shows the flow of data in mHealth. The flow
starts by collecting raw data from the user’s biosensors which are then processed
by health applications and sent to physicians who provide recommendations and
actions depending on the user’s health situation. The statistics in the figure are
taken from referral MD article [89].

The goal of recent pervasive healthcare studies is to sustain a healthy soci-
ety by limiting stress, mental health conditions, and the spread of contagious
diseases [90]. There are several sensors that are used in health care services.
Electrocardiogram (ECG) and electroencephalogram (EEG) are the most impor-
tant wearable sensors which measure the signals generated by the heart and the
brain respectively [91]. ECG measures electrical signals produced by the heart
during blood pumping and muscle contractions; whereas, EEG detects electrical
activity in the brain and provides evidence of how the brain functions. Potential
applications of these sensors include diagnosing diseases such as congestive heart
failure and managing neurodegenerative conditions such as Parkinson’s disease

19

[92]. Recently, Duc et al. [93] assessed the spine mobility using wearable sensor
which measures the kinematics of the head and the thorax kinematics.

2.2 Literature Survey

Recent mobile devices are equipped with high-end processors and several embed-
ded sensors. Therefore, many types of context recognition applications have been
developed which recognize several contexts such as activity, location and emotion.
Most of these applications require the development of a complete context-aware
framework that can abstract the context recognition process. In this section, we
present an overview of the proposed context-aware framework designs and ap-
plications. In Section 2.2.2, we present some of the approaches that have been
considered in the literature to capture contextual information from sensors in an
energy-efficient mechanism.

2.2.1 Context-Aware Sensing Framework Design

Over the past recent years, context-aware framework designs have been proposed
by researchers and applied in a variety of applications. The growing concept of
using context awareness in order to assist users’ lives have led to the development
of a special context-aware middleware as an abstract layer for context-aware
applications. Developing context-aware middlewares and frameworks has been
the objective of many researchers in a bewildering set of research areas. There
are several research fields that interwind together when designing a context-aware
framework such as mobile sensing, human-computer interaction (HCI), machine
learning, and context prediction [94]. Most prior studies propose application-
specific frameworks and provide partial solutions to the existing trade-offs. In
this section, we provide a brief review of the remarkable and latest context-aware
framework designs arranged in chronological order:

• Seemon [95, 96] is an early context monitoring framework that uses hi-
erarchical sensor mechanism. The framework defines context to be the
combination of location, activity and time. It allows several applications
to simultaneously register their queries asking for some context. Seemon
also focuses on detecting accurate context by monitoring the feature data
without recognizing the exact context; therefore, it avoids collecting contin-
uous raw data. The solution attempts to minimize the number of sensors
needed to answer all these queries by maintaining an essential set of sensors.
The solution does not provide answers for other types of contexts or what
sensors should be used if one particular context is needed all the time.

• In [97], the authors present a sensor management approach for energy effi-
cient mobile sensing system (EEMSS), which is a context-aware monitoring

20

system. It explores hierarchical sensor management by powering only a
minimum set of sensors. They aim at reducing energy consumption while
maintaining an acceptable accuracy. The authors define context such as mo-
tion (such as running and walking), location (such as staying at home or in
an office) and background environment (such as sound and quiet). EEMSS
heuristically assigns fixed duty cycles to recognize user state. EEMSS de-
fines the probabilities for transitioning from one user state to another; nev-
ertheless, it lacks user profiling features where it cannot dynamically update
the user states and respond to variant user behaviors.

• The same authors of EEMSS later proposed an algorithm that comple-
ments EEMSS and obtains the optimal sensor sampling policy under the
assumption that the user state transition is Markovian [98]. They formu-
late the problem as a Constrained Markov Decision Process (CMDP) that
outputs a sensor sampling policy to minimize user state estimation error
while satisfying a given energy consumption budget. Results show that this
framework saves energy when compared to uniform sampling; however, user
state transitions in real data traces are not strictly Markovian.

• Another context-aware framework to manage sensor operations is Jigsaw
which was proposed by Lu et al. [99]. It supports accelerometer, micro-
phone, and GPS sensors. Jigsaw proposes a processing pipeline for each
sensor so that it copes with the sensor behavior and the sensing challenges
of each. It implements a duty cycling technique to achieve energy effi-
ciency; for example, the accelerometer sampling frequency is decayed when
no activity is detected. It builds on activity detection from the accelerom-
eter data to enhance the location tracking pipeline by the GPS. The GPS
pipeline formulates the problem as a Markov decision process for duty cy-
cling the GPS based on the activity detected. It uses an optimization
formulation to choose the optimal GPS duty cycle for each detected activ-
ity assuming that activities with higher speed of motion require more GPS
samples. As for the microphone pipeline, it classifies the acoustic sounds
as human speech or other noisy sounds. However, Jigsaw uses a Markov
Model which does not represent real user traces, and it does not learn from
historical user behavior since it only observes a short time window of data.

• A more recent context-aware generic system framework was proposed in
[100] focusing on human activity recognition (HAR) as the requested con-
text. The framework consists of a Hidden Markov Model (HMM) that
applies duty cycling on accelerometer data to recognize the activity of the
user. As for all Markov-based frameworks, this system uses a state tran-
sition matrix that saves the transition probabilities between states. The
authors focus on the inhomogeneity in the user’s behavior; hence, they use

21

time-variant system parameters and update the user profile using the con-
vergence of entropy rate. When an application requests the user’s activity
context, the proposed framework either recognizes a genuine user state if
sensory data is available or estimates the user state using the forward and
backward algorithm. Results show a considerable increase in power effi-
ciency for acceptable accuracy range if compared against continuous sam-
pling; however, this framework focuses on Human Activity Recognition
(HAR).

• Recently, the authors in [101] propose Orchestrator which is a context-
aware framework proposing sensor selection system for multiple context
case. It considers sensor-based plans which should be generated by devel-
opers. These plans represent the sensing and processing modules to detect
a context. In addition, Orchestrator focuses on where to perform feature
computations: on the mobile device or offload to the sensor itself. Orches-
trator decides which sensor to choose given that the same sensor can be
deployed in different devices; for example, their approach selects the best
accelerometer out of several available accelerometers on the u-watch or u-
wear. However, Orchestrator’s cost function to minimize is either related
to energy or accuracy; hence, it does not consider the trade-off.

The field of mobile and ubiquitous computing has evolved particularly since
the first extensive survey was published in 2000 by Chen and Kotz [102]. The
survey discussed context-aware computing in terms of modeling, applications
and limitations. Therefore, there are several studies that propose context-aware
framework designs, and some are mentioned in Table 2.2. The considered studies
are listed in chronological order and compared using several metrics.

22

Table 2.2: Important proposed framework designs

Reference Context Sensors Classification
Algorithms

Energy Efficiency Implementation Results

[103] Activity Wearable
ACCs

HMM followed
by NB

Sensor selection 19 nodes placed on the two arms of a
tester to recognize 10 activity classes

Extend the network life up to 4 times
while reaching 90% correct classifica-
tion ratio

[95] Activity, heart rate,
stress

Wearable
ACC, GPS,
BVP, HR and
GSR

C4.5 DT Essential sensor set se-
lection

Eight sensors for 12 hours to recognize
binary states for each context

4.2 times greater throughput with 3.6
times less transmission reduction rate

[97] Activity and back-
ground sounds

ACC, GPS,
MIC and WiFi

DT Sensor selection and
fixed duty cycles

Participant provided with a Nokia N95
device to recognize different states

A high level of recognition accuracy
(> 70%) with 75% energy efficiency

[99] Activity ACC, MIC and
GPS

J48 DT, GMM,
SVM and NB

Duty cycling the GPS
using MDP

Apple iPhone and Nokia N95 to recog-
nize activities

Reduces the power usage yet keeps the
average error low

[98] Activity ACC DT Duty cycling Nokia N95 to classify and detect the
transition between Stable and Moving
states

20% less state estimation error over pe-
riodic sampling

[45] Location GPS Latitude and
longitude
coordinates

Substitution, suppres-
sion, piggybacking and
adaptation

G1 Android Developer Phone (ADP1)
to recognize the user’s location

Reduce the GPS usage by up to 98%
and improve battery life by up to 75%.

[104] Location MIC GMM None Recorded audio on Nokia N97 contain-
ing speech in indoor and outdoor sce-
narios

The accuracy is low at the beginning of
the experiment but starts increasing as
the experiment proceeds up to 90%

[105] Transportation mode,
image recognition,
sound classification
and acceleration classi-
fication

GPS, camera,
ACC and MIC

HMM, KNN,
GMM and DT

Sensor sampling Evaluate on exiting large and real-
world data set provided by [75]

Energy and latency savings of 16% and
76% respectively

[27] Motion and location ACC, compass,
WiFi and GPS

Decision rules None HTC Hero and G1 Android phones to
recognize moving and stationary mo-
tion states in addition to the location
of the user

91% of the points indicate the ac-
tual position within the estimated er-
ror bound

[106] Activity ACC, BT and
MIC

GMM Dynamic adapta-
tion sensor sampling
mechanism

Collect data using the EmotionSense
[107] running on Nokia 6210 phones

Energy saving 11% with 3% less accu-
racy

[108] Activity ACC J48 DT, Ad-
aboost, SVM
and NB

None Nokia N95 phone to recognize 7 activ-
ities with GPS location obtained from
[109]

Average accuracy of 77.14%

[100] Activity ACC HMM Sensor sampling Blackberry RIM Storm II 9550 smart-
phone to recognize activities such as
sitting, standing, walking and running

Provides 82% accuracy against 42%
power consumption when compared to
aggressive sampling

[101] Activity, light, temper-
ature and humidity

ACC, light,
temperature
and humidity

C4.5 DT Sensor selection Ultra Mobile PC and 6 sensors with
dynamic context queries

Achieves better context recognition
(95% improvement) and less energy
consumption (10.7% reduction) when
compared to conventional system

- ACC: Accelerometer; MIC: Microphone; BVP: Blood Volume Pulse; GSR: Galvanic Skin Response; HR: Heart Rate; GPS: Global Positioning System; BT: Bluetooth
- SVM: Support Vector Machine; DT: Decision Tree; GMM: Gaussian Markov Model; NB: Näıve Bayes; HMM: Hidden Markov Model; MDP: Markov Decision Process; KNN: K-Nearest
Neighbor

23

2.2.2 Energy Efficient Mobile Sensing

Smartphone sensors constitute a major source for energy consumption; there-
fore, several approaches have been considered in the literature to capture contex-
tual information from sensors while minimizing the energy consumed. Moreover,
many studies exploit the trade-off between resources and sensing quality which
is defined as the accuracy of recognizing the current contextual state of the user
or the delay in detecting a state change. There are several surveys that have
presented approaches used to solve these challenges from different perspectives
ranging from the extracted sensing raw data to the classification algorithms used
[110, 111, 112, 113, 114]. The objective of this section is to describe the vari-
ous methods that researchers have proposed to address the challenges, mainly
the trade-off between energy, accuracy and delay. To optimize resource usages,
the applied methods in relevant prior works use approaches to select duty cycles
which decide when to trigger sensing, adaptive sampling periods and sampling
frequencies to decide how long sensing data should be collected, or sensor selection
and hierarchical sensing mechanisms.

2.2.3 Sensor Sampling Approaches

In order to fetch data from a sensor, the application’s developer needs to specify
the sampling frequency. Minimizing the sampling frequency means less data col-
lection; and thus, less sensing and communication energies. However, minimizing
the sampling frequency can decrease the classification accuracy. In recent years,
several approaches were applied to optimize sampling decisions from sensors em-
bedded in mobile devices and wearable sensors such that the trade-off between
energy and accuracy is optimized.

Maurer et al. study the performance of accelerometer data using different
sampling frequencies; and they showed that using a sampling frequency above
20 Hz does not provide additional gains [115]. French et al. [116] propose de-
tecting activity using selective sampling strategies which are either based on the
distribution of duration times or based on the transition probabilities between ac-
tivities. They propose the use of Markov model for modeling the activity behavior
of a user. In A3R [117], the authors adapt the sampling frequencies according
to the current activity of the user to reduce energy consumption. In addition,
A3R adapts the classification feature; therefore, it chooses the tuple of sampling
frequency and classification feature that provides a trade-off between energy and
accuracy. However, A3R determines offline the optimal tuple for each activity;
therefore, a new training offline phase would be required when new activities
are detected. Furthermore, adapting the sampling frequency has been also pro-
posed in works which detect the location of the user. For example, the proposed
approaches by Paek et al. [118] and Lin et al. [119] use lower GPS sampling
frequency when the GPS is inaccurate in indoor areas and some urban streets.

24

AdaSense [46] uses genetic programming to control body sensor sampling fre-
quencies while meeting a user-specified accuracy to trade-off energy and accuracy.
They propose the idea that detecting a state change using binary classification
requires a lower sampling frequency than classifying the exact state of the user.
Therefore, AdaSense uses the lower sampling frequency until it detects a state
change where it shifts to the higher sampling frequency. In [120], the authors
propose predefined power management policies where each policy has a different
sampling rate frequency. The policy is chosen based on the type of application;
for example, the sampling rate is lowered when the activity becomes less clin-
ically relevant. Their results show that the sampling frequency has to be kept
above 30 Hz to avoid misclassifications. Moreover, there are researchers who
propose reducing the sampling frequency for wearable external sensors. In [121],
the impact of sampling rate on energy and classification accuracy was studied for
the eWatch platform. Li et al. [122] propose decreasing the sampling frequency
of pedometer in mobile applications and their results showed that reducing the
sensing sampling frequencies can reduce energy consumption by 50% on average.
Those approaches trade-off energy and accuracy to obtain accurately the current
contextual state, and some can also be used to detect change in state; however,
they do not focus on rapidly detecting the critical transition between one state
and another with minimal delay.

2.2.4 Sensor Scheduling Approaches

Duty cycling is the process of defining the ON/OFF cycles that trigger the sensor
for data collection only when necessary or based on a periodic behavior. There
have been attempts in the literature to consider sensor triggering, namely sensor
duty cycling or sensor scheduling as we refer to in this thesis.

Markov Decision Process (MDP) frameworks have been used to schedule sen-
sors based on the current state of the user [98, 123]. This statistical approach
uses transition probabilities from one state to another to determine the optimal
sensor sampling policy assuming a Markovian user state process. In addition,
Thiagarajan et al. [124] uses a Hidden Markov Model (HMM) to estimate the
user’s location. In [125, 100], the authors propose an inhomogeneous framework
based on Hidden Markov Model. Their model either recognizes or estimates user
states when power optimization is considered. This framework focuses on Human
Activity Recognition (HAR). In a very recent study, Yurur et al. [126] proposes a
discrete-time inhomogeneous hidden semi-Markov model framework to recognize
user activity. In addition, they utilize power-efficient sensor management strate-
gies through changing the duty cycle assuming a Constrained Markov Decision
Process (CMDP).

Jigsaw [99] is another similar system which balances the performance needs of
an application and resource demands. It uses sensor specific pipelines that have
been designed to cope with individual challenges experienced by each sensor.

25

It uses learning techniques and drives the duty cycle taking into account the
activity of the user, energy budget, and duration over which the application
needs to operate. This is done by learning an adaptive sampling schedule using
a Markov Decision Process. However, Markov models assume predetermined
systems which know in advance the true user state which might turn out to be
a wrong assumption. In addition, user state transitions in real data traces are
not strictly Markovian [98]. In [47, 106, 127], authors use learning techniques to
control the sampling periods of the sensors. Their decision whether to sense or
not is based on the probability of sensing. The sensing action results in either
success if unmissable event or failure if missable event.

Furthermore, in the participatory sensing scenarios where multiple users exist,
most researchers focus on giving each user the ability to specify the amount of
energy that she wants to dedicate for sensing. For example, the authors in [128]
allow the users to define their energy budget which they are willing to spend
on sensing. Accordingly, the adaptive scheme defines the corresponding sensing
schedule. In addition, there are proposed methods that trigger sensing only when
special events happen. For example, the authors in [129] propose an approach
that schedules the sensor based on the upcoming location queries from the server.
Another approach triggers the sensor when desired events should be captured such
as when the user approaches predefined important locations [130].

2.2.5 Sensor Selection Approaches

Sensor group selection is one of the techniques used to minimize the sensing
energy consumption through turning off unnecessary sensors while trading off
energy with classification accuracy and detection delay. Increasing the number
of used sensors induces more ground truth data and thus may lead to higher
accuracy; however, it causes extra energy consumption [113].

Zappi et al. [103] consider a gesture recognition application which turns on
only necessary sensors depending on their contribution to the recognition accu-
racy. Hence, it minimizes the number of sensors used, thus minimizing energy.
They define a minimum desired accuracy such that the selected sensors should
be able to guarantee this accuracy. However, this approach deals only with one
application and one sensor; an accelerometer deployed on different positions on
the body. Another approach is proposed by Noshadi et al. [131] who rely on the
selected set of sensors to predict the unseen data of the sensors which were not
selected. They consider 19 sensors placed on the arm of the user. In [132], the
authors deal with BAN where several nodes can be deployed on the body of the
user. They aim at choosing the best set of nodes such that the system is reconfig-
ured whenever a node drops due to failure. The aforementioned sensor selection
approaches assume the existence of numerous similar sensor nodes which is not
applicable in our daily lives.

Gordon et al. [133] apply their proposed sensor selection algorithm to activity

26

recognition by considering activity-sensor dependency. They leverage the ability
to predict the human behavior; therefore, they identify the most probable next
activity. Accordingly, they select the subset of sensors which is necessary to
distinguish this future activity at little energy cost. Gao et al. [134] propose
multi-sensor fusion framework. They propose a sensor selection module that uses
convex optimization to select the active sensor nodes while guaranteeing that their
classification accuracy is above a defined threshold. In [45], the authors only
considered location and used the alternative between GPS and Network-based
triangulation. They build a profile for user’s location to alternate between these
two choices of sensors. In addition, they use the accelerometer to trigger GPS
when user moves from static to movement. They consider multiple applications
that request location; thus, they do not not consider multiple contexts. These
approaches focus on selecting an energy-efficient sensor set only for one context.
They do not tackle the challenging issues that arise when multiple applications
simultaneously request different contexts.

In [96, 95], Kang et al. propose SeeMon which aims at minimizing the number
of sensors triggered and selecting the Essential Sensor Set (ESS) while answering
the context-related queries given by applications. It defines one context as the
combination of location, activity, and time states; for example, the query can
be (location=library, activity=sleeping and time=evening). SeeMon does not
consider different possible sensors for the same context. For example, location
is always retrieved by taking the longitude and latitude from the GPS. In [97],
the authors propose a framework for an Energy Efficient Mobile Sensing System
(EEMSS). It uses a minimum set of sensors for each state. It requires that
developers fill in information about sensor management rules for each encountered
state. They consider 3 combined sensors; GPS, accelerometer and microphone; to
know the state of the user. The authors also propose using duty cycles to achieve
energy efficiency. However, they do not propose a solution for all contexts where
EEMSS is specific for the states that they define. In [135], Roy et al. select the
optimized set of external sensors while minimizing the wireless communication
energy overhead. They do not consider state-based decision as they assume that
all context states are equally likely. Furthermore, combining more than one
sensor is essential in some healthcare applications. For example, the authors in
[136, 137] use the accelerometers, gyroscopes, force sensors and pressure sensors
to detect fall, tremor and dyskinesia.

In [138], the authors propose a sensor and feature selection problem that
chooses features based on the power consumed while processing these features to
classify context. They use a graph model to remove irrelevant features and choose
the optimal set of features when redundant ones exist based on weights they spec-
ify. They formulate the problem using integer linear programming (ILP), and
they propose a greedy approximation. In [101], the authors propose Orchestrator
which considers sensor-based plans generated by developers. These plans repre-
sent the sensing and processing modules to detect a context. It decides which

27

sensor to choose given that the same sensor can be deployed in different devices or
locations. Furthermore, their cost function to minimize is either related to energy
or accuracy; hence, they do not trade-off factors. In these approaches, sensors
are selected in a way to resolve contentions among concurrent applications and
maximize sharing whereas the proposed sensor selection approach in this thesis
aims at selecting the sensor set which gives the best trade-off between energy,
accuracy and delay.

2.3 Summary

A major component in context recognition applications is the ability to recognize
context accurately while optimizing the use of constrained resources in mobile
devices and sensors. Researchers have seen that optimizing resources is becom-
ing feasible with the recent technological developments; thus, researchers tend to
provide limited access to local resources by offloading services to cloud servers
whenever possible, selectively cache data to save memory space, and design hard-
ware components taking into account the limited processing units and battery
life of mobile devices. An alternative option to minimize the energy consumption
is to provide sensor-level designs as presented in Section 2.2.2. However, there is
still no generic framework that guides the complete sensing designs.

Table 2.3 illustrates how the proposed smart dynamic sensing framework in
this dissertation differs from existing prior works. These framework designs are
compared in terms of different metrics: whether they propose sensor selection,
sensor sampling and sensor scheduling. In addition, we differentiate these pro-
posed prior works based on whether they consider accuracy and delay when opti-
mizing the trade-off with energy. Furthermore, we highlight whether the frame-
work is adaptive such that it changes based on the user’s state and whether it is
time-variant and dynamic. Our contribution, is to optimize various sensing design
alternatives to trade-off the following metrics: energy consumption, recognition
accuracy, and detection delay.

Table 2.3: Comparing the dissertation’s proposed framework with other prior framework designs

Reference Sensor
Selec-
tion

Sensor
Sam-
pling

Sensor
Schedul-
ing

Optimize
Accu-
racy

Optimize
Delay

Adaptive
Frame-
work

Dynamic
Frame-
work

[97] X X

[95] X X

[98] X X X

[99] X X X

[47] X X X X

[100] X X X X X

Dissertation X X X X X X X

28

Chapter 3

Sensor Sampling: Trade-off
Energy and Accuracy for
Activity Mobile Sensing

Critical applications rely on accurate and continuous detection of user state; and
they provide personalized situation-specific services to the user such as real time
traffic monitoring and personal assistance [97, 96, 98]. Such applications require
continuous sensing. However, continuous sensing mechanisms constitute a major
source for energy consumption and impose extra overhead on mobile devices’ and
sensors’ limited resources; hence, the battery depletes rapidly. One solution is to
have only the needed sensors turned on with activity-based duty cycles assigned
to avoid continuous energy consuming data extraction. This solution builds upon
the idea that non-stop continuous data sensing is not essential for context detec-
tion since users tend to perform activities (such as sitting, sleeping, or studying)
over long time periods and activity recognition can tolerate few misclassifications.
Hence, assigning appropriate activity-based sampling frequencies to sensors can
help reduce energy consumption while preserving some minimum accepted accu-
racy level. We will show that the accuracy of detecting some activities does not
decrease even when decreasing the sampling frequency from the maximum to the
minimum acceptable value.

As explained in Section 2.2.3, most of the referenced literature assigns fixed
sampling frequencies which are not adjustable to different user states [97]. In
[97], the authors presented a sensor management system: EEMSS. It explores
hierarchical sensor management by powering only a minimum set of sensors and
assigning fixed duty cycles to recognize user state. However, active sensors are
assigned fixed duty cycles which are not activity dependent; thus, they are not
adjustable to different user behaviours. Recently, there has been some research
work to minimize energy consumption through optimizing user-activity depen-
dent sampling frequency. In Kobe framework [105], the goal is to optimize energy-
latency-accuracy trade-off for classification which is not activity specific. In A3R

29

[117], the authors use activity adaptive sampling rates to detect context and re-
duce energy consumption. However, A3R determines offline the optimal tuple
for each activity; therefore, a new training offline phase would be required when
new activities are detected.

In this chapter, we aim at applying appropriate activity-based sampling fre-
quencies by using entropy as the optimization criterion to quantify activity classi-
fication accuracy. In addition, we aim at applying a new emerging concept in deep
learning: DNN which outputs the appropriate state-based sampling frequencies
and shows better accuracy levels compared to other proposed algorithms.

This chapter is organized as follows. Section 3.1 presents the first entropy-
based approach we used with its own experiments and results. The second ap-
proach is based on deep learning and is described and evaluated in Section 3.2.
Finally, a comparison between the two approaches along with the outcomes of
the chapter are summarized in Section 3.3.

3.1 Entropy-based Optimization to Trade-off En-

ergy and Accuracy for Activity Mobile Sens-

ing

This section proposes an entropy-based optimization algorithm to trade-off energy
and accuracy with mobile sensing for a particular activity. A key aspect of
our work is the design and evaluation of optimized energy-accuracy activity-
dependant sensing algorithm for recognizing human physical activity. The models
for activity recognition are trained using a publicly available dataset collected
from seven subjects performing six everyday activities. To support real-world
implementation, energy and accuracy models are evaluated from experiments
conducted on real smartphones.

The rest of this section is organized as follows. Section 3.1.1 presents the
proposed optimization formulation to derive an energy efficient algorithm. Sec-
tion 3.1.2 presents the results of the experiments.

3.1.1 Proposed Method

This section presents the proposed method for the entropy-based optimization
with trade-off between energy and accuracy for activity recognition using smart-
phone sensors. First, we present mathematical models for user activity and phone
sensing. Then, we present the details of the optimization formulation, and present
the steps to solve the optimization formulation.

30

Switch to

activity

Switch to

activity

User

Activity

Model

Sampling

Frequency

Pattern

Period

with 50%

Overlap

Sensing

Model

Figure 3.1: Modeling user activity and phone sensing.

Mathematical Models for User Activity and Phone Sensing

Assume we have a phone user who undergoes different activities during a typical
day. As an example, as illustrated in Figure 3.1, assume that the person goes for
a walk, then transitions into jogging. Let’s denote each of the M different types
of activities (e.g., walking, jogging, ...) by ai where 1 ≤ i ≤ M ; for example, a1

corresponds to walking state and a2 to jogging state. Furthermore, let’s assume
that during walking and jogging, the user goes through some repetitive pattern
of activity such as moving the legs. We represent these repetitive motions in the
figure by the triangle waveforms. As an example, the waveform can represent the
distance between the two feet. As the person walks or jogs, the distances spread,
join, then spread again. The period of these repetitive patterns is dependent
on the pace of the activity and on the user’s motion; e.g., walking takes longer
periods to produce steps.

Furthermore, Figure 3.1 shows the phone sensing parameters that are consid-
ered for user activity detection.

• fi represents the minimum sampling frequency for how often the collection
of sensor data needs to be initiated for detecting an activity of type ai.

• τi represents the minimum period for how long the sensor data needs to
be collected to compute the needed feature for activity ai. τi depends
on the type and pace of the activity since it should be directly related
to the repetitive patterns found in each activity cycle. During the time
window τi, the collected raw data is used to generate the feature for activity
recognition. For example, the feature can be standard deviation, and a
typical strategy is to choose 50% overlapping τ ’s. Previous work has shown
success with 50% overlap in feature extraction [139].

31

• fmax is the maximum frequency needed to capture any activity. As such,
fmax can correspond to the largest fi, or it can simply be set to the largest
sensor frequency available on the phone. For the activity recognition ap-
plication, we assume that sensor collection is first started at the sampling
frequency fmax. Once the activity ai is recognized, the phone sensor is
switched to the sampling frequency fi. At each sample, the application
checks for the continuous presence of the activity. When the activity is
detected as absent, the application switches to the fmax frequency to make
sure it is capable of recognizing any new activity. The process is then re-
peated, and once the new activity is recognized, the application switches to
the proper frequency fi for the newly detected activity ai.

• τmax denotes the largest period required to detect any repetitive pattern. As
such, τmax corresponds to the activity with the slowest repetitive pattern.

• Ti is used to represent the time window during which the user is detected
practicing activity ai.

• Ni = fi · Ti is the expected number of samples if fi is used during Ti.

• Esample is the energy consumed each time the sensor is triggered for a read-
ing; i.e., it is the energy per one sample.

To illustrate these parameters with walking and jogging activities, fmax would
be set to the frequency required for jogging since it needs higher sampling fre-
quency than walking. τmax would be equal to the window size for walking activity
since walking has a slower repetitive pattern than jogging. In the figure, once the
user switches to jogging, and the application detects walking as absent, the sys-
tem switches to the maximum frequency fmax for a duration of τmax to compute
a feature and then classify the new activity. In Figure 3.1, f2 > f1; hence, for
equal durations of the two activities, detecting activity of type a2 leads to more
samples and turns ON the sensors more frequently; thus, consuming more energy
than that consumed in detecting activity a1.

For the classification model, let Xi = {x0, x1} be a Boolean variable repre-
senting the presence or absence of the user activity ai. x0 indicates absence of the
activity and x1 indicates presence of the activity. Let Yfi represent the feature
that can be collected at frequency fi for activity ai. For example if the feature
is standard deviation, and τi is specified, different sampling frequencies can lead
to different feature values. In this proposed approach, we will consider the effect
of different sampling frequencies on classification, and we will use standard de-
viation as the extracted feature; thus, every value in Yfi represents the standard
deviation of data collected during the time window τi, i.e., of τi · fi data tuples.

Table 3.1 presents an example to illustrate the features used in the classifi-
cation model. In this example, a1, walking activity, is to be classified and two

32

Table 3.1: Numerical example for classification model

Time

feature sets referring to 50 Hz and 100 Hz are under consideration. The table
shows X1 which represents the true class label of the user’s activity. Moreover,
the table has two columns for the potential sets of features at two different fre-
quencies. τ1 corresponding to walking activity is used to compute the standard
deviations which represent the rows of the features.

Optimization Problem Formulation

Our goal is to achieve activity recognition while achieving highest accuracy and
using the least energy from the mobile device. The objective is to derive the best
operating conditions for phone sensors and detect the user’s activity while trading
off the two factors, energy and accuracy. In other words, energy is impacted by the
sensor sampling frequency, and accuracy is impacted by both the sensor sampling
frequency and the minimum period needed to detect the activity pattern. Energy
is reduced with lower usage of sensors, while accuracy is increased when more
sensor data is available. As a result energy and accuracy provide conflicting
requirements on phone usage. Hence, the objective is to find optimized choices
for fi and τi for all M types of activities. Mathematically, the objective function
can be formulated as follows:

argmin
fi,τi

i=1,...,M

M∑
i=1

(λi · Ei + (1− λi) · Pei) (3.1)

where Pei represents the expected user state classification error, Ei is the expected
energy consumption, and λi is a weighting factor where 0 ≤ λi ≤ 1. λi is adjusted
to achieve the desired energy-accuracy trade-off and guarantee unit compatibility
between energy and classification error. Any two consecutive activities are sepa-
rated by regions of fmax during which the current activity is classified. Thus, the
optimization can be applied individually to each activity.

For each activity ai, the optimization problem becomes:

argmin
fi,τi

λi · Ei + (1− λi) · Pei (3.2)

We will show below that (3.14) can be replaced by an alternative entropy-based
formulation as follows:

argmin
fi,τi

U(λi, fi, τi) = λi · fi + (1− λi) ·H (Xi|Yfi) (3.3)

33

where U is the utility function to minimize. Pei has been replaced by the condi-
tional entropy since, as will be shown:

Pei < H (Xi|Yfi) (3.4)

where Xi represents the user’s activity and Yfi denotes the standard deviation
feature collected with a sensor sampling frequency fi.

We model the energy Ei as

Ei = Esample ·Ni ∝ fi (3.5)

where Esample is the energy consumed each time the sensor is triggered for a
reading and Ni represents the number of samples in a specified time window.
Ei can be represented by fi since Esample is constant for a specific sensor and Ti
cannot be known beforehand thus we assume it is constant as well. λi can be
found using the min-max principle proposed by Gennert and Yuille [140] who
suggested that the weights should be selected to maximize the final minimum
value of the weighted sum function. The objective function is maximized to
balance the trade-off between energy term and classification error term. The
min-max principle works as follows: 1) For each value of λi, find the values for fi
and τi which minimize the objective function U(λi, fi, τi) presented in (3.3). 2)
Choose the optimal factor λ∗i which leads to the maximum U(λi, f

∗
i , τ

∗
i).

Accuracy in terms of Entropy and Sampling Choices: The entropy
H(Xi) presents the uncertainty in the distribution of the Boolean variable Xi. It
is defined as

H(Xi) = −
1∑
r=0

p(xr) log2 p(xr), (3.6)

where p(xr) denotes the probability that a state in Xi belongs to class xr. We
consider binary classification where the user is either in state ai or not; hence, the
class is either x1 or x0 respectively. To reflect the effect of sampling frequency fi
on classification, we generate different sets of feature values for different frequency
choices.

Increasing the sampling frequency means collecting more samples and, thus,
reducing the possibility of missing relevant samples for feature computation.
Hence, each feature corresponds to the conditional entropy H(Xi|Yfi) which de-
pends on sampling frequency fi. This conditional entropy, H(Xi|Yfi), represents
the amount of uncertainty remaining in Xi when knowing the values for feature
Yfi . It is defined as the information needed to classify Xi after using Yfi with v
discretized partitions. The v partitions are found after applying discretization by
entropy [141] which discretizes all numeric attributes in the dataset into nominal
attributes and, thus, it chooses the best threshold to divide data into different
classes. The boundaries of the partitions are chosen as to minimize the entropy.

H(Xi|Yfi) =
v∑
j=1

|Yfi in partition j|
|Yfi |

·H (Xi in partition j) (3.7)

34

where |Yfi in partition j| represents the count of tuples in Yfi which belong to
partition j and |Yfi | represents the total count of rows in the feature Yfi . As
an example based on Table 3.1, H(X1|Y50) can be computed as follows. Assume
Y50 is partitioned into two partitions: below and above 0.26. Then, the first
partition (≤ 0.26) has 3 out of 4 samples, with 2 ”Walk” and 1 ”Not Walk”;
whereas, the second partition (> 0.26) has 1 sample with ”Not Walk” label.
Hence, the entropy in this case is

H(X1|Y50) =
3

4
·
(
−2

3
log2

2

3
− 1

3
log2

1

3

)
= 0.688 (3.8)

The relation between entropy and classification error has been shown by Ko-
valevskij’s upper bound [142] as

H(Xi|Yfi) ≥ log2 k − k (k − 1)

(
log2

k − 1

k

)(
Pei −

k − 1

k

)
, (3.9)

where Pei is the error probability and k is the number of possible outcomes of
Xi.

For k = 2 which represents the binary classification case, the error probability
bound becomes

Pei ≤
H (Xi|Yfi)

2
(3.10)

Based on (3.10), classification error is bounded by conditional entropy. Hence,
lower entropy would lead to lower error and, thus, higher accuracy. In our prob-
lem, we need to choose the feature Yfi with the minimum classification error;
hence, we need to minimize the conditional entropy H(Xi|Yfi).

Energy in terms of Sampling Choices: Assume that Esample represents
the amount of energy consumed each time the sensor is triggered for a reading.
Assume that the time window when the user is practicing activity ai is estimated
as Ti. Given the sampling frequency fi, the number of samples during the time
window Ti can be estimated by Ni = fi · Ti. Esample is fixed for a specific sensor.
Ti is considered to be constant since it cannot be predicted beforehand; thus, the
only energy variable in the optimization is fi, which leads the frequency term in
(3.3).

Activity-based Algorithm for Choosing Optimal Sensing Parameters

For each activity ai, there exist activity-specific parameters fi and τi that mini-
mize the energy while maximizing the classification accuracy. Given the formula-
tion presented in (3.3), Algorithm 3.1 presents the pseudocode to find the optimal
sensing parameters. First, the training sets are used to compute the different fre-
quency and entropy components in step (1) of the algorithm. Then, training sets
are used to find the optimal weighting factor λi using the min-max principle. For

35

Algorithm 3.1 Choosing the optimal activity-based parameters <
fi, τi >

Input:
- Training data with activity annotations:
• Xi: user’s activity
• Yfi : standard deviation with frequency fi

Do:
1. Compute H(Xi|Yfi) for all possible sampling frequencies fi and win-
dow sizes τi.
2. Find optimal λi which maximizes U(λi, f

∗
i , τ

∗
i).

3. Find < fi, τi > from step (2) that correspond to optimal λ∗i .
4. When new activity is detected, use fmax for a duration of τmax to
classify current activity.
5. Repeat step 1.

each value of λi, find the minimum possible utility function Umin(λi) using the
computations from step (1). Then, choose the optimal factor λi which leads to
the maximum objective function max

λi
Umin(λi). In the next step, the optimal

sensing parameters fi and τi are found by solving (3.3) for the detected activity.
Next, when the binary classification decides that the activity has changed, fmax

is used for a duration of τmax to classify the current activity. Then, (3.3) is solved
again for finding the new activity optimal parameters.

3.1.2 Experiments and Results

Our proposed method was evaluated on a dataset from the Human Activity
Sensing Consortium (HASC) [143]. This data was collected from seven subjects
holding different accelerometers at 100 Hz sampling frequency. The subjects
performed six activities: sit, walk, jog, skip, climb up-stairs, and climb down-
stairs. We choose standard deviation to be the feature extracted from the raw
accelerometer data with 50% overlapping between consecutive windows consistent
with success in related previous work [139]. Several experiments are conducted
to validate the proposed model, and evaluate the entropy-based optimizations.
This section first gives insight into the energy model, then it provides a valida-
tion of the expected relation between entropy and classification error. Finally,
we present results of applying the optimization formulation to determine optimal
operating conditions for the smartphone.

36

5 10 16 20 30 40 50 60 70 80 90 100

0.5

1

1.5

2

2.5

Sampling Frequency (Hz)

E
ne

rg
y

(J
)

Energy
Linear Fit

Equation of linear fit:
E=0.028*f
R-square: 0.9579

Figure 3.2: Energy consumption versus sampling frequency.

Energy Profile

HASC dataset does not state the amount of energy consumed while collecting
data from subjects. Therefore, to capture the effect of sampling frequency on
energy, we collected energy measurements for different possible sampling frequen-
cies. Figure 3.2 shows a plot for the energy consumption of the accelerometer
turned on for 30 seconds for different sampling frequencies. These measurements
were done using Motorola Defy phone which runs Android 2.2 OS and supports
sampling frequencies up to 100 Hz. However, this Android API allows four dis-
crete levels of sampling frequencies within the JAVA code which are: Fastest
(100Hz), Game (50Hz), UI (16Hz), and Normal (5Hz). To obtain energy values,
PowerTutor [144] was used to measure the power consumption by the device [145].
Figure 3.2 shows the resulting measurements, and indicates, as expected from the
mathematical models, that sampling frequency f and energy consumption E are
directly proportional. Moreover, the figure shows the linear energy model that
we assumed. Using the values in the figure, the average Esample is estimated by
dividing the energy consumed in 30 seconds as measured by PowerTutor by the
number of samples which is N = 30 · f . Hence, Esample can be estimated as
0.028

30
= 0.93 mJ.

Classification Error and Entropy Characteristics

The experiments in this section evaluate the expected dependency between clas-
sification accuracy and sampling frequency, and window size. In this experiment,
we choose standard deviation to be the feature because it has been shown that
there is a relationship between the rate of movement in any physical activity and
the standard deviation of data in the suitable time window [110]. We considered
the different activities available in the HASC dataset. The measurements in this
data were originally captured at 100 Hz sampling frequency; thus, to get samples

37

0 10 20 30 40 50 60 70 80 90 100
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Sampling Frequency (Hz)

C
la

ss
if

ic
at

io
n

E
rr

or

Classification error
Entropy/2 bound

Figure 3.3: Classification error and its entropy upper bound (3.10) for different sampling fre-
quency levels.

at lower frequencies, the data was down-sampled as needed to reflect the desired
frequencies. The values obtained from the feature extraction step for different
activities are classified using an information-gain based decision tree provided by
RapidMiner, and the classification accuracy is estimated by 10-fold validation.

Dependency of Entropy on Sampling Frequency Figure 3.3 shows the
average classification error and half the average conditional entropy for all combi-
nations of activities and subjects. We can observe that higher sampling frequency
leads to lower classification error and lower conditional entropy. Figure 3.3 indi-
cates, as presented in (3.10), that classification error is upper bounded by condi-
tional entropy.

To further understand which activity requires a higher sampling frequency,
we studied the accuracy of classification for each individual activity. Figure 3.4
shows the effect of varying the sampling frequency on the accuracy for each of
the activities: sitting, walking, and jogging. It can be observed that classification
accuracies of walking and jogging are affected by varying the sampling frequency;
i.e., as frequency decreases, classification accuracies sharply decrease. Decreasing
frequency for sitting case also decreases classification accuracy but in a lower
slope. Hence, more complex activities, such as walking compared to sitting, need
more samples to accurately detect the change in activity since more complex
activities involve more movement; this demonstrates that classification accuracy
is activity-dependent.

Dependency of Entropy on Window Size

The effect of τ can be viewed when comparing the classification accuracies of
activities. For example, Table 3.2 shows the average classification accuracies for
all subjects for walking and jogging activities at fixed sampling frequency of 50
Hz. For walking activity, the table shows higher classification accuracy for τ = 5
sec than other values of τ ; whereas, for jogging, it is more accurate in case of

38

0 10 20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

90

95

100

A
cc

ur
ac

y
(%

)

Sampling Frequency (Hz)

Walking
Sitting
Jogging

Figure 3.4: Average classification accuracy for different activities versus sampling frequency.

smaller τ (1 or 2 sec). Therefore, jogging needs smaller window size than that of
walking because jogging has a faster pace in general.

Performance Analysis of Proposed Algorithm

From the optimization formulation in (3.3), and as described in Algorithm 3.1, the
first parameter to optimize is the weighting factor λi. The experiment considers
the three activities: sitting, walking, and jogging. Figure 3.5a shows a sample
graph that plots the minimum objective function vs. λ for walking activity.
Optimal λ is chosen to be the one that maximizes the objective function. The
optimal λ for each activity is shown in Table 3.5b.

Next, to determine the best operating conditions, we consider 11 possible
sampling frequencies f = {5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100} Hz and 3 pos-
sible window sizes τ = {1, 2, 5} seconds. Solving (3.3) for each of the three
activities, we obtain the following optimal sensing parameters presented in Ta-
ble 3.3. The optimal frequency is, as expected, proportional to the complexity
of the activity. For example, fsitting is smaller that fwalking because sitting does
not involve a lot of movement compared to walking. Moreover, the optimal τ is
also activity dependant; for example, since jogging has a faster pace than walk-
ing, τjogging < τwalking. As for sitting, any of the possible τ ’s could work but we
choose the biggest τ to decrease computational energy.

Table 3.2: Classification accuracy for different values of τ

τ Walk Jog
1 sec 68.97 67.77
2 sec 70.69 67.77
5 sec 75.33 63.65

39

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lambda

O
bj

ec
ti

ve
 F

un
ct

io
n

(a)

Activity λi
Sitting 0.506

Walking 0.36
Jogging 0.344

(b)

Figure 3.5: Finding optimal weighting factor λ.

Table 3.3: Optimal sensing parameters for each activity

Activity fi τi
Sitting 10 Hz 5 sec

Walking 70 Hz 5 sec
Jogging 90 Hz 1 sec

Energy Consumption Gains

To demonstrate the energy savings of our proposed method, we assume that the
activity detection application is running for 90 minutes. We also assume uniform
distribution of activity, i.e., the user is sitting for 30 minutes, walking for another
30 minutes, and jogging the last 30 minutes. From Figure 3.2 we can estimate the
average Esample as 0.93 mJ. Sampling the accelerometer continuously (100 Hz) for
90 minutes = 5400 seconds for the three activities leads to an energy consumption
of almost 5400 sec · 100 Hz · 0.93 mJ = 502.2 Joules. Based on the proposed
algorithm, the sampling frequency is chosen to be 10 Hz when sitting is detected,
70 Hz when walking is detected, and 90 Hz when jogging is detected as shown.
Running our approach consumes 1800 sec · 10 Hz · 0.93 mJ = 16.74 Joules to
detect sitting, 1800 sec · 70 Hz · 0.93 mJ = 117.18 Joules to detect walking, and
1800 sec · 90 Hz · 0.93 mJ = 150.66 Joules to detect jogging. As a result, the
proposed algorithm leads to an energy consumption of 284.58 Joules, and an
overall 43% reduction in energy consumption.

3.1.3 Summary

In this approach, we have presented an optimization formulation based on entropy
to improve the energy efficiency of sensor data collection on smartphones. The
method includes a mathematical model for user activity and phone sensor pa-
rameters. The algorithm chooses the optimal sensor sampling frequency and the
window size for feature derivation. These two parameters are activity-dependent.

40

Sampling
Frequency 1

Sampling
Frequency 2

Sampling
Frequency N

.

.

.

Sensor

Sensor

Sensor

Dataset 1

Dataset 2

Dataset N

Multiple Classifiers
(DNN, DT, NB, …)

Multiple Classifiers
(DNN, DT, NB, …)

Multiple Classifiers
(DNN, DT, NB, …)

Averaged
Accuracy 1

Energy
Accuracy
Trade-off

Optimized Sampling
Frequency

𝒇𝒋#
State
𝑠%

Estimated
Energy 1

Averaged
Accuracy 2
Estimated
Energy 2

Averaged
Accuracy N
Estimated
Energy N

Figure 3.6: Proposed deep learning with ensemble classification for optimized sampling decision.

We experimentally validated the proposed mathematical models, and showed a
43% reduction in energy with the proposed method. Although this work focuses
on activity recognition, it can be generalized to any other context detection.

3.2 Deep Learning with Ensemble Classification

Method for Sensor Sampling Decisions

In this approach, we exploit the advantages of deep learning. Deep learning
has evolved through recent years resulting in high classification accuracy; thus,
it can guarantee more efficient sensing from embedded and wearable sensors.
Furthermore, deep learning does not need to transform the raw sensor data to
intermediate features, and thus eliminates the step of feature extraction required
by other conventional machine learning approaches. We use Deep Neural Network
(DNN) with ensemble classification of other complementary machine learning
approaches (such as Decision Tree (DT) and Näıve Bayes (NB)) to determine the
best sensor sampling frequency for context recognition.

A key aspect of our work is the design and evaluation of optimized state-
dependant sensing algorithm that trades-off energy and accuracy to recognize
user contextual information such as: activity, health condition, and location de-
tection. Moreover, we exploit the advantages of DNN inside an ensemble of
classifiers to determine the best state-based sampling frequency. The advantage
of this method is that it considers different levels of the data features through
DNN. In addition, the effect of this variation is then averaged through the en-
semble decision making so that the results are robust to data variation in real
applications. To validate our models and algorithm, we used a publicly available
dataset collected from seven subjects performing six everyday activities. The
rest of this section is organized as follows. Section 3.2.1 presents the proposed
architecture and algorithm. Section 3.2.2 presents the experiments and results.

41

𝑡

Switch	 to	
state	 𝑠!

𝜏

𝑓!!

𝑡

𝑓!!

Switch	 to	
state	 𝑠!

User	 	
model

𝑓!!! 𝑓!!! Sampling	
frequency

Pattern	 period	
with	 overlap

Sensing	
model

𝜏

Figure 3.7: Modeling user state and sensing.

3.2.1 Proposed Method

This section presents the proposed method for the energy-accuracy optimization
for context detection. The problem can be described as illustrated in Figure 3.6
for each monitored state sj. The state can be the health condition, the physical
activity or the location of the user. In the case of cardiac health monitoring, the
electrical activity of ECG wearable sensors are deployed to collect the needed
data. We denote each of the J states (e.g., healthy heart, cardiovascular attack,
...) by sj where 1 ≤ j ≤ J ; for example, s1 corresponds to healthy heart and
s2 to risk of heart attack. For each state, different datasets are collected using
N sampling frequencies. Each dataset is classified using an ensemble set of clas-
sifiers including Deep Neural Network (DNN), Decision Tree (DT), and Näıve
Bayesian (NB). The last step of the proposed approach is to input the averaged
accuracies from the ensemble classifiers for different sampling frequencies into an
optimization algorithm that trades-off energy and accuracy to find the optimized
sampling frequency f̂j.

We next present our proposed mathematical model. DNN which is a new
machine learning approach has two steps: 1) the unsupervised generative training
step which generalizes the model and 2) the discriminate fine-tune step which
increases the classification accuracy. We describe those steps briefly before we
present the steps to optimize the energy-accuracy trade-off.

Sensing Model

To illustrate the different parameters in our model, consider the example, where
we have a phone user with a wearable ECG that monitors her heart activities to
detect any critical state. As illustrated in Figure 3.7, assume that the person’s
first state s1 is healthy, then it transits into state s2 which has more fluctuations;
thus, it signifies the possibility of having a cardiovascular attack.

Figure 3.7 illustrates the sensing parameters that are considered for user con-
text recognition.

• f̂j represents the minimum frequency needed for accurate detection of state

42

sj. Thus, f̂j is the output of our proposed method as illustrated in Fig-
ure 3.6.

• τ represents the period for how long the sensor data needs to be collected
to compute the needed feature for state sj. During the time window τ , the
collected raw data is used to generate one feature.

• fmax corresponds to the largest sensor frequency available. We assume that
sensor collection begins with fmax. Once the state s1 is recognized, the sen-
sor is switched to the optimized state-based sampling frequency f̂1. When
s1 is detected as absent, the application switches to the fmax frequency to
make sure it is capable of recognizing any new state with high accuracy.

Ensemble Classification with DNN

We propose using an ensemble set of classifiers with averaged accuracy to reduce
risk of over-fitting and biasing from a single classifier [146]. Three classifiers are
proposed as part of the ensemble decision: DT, NB, and DNN. A decision tree
(DT) recursively builds a classification model as a tree structure. The basic idea
is to use training data to employ a top-down approach from a root node while
partitioning the data into smaller subsets. At each level, the algorithm seeks an
attribute that best separates the data at this node until reaching a leaf node. We
used the C4.5 DT algorithm which employs the information gain as its criterion
[147]. Näıve Bayes (NB) is a probabilistic classifier which is based on Baye’s
theorem [148]. The algorithm generates a classification model by calculating the
posterior probability of each possible class given the attributes while “näıvely”
assuming independence between attributes. The outcome is the class with the
highest posterior probability.

DNN is a generative-discriminative approach that was proposed in [149].
DNNs can learn high-level invariant features from raw data [150, 151], and this is
what makes these networks helpful for context recognition. DNNs are composed
of input layer, hidden layers, and output layer. The input layer represents the
set of features to be modeled. The hidden layers are trained hierarchically one
layer at a time where the output of one layer acts as an input to the next layer.
The last step in DNNs is to fine-tune the parameters.

Let x be the input vector which in our case is equal to the sensor feature:
ECG features for heart monitoring and accelerometer feature for physical activity
detection. A DNN is composed of L layers where the first layer represents the
input layer whereas the last layer represents the output layer. These L layers
transform the input vector x into a probability distribution y to estimate the
output class which is the corresponding activity of the user in our case. Let W be
the matrix of weights which controls the relative importance of elements of a layer
and the subsequent one. As for the layers in between, they are known as hidden
layers. In addition, a bias term exists on each layer except the output layer and

43

+

Bias 	 	 𝑥1 	 	 𝑥𝐷

	 	 𝑏1 (1) 	 	 𝑤)* (1)

+

+ +

- - - - - - -

- - - - - - -

- - - - - - -

	 	 𝑏1 (2) 	 	 𝑤,) (2)

𝑦. 𝑦,

Bias

h(𝟏)

𝒙

𝒚

Figure 3.8: Restricted Boltzmann Machine with one hidden layer.

a bias weight vector b exists between this bias term and all nodes in subsequent
layer. The DNN is composed of multiple Restricted Boltzmann Machines (RBMs)
[152], which represent Hidden Markov chains. Figure 3.8 shows an RBM example
with one hidden layer. It has input vector of size D, one hidden layer of size K
and an output layer of size J which is the number of possible classes (states).
When more than one hidden layer exists, several RBMs are stacked starting with
the one whose input is the raw sensor data where the output of the first layer
RBM is an input for other subsequent RBMs.

Each layer uses an activation function g(a) that transfers the input data to
the output data of that layer. In our DNN, we used hyperbolic tangent (tanh)
as an activation function. The output of this function is in the range (-1,1):

g(a) =
ea − e−a

ea + e−a
(3.11)

For example, we compute the vector h(1)(x) of the first layer as:

h(1)(x) = g(W (1)Tx+ b(1)) (3.12)

where W (1) and b(1) are the weight matrix and the bias vector respectively for
the first hidden layer. As for subsequent hidden layers, each layer l computes its
vector h(l)(x) using previous layer vector h(l−1)(x).

To find the suitable values of W matrices and b vectors, we use training
dataset. There are several optimization methods to train data and minimize
the classification error. We apply conjugate gradient (CG) method. Although
CG is more sophisticated than predominant methodologies (such as stochastic
gradient descent (SGD)), it significantly simplifies and speeds up the process of
pre-training deep algorithms. We chose CG since it does not use the computa-
tionally heavy hessian [153]. The final layer of the DNN uses softmax nonlinearity
to output a properly formed probability distribution y over the J possible classes

44

(states). For each state sj, the probability distribution yj is defined as:

p(sj|x) = yj =
exp(W

(L)T
j h(L−1) + b

(L)
j)∑J

k=1 exp(W
(L)T
k h(L−1) + b

(L)
k)

(3.13)

Optimization for Sampling Frequency Selection

Our goal is to detect context with highest level of accuracy while consuming
lowest energy from mobile device and wearable sensors and thus extend the usable
battery life while minimizing the frequency of charging the devices. The objective
is to derive the best sampling frequency for sensors and detect the user’s state
while trading off the two factors, energy and accuracy. Energy is reduced with
lower usage of sensors, while accuracy is increased when more sensor data is
available. There are N different sampling frequencies fn where n = 1, ..., N .
Hence, for each state sj, the objective is to find optimized sampling frequency f̂j
out of those N sampling frequencies that minimizes the following optimization
problem:

argmin
fn;n=1,...,N

λj ·
En(fn)

Emax

+ (1− λj) · (1−
An(fn)

100
) (3.14)

where An(fn) represents the ensemble averaged classification accuracy for each
sampling frequency fn and En(fn) is the sensing energy consumption. We model
the energy En as fn since we assume that sensing energy is proportional to sam-
pling frequency, and we assume that computational energy is equal for all choices
of sampling frequencies because a feature is computed every τ . We divide En(fn)
by Emax to normalize where Emax is the maximum energy consumed when sam-
pling at the highest possible sampling frequency fmax of the sensor. In addition,
we divide An(fn) by 100 to normalize such that the energy and accuracy factors
have same units. λj is a weighting factor that can be tuned from a development
data set based on the error tolerance of the application. For example, if the
application is critical such as health application, more weight should be given to
accuracy thus tuning will result in λj having relatively low value.

State-based Algorithm

For each state sj, there exists state-specific optimized sampling frequency f̂j that
minimizes the energy while maximizing the accuracy. Algorithm 3.2 presents the
steps followed for determining the optimized sampling frequency. First, for each
state sj, N sets of data are generated each using different sampling frequency fn
where n = 1, ..., N . Then, each dataset is input into the ensemble set of classifiers
after which an averaged classification accuracy is computed and consumed energy
is estimated. In the next step, the optimized sampling frequency f̂j is found by
solving (3.14) for the detected state. This algorithm is repeated offline for each

45

Algorithm 3.2 Choosing optimal sampling frequency f̂j for state sj

Input:
- Possible sampling frequencies fn where n = 1, ..., N
- λj: weighting factor
Output:

The optimized sampling frequency f̂j

1: for each n = 1 to N do
2: Generate a set of data collected using sampling frequency fn.
3: Input this dataset into the classifier ensemble to classify data.
4: Obtain the classification averaged accuracy An(fn) and the esti-

mated energy En(fn).
5: end for
6: Find f̂j by solving the optimization formulation (3.14).

Use highest possible sampling frequency 𝑓"#$ to
determine current state 𝑠&

Use the state-based optimized sampling frequency 𝑓&'
to compute feature

No

Yes

𝑡 = 𝑡+ 𝜏

State 𝑠&
absent?

Figure 3.9: The sampling frequency resets to fmax with state transitions.

state sj where 1 ≤ j ≤ J . All derived optimized frequencies f̂js are stored in a
look up table that can be used during online processing.

To apply our approach in real time, we use the previously identified sampling
frequencies for each state. As soon as the classifier recognizes that the current
state is no longer detected, the sampling frequency is switched to the highest
possible fmax frequency to determine the new state, and then adjust to a new
optimized sampling frequency as shown in Figure 3.9. This optimized sampling
frequency f̂j detects accurately whether the user is still in the same state sj or
has transited into any other state s̄j. Therefore, during transition, the detection
is a binary classification.

46

Computational Complexity

Our algorithm consists of three working phases: 1) training datasets collection,
2) ensemble classifier learning to obtain the averaged accuracies and estimated
energies, and 3) choosing the best frequency based on the optimization (3.14).
These steps are typically done offline to derive a Look Up Table (LUT) of sensing
frequencies for different states. After the offline learning is done, the optimized
sampling frequency f̂j is only fed into the sensor. The device uses this sampling
frequency and performs the online activity recognition which is lightweight. The
online processing complexity of the recognition algorithms: DNN, DT, and NB
are all linear, which provides low overhead.

3.2.2 Experiments and Results

To test our proposed method, we use Human Activity Recognition (HAR) as
an application. We used a publicly available dataset Human Activity Sensing
Consortium HASC [143] which is collected from seven subjects each holding an
accelerometer sampled at 100 Hz which is the maximum possible sampling fre-
quency fmax. The subjects performed six activities which include: sit, walk, jog,
skip, climb up-stairs, and climb down-stairs. As for the classification feature, we
chose the standard deviation computed every 2 sec to calculate the variation in
the accelerometer axes data (x, y, and z). This standard deviation with 2 sec
sliding window and 50% overlap was proved to be optimal in [31].

To obtain datasets for different sampling frequencies, the data is down-sampled
from 100 Hz to obtain 95 sampling frequencies ranging from 5 Hz to 100 Hz; thus,
N = 95. For Decision Tree and Näıve Bayesian, classification accuracy is esti-
mated using 10-fold cross validation provided by Weka. For Deep Neural Network,
MATLAB is used to obtain the classification accuracy. We used a batch size of
2 with 50 epochs where an epoch is the number of rounds carried out over the
training dataset. As for the activation functions, we used the hyperbolic tangent
function (tanh).

Several experiments are conducted to validate the proposed model and algo-
rithm. First, the experiment gives insight into the importance of Deep Neural
Networks compared to other machine learning algorithms. Then, we show the
relation between classification accuracy and sampling frequency for each activ-
ity. This section also presents the resulting optimized sampling frequencies after
applying our proposed approach. Finally, we present an Android-based imple-
mentation to show the energy savings in real systems.

Comparison Analysis of Machine Learning Algorithms

We varied the sampling frequency between 5 and 100 Hz for each of the sit, walk
and jog activities. Then, each dataset corresponding to a unique combination

47

0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

NB
DT
DNN

Walk JogSit

Figure 3.10: Average classification accuracy versus machine learning algorithms for each activ-
ity.

of activity and sampling frequency is input into each of the machine learning
algorithms (DNN, DT, and NB) one after the other. Thus, for each dataset, we
obtain three classification accuracies. To compare the performance of those ma-
chine learning algorithms, we compute the average classification accuracy over
all sampling frequencies for each activity and each of DNN, DT and NB. Fig-
ure 3.10 shows the results illustrated in a bar graph. It can be seen that the
overall performance of DNN proves to surpass the performance of DT and NB.
This proves the recent claims which state that DNN gives more accuracy due
to its pre-training and fine-tuning dual steps. Moreover, the figure shows that
DT’s performance surpasses NB performance for sit activity, while NB classifica-
tion accuracy is more for walk and jog cases. Therefore, considering an ensemble
of classifiers in our proposed model exploits the advantages of each one of the
considered algorithms.

Classification Accuracy versus Sampling Frequency

To validate that sampling frequency depends on the user state, we studied the
average accuracy of classification for each activity. In this experiment, we com-
pute the average classification accuracy for each sampling frequency dataset over
the three machine learning algorithms as presented in Figure 3.6. Figure 3.11
shows how varying the sampling frequency affects the accuracy of each activity.
The figure shows that varying the sampling frequency for sitting activity has
little effect on the accuracy since it results in low error even when using low sam-
pling frequencies. Whereas for walking and jogging, the classification accuracy
increases as the sampling frequency increases. Therefore, classification accuracy
is state-dependant where activities involving more movement (walking or jogging)
require more samples compared to steady activities (sitting).

48

0 10 20 30 40 50 60 70 80 90 100
55

60

65

70

75

80

85

90

95

100

Sampling Frequency (Hz)

A
cc

ur
ac

y
(%

)

Sitting

Walking

Jogging

Figure 3.11: Average classification accuracy for different activities versus sampling frequency.

Performance Analysis of Proposed Algorithm

To solve the optimization formulation in (3.14), λj depends on the importance of
the accuracy with respect to energy consumed. We chose three different λj values
to show its effect. Solving (3.14) for each λj value and each activity, we obtain the
optimized sampling frequencies presented in Table 3.4. The first observation is
that the optimized sampling frequency for sitting is smaller than other activities
since it does not involve complex movements. Another observation is related to
the effect of λj: for sitting activity it does not vary since the lowest sampling
frequency gives the minimum optimization output. As for walking and jogging,
decreasing λj causes the optimal sampling frequency to increase since it gives
more priority to accuracy over energy.

Table 3.4: LUT of optimized sampling frequency for each activity

Activity λj = 0.1 λj = 0.5 λj = 0.9
Sitting 5 Hz 5 Hz 5 Hz

Walking 50 Hz 20 Hz 17 Hz
Jogging 20 Hz 20 Hz 17 Hz

Energy Gains

Our optimized sensing mechanism is compared with the baseline of continuous
sensing which uses 100 Hz all the time for all activities. To analyze the energy
consumption of our proposed approach on real systems, we implemented our ap-
proach on an Android-based device which is HTC Desire running Android 4.4.2
with a 2100 mAh battery capacity. The conducted experiments involved activ-
ity recognition using the embedded accelerometer. We used PowerTutor [144] to
measure the energy consumed. We consider the scenario where the user sits for
30 min and walks for 15 min then finally she jogs for another 15 min. Sampling

49

82

84

86

88

90

92

200

400

600

800

1000

1200

1400

1600

1800

2000

Continuous (100Hz) Entropy DNN

A
cc

u
ra

cy
 (

%
)

E
n

er
g

y
 (

J)

Energy Accuracy

Figure 3.12: Energy and accuracy for our proposed sensor sampling approaches and continuous
sensing.

the accelerometer continuously leads to 100 Hz average sampling frequency which
consumes 1983.6 J during the one hour duration. Based on our proposed algo-
rithm with λj set to 0.5 for all activities, sitting requires 5 Hz while walking and
jogging are captured at 20 Hz. Using these optimized sampling frequencies, the
application consumed 255.6 J. Therefore, our method saves an overall of 87% of
energy consumption.

3.2.3 Summary

In this approach, we exploit the advantages of Deep Neural Network (DNN) with
ensemble classification of other complementary machine learning approaches to
provide a robust optimized choice of sensor sampling frequency for context recog-
nition. The selection problem is formulated as an optimization problem with
trade-off between energy and accuracy. The experiments show that the opti-
mized sensor sampling frequency is state-dependent. Furthermore, the experi-
ments show an 87% energy reduction compared to continuous sensing.

3.3 Comparison and Summary

To compare our two sensor sampling approaches, we implemented both ap-
proaches on an Android-based HTC Desire running Android 4.4.2. We used the
accelerometer sensor with different sampling frequencies based on the optimized
frequencies obtained from the approaches. We used PowerTutor software to ob-
tain an estimation of the consumed energy. As for the scenario, we regenerated
the case where the user sits for 30 min then walks for 15 min and finally jogs for 15
min; hence, we recognized the activity of the user for an hour. Figure 3.12 shows
the energy and accuracy for our two proposed approaches in addition to contin-
uous sensing which uses 100 Hz as its sampling frequency for all activities. The

50

figure shows that our deep learning approach which uses DNN gives the lowest
energy consumption with comparable accuracy level to the continuous sampling.
On the other hand, the entropy-based approach saves energy when compared to
the continuous case; however, it decreases the accuracy levels from 91% to 83%.
Therefore, using an ensemble of DNN with feature-based classifiers allows using
low sampling frequencies while providing accurate classification, thus lowering
consumed energy demonstrating improved battery life.

51

Chapter 4

Sensor Scheduling: Viterbi-based
Context Aware Mobile Sensing
to Trade-off Energy and Delay

A recent smartphone has computer capabilities with a wide range of applica-
tions being developed in several domains. On Google Play [154] alone, there are
over 1.3 million Android applications, capturing several domains in context-aware
computing including healthcare, navigation and personal monitoring. Such pro-
liferation and popularity have given rise to context-aware computing as a branch
of mobile computing in which applications detect and exploit contextual infor-
mation such as locations, health conditions, and activities [102, 155]. Several ap-
plications require near real-time response for detecting context changes especially
for medical applications. For example, fall detection of elderly people requires
the fastest possible detection of any change in the body’s posture to avoid risks;
hence, it relies on continuous context recognition [156]. However, sensors’ con-
tinuous usage constitutes a major source for energy consumption that imposes
heavy workloads on smartphones. Fortunately, most applications do not need to
detect the states of the context continuously, rather they require the detection of
critical changes in context. For example, the purpose behind monitoring signals
from an electrocardiogram (ECG) sensor of a patient with heart disease is to
detect risky heart activity and alert in case of emergency [157]. In such cases,
continuous sensing can be substituted by efficient dynamic mobile sensing strate-
gies that allow the smart mobile device to intelligently interact with external
sensors and embedded sensors while trading off resources’ energy consumption
and application delay targets. Therefore, a system is required to select a sensing
schedule that optimizes when sensors need to be triggered.

There have been some approaches to solve this problem; however, those ap-
proaches focus on energy and accuracy within one state of the context rather
than the transitions between states. Recently, stochastic principles have been
introduced to assign duty cycles to sensors. Markov Decision Process (MDP)

52

frameworks have been used to schedule sensors based on the current state of
the user [98, 123, 125]. However, Markov models assume predetermined systems
which know in advance the true user’s state which might turn out to be a wrong
assumption. In addition, user state transitions in real data traces are not strictly
Markovian [98]. These methods focus on one state; on the other hand, our ap-
proach aims at detecting the contextual change from one state to another. Those
approaches are application-specific and they assume the knowledge of the true
context state of the user.

This chapter proposes Viterbi-based Context Aware Mobile Sensing (VCAMS)
mechanism to optimize the trade-off between delay in sensing context change and
energy consumption via deciding when to trigger the sensors for data collection
based on the user’s behavior. Typically, Viterbi algorithm [158] is used to find the
most probable path of hidden states in Hidden Markov Models used for modeling
sequences. In [159], the authors use the Viterbi decoder to extract the sequence
of user’s locations which are hidden from sequence of observations derived from
the signal measurements. In our proposed approach, we define customized reward
functions in terms of optimization criteria which depend on the sensing action
and the current state. The goal is then to find the optimal sensing schedule that
maximizes the cumulative rewards.

VCAMS is context aware system that depends on the situational information
about the user and her surrounding. It can be used for applications that antic-
ipate real-time contexts such as location, activity, and health conditions. Each
context can have several states; for example, the location of the user might be at
home, at work, or in mall. For a given user in a specific state, the objective of the
system is to dynamically provide the time instants at which a sensor needs to be
triggered, also called the sensing schedule for the specific user and the particular
state. The system has two modes: learning mode and execution mode. In the
learning mode, the sensing schedules are derived using a Vietrbi algorithm based
on historical data of the user model that captures how much time the user spends
in particular states. Viterbi is chosen for its low computational complexity. The
user model is continuously updated when the system recognizes actual changes
of state. The learning mode is executed once to initialize the system, and on
occasions while the system runs and after a user’s behavior changes significantly
from its initial conditions. In the execution mode, the already learned sensing
schedules are used to decide on sensing triggers for a particular state.

The main contributions of this chapter include: 1) A formulation for Viterbi
implementation with the definition of new customized rewards to learn sensing
schedules for real-time decisions on when sensing should be triggered. The energy
and delay reward metrics are formulated to best represent the utility associated
with each transition between trellis nodes in a Viterbi-based algorithm. The for-
mulation includes a unified model that captures both the user’s and the phone’s
states; and 2) A strategy that triggers learning mode in real-time to update the
sensing schedule only when critical changes are captured, thus avoiding unnec-

53

User model
Update

Viterbi Learning Algorithm

Compute
rewards

Sensing
schedules

Sensor
data

Performance
metrics

Run
customized

Viterbi
algorithm

LUT
𝑠"	 	 	 	 	 	 	 	 	 𝑠𝑠"
𝑠$	 	 	 	 	 	 	 	 	 𝑠𝑠$

𝑠%	 	 	 	 	 	 	 	 	 𝑠𝑠%

𝑠&	 	 	 	 	 	 	 	 	 𝑠𝑠&

Sensor
Feature

extraction/
Context
detection

State

User
behavioral

change?

Yes

.

.

.

.

Historical data

Learning Mode

Execution Mode

VCAMS

Trigger

𝑠'	 	 	 	 	 	 	 	 	 𝑠𝑠'

Figure 4.1: The general work flow of the proposed method.

essary computations. To evaluate the performance of VCAMS, we conducted
simulation experiments on one state derived using a context simulator. To assess
the computational complexity under realistic operational conditions, we imple-
mented VCAMS on an Android-based smartphone. In addition, we investigated
a case study using real dataset with multi-state changes to demonstrate the ef-
fectiveness of the proposed approach.

This chapter is organized as follows. Section 4.1 describes the overall proposed
system model. Section 4.2 presents the details of the proposed Viterbi method
and studies its computational complexity. Sections 4.3 and 4.4 present the results
obtained by simulations and the case study respectively. Concluding remarks
follow in Section 4.5.

4.1 System model and Components

The general work flow of the proposed method is shown in Figure 4.1 for each
required context; and the parameters used in VCAMS are listed in Table 4.1.
There are two modes in the solution. The learning mode aims at determining the
sensing schedule to be used in association with a given user and a given context.
This mode is shown in the upper part of Figure 4.1. The inputs to the learning
mode of the system are: 1) the user model which captures a transition model from
historical behavior of the user such as the probabilities of transition pj(ti) from
state sj to another at any time instant ti, and can also include the statistics of
the time duration Tj spent in a specific state sj and 2) the performance metrics:

54

Table 4.1: Table of parameters

Groups Parameter Description

State-based parameters

sj Particular state out of J total states

Tj Time duration spent in sj

T̂j Time limit of sj

δj Sampling interval between time instants

Nj Number of time instants

pj Probability of state switch

hj Probability’s decaying rate

µj Mean time spent in state sj

σj Standard deviation of spent in state sj

ssj Output sensing schedule for state sj

Time-based parameters

ti Time instant

ai Decision action: 1 for “sense” and 0 for “not sense”

∆ti Time instants accumulated since last sense

Weighting parameters

ω Pareto weighting factor

α Energy-delay weighting factor

β Energy-delay weighting factor

Output parameters
D Output delay

E Output energy

energy and delay which are used to define rewards in the customized Viterbi
algorithm. The learning part of the system generates a user-specific lookup table
(LUT) capturing which sensing schedule should be used for each state. The
second part of the solution reflects the execution mode shown in the lower part of
Figure 4.1. The execution mode of the system includes integration with a context
recognition application. It takes the LUT as input, and chooses the corresponding
sensing schedule for the previously detected user’s state.

The proposed system starts by developing the initial user model based on the
user’s historical behavior. The VCAMS learning process requires two steps shown
in the “Viterbi Learning Algorithm” box in the figure. The first step is to compute
the expected customized rewards to estimate the gain for every combination of
state and sensing decision at each time instant. This step is described more in
Algorithm 4.1 in Subsection 4.2.3. The second step is to run the customized
Viterbi algorithm to maximize those rewards and derive the optimized sensing
schedules, and this step is presented in Algorithm 4.2 in Subsection 4.2.3. The
learning of the sensing schedule is done offline, and the derived sensing schedules
are saved in a LUT where each state sj has its specific sensing schedule ssj where
1 ≤ j ≤ J . In the execution mode, the system applies these schedules in real-
time by inputting the LUT to the online context recognition application which
triggers the specific sensor to extract features and recognize the current state of

55

Switch to one of the other states 𝑠1

User model

𝑇1
Real model

t

𝑇1

State 𝑠1

Sense

Don’t

sense

𝛿1 𝑡1 … 𝑡2 𝑡𝑖

Sensing

schedule

∆𝑡𝑖

𝑅(1, 1, 𝑡𝑖)

𝑅(0, ∆𝑡𝑖 + 1, 𝑡𝑖)

𝑡𝑁1

Figure 4.2: A unified model for user context and smartphone sensing: real model reflects the
real state change, user model defines the derived system parameters needed for the algorithm,
the Viterbi trellis shows the evolution of the algorithm, and the sensing schedule presents the
instants at which sensing should be triggered.

the user. The two-step learning mode is executed on occasions when the statistics
of the user’s behavior change significantly based on our proposed VCAMS trigger
strategy as described below in Subsection 4.2.4.

In terms of its flexibility, VCAMS is generic where it can deal with any number
of activities. VCAMS can add new states if it is available in the training dataset.
Futhermore, VCAMS’s framework accounts for an “unknown” state. When an
“unknown” state is encountered, the classification algorithm will alert VCAMS
that the current state is an unknown state which does not have a specific sensing
schedule. The lookup table (LUT) in VCAMS accounts for an unknown state
denoted by su. It triggers continuous sensing until a change is detected into a
state which is recognized by VCAMS. When the system has collected enough
training data about the “unknown” state, VCAMS can be updated since it is
scalable.

4.1.1 The Sensing Schedule

The problem is to devise an efficient algorithm for an application to detect a
critical change in the contextual state of a user. For example, the user can be
using an ECG-based health application that needs to discover any sudden change
in the user’s state from normal heart activity to risky heart beat. As shown in
Figure 4.2, at each time instant ti, we want to decide whether to trigger the sensor
(action ai = 1) or not (action ai = 0). The real model axis in Figure 4.2 reflects
that the person stays in state s1 for time duration T1, then transits to a different
state s̄1. Energy is impacted by the number of times sensing mechanism takes
place. Energy is reduced with infrequent sensing, and delay is reduced with more

56

frequent sensing. As a result energy and delay provide conflicting requirements
on device usage. Hence, the objective is to find optimized choice of when to
trigger the sensing mechanism. Triggering the sensor allows detecting whether
the user has changed the state. If the state has not changed, then no sensing is
needed. As a result, ideally, we do not want to sense until the exact moment of
state change. Any early sensing will cause wasted device energy; on the other
hand, waiting too long to sense may cause miss and delay in the detection of the
state change in the context being monitored. Our goal is to detect this transition
as soon as possible while minimizing the amount of consumed energy.

A unified model for user context and phone sensing trigger points is shown in
Figure 4.2. The user model is based on the user’s historical behavior. It provides
the following parameters:

• T̂j is intended to estimate the time duration the user spends in context sj.
As a result, it is used to represent the time limit of state sj before the model

triggers continuous sensing. T̂j is chosen based on the historical distribution

of the time spent Tj in each state sj. For example, T̂1 is the time limit for

state s1. If T̂1 ≤ T1, then no delay will be incurred in detecting state change
from s1 since we assume continuous sensing after T̂1; however, if T̂1 > T1,
there might be delay depending on the sensing decision. The choice of T̂j
will be further described in Subsection 4.1.3.

• pj(ti) is the survival probability at time instant ti that the context will stay
in the same detected state sj at this time instant. It is presented in more
details in Subsection 4.1.2.

• δj represents the sampling interval between time instants where decisions
are made to sense or not. The choice of δj is further described in Subsec-
tion 4.1.4.

• Nj is the number of time instants over the duration T̂j at which decisions
will take place.

The optimized sensing schedule is the output of the proposed Viterbi-based
algorithm whose trellis is shown in Figure 4.2. In the figure, R() is a probabilistic
reward function comprehending the rewards when state changes and the rewards
when state does not change. The goal is to find the sensing schedule which
consists of an optimized sequence of actions ai at each time instant ti by looking
forward over the time duration T̂j and maximizing the cumulative rewards, where
the rewards comprehend the trade-off between energy and delay. This problem
can be mathematically formulated to maximize the total probabilistic rewards as
follows:

arg max
ai;i=1...Nj

Nj∑
i=1

R(ai+1,∆ti+1, ti) (4.1)

57

Mathematically, R(ai+1,∆ti+1, ti) represents the probabilistic reward of having
action ai+1 as the next action at ti+1. As for ai+1, it represents the decision action:
1 for “sense” and 0 for “not sense”. ∆ti+1 is the time instants accumulated since
the last sense was triggered till time instant ti+1. ∆ti+1 plays an important role
in determining the incurred delay. ∆ti+1 depends on the current action at time
instant ti as follows:

∆ti+1 =

{
1, if at ti, action ai = 1

(∆ti) + 1, if at ti, action ai = 0
(4.2)

∆ti+1 resets to 1 when the action at time instant ti is “sense”; on the other hand,
∆ti+1 accumulates when no sensing is triggered at time instant ti.

Each node to node link in the trellis has its own reward R() which is a function
of the next action ai+1, the accumulated delay up to ti+1, and the current time
instant ti. In addition, these reward functions need to comprehend energy and
delays as will be described in Subsection 4.2.2. The trellis path that maximizes
the probabilistic rewards is chosen. An example illustration is shown in bold
lines on the trellis. The corresponding sensing schedule in the figure shows the
optimized output sensing schedule where each impulsive arrow represents a trigger
decision.

4.1.2 Survival Probability pj(ti)

The survival probability pj(ti) represents the probability that the user will survive
in state sj for the current time instant ti. In other words, it is the probability that
the user will not transit to another state at this time instant. This probability is
captured in the user model, and it depends on the previous historical behavior of
the user and on the time limit that the user spends before transiting and changing
current state. Therefore, this probability decreases with time where the highest
probability lies at the instant when the state is first recognized and the lowest
survival probability of the state sj lies at the end of T̂j.

We used survival analysis [160, 161] to derive this probability. The duration
until a state change happens is modeled as a random variable. The survival
probability pj(ti) represents the probability that no change has occurred up to
the current time instant ti. The exponential distribution is one of the most used
survivor functions and it gives a good fit which matches the context more than
any other distribution [160].

pj(ti) = e−hj ·ti (4.3)

where hj is the exponential decaying rate that depends on the time limit T̂j of
state sj and hj is set such that the survival probability at tNj is around 0.001 as
exponential cannot reach 0.

58

4.1.3 Choice of Time Limit T̂j

T̂j represents the time limit at which continuous sensing is triggered. It is based on
the estimated time spent by the user in context sj. From the user’s past behavior,
the time spent by the user in the sj

th state can be considered as a random variable
Tj, with mean µj and a standard deviation σj. These time properties are learned
from previous behaviors, and they are updated dynamically whenever state sj is

encountered. Typically, the choice of T̂j should not fall below (µj − 3 · σj) since
most of the time, the actual time Tj is above these values. The choice of a low

T̂j will cause high energy consumption. On the other hand, T̂j should also not
exceed (µj +3 ·σj) because delaying continuous sensing beyond (µj +3 ·σj) would

incur higher delays. Hence, the choice of T̂j reflects a trade-off. Choosing T̂j < µj
causes more energy due to continuous sensing and does not provide opportunity
for the algorithm to make intelligent decisions in the more frequent cases around
the mean µj. On the other hand, choosing T̂j > µj minimizes energy but leads
to more delay, and also provides the algorithm the opportunity to make efficient
decision in the more frequent cases around the mean µj. Hence, T̂j is chosen to
be greater than µj. This choice allows Viterbi-based method to minimize delay.

4.1.4 Choice of Sampling Interval δj

In the user model shown in Figure 4.2, δj represents the sampling interval between
time instants ti and ti+1 at which our optimized sensing strategy checks whether
to trigger sensing or not. When the model decides not to sense, the risk of delay
in sensing a contextual state change increases. The time delay Dt is proportional
to the sampling interval δj and the number of delay intervals D. D is measured
as number of instants between the time instant when context change actually
happened and the instant when the following sensing decision happened. Hence,
the time delay Dt is measured in seconds as follows:

Dt = D · δj (4.4)

Increasing δj increases Dt. However, decreasing δj increases the frequency Nj,
described in Subsection 4.1.1, at which sensing decisions need to be made; thus,
more computational time and energy. As a result, the choice of δj provides a
trade-off between energy and delay, consistent with the overall objective of the
optimization model in (4.1). As a result, we choose to set the value of δj to the
minimum possible δjmin based on the sensor requirements. δjmin is composed of
the duration required to capture the raw data needed for one feature plus the
duration needed to compute this feature; hence, it is sensor-dependent. For ex-
ample, sensors can be divided into two categories based on their sensing behavior
[100]. The first category includes sensors, such as accelerometer and microphone,
that require a command from the system to turn on and start collecting samples

59

and another command to turn it off and stop acquiring data. The second category
includes sensors, such as GPS and WiFi, which are based on their own protocols
to operate. These sensors need a command from the system to turn on; however,
they turn into idle mode automatically by themselves after attaining the required
data and finishing their tasks. In both cases, there is a minimum sampling inter-
val δjmin based on the specifications of each sensor. Furthermore, the acceptable
δjmin is relative to the time spent in a state; therefore, it is state-dependent. For
example, the location of a user driving changes more frequently than the location
of a user attending a meeting. In Section 4.3, we will consider the single state
of a user during a meeting detected using WiFi hotspot coverage. We choose
δjmin based on the sensor requirements and state restrictions and delegate the
energy-delay trade-off to the proposed Viterbi solution described in Section 4.2.

4.2 The Proposed Viterbi-based Method

This section presents the proposed learning method for the Viterbi-based algo-
rithm with trade-off between energy and delay for context recognition using smart
sensors. It describes the Viterbi trellis with its components as was shown in Fig-
ure 4.2. The Viterbi algorithm is commonly used to find the most likely sequence
of states that maximizes the posteriori probability of a process. In this section,
we describe our method when one sensor is considered; however, it can be gen-
eralized to multiple sensors. Subsection 4.2.1 gives a background about Viterbi
algorithm. Subsection 4.2.2 presents the reward functions defined in terms of
energy and delay factors, and Subsection 4.2.3 describes the steps to solve the
energy-delay trade-off using Viterbi-based algorithm.

4.2.1 Viterbi Algorithm Background

Viterbi algorithm [158] is applied as a dynamic programming algorithm for an
optimization problem that needs to maximize a statistical utility function. For
example, it is used as an efficient method of estimating a sequence of hidden
states in Hidden Markov Models (HMM) [162, 163]. Viterbi algorithm is also
used to find the shortest path through a weighted graph. It is widely used in
communication as a decoding algorithm for data encoded with convolutional en-
coding in digital data transmission [164, 165]. It aims at recognizing data errors
caused by communication channels and correcting them. Although Viterbi was
initially introduced in 1967 [166], it is still used in various fields as a dynamic
programming algorithm which finds the most likely sequence of hidden states. It
is recently being used in emerging concepts and domains ranging from communi-
cations [167] to target tracking [168], and even biomedical engineering [169, 170]
.Viterbi has been shown to be optimal for estimating the state sequence of a finite
state process [158]. Hence, Viterbi can be applied to any dynamic problem with

60

𝑟(𝑠𝑗 , 1, ∆𝑡𝑖+1)

𝑟(𝑠𝑗 , 0, ∆𝑡𝑖+1)

𝑟(𝑠𝑗 , 1, ∆𝑡𝑖+1)

𝑟(𝑠𝑗 , 0, ∆𝑡𝑖+1)

𝑡𝑖 𝑡𝑖+1

𝑝(𝑡𝑖) 𝑝(𝑡𝑖+1)

𝑠𝑗

𝑠𝑗 𝑠𝑗

Figure 4.3: State and reward diagram.

finite states. In our case, the Viterbi states are the sensing decisions which are
two: “sense” or “not sense”. Our problem deals with real dynamic time limits
where some sensing decisions might be taken over long periods of time; hence,
Viterbi provides a reduction in computational complexity by using recursion and
saving only the most likely path leading to each state [166].

Viterbi algorithm is described using two diagrams. The first diagram is the
trellis diagram shown in Figure 4.2 which represents a graph of a finite set of
nodes connected using edges that define the possible transitions between nodes
at discrete time intervals. Each edge has its probabilistic reward function R().
The nodes in the trellis represent the decision where the upper node represents
“sensing” decision and the lower node represents “not sensing” decision. The
probabilistic state of the user is thus not illustrated in the trellis. Hence, we need
the second diagram which is the state diagram shown in Figure 4.3. It defines
the instantaneous rewards of the transitions between nodes based on the state
of the user. The nodes in the state diagram represent the two states sj and s̄j.
The links between the nodes are the instantaneous rewards r() that depend on
whether the state has survived as sj or transited into s̄j on time instant ti+1. The
Viterbi algorithm uses a set of metrics (costs or rewards) to compare the costs
of the various paths through the trellis and then decide the path that maximizes
the problem-specific utility function. We define those metrics for our problem in
subsection 4.2.2.

The general Viterbi algorithm works as follows. First, the algorithm looks at
each node at time ti+1, and for all the transitions from ti that lead into that node,
it chooses the path with the greatest metric, and it discards the other transitions
into that node. The algorithm does the same process for all the trellis nodes
starting from time ti by moving forward to time ti+1 and repeating the process.
When the algorithm reaches the end of the trellis (ti = tNj), it evaluates the
metrics for the different paths that lead to the end and outputs the path with
the highest cumulative reward metric R() as presented in (4.1).

61

Table 4.2: Energy, delay, and recognition components.

state = sj state = s̄j

energy delay recognition energy delay recognition

action = sense −1 0 0 −1 −(α ·∆ti+1) (β/∆ti+1)

action = don’t sense 0 0 0 0 −(α ·∆ti+1) 0

4.2.2 Rewards

In dynamic programming algorithms, metrics need to be defined to represent
the utility associated with each transition between nodes. The metrics used in
our proposed Viterbi-based algorithm are defined as R(ai+1,∆ti+1, ti) as shown
in the trellis in Figure 4.2. Each edge in the figure holds a defined metric R().
The true state of the user is not known unless a sensing mechanism is triggered;
therefore, each R() metric is a probabilistic combination of two instantaneous
reward functions. At each time instant ti, there is a probability pj(ti) of remaining
in state sj and a probability 1 − pj(ti) of transitioning into another state s̄j.
Therefore, the metric R() is to be computed with probabilities depending on
the action considered at each time step. Hence, for each action (sense or don’t
sense) there are two instantaneous rewards r(): the first one r(s̄j, ai+1,∆ti+1)
representing the reward assuming a state change has happened and the other
one r(sj, ai+1,∆ti+1) assuming the monitored context is still in the same state sj.
The reward R() for each action ai becomes:

R(ai+1,∆ti+1, ti) = Es[r(s, ai+1,∆ti+1)]

= pj(ti) · r(sj, ai+1,∆ti+1) + (1− pj(ti)) · r(s̄j, ai+1,∆ti+1) (4.5)

where Es is the expectation over states sj and s̄j.
The decision of when to sense depends on the survival probability and the

cumulative delay. Intuitively, as the survival probability decreases with time;
that is the probability of changing the state of the monitored context increases,
we should sense more frequently. In addition, as the risk of accumulated delay
increases, sensing mechanism becomes more necessary. Sensing more frequently
guarantees lower delays but causes more energy consumption. Thus, energy and
delay criteria are represented in rewards r() to define the metrics of each transi-
tion in the Viterbi trellis. Table 4.2 shows how we divide the metric into three
components: the energy component which represents the cost of sensing when
triggered, the delay component which accumulates since the last time instant
when sensing was triggered, and the recognition component which defines the
reward of recognizing a state transition. Each instantaneous reward r() has an
energy, delay, and recognition component.

Energy and delay are measured in terms of time instants. Delay is computed

62

as the number of time instants skipped before detecting a state transition, and
energy is computed as the number of time instants at which sensing is triggered.
Therefore, energy costs either 0 when no sensing is triggered or -1 when sensing is
triggered. Let α and β be energy-delay weighting factors. ∆ti+1 is used in defining
the delay component since the actual delay time is not known as the true state
of the user cannot be revealed unless sensing is triggered. α is used in the delay
component. It varies the effect of ∆ti+1 on sensing decision. Increasing α would
increase the negative effect of incurred delay; thus, as α increases, sensing is
triggered more frequently to avoid excessive delay. On the other hand, β affects
the recognition component where VCAMS system gains more reward when β
increases; thus, increasing β also leads to more sensing. Therefore, increasing α
and β causes more sensing; thus more energy and less delay.

The choice of those weighting factors is application-dependent. For example,
if the application is health-related with critical context being monitored, α and
β should be chosen such that delay is minimized. Another factor that affects the
choice of the weighting factors is the phone status. For example, if the phone
battery is low, α and β should be chosen to minimize energy consumption; and
thus sense less frequently.

Pareto Optimal (α, β)

Sensing more frequently causes more energy but decreases the delay values; hence,
there is a trade-off between energy and delay. Thus, finding the best (α, β) combi-
nation is a multi-objective optimization problem which requires an optimal Pareto
solution. Pareto solutions find points which are acceptable by both objectives.
The optimal (α, β) combination is the one which provides a balance between the
incurred delay values and the total consumed sensing energy. Several approxima-
tion methods are proposed and used to identify the most desirable Pareto points
[171]. The most common approach is an approximation method based on scalar-
ization which combines the multiple objectives into one single-objective function
using weighted-sum [172]:

min
α,β

ω · E(α, β)

Emax

+ (1− ω) · D(α, β)

Dmax

(4.6)

where 0 < ω < 1 is the weighting factor, E is the energy function, D is the delay.
Emax is the maximum energy and Dmax is the maximum delay, and are used to
normalize the energy and delay as shown in (4.6). The set of solutions, called non-
dominated solutions, which provide a balance between the different objectives,
can be generated by varying the weight ω in (4.6) [173]. Since α and β are varied
to balance the different objectives, ω can be set arbitrarily. We choose to set ω to
0.5; thus giving equal weight for both energy and delay components in (4.6). It
is worth noting that Emax is proportional to the time limit T̂j at which decisions

take place. In addition, the maximum delay Dmax that can occur is T̂j which

63

represents the case when sensing schedule decides to sense only at T̂j. Therefore,
if we change the time limit for the same choices of Pareto optimal α and β, we will
keep the same equal proportion of energy and delay. By normalizing the energy
and delay values, we avoid re-computing the Pareto optimal (α, β) combination
again each time a state is encountered in real-time.

Instantaneous Rewards

As shown in Table 4.2, there are four combinations of actions and states; there-
fore, there are four instantaneous rewards r() as shown in Figure 4.3. The dashed
lines in the figure represent the rewards when the action is not to sense. The in-
stantaneous reward r() depends on the current state of the user, the decision
taken whether to sense or not at each instantaneous time instant, and the time
elapsed since the last sensing mechanism ∆ti+1. For each state and action combi-
nation, the corresponding reward is obtained by summing up the corresponding
energy, delay, and recognition components as follows:

1. When the state is still in the same state sj and the action is to sense ai = 1
at the corresponding time instant, there is an energy cost.

r(sj, 1,∆ti+1) = −1 (4.7)

2. When the state is still in the same state sj and the action is not to sense
ai = 0, there are neither energy nor delay rewards.

r(sj, 0,∆ti+1) = 0 (4.8)

3. When the state has changed to s̄j and the action is to sense ai = 1, there
is an energy cost and a negative delay cost which is directly proportional
to α and ∆ti+1. In addition, there is a positive recognition reward for the
correct decision but this reward is inversely proportional to ∆ti+1. As β
increases, delay is given a higher weight thus emphasizing more sensing.

r(s̄j, 1,∆ti+1) = −1− (α ·∆ti+1) + β/∆ti+1 (4.9)

4. When the state has changed to s̄j and still the action is not to sense ai = 0,
there is negative delay.

r(s̄j, 0,∆ti+1) = −(α ·∆ti+1) (4.10)

64

Use optimized sensing schedule obtained by

proposed algorithm for state 𝑠𝑗

Sense when 𝑎𝑖 = 1

Use optimized sensing schedule for new state 𝑠𝑗

No

Yes

𝑖 = 𝑖 + 1

State

changed?

Figure 4.4: Viterbi-based algorithm resets when detecting new state.

4.2.3 Viterbi-based Algorithm for Optimized Sensing Sched-
ule

This subsection presents the Viterbi learning algorithms that output the sensing
schedule. Our proposed algorithm is adaptive to the state under consideration,
where the optimized sensing schedule depends on the state being monitored. Each
state sj has its own time statistics such as the time limit spent in this state is T̂j.
If at any time instant sensing reveals a change in state, a new optimized sensing
schedule is started with new state related rewards as shown in Figure 4.4.

Algorithm 4.1 describes how the time statistics for state sj are computed and
shows the steps to compute the rewards R() which are the inputs for the Viterbi-
based algorithm described later in Algorithm 4.2. To derive the sensing schedule,
Algorithm 4.1 takes as input the whole collected historical data of the user model
that captures how much time the user spends in particular contexts. Another
input to the algorithm is the energy-delay weighting factors α and β. The first
step in Algorithm 4.1 is to compute the mean µj and the standard deviation σj
from the historical data (line 1). Then, the time limit T̂j is chosen to be greater
than the mean µj according to Subsection 4.1.3 while δj is chosen as the minimum
δjmin based on Subsection 4.1.4 (lines 2 and 3). The number of time instants Nj

at which sensing decision should take place is derived as Nj = T̂j

/
δj (line 4).

Survival probabilities are computed based on (4.3), and instantaneous rewards
and computed based on Table 4.2 (lines 5 and 6). Finally, the rewards R() are
derived using pj(ti) and r() as described in (4.5).

Algorithm 4.2 presents the pseudocode to learn the optimized sensing schedule
by searching for the best Viterbi path that chooses the best action ai at each time
instant ti. The general Viterbi algorithm works as follows. At each step ti = t1 to
tNj−1 (line 1), it computes the cost of the different possible paths and keeps the
path with the highest reward for each node. There exists a path from each node

65

Algorithm 4.1 Computing the time statistics and the rewards for state
sj

Input:
- Historical data of statistics in state sj
- Energy-delay weighting factors α and β
Output:
The rewards R(ai+1,∆ti+1, ti)

1: Compute the mean µj and the standard deviation σj for the time
duration Tj spent in state sj

2: Choose time limit T̂j > µj based on Subsection 4.1.3
3: Choose sampling interval δj = δjmin based on Subsection 4.1.4

4: Derive the number of time instants Nj = T̂j

/
δj

5: Compute the survival probability pj(ti) for ti = t1 to tNj
6: Compute the instantaneous rewards r() for all time instants based

on Table 4.2
7: Derive the rewards R() using (4.5)

Algorithm 4.2 Choosing the optimized sensing schedule ai

Input:
- Rewards R(ai+1,∆ti+1, ti) (computed in Algorithm 4.1)
- Number of time instants Nj

Output:
Best action ai for time instants ti = t1 to tNj

1: for each ti = t1 to tNj−1 do
2: for each of the A nodes at ti+1 representing ai+1 = 0 to 1 do
3: Compare the values R(ai+1, 1, ti) and R(ai+1,∆ti+1, ti) and keep

the path to ai+1 which maximizes the cumulative reward R() up to
time ti+1

4: end for
5: end for
6: Choose the path with the highest cumulative reward at ti = tNj to

solve (4.1): arg maxai;i=1...Nj

∑Nj
i=1 R(ai+1,∆ti+1, ti)

at ti to reach each node at ti+1. Let A be the total number of nodes at each time
instant which is A = 2 in our case. For each node decision at ti+1 representing

66

either ai+1 = 0 or ai+1 = 1 (line 2) there are two paths: one originates from ai = 0
having R(ai+1,∆ti + 1, ti) and the other path originates from node ai = 1 having
R(ai+1, 1, ti). For each node decision ai+1, Viterbi algorithm keeps only one path
leading to this node which is the path with the highest cumulative metric R()
(line 3). This process is repeated for all time instants until reaching tNj where
the algorithm backtracks back to the starting point to find the best path with
the highest cumulative metric (line 6).

4.2.4 Triggering of VCAMS Learning Mode

Whenever a new sensing schedule is needed, the system computes the expected
rewards using a collected historical dataset for the particular user (Algorithm 4.1)
and runs the Viterbi algorithm to maximize those rewards (Algorithm 4.2). How-
ever, user’s behavior may change over time; therefore, the sensing schedule must
adapt to the new data available in real-time by running again the needed learning
algorithms and deriving new sensing schedules. To reduce computational over-
head, the system should trigger the learning mode for a new sensing schedule only
when significant behavioral changes happen. We assume that a behavior has a
measurable time length that characterizes it; therefore, a significant behavioral
change happens when the time span spent in the state changes significantly from
its typical value.

Mathematically, to track the user’s behavior and quantitatively explain what
significant behavioral change means, the system tracks the statistics associated
with state sj which include the mean value µj and the standard deviation σj,
and constantly updates them as new measurements are captured in real-time.
To quantify this relative change from the typical norm, we measure the relative
difference between the new time spent and the typical average time spent µj. If
this normalized difference is more than 1, we assume that there is a significant
change in the behavior. Let’s denote the new captured time duration spent in
sj as vj. Behavioral changes are assessed with every new measurement vj by
comparing it to the previously tracked historical average µj, and assessing the

ration κ =
|µj−vj |
σj

. When the deviation from the average is less than σj, the

previously computed sensing schedule for this state is not changed since vj would

still be within the bound of the time limit T̂j = µj + σj. Behavioral change is
flagged as having significantly changed if κ > 1. When the system detects that
a state sj has been flagged three times, it triggers the learning mode to derive
a new sensing schedule ssj. Therefore, the rules that decide when to trigger the
learning mode form our proposed VCAMS adaptive trigger strategy (VT).
The rules for triggering VCAMS’s learning mode are as follows:

• κ ≤ 1 (no change in behavior):

– Update the time statistics.

67

0 2 4 6 8 10 12 14 16 18 20 22
State events

j
-

j

j

j
+

j

T
im

e
sp

en
t i

n
a

st
at

e
Continuous trigger (CT)
VCAMS trigger (VT): update time statistics
VCAMS trigger (VT): update sensing schedule

Figure 4.5: Strategy to decide when to trigger VCAMS’s learning mode computations.

• κ > 1 (change in behavior):

– Update the time statistics.

– Derive new sensing schedule after the behavior is flagged as having
significantly changed for three times.

Figure 4.5 shows a simulation of measurements vj, and indications of when
learning modes are triggered. Without our proposed rules (VT), the default
mode is continuous triggering (CT) which triggers learning mode with every new
measurement. The x-axis represents the count of state events that increments
each time this specific state is encountered. The y-axis represents the time mea-
surement vj spent by the user in the particular state. The horizontal line in the
middle of Figure 4.5 shows the mean value µj while the dotted lines illustrate the
κ = 1 threshold of relative differences. The instants at which VT updates the
time statistics are illustrated by the red dots whereas the black squares indicate
the time instants at which VT triggers VCAMS’s learning mode to update the
sensing schedule. The blue circles indicate the time instants at which CT triggers
the learning mode. The figure illustrates the savings in overhead, where 12 of the
22 events are triggered for updates and only 4 events are triggered for learning.

4.2.5 Computational Complexity Analysis

We now comment on the overall computational complexity of the proposed so-
lution. We distinguish between the learning mode and the execution mode.
The learning mode runs offline once to derive Pareto parameters for the multi-
objective function and initialize the sensing schedules from historical collected
dataset, and it runs as needed with behavioral changes to derive new sensing

68

schedules. In the online execution mode, the system selects based on the cur-
rent user’s state the sensing schedule from the LUT; therefore, there are minimal
computations, and thus the complexity is low.

Pareto optimal parameters for the multi-objective function are derived once
offline by repeating Viterbi P times where P is the number of possible combi-
nations for the parameters α and β. While α and β are continuous variables
between 0 and 1, a finite search grid can be used without loss of accuracy. In our
experiments, we varied α and β between 0 to 1 in steps of 0.1 (i.e., 11 values of α
combined with 11 values of β, leading to P = 121 different combinations). The
other parts of the learning mode (Algorithms 4.1 and 4.2) run offline using the
derived Pareto points to initialize the system and derive the sensing schedules
using a Viterbi algorithm based on historical data of the user model.

The feature extraction and context detection steps shown in the execution
mode in Figure 4.1 depend on the classification algorithm which is being used.
In general, there is a trade-off between the computational complexity and the
accuracy of classification algorithms. To improve the performance, we can use
an ensemble of classifiers rather than one classifier; however, ensemble classifica-
tion comes at the price of more computational energy and complexity. VCAMS
is generic and any classification algorithm can be used along with VCAMS de-
pending on the application and the triggered sensor. During execution mode, the
system checks continuously whether VCAMS’s learning mode should be triggered
based on the rules set in VCAMS trigger strategy (VT). When learning mode is
triggered online, the time statistics are updated as described in Algorithm 4.1.
These time statistics are algebraic aggregation functions; therefore, they can be
defined as a scalar function of distributive computations [174, 175]. The compu-
tational complexity of calculating each of the mean and the standard deviation
is low of order O(1) with updates.

When VT decides to update the sensing schedule online, Algorithm 4.2 is
triggered where the optimized sensing schedule is derived by running Viterbi-
based approach. A trellis diagram shown in Figure 4.2 is used to represent the
optimal path selection problem. Let us denote “A” as the number of distinct
possible actions at each node. There are A paths that reach each node in the
trellis. Viterbi algorithm [158, 166] reduces the computational complexity by
using the recursion where only the node with the highest cumulative reward
survives. The time complexity of the Viterbi algorithm is then O(Nj ·A2) where
Nj is the number of total time instants for state sj, which has been shown to be
smaller when compared to alternative searching algorithms [176, 177].

4.3 Evaluation Using a Context Simulator

Several experiments were conducted with simulation to test the efficiency of our
proposed method. The optimized VCAMS sensing schedule was benchmarked

69

against continuous sensing and other state-of-the-art methods to show energy
and delay enhancements. We did two sets of experiments. In the first set of
experiments, we focused on examining performance with two scenarios with one
state change. For one scenario, we used a simulator monitoring one state assessed
energy and delay. The second scenario was an implementation on an Android
device to reflect real usage and estimate the computational costs. In the second
set of experiments covered in Section 4.4, we used real data benchmark with
multiple states in real-life situations. Furthermore, we conducted analysis for
the different parameters used in the algorithms. Different energy-delay weighting
factors (α, β) combinations were studied to investigate their effect on the trade-
off between energy consumption and delay. In addition, the effects of the system
parameters such as sampling interval δj and time limit T̂j were investigated.

4.3.1 Simulation Experiments’ Setup

We used the Siafu platform [178], which is an open-source context simulator
developed in Java. We used the office scenario which is modeled based upon the
typical behavior of an employee where agents get to work in the morning, work
at their desks and attend meetings. To illustrate the method, we chose the state
“sj = AtMeeting” which represents meeting attendance detected using the range
of WiFi hotspots. We divided the data into two parts. The first part was used
as historical data for initial learning to develop the user model where we obtain
the time limit T̂j for each state/activity sj and the probability distribution of
the time spent in each state and develop the initial sensing schedule for each
state. The second part of the data was used for testing in the execution mode
to validate the efficiency of the proposed algorithm in detecting state transitions.
The time statistics derived from historical data were mean time µj = 100 min and
standard deviation σj = 30 min. The average time of a single WiFi scan time is
10 sec; however, running a WiFi scan every 10 sec is too restrictive; therefore, we
chose to set the value of δj = 1 min based on the sensor requirements in addition
to state and application restrictions as discussed in subsection 4.1.4. As for the
testing data, we ran the simulator to generate 10000 values of the actual time Tj
spent in the meeting state. Energy and delay were extracted for each of these
10000 runs, and then the average values of energy and delay for these 10000
runs were computed. For the phone implementation of VCAMS, we selected an
Android-based HTC Desire which is equipped with Octa-core 1.7 GHz processor.

4.3.2 Sensing Energy and Detection Delay Evaluation

The objective of VCAMS is to trade-off two factors: sensing energy and delay.
Hence, we should evaluate these two criteria.

70

Sensing Energy in terms of Sensing Schedule

Given the optimized sensing schedule which decides when to trigger sensing,
define k to be the number of times the sensor is triggered from the time instant
the system recognizes being in state sj till it detects the transition into state
s̄j. Each sensor has its own power characteristics which lead to different energy
consumptions per trigger. Hence, rather than specifying the sensor-specific Joules
consumed each time the sensor is triggered, we evaluated the general energy E
as the number of time instants at which sensing is triggered. E can be used for
all sensors. We evaluated E as follows:

E = k. (4.11)

Delay Intervals in terms of Sensing Schedule

As for the delay, it is the number of time instants between the instant when
context change actually happened and the instant when the following sensing
decision happened. Assume tu to be the real transition time instant and tv be the
subsequent time instant when sensing occurred and state transition is detected.
Hence, the delay D can be computed as:

D = tv − tu. (4.12)

4.3.3 Effect of Energy-Delay Weighting Coefficients α and
β

The normalized weighting factors α and β reflect the relative effect of delay with
respect to energy in each of the reward functions presented in equations (4.7),
(4.8), (4.9), and (4.10). Varying these weighting factors affects the derived sensing
schedule. In this experiment, we took one standard deviation above the mean to
obtain the time limit T̂j = 130 min before continuous sensing is triggered.

Figure 4.6 demonstrates VCAMS sensing schedule that was obtained for dif-
ferent values of α and β. The figure shows VCAMS decision at each time unit
whether to sense or don’t sense. For each subfigure, the upper axis represents
the time instants at which sensing is triggered, and the lower axis represents
the other time instants at which no sensing is triggered. Therefore, the red
dots mean “sensing” time instants and the blue boxes illustrate the “no sensing”
instants. Figure 4.6 illustrates four specific combinations of (α, β). Subfig-
ures 4.6a, 4.6b, 4.6c, and 4.6d capture (α, β) = (0, 0), (0.7, 0.4), (1, 1), and (2, 2)
respectively. We chose those combinations because they are extreme values for
the weighting coefficients. It can be seen that as α and β increase, the system
approaches continuous sensing. Figure 4.6a shows that when α = 0 and β = 0,
VCAMS decision is to sense only once when t = T̂j. Therefore, the lower bound
of α and β cannot go below 0. Figure 4.6b presents the Pareto optimal behavior

71

Sense

Don’t sense 20 40 60 80 100 120 ×𝛿#	 (min)

(a) α = 0 and β = 0

Sense

Don’t sense 20 40 60 80 100 120 ×𝛿#	 (min)

(b) α = 0.7 and β = 0.4 (Optimal)

Sense

Don’t sense 20 40 60 80 100 120 ×𝛿#	 (min)

(c) α = 1 and β = 1

Sense

Don’t sense 20 40 60 80 100 120 ×𝛿#	 (min)

(d) α = 2 and β = 2

Figure 4.6: VCAMS sensing schedule for different (α,β) combinations.

of VCAMS that will be shown in Figure 4.8. The duration of idle times when no
sensing is triggered decreases with time as t approaches T̂j. Figure 4.6c shows
the behavior of VCAMS when both α and β are unity. The continuous sensing
behavior appears in this case. Figure 4.6d shows that increasing α and β beyond
1 will lead to excessive continuous sensing behavior; thus, we restrict α and β to
be less than 1 to avoid excessive energy consumption. Therefore, we varied each
of α and β between 0 and 1.

Figure 4.7 shows the effect on energy and delay for different values of alpha
and beta. We varied each of α and β between 0 and 1 in steps of 0.1 and for
each combination, we generated 10000 values of Tj and computed the energy and
delay for each. Then, the normalized average energy and delay were computed.
Figure 4.7 shows the effect of varying α and β on energy and delay. It can be
seen that energy increases with the increase of α and β. Delay decreases with
the increase of α, and it slightly decreases with the increase of β. Therefore,
increasing α and β causes more sensing; thus more energy and less delay. This
result is consistent with the discussion in Subsection 4.2.2.

To solve the trade-off between energy and delay, we searched for the best (α, β)
combination which we solved by finding a Pareto optimal point. Pareto point is
the one acceptable by both objectives where an improvement in energy requires a
degradation in delay and vice-versa. We used the normalized averages of energy
and delay by dividing each of the two factors by its corresponding maximum
value. A Pareto optimal solution was derived to find the Pareto optimal α and

72

E
ne

rg
y

0.15
1

0.28

0.9

0.43

0.8 1

0.57

0.7 0.9
0.6 0.8

0.71

-

0.70.5

0.85

0.6

,

0.4 0.5

1

0.3 0.4
0.30.2

0.20.1 0.10 0

(a)

0
1

0.9
0.8 1

0.5

0.7 0.9

D
el

ay

0.6 0.8

-

0.70.5 0.6

,

0.4 0.5

1

0.3 0.4
0.30.2

0.20.1 0.10 0

-=0
-=0.1
-=0.2
-=0.3
-=0.4
-=0.5
-=0.6
-=0.7
-=0.8
-=0.9
-=1

(b)

Figure 4.7: Effect of different choices of α and β on energy (a) and delay (b).

β values as shown in Figure 4.8. These values came out to be α = 0.7 and
β = 0.4. Therefore, for the remaining experiments, we set α and β to their
Pareto optimal values. Figure 4.8 shows the non-dominated points and the Pareto
optimal point illustrated as the star point which gives a balance between the total
energy consumed and the delay incurred.

4.3.4 Impact of False Positive in Context Classification

When the system triggers sensing, the sensor collects raw data which undergoes
processing to recognize the state using a classification algorithm which is char-
acterized by an average classification accuracy. In this section, we study the
impact of false positive and false negative events on the system’s performance. A

73

0 0.2 0.4 0.6 0.8 1

Delay

0.2

0.4

0.6

0.8

1

E
ne

rg
y

Pareto optimal point

Figure 4.8: Pareto effect.

Actual change
Detection of

change

FN FP

Erroneous
declaration of

change Actual change

Figure 4.9: False positives (FP) versus false negatives (FN).

false positive occurs when the system erroneously detects a context change, and
a false negative occurs when the system erroneously decides that the context has
not changed. We will refer to a false negative as FN and the false positive as FP.
The impacts of FN and FP are shown in Figure 4.9. If the system makes a FN,
extra delay will be accumulated until the system correctly detects that the state
has changed. During that period of time, the system will be in an erroneous state
period due to the FN. On the other hand, if the system makes a FP for current
state, the real state will be lost and the error may accumulate until the system
gets back on the correct track. Such a false positive event causes another kind of
erroneous state period of time. We use the term “undesired period” to refer to
any period caused by a false detection where the system is in an erroneous state.

To analyze the tolerance of our proposed approach to false positives and false
negatives of triggered activities, we ran VCAMS for the state “sj = AtMeeting”
and we varied the classification accuracy between 50% and 100%. For each clas-
sification accuracy, we ran the simulator to generate 10000 values of the actual
time spent in a meeting state. The percentage of undesired periods was extracted
for each of these 10000 runs and then the average value was computed. The re-
sults illustrated in Figure 4.10 show that running VCAMS using a more accurate
classification algorithm leads to lower false positives and accordingly to a lower
percent of undesired periods. VCAMS system’s performance is impacted linearly
with the accuracy of the classifier. From the figure we can see that even when

74

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Classification accuracy (%)

0

0.1

0.2

0.3

0.4

0.5

0.6

Pe
rc

en
ta

ge
 o

f
un

de
si

re
d

pe
ri

od
s

(%
) VCAMS with one classifier

VCAMS with ensemble classifier
Continuous with one classifier

Figure 4.10: Percentage of undesired periods versus the classification accuracy.

classification accuracy is at 100%, there is still a small percentage of undesired
periods. This is related to the VCAMS sensing strategy to trade-off energy for
delays. Since even if the case of 100% context classifier accuracy, VCAMS may
still choose to delay sensing to save energy. To eliminate any delay, VCAMS can
switch to continuous sensing, which is shown in the red curve, but such a strategy
would have higher energy cost.

To illustrate how classification accuracy can be improved even for low ac-
curacy classifier, we simulated VCAMS with ensemble classification as a means
to enhance classification accuracy. Instead of collecting raw sensor data for one
classification, we introduced a sequence of three consecutive classifications where
the final decision uses a majority rule. When a sensing decision is triggered by
VCAMS, the classifier requires three consecutive readings to feed the majority
rule. The figure shows that VCAMS with ensemble classifier causes less per-
centage of undesired periods than that of both VCAMS with one classifier and
continuous sensing. It is worth noting that while ensemble classification improves
overall performance, it comes at the price of more computational energy and com-
plexity. For the remaining experiments, we set the classification accuracy to a
constant value such that we can study the trade-off between energy and delay.

4.3.5 Effect of Sampling Interval δj

We described the choice of δj in subsection 4.1.4. We chose to set the value of
δj to the minimum possible δjmin based on the sensor requirements and state
restrictions. δjmin minimizes delay; however, it still consumes more energy than
higher values of δj and it causes more computational time. In this experiment,
we set α = 0.7 and β = 0.4 and we tried four different values for δj to show its
effect on energy, delay, and computational time. For each value of δj, we ran the
experiment again for 10000 times to compute the normalized averages of energy,

75

0

0.2

0.4

0.6

0.8

1

1.2

δ=1 δ=2 δ=3 δ=4

U
ni

ts

Energy Delay Computational time

Figure 4.11: Energy, delay, and computational time for different δjs.

delay, and computational time. Their values were normalized by dividing each
of energy, delay and computational time by its corresponding maximum value.
Figure 4.11 shows how the choice of δ affects energy, delay, and computational
time values. As δj increases, energy and computational time decrease while delay
increases. In this experiment, we coincidentally noticed also that our choice of
δj = 1 optimizes the energy-delay trade-off. When δj increases from 1 to 4,
normalized units of energy decrease from 1 to 0.51 which is a 49% improvement
in energy’s behavior while normalized units of delay increase from 0.05 to 1 which
is a 95% degradation in delay’s behavior. On the other hand, normalized units
of computational time decrease from 1 to 0.2 which is almost 80% improvement.
In our proposed approach, we are trading-off energy and delay; thus, it can be
concluded that the proportional delay loss exceeds the proportional energy gain
when increasing δj. Therefore, taking δj to be the minimal is justified.

4.3.6 Effect of Time Limit T̂j

In subsection 4.1.3, we chose T̂j such that it is greater than the mean value µj to
avoid excessive early continuous sensing. For experimentation, we choose:

T̂j = µj + γ · σj (4.13)

where γ reflects the trade-off in energy versus delay. γ depends on the delay
that the application is able to tolerate. In this experiment, the system operated
in its optimal condition where α = 0.7 and β = 0.4. δj was set to 1 according
to the discussion in the previous subsection. To study the effects of varying γ,
simulations were conducted for different values of γ. The results are presented
in Figure 4.12. Energy and delay values were normalized into units by dividing
each by its maximum value to obtain a range of {0, 1}. Energy was examined for

76

0

0.2

0.4

0.6

0.8

1

1.2

γ=0 γ=1 γ=2 γ=3

U
n

it
s

Energy Delay

𝑇𝑗 = 100 𝑇𝑗 = 130 𝑇𝑗 = 160 𝑇𝑗 = 190

Figure 4.12: Energy and delay for different choices of T̂js.

all the cases considered. The figure shows that energy decreases as T̂j increases.

Delay in recognizing a state change was also measured. Increasing T̂j causes more
delay since the sensor triggers around the average time are dispersed. Hence, we
experimentally choose γ such that the delay is acceptable. When γ increases
from 1 to 2, normalized units of energy decrease from 0.9 to 0.82 which is a 9%
improvement in energy’s behavior while normalized units of delay increase from
0.63 to 0.89 which is a 32% degradation in delay’s behavior. Hence, increasing γ
beyond 1 leads to delay loss which exceeds the slight energy gains.

4.3.7 Choice of Probability Distribution pj(ti) and its Pa-
rameters

In subsection 4.1.2, we chose pj(ti) to follow an exponential distribution since it
gives a good fit that matches the context change. Furthermore, we set the state-
based decaying hazard rate hj shown in (4.3) such that the probability of survival

approaches 0 when the time approaches the time limit T̂j. In this section, we
will perform supplementary experimentation to show the impact of exponential
distribution versus other more general distributions. In this experiment, the
system operated in its optimal condition where α = 0.7 and β = 0.4. To study the
effect of the different survival probability distributions, we consider the general
Weibull distribution [179].

pj(ti) = e(−hj ·ti)ξ (4.14)

where ξ is the shape parameter. Weibull distribution reduces to the exponential
distribution when ξ = 1. We conducted simulations for different values of ξ,
and the results are presented in Figure 4.13. We used the normalized averages
of energy and delay by dividing each of the two factors by its corresponding

77

0

0.2

0.4

0.6

0.8

1

1.2

ξ=5 ξ=2 ξ=1 ξ=0.5 ξ=0.2

U
ni
ts

Energy Delay

Figure 4.13: Energy and delay for different choices of survival probability distributions.

maximum value. The figure shows that as ξ decreases, energy decreases until
it reaches the exponential distribution where ξ = 1 after which energy slightly
increases. As for delay, it increases as ξ decreases. We chose the exponential
distribution since it provides the lowest energy and the trade-off between energy
and delay. However, VCAMS is generic and any distribution can be used based
on the data available and the context being detected.

We have also investigated the effect of changing the decaying hazard function
hj which is the instantaneous probability that an event will occur at a specific
time. In exponential distribution, the decaying rate is constant over time. We
consider hj

0 to be the decaying rate that we used throughout the simulations. We
conducted simulations to show the effect of faster decaying rates. We varied the
decaying rate between 1

2
·hj0 and 2 ·hj0. The results are illustrated in Figure 4.14.

The figure shows that taking the hazard rate as hj
0 gives the required balance

since we are trading-off energy and delay.

4.3.8 Performance Analysis and Comparison

In this subsection, we first compare our work with existing similar work pro-
posed by other researchers, then we experimentally analyze the computational
complexity of our algorithm.

VCAMS versus State-of-the-art Sensing Schedules

There are some existing sensing policies which researchers have proposed [97,
100, 123, 106] whose goal is to detect context in an energy efficient way. These
proposed sensing mechanisms aim at trading-off energy and accuracy of state
detection. Figure 4.15 illustrates the differences in the kind of problems these
different methods try to solve versus our work. While prior state-of-the-art works

78

0

0.2

0.4

0.6

0.8

1

1.2

1/2*h0 h0 2*h0

U
ni
ts

Energy Delay

1
2 ℎ

$ ℎ$ 2ℎ$

Figure 4.14: Energy and delay for different choices of decaying hazard rate hj .

State 𝑠1

State transition (Delay)
(VCAMS)

State detection (Accuracy)
(Prior work)

Switch to one of

other states 𝑠1

Figure 4.15: Illustration of VCAMS’s aim versus state-of-the-art methods.

focus on optimizing the accuracy of detecting the correct current state, we fo-
cus on optimizing the delay of transition detection between states. Previous
methods focus on one state and recognize it accurately while minimizing the en-
ergy consumed, but can also be used to detect change in state. On the other
hand, VCAMS aims at detecting with least delay the contextual change from one
state to another while optimizing energy. To compare against these methods,
we established continuous sensing as baseline for all. For the other methods, we
reproduced their approaches with the aim of detecting state change by setting
their parameters as follows:

• Wang et al. propose EEMSS [97] which uses fixed duty cycles; hence, it
uses uniform periodic sensing. Their method uniformly skips a number of
time units before triggering sensing. EEMSS triggers the accelerometer to
sense 6 sec followed by 10 sec of sleep mode; thus, it is sensing 37.5% of the
time.

• Lu et al. present Jigsaw [99] which is a continuous sensing engine. The
authors use discrete-time Markov Decision Process (MDP) to learn the
optimal GPS duty cycle. There are some constants which they did not
specify in their work; hence, we assumed the reward adjustment coefficient

79

0.22 0.20

0.42
0.46

0.65

0.29

1

0.29

1

0.57 0.59

0.10

0.39

0
0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

VCAMS Rachuri et al.
(2012)

Lu et al.
(2010)

Chon et al.
(2014)

Yurur et al.
(2013)

Wang et al.
(2009)

Continuous

U
ni

ts
 o

f D
el

ay

U
ni

ts
 o

f E
ne

rg
y

Energy Delay

Figure 4.16: Energy and delay for VCAMS and state-of-the-art sensing schedules.

to be 2 and the penalty if the energy budget is depleted before the required
duration to be -20 for comparison purposes.

• Chon et al. [123] present SmartDC which is a prediction-based scheme
that porposes adaptive duty cycling to provide context while saving energy.
The authors use order-1 Markov predictor to predict the time spent in a
state; and they formulate the sensing decision problem as a Markov decision
process. Through their experiments, they suggest setting the energy budget
to 10%; thus, we used the same budget when reproducing their work.

• Yurur et al. [100] propose a sensing mechanism which assigns adaptive duty
cycles and sampling frequencies for accelerometer to infer human activity.
They propose a novel additive increase additive decrease (AIAD) approach
which decreases the duty cycle when the user’s state is stable. The au-
thors propose two methods to adjust the duty cycle; however, we compare
VCAMS with the first method they propose since it outperforms the second
method.

• As for Rachuri et al. [106], their system uses a learning technique to control
the sampling rate of the sensors. They classify sensing actions into either
success if detecting an unmissable event or failure if it is a missable event.
The technique updates the probability of sensing based on the successes and
failures. The probability in their work has an αr as a weighting factor where
energy and accuracy decrease as αr increases. Through their experiments,
they specify αr = 0.5; thus, we used the same value when reproducing their
work.

We examined the average energy and delay values for each of the proposed

80

0

0.2

0.4

0.6

0.8

1

1.2

VCAMS Rachuri et al.
(2012)

U
ni

ts
 o

f E
ne

rg
y

(a)

0

0.2

0.4

0.6

0.8

1

1.2

VCAMS Yurur et al.
(2013)

U
ni

ts
 o

f D
el

ay
(b)

Figure 4.17: Comparison between VCAMS and best energy prior work for similar delay (a) and
best delay prior work for similar energy (b).

methods. The simulation ran 10000 times for each method to find the average
energy and delay, then the metrics were normalized. The largest energy of all
methods was used as base for energy normalization, and the largest delay of
all methods was used to normalize delays and obtain values between 0 and 1.
There were three types of comparisons that were conducted against VCAMS:
The baseline case of continuous sensing, previous methods by considering both
energy and delay, and best of previous methods when considering energy alone
or delay alone. The results are summarized in Figure 4.16. When comparing
to continuous sensing, the delay is assumed to be zero for continuous sensing.
VCAMS incurs delay, but has significant energy reduction of 78%.

When comparing to previous state-of-the-art methods, the results show that
VCAMS gives a balance between energy and delay. It does not provide the
lowest energy or the lowest delay of all methods; however, it provides the best
trade-off of the two metrics (energy and delay) combined. Although Rachuri et
al. (2012) system has energy less than VCAMS, it has the highest delay which
is not practical for delay intolerant applications. On the other hand, the work
proposed by Yurur et al. (2013) has the lowest delay, but it has higher energy
since it applies continuous sensing when the time approaches T̂j. As for Wang
et al. (2009), Lu et al. (2010) and Chon et al. (2014), they provide a trade-off
between energy and delay; however, they still result in higher energy and delay
than VCAMS.

To compare to best previous state-of-the-art methods considering energy or
delay alone, VCAMS configuration had to be adjusted to set similar conditions.
We used Rachuri et al. as reference for best energy and Yurur et al. as refer-
ence for best delay. To compare with prior method with best energy, VCAMS
coefficients were set to α = 0.2 and β = 0.8. This (α, β) combination gave

81

similar delay performance of VCAMS compared to [106]; however, the results in
Figure 4.17 show that VCAMS outperforms Rachuri’s system since it minimizes
the amount of energy consumed by 30%. To compare with prior method with
best delay, VCAMS coefficients were set to α = 1 and β = 1. This combination
of weighting factors gave the maximum energy consumption of VCAMS which
is comparable to energy consumption of Yurur’s proposed method. The results
show that VCAMS provides better delay performance than Yurur’s solution as
shown in Figure 4.17b. It’s energy is comparable to Yurur’s proposed method;
however, it saves 75% of delay.

In summary, VCAMS outperforms all state-of-the-art methods when consid-
ering the combined trade-off of energy and delay. Furthermore, VCAMS can be
configured (proper choice of α and β) to achieve lowest possible delay, lowest
possible energy, or lowest possible trade-off combination.

Computational Power

To analyze the performance of our proposed approach on real systems, and
to also illustrate the computational costs of VCAMS under realistic operational
conditions, we implemented VCAMS on an Android-based device which is HTC
Desire. The computational power consumed by the smartphone for executing the
learning mode of VCAMS and extracting the optimal sensing schedule was mea-
sured by PowerTutor [144]. PowerTutor is an Android application that displays
the power consumed by major system components: CPU, display, and network
interfaces; and it displays the power consumed by each component separately.
We ran VCAMS for the state “sj = AtMeeting”. The results summarized in
Table 4.3 show that running VCAMS to derive the optimized sensing schedule
consumes almost 0.8% of the total CPU. In addition, the table shows that the
computational power is almost 5% of the sensing overhead for the cheapest sensor
(accelerometer) which is rather negligible, and hence the computational energy
can be ignored.

Table 4.3: Computational power

Application Power (mW)

VCAMS 28

Accelerometer 551

System 3400

4.4 Case Study with Real Activity Context

Several experiments were conducted to test the efficiency of VCAMS and demon-
strate its effectiveness in real-life situations beyond simulation. The effects of

82

Table 4.4: Time properties of activities

Activity s1 s2 s3 s4 s5 s6 s7 s8

Mean (sec) µj 33700.8 191.7 403.5 506.3 118.5 6749.1 7134.6 2090.1

Standard deviation (sec) σj 2310.6 331.2 267.4 141.0 188.1 5725.8 5360.5 551.4

different system parameters including sampling interval δj were investigated. In
addition, experiments were conducted to validate the performance of VCAMS
and compare it with prior state-of-the-art methods which were described in sub-
section 4.3.8.

4.4.1 Setup

The real dataset was based on logs of Activities of Daily Living (ADL) [180].
This dataset was collected in smart homes for two users capturing the daily
activities performed by each user for 35 days in their own home. The activities
accompanied with their labels include sleeping (s1), toileting (s2), showering (s3),
having breakfast (s4), grooming (s5), spending spare time (s6), leaving (s7), and
having lunch (s8). Data was divided into two parts: 1) historical data which
was used in the learning mode to obtain the time limit T̂j of the user in each
state/activity sj and the probability distribution of the time spent in each state
and 2) test data which was used in the execution mode to validate the efficiency of
our proposed algorithm in detecting state transition. The derived Pareto-optimal
values were α = 0.7 and β = 0.4. As expected from Section 4.2.2, they turned out
to be the same as the simulation case since if we change the interval for the same
choices of α and β, we keep the same relative proportions of energy and delay.
Therefore, there is no need to re-compute the Pareto optimal (α, β) combination
again each time a state is encountered.

Table 4.4 represents the mean µj and the standard deviation σj of each
state/activity sj. As expected, for real life activities, the time properties differ
between activities. Some last longer than others, for example sleeping’s average
time was 9 hours; whereas toileting has an average of 3 min. Some have less vari-
ations than others, which probably indicates routine scheduled activities versus
ad-hoc activities.

4.4.2 Applicability of VCAMS on Real Data Traces

The statistics (µj and σj) of time spent in each state/activity depended on the

behavior of the user in a specific context. To find the time limit T̂j for each state

sj, we set µj and σj according to Table 4.4. The time limit T̂j for each state sj
was set to the mean of the time spent in the activity plus one standard deviation.

83

28220 0 28240 29400 37400 37460 40580 43160 43260 83200 116500 116540 118320 124860

𝑠1 𝑠6 𝑠6 𝑠1 𝑠6

Beginning of 𝑠𝑗

Actual transition from 𝑠𝑗

VCAMS detection of transition

t (sec)

Figure 4.18: Dynamic real-time illustration of applying VCAMS to detecting transitions for s1
and s6 activities.

We chose to set the value of sampling interval δj = 20 sec so that we use higher
granularity than 1 min limited by the sensor requirements and speed of system.
However, we also investigated the effect of using higher values of δj on dynamic
real data to compare with simulation results.

The experiments aimed at determining in real-time the activity of the user,
and then detecting changes in activities while optimizing delay and energy con-
sumption. We implemented VCAMS for the 35 days data to monitor the user’s
activities and test the applicability of our method on dynamic real data. We ran
the algorithm on 2.7 GHz Intel Core i5 processor machine. The delays in detect-
ing transitions between states were measured by taking the difference between
real transition time and time at which our system detected the transition.

Figure 4.18 shows part of the time line from the results of applying VCAMS’s
execution mode to two activities: sleeping (s1) and spending spare time (s6).
We focused on these two activities since they have different behaviors. Sleeping
has a very small standard deviation compared to its mean, while spending spare
times has a standard deviation which is very high compared to is mean time as
shown in Table 4.4. In addition, these two states can be easily illustrated and
visualized on a time line. The dot on the time line indicates the beginning of a
new activity. The arrow pointing downwards indicates the true transition from
sj and the arrow pointing upwards illustrates the time at which VCAMS detects
the transition from sj. The time difference between the two arrows is the delay
in detection which we are trying to minimize while optimizing energy consumed.
According to the results, s1 has delays 20 and 40 sec while s6 has delays of 60, 100
and 0 sec. However, delay on average will not exceed 1 min for these two states
as shown in Figure 4.20. The average delay for sleeping is 15.7 sec which is 0.04%
of the mean time of s1. Whereas, the average delay of s6 is 47 sec which is 0.7%
of the mean time. Both delays are considered acceptable compared to their mean
times. s6 has a higher delay since it has more variability around the mean time
as reflected by the standard deviation value. Although some prior methods such
as continuous sensing and [100] will cause less delays, they will cause excessive
amounts of unnecessary energy.

Figures 4.19, 4.20, and 4.21 demonstrate the energy consumed, the delay in-
curred and the computational time spent to compute each activity respectively.
In addition, the figures show the variation of energy, delay and computational

84

395.6

4.7 5.9 6.4 3.2

106.1 93.7

24.8

264

3.35 4.2 4.4 2.7

76.8
62.6

16.7

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8

E
n

er
g

y

Activity

δ=20sec

δ=30sec

𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 𝑠6 𝑠7 𝑠8

Figure 4.19: Energy for activities considering two different δs.

15.7

64.6

21.4

15.7

55

47.0 48.5

20
25.7

84.6

42.8

25.7

64.1 64.2

51

30

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8

D
el

ay

Activity

δ=20sec

δ=30sec

𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 𝑠6 𝑠7 𝑠8

Figure 4.20: Delay for activities considering two different δs.

time versus δj. Figure 4.19 shows the number of times the sensor is triggered for
the different activities which directly corresponds to the energy consumed since
energy is represented in our proposed approach as the number of times sensing is
triggered as described in Subsection 4.3.2. Energy increases as the mean of the
activity increases. This is due to VCAMS sensing times increasing when the mean
time µj increases. For instance, considering δj = 20 sec, sleeping (s1) has a mean
time of 33700.8 sec and an energy consumption of 395.6 whereas toileting (s2)
has mean time of 191.7 sec and average energy of 4.7. Another observation is the
considerable decrease in energy compared to continuous sensing. For example,
the energy consumption for state s1 when VCAMS is used is 395.6; whereas, the
energy consumption when using continuous sensing for state s1 would be 1685.
Therefore, VCAMS saves up to 77% energy. Furthermore, increasing δj leads to

85

0.0001

0.001

0.01

0.1

1

1 2 3 4 5 6 7 8

Co
m

pu
ta

tio
na

l t
im

e (
se

c)

Activity

δ=20sec

δ=30sec

𝑠" 𝑠# 𝑠$ 𝑠% 𝑠& 𝑠' 𝑠(𝑠)

Figure 4.21: Computational time for activities considering two different δs.

less energy consumption in all activities as the sensor in this case has fewer time
units at which it is triggered for a reading. This result confirms the results of
subsection 4.3.5. Figure 4.20 presents delay versus activity for two values of δj.
Delay varies between activities, and it reaches maximum of 84.6 sec for activ-
ity s2 which has a standard deviation higher that its mean; hence, data is more
dispersed. Delay decreases when minimizing δj as the intervals between sensing
become smaller, with higher chances of early detection of state changes. Fig-
ure 4.21 presents the computational time spent in the learning mode of VCAMS
for each activity separately. Computational time varies between activities, where
activities with higher time limits require more computational times to obtain the
best sensing schedule. In addition, increasing δj leads to less computational time
since the number of total time instants Nj for state sj decreases. These results
validate Viterbi’s complexity analysis presented in Subsection 4.2.5.

4.4.3 Comparison of VCAMS to Other Methods with Real
Data Traces

To compare the performance of VCAMS with other existing approaches, we reran
each prior state-of-the-art methods presented in subsection 4.3.8. For fairness,
we fixed δj = 20 sec for all approaches. The overall energy and delay results for
activity s1 are presented in Figure 4.22. Although we focused on one activity due
to space limit, other activities have similar analysis when comparing VCAMS
to other prior methods. Comparing VCAMS with continuous sensing shows
almost 77% decrease in energy with a slight increase in delay from 0 sec to 15.7
sec which is negligible compared to the mean value of sleeping activity. Rachuri’s
approach results in 16% decrease in energy compared to VCAMS, but it causes
72% increase in delay. As for Wang et al. (2009), Lu et al. (2010) and Chon et

86

395.6 330.9

716.1
778

1092

470.1

1685

15.7

56.1

25.9

32.7

5.78

27.7

0
0

10

20

30

40

50

60

0

200

400

600

800

1000

1200

1400

1600

1800

VCAMS
Optimal

Rachuri et al.
(2011)

Lu et al.
(2010)

Chon et al.
(2014)

Yurur et al.
(2013)

Wang et al.
(2009)

Continuous

D
el

ay

En
er

gy
Energy Delay

Figure 4.22: Energy and delay for optimal VCAMS and prior state-of-the-art sensing schedules
for sleeping activity s1.

al. (2014) approaches, they result in higher energy and delay than VCAMS. On
the other hand, Yurur’s approach gains on the delay side; however, it costs 63%
more energy. In summary, when applied on real data, the results were consistent
with simulations, and VCAMS outperformed other state-of-the-art methods.

4.4.4 Computational Complexity

To show the effectiveness of our proposed VCAMS trigger strategy (VT) described
in Subsection 4.2.4, we considered different adaptive strategies and showed that
VT is the best in terms of the trade-off between energy, delay and computational
time. We considered the following strategies:

• WT “without any trigger”: In this case, the learning mode is run offline only
once to derive the sensing schedule, and no further adaptation is applied.

• CT “continuous trigger”: In this case, the learning mode runs online each
time a new state is encountered.

• ST “state-based trigger”: For this case, the learning mode runs only during
the longest state which can be obtained from analyzing the historical data.
The system keeps track of all the behavioral changes encountered in all
states but it does not trigger the learning mode except when the longest
state is encountered. Since we are monitoring the user’s activities during
the day, the longest continuous state is sleeping which is s1 during which
most users charge their devices.

• VT “VCAMS proposed selective triggering”: This case implements the
rules proposed in Subsection 4.2.4 to dynamically decide when to trigger
VCAMS’s learning mode.

87

1 0.93 0.98 0.921 0.945 0.98
0.87

0.06

1

0.57

0.13

0

0.5

1

1.5

2

2.5

3

3.5

Without adaptation
(WA)

Continuous adaptation
(CA)

Timely adaptation (TA) Smart adaptation (SA)

U
ni

ts

Energy Delay Computational time

Without trigger
(WT)

Continuous trigger
(CT)

State trigger
(ST)

VCAMS trigger
(VT)

Figure 4.23: Energy, delay and computational time for VCAMS trigger strategy and other
strategies.

The results are illustrated in Figure 4.23, which shows the normalized averages
for sensing energy, delay, and computational time that were obtained for each of
the aforementioned strategies. Our goal is to minimize energy and delay while
avoiding excessive computational complexity. When comparing VT with other
adaptive strategies, the results show that VT gives the best performance in terms
of sensing energy consumed and delay in detecting a state change. The figure
shows that VT causes less energy and delay than CT because CT adapts the
sensing schedule continuously each time a state is encountered. For example,
while CT consumes 0.93 units of energy, VT consumes 0.92 which is slightly less.
On the other hand, VT causes 0.87 units of delay while CT causes 0.945; therefore,
CT updates the sensing schedule continuously causing sometimes higher time
limit T̂j for state sj; thus, causing more delay in the upcoming encounters of
this state. Regarding the computational time, VT requires slightly more time
than the WT strategy and much less time than ST and CT strategies. VT saves
87% from the computational time when compared to CT by avoiding unnecessary
computations.

4.5 Summary

In this chapter, we have presented VCAMS: a Viterbi-based Context Aware Mo-
bile Sensing algorithm to trade-off energy consumption and delay when detecting
any contextual state change. The method includes a system model for user con-
text and phone sensor parameters. The algorithm chooses an optimized sensor
scheduling which maximizes a set of rewards according to Viterbi algorithm. The
system has two modes: learning mode and execution mode. In the learning
mode, the sensing schedules are initialized offline using a Vietrbi algorithm. The
learning mode is also triggered when VCAMS has to update the sensing sched-

88

ules when significant behavioral changes are observed. In the execution mode,
the already learned sensing schedules are used to decide on sensing triggers. We
experimentally validated the proposed system models, and showed that our pro-
posed strategy outperforms all state-of-the-art methods when considering the
combined trade-off of energy and delay. Results showed that VCAMS saves up
to 78% energy when compared to continuous sensing.

89

Chapter 5

Sensor Selection: Optimized
Sensor Selection for
Multi-Context Aware
Applications with an Ontology
for Recognition Models

A growing recent research trend among smartphone applications is to boost the
context recognition accuracy by extracting features from different sensors. For
instance, in [181], the authors use the accelerometer and a low power ECG to max-
imize the accuracy of activity recognition. In [29], the authors consider multiple
context of activity detection and abnormal ECG pattern; hence, they combine the
ECG with accelerometer and gyroscope. Moreover, a plethora of recent research
works compare the performance of context recognition when using multiple sen-
sors versus using a single sensor. In [136], the authors compare the performance
of having multiple sensors to detect an elderly fall. For example, they compare
the performance of microphone and floor sensors and show that the combina-
tion gives more accuracy. In [137], the authors show that combining EMG with
accelerometer to detect dyskinesia gives better performance than using only ac-
celerometer. Therefore, multi-modal sensor fusion is gaining more attention since
it facilitates sensing multiple complementary user properties.

Many phone applications aim at continuously extracting the user’s context
from sensors’ data which places additional burden on energy consumption for
devices already constrained on power. Therefore, one key challenge is to min-
imize the energy consumed by the context-aware application. This problem is
expanded when multiple context-aware applications are running concurrently re-
questing data from multiple sensors to recognize different contexts. Running
all these applications independently and without coordination leads to redun-
dant data collection causing unnecessary excess sensing energy. Hence, there is

90

an opportunity for significant energy reduction by having the applications share
scarce resources efficiently while still retrieving their requested contexts accu-
rately. Several options can be considered as contexts can be retrieved via dif-
ferent multi-modal embedded and wearable sensor combinations [28]. However,
current applications typically utilize modalities that provide highest accuracies,
and do not consider alternative sensors with lower energy options. In addition,
these applications do not have access to what other applications are concurrently
running for potential sharing of data and resources.

To optimize resource usages, the applied methods in relevant prior works use
stochastic approaches to select duty cycles which decide when to trigger sensing,
adaptive sampling periods and sampling frequencies to decide how long sensing
data should be collected, or sensor selection and hierarchical sensing mechanisms.
However, most of these proposed approaches target a single context. In this work,
we aim at exploring the synergy across simultaneous operation of context appli-
cations to minimize the energy consumption by selecting a group of sensors that
provides most efficient data and resource sharing among the different applications
and without compromising the applications’ minimum acceptable accuracies and
delays. We introduce EGO – an energy-efficient ontology-based group sensor se-
lection framework that optimally selects a group of sensors exploiting synergy
among applications while jointly optimizing the energy-accuracy trade-off of all
requesting applications. The contributions of the work include:

• An ontology that captures context recognition models along with descrip-
tive specifications for each model such as required sensors and machine
learning parameters. The ontology enables the framework to generalize
and be applicable to any context already captured in the ontology. This
ontology is used by the framework to examine the different sensor options
for each application. It also servers as a rich resource for research in the
field and facilitates knowledge sharing for context-aware applications.

• An adaptive sensor selection approach to select the optimal group of sensors
that trades-off energy consumption and accuracy of context recognition.
The selected group of sensors is adaptively changed based on what contexts
are requested by the applications, which sensors are available, what the
user state is, and how much energy is available on the smartphone and on
external sensors.

• A comprehensive integrated approach that comprehends efficient methods
for scheduling sensor data collections, and produces an optimized synchro-
nized sensing schedule which decides when to trigger each of the selected
sensors for data collection to trade-off the energy consumption and the delay
to detect a context change. The framework uses one of our previously pro-
posed sensor scheduling mechanism VCAMS [33] which is a Viterbi-based
Context Aware Mobile Sensing mechanism.

91

Applications
Redundancy

Check Ontology

Group

Sensor

Selection

Update?

VCAMS
Recognize

Context
States

Monitor

Resources

Requests Filtered

Requests

Groups’

Choices

Minimum

Accuracy

Selected

Groups

Sensing

Schedules
Synchronized

Data

Current

State

States for

Requested Contexts

Available

Resources
Yes No

Change

in States

Models

Sensors
(Embedded and External)

Mobile

Device

Resources

Requests

Sensing

Synchronization
Sensors

Raw Data

User State

Model

Figure 5.1: The flow diagram of the optimized selection and operation of sensors for multi-
context applications. The applications send their context requests upon which sensor choices
are generated from the ontology and optimized sensors are selected to recognize the contexts.

• A first of its kind real test-bed implementation that shows simultaneous
operation of multiple context-aware applications, and demonstrate the ef-
fectiveness of the proposed framework in coordinating efficient operation of
the applications. We implement 8 context-aware applications comprehend-
ing activity [182, 99, 183, 181] and emotion [82, 184, 185, 44].

This chapter is organized as follows. We present the proposed ontology-based
framework in Section 5.1. Sections 5.2 and 5.3 present the results obtained by
simulations and real case study respectively. Finally, Section 5.4 provides con-
cluding remarks.

5.1 Proposed Framework

In this section, we provide the details of the proposed framework. The overview
of the framework and its flow are described in Section 5.1.1. In Section 5.1.2, the
details of the ontology for context recognition models are covered. Section 5.1.3
describes the system model and algorithm for sensor selection. In Section 5.1.4,
we describe how sensor selection can be integrated with sensor scheduling.

5.1.1 Framework Overview

Figure 5.1 shows the typical task execution for context-aware applications to effi-
ciently select the group of sensors and ultimately recognize the targeted contexts.
The applications start by sending their new requested contexts to the Redun-
dancy Check component which checks for redundancy with previously submitted
requests from other applications. Collecting the same data redundantly can cause
extra energy consumption caused by unnecessary sensing and processing. The ap-
plications also provide the minimum acceptable classification accuracy. For each
of the requested contexts, the Ontology (Section 5.1.2) searches its database for
the relevant groups of sensors which become alternatives for our sensor selection
algorithm.

To monitor the available resources, the Mobile Device’s Resources block keeps
track of the available resources on the mobile device such as remaining energy

92

and available bandwidth. Similarly, the Sensors’ Resources block monitors the
available resources on the external sensors. Moreover, our sensor selection prob-
lem is state-based; therefore, the current state of the user is either recognized
using context recognition or estimated using a User State Model which is based
on historical collected data reflecting the behavior of the user.

Given the available resources, the requested accuracy, the groups choices for
each context, and the current state of the user, the Group Sensor Selection (Sec-
tion 5.1.3) block selects the best group of sensors to recognize each requested con-
text while minimizing the energy consumption by exploiting the common sensors
between the different available groups. The groups selection changes adaptively
based on the available sensors, requested contexts, available resources, and cur-
rent state. Hence, the different dynamic conditions are forwarded periodically to
the Group Sensor Selection block.

The selected groups of sensors are forwarded to the synchronization step (Sec-
tion 5.1.4) which integrates with an optimized dynamic sensor scheduling mech-
anism, such as previously proposed VCAMS [33] that adaptively trades off the
energy and the delay to detect a state change. The optimized sensing schedules
are forwarded into the Sensing Synchronization block which synchronizes the
data collection from the different triggered sensors resulting in more energy sav-
ing. The employed sensors are then triggered based on the synchronized sensing
schedules to extract raw data. This data feeds the Context Recognition step which
extracts the suitable features from each sensor raw data and uses the appropriate
classification model to classify the state of each context. The feature extraction
method and the classification model are retrieved from the Ontology Repository.
The recognized states are forwarded back to the requesting applications.

The framework components described in the flow result in the framework
architecture shown in Figure 5.2. The framework operates in real time, and is
composed of the following key components:

• Group Sensor Selection will be described in details in Section 5.1.3.

• Ontology Repository will be covered in Section 5.1.2.

• Sensing Synchronizer will be discussed in Section 5.1.4.

The other components of the framework serve as sources that provide comple-
mentary information to the key framework components. For example, the System
Monitor component keeps track of the remaining resources on the mobile device
and on wearable sensors. It provides this information to the sensor selection block
which adapts its selection based on the remaining resources.

User State Model

The user state model is used to estimate the state of the user at times when
the actual context recognition is not available based on how frequent the sensor

93

Applications

E
x

te
rn

a
l

S
en

so
rs

Embedded Sensors

Application 1 Application 2 Application 3
O

n
to

lo
g

y
 R

ep
o

si
to

ry

Requests
Acceptable

Accuracy

Redundancy

Check

Group Sensor Selection

Filtered

Requests

Sensing Synchronizer

Choices

Context Recognition

Feature

Extraction

Context

Classification

Features

Change in

States

Resources

Mobile Device

Models Trigger

Selected Groups

Raw Data

Contexts

Group

Selection

Mobile

Device’s

Resources

Sensors’

Resources

System Monitor

Pointers to Models

U
se

r
S

ta
te

M
o

d
el

State

Models

VCAMS

Sensing

Schedules

State Models

Sensing

Synchronization

Figure 5.2: The general framework architecture of the proposed method. The colored blocks
represent the core components of our framework. The ontology is the knowledge repository
used by the framework to examine the different sensor options for each application. The sensor
selection block selects the optimal group of sensors that trades-off the energy consumption
and the accuracy of context recognition. The synchronization manager outputs an optimized
synchronized sensing schedule which decides when to trigger each of the selected sensors for
data collection.

is triggering. Therefore, a statistical user state model is built based on prior
historical knowledge of human behavior pattern. The user states are contextual
inferences that refer to a specific requested context where each context can have
several states; for example, the location of the user may be at home, at work, or
in mall. Thereby, we propose a statistical user state model similar to what we
used in our previous work [33].

The user state model keeps track of the time-variant user contextual behavior
to recognize or predict the most likely user current behavior. Furthermore, our
proposed user state model tracks the transitions between states and depends on
prior knowledge of most recent transition patterns. In general, a user contextual
behavior changes in time; therefore, our proposed user state model also predicts
when the user may change the current state and the most probable next state

94

to which she will transit. The user state model captures a transition model
from historical behavior of the user such as the probabilities of transition from
state to another at any time instant, and can also include the statistics of the
time duration spent in a specific state. The proposed sensor selection and sensor
trigger are modified and updated based on the proposed user state model that
takes the state into account, and as a result the system is adaptive to contextual
state of the user.

System Adaptability

Our framework dynamically adapts its sensor selection plan. Adaptation as
shown in the flow of Figure 5.1 is triggered when:

1. New sensors are available or some sensors have withdrawn due to battery
discharge. This depends on what time during the day the user wears a
specific sensor.

2. New applications request new context in the background or a previously
requested context is no longer needed.

3. User contextual state has changed within one of the monitored concurrent
contexts.

5.1.2 Ontology for Context Recognition Models

An ontology is a knowledge repository that uses semantic information to define
attributes of a particular field along with relationships between these attributes
[186]. There are several advantages for using ontology-based schemes: 1) it forms
a gateway between humans’ knowledge and computers’ representation [187], 2) it
facilitates knowledge sharing among researchers [112] and 3) it provides a formal
and well defined structure to define entities. Therefore, ontology systematizes
information retrieval and paves the way for automating the context recognition
process. For example, the authors in [188] represent human behavior ontologies
whereas the authors in [189] describe semantic smart homes ontologies. In [190],
context modeling is represented as two levels of ontologies, the upper level rep-
resents context entities such as person, device or network, while the lower level
represents the domain-dependent entities such as home, car or campus. In [191],
the authors model human activities based on ontologies using finite state ma-
chines. Nevertheless, existing works on ontology-based context-aware systems
focus on one context and propose the different relations between attributes that
would allow inferring the current context of the user such as the current activity.
On the other hand, our ontology captures the mechanisms for context recogni-
tion, including the different recognition models for each context, what sensors
they use, what data or features they need, and the parameters of the prediction
model.

95

SubClass Of

IndividualSensor
energyCost:double

Context
contextName:string

FeatureVector

ClassificationModel

ContextualState

SamplingInformation

EstimatedEnergy
Comment("Sum of
energy costs of
individual sensors.")

EstimatedAccuracy
Comment("Function
of accuracy of
individual sensors.")

=SensorGroup, ContextualState
accuracyEstimate:double

SensorGroup
numberOfSensors:int
groupName:string

=IndividualSensor, Context
samplingFreq:double
windowSize:double

recognizes recognizedBy classifies

guaranteed guarantees

computes

collects

includes

in

costs

Figure 5.3: The core of the ontology for context recognition models.

Design of the Ontology for Context Recognition

Our ontology uses semantics to represent the attributes relevant to a certain
context recognition such as what sensors to operate, what sampling frequencies
to use, what features to extract from raw data, and what classification models
to consider. To develop the ontology, we have followed the guidelines to build
an ontology from Noy and McGuinness, presented in [192]. The main classes
and their accompanying properties of the ontology are graphically illustrated
in Figure 5.3 by means of Unified Modeling Language (UML) class diagrams
[193]. We used OWLGrEd, an online tool to visualize OWL ontologies [194],
to draw this UML diagram. The classes of the ontology are Context, Contex-
tualState, SensorGroup, IndividualSensor, EstimatedAccuracy, EstimatedEnergy,
SamplingInformation, FeatureVector and ClassificationModel.

• The class Context defines the requested context by the application such as
activity, emotion or location. Each context takes contextual state as its
value. For example, for emotion context, the state can be either angry,
happy or neutral. Therefore, the class ContextualState is a subclass of
context.

• The class SensorGroup defines the groups of sensors that can be used to
recognize a certain context. This class is identified by a group name and
the corresponding number of sensors.

• The class IndividualSensor describes each sensor in terms of energy cost
and sampling information.

• The classes EstimatedAccuracy and EstimatedEnergy define respectively the
accuracy and energy for each group of sensors in terms of the individual
sensors’ accuracy and energy cost.

96

• The classes SamplingInformation, FeatureVector, and ClassificationModel
capture how the data should be sampled from the sensor, what features to
extract, and which classification algorithm to use to extract the requested
context.

The different instances of these classes are connected via properties that define
the relations.

• Each requested context can be recognizedBy some sensor groups from which
we will select the optimized group of sensors.

• Each group of sensors includes a set of individual sensors.

• For each combination of individual sensor and requested context, sampling
information is required to collect the sensor data and a set of features is
computed to extract relevant data patterns.

• The guaranteed estimated accuracy depends on which group of sensors is
triggered and on the current contextual state.

The ontology is queried twice each time the sensors have to be selected. The
first query is to get the potential groups of sensors for each context in addition to
the estimated energy and classification accuracy for each group. The second query
to the ontology takes as input the optimal group of sensors for each requested
context selected by the sensor selection algorithm and retrieves from the ontology
the feature extraction methods and models for each sensor.

To make sure the data sources for the ontology are reliable, we only allow
tested and validated data for recognition models. This is ensured by limiting
the source of the ontology to published and validated recognition models, such
as [112, 195]. Our designed ontology provides a common data model and an
interactive platform for data sharing between researchers in the context awareness
field. Table 5.1 shows a sample of the ontology for two contexts: activity and
emotion. For each published reference, we capture the deployed sensors, the
sampling information for each sensor, the features extracted from raw data, the
classification algorithm used, and the contextual states recognized. Therefore,
each row of the table represents one entry for the ontology. The columns represent
the classes of our context ontology. The full ontology will be made publicly
available for sharing and expansion.

5.1.3 Group Sensor Selection

Another important component of our proposed framework is the Group Sensor
Selection block which selects the optimized group of sensors. The sensor selection
mechanism considers the choices provided by the ontology repository to select
the appropriate sensors based on the current user state, the available resources,

97

and the requested context recognition accuracies by running applications. The
group of sensors is selected to minimize the energy consumption while recognizing
the multiple concurrent contexts. This is achieved by exploiting the advantage
of having common sensors among different contexts. The system model and
parameters for sensor selection are presented in Section 5.1.3. Then, the sensor
selection problem in our proposed framework is formulated.

System Model and Parameters

We consider several applications which are requesting different L contexts cl
where l = 1, 2, ..., L. For each requested context cl, consider the ontology section
Ωl which captures the set of all possible sensor groups available to detect context
cl along with their characteristics such as the energy consumed, the accuracy
guaranteed, the feature extraction method, and the classification model used.
Let Kl be the number of possible sensor groups that detect context cl. The set
of groups for context cl are denoted by Glkl where kl = 1, 2, ..., Kl. Let M be the
total number of available sensors, and let Sm represent a specific sensor where
m = 1, 2, ...,M . The parameters used in our sensor selection framework are listed
in Table 5.2.

Problem Statement: Given multiple potential groups of sensors to recog-
nize each of the requested contexts, the sensor selection problem is to find the
group of sensors for each context such that their total energy cost is minimized
and their classification model accuracy is above a pre-specified acceptable thresh-
old. The method exploits the advantage of having common sensors among the
groups across different contexts.

Given multiple L requested contexts cl and given the ontology of each context
and the corresponding sensor groups, the objective is to identify the best combi-
nation of groups that can minimize energy consumption while having constraints
on the minimum acceptable accuracy. Let ylkl be a decision binary variable which
determines whether or not a group of sensors Glkl is chosen to recognize context
cl in the final selected union of groups:

ylkl =

{
1, if group Glkl is chosen

0, otherwise.
(5.1)

98

Table 5.1: Sample of the ontology showing samples of selected papers that detect activity and emotion

Context Reference Sensors Sampling Infor-
mation

Features Classification
Algorithms

Recognized States

Activity [182] ACC-E,
GPS-E,
ACC-W

16Hz with 1 sec in-
terval

Means, variances, correla-
tions, kurtosis, and other
statistical measures

MLR Brushing teeth, hiking, riding bicycle, jogging, stand-
ing, strolling, walking downstairs, walking upstairs,
and writing on blackboard

[99] ACC-E,
MIC-E,
GPS-E

32Hz sampling rate
for the accelerome-
ter; and 8kHz, 16-
bit, mono audio for
the microphone

Energy, mean, variance
and spectral

SVM, NB and
GMM

Stationary, walking, cycling, running, and vehicle.
With Microphone: brushing teeth, shower, typing,
vacuuming, washing hands, crowd noise, and street
noise

[183] ACC-E,
GYR-E,
MAG-E

5Hz sampling rate
with 3 sec interval

Mean, variance, zero cross-
ing rate, correlation be-
tween acceleration and gy-
roscope, FFT energy and
entropy

J48 DT Slow walking, normal walking, rush walking, running,
standing, and sitting

[181] ACC-W,
ECG-W

50Hz with 5 sec
interval for ac-
celerometer; and
200Hz with 20 sec
interval for ECG

Mean, median, energy and
variance

RVM Lying, sitting, standing, walking, walking upstairs,
walking downstairs and running

Emotion [82] ACC-E Normal sampling
rate

The x-value, y-value and z-
value of the accelerometer

J48 DT Stressed, neutral and excited

[184] ACC-E,
MIC-E,
GPS-E

100Hz sensing for
the accelerometer
which triggers the
GPS when neces-
sary

Latitude, longitude, com-
munication frequency,
mean, energy, frequency-
domain entropy, and
correlation

Factor bipar-
tite graph

Very pleasant, pleasant, medium, unpleasant and very
unpleasant

[185] ACC-W 5Hz followed by a
moving average fil-
ter

Skewness, kurtosis, stan-
dard deviation, correla-
tions between every two
axes, Power Spectral Den-
sity (PSD), and FFT

DT, SVM, RF,
and RT

Neutral, happy, and angry

[44] EEG-W,
ECG-W

Continuous sensing KDE and MFCC MLP Calm, happy, fear and sad

- ACC: Accelerometer; MIC: Microphone; MAG: Magnetometer; GYR: Gyroscope; ECG: Electrocardiography; EEG: Electroencephalogram
- E: Embedded sensor in smartphone; W: Wearable external sensor
- MLR: Multiclass Logistic Regression; SVM: Support Vector Machine; DT: Decision Tree; GMM: Gaussian Markov Model; NB: Naive Bayes; RVM: Relevance Vector
Machine; RF: Random Forest; RT: Random Tree; KDE: Kernel Density Estimation; MFCC: Mel-Frequency Cepstral Coefficients; MLP: Multi-Layer Perceptron

99

Table 5.2: Table of parameters

Groups Notation Description

Sets

L Set of contexts

Kl Set of possible groups for context l

M Set of available sensors Sm

Jl Set of total states in context cl

Parameters
cl Particular context out of L total requested contexts

sj
l Particular state in context cl

Glkl Group of sensors that can detect context cl

Optimization values

El
kl

Estimated energy consumed by group Glkl
Alkl Accuracy that group Glkl can guarantee for state slj
Em Energy consumption by each sensor Sm

Am,j Accuracy of sensor Sm in recognizing state sj

Variables ylkl Binary to determine whether group Glkl is chosen

The energy consumed by a group of sensors Glkl can be computed by summing
the individual energies of the sensors that form that group:

El
kl

=
∑

Sm∈Glkl

Em (5.2)

where El
kl

is the total consumed energy by group Glkl and Em is the individual
energy of sensor Sm.

Mathematical Formulation

We formulate the problem as a 0-1 integer program where the decision variables
are taken to be ylkl = 0 or 1. The optimized selected group of sensors depends on
the state of the user where for each context cl, there is a set of possible Jl states.
For example, for activity context, the state can be walking, sleeping, jogging,
etc. Let slj denote the state in context cl where j = 1, 2, ..., Jl. The accuracy of
a group Glkl in recognizing a certain state slj is denoted by Alkl,j. This accuracy
is a function of the accuracy of the individual sensors in that group Am,j which
represents the contribution of sensor Sm to the accuracy of detecting state slj.

The sensor selection problem can be formulated as follows:
Objective:

min
kl=1,2,...,Kl
∀l∈L

∑
kl∈Kl
∀l∈L

(∑
Sm∈(

⋃
l∈L Glkl)

Em
)
(
∏
l∈L

ylkl) (5.3)

100

Subject to: ∑
kl∈Kl

ylkl = 1 ∀l ∈ L (5.4)

∑
kl∈Kl

Alkl,jy
l
kl
≥ Al ∀l ∈ L (5.5)

Elkl ≤ EB ∀kl ∈ Kl,∀l ∈ L (5.6)

ylkl ∈ {0, 1} ∀kl ∈ Kl,∀l ∈ L (5.7)

The objective function in (5.3) is to exploit the synergy between the selected
groups of sensors by minimizing the total energy cost consumed by the union
of sensors in the selected groups. The constraint (5.4) states that exactly one
group for each context is to be chosen and the constraint (5.5) guarantees that
the minimum acceptable accuracy is attained for each of the L requested contexts
by applications. The constraint (5.6) enforces an energy budget EB on the se-
lected groups and the constraint (5.7) ensures that the variable ylkl , which decides
whether group Glkl is selected, takes binary values.

Group Sensor Selection Proposed Approach

The group sensor selection problem is a variation of the 0-1 knapsack problem
[196], which is an NP-hard optimization problem. The optimal solution of 0-1
knapsack problem can be calculated by using brute force algorithm which enu-
merates all possible combinations and picks the one with the best objective value.
The number of possible combinations of groups between the different requested
contexts is of order (V), where:

V =
L∏
l=1

Kl (5.8)

For each possible combination, the choice of sensors is the union from the groups
of sensors to detect the different contexts. There are V possible combinations
of sensor groups; therefore, the complexity of brute force algorithm is O(V).
To decrease the complexity, we propose an algorithm that filters the possible
combinations of sensors groups.

Algorithm 5.1 shows the pseudocode for this proposed solution. The algo-
rithm takes as input the choices of groups of sensors Glkl for each of the requested
L contexts. It extracts these choices from the ontology. In addition, the algo-
rithm takes as input the accuracy constraints that define the minimum acceptable
accuracy by each application. The basic structure of the algorithm has two main
loops. The first loop (line 3) filters the available choices of groups into the set of
feasible groups that satisfy the accuracy constraints. In the second loop, the en-
ergy consumption of the different combinations of the remaining feasible groups

101

Figure 5.4: Example of single-context setting: location sensor selection.

is computed (line 12) as shown in the utility function (5.3). Those possible com-
binations are checked whether they consume the minimal energy. Finally, the
one combination with the lowest energy consumption is chosen (line 14) such
that its energy does not exceed the defined energy budget. Using this algorithm,
the complexity decreases to O(V ′) where V ′ ≤ V .

Alternative Sensor Selection in Single Context Setting

For sensor selection in single context case, the method considers the available
sensors that can provide the required context; then according to required accuracy
and available energy, the algorithm chooses the most effective sensor to use. We
develop an energy based algorithm that detects the user context information to
achieve a minimum accuracy level. We consider different factors that impact
the choice of sensors such as available energy, required accuracy, state of the
device (what sensors are already turned on), and state of the user (moving or
stationary). A prototype for the algorithm is presented in Algorithm 5.2.

As an example, applying our proposed algorithm on location sensor selection
model saves a critical amount of energy. Though GPS provides the highest ac-
curacy between the location sensors available, it is shown through experiments
that it is a major source of energy consumption. Figure 5.4 presents the location
sensor selection decision tree which was built using decision tree classification
technique.

102

Algorithm 5.1 Group sensor selection algorithm

Input:
- Ωl: the choices of groups of sensors Glkl for each of the requested L
contexts
- Al: the minimum acceptable accuracy for each context
- Em: the energy consumption by each sensor Sm
- slj: the current states of the user ∀l = 1, 2, ..., L
- EB: available energy budget
Output:
Glkl
∗
: Optimized groups of sensors ∀l = 1, 2, ..., L

1: set Minimum energy Emin =∞
2: set Feasible set Ω′l = ∅
3: for each requested context l = 1 to L do
4: for each group kl = 1 to Kl do
5: if the accuracy of group Glkl satisfies the minimum acceptable

accuracy: Alkl,j ≥ Al
6: Add the group Glkl in the set of feasible groups that satisfy the

accuracy constraint: Ω′l = Ω′l ∪ Glkl
7: end if
8: end for
9: The feasible set Ω′l for each context has K ′l groups where K ′l ≤ Kl

10: end for
11: Compute the number of possible combinations of groups as

V ′ =
∏L

l=1K
′
l which represents the union of sensors

12: for each combination v = 1 to V ′ do
13: Compute the energy consumption Ev =

∑
Sm∈(

⋃
l∈L Glkl)

Em

14: if (Ev − Emin)< 0 && Ev − EB < 0
15: Emin = Ev
16: for each requested context l = 1 to L
17: Optimized group of sensors = Glkl

∗ ∈ v //
18: end for
19: end if
20: end for

5.1.4 Integration and Synchronization with Optimized Sen-
sor Scheduler

Once the framework produces the optimized group of sensors, the next step for
the framework is to determine the sensing schedule for each sensor. A naive

103

Algorithm 5.2 Selecting the optimized sensor

Input:
- Sm (available sensors on device)
- A (accuracy required by application)
- c (type of context required by application)
Output:
Sensor Sopt

1: Find the type of context that can be returned by each sensor. N.B
some sensors can return more than one type of context.

2: Divide the sensors according to the above classification into K cat-
egories.

3: Sort the sensors in each category in descending order of efficiency.
4: Find the category to which c belongs.
5: for all sorted sensors in this category:

check if Am > A then choose sensor Sm
else move to the next sensor Sm+1

choice is to use the continuous sensing where a sensor is triggered continuously so
that the system does not miss the event of the user changing her state. However,
continuous sensing constitutes a major source of energy consumption. Therefore,
we propose to use an optimized scheduling approach based on VCAMS (Viterbi-
based Context Aware Mobile Sensing) from our previous work [33]. Combining
VCAMS with sensor selection provides further energy saving and a trade-off with
delay and accuracy.

VCAMS is a context aware system that depends on the situational information
about the user and her surroundings. For each requested context, there is a
corresponding user state model which describes the states of the user described in
Section 5.1.1. For example, if the requested context is emotion, the states may be
either neutral, happy or angry. VCAMS dynamically provides the time instants
at which a sensor needs to be triggered for the specific user and the particular
state. However, VCAMS does not synchronize the sensing triggers among the
different selected sensors. The sensing schedules for the different sensors are time
synchronized so that the samples from all sensors can be used collectively as
features for recognition. Hence, we use the Sensing Synchronization block to
effectively combine the sensing schedules generated by VCAMS. We propose a
hierarchical approach in which the framework first selects the optimized group
of sensors and then synchronizes the VCAMS-derived sensing schedule for all
sensors.

Let T̂ lj be the estimated time limit for context cl; specifically, for state slj,

104

Algorithm 5.3 Synchronizing the sensing schedules of multiple contexts

Input:
- The sensing schedule sslj generated by VCAMS for each of the requested
contexts cl and particular state slj
- The range threshold thr to identify the maximum time range between
consecutive sensor triggers
- The probability threshold thp to identify the minimum survival proba-
bility beyond which sensing is triggered
Output:
Synchronized sensing schedule

1: set i = 1
2: set tmlast = 0
3: while running context-aware applications do
4: for each requesting sensor Sm at ti do
5: if ti − tmlast ≤ thr and pj(ti) ≥ thp
6: Do not trigger sensor Sm at ti
7: else
8: Trigger sensor Sm at ti
9: tmlast = ti

10: end if
11: i = i+ 1
12: end for
13: end while

reflecting the average time duration which the user spends in contextual state
slj. The goal of VCAMS is to find the sensing schedule sslj which consists of an
optimized sequence of actions at each time instant by looking forward over the

time duration T̂ lj . As a result, T̂ lj is used to represent the time limit of state slj
before the model triggers continuous sensing to avoid delay in detecting a state
change which becomes highly probable beyond this time limit. From the user’s
past behavior, the time spent by the user in the slj state can be considered as
a random variable T lj , with mean µlj and a standard deviation σlj. These time
properties are learned from previous behaviors, and they are updated dynamically

whenever state slj is encountered. T̂ lj is chosen based on the historical distribution

of the time spent in each state slj, and it is chosen to be greater than µlj to
minimize the sensor triggers, and thus minimize energy. Let plj(ti) be the survival
probability at time instant ti that the context will stay in the same detected state
slj at this time instant.

105

Algorithm 5.3 shows the pseudocode for synchronizing the sensing schedules
for the multiple concurrent contexts. The algorithm is time-variant where differ-
ent decisions are made at each time instant. The algorithm takes as inputs the
sensing schedules generated by VCAMS for the current state of each requested
context. In addition, it takes the application-based thresholds upon which it de-
cides whether to sense or not. The first threshold is the range thr that defines
the time instants accumulated since last sense; hence, it plays an important role
in determining the incurred delay. thr is the maximum acceptable time interval
between two subsequent sensing triggers from the same sensor; hence, thr defines
the delay interval that the application can tolerate. The second threshold thp de-
fines the limit of survival probability that the user will stay in the same detected
state. This threshold represents the probability beyond which sensing cannot
be postponed due to high probability of a state change. For example, when the
survival probability is low, it is more likely that the user will change her current
state.

For each triggered sensor Sm (line 4), the algorithm checks if the interval
between the current time instant ti and the last time this sensor was triggered
tmlast is less than thr. In addition, check at the same time (line 5) whether the
current survival probability of the current state sj is greater than the probability
threshold thp. If both conditions are satisfied, the sensors are not triggered and
the most recent sensor data reading is used (line 6). Otherwise, the sensor is
triggered (line 8), and the timing of its latest trigger tmlast is updated (line 9).

5.2 Evaluation of Sensor Selection Using Simu-

lated Dynamic Environment

This section evaluates the performance of EGO sensor selection framework using
simulation, and Section 5.3 provides evaluation through a physical testbed imple-
mentation. Setion 5.2.1 provides implementation details for our proposed context
recognition ontology. We define three conventional sensor selection systems for
context sensing to compare their performance with EGO in Section 5.2.2 based
on the performance metrics defined in Section 5.2.3. The effect of varying the
number of available sensors is illustrated in Section 5.2.4. We compare the per-
formance in terms of context recognition accuracy in Section 5.2.5, and we show
that the performance of EGO gives a trade-off between energy, accuracy and the
number of recognized contexts in Section 5.2.6. In Section 5.2.7, we evaluate
EGO sensor integration with VCAMS sensor schedule to show the extra energy
savings.

106

Figure 5.5: Protégé interface showing the ontology’s classes, relationships, and a graphical
illustration.

5.2.1 Ontology Development

The context-aware ontology was written in Web Ontology Language (OWL) and
developed using Protégé [197] which is a graphical tool to develop knowledge-
based solutions. Figure 5.5 shows the graphical user interface for Protégé cap-
turing the main classes of the ontology and their accompanying properties. In
addition, Protégé provides a high level graphical illustration of our developed
ontology.

To retrieve the sensor group, the ontology can be queried with the following
using SPARQL syntax:
PREFIX : <ContextOntology.owl#>

SELECT DISTINCT ?SensorGroup ?ContextualState ?IndividualSensor ?energyCost ?accuracyEstimate

WHERE { ?SensorGroup :recognizes :Activity .

?SensorGroup :includes ?IndividualSensor .

?ContextualState :recognizedBy ?SensorGroup.

?IndividualSensor :energyCost ?energyCost .

?SensorGroup :accuracyEstimate ?accuracyEstimate .

?ContextualState :accuracyEstimate ?accuracyEstimate . }

Below, we provide a snapshot of the query that retrieves the sensing information
from the ontology:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX : <ContextOntology.owl#>

SELECT ?SensorGroup ?IndividualSensor ?samplingFreq ?windowSize ?FeatureVector ?model

WHERE { ?SensorGroup rdf:type :SensorGroup .

?SensorGroup :groupName ?name .

?SensorGroup :includes ?IndividualSensor .

?IndividualSensor :samplingFreq ?samplingFreq .

?IndividualSensor :windowSize ?windowSize .

107

?IndividualSensor :computes ?FeatureVector .

?SensorGroup :classifies ?model .

FILTER regex(?name, "SelectedGroup") }

We selected activity and emotion to be the two contexts simultaneously re-
quested. To get the reliable information and populate the ontology, we selected
four literature works for each context, the papers’ information is summarized in
Table 5.1. The table analyzes published works in detecting activity and emotion
contexts by breaking down each study and comparing them in terms of inter-
ested contextual states, sensors used, processed features, and applied algorithms.
Therefore, we incorporated a group of 8 embedded and external sensors, i.e.,
the embedded sensors in the smartphone are: 3-axis accelerometer, microphone,
GPS, 3-axis gyroscope and 3-axis magnetometer; while the external sensors are:
wearable 3-axis accelerometer, wearable EEG headset and wearable ECG. Let M
be the total number of available sensors which is M = 8 in this example; and
Sm be a specific sensor where m = 1, 2, ..., 8. Figure 5.6 shows how each of the 8
sensors contribute to the set of groups for contexts c1 (Activity) and c2 (Emotion)
where each group is denoted by Glkl . The colored sensors are the ones which can
be exploited for synergy between the two requested contexts.

5.2.2 Comparison Systems for Context Sensing

To show the effectiveness of EGO, we used environments in which the available
sensors vary with time and user changes state in real-time to represent typical
user behavior. As comparison systems, we considered three standard static sen-
sor selection mechanisms that select pre-defined groups of sensors which does not
change dynamically with time and available resources. The first mechanism aims
at maximizing the accuracy without any energy considerations or sensor availabil-
ity check. We denote such a system as Best Accuracy context-aware system (BA).
The second mechanism aims at minimizing the energy without considering the
achieved accuracy or the sensor availability. Such energy-efficient system selects
the group of sensors for each requested context that consumes the least amount of
energy. We denote such a system as Best Energy context-aware system (BE). The
third mechanism provides a trade-off between energy and accuracy metrics. This
energy-accuracy trade-off has been studied extensively in the literature; however,
it does not depend on the synergy and the common sensors between multiple con-
current requested contexts. Therefore, such mechanisms select a static group of
sensors which is used each time the context is requested without taking into con-
sideration the current user state and other available sensor options. We denote
this trade-off context-aware system as (TO).

108

𝑆"

𝑆#

𝑆$

𝑆%

𝑆&

𝑆'

𝑆(

𝑆)

𝒢""

𝒢#"

𝒢$"

𝒢%"

𝒢"#

𝒢##

𝒢$#

𝒢%#

𝑐"
A
ctivity

𝑐#
Em
otion

Figure 5.6: The group of sensors for each context cl.

5.2.3 Performance Metrics

To measure the effectiveness of our proposed system EGO, we used three met-
rics: fraction of recognized context, energy consumed by triggered sensors and
accuracy of recognizing the states in a particular context. In our case, we have
two requested contexts: activity and emotion; therefore, the fraction of recog-
nized context is defined as the number of contexts that are recognized by the
available sensors. For each possible combination of available sensors, the fraction
of recognized context is:

Fraction of recognized context =
Nrec

Nreq

(5.9)

where Nreq is the number of requested concurrent contexts which is Nreq = 2 in
our example (activity and emotion); and Nrec is the number of contexts which can
be recognized using the available sensors. The total energy consumed is defined
as the energy consumed in Joules over the period of time when the application is

109

requesting a particular context and the corresponding group of sensors is turned
on and collecting data. It is defined as:

Total energy consumed =
∑
Sm

Em (5.10)

where Em is the estimated energy consumption by sensor Sm which belongs to
the possible combination of sensors. Each context is recognized using an opti-
mized group of sensors which guarantees a minimum classification accuracy. The
average classification accuracy over the different requested contexts is:

Average classification accuracy =

Nreq∑
l=1

Acl

Nreq

(5.11)

where Acl is the accuracy of classifying the context cl using the available sensors.

5.2.4 Performance based on Sensor Availability

Available sensors vary with time based on which sensors the user wears during
a particular time of the day. Therefore, we first varied the number of available
sensors and evaluated how the fraction of recognized contexts and the energy con-
sumption change with sensor availability. This particular experiment shows how
EGO reacts to different sensor availability compared to other static mechanisms.

Let the possible number of available sensors be M ′ which ranges from 1 to
M = 8. Let CM ′ denote the number of possible combinations out of the M ′

available sensors; hence, CM ′ = MCM ′ =
M !

M ′!(M −M ′)!
. Figure 5.7 shows the

average fraction of recognized contexts for each M ′. It is defined as:

Average fraction of recognized context =

∑
CM′

Nrec

Nreq

CM ′
(5.12)

As shown in the figure, EGO shows the highest number of recognized contexts.
Each of BA, BE and TO selects a static sensor group to recognize a context; on
the other hand, EGO checks what sensors are available and chooses the most
energy efficient group of sensors while guaranteeing the minimum accepted accu-
racy. EGO queries the ontology to extract the different possible groups of sensors
that can be used to recognize the requested context. When few number of sensors
are available, BA, BE and TO do not recognize neither activity nor emotion. As
the number of available sensors increases, the fraction of recognized context in-
creases for all four systems BA, BE, TO and EGO. However, EGO guarantees full
recognition of requested contexts; i.e. reaches the fraction of 1; earlier than the

110

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8

Fr
ac

tio
n

of
 re

co
gn

iz
ed

 c
on

te
xt

Number of available sensors

BA BE TO EGO

Figure 5.7: The effect of varying the number of available sensors on the fraction of recognized
contexts. Our proposed selection mechanism proves to adapt itself to dynamic availability of
sensors.

others reflecting its ability to recognize 100% of requested contexts. Therefore,
our approach adapts itself to the dynamic availability of sensors.

We also evaluate EGO’s energy consumption and compare it with the con-
sumed energy for each of the BA, BE and TO approaches. For this intent, we used
the sensor energy consumption values measured in [198] which provides a sensor
power model for different sensors. We estimated the average consumed energy
for each number of available sensors M ′, where we varied the sensor composition
randomly every 1 minute for 15 minutes; and then we compute the average en-
ergy over these possible combinations. Figure 5.8 shows the energy consumed for
each possible number of sensors. It is defined as:

Average energy consumed =

∑
CM′

∑
Sm

Em

CM ′
(5.13)

As shown in the figure, all four considered systems start with similar energy
consumption with few sensors. However, the figure shows slightly higher energy
consumption by EGO until the number of available sensors hits 6. We previously
showed in Section 5.2.4 that for low number of available sensors, EGO recognizes
contexts whereas other systems cannot recognize due to lack of required sensors.
Hence, although EGO consumes more energy, it guarantees recognizing the re-
quested contexts. In other words, when there are few available sensors, BA, BE
and TO approaches decide not to turn on any sensor since its predefined group
of sensors is not yet available. Therefore, such approaches consume slightly less
energy than EGO; however, at such sensor availability levels, they do not recog-
nize any of the requested contexts. As the number of sensors increases, the BA
approach consumes much higher values of energy than EGO. When more sensors

111

0

100

200

300

400

500

1 2 3 4 5 6 7 8

En
er

gy
 (J

)

Number of available sensors

BA BE TO EGO

Figure 5.8: Increasing the number of available sensors increases the consumed energy since
more contexts are being recognized.

are available, EGO can focus more on energy savings and select sensors which
recognize context while saving energy and guaranteeing the minimum accepted
accuracy. Hence, EGO shows much less energy consumption than BA and similar
performance as BE and TO approaches which consider energy-efficient choices of
sensors.

5.2.5 Context Recognition Accuracy

In this section, we evaluate our proposed approach in terms of classification ac-
curacy. We assumed that all 8 sensors are available during this simulation; there-
fore, the fraction of recognized contexts is 1 for all approaches: BA, BE, TO
and EGO. Throughout this experiment, BA will always choose the same sensors
whose overall accuracy is highest, BE will always choose the same sensors whose
overall energy is lowest and TO will choose the sensors that trade-off energy and
accuracy; therefore, BA, BE and TO’s choices of sensors are not based on the
current contextual state of the user. On the other hand, EGO will check the
current states of the user for each requested context and accordingly select the
best group of sensors which saves energy. EGO extracts the recognition models
and their parameters from the ontology. To make the simulated environment
easier for analysis, we combined the activities of the user into two categories:
hand-based activities (such as washing hands or brushing teeth) and foot-based
activities (such as walking or climbing stairs). Similarly, we categorized the user’s
emotions into two states: neutral and expressive (such as happy, fear or angry).

Figure 5.9 shows marginally higher accuracy for BA over EGO for some combi-
nations of states. This is expected since BA cares only about recognizing context

112

81

83

85

87

89

91

93

95

Hand-based Hand-based Foot-based Foot-based

A
cc

ur
ac

y
(%

)

Combination of activity and emotion states

BA BE TO EGO

Neutral Expressive Neutral Expressive
Activity:
Emotion:

Figure 5.9: The average context recognition accuracy varies depending on the contextual state
of the user.

85

87

89

91

93

95

0

100

200

300

400

500

BA BE TO EGO

A
cc

ur
ac

y
(%

)

En
er

gy
 (J

)

Energy Accuracy

Figure 5.10: The trade-off between the overall average consumed energy and the average context
recognition accuracy.

with the highest accuracy; whereas, EGO selects the group of sensors while op-
timizing energy. On the other hand, TO shows slightly less accuracy that EGO
since it trade-off energy and accuracy while EGO guarantees a minimum limit
of acceptable accuracy. As for BE, it shows the lowest accuracy levels since it
selects its sensors considering only energy without considering accuracy levels.

113

5.2.6 Energy-Accuracy Trade-off

To show the trade-off between energy and accuracy, we plot the average consumed
energy and average classification accuracy for each of the considered context-
aware approaches. Figure 5.10 shows the results. The figure shows that both
EGO and TO provides a trade-off between energy and accuracy. However, al-
though EGO consumes slightly more energy that TO, it shows higher accuracy
value. BE shows the lowest energy consumption but recognizes context with
lower accuracy. On the other hand, BA shows the highest accuracy; however, it
consumes the highest energy. EGO achieves 39% percent reduced energy con-
sumption compared to BA, while BA has a marginal increase in accuracy which
is less than 4%.

5.2.7 Impact of Integration with Optimized Sensing

To evaluate the performance of sensing synchronization after sensor selection, we
conducted simulation experiments on two combinations of simultaneous states
for activity and emotion contexts. The optimized VCAMS sensing schedules de-
rived for each of activity and emotion contexts were compared with continuous
sensing. Furthermore, we conducted analysis for the different parameters used
in Algorithm 5.3. Different range threshold (thr) and probability threshold (thp)
combinations were studied to investigate their effect on the trade-off between
energy consumption and delay. The range threshold (thr) represents the maxi-
mum number of time intervals between two consecutive sensor triggers. It affects
the incurred delay in detecting a state change. The probability threshold (thp)
represents the minimum survival probability beyond which the sensor should be
triggered.

Let T lj be the actual time duration spent in state slj. From the user’s past
behavior, T lj can be considered as a random variable, with mean µlj and a stan-
dard deviation σlj. Therefore, T lj follows a time distribution dependent upon the
context being monitored and the behavior of the user in such context. For our
simulations, we chose for context “c1 =Activity” the state “s1

1 = AtMeeting”
and for context “c2 =Emotion” the states “s2

1 = Neutral” and “s2
2 = Pleasant”.

We picked the estimated time for each as follows T̂ 1
1 = 130 min, T̂ 2

1 = 60 min

and T̂ 2
2 = 70 min. In the simulation, the user starts the meeting with a neutral

emotional state, then after a while she shifts to a pleasant emotional state. As for
the testing data, we ran the simulator to generate 10000 values of the actual time
spent in each of the states denoted by T lj . Figure 5.11 demonstrates VCAMS
sensing schedules that was obtained for different contextual states. The first
three timelines in the figure show VCAMS sensing decisions at each time unit for
each contextual state. Furthermore, the figure shows the synchronized schedule
derived from Algorithm 5.3. We compare this synchronized sensing schedule with
the schedule which triggers the sensors at all the time instants at which sensing

114

20 40 60 80 100 120

Trigger all
Synchronized

Emotion s
2
2

Emotion s
1
2

Activity s
1
1

(min)

Figure 5.11: The generated sensing schedules after integrating and synchronizing with optimized
sensor scheduler. The dots mean the time instants at which sensing is triggered. Our proposed
synchronization approach saves sensor triggers.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

No Synch 0 1 2 3 4 5 6

U
ni

ts
 o

f e
ne

rg
y

Range threshold (𝑡ℎ$)

(a) thp = 0.3

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

No Synch 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

U
ni

ts
 o

f e
ne

rg
y

Probability threshold (𝑡ℎ$)

(b) thr = 3

Figure 5.12: The range threshold and the probability threshold reflect the relative effect of syn-
chronizing the sensing schedules generated by the optimized sensing scheduler. These thresholds
represent the limits beyond which sensing should be triggered.

is requested by VCAMS denoted in the figure by “Trigger all”. The figure illus-
trates that less sensing triggers are requested when considering a synchronized
schedule compared to the “Trigger all” approach.

Effect of Range and Probability Thresholds thr and thp

The range threshold thr and the probability threshold thp reflect the relative ef-
fect of synchronizing the sensing schedules generated by VCAMS. Varying these
thresholds affects the derived synchronized sensing schedule. Figure 5.12 demon-
strates how these thresholds affect the generated synchronized sensing schedule;
and thus affecting the energy values. The energy metric was normalized where the
largest energy was used as base for energy normalization. Figure 5.12a shows the
effect of the range threshold thr for a fixed probability threshold of thp = 0.3 %.
The figure shows that as the range threshold increases, less energy is consumed
since the algorithm allows older sensing data to be used in the present context
recognition. As the range threshold increases, the synchronized schedule accepts
a bigger time interval between two subsequent sensor triggers. Figure 5.12b shows
the effect of the probability threshold thp for a fixed range threshold of thr = 3
time intervals. The figure shows that as the probability threshold decreases,
less energy is consumed since the sensor is not triggered when the condition

115

0

20

40

60

80

100

120

Continuous Without Synchronization With Synchronization

En
er

gy
 (S

en
so

r t
rig

ge
rs

)
Activity 1 Emotion 1 Emotion 2 Average

Figure 5.13: The effect of using the optimized sensing scheduler on energy. The figure shows
76% energy gains when compared to continuous sensing.

0

0.5

1

1.5

2

Without Synchronization With Synchronization

D
el

ay
 (T

im
e

un
its

)

Activity 1 Emotion 1 Emotion 2 Average

Figure 5.14: The effect of using the optimized sensing scheduler on delay. The figure shows a
slight delay increase of 0.5 time unit when synchronizing the sensing schedules of the different
sensors.

pj(ti) ≥ thp is met.

Performance Analysis of the Integration Strategy

In this section, we compare the performance after synchronization with the per-
formance when only VCAMS is considered without synchronization. In addition,
we compare with continuous sensing as baseline for both methods. We examined
the average energy and delay values for each of the proposed methods. The simu-
lation ran 10000 times for each method to find the average energy and delay. The
choice of the range threshold and probability threshold is application-dependent.
For example, if the application is health-related with critical context being mon-

116

itored, thr and thp should be chosen such that delay is minimized. We used
thr = 3 and thp = 0.3 as range and probability thresholds respectively which are
acceptable by energy and delay objectives and provide a balance between the in-
curred delay values and the total consumed sensing energy. We measured energy
by the number of time instants at which sensing is triggered and delay by the
number of time instants skipped before detecting a state transition. Figure 5.13
shows the energy consumed by continuous sensing, VCAMS sensing schedule,
and synchronized sensing schedule. We considered each contextual state alone
and we computed the average energy consumption. As shown, the consumed
energy greatly decreases when using VCAMS without synchronization. In addi-
tion, further energy reductions are guaranteed when synchronizing the sensing
triggers. Figure 5.14 shows the effect of synchronization on delay. As shown,
the average delay for continuous sensing is zero and it slightly increases when
using VCAMS by an average of 0.8 min without synchronization; then it reaches
its maximum when using synchronization which is slightly larger of average 1.3
min. Therefore, synchronizing the sensing schedules among the different contexts
saves almost 22% of sensing triggers; thus, it saves 22% of energy consumption,
while increasing the delay by less than 0.5 time unit. The increased delay is 1%
of the mean time spent in the state; therefore, it is considered acceptable for the
activity recognition application. Therefore, synchronizing the sensing schedules
obtained from VCAMS provides a trade-off between energy and delay; however,
the proportional energy savings exceed the proportional delay losses.

5.3 Case Study with Real Implementation of

Multi-context Operation: Activity and Emo-

tion

To test our sensor selection technique in real-life settings, we have implemented
EGO framework on commercially available sensors and mobile devices. We
demonstrate the performance of EGO for a human subject using a smartphone
and wearable sensors as shown in Figure 5.15. We reproduced the sensor scenarios
in Table 5.1 where the possible sensor groups are retrieved from the context-aware
ontology. In addition, sensors were used to collect raw data based on the sam-
pling information specified by each of the investigated studies which is retrieved
by querying the ontology for the sensing information and recognition models.
The subject was instructed to perform 10 activities recorded in reaction to a
controlled experiment with 3 emotional movies.

117

Muse EEG headset3-axis

accelerometer

Fitbit Blaze

Collect ground

truth data

EGO for sensor selection

VCAMS for sensor

scheduling

Sensing strategies:

Which and when?
Sensor data

User

Activity

GPS

Magnetometer

Microphone

Accelerometer

Gyroscope

Estimate accuracy

Estimate energy

Collect real-time

data

Emotion

Data analysis

and processing

• Sitting
• Walking
• Running
• Brushing teeth
• Driving
• Typing
• Walking downstairs

• Happy
• Neutral
• Sad

Figure 5.15: The experimental setup of our energy efficient and accurate activity and emotion
monitoring system. EGO framework is implemented on commercially available sensors and
mobile devices. The subject holds a smartphone and wears different external sensors from
which raw data is extracted.

5.3.1 Experimental Setup

The Android device was an HTC Desire 820G device, having an Octa-core 1.7
GHz Cortex-A7 processor and 1 GB RAM. The subject was asked to keep the
phone in her pocket. The smartphone has several embedded sensors which collect
data. In addition, the subject was asked to wear a BMA050 3-axis accelerometer
on the dominant hand, a lightweight 6 channels/electrodes Muse EEG headset on
her head [52] and a fitbit blaze to monitor the heart rate using PurePulse [199].
We used Muse Monitor android application [87] to collect the raw data from the
EEG headset and Fitbit Data website [200] to capture the raw heart rate from
the fitbit. Figure 5.15 illustrates the experimental setup of our case study. The
subject was asked to perform different activities, each for 60 seconds. These ac-
tivities include ‘sitting’, ‘walking’, ‘running’, ‘brushing teeth’, ‘driving’, ‘typing’,
and ‘walking downstairs’. Furthermore, for each activity, three emotional states
were tested. The emotions were ‘neutral’, ‘happy’, and ‘sad’. The activities and
emotions were selected such that they will be inline with the activities that are
used to evaluate the different 8 investigated studies. To vary the subject’s emo-
tions, the subject wears a muse headset which is used to meditate her feelings
and obtain the neutral emotional state, then the subject was asked to watch a
comedian clip to elicit the happy emotional state. Finally, she was asked to watch
a sad film clip to elicit her sad emotional state. The readings of all sensors were
transmitted to the HTC Desire 820G phone paired with all the wearable sensors
worn by the subject. EGO selects the group of sensors based on the state of the
user; therefore, we have 21 different activity-emotion state combinations.

118

For sensor sampling, the sensor readings were captured using the sampling
frequency and window size specified by each of the investigated studies in Ta-
ble 5.1. For feature extraction, we extracted a set of statistical time and frequency
features that were proposed by the investigated papers. Finally, the extracted
features were partitioned into two sets, we used the first 90% of the data for de-
velopment and tuning the classification model and the remaining 10% for testing
to measure the classification accuracy. We used Statistics and Machine Learning
Toolbox in MATLAB, and we performed extensive experiments with different al-
gorithms mentioned in the ‘Classification Algorithm’ column in Table 5.1, these
algorithms are used to derive models for activities and emotions contexts. Fi-
nally, these models, derived offline, are communicated into the mobile device to
classify the current contextual state in real-time.

5.3.2 Parameter Estimation

In our proposed approach in Section 5.1.3, there are two parameters needed for
the optimization problem. The two parameters are the energy consumed by each
group of sensors El

kl
and the state-based classification accuracy by each group of

sensors Alkl,j which is the accuracy of recognizing state slj using the sensors in

sensor group Glkl . We used PowerTutor to find the energy consumed by each group
of sensors. PowerTutor is an android application which is widely used [144] to
estimate the power consumed by major system components: CPU, display, and
network interfaces. Therefore, while collecting and processing data from each
group of sensors, we ran PowerTutor in the background to collect the energy
consumed by the CPU component for this specific group. Table 5.3 shows the
energy consumption by each group of sensors which is composed of the energy
consumed by embedded sensors, wearable sensors and transmitting the data from
wearables to mobile device. This energy was collected over a period of 60 seconds
for each group of sensors.

119

Table 5.3: Energy consumption for sensor groups

Context Sensor Group Total Energy (J)

Activity

G11 5.436

G12 3.2

G13 0.856

G14 16.136

Emotion

G21 1.23

G22 5.2

G23 1.614

G24 28.6

Table 5.4: Classification accuracy of sensor groups in classifying different states in activity context

Sensor Group State-based Accuracy Average Accuracy (%)
Sitting Walking Running Brushing Teeth Driving Typing Walking Downstairs

G11 86.7467 87.33 89.1 84.5 87.4 83.623 87.233 86.562

G12 85.59 85.053 86.353 82.2467 87.323 80.203 85.297 84.581

G13 79.09 79.157 82.596 74.38 74.87 73.783 81.956 77.976

G14 84.406 87.36 88.51 85.853 83.506 85.523 86.41 85.939

Table 5.5: Classification accuracy of sensor groups for emotion context

Sensor Group State-based Accuracy Average Accuracy (%)
Happy Neutral Sad

G21 71.557 72.06 71.526 71.714

G22 62.609 61.727 62.903 62.413

G23 69.967 70.416 69.8 70.061

G24 79.113 78.734 79.08 78.976

120

To estimate the classification accuracy, we evaluated the accuracy per state
for our activity-emotion recognition system. We used 10-fold cross validation
which has been widely used in the literature [201, 202]. In 10-fold cross vali-
dation technique, we randomly divided our dataset into 10 mutually exclusive
subsets. Then, 9 of those subsets are combined to form the training set while the
remaining subset is used as the test set. This process is repeated 10 times where
each time a different subset is used as a test dataset. Then, the accuracies result-
ing from all 10 runs were averaged to produce the final classification accuracy. To
obtain an accuracy for each state, we considered binary classification where the
user is either in state sj or not; hence, the class is either 1 or 0 respectively. The
experimental results are shown in Tables 5.4 and 5.5 for activity and emotion re-
spectively. The tables show that classification accuracy is state-dependent where
the same group of sensors return different classification accuracies based on the
activity or emotion of the user. The average accuracies over different activities
and emotions are proportional to the accuracies obtained by the sensor scenarios
listed in Table 5.1; however, they might differ in some cases due to the different
experimental setup such as the different brands of sensors used or the list of states
considered. These estimated energy and accuracy parameters are input into the
ontology so that EGO can select the optimized group of sensors in real-time.

5.3.3 Comparison of EGO to Other Methods with Real
Data Traces

To compare the performance of EGO with other existing approaches, we consid-
ered again each prior benchmark method presented in Section 5.2.2. The three
standard systems use a fixed set of sensors each time the context is requested.
In our experiment, the Best Accuracy context-aware system (BA) will choose
sensor group G1

1 to recognize activity and G2
4 to detect the user’s emotion since

these sensor groups achieve the highest accuracy as shown in Tables 5.4 and 5.5.
Hence, it will trigger sensors S1, S3, S6, S7 and S8 corresponding to embedded
accelerometer, GPS, wearable accelerometer, EEG and ECG respectively. On the
other hand, the Best Energy context-aware system (BE) will choose sensor groups
G1

3 and G2
1 to recognize activity and emotion contexts respectively. BE chooses

these sensor groups since they consume the least amount of energy as shown in
Table 5.3. BE will trigger sensors S1, S4, and S5 corresponding to embedded
accelerometer, gyroscope and magnetometer. The third approach is Trade-Off
context-aware system (TO) which will use sensor groups G1

2 and G2
1 such that it

provides trade-off between energy and accuracy. For example, sensor group G1
2 is

chosen by TO since it provides an equal trade-off between energy and accuracy
when considering activity recognition. Thus, TO will trigger sensors S1, S2, and
S3 which are the embedded accelerometer, microphone and GPS respectively.

In this experiment, we asked the user to wear the sensors for 3 hours and

121

0

0.2

0.4

0.6

0.8

1

1.2

BA BE TO EGO

U
ni

ts

Recognized context Energy Consumption Classification Accuracy

Figure 5.16: Energy, accuracy and number of recognized context for EGO and conventional
context-aware sensor selection systems. EGO gives a balance between energy, accuracy and
number of recognized contexts.

we randomly changed the number and composition of the available sensors each
15 minutes. Then, we used the three performance metrics: average fraction of
recognized context, average energy consumed, and average classification accuracy
to evaluate EGO’s performance with respect to the other conventional systems.
To visualize the gains in terms of the three performance metrics, we normalized
these results by dividing each of the average fraction of recognized context, av-
erage energy consumed and average classification accuracy by its corresponding
maximum value. The results are summarized in Figure 5.16. When comparing
to conventional methods, the results show that EGO gives a balance between en-
ergy, accuracy and number of recognized contexts. Although BA gives the best
accuracy performance, it costs much higher energy consumption and it cannot
recognize contexts since it requests the availability of multiple sensors. EGO
framework was able to achieve 50% improvement in fraction of recognized con-
texts and 63% reduction in consumed energy when compared to BA. EGO selects
the group of sensors that optimizes energy whereas BA cares only about recogniz-
ing context with the highest accuracy and uses a static pre-defined set of sensors
each time the context is requested. On the other hand, BE costs the lowest en-
ergy consumption; however, it gives lower accuracy value. In addition, BE does
not have the ability to recognize the context when few sensors are available. As
for TO, it provides a trade-off between energy and accuracy; however, it still
does not have flexible choices of sensors to recognize activity and emotion. It
always uses the same groups of sensors to recognize context; and it returns void
contextual state when any of these sensors is not available. Therefore, there will
be times when TO will miss recognizing a context since some of the pre-defined
sensors is not available.

122

5.3.4 Energy Gains of VCAMS with EGO in a Real Ap-
plication

In this section, we compare the performance of the framework in a real system
implementation while measuring energy and delay, and considering three scenar-
ios: 1) EGO with continuous sensing which provides the naive choice of using the
continuous sensing where a selected sensor is triggered continuously, 2) EGO with
VCAMS but without synchronization which provides the time instants at which a
sensor needs to be triggered; however, in this scenario VCAMS does not synchro-
nize the sensing triggers among the different selected sensors, and 3) EGO with
synchronization where the sensing schedules generated by VCAMS are combined
to produce an optimized synchronized sensing schedule. The user was asked to
wear all the sensors for 3 hours during which she was asked to perform a variety
of activities. To collect the ground truth, we asked the user to label the activity.
We used PowerTutor to estimate the consumed energy and we investigated the
delay in detecting a state change from one activity to another.

The overall energy and delay resulting from running each scenario for 1 hour
are presented in Figure 5.17. Comparing EGO without any sensing schedule;
i.e. continuous; with EGO followed by VCAMS without synchronization shows
almost 76% reduction in energy and a slight increase in delay from 0 to 16.2 sec
which can be considered negligible compared to the 1 hour that the user spends in
an activity. VCAMS gives a balance between energy and delay. As for EGO with
synchronization; i.e. VCAMS followed with sensing synchronization, it saves ex-
tra energy gains which reaches almost 81% compared to continuous sensing. How-
ever, it causes slightly larger delay value of average 21.42 sec. EGO framework
with sensing synchronization effectively combines the sensing schedules generated
by VCAMS to provide further energy savings. In summary, EGO sensor selection
mechanism recognizes the highest number of contexts using available sensors and
gives a balance between energy and accuracy values. Furthermore, embedding
VCAMS’s sensing schedule mechanism with synchronization along the different
selected sensors saves extra energy values giving a trade-off between energy and
delay in detecting a state change.

5.4 Summary

In this chapter, we have presented EGO: an energy-efficient ontology-based group
sensor selection framework that explores the synergy across applications request-
ing multiple contexts concurrently. EGO reduces energy consumption by consid-
ering the different synergy choices and common sensors among the applications.
The framework includes a context ontology that captures the knowledge base of
context recognition models along with features and machine learning parameters.
EGO adaptively selects the groups of sensors that provides a trade-off between

123

522

122.52
100.38

0

16.2

21.42

0

2

4

6

8

10

12

14

16

18

20

22

24

0

100

200

300

400

500

600

Continuous Without Synchronization With Synchronization

D
el

ay
 (s

ec
)

En
er

gy
 (J

)

Energy Delay

Figure 5.17: The effect of integrating and synchronizing with an optimized sensor scheduler.

the energy consumption, the accuracy of context recognition, and the number of
recognized contexts. EGO includes a synchronized sensing schedule that provides
a trade-off between the energy consumption and the delay to detect a context
change.

We implemented a real test-bed that shows simultaneous operation of multiple
context-aware applications, and demonstrates the effectiveness of the proposed
framework in coordinating efficient operation of the applications. When com-
pared to conventional sensor selection methods, EGO framework was able to
achieve 50% improvement in the fraction of recognized contexts and 63% reduc-
tion in energy consumption. EGO provides dynamic sensor selection to recognize
requested contexts based on the available sensors while optimizing energy and
accuracy; whereas other previous works use static sensor selection. Furthermore,
results showed that the integration and synchronization with optimized sensor
scheduler saves extra 81% energy when compared to continuous sensing since it
provides an optimized synchronized sensing schedule.

124

Chapter 6

Conclusion and Future Work

This chapter summarizes the main contributions of this PhD dissertation and
indicates open research questions in this field which are extensions to the proposed
work.

6.1 Thesis Summary and Contributions

As we are shifting into an intelligence technological age [203], we are approach-
ing Mark Weiser’s vision of having technologies blending into our everyday life
[1]. One of the emerging technologies in this respect is the development of smart
mobile and wearable devices which are equipped with a variety of sensors. These
devices are nowadays conscious about their users and environments by contin-
uously extracting sensory data and monitoring their context information such
as the user’s identity, emotion, activity and surrounding environment. Context
awareness enables the smart devices to adapt their behavior proactively with
the context so that it improves the user’s experience and provides user-tailored
services. As a result, context-aware applications provide new opportunities for
better understanding and enhancing our lives. However, smart mobile devices
have limitations and resource constraints where the continuous sensing and con-
text recognition process puts heavy workload on the smart mobile devices and
sensors.

In this dissertation, we present a generic context-aware framework composed
of sensing designs that enable context recognition. The challenge is to collect
relevant sensory data from embedded and external sensors, recognize accurate
context, and provide context-aware services with minimal delay, while preserving
the scarce resources of mobile devices and sensors. As a result, this thesis has pre-
sented novel context-aware dynamic designs and mechanisms that facilitate the
process of recognizing context while reducing the amount of energy consumption.
We have shown that a smart dynamic sensing framework can improve the process
of collecting data from external and embedded sensors while trading off resource

125

consumption, application accuracy, and delay in detecting a state change. In
particular, we have presented the following objectives and contributions:

6.1.1 Objective 1: Energy Efficient Sensor Sampling Strat-
egy

In this part of the thesis, we presented two energy efficient sensor sampling strate-
gies that form one component of the proposed smart dynamic sensing framework.
In this objective, we prove that the sensing behavior depends on the state of the
user. In addition, we explore different techniques to select a sensor sampling
mechanism and compare their system performances in terms of energy and accu-
racy. We have presented the following contributions in this objective:

• Formulating the sensor sampling selection as an optimization problem to
trade-off energy and accuracy. The objective is to derive the best operating
conditions for phone sensors and detect the user’s activity while trading off
the two factors, energy and accuracy. In other words, energy is reduced with
lower usage of sensors, while accuracy is increased when more sensor data is
available. As a result energy and accuracy provide conflicting requirements
on phone usage. The objective function is maximized to balance the trade-
off between energy term and classification error term.

• Proposing an optimized energy-accuracy activity-dependent sensing algo-
rithm for recognizing human physical activity. We showed the effect of
varying the sampling parameters on classification accuracy changes based
on the monitored contextual state (activity in our case). Therefore, for
each activity, there exist activity-specific sampling parameters (sampling
frequency and window size) that minimize the energy while maximizing
the classification accuracy.

• Formulating the classification accuracy in terms of entropy and sampling
choices. We proved that the classification error is bounded by the condi-
tional entropy. We also demonstrated using experiments on a real dataset
that higher sampling frequency leads to lower classification error and lower
conditional entropy. Therefore, classification error is upper bounded by
conditional entropy.

• Quantifying the impact of sampling parameters (sampling frequency and
window size) on the amount of energy consumed while collecting sensory
data. We have demonstrated using experiments on a real Android device
that the energy consumption depends on the sampling parameters; in par-
ticular, the sampling frequency. Consequently, we propose an empirical
energy model that estimates the energy consumed by each sensor sampling
in terms of the sampling parameters.

126

• Quantifying the impact of sampling parameters (sampling frequency and
window size) on the classification accuracy. We showed through experi-
ments that higher sampling frequency leads to lower classification errors.
We used 10-fold validation to estimate the classification accuracy for each
sampling frequency. In addition, we demonstrated that the energy con-
sumption depends on the window size which represents the time window
during which raw sensory data is collected to generate the feature for con-
text recognition.

• Exploiting the advantages of deep learning to determine the best state-
dependent sensor sampling frequency for context recognition. Deep learning
has evolved through recent years resulting in high classification accuracy;
thus, it can guarantee more efficient sensing from embedded and wearable
sensors. We showed using experiments on real dataset that the performance
of DNN surpasses the performance of DT and NB.

• Exploiting multiple granularity by ensemble classification for sensor sam-
pling decisions to trade-off energy and accuracy. We used Deep Neural
Network (DNN) with ensemble classification of other complementary ma-
chine learning approaches (DT and NB). The experiments showed that each
considered machine learning approach behaves differently based on the con-
textual state.

• Designing an optimized state-dependent sensing algorithm that trades-off
energy and accuracy to recognize user contextual information such as: activ-
ity, health condition, and location detection. The algorithm is based on an
optimization formulation that finds the optimized sampling frequency which
minimizes energy and maximizes classification accuracy. We demonstrated
that classification accuracy is state-dependent where activities involving
more movement (walking or jogging) require more samples compared to
steady activities (sitting).

6.1.2 Objective 2: Context-Aware Sensor Scheduling to
Trade-off Energy and Delay

In this objective, the aim was to decide when to trigger the sensor for data
collection so that interesting state changes are captured with minimal energy
consumption and lowest delay. This objective builds upon the idea that most
applications do not need to detect the states of the context continuously, rather
they require the detection of critical changes in context. Hence, we propose an
efficient dynamic mobile sensing strategy that allows the smart mobile device to
intelligently interact with external sensors and embedded sensors while trading off
resources’ energy consumption and application delay targets. The contributions
in this objective are:

127

• Formulating the sensor schedule problem using Viterbi implementation to
learn sensing schedules for real-time decisions on when sensing should be
triggered. The optimal solution determines the time instants at which a
sensor should be triggered for data collection. The goal is to find the sens-
ing schedule which consists of an optimized sequence of actions at each
time instant by looking forward over the time duration and maximizing the
cumulative rewards, where the rewards comprehend the trade-off between
energy and delay. We applied Viterbi because it proved to be optimal for
estimating the state sequence of a finite state process [158]. Hence, Viterbi
can be applied to any dynamic problem with finite states [204]. In our
case, the Viterbi states are the sensing actions which are two: “sense” or
“no sense”. Our problem deals with real dynamic time limits where some
sensing decisions might be taken over long periods of time; hence, Viterbi
provides a reduction in computational complexity by using recursion and
saving only the most likely path leading to each state.

• Customizing new reward functions (Viterbi path metrics). In dynamic pro-
gramming algorithms, metrics need to be defined to represent the utility
associated with each transition between nodes. Therefore, the energy and
delay reward metrics are formulated to best represent the utility associated
with each transition between trellis nodes in a Viterbi-based algorithm. We
defined those customized reward functions in terms of optimization criteria
which depend on the sensing action and the current state.

• Proposing a novel user model which captures a transition model from his-
torical behavior of the user such as the probabilities of transition from one
state to another at any time instant, and can also include the statistics of
the time duration spent in a specific state. Accordingly, the sensing sched-
ule is adaptive from two aspects: 1) the decision rules are learned from the
user’s past behavior extracted from the proposed user model, and 2) these
rules are updated over real time whenever there is a significant change in
the user’s behavior by updating the user model with new statistics.

• Finding the Pareto optimal parameters in the formulation. There is a trade-
off between energy and delay. Thus, finding the best energy-delay weighting
factors is a multi-objective optimization problem which requires an optimal
Pareto solution. Pareto solutions find points which are acceptable by both
objectives. The optimal combination is the one which provides a balance
between the incurred delay values and the total consumed sensing energy.

• Proposing a strategy that triggers learning mode in real-time to update
the sensing schedule only when critical changes are captured, thus avoiding
unnecessary computations. The learning part of the system generates a
user-specific lookup table (LUT) capturing which sensing schedule should

128

be used for each state. In addition, when comparing this proposed triggering
mode with other adaptive strategies, the results show that our proposed
strategy gives the best performance in terms of sensing energy consumed
and delay in detecting a state change.

• Showing through experiments using real datasets that our proposed sen-
sor scheduling approach gives the best balance between energy and delay
when compared to previous state-of-the-art methods. Furthermore, we also
demonstrated that our proposed approach can be configured (by tuning the
weighting factors) to achieve lowest possible delay, lowest possible energy,
or lowest possible trade-off combination.

6.1.3 Objective 3: Ontology-Based Sensor Selection for
Simultaneous Execution of Multiple Context-Aware
Applications

The main target of this objective was to alleviate the energy limitation with
mobile devices in multi-context setting where multiple context-aware applica-
tions are running and requesting multiple contexts. The sensor selection ap-
proach builds upon the idea that multiple sensor applications are currently in
need to run concurrently so that multiple contexts, such as activity, location or
emotion, are simultaneously recognized. Hence, we demonstrated that energy
consumed to sense and recognize contexts can be reduced without reducing the
recognition accuracy below acceptable values through selecting a group of sen-
sors which exploits the synergy among applications while jointly optimizing the
energy-accuracy trade-off of all requesting applications. In particular, we have
presented the following contributions in relation to this objective:

• Designing and developing a context ontology that captures context recog-
nition models along with descriptive specifications for each context recog-
nition model such as required sensors and machine learning parameters.
This ontology is used by the framework to examine the different sensor op-
tions for each application. This ontology can be used by other researchers
to facilitate the knowledge sharing and future research in context-aware
applications.

• Proposing an adaptive sensor selection approach to select the optimal group
of sensors that trades-off the energy consumption and the accuracy of con-
text recognition. The selected group of sensors is adaptively changed based
on what contexts are requested by the applications, which sensors are avail-
able, how much energy resources are available in the smartphone and ex-
ternal sensors, and what state the user is currently in.

129

• Implementing a real test-bed implementation first of its kind to show op-
eration of multiple context-aware applications running simultaneously, and
demonstrate the effectiveness of the proposed framework in coordinating
efficient operation of the applications. We implement 8 context-aware ap-
plications comprehending activity and emotion.

6.1.4 Objective 4: An Integration Strategy Towards a
Holistic Dynamic Sensing Approach

In this objective, the aim was to propose a cohesive solution that integrates the
different objectives together. We propose a hierarchical approach in which sensor
selection is followed by selecting the appropriate sensing schedule of each sensor.
The main contribution in this objective is the following:

• Proposing a comprehensive approach that uses our previously proposed
sensor scheduling mechanism VCAMS proposed in Objective 2 to output
an optimized synchronized sensing schedule which decides when to trig-
ger each of the selected sensors for data collection to trade-off the energy
consumption and the delay to detect a context change. We then apply syn-
chronization to these selected sensing schedules to save more energy through
synchronizing sensor triggers.

6.2 Future Work

In this section, we present future extensions that complement the discussions
presented throughout the dissertation. In addition, we highlight some interesting
open research problems that need to be addressed in order to improve context
recognition and usage so that it can further facilitate users’ lives.

6.2.1 Integrating Sensing Strategies: A Holistic Approach
for Dynamic Sensing

In the previous objectives, we have proposed a hierarchical approach that inte-
grates the sensor selection and the sensor scheduling mechanisms. We formulate
and solve the problem sequentially dealing with the phases of the decisions in a
consecutive order with each phase following the other. The first step is in Ob-
jective 3 where we should choose what sensors to trigger. For each sensor, we
select the time instants at which each sensor should be triggered. Therefore, the
variables and the methodologies used in one step depend on the outcomes of the
previous step. One advantage of sequential topology when compared to holistic
approach is that more specific problems can be tackled in latter steps after finding
solutions to prior steps. More specifically, we chose M out of N sensors where

130

Holistic

Which? When? How long?

Sequential

Which? When? How long?

Figure 6.1: Framework approaches for sensing strategies.

each sensor has Wi different number of parameters from Objective 2. Solving
Objective 3 has

∑N
M=1

(
N
M

)
possible solutions. After finding which M sensors to

use, the problem simplifies to finding the sensing parameters Wi for each chosen
sensor where i = 1...M . Therefore, solving Objective 2 has

∏M
i=1 Wi. Hence, the

number of possible solutions:

N∑
M=1

(
N

M

)
+

M∏
i=1

Wi (6.1)

One possible extension is to consider another integration approach which takes
a holistic look at the problem with real applications where all three decisions need
to be made for optimized system operation: Which sensors to operate, when to
trigger, and for how long? Based on the required context by the application, there
are several topologies for how to integrate the strategies [205]. The integration
approaches are illustrated in Figure 6.1, and detailed below:

Holistic Approach

The first approach is to formulate the problem as a holistic optimization problem
with all the variables included. In the holistic approach all of the objectives
are integrated into one global objective function. Consequently, the novelty in
this part consists of developing efficient holistic and simultaneous decisions for
sensor selection with corresponding triggering times and sampling options. For
example, in some cases, triggering two sensors using lower sampling frequencies
will result in less energy consumption than when triggering only one of those
sensors using high sampling frequency. The pool of variables is now large, which
increases the complexity of the problem. More specifically, to choose M sensors
out of N sensors and where each sensor has Wi different number of parameters
from Objective 2 and Hi number of parameters from Objective 1, the number of
possible solutions becomes:

N∑
M=1

((
N

M

) M∏
i=1

(Wi ·Hi)

)
(6.2)

131

6.2.2 Fusing Multiple Sensors for Context Recognition

In general, the approaches we proposed in this thesis are applied on individual
sensors, except in Objective 3 where we used several sensors to extract context.
However, we relied on previous literature works extracted from our ontology
to deal with the multiple sensor utilization and fuse sensor data from multiple
sources. With the evolution in wearable sensors, data fusion is becoming a ne-
cessity where multiple heterogeneous sensor data sources are being deployed. A
key challenge is to decide at which level of abstraction should we apply fusion:
data-level, feature-level, or decision-level [206]. Therefore, an interesting direc-
tion for future work is to investigate how fusion of sensors can be embedded in
our proposed framework. In particular, we are interested in proposing a an en-
ergy efficient context-aware data fusion mechanism which can be integrated in
our proposed framework.

6.2.3 Open Research Directions

Several technical challenges have been detected in the field of mobile sensing and
context recognition. There are several research threads that still need further in-
vestigation so that pervasive applications can make full use of the available sensors
to ubiquitously provide proactive services to the user. We will next highlight two
of these interesting research opportunities that complement the context-aware
dynamic designs we propose in this dissertation.

Mobile Cloud Computing

We are living in the era of Big Data where tremendous amounts of data are
being collected. There are 3Vs that define the Big Data: volume, velocity, and
variety. In the mobile sensing environment, these 3Vs are clearly obvious. Due to
recent developments, there is a “variety” of data sources from multiple embedded
and wearable sensors. This data can recognize several context information that
describes the user and her environment. In addition, most applications use the
recognized context in real-time to take the appropriate context-aware actions.
Hence, “velocity” forms a critical component of Big Data. The continuous sensing
of multiple sensors leads to a huge “volume” of data that needs to be stored
and analyzed. Therefore, mobile cloud computing was recently introduced to
combine cloud computing and mobile computing so that cloud resources can be
used to store large data [207, 208]. However, it is not an easy task to implement
this approach due to several challenges such as privacy, adaptability, mobility,
network conditions, and transmission power concerns. Hence, this is still an open
research topic especially with the emergence of new fifth generation networks that
can offer a higher bandwidth [209].

132

Privacy and Trust

This aspect in context-aware applications becomes very critical when dealing
with urban and participatory sensing where multiple sensors are deployed to
share knowledge. For example, traffic monitoring applications rely on real-time
context recognized multiple users such as their location and speed. We envision
upcoming smart cities, hospitals and schools; however, data privacy constitutes a
major challenge for these future advancements. The issue of privacy comes highly
into sight when dealing specifically with health applications where information
is even more delicate. Some attempts have been done to solve some of the trust
challenges that arise when recognizing and sharing context information [210].

133

Appendix A

Abbreviations

IoT Internet of Things
DNN Deep Neural Network
PDA Personal Device Assistant
FFT Fast Fourier Transform
HCI Human-Computer Interaction
EEMSS Energy Efficient Mobile Sensing System
CMDP Constrained Markov Decision Process
HAR Human Activity Recognition
HMM Hidden Markov Model
ADP Android Developer Phone
ELM Extreme Learning Machine
VESM Virtual Environment Simulation Modeling
EDA Electrodermal Activity
BVP Blood Volume Pulse
ECG Electrocardiogram
EMG Electromyography
EEG Electroencephalogram
MDP Markov Decision Process
GPS Global Positioning System
GSR Galvanic Skin Response
HBR Heart Beat Rate
ESS Essential Sensor Set
ILP Integer Linear Programming
HASC Human Activity Sensing Consortium
DT Decision Tree
NB Näıve Bayes
RBM Restricted Boltzmann Machine
CG Conjugate Gradient
SGD Stochastic Gradient Descent
LUT Look Up Table

134

VCAMS Viterbi-based Context Aware Mobile Sensing
VT VCAMS adaptive trigger strategy
CT Continuous Triggering
FP False Positive
FN False Negative
AIAD Additive Increase Additive Decrease
ADL Activities of Daily Living
QoS Quality of Service
EGO Energy Efficient Group Sensor Selection
OWL Web Ontology Language
UML Unified Modeling Language
PSD Power Spectral Density
BA Best Accuracy
BE Best Energy
TO Trade-Off

135

Bibliography

[1] M. Weiser, “The computer for the 21st century,” ACM SIGMOBILE Mobile
Computing and Communications Review, vol. 3, no. 3, pp. 3–11, 1999.

[2] M. Weiser, “Some computer science issues in ubiquitous computing,” Com-
munications ACM, vol. 36, no. 7, pp. 75–84, 1993.

[3] Intel, “The smart and connected to the cloud world: 2016 and beyond,”
Intel Newsroom, 2016.

[4] Cisco, “Cisco visual networking index: Global mobile data traffic forecast
update,” White Paper, 2017.

[5] R. Schaller, “Moores law: Past, present, and future,” IEEE Spectrum,
vol. 34, no. 6, pp. 52–59, 1997.

[6] B. N. Schilit and M. M. Theimer, “Disseminating active map information
to mobile hosts,” IEEE Network, vol. 8, pp. 22–32, Sept 1994.

[7] “US 10 billion-worth of smartwatches to ship in 2017 as traditional watch-
makers feel the pressure.” https://www.canalys.com/newsroom/us10-
billion-worth-smartwatches-ship-2017-traditional-watchmakers-feel-
pressure.

[8] L. Atallah and G.-Z. Yang, “Review: The use of pervasive sensing for
behaviour profiling - a survey,” Pervasive Mobile Computing, vol. 5, no. 5,
pp. 447–464, 2009.

[9] R. Jain and L. Jalali, “Objective self,” IEEE MultiMedia, vol. 21, no. 4,
pp. 100–110, 2014.

[10] “Apple - Apple Watch.” https://www.apple.com/watch/.

[11] N. Lane, P. Georgiev, C. Mascolo, and Y. Gao, “Zoe: A cloud-less dialog-
enabled continuous sensing wearable exploiting heterogeneous computa-
tion,” in 13th ACM Conference on Mobile Systems, Applications, and Ser-
vices (MobiSys ’15), pp. 273–286, May 2015.

136

[12] M. Shoaib, S. Bosch, H. Scholten, P. J. M. Havinga, and O. D. Incel,
“Towards detection of bad habits by fusing smartphone and smartwatch
sensors,” in 2015 IEEE International Conference on Pervasive Computing
and Communication Workshops (PerCom Workshops), pp. 591–596, March
2015.

[13] E. Ohn-Bar and M. M. Trivedi, “Looking at humans in the age of self-
driving and highly automated vehicles,” IEEE Transactions on Intelligent
Vehicles, vol. 1, pp. 90–104, March 2016.

[14] M. Skubic, “A ubiquitous sensing environment to detect functional changes
in assisted living apartments: The tiger place experience,” Elsevier
Alzheimers and dementia, vol. 6, no. 4, pp. 1552–5260, 2010.

[15] M. Fahim, I. Fatima, S. Lee, and Y. Lee, “Daily life activity tracking appli-
cation for smart homes using android smartphone,” in International Conf.
on Adv. Commun. Tech., pp. 241–245, 2012.

[16] S. Hu, H. Wei, Y. Chen, and T. J., “A real-time cardiac arrhythmia clas-
sification system with wearable sensor networks,” Sensors, vol. 12, no. 9,
pp. 12 844–12 869, 2012.

[17] MarketResearch, “Big Data in Internet of Things (IoT): Key
Trends, Opportunities and Market Forecasts 2015 2020.”
http://www.marketresearch.com/Mind-Commerce-Publishing-v3122/Big-
Data-Internet-Things-IoT-8926222/, 2015.

[18] Gartner, “Top 10 strategic predictions for 2015 and beyond: Digital busi-
ness is driving ’big change’,” Gartner Info, 2014.

[19] A. Rehman, M. Mustafa, I. Israr, and M. Yaqoob, “Survey of wearable
sensors with comparative study of noise reduction ecg filters,” International
Journal of Computing and Network Technology, vol. 1, no. 1, pp. 45–66,
2013.

[20] Óscar D. Lara, A. J. Pérez, M. A. Labrador, and J. D. Posada, “Centinela:
A human activity recognition system based on acceleration and vital sign
data,” Pervasive Mobile Computing, vol. 8, no. 5, pp. 717–729, 2012.

[21] C.-W. Lin, Y.-T. Yang, J.-S. Wang, and Y.-C. Yang, “A wearable sensor
module with a neural-network-based activity classification algorithm for
daily energy expenditure estimation,” IEEE Transactions on Information
Technology in Biomedicine, vol. 16, no. 5, pp. 991–998, 2012.

[22] V. Osmani, “Smartphones in mental health: Detecting depressive and
manic episodes,” IEEE Pervasive Computing, vol. 14, no. 3, pp. 10–13,
2015.

137

[23] E. Ceja, V. Osmani, and O. Mayora, “Automatic stress detection in working
environments from smartphones’ accelerometer data: A first step,” IEEE
Journal of Biomedical and Health Informatics, 2015.

[24] K. Chen and G. Tan, “Modeling and improving the energy performance of
GPS receivers for mobile applications,” CoRR, vol. abs/1503.02656, 2015.

[25] W. Wibisono, D. Arifin, B. Pratomo, T. Ahmad, and R. Ijtihadie, “Falls de-
tection and notification system using tri-axial accelerometer and gyroscope
sensors of a smartphone,” in Conference on Technologies and Applications
of Artificial Intelligence (TAAI), pp. 382–385, 2013.

[26] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer series in statis-
tics, Springer, 2001.

[27] J. Chon and H. Cha, “Lifemap: A smartphone-based context provider for
location-based services,” IEEE Pervasive Computing, vol. 10, pp. 58–67,
2011.

[28] N. Roy, A. Misra, and D. Cook, “Ambient and smartphone sensor assisted
adl recognition in multi-inhabitant smart environments,” Journal of Ambi-
ent Intelligence and Humanized Computing, vol. 7, no. 1, pp. 1–19, 2016.

[29] F. Miao, Y. Cheng, Y. He, Q. He, and Y. Li, “A wearable context-aware
ecg monitoring system integrated with built-in kinematic sensors of the
smartphone,” Sensors, vol. 15, no. 5, pp. 11465–11484, 2015.

[30] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context
aware computing for the internet of things: A survey,” IEEE Communica-
tions Surveys Tutorials, vol. 16, pp. 414–454, First 2014.

[31] S. Taleb, H. Hajj, and Z. Dawy, “Entropy-based optimization to trade-off
energy and accuracy for activity mobile sensing,” in 4th Annual Interna-
tional Conference on Energy Aware Computing Systems and Applications
(ICEAC), pp. 6–11, 2013.

[32] S. Taleb, A. A. Sallab, H. Hajj, Z. Dawy, R. Khanna, and A. Keshava-
murthy, “Deep learning with ensemble classification method for sensor sam-
pling decisions,” in 2016 International Wireless Communications and Mo-
bile Computing Conference (IWCMC), pp. 114–119, Sept 2016.

[33] S. Taleb, H. Hajj, and Z. Dawy, “Vcams: Viterbi-based context aware mo-
bile sensing to trade-off energy and delay,” Submitted to IEEE Transactions
on Mobile Computing, 2016.

138

[34] S. Taleb, N. Abbas, H. Hajj, and Z. Dawy, “On sensor selection in mobile
devices based on energy, application accuracy, and context metrics,” in 3rd
International Conference on Communications and Information Technology
(ICCIT), pp. 12–16, 2013.

[35] S. Taleb, H. Hajj, and Z. Dawy, “Ego: An ontology-based framework for
optimized selection of sensor groups feeding simultaneous execution of dif-
ferent context-aware applications,” Submitted to IEEE Transactions, 2017.

[36] A. K. Dey, “Understanding and using context,” Personal and Ubiquitous
Computing, vol. 5, no. 1, pp. 4–7, 2001.

[37] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and
P. Steggles, Towards a Better Understanding of Context and Context-
Awareness, pp. 304–307. Berlin, Heidelberg: Springer Berlin Heidelberg,
1999.

[38] M. J. Gajjar, Mobile Sensors and Context-Aware Computing. Morgan Kauf-
mann, 2017.

[39] S. James, “Understanding virtual sensors: From sensor fusion to context-
aware applications,” Sensor Platforms, July 2012.

[40] S. Saeedi, A. Moussa, and N. El-Sheimy, “Context-aware personal naviga-
tion using embedded sensor fusion in smartphones,” Sensors, vol. 14, no. 4,
pp. 5742–5767, 2014.

[41] F. J. Ordóñez and D. Roggen, “Deep convolutional and lstm recurrent
neural networks for multimodal wearable activity recognition,” Sensors,
vol. 16, no. 1, p. 115, 2016.

[42] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Ben-
gio, “Why does unsupervised pre-training help deep learning?,” J. Mach.
Learn. Res., vol. 11, pp. 625–660, Mar. 2010.

[43] A. Pantelopoulos and N. G. Bourbakis, “A survey on wearable sensor-based
systems for health monitoring and prognosis,” IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 40,
pp. 1–12, Jan 2010.

[44] A. AlzeerAlhouseini, I. Al-Shaikhli, A. W. AbdulRahman, and M. Dzulk-
ifli, “Emotion detection using physiological signals eeg and ecg,” Interna-
tional Journal of Advancements in Computing Technology (IJACT), vol. 8,
pp. 103–112, June 2016.

139

[45] Z. Zhuang, K.-H. Kim, and J. P. Singh, “Improving energy efficiency of lo-
cation sensing on smartphones,” in 8th International Conference on Mobile
Systems, Applications, and Services (MobiSys ’10), pp. 315–330, 2010.

[46] X. Qi, M. Keally, G. Zhou, Y. Li, and Z. Ren, “Adasense: adapting sam-
pling rates for activity recognition in body sensor networks,” in 19th IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS),
pp. 163–172, 2013.

[47] K. K. Rachuri, C. Mascolo, M. Musolesi, and P. J. Rentfrow, “Sociable-
sense: Exploring the trade-offs of adaptive sampling and computation of-
floading for social sensing,” in 17th Annual International Conference on
Mobile Computing and Networking (MobiCom ’11), pp. 73–84, 2011.

[48] “Electricsleep.” https://play.google.com/store/apps/details?id=com.andros
z.electricsleepbeta.

[49] “Smart thermometer.” https://play.google.com/store/apps/details?id=com
.colortiger.thermo.

[50] J. Wang, Y. Liu, C. Xu, X. Ma, and J. Lu, “E-greendroid: Effective energy
inefficiency analysis for android applications,” in 8th Asia-Pacific Sympo-
sium on Internetware, Internetware ’16, (New York, NY, USA), pp. 71–80,
ACM, 2016.

[51] “Mapmyrun.” http://www.mapmyrun.com/.

[52] “Muse: the brain sensing headband.” http://www.choosemuse.com. Ac-
cessed: 2017-03-20.

[53] S. R. Gouravajhala, D. Wang, L. Khuon, and F. S. Bao, “Epsmart: Epilep-
tic seizure monitoring with alerts in real time: A tablet-based android ap-
plication for a real-time multi-modal seizure detection system,” in Bioinfor-
matics and Biomedicine Workshops (BIBMW), 2012 IEEE International
Conference on, pp. 959–961, Oct 2012.

[54] G. Singla, D. J. Cook, and M. Schmitter-Edgecombe, “Recognizing in-
dependent and joint activities among multiple residents in smart environ-
ments,” Journal of Ambient Intelligence and Humanized Computing, vol. 1,
no. 1, pp. 57–63, 2010.

[55] A. K. Dey, K. Wac, D. Ferreira, K. Tassini, J.-H. Hong, and J. Ramos,
“Getting closer: An empirical investigation of the proximity of user to
their smart phones,” in Proceedings of the 13th International Conference
on Ubiquitous Computing, UbiComp ’11, (New York, NY, USA), pp. 163–
172, ACM, 2011.

140

[56] W. Wang, L. Yu, H. Liu, and F. Sun, Extreme Learning Machine for Linear
Dynamical Systems Classification: Application to Human Activity Recogni-
tion, pp. 11–20. Cham: Springer International Publishing, 2015.

[57] M. Hasan and A. K. Roy-Chowdhury, “A continuous learning framework for
activity recognition using deep hybrid feature models,” IEEE Transactions
on Multimedia, vol. 17, pp. 1909–1922, Nov 2015.

[58] N. D. Lane and P. Georgiev, “Can deep learning revolutionize mobile sens-
ing?,” in Proceedings of the 16th International Workshop on Mobile Com-
puting Systems and Applications, HotMobile ’15, (New York, NY, USA),
pp. 117–122, ACM, 2015.

[59] A. Poshtkar, V. Elangovan, A. Shirkhodaie, A. Chan, and S. Hu, “Physical
environment virtualization for human activities recognition,” Proc. SPIE,
vol. 9478, pp. 94780I–94780I–12, 2015.

[60] A. Khan, A. Tufail, A. Khattak, and T. Laine, “Activity recognition on
smartphones via sensor-fusion and kda-based svms,” International Journal
of Distributed Sensor Networks, vol. 2014, 2014.

[61] L. Sun, D. Zhang, B. Li, B. Guo, and S. Li, “Activity recognition on an
accelerometer embedded mobile phone with varying positions and orienta-
tions,” in Proceedings of the 7th International Conference on Ubiquitous
Intelligence and Computing, UIC’10, (Berlin, Heidelberg), pp. 548–562,
Springer-Verlag, 2010.

[62] N. A. Capela, E. D. Lemaire, and N. Baddour, “Feature selection for wear-
able smartphone based human activity recognition with able bodied, el-
derly, and stroke patients,” PloS one, vol. 10, no. 4, 2015.

[63] A. Shahroudy, T. T. Ng, Q. Yang, and G. Wang, “Multimodal multipart
learning for action recognition in depth videos,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 38, pp. 2123–2129, Oct
2016.

[64] X. Yang and Y. Tian, “Super normal vector for human activity recognition
with depth cameras,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 39, pp. 1028–1039, May 2017.

[65] K. Zickuhr, “Location-based services,” Pew Research, pp. 679–695, 2013.

[66] M. T. Hallworth and P. P. Marra, “Miniaturized gps tags identify non-
breeding territories of a small breeding migratory songbird,” Scientific re-
ports, vol. 5, p. 11069, 2015.

141

[67] V. W. Zheng, Y. Zheng, X. Xie, and Q. Yang, “Towards mobile intelligence:
Learning from gps history data for collaborative recommendation,” Artif.
Intell., vol. 184-185, pp. 17–37, June 2012.

[68] L. Stenneth, O. Wolfson, P. S. Yu, and B. Xu, “Transportation mode detec-
tion using mobile phones and gis information,” in Proceedings of the 19th
ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, GIS ’11, (New York, NY, USA), pp. 54–63, ACM,
2011.

[69] X. Sheng, J. Tang, X. Xiao, and G. Xue, “Leveraging gps-less sensing
scheduling for green mobile crowd sensing,” IEEE Internet of Things Jour-
nal, vol. 1, pp. 328–336, Aug 2014.

[70] T. O. Oshin, S. Poslad, and A. Ma, “A method to evaluate the energy-
efficiency of wide-area location determination techniques used by smart-
phones,” in Computational Science and Engineering (CSE), 2012 IEEE
15th International Conference on, pp. 326–333, Dec 2012.

[71] A. Farshad, J. Li, M. K. Marina, and F. J. Garcia, “A microscopic look
at wifi fingerprinting for indoor mobile phone localization in diverse envi-
ronments,” in International Conference on Indoor Positioning and Indoor
Navigation, pp. 1–10, Oct 2013.

[72] T. Y.-H. Chen, A. Sivaraman, S. Das, L. Ravindranath, and H. Balakr-
ishnan, “Designing a context-sensitive context detection service for mobile
devices,” in DSpace at MIT, Sep 2015.

[73] K. Sankaran, M. Zhu, X. F. Guo, A. L. Ananda, M. C. Chan, and L.-S. Peh,
“Using mobile phone barometer for low-power transportation context de-
tection,” in Proceedings of the 12th ACM Conference on Embedded Network
Sensor Systems, pp. 191–205, ACM, 2014.

[74] R. Faragher and R. Harle, “Location fingerprinting with bluetooth low en-
ergy beacons,” IEEE journal on Selected Areas in Communications, vol. 33,
no. 11, pp. 2418–2428, 2015.

[75] Y. Zheng, Y. Chen, Q. Li, X. Xie, and W.-Y. Ma, “Understanding trans-
portation modes based on gps data for web applications,” ACM Trans.
Web, vol. 4, pp. 1:1–1:36, Jan. 2010.

[76] X. J. Ban and M. Gruteser, “Towards fine-grained urban traffic knowledge
extraction using mobile sensing,” in ACM SIGKDD International Work-
shop on Urban Computing, UrbComp ’12, (New York, NY, USA), pp. 111–
117, ACM, 2012.

142

[77] T. Alldieck, C. H. Bahnsen, and T. B. Moeslund, “Context-aware fusion of
rgb and thermal imagery for traffic monitoring,” Sensors, vol. 16, no. 11,
p. 1947, 2016.

[78] M.-H. Amri, Y. Becis, D. Aubry, and N. Ramdani, “Indoor human/robot
localization using robust multi-modal data fusion,” in Robotics and Au-
tomation (ICRA), 2015 IEEE International Conference on, pp. 3456–3463,
IEEE, 2015.

[79] MarketsandMarkets, “Emotion detection and recognition market by tech-
nology (bio-sensor, nlp, machine learning), software tool (facial expression,
voice recognition), service, application area, end user, and region - global
forecast to 2021,” Top Market Reports, Dec 2016.

[80] J. Hernandez, M. E. Hoque, W. Drevo, and R. W. Picard, “Mood meter:
Counting smiles in the wild,” in Proceedings of the 2012 ACM Conference
on Ubiquitous Computing, UbiComp ’12, (New York, NY, USA), pp. 301–
310, ACM, 2012.

[81] F. Canento, A. Fred, H. Silva, H. Gamboa, and A. Loureno, “Multimodal
biosignal sensor data handling for emotion recognition,” in 2011 IEEE SEN-
SORS Proceedings, pp. 647–650, Oct 2011.

[82] R. B. Hossain, M. Sadat, and H. Mahmud, “Recognition of human affection
in smartphone perspective based on accelerometer and user’s sitting posi-
tion,” in 2014 17th International Conference on Computer and Information
Technology (ICCIT), pp. 87–91, Dec 2014.

[83] D. Amelynck, M. Grachten, L. van Noorden, and M. Leman, “Toward e-
motion-based music retrieval a study of affective gesture recognition,” IEEE
Transactions on Affective Computing, vol. 3, pp. 250–259, April 2012.

[84] R. LiKamWa, Y. Liu, N. D. Lane, and L. Zhong, “Moodscope: Build-
ing a mood sensor from smartphone usage patterns,” in Proceeding of the
11th Annual International Conference on Mobile Systems, Applications,
and Services, MobiSys ’13, (New York, NY, USA), pp. 389–402, ACM,
2013.

[85] “Affectiva’s emotion ai humanizes how people and technology interact.”
http://www.affectiva.com/.

[86] “Real-time emotion measurement.” http://bodymonitor.de/.

[87] “Muse Monitor - See what’s really going on inside your head!
Real time EEG graphs from your Interaxon Muse headband.”
http://www.musemonitor.com/.

143

[88] R. S. H. Istepanian, E. Jovanov, and Y. T. Zhang, “Guest editorial intro-
duction to the special section on m-health: Beyond seamless mobility and
global wireless health-care connectivity,” IEEE Transactions on Informa-
tion Technology in Biomedicine, vol. 8, pp. 405–414, Dec 2004.

[89] G. Jonathan, “30 amazing mobile health technology statistics for today’s
physician,” referralMD, August 2015.

[90] A. Madan, M. Cebrian, S. Moturu, K. Farrahi, and A. Pentland, “Sensing
the health state of a community,” IEEE Pervasive Computing, vol. 11,
no. 4, pp. 36–45, 2012.

[91] “NeuroSky, body and mind.” http://neurosky.com/.

[92] P. Bonato, “Wearable sensors and systems,” IEEE Engineering in Medicine
and Biology Magazine, vol. 29, no. 3, pp. 25–36, 2010.

[93] C. Duc, P. Salvia, A. Lubansu, V. Feipel, and K. Aminian, “A wearable
inertial system to assess the cervical spine mobility: Comparison with an
optoelectronic-based motion capture evaluation,” Medical Engineering and
Physics, vol. 36, no. 1, pp. 49–56, 2014.

[94] V. Pejovic and M. Musolesi, “Anticipatory mobile computing: A survey of
the state of the art and research challenges,” ACM Comput. Surv., vol. 47,
pp. 47:1–47:29, Apr. 2015.

[95] S. Kang, J. Lee, H. Jang, H. Lee, Y. Lee, S. Park, T. Park, and J. Song,
“Seemon: scalable and energy-efficient context monitoring framework for
sensor-rich mobile environments,” in 6th International Conference on Mo-
bile Systems, Applications, and Services (MobiSys ’08), pp. 267–280, 2008.

[96] S. Kang, J. Lee, H. Jang, Y. Lee, S. Park, and J. Song, “A scalable and
energy-efficient context monitoring framework for mobile personal sensor
networks,” IEEE Transactions on Mobile Computing, vol. 9, no. 5, pp. 686–
702, 2010.

[97] Y. Wang, J. Lin, M. Annavaram, Q. A. Jacobson, J. Hong, B. Krishna-
machari, and N. Sadeh, “A framework of energy efficient mobile sensing
for automatic user state recognition,” in 7th International Conference on
Mobile Systems, Applications, and Services (MobiSys ’09), pp. 179–192,
2009.

[98] Y. Wang, B. Krishnamachari, Q. Zhao, and M. Annavaram, “Markov-
optimal sensing policy for user state estimation in mobile devices,” in 9th
ACM/IEEE International Conference on Information Processing in Sensor
Networks (IPSN ’10), pp. 268–278, 2010.

144

[99] H. Lu, J. Yang, Z. Liu, N. D. Lane, T. Choudhury, and A. T. Campbell,
“The jigsaw continuous sensing engine for mobile phone applications,” in
8th ACM Conference on Embedded Networked Sensor Systems (SenSys ’10),
pp. 71–84, 2010.

[100] O. Yurur, C. Liu, X. Liu, and W. Moreno, “Adaptive sampling and duty
cycling for smartphone accelerometer,” in Mobile Ad-Hoc and Sensor Sys-
tems (MASS), 2013 IEEE 10th International Conference on, pp. 511–518,
2013.

[101] Y. Lee, C. Min, Y. Ju, S. Kang, Y. Rhee, and J. Song, “An active resource
orchestration framework for pan-scale, sensor-rich environments,” IEEE
Transactions on Mobile Computing, vol. 13, pp. 596–610, March 2014.

[102] G. Chen and D. Kotz, “A Survey of Context-Aware Mobile Computing
Research,” Tech. Rep. TR2000-381, Dartmouth College, Computer Science,
Hanover, NH, November 2000.

[103] P. Zappi, C. Lombriser, T. Stiefmeier, E. Farella, D. Roggen, L. Benini, and
G. Tröster, Activity Recognition from On-Body Sensors: Accuracy-Power
Trade-Off by Dynamic Sensor Selection, pp. 17–33. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008.

[104] E. Miluzzo, C. T. Cornelius, A. Ramaswamy, T. Choudhury, Z. Liu, and
A. T. Campbell, “Darwin phones: The evolution of sensing and inference
on mobile phones,” in Proceedings of the 8th International Conference on
Mobile Systems, Applications, and Services, MobiSys ’10, (New York, NY,
USA), pp. 5–20, ACM, 2010.

[105] D. Chu, N. D. Lane, T. T.-T. Lai, C. Pang, X. Meng, Q. Guo, F. Li,
and F. Zhao, “Balancing energy, latency and accuracy for mobile sensor
data classification,” in 9th ACM Conference on Embedded Networked Sen-
sor Systems (SenSys ’11), pp. 54–67, 2011.

[106] K. K. Rachuri, C. Mascolo, and M. Musolesi, Energy-Accuracy Trade-offs
of Sensor Sampling in Smart Phone Based Sensing Systems, pp. 65–76.
London: Springer London, 2012.

[107] K. K. Rachuri, M. Musolesi, C. Mascolo, P. J. Rentfrow, C. Longworth, and
A. Aucinas, “Emotionsense: A mobile phones based adaptive platform for
experimental social psychology research,” in Proceedings of the 12th ACM
International Conference on Ubiquitous Computing, UbiComp ’10, (New
York, NY, USA), pp. 281–290, ACM, 2010.

[108] Z. Yan, D. Chakraborty, A. Misra, H. Jeung, and K. Aberer, “Sammple:
Detecting semantic indoor activities in practical settings using locomotive

145

signatures,” in 16th Annual International Symposium on Wearable Com-
puters (ISWC), ISWC ’12, (Washington, DC, USA), pp. 37–40, IEEE Com-
puter Society, 2012.

[109] Z. Yan, D. Chakraborty, C. Parent, S. Spaccapietra, and K. Aberer,
“Semitri: A framework for semantic annotation of heterogeneous trajec-
tories,” in Proceedings of the 14th International Conference on Extending
Database Technology, EDBT/ICDT ’11, (New York, NY, USA), pp. 259–
270, ACM, 2011.

[110] N. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. Camp-
bell, “A survey of mobile phone sensing,” IEEE Communications Magazine,
vol. 48, no. 9, pp. 140–150, 2010.

[111] S. A. Hoseini-Tabatabaei, A. Gluhak, and R. Tafazolli, “A survey on
smartphone-based systems for opportunistic user context recognition,”
ACM Comput. Surv., vol. 45, pp. 27:1–27:51, July 2013.

[112] O. Yurur, C. Liu, Z. Sheng, V. Leung, W. Moreno, and K. Leung, “Context-
awareness for mobile sensing: A survey and future directions,” IEEE Com-
munications Surveys Tutorials, vol. 18, no. 1, pp. 68–93, 2016.

[113] T. Rault, A. Bouabdallah, Y. Challal, and F. Marin, “A survey of energy-
efficient context recognition systems using wearable sensors for healthcare
applications,” Pervasive and Mobile Computing, vol. 37, pp. 23–44, 2017.

[114] R. Pérez-Torres, C. Torres-Huitzil, and H. Galeana-Zapién, “Power man-
agement techniques in smartphone-based mobility sensing systems: A sur-
vey,” Pervasive and Mobile Computing, 2016.

[115] U. Maurer, A. Smailagic, D. P. Siewiorek, and M. Deisher, “Activity recog-
nition and monitoring using multiple sensors on different body positions,”
in Proceedings of the International Workshop on Wearable and Implantable
Body Sensor Networks, BSN ’06, (Washington, DC, USA), pp. 113–116,
IEEE Computer Society, 2006.

[116] B. French, D. P. Siewiorek, A. Smailagic, and M. Deisher, “Selective sam-
pling strategies to conserve power in context aware devices,” in Proceedings
of the 2007 11th IEEE International Symposium on Wearable Computers,
ISWC ’07, (Washington, DC, USA), pp. 1–4, IEEE Computer Society, 2007.

[117] Z. Yan, V. Subbaraju, D. Chakraborty, A. Misra, and K. Aberer, “Energy-
efficient continuous activity recognition on mobile phones: an activity-
adaptive approach,” in 16th Annual International Symposium on Wearable
Computers (ISWC ’12), pp. 17–24, 2012.

146

[118] J. Paek, J. Kim, and R. Govindan, “Energy-efficient rate-adaptive gps-
based positioning for smartphones,” in Proceedings of the 8th International
Conference on Mobile Systems, Applications, and Services, MobiSys ’10,
(New York, NY, USA), pp. 299–314, ACM, 2010.

[119] K. Lin, A. Kansal, D. Lymberopoulos, and F. Zhao, “Energy-accuracy
trade-off for continuous mobile device location,” in 8th International
Conference on Mobile Systems, Applications, and Services, MobiSys ’10,
pp. 285–298, 2010.

[120] F. Casamassima, E. Farella, and L. Benini, “Context aware power manage-
ment for motion-sensing body area network nodes,” in 2014 Design, Au-
tomation Test in Europe Conference Exhibition (DATE), pp. 1–6, March
2014.

[121] A. Krause, M. Ihmig, E. Rankin, D. Leong, S. Gupta, D. Siewiorek,
A. Smailagic, M. Deisher, and U. Sengupta, “Trading off prediction ac-
curacy and power consumption for context-aware wearable computing,” in
Ninth IEEE International Symposium on Wearable Computers, pp. 20–26,
2005.

[122] Y. Li, Y. Guo, J. Kong, and X. Chen, “Fixing sensor-related energy bugs
through automated sensing policy instrumentation,” in 2015 IEEE/ACM
International Symposium on Low Power Electronics and Design (ISLPED),
pp. 321–326, July 2015.

[123] Y. Chon, E. Talipov, H. Shin, and H. Cha, “Smartdc: Mobility prediction-
based adaptive duty cycling for everyday location monitoring,” IEEE
Transactions on Mobile Computing, vol. 13, pp. 512–525, March 2014.

[124] A. Thiagarajan, L. Ravindranath, K. LaCurts, S. Madden, H. Balakrish-
nan, S. Toledo, and J. Eriksson, “Vtrack: accurate, energy-aware road
traffic delay estimation using mobile phones,” in 7th ACM Conference on
Embedded Networked Sensor Systems (SenSys ’09), pp. 85–98, 2009.

[125] O. Yurur, M. Labrador, and W. Moreno, “Adaptive and energy efficient
context representation framework in mobile sensing,” IEEE Transactions
on Mobile Computing, vol. 13, no. 8, pp. 1681–1693, 2014.

[126] O. Yurur, C. Liu, C. Perera, M. Chen, X. Liu, and W. Moreno, “Energy-
efficient and context-aware smartphone sensor employment,” Vehicular
Technology, IEEE Transactions on, vol. 64, no. 9, pp. 4230–4244, 2015.

[127] K. K. Rachuri, C. Mascolo, and M. Musolesi, “Energy-accuracy tradeoffs
in querying sensor data for continuous sensing mobile systems,” in Mobile
Context-Awareness Workshop, 2010.

147

[128] V. Agarwal, N. Banerjee, D. Chakraborty, and S. Mittal, “Usense – a
smartphone middleware for community sensing,” in 2013 IEEE 14th In-
ternational Conference on Mobile Data Management, vol. 1, pp. 56–65,
June 2013.

[129] P. Baier, F. Durr, and K. Rothermel, “Psense: Reducing energy consump-
tion in public sensing systems,” in Proceedings of the 2012 IEEE 26th In-
ternational Conference on Advanced Information Networking and Applica-
tions, AINA ’12, (Washington, DC, USA), pp. 136–143, IEEE Computer
Society, 2012.

[130] Y. Man and E. C. H. Ngai, “Energy-efficient automatic location-triggered
applications on smartphones,” Comput. Commun., vol. 50, pp. 29–40, Sept.
2014.

[131] H. Noshadi, F. Dabiri, S. Meguerdichian, M. Potkonjak, and M. Sar-
rafzadeh, “Energy optimization in wireless medical systems using physio-
logical behavior,” in Wireless Health 2010, WH ’10, (New York, NY, USA),
pp. 128–136, ACM, 2010.

[132] C. Lombriser, R. Marin-Perianu, D. Roggen, P. Havinga, and G. Troster,
“Modeling service-oriented context processing in dynamic body area net-
works,” IEEE Journal on Selected Areas in Communications, vol. 27,
pp. 49–57, January 2009.

[133] D. Gordon, J. Czerny, T. Miyaki, and M. Beigl, “Energy-efficient activity
recognition using prediction,” in 2012 16th International Symposium on
Wearable Computers, pp. 29–36, June 2012.

[134] L. Gao, A. K. Bourke, and J. Nelson, “Activity recognition using dynamic
multiple sensor fusion in body sensor networks,” in 2012 Annual Interna-
tional Conference of the IEEE Engineering in Medicine and Biology Society,
pp. 1077–1080, Aug 2012.

[135] N. Roy, A. Misra, S. K. Das, and C. Julien, “Determining quality- and
energy-aware multiple contexts in pervasive computing environments,”
IEEE/ACM Transactions on Networking, vol. 24, pp. 3026–3042, Oct 2016.

[136] S. Chaudhuri, H. Thompson, and G. Demiris, “Fall detection devices and
their use with older adults: A systematic review,” J. Geriatric Phys. Ther-
apy, vol. 37, no. 4, pp. 178–198, 2014.

[137] B. Cole, S. Roy, C. DeLuca, and S. Nawab, “Dynamical learning and track-
ing of tremor and dyskinesia from wearable sensors,” IEEE Trans. Neural
Syst. Rehabil. Eng., vol. 22, no. 5, pp. 982–991, 2014.

148

[138] H. Ghasemzadeh, N. Amini, R. Saeedi, and M. Sarrafzadeh, “Power-aware
computing in wearable sensor networks: An optimal feature selection,”
IEEE Transactions on Mobile Computing, vol. 14, pp. 800–812, April 2015.

[139] L. Bao and S. S. Intille, “Activity recognition from user-annotated accel-
eration data,” in 2nd International Conference on Pervasive Computing,
pp. 1–17, April 2004.

[140] M. A. Gennert and A. Yuille, “Determining the optimal weights in mul-
tiple objective function optimization,” in 2nd International Conference on
Computer Vision, pp. 87–89, December 1988.

[141] U. M. Fayyad and K. B. Irani, “Multi-interval discretization of continuous-
valued attributes for classification learning,” in 13th International Joint
Conference on Artificial Intelligence, pp. 1022–1027, August 1993.

[142] V. A. Kovalevskij, “The problem of character recognition from the point of
view of mathematical statistics,” in Character Readers and Pattern Recog-
nition, pp. 3–30, 1967.

[143] N. Kawaguchi, N. Ogawa, Y. Iwasaki, K. Kaji, T. Terada, K. Murao, S. In-
oue, Y. Kawahara, Y. Sumi, and N. Nishio, “Hasc challenge: gathering large
scale human activity corpus for the real-world activity understandings,” in
2nd Augmented Human International Conference (AH ’11), pp. 27:1–27:5,
March 2011.

[144] “PowerTutor: A Power Monitor for Android-Based Mobile Platforms.”
http://powertutor.org/.

[145] L. Zhang, B. Tiwana, R. Dick, Z. Qian, Z. Mao, Z. Wang, and L. Yang,
“Accurate online power estimation and automatic battery behavior based
power model generation for smartphones,” in IEEE/ACM/IFIP Interna-
tional Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), pp. 105–114, October 2010.

[146] T. G. Dietterich, “Ensemble methods in machine learning,” in First In-
ternational Workshop on Multiple Classifier Systems, MCS ’00, pp. 1–15,
2000.

[147] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools
and Techniques, Second Edition (Morgan Kaufmann Series in Data Man-
agement Systems). San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2005.

[148] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Secaucus, NJ, USA: Springer-Verlag New York,
Inc., 2006.

149

[149] G. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for deep
neural networks,” Neural Computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[150] D. Yu, M. L. Seltzer, J. Li, J. ting Huang, and F. Seide, “Feature learning in
deep neural networks studies on speech recognition tasks,” in ICLR, 2013.

[151] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A re-
view and new perspectives,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 35, no. 8, pp. 1798–1828, 2013.

[152] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, “Dropout: a simple way to prevent neural networks from overfitting,”
The Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958,
2014.

[153] Q. V. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, and A. Y. Ng, “On
optimization methods for deep learning,” in ICML, pp. 265–272, 2011.

[154] “Google Play Wiki Page.” http://en.wikipedia.org/wiki/ GooglePlay/.

[155] J.-y. Hong, E.-h. Suh, and S.-J. Kim, “Context-aware systems,” Expert
Syst. Appl., vol. 36, pp. 8509–8522, May 2009.

[156] J. K. Lee, S. N. Robinovitch, and E. J. Park, “Inertial sensing-based pre-
impact detection of falls involving near-fall scenarios,” IEEE Transactions
on Neural Systems and Rehabilitation Engineering, vol. 23, pp. 258–266,
March 2015.

[157] X. Zhang and Y. Lian, “A 300-mv 220-nw event-driven adc with real-time
qrs detection for wearable ecg sensors,” IEEE Transactions on Biomedical
Circuits and Systems, vol. 8, pp. 834–843, December 2014.

[158] G. Forney Jr., “The viterbi algorithm,” Proc. IEEE, vol. 61, pp. 268–278,
March 1973.

[159] N. Viol, J. Link, H. Wirtz, D. Rothe, and K. Wehrle, “Hidden markov
model-based 3d path-matching using raytracing-generated wi-fi models,”
in International Conference on Indoor Positioning and Indoor Navigation
(IPIN), pp. 1–10, November 2012.

[160] Z. Ma and A. W. Krings, “Survival analysis approach to reliability, surviv-
ability and prognostics and health management (phm),” in IEEE Aerospace
Conference, pp. 1–20, March 2008.

[161] T. Aven and U. Jensen, Stochastic Models in Reliability. Applications of
mathematics, Springer, 1999.

150

[162] L. White and H. Vu, “Maximum likelihood sequence estimation for hidden
reciprocal processes,” IEEE Transactions on Automatic Control, vol. 58,
pp. 2670–2674, October 2013.

[163] E. Ramasso and T. Denoeux, “Making use of partial knowledge about hid-
den states in hmms: An approach based on belief functions,” IEEE Trans-
actions on Fuzzy Systems, vol. 22, pp. 395–405, April 2014.

[164] Q. You, Y. Li, Z. Chen, and M. S. Rahman, “A simple near-optimal path
selection scheme for multi-hop wireless relay networks based on viterbi algo-
rithm,” Transactions on Emerging Telecommunications Technologies, 2014.

[165] M. Eljourmi, H. Elghazi, A. Bennis, and H. Ouahmane, “Performance anal-
ysis of channel coding in satellite communication based on vsat network and
mc-cdma scheme,” WSEAS Transaction on Communication, vol. 12, May
2013.

[166] A. Viterbi, “Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm,” IEEE Transactions on Information Theory,
vol. 13, pp. 260–269, April 1967.

[167] A. Desiraju, M. Torlak, and M. Saquib, “Multiple-attempt decoding of con-
volutional codes over rayleigh channels,” IEEE Transactions on Vehicular
Technology, vol. 64, pp. 3426–3439, Aug 2015.

[168] Y. Chen, V. P. Jilkov, and X. R. Li, “Multilane-road target tracking using
radar and image sensors,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 51, pp. 65–80, January 2015.

[169] A. Domingues, T. Paiva, and J. M. Sanches, “Hypnogram and sleep pa-
rameter computation from activity and cardiovascular data,” IEEE Trans-
actions on Biomedical Engineering, vol. 61, pp. 1711–1719, June 2014.

[170] Z. Wang, M. Guo, and C. Zhao, “Badminton stroke recognition based on
body sensor networks,” IEEE Transactions on Human-Machine Systems,
vol. 46, pp. 769–775, Oct 2016.

[171] S. Ruzika and M. Wiecek, “Approximation methods in multiobjective pro-
gramming,” Journal of Optimization Theory and Applications, vol. 126,
no. 3, pp. 473–501, 2005.

[172] M. Ehrgott, “A discussion of scalarization techniques for multiple objec-
tive integer programming,” Annals of Operations Research, vol. 147, no. 1,
pp. 343–360, 2006.

151

[173] S. Gass and T. Saaty, “The computational algorithm for the parametric
objective function,” Naval Research Logistics Quarterly, vol. 2, pp. 39–45,
1955.

[174] A. Vaisman and E. Zimányi, Data Warehouse Systems: Design and Imple-
mentation, ch. Data Warehouse Concepts, pp. 53–87. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2014.

[175] F. Akdag and C. Eick, “An optimized interestingness hotspot discovery
framework for large gridded spatio-temporal datasets,” in 2015 IEEE In-
ternational Conference on Big Data, pp. 2010–2019, Oct 2015.

[176] S. Chatterjee and S. Russell, “A temporally abstracted viterbi algorithm,”
UAI, pp. 96–104, 2011.

[177] J. K. Wolf, “Efficient maximum likelihood decoding of linear block codes
using a trellis,” IEEE Transactions in Information Theory, vol. 24, no. 1,
pp. 76–80, 1978.

[178] M. Martin and P. Nurmi, “A generic large scale simulator for ubiquitous
computing,” in 3rd Annual International Conference on Mobile and Ubiq-
uitous Systems, pp. 1–3, July 2006.

[179] A. Eyal, L. Rokach, M. Kalech, O. Amir, R. Chougule, R. Vaidyanathan,
and K. Pattada, “Survival analysis of automobile components using mutu-
ally exclusive forests,” IEEE Transactions on Systems, Man, and Cyber-
netics: Systems, vol. 44, pp. 246–253, Feb 2014.

[180] F. Ordonez, P. de Toledo, and A. Sanchis, “Activity recognition using hy-
brid generative/discriminative models on home environments using binary
sensors,” Sensors, vol. 13, pp. 5460–5477, 2013.

[181] R. Jia and B. Liu, “Human daily activity recognition by fusing accelerom-
eter and multi-lead ecg data,” in 2013 IEEE International Conference on
Signal Processing, Communication and Computing (ICSPCC 2013), pp. 1–
4, Aug 2013.

[182] D. Riboni and C. Bettini, “Cosar: Hybrid reasoning for context-aware ac-
tivity recognition,” Personal Ubiquitous Comput., vol. 15, pp. 271–289,
Mar. 2011.

[183] H. Mart́ın, A. M. Bernardos, J. Iglesias, and J. R. Casar, “Activity log-
ging using lightweight classification techniques in mobile devices,” Personal
Ubiquitous Comput., vol. 17, pp. 675–695, Apr. 2013.

152

[184] Y. Ma, B. Xu, Y. Bai, G. Sun, and R. Zhu, “Daily mood assessment based
on mobile phone sensing,” in 2012 Ninth International Conference on Wear-
able and Implantable Body Sensor Networks, pp. 142–147, May 2012.

[185] Z. Zhang, Y. Song, L. Cui, X. Liu, and T. Zhu, “Emotion recognition based
on customized smart bracelet with built-in accelerometer,” in PeerJ, 2016.

[186] M. Cai, W. Y. Zhang, and K. Zhang, “Manuhub: A semantic web system
for ontology-based service management in distributed manufacturing envi-
ronments,” IEEE Transactions on Systems, Man, and Cybernetics - Part
A: Systems and Humans, vol. 41, pp. 574–582, May 2011.

[187] L. Razmerita, “An ontology-based framework for modeling user behavior;
a case study in knowledge management,” IEEE Transactions on Systems,
Man, and Cybernetics - Part A: Systems and Humans, vol. 41, pp. 772–783,
July 2011.

[188] N. D. Rodŕıguez, M. P. Cuéllar, J. Lilius, and M. D. Calvo-Flores, “A
survey on ontologies for human behavior recognition,” ACM Comput. Surv.,
vol. 46, pp. 43:1–43:33, Mar. 2014.

[189] L. Chen, C. Nugent, M. Mulvenna, D. Finlay, and X. Hong, Semantic Smart
Homes: Towards Knowledge Rich Assisted Living Environments, pp. 279–
296. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.

[190] D. Ejigu, M. Scuturici, and L. Brunie, “An ontology-based approach to con-
text modeling and reasoning in pervasive computing,” in Pervasive Com-
puting and Communications Workshops, 2007. PerCom Workshops ’07.
Fifth Annual IEEE International Conference on, pp. 14–19, March 2007.

[191] U. Akdemir, P. Turaga, and R. Chellappa, “An ontology based approach
for activity recognition from video,” in 16th ACM International Conference
on Multimedia, MM ’08, (New York, NY, USA), pp. 709–712, ACM, 2008.

[192] N. F. Noy and D. L. McGuinness, “Ontology development 101: A guide to
creating your first ontology,” tech. rep., Stanford, CA, 2001.

[193] L. Balzer, M. Do, and D. Maseluk, “Comparison and evaluation of ontol-
ogy visualizations,” 05 Fakultt Informatik, Elektrotechnik und Information-
stechnik, 2015.

[194] J. Bārzdiņš, G. Bārzdiņš, K. Čerāns, R. Liepiņš, and A. Sprog̀is, “Owl-
gred: a uml style graphical notation and editor for owl 2,” in 7th In-
ternational Workshop OWL: Experience and Directions (OWLED-2010),
Citeseer, 2010.

153

[195] S. Ilarri, R. Hermoso, R. Trillo-Lado, and M. d. C. Rodŕıguez-Hernández,
“A review of the role of sensors in mobile context-aware recommendation
systems,” Int. J. Distrib. Sen. Netw., vol. 2015, pp. 226:226–226:226, Jan.
2016.

[196] S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer
Implementations. New York, NY, USA: John Wiley & Sons, Inc., 1990.

[197] “Protégé: A free, open-source ontology editor and framework for building
intelligent systems.” http://protege.stanford.edu.

[198] S. Tarkoma, M. Siekkinen, E. Lagerspetz, and X. Yu, Smartphone Energy
Consumption: Modeling and Optimization. New York, NY, USA: Cam-
bridge University Press, 2014.

[199] “Fitbit blaze.” http://www.fitbit.com. Accessed: 2017-03-20.

[200] “View/Download your personal Fitbit data!.”
https://www.squashleagues.org/Fitbit/FitbitDataDownload.

[201] R. Fallahzadeh, Y. Ma, and H. Ghasemzadeh, “Context-aware system de-
sign for remote health monitoring: An application to continuous edema
assessment,” IEEE Transactions on Mobile Computing, vol. PP, no. 99,
pp. 1–1, 2016.

[202] S. Koldijk, M. A. Neerincx, and W. Kraaij, “Detecting work stress in of-
fices by combining unobtrusive sensors,” IEEE Transactions on Affective
Computing, vol. PP, no. 99, pp. 1–1, 2016.

[203] F. Piccialli and A. Chianese, “The internet of things supporting context-
aware computing: A cultural heritage case study,” Mobile Networks and
Applications, vol. 22, no. 2, pp. 332–343, 2017.

[204] D. Lee and K. Roy, “Viterbi-based efficient test data compression,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 31, pp. 610–619, April 2012.

[205] J. C. Greene and V. J. Caracelli, “Defining and describing the paradigm
issue in mixed-method evaluation,” New Directions for Evaluation, pp. 5–
17, 1997.

[206] R. Gravina, P. Alinia, H. Ghasemzadeh, and G. Fortino, “Multi-sensor
fusion in body sensor networks: State-of-the-art and research challenges,”
Information Fusion, vol. 35, pp. 68–80, 2017.

154

[207] C. Zhu, V. C. M. Leung, L. T. Yang, and L. Shu, “Collaborative location-
based sleep scheduling for wireless sensor networks integratedwith mobile
cloud computing,” IEEE Transactions on Computers, vol. 64, pp. 1844–
1856, July 2015.

[208] H. Lin, J. Hu, Y. Tian, L. Yang, and L. Xu, “Toward better data veracity in
mobile cloud computing: A context-aware and incentive-based reputation
mechanism,” Information Sciences, vol. 387, pp. 238–253, 2017.

[209] M. Agiwal, A. Roy, and N. Saxena, “Next generation 5g wireless net-
works: A comprehensive survey,” IEEE Communications Surveys Tutorials,
vol. 18, pp. 1617–1655, thirdquarter 2016.

[210] A. Martinez-Balleste, P. A. Perez-martinez, and A. Solanas, “The pursuit
of citizens’ privacy: a privacy-aware smart city is possible,” IEEE Commu-
nications Magazine, vol. 51, pp. 136–141, June 2013.

155

