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An Abstract of the Thesis of

Nadine Fawaz Abbas for Doctor of Philosophy
Major: Electrical and Computer Engineering

Title: User-Centric Strategies for Resource Management in Heterogeneous

Wireless Networks with QoS Considerations

Demand for mobile applications is increasing at an exponential rate which
is loading existing wireless networks. The research community is currently ac-
tively involved in the design of new technologies that can enable massive device
connections with the needed speeds and reliability. To this end, a major oppor-
tunity is to design solutions that facilitate the dynamic utilization and seamless
operation of heterogeneous networks where devices can utilize multiple wireless
interfaces simultaneously and cooperate with other devices in their vicinity. In
this thesis, we propose and evaluate novel solutions to address emerging chal-
lenges related to the design of next generation heterogeneous wireless networks.
Our research work is divided into two key objectives: the first objective aims at
designing e↵ective user-centric resource management techniques in cellular/WiFi
heterogeneous networks with quality of experience considerations, and the second
objective aims at optimizing tra�c o✏oading in highly dense wireless networks
using device-to-device cooperation, local caching, and planned channel allocation.

To achieve the first objective, we propose cellular/WiFi resource management
strategies for a single-user scenario where a user can take advantage of the coexis-
tence of multiple wireless interfaces to achieve performance gains. We first design
a learning-based approach for network selection where a user utilizes one wireless
interface at a time to achieve either minimum energy consumption, maximum
throughput or energy e�ciency based on user preferences. We then formulate
the static tra�c splitting problem, where a user utilizes both interfaces simulta-
neously, as a multi-objective optimization approach that captures the tradeo↵s
between throughput maximization on one hand and device battery energy min-
imization on the other hand. We then extend our work to address real-time
tra�c splitting decisions capturing the tradeo↵ between queue stability, energy
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consumption, and quality of experience for video streaming applications. The
proposed strategies are evaluated using simulations and experimental test bed
measurements under realistic operational conditions. In the second thesis objec-
tive, we propose multi-user tra�c o✏oading strategies for dense wireless networks
where a very high number of users in a given geographical area request simul-
taneously access to given data services, e.g., in a sports stadium or exhibition
center. We formulate the problem as an optimization that aims at maximiz-
ing the number of served users while maintaining target quality of service using
device-to-device cooperation, in-device caching, and intelligent channel alloca-
tion. Due to the complexity of the problem, we design sub-optimal hierarchical
tree-based algorithms for real-time operation taking into account realistic con-
straints. We demonstrate their e↵ectiveness by presenting performance results
and analysis for a wide range of network scenarios.
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Chapter 1

Introduction

According to Cisco Visual Networking Index, the mobile tra�c will reach 49 Ex-
abytes per month by 2021, where video streaming and downloads are expected
to consist of more than 78% of all consumer Internet tra�c [1]. To meet these
tremendous tra�c demands, the research community is currently actively in-
volved in the design of the key components that will lead to the development of
the 5G cellular technology, with the ability to accommodate massive connections
and high load with ultra-fast speeds [2]. In addition, operators are looking for
enhancing the quality of service (QoS) and satisfying users expectations and qual-
ity of experience (QoE). Along the same direction, the LTE-Advanced standard
is evolving towards supporting advanced features such as small cell deployments
and device-to-device (D2D) communications. The vision towards 5G is to allow
the dynamic utilization of spectrum and multiple access technologies for the best
delivery of services, including D2D communication, spectrum refarming and radio
access infrastructure sharing. These lead to heterogeneous network deployments
which require mobile devices to function under seamless operation over multi-
ple wireless interfaces simultaneously, in order to boost throughput, capacity,
coverage and quality of experience [3][4].

Heterogeneous networks (HetNets) are currently under intensive academic
and industrial research due to their notable coverage and capacity gains as com-
pared to conventional single-tier cellular networks. The idea behind HetNets is
to overlay existing networks with additional infrastructure in the form of smaller
low-power low-complexity access nodes. As shown in Figure 1.1, HetNets include
macro cells served by base stations covering large coverage areas, and small cells
served by low-power access nodes or mobile terminals for device-to-device cooper-
ation. Small cells are primarily added to increase capacity in hotspots with high
user demand and to fill in areas with weak coverage. Small cells include: (1) pico
cells operated and managed by the network operator to provide coverage in hot
spot sites such as malls, airports or stadiums, (2) femto cells such as WiFi access
points, powered and connected by the end user, (3) relay nodes, which are low-
power devices connected to the macro cell base station, (4) distributed antenna
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Figure 1.1: Heterogeneous networks formed by macro cells, small cells, pico cells
and femto cells/WiFi hotspots.

system composed of spatially separated antenna nodes connected to a common
source processing unit via fiber, and (5) D2D clusters, served by mobile terminals
acting as cluster heads and transmitting data to other mobile terminals via short
range connectivity. HetNets bring several technical challenges due to the presence
of multi-radio access technologies (RATs), interference between non-orthogonal
channels, as well as to the dense, decentralized, and dynamic deployment in li-
censed and unlicensed spectrum. The resources such as power and bandwidth
should be allocated to maximize system performance such as throughput, capac-
ity, coverage, fairness and energy e�ciency. In addition, decisions need to adapt
to the fast variation of the environment in terms of users’ interface availability
and channel conditions [5][6].

In this PhD thesis, we propose novel strategies for resource management with
quality of service considerations to address emerging challenges related to the
design of next generation heterogeneous wireless networks. Our research work
is divided into two key research problems: the first aims at designing e↵ective
user-centric resource management techniques in cellular/WiFi heterogeneous net-
works with quality of experience considerations, as illustrated in Figure 1.2. We
address static network selection and tra�c splitting in HetNets to provide the
user a balance between energy consumption and throughput based on user pref-
erences. We then extend our work to address real-time tra�c splitting decisions
capturing the tradeo↵ between queue stability, energy consumption, and qual-
ity of experience for video streaming applications. We evaluate our proposed
approaches using simulations and experimental test bed measurements under re-
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WiFi Hotspot

Cellular Macro Cell

Figure 1.2: User-centric cellular/WiFi
resource management download
strategies in HetNets including
network selection and tra�c splitting.

Figure 1.3: Resource management in
dense D2D cooperative heterogeneous
networks including tra�c o✏oading
and channel allocation.

alistic operational conditions. The second key research problem aims at optimiz-
ing resource management and tra�c o✏oading in highly dense wireless networks
using device-to-device cooperation, local caching, and planned channel alloca-
tion, as illustrated in Figure 1.3. We address multi-user resource management
in dense wireless networks where a very high number of users request simulta-
neously access to given data services, such as in a sports stadium or exhibition
center. We formulate the tra�c o✏oading and channel allocation problems as
optimization problems aiming at maximizing the system capacity, minimizing
the use of cellular resources and o✏oading the tra�c to D2D cooperation. We
also present sub-optimal tree-based algorithms for tra�c o✏oading with/without
non-orthogonal channel allocation to provide near-optimal solutions in real net-
work scenarios. We demonstrate the e↵ectiveness of the proposed algorithms by
presenting performance results and analysis for a wide range of network scenarios.

1.1 Thesis Objectives and Contributions

The PhD thesis work is divided into two main problems as follows: (1) user-centric
cellular/WiFi resource management strategies considering network selection and
tra�c splitting, for data download and video streaming with QoE considerations,
and (2) multi-user resource management including tra�c o✏oading and non-
orthogonal channel allocation in dense D2D cooperative heterogeneous networks.
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1.1.1 User-Centric Cellular/WiFi Resource Management
in HetNets

In this research direction, we address user-centric cellular/WiFi resource man-
agement strategies where users can utilize one wireless interface at a time, which
is denoted as network selection, or utilize both interfaces simultaneously, which is
denoted as tra�c splitting, for data download and video streaming. A single user
can take advantage of the coexistence of WiFi and cellular networks for enhanc-
ing its perceived quality of service and experience. We consider a heterogeneous
network that is typically composed of areas covered via 3G/4G cellular macro
cells and WiFi hotspots. The proposed methods decide on behalf of the user to
use one link or multiple links simultaneously based on system parameters such
as throughput, energy consumption, and quality of experience.

We solve two objectives in this direction: (1) static cellular/WiFi network
selection and tra�c splitting for data download, and (2) dynamic cellular/WiFi
tra�c splitting for video streaming with quality of experience considerations,
and experimental evaluation using real test bed for cellular/WiFi tra�c splitting
under realistic operational conditions.

Objective 1: Static Cellular/WiFi Network Selection and Tra�c Split-
ting for Data Download

In the first objective, we address static network selection and tra�c splitting
for data download where a user can make a decision only once at the start of
the download request. In the first phase, we consider static network selection
where a user can select between WiFi or cellular links to download the data. A
learning-based approach for cellular/WiFi network selection is proposed. The
best network is selected based on the channel conditions, throughput, download
energy consumption of the device, type of application, and mobile device battery
life as well as personal preferences. In the second part of the first objective, a
static cellular/WiFi tra�c splitting approach for data download is proposed. We
formulate the tra�c splitting problem as a multi-objective optimization approach
that captures the tradeo↵s between throughput maximization on one hand and
device battery energy minimization on the other hand.

Objective 2: Dynamic Cellular/WiFi Tra�c Splitting for Video Stream-
ing with QoE Considerations

Tra�c splitting in HetNets can provide higher throughput with a tradeo↵ cost
in terms of energy consumption. However, there is a need to develop intelligent
dynamic strategies for practical scenarios with focus on real-time streaming ap-
plications.As a second objective, we consider real-time tra�c splitting decisions
in cellular/WiFi HetNets to provide the user with high quality of experience while
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using video on demand streaming applications. In contrast to the literature, our
proposed approach does not focus only on throughput and energy consumption,
but also considers user quality of experience based on ITU-T P.1201 standard
to better capture the video quality as perceived by the end user. We propose
an optimized multi-objective tra�c splitting approach based on Lyapunov drift-
plus-penalty optimization utility functions aiming at achieving high quality end-
user experience and minimizing energy consumption while stabilizing network
queues. The proposed dynamic tra�c splitting with delay-power-QoE balance
approach determines in real-time how to intelligently split tra�c between both
wireless interfaces and decide dynamically on the amount of data to be sent over
each wireless link. It is user-centric and provides autonomous real-time decision
making at the user end without the need for any changes to the cellular/WiFi
standards.

We evaluate our proposed approaches under realistic conditions using an ex-
perimental test bed. In current mobile devices, the tra�c is o✏oaded directly
to WiFi when WLAN is available. Smart mode option allowing auto-switching
between WiFi and cellular data networks are now implemented in some smart-
phones such as iOS9 Iphones and Samsung Galaxy S5. This allows the device to
switch from WiFi to cellular network only when WiFi network is not stable with
poor connectivity. The test bed allows the user to use multiple wireless interfaces
simultaneously which is not yet supported by current mobile devices to achieve
performance gains.

The test bed is implemented using a modular approach which facilitates en-
hancements and extensions to implement and test various protocols, design alter-
natives, or intelligence options. Video streaming applications are deployed in the
server acting as application service provider. The user will be downloading a video
with specific size, duration and frame rate using a client application implemented
on the Android platform using Java programming language. The application is
installed at the user end, Android smartphones with 3G/WiFi network interfaces
in our case, to make autonomous download strategies decisions taking channel
conditions, energy consumption, quality of service and experience into consid-
eration. The proposed approaches are implemented and tested under realistic
conditions. To compare the performance of various strategies, we consider eval-
uating the queue size, the average throughput, total energy consumption, delay
and QoE for di↵erent scenarios considering di↵erent channel conditions.

1.1.2 Multi-User Resource Management in Dense D2D
Cooperative HetNets

In this research direction, we consider multi-user resource management in ultra
dense device-to-device cooperative heterogeneous networks where users download
a common content data such as file distribution and multimedia video on demand
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streaming.
Typical ultra-dense networks (UDNs) scenarios, presented in IMT-2020 (5G)

Promotion Group [7], include dense urban areas, subways, metro stations, shop-
ping malls, train stations, airports, open-air assembly and stadiums. The network
density is the highest when a very high number of users request simultaneously
a huge amount of data [8]. Common content distribution is nowadays consid-
ered one of the most emerging applications for mobile terminals, serving a large
fraction of the Internet content including media files, documents, and multime-
dia streaming such as live and on-demand streaming. However, due to the huge
growth of tra�c demands and subscribers, macro network resources are becoming
more scarce. To address the lack of network bandwidth, coverage and capacity,
3GPP considered new solutions using D2D cooperation [9]. In the cooperative
network, the mobile terminals can cooperate to receive data using di↵erent wire-
less interfaces from the base stations or from other mobile terminals.

In addition to tra�c o✏oading, the main challenge in ultra dense networks
is channel allocation. The number of non-overlapping orthogonal channels is
limited and the reuse of these channels becomes a must to serve the users. The
use of non-orthogonal channels causes interference which decreases the achievable
user throughput. Accordingly, considering channel allocation along with tra�c
o✏oading is needed to ensure more optimized network performance.

Objective 3: Tra�c O✏oading for Maximum User Capacity in Dense
D2D Cooperative Networks

As a third objective, we address tra�c o✏oading in dense D2D cooperative net-
work where a large number of users request simultaneously common content data,
assuming all the channels allocated are orthogonal. In our work, we consider
data cache-enable mobile devices which act as content owners and distribute the
common content data to other mobile terminals. Accordingly, in a cooperative
environment, a mobile terminal can receive data either from a BS/AP over a long
range wireless technology (such as WLAN, UMTS/HSPA, or LTE) or from other
MT or content owner using a short range wireless technology (such as LTE-Direct,
WiFi-Direct, Bluetooth or WiFi ad hoc mode).

We first formulate the tra�c o✏oading problem as an optimization problem
to find the optimal long range and short channel allocation constrained by the
number of APs, LR and SR channels, number of content owners, users per coop-
eration cluster, and transmission rate. We solve the optimization problem using
Advanced Interactive Multidimensional Modeling System (AIMMS) software and
CPLEX as a solver considering a stadium topology as a case study to demon-
strate the significant gains of optimized tra�c o✏oading in ultra dense wireless
networks.

The tra�c o✏oading optimization problem can be shown to be NP-complete;
optimal solutions may not be achievable in real-time ultra dense D2D cooperative
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networks. In addition, the optimization problem is holistic and considers all the
existing users when providing optimal tra�c o✏oading solutions. Accordingly,
with the arrival of new users, the channel assignments and connections change
to find optimal LR and SR channel allocation. This leads to frequent changes
in the allocation of channels and the role of users as cluster heads, LR and
SR users, which is not feasible in real-time networks. For these reasons, we
propose a dynamic tree-based tra�c o✏oading approach which assigns the users’
connections consecutively based on a tree having BSs/APs and mobile terminals
as nodes. We show that the proposed approach is able to provide near-optimal
solutions with notably lower time complexity.

Objective 4: Non-Orthogonal Channel Allocation for Minimum Inter-
ference in Dense D2D Cooperative Networks

Serving a large number of users in dense HetNets is faced by limitations in the
number of available orthogonal channels, especially that channel allocation takes
into account di↵erent BSs/APs and cluster heads co-located in the same geo-
graphical area. Accordingly, careful channel allocation planning is needed to
manage interference and enhance system performance. In our work, we address
channel allocation to cluster heads based on the solution obtained from the op-
timal tra�c o✏oading problem. We formulate the channel allocation as an opti-
mization problem aiming at minimizing the reuse of the channels and maximizing
the distance between non-orthogonal co-channel transmitters (cluster heads) to
reduce the interference. We solve the optimization problem using AIMMS soft-
ware and CPLEX as a solver. The results show that channel reuse may reduce
the transmission service rate below service target rate. We then present possible
solutions for allocating connections for the users a↵ected by interference either
to cluster heads or BSs/APs.

Allocating channels based on the solution provided by the tra�c o✏oading
assuming the channels are orthogonal may lead to a high user outage, which can
be reduced by assigning the a↵ected users to LR channels. Accordingly, providing
sub-optimal solutions for tra�c o✏oading with channel allocation considerations
are needed to provide a balance between time complexity, user outage, number of
LR channels and system performance. We propose a dynamic tree-based resource
management approach which performs dynamic tree-based tra�c o✏oading si-
multaneously with non-orthogonal channel allocation to cluster heads. The users’
connections are assigned consecutively based on a tree having BSs/APs and mo-
bile terminals as nodes. The channels are then assigned to cluster heads aiming
at maximizing the distance between cluster heads using same channel. We show
that the proposed approach is able to provide near-optimal solutions with low
time complexity.
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1.2 Organization of the Dissertation

The dissertation is organized as follows:
Chapter 2 presents a comprehensive literature review on existing ap-

proaches considering network selection, tra�c splitting, tra�c o✏oading with
and without cache-enabled devices in dense device-to-device cooperative hetero-
geneous networks. For each approach, we highlight the proposed approaches,
objectives and contributions. We compare and contrast the di↵erent approaches,
as applicable. The various adopted assessment methods used in the evaluation
of the proposed approaches are also discussed. Finally, we highlight the main
contributions of this dissertation compared to the literature.

Chapter 3 presents first a learning-based user-centric approach for per-
forming static network selection based on real-network implementations. This
includes feature selection, training model development, network selection rules,
experimental setup and network selection classification results. It also presents
a multi-objective optimization approach for static tra�c splitting, capturing the
tradeo↵ between throughput maximization and energy consumption minimiza-
tion.

Chapter 4 highlights the benefits of tra�c splitting for real-time video
streaming applications. It presents the proposed dynamic Lyapunov-based traf-
fic splitting approach providing the user with a balance between high quality
of experience, low energy consumption and delay while using video on demand
streaming applications. It describes the Lyapunov drift-plus-penalty optimization
formulation and the cost function expressed in terms of power consumption and
QoE. The test bed implementation and setup is presented as well as performance
results under realistic conditions.

Chapter 5 addresses tra�c o✏oading to maximize the user capacity in
dense D2D cooperative heterogeneous networks. It first presents the optimization
formulation for resource management where non-orthogonal channel allocation is
simultaneously considered with tra�c o✏oading. The complexity of the problem
is studied and reduced to address first optimal tra�c o✏oading problem assuming
all the channels are orthogonal. We then present a sub-optimal tra�c o✏oading
approach to provide real-time solutions in ultra dense D2D cooperative networks.
The performance results of the proposed dynamic tree-based tra�c o✏oading al-
gorithm and complexity analysis are presented. To evaluate our solution, we focus
on a stadium topology to demonstrate the significant gains of optimized tra�c
o✏oading in conventional and D2D ultra dense wireless networks with/without
cache-enabled devices.

Chapter 6 presents optimal non-orthogonal channel allocation for mini-
mum interference to cluster heads based on solutions obtained from the optimal
tra�c o✏oading problem. We then present possible solutions for allocating con-
nections to users a↵ected by interference either to cluster heads or BSs/APs. We
finally propose a dynamic tree-based resource management approach where tra�c
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o✏oading is simultaneously considered with non-orthogonal channel allocation.
Results are also presented to evaluate the system performance.

Finally, Chapter 7 summarizes the main contributions of this dissertation.
Moreover, it identifies the shortcomings of state-of-the-art wireless technologies
and highlights the needs for enhancing technical standards in order to facilitate
the implementation of the proposed concepts and algorithms in existing wireless
networks. Chapter 7 also presents open research problems that need further
investigation.
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Chapter 2

Literature Review

This chapter presents a general overview on resource management in hetero-
geneous networks including content distribution with device-to-device coopera-
tion. Section 2.1 surveys existing network selection and tra�c o✏oading schemes
in heterogeneous networks. Section 2.2 discusses various approaches for re-
source management in ultra dense networks with/without cache-enabled device-
to-device cooperation. At the end of every section, a summary is presented to
highlight the limitations of the studies conducted in the literature and show our
work and contributions.

2.1 Network Selection and Tra�c Splitting in
HetNets

The research on cellular/WiFi heterogeneous networks can be divided between
approaches focused on network selection, where users can utilize one wireless
interface at a time, and approached focused on tra�c splitting, where users utilize
both interfaces simultaneously.

2.1.1 Network Selection in Heterogeneous Networks

The authors in the following research works focused on proposing approaches for
the user to select one network in HetNets where di↵erent networks co-exist such
as WiFi and cellular networks. The best network can be defined based on the
coverage, cost, bandwidth and application QoS requirements, capacity, as well as
personal preferences [10]. The approaches can be divided between user-centric
and network-centric network selection approaches, handover and load o✏oading
schemes.

In [11–13], the authors proposed user-centric distributed network selection
approaches where mobile users strive to improve their performances on their
own. The authors in [11] proposed a user-centric network selection method that
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allows decision making based on the user context and preferences. The authors
in [12] presented a network selection approach for energy-delay tradeo↵ using the
Lyapunov optimization framework for video upload considering queue stability,
power consumption and throughput. In [13], a fuzzy logic based network selection
approach was proposed considering signal strength, network load and mobile
movement speed.

In [14–18], the authors addressed network-centric centralized network se-
lection approaches where the network performs resource allocation maximizing
global network utility while satisfying mobile users requirements. The authors
in [14] used semi-Markov decision process and Q-learning to perform network-
assisted network selection satisfying operator objectives while maximizing user
preferences and requirements. In [15], the authors proposed a joint network se-
lection and resource allocation for multicast in HetNets aiming at minimizing
the overall bandwidth cost. In [16], the authors proposed a Q-learning and re-
inforcement learning-based approach for radio access technologies selection non-
cooperative game where the throughput is the main objective function. The
authors in [17] used particle swarm optimization and a modified version of the
genetic algorithm to solve network selection and channel allocation providing
users with a target quality of service at a low price, subject to the interference
constraints. In [18], the authors formulated network selection as a global cen-
tralized non-linear optimization problem aiming at minimizing total users’ cost
service time and proposed heuristic distributed approaches and learning-based
non-cooperative game to reduce the complexity and approximate the optimal
solutions.

In [19–21], handover schemes were proposed. The authors in [19] addressed
handover and dynamic adaptation of mobile devices while investigating the per-
formance of the network in handling decision-making requests and network re-
sponse time as the user satisfaction metric. In [20], the authors proposed a
cooperative vertical hando↵ decision algorithm based on game theory to achieve
the load balancing and meet the quality of service requirements of various ap-
plications. In [21], the authors proposed a handover scheme based on a utility
function providing balance between energy, throughput and cost based on the
user preferences.

In [22–24], the authors considered tra�c o✏oading in HetNets from the cellu-
lar network to WiFi to balance the load, accommodate new requests and reduce
network congestion. In [22], the network selection is addressed at the network
side by o✏oading users from the cellular network to WiFi for load balancing using
joint resource partitioning. The authors in [23] proposed a heuristic approach to
dynamically adjust the workload of heterogeneous base stations to accommodate
new requests. In [24], the authors aimed to reduce network congestion by propos-
ing an incentive mechanism to allow network operators to optimally reward users
to participate in delayed WiFi o✏oading. The authors in [25] addressed power
and admission control in small cells deployment aiming at maximizing user ad-
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mission, network spectral and energy e�ciency while satisfying users minimum
rate requirements.

Despite the enhancements provided by the intelligent network selection ap-
proaches, the performance in terms of system capacity, bandwidth and user qual-
ity of experience is still limited. Thus, utilizing simultaneously multiple wireless
interfaces in the devices via dynamic tra�c splitting mechanisms are proposed
to achieve more optimized performance.

2.1.2 Tra�c Splitting in Heterogeneous Networks

The authors in the following research works considered tra�c splitting in HetNets
where users can simultaneously use multiple links to download data. In [26–29],
the user receives data over both interfaces consecutively according to a given
ratio. The authors in [26] aimed to split the tra�c periodically according to the
ratio of the time required to send the data using one link over the sum of time
required to send it via both links. In [27], the authors worked on minimizing the
time required to send the data over WiMAX and WiFi to determine the tra�c
splitting ratio. In [28], Yang et al. proposed a tra�c splitting approach based
on a split ratio dynamically adjusted based on the network channel quality and
load to enhance throughput. The authors in [29] presented a multipath packet
transmission scheme that reduces packet reordering, improves throughput and
maximizes utilization of the links. The faster link is assigned more packets than
the slower one.

In [30–33], the authors aimed to split the tra�c based on the service charac-
teristics. The control or important information such as base layer in video are
sent over 3G while others are sent via WiFi. In [30], the control or important
information such as base layer in video are sent over 3G while others are sent via
WiFi. The authors in [31] proposed layered video streaming allocation based on
tra�c characteristics to increase system capacity. The authors in [32] proposed a
delay tolerant approach in heterogeneous networks where the user sends a request
via 3G to the base station which replies by forwarding the requested content via
3G or WiFi based on links’ availability. In [33], the I-frames, containing the full
information of the video, are sent over 3G with a guaranteed level of quality of
service while other frames are sent via WiFi.

The authors in [34] proposed a centralized multi-RAT bandwidth aggregation
where LTE and WiFi networks are used to transfer di↵erent services simultane-
ously taking into consideration networks congestion. The authors in [35] pro-
posed a tra�c splitting approach performed at the network level, through jointly
optimizing tra�c control and radio resource allocation of multiple radio access
networks. The authors in [36] and [37] considered uplink tra�c splitting and
scheduling. The authors in [36] proposed a packet scheduling algorithm based
on parallel aggregation of radio nodes transmission schemes to improve the delay
performance. The authors in [37] proposed resource allocation for uplink tra�c
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splitting while considering a particular aspect of user QoE, where the QoE metric
focuses on: (1) link reward function reflecting the achieved throughput as quality
of service, and (2) resource cost function representing the cost required to use the
allocated resources per unit bandwidth. They aimed at illustrating the trade-o↵
between the link throughput and associated cost without considering actual user
experience as perceived by the user end.

2.1.3 Summary and Contributions

Previous network selection and tra�c splitting approaches considered load bal-
ancing, system capacity enhancement, bandwidth allocation, throughput max-
imization and power consumption reduction. However, they did not consider
simultaneously user quality of experience. Some work addressed system perfor-
mance enhancement, and based their results on simulations or arbitrarily gener-
ated values for factors a↵ecting network selection decisions such as signal quality,
network load and achievable data rate. Some proposed approached were not
dynamic, the decision is static and made only once. Tra�c splitting decisions
in some works were based on tra�c characteristics, and may require network
assistance.

In this thesis, we first present a learning-based approach for static network
selection. In contrast to literature, the model considers the features that a↵ect the
selection decision known by the user: availability of the networks, signal strength
reflecting the channel quality, data size, battery life, speed of the user, location,
and type of application. We present an approach for building training data as
a basis for machine learning of network selection and then develop decision-tree
classification model for network selection that provides the user either the highest
quality of service, lowest energy consumption or highest energy e�ciency based
on pre-defined rules.

We then present optimal tra�c splitting in HetNets to guarantee a balance
between energy consumption and throughput based on the user’s needs in terms
of application service requirements and mobile device battery life. Moreover,
experimental measurements are used to determine values for key parameters in
order to evaluate the proposed tra�c splitting approach under realistic network
conditions.

We also propose a Lyapunov-based multi-objective dynamic tra�c splitting
approach. In contrast to the literature, our approach does not focus only on
throughput and energy consumption, but also considers user quality of experience
based on ITU-T P.1201 standard to better capture the video quality as perceived
by the end user. We evaluate the proposed approach under realistic operational
conditions using our own test bed. The proposed approaches are implemented as
an Android application that functions in the background at the user side without
any intervention from the network or the server, and without performing any
changes to the cellular/WiFi standards.
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2.2 Multi-User Resource Management in Ultra
Dense D2D Cooperative HetNets

Typical UDNs scenarios include dense urban areas, subways, metro stations,
shopping malls, train stations, airports, open-air assembly and stadiums. The
network density is the highest when a very high number of users request simul-
taneously a huge amount of data. Common content distribution is nowadays
considered one of the most emerging applications for mobile terminals such as
live streaming and video on-demand. To meet the tremendous tra�c demands
faced by the lack of macro resources, device-to-device cooperation is proposed to
increase system coverage and capacity.

In this section, we first present existing literature addressing device-to-device
cooperation in heterogeneous networks for common content distribution. Re-
search on cache-enabled devices in D2D cooperation and resource management
in ultra dense networks is presented.

2.2.1 D2D Cooperation in Heterogeneous Networks

Existing literature on cooperative common content distribution over wireless net-
works aims at one or more of several objectives such as: increasing the network
throughput, decreasing monetary cost, decreasing the file download time, and
decreasing the energy consumption.

The authors in [38–45] focused on increasing the network throughput. In [38–
41], the authors addressed resource blocks and channel allocation aiming at max-
imizing throughput in D2D cooperative networks. In [38], the authors investi-
gated the network throughput achieved by both spatial diversity and spatial fre-
quency reuse in a wireless ad-hoc network. The authors in [39] addressed resource
blocks allocation for D2D pairs using Markov approximation and matching-game
approaches. In [40], the authors proposed resource allocation approach to co-
ordinate the interference and maximize the system sum-rate when several D2D
pairs communicate by reusing the resources of a cellular user. The authors in [41]
presents a mesh adaptive search algorithm for solving the joint admission control,
mode selection and power allocation problem in device to device communication,
aiming at maximizing system throughput. The authors in [42–45] tra�c o✏oad-
ing and resource allocation in D2D cooperative networks. The authors in [42]
proposed grouping vehicles into collaborative clusters and selecting the best sub-
carriers for LTE transmission to enhance the received video quality, quality of
service and throughput. Interference-aware multi-hop cooperative routing, dy-
namic available channel assignment, and relay selection are used to improve the
throughput in [43]. The authors in [44] proposed a load balancing approach where
D2D users can multiplex the spectrum allocated to a number of cellular users to
maximize total throughput. In [45], the authors proposed region-based clustering
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in vehicular ad-hoc networks and non-overlapping radio channel allocation while
limiting the number of vehicles in each service region unit in order to reduce the
contentions for radio channels and increase throughput.

In [46] and [47], cost e↵ective solutions are proposed in wireless networks. The
authors in [46] proposed distortion controlled streaming video services providing
near-optimal cost considering transmission cost per byte of networks. In [47],
the authors presented a monetary cost-e↵ective collaborative streaming among
mobile devices providing high performance in terms of delay and cost fairness.

Further more, many existing works [48–60] concentrate on energy e�ciency
and power consumption reduction. The authors in [48] compared the average to-
tal transmit power of cooperative transmission with the average transmit power
of conventional communication and showed savings in terms of power. In [49],
the authors introduced an energy consumption factor based multi hop routing
that made the network topology distributed more uniform, prolong the network
lifetime, and enhance its performance. The authors in [50–56] aimed at propos-
ing tra�c o✏oading and connection assignment approaches in D2D cooperative
networks to reduce energy consumption. The authors in [50] proposed an energy
e�cient nearest-neighbor cooperation communication scheme by exploiting the
short-range communication between a MS and its nearest neighbor to collaborate
on their uplink transmissions. The authors in [51] proposed a Nash bargaining
solution for energy-e�cient content distribution in mobile-to-mobile cooperation
wireless networks. The authors proposed an optimal mobile terminal grouping in
[52] for cooperative common content distribution for minimizing energy consump-
tion. In [53], a distributed algorithm for coalition formation is proposed where
terminals can cooperate for sharing content while minimizing the networks energy
consumption. The authors addressed in [54] the problem of o✏oading the cellular
network while distributing common content to a group of mobile devices that co-
operate during the download process by forming device-to-device communication
networks with fairness constraints. In [55], the required number of cellular chan-
nels is reduced subject to energy consumption constraints at the mobile terminals
side. The authors in [56] proposed energy e�cient application-aware multimedia
delivery solutions including quality adaptation and missing content retrieval in
cooperative HetNets where a device can download content from the neighboring
device with the same interest on the content and providing lower energy consump-
tion. In [57–60], the authors addressed power allocation and control maximizing
energy e�ciency. In [57], the author proposed a game-theoretic power cooper-
ative control algorithm to minimize the total power consumption in a cooper-
ative communication network that transmits information from multiple sources
to a destination via multiple relays to save energy and improve communication
performance. In [58], an optimum strategy of power and time allocations were
proposed to minimize the outage probability of the ideal cooperative protocol.
To maximize the energy e�ciency of the cooperative multicast communication,
the authors in[59] proposed a probability-based relay selection and power control
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methods. The authors in [60] proposed finding the optimal power control, relay
assignment, and channel allocation such that all transmission rate requirements
are satisfied and the total energy consumption is minimized.

2.2.2 Cache-Enabled D2D Cooperation in Heterogeneous
Networks

Content sharing through device-to-device communications has been proven to be
a promising method to o✏oad the tra�c of base stations. If some user devices
have cached a few popular on-demand contents, other interested neighbor mo-
bile terminals can reuse these contents through D2D communications, in which
the contents are directly transmitted to the mobile terminals from the content
owners. Hereby, the base station would only transmit contents which are not lo-
cally available instead of transmitting the same popular contents multiple times.
Therefore, the tra�c of the BSs is significantly o✏oaded using cache-enabled
D2D cooperation.

Caching improves spectrum utilization, increases network throughput, and
reduces average access delay for mobile terminals. However, in reality, users are
selfish and only care about their own preferences. On the other hand, the base
station aims at minimizing its tra�c load and transmission cost by o✏oading
to D2D communication. To motivate content owners, the authors in [61–63]
proposed incentive mechanisms rewarding D2D users for participating in D2D
content sharing. In [61], the authors proposed a non-monetary energy-aware in-
centive mechanism and a non-transferable utility coalition formation game for
user grouping. The authors in [62] and [63] have modeled the interaction be-
tween the BS and end-users by Stackelberg game models. In [62], the authors
proposed a game theoretic approach to content trading in proactive wireless net-
works to maximize the profit for wireless network carrier and minimize payment
for end-users. The authors in [63] introduced an Stackelberg game based incentive
mechanism to encourage content sharing among mobile terminals by determining
reward policies minimizing the BS total cost and caching policies maximizing
mobile terminals utility.

The work in [64–77] addressed cache-enabled D2D cooperation to improve
system performance in heterogeneous networks. In [64], the authors presented a
comprehensive analytical framework to show that cache-enabled D2D communi-
cation provide higher performance as the requesting users move away from the
BS and most popular files are requested. In [65–69], the authors proposed cash-
ing policies and scheduling minimizing delay [65], maximizing the content-related
energy e�ciency [66], maximizing successful o✏oading probability [67], and en-
hancing the success rate of content fetching [68]. The authors in [69] aimed at
maximizing tra�c o✏oading while reducing energy costs for the D2D network
with optimized proactive caching policy and transmit power.
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The authors [70–77] proposed cooperation strategies including tra�c o✏oad-
ing in caching-enabled D2D cooperative networks. The authors in [70] modeled
the content caching problem at network edge nodes as a Markov decision pro-
cess and proposed a distributed cache replacement strategy based on Q-learning
to minimize the transmission cost. The authors in [71–74] aimed at addressing
tra�c o✏oading and user assignments maximizing system throughput. In [71],
Chen et al. proposed cooperation strategy for cache-enabled D2D communica-
tions to manage the interference among D2D links, maximize the average net-
work throughput by jointly optimizing the cluster size and bandwidth allocation
satisfying minimum user average data rate. The authors in [72] address tra�c
o✏oading to maximize the user throughput and the system capacity in heteroge-
neous networks where users retrieve, in priority, contents from neighbors caches
using single-hop and two-hop D2D communication. In [73], the authors proposed
a content caching and replacement scheme to minimize content retrieving delay
considering the limited storage capacity of mobile terminals, content popularity,
and content access process in the network. In [74], the authors aimed first at
finding the optimal cluster size maximizing network throughput while ensuring
user fairness, and then optimizing bandwidth partition to maximize the average
network throughput under the constraint on average user rate. Park et al. in [75]
aimed at alleviating network congestion by proposing content management pro-
tocols to determine the amount of tra�c to be o✏oaded to the D2D network
among the cellular operator, the D2D servers, and the D2D clients. The authors
in [76] proposed a greedy intra-cluster cache scheme by combine user clustering
and file clustering according to file preferences in designing D2D caching schemes.
In [77], Jiang et al. proposed an interference-aware communication model includ-
ing selective caching and sender-receiver matching to maximize tra�c.

2.2.3 Ultra Dense Heterogeneous Networks

Due to the exploding tra�c demands with the ubiquitous anticipated spread of 5G
and Internet of Things, research has been active to devise mechanisms for meeting
these demands while maintaining high quality of service. Ultra-dense networks
has been widely considered as one of the key scenarios in 5G networks with the
need to accommodate massive connections with ultra-fast speeds. Large number
of small cells and access points are deployed in ultra dense network to improve
the network capacity by o✏oading the tremendous macro cell tra�c, balancing
network loads, and reducing congestion. UDNs consist of macro cells, small cells,
D2D links and relays, which collectively increase the complexity of the network
environment and leads to high interference due to large frequency reuse factor.
There have been extensive ongoing researches on ultra dense networks considering
user association, interference management, energy e�ciency, spectrum sharing,
resource management, scheduling, backhauling, propagation modeling, and the
economics of UDN deployment [78].
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In this section, we present existing literature on dense heterogeneous net-
works where a large number of users request common content data simultane-
ously. In [79–88], dense cell deployment networks without D2D cooperation are
considered to enhance throughput and energy e�ciency. The authors in [79]
evaluated the performance of UDN in terms of throughput, spectral and energy
e�ciency and determined their relationship with BS density. In [80], the authors
used power control and user scheduling to optimize energy e�ciency of UDNs.
In [81], a subband allocation scheme based on the graph clustering theory is
proposed to minimize the subband hando↵ rate in two-tier ultra-dense deployed
heterogeneous networks. The authors in [82] proposed a combined access se-
lection and load o✏oading from macro base stations to fixed virtual node base
stations improving the network energy e�ciency.

Stadiums are considered one of the most challenging ultra dense networks.
Stadium is a place or venue for outdoor sports, concerts, or other events and
consists of a field or stage either partly or completely surrounded by a tiered
structure designed to allow spectators to view the event. In [83], Jevremovic
presented the challenges designing an in-building wireless network for stadiums,
such as: stadium sectorization planning, sector overlap management, macro in-
terference management, capacity dimensioning, defining radio frequency coverage
area, and macro hando↵ management. In [84–89], the authors addressed ultra
dense stadium network model. The authors in [84] and[85] used machine learn-
ing including reinforcement learning, bayesian network model, Q-learning, for
spectrum sensing and subchannels allocations reducing blocking, re-transmission
and interruption probabilities in a stadium network model. The authors in [86]
analyzed the capacity and coverage of indoor stadiums considering scattering
and reflections of signals from human bodies. The authors in [87] investigated
the spectral e�ciency per stadium seating area for di↵erent deployment scenarios,
technologies such as WiFi 802.11a, 802.11g and LTE and reuse factors. In [88], the
authors proposed a dynamic spectrum resource utilization with multiple carrier
deployment in dense stadium maximizing system throughput subject to mobile
terminals rate demands.

In [90–93], dense cell deployment networks with D2D cooperation are consid-
ered. In [90], the authors analyzed the energy consumption of single hop and
multi hop in cooperative dense ad-hoc networks. The authors in [91] proposed
a hierarchical architecture for channel allocation aiming at minimizing the la-
tency. In [92], an online learning algorithm for spectrum allocation is proposed
to increase throughput, spectral e�ciency, fairness, and reduce outage ratio. The
authors in [93] proposed clustering, power control, frequency assignment and
transmission scheduling techniques in dense wireless networks where WiFi-Direct
is used for D2D communication.

The authors in [94,95] considered caching in ultra dense network. The authors
in [94] considered cache-enabled base stations. They first explored a big data
enabled platform which parallelizes the computation of content popularity via
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machine learning tools and cache contents at the base stations, and then studied
various caching scenarios to assess performance gains for 5G wireless networks.
In [95], Song et al. considered large-scale cache-enabled mobile helpers with D2D
cooperation in dense heterogeneous networks. They proposed a contention based
multimedia delivery protocol and a content caching strategy where the most
popular file is cached in the library to maximize the successful content delivery
probability.

2.2.4 Summary and Contributions

To this extent, the research on tra�c o✏oading and channel allocation in ultra
dense cache-enabled D2D cooperative networks is still limited. Existing work
addressed tra�c o✏oading to reduce the congestion on the macro cells, however,
the main focus was on enhancing system throughput, increasing energy e�ciency
and minimizing the cost of transmission. In addition, the system model and
results were based on limited number of users.

In contrast to the literature, our system model addresses simultaneously traf-
fic o✏oading and channel allocation in ultra dense cache-enabled D2D coopera-
tive heterogeneous networks. We present optimal solutions for resource manage-
ment including tra�c o✏oading and non-orthogonal channel allocation aiming
at maximizing the system capacity while maintaining user target quality. We
also present sub-optimal hierarchical tree-based algorithms to perform dynamic
tra�c o✏oading and channel allocation. In our work, we focus on a stadium
topology considering thousands of users to demonstrate the significant gains of
optimized tra�c o✏oading in conventional and D2D ultra dense wireless net-
works with/without cache-enabled devices. Performance results and complexity
analysis are presented to show that the proposed approaches are able to provide
near-optimal solutions with notably lower time complexity.
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Chapter 3

Static WiFi/Cellular Network
Selection and Tra�c Splitting for
Data Download

In this chapter, we address static user-centric resource management strategies in
heterogeneous network typically composed of areas covered via 3G/4G cellular
macro-cells and WiFi hotspots (see illustration in Figure 3.1). Individual users
can take advantage of the coexistence of the di↵erent wireless technologies for en-
hancing their perceived quality of service. A single user can decide to use one link
or multiple links simultaneously based on system parameters such as throughput
and energy consumption. We present in Section 3.1 the static network selection
approach considering user objectives, rules and priorities to take decisions with
learning in order to select either the WiFi or cellular network interface. In Sec-
tion 3.2 we present the static tra�c splitting as a multi-objective optimization
problem capturing the tradeo↵ between throughput and energy consumption to
decide on the amount of data to be received simultaneously over both links.

3.1 Static WiFi/Cellular Network Selection for
Data Download

To meet the huge tra�c growth, heterogeneous networks composed of wireless
local area networks and cellular networks are used to provide higher capacity and
coverage. When the two networks are available, selecting the best network for
downloading data with minimum device energy consumption and high quality of
service becomes a challenging issue especially that mobile devices have limited
energy capacity. In the literature, the authors did not consider all the parameters
known by the user that can a↵ect the network selection decision. In addition,
some results were based on simulations or arbitrarily generated values for factors
a↵ecting network selection decisions such as signal quality, network load and
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Figure 3.1: Heterogeneous network formed by cellular macro-cell and WiFi
hotspots.

achievable data rate.
In our work, we present a learning-based approach for performing network se-

lection based on real-network implementations. The main contributions are first,
presenting an approach for building training data as a basis for machine learning
of network selection and then developing the classification model for network se-
lection. The model considers the features that a↵ect the selection decision known
by the user: availability of the networks, signal strength reflecting the channel
quality, data size, battery life, speed of the user, location, and type of application.
The training data set is based on experimental measurements of WiFi and 3G
links using a Samsung Galaxy SII device. In particular, battery life, location and
type of service determine the priority of the user in selecting the network that
provides the user either the highest QoS, lowest energy consumption or highest
energy e�ciency based on pre-defined rules. To decide on the performance of
each network in terms of rate and energy e�ciency, the following attributes are
used: user location, data size, and experimental values for WiFi and 3G signal
strengths. For real-time network selection, the developed model uses decision
tree classification. Testing the performance of the classifier using cross validation
demonstrated high accuracy for selecting between WiFi and 3G networks.

This section is organized as follows. Section 3.1.1 describes the proposed
network selection model including the proposed features for classification, the
method for generating training model, and the machine learning model for net-
work selection. The experimental results are described in Section 3.1.2. Network
Selection limitations and challenges are presented in Section 3.1.3.

3.1.1 Learning-Based Approach for Network Selection

In this section, we present the details of the proposed learning-based approach for
performing network selection. We present first the proposed features that can be
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available to every user’s phone, and that can be used as discriminating attributes
for deciding on the network. Section 3.1.1 covers the proposed approach for
developing training data, which can then be used for deriving a classification
model for network selection. The model for network selection is presented in
Section 3.1.1.

Feature Selection

Selecting the network providing minimum device energy consumption and high
quality of service to the user is a challenging issue due to the diversity of factors
a↵ecting the performance of the system. Some of these parameters cannot be
determined by the user such as load on the networks, interference level, available
resources and system capacity. Our proposed model considers all the parameters
or attributes that a↵ect the selection decision and that are well known by the
user. These proposed features are:

• Availability of the WiFi and 3G networks (AW and AC): The two
attributes AW and AC are defined to indicate the availability of the WiFi
and 3G cellular networks, respectively. These attributes have binary possi-
ble values indicating whether the particular network is available or not.

• Signal strength (SW and SC): The two attributes SW and SC are real
values in dBm and they represent the channel quality signal strength be-
tween the user and the WiFi access point and 3G cellular base station,
respectively.

• Data size (D): This attribute is the size of the data in Bytes that the
user requests to download.

• Battery life (B): The battery life attribute represents the remaining bat-
tery life percentage of the device. In this work, B is considered critical
when the remaining battery life percentage is less than 20%.

• Speed (V ): This attribute is a real value in m/s representing the speed of
the user while downloading.

• Location (L): The location attribute is a binary attribute indicating
whether the user is at home or outside home.

• Type of application (T ): This attribute indicates if the type of the
application is delay sensitive or not.
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Table 3.1: Network Selection Rules

Features Decision

V L B T Rule
�5m/s - - - 3G
<5m/s home - - highest rate
<5m/s not home critical not delay sensitive lowest energy
<5m/s not home critical delay sensitive highest energy e↵.
<5m/s not home not critical - highest energy e↵.

Training Model Development

To develop training data that can be useful for the network classification model,
supervised annotation of network class label is needed in association with every
set of the features’ values. We propose the rules shown in Table 3.1 for the
annotation of network choice. Table 3.1 describes the rule choices under di↵erent
scenarios when both WiFi and 3G networks are available. The first four columns
of the table represent some of the features available to the mobile: the location L,
the speed V of the user, the battery life B, and the service type T . The network
selection rules are:

• If the user is moving faster than 5m/s, the user uses 3G cellular network
since the WLAN coverage is limited and cannot manage high mobility [11].

• If the user is at home, battery life is neglected since the phone can be
charged anytime. The link that o↵ers the highest rate will be selected.

• If the user is not at home and the battery life is less than 20%, it is consid-
ered to be critical thus the network selected will be the network that o↵ers
lowest energy consumption if the service type is not delay sensitive.

• If the user is not at home and the battery life is critical, the network that
o↵ers highest energy e�ciency is selected if the service is delay sensitive to
provide a balance between rate and energy.

• If the battery life is not critical and the user is not at home, the user needs
a good quality of service while increasing the battery life; therefore, the
network with highest energy e�ciency will be selected.

To derive annotation from the proposed rules, additional measures are needed
to fire the di↵erent rules. These measures are: rate R, energy consumption E, and
energy e�ciency ⌘. Figure 3.2 summarizes the proposed approach for building
the training data set based on the selected features, rules and measurements.
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Figure 3.2: Basic components of building the training data for the proposed
network selection model.

The figure shows the basic components of the network selection model. The
following features: AW, AC, V , L, B and T are used for rule generation. While,
the combination of other features: D, L, SW and SC are used to define the
rate, energy, and energy e�ciency accordingly. Combining the rules with the
measurement results, the annotation for network selection is derived for each set
of features’ values, and ultimately leading to the complete training data.

The additional features are measured experimentally for generating training
data only, and they are not available as features in actual classification. The
measurements are collected under di↵erent scenarios of the following features:
the location L, the signal strength SW, SC and the size D of the data that needs
to be downloaded. The rate R and power consumed P are measured directly
from the application and from a data acquisition device when experiments are
conducted. Section 3.1.2 presents more details and sample results. Then, energy
E and energy e�ciency ⌘ are derived indirectly from measurements as follows:

E(Joules) = P (W) · T ime(s) = P (W) · D(bits)

R(bps)
(3.1)

⌘(bits/Joule) =
D(bits)

E(Joules)
(3.2)

To illustrate a sample of the data, Table 3.2 presents measurements that are
collected experimentally under a specific set of conditions for L, SW, SC and D.
In this scenario, the user is at home, close to the WiFi hotspot, having a bad 3G
signal and needs to download a 1MB file. When the file is downloaded, the rate
and power consumption are measured to determine the energy consumption and
energy e�ciency of each link.

In this scenario, the user has a speed lower than 5m/s and is at home. As
a result, based on the rules in Table 3.1 and the collected measurements, the
network with highest rate is selected. Combining the rule with the collected
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Table 3.2: Features and Measurements: Sample Values

Features Measurements R(Mbps) and P(W)

L D SW SC RW PW RC PC

home 1MB -38dBm -101dBm 1.8Mbps 1.044W 0.6Mbps 1.45W

measurements, the network that provides highest rate is WiFi. Thus, the anno-
tation corresponding to this set of features is set to WiFi.

Network Selection Model

For the development of the network selection model, we propose supervised learn-
ing with the developed training data in Subsection 3.1.1. This is a standard step
in machine learning, with several options for classification algorithms such as
the use of decision trees, Naive Bayes, and Support Vector Machine (SVM) [96].
Once the model is developed, a new set of features available to the user can be
fed to the model, and the real time decision is obtained on the network choice
for downloading data based on the user status and network conditions. In this
work, we propose the use of decision trees since the model gives a set of rules
that can be logically evaluated for their relevance. The performance accuracy and
evaluation of the classifier can be tested using standard methods such as cross val-
idation. Details of the derived decision tree with our experimental measurements
are presented in Section 3.1.2.

3.1.2 Experimental Results and Analysis

In this section, we present first the details of the experimental setup and scenarios
conducted to collect the needed measurements. In Section 3.1.2, the sample
measurements results are first presented and analyzed to demonstrate the validity
of the measurements collected. Second, the method for building the training
data based on the rules and measurements is presented and illustrated by several
scenarios. The results for the network selection classification model based on
decision tree classification are presented in Section 3.1.2.

Experimental Setup

To collect the data needed to build the training data set, the following setup was
used. First, an Android application was developed on a Samsung Galaxy SII
device. The purpose of the application was to download di↵erent data sizes while
varying the device location, thus, changing the signal strength of WiFi and 3G.
To measure performance under di↵erent conditions, six di↵erent locations were
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Figure 3.3: Data rate variation with 3G and WiFi signal strength and data size.

chosen: at home near the WiFi hotspot (home with good WiFi signal strength),
at home far from the WiFi AP (home with bad WiFi signal strength), at the
library where the network is loaded near the WiFi AP (library with good WiFi
signal) and far from the WiFi AP (library with bad WiFi signal), indoor with
bad 3G signal and outdoor with good 3G signal. In each scenario, the down-
load data rate was obtained from the application while power consumption was
measured using a data acquisition device (DAQ) monitored by LABVIEW. The
energy consumption and energy e�ciency were derived o✏ine using (3.1) and
(3.2), respectively.

Training Model Development Results

First, to show the validity of our experimental results, the measurements collected
were analyzed. Then, the approach for building the training data set is presented.
Figures 3.3, 3.4 and 3.5 capture the variation of rate, energy consumption and
energy e�ciency with respect to data size (Kbytes), location (home and library)
and signal strength (near, far from the WiFi hotspot, indoor and outdoor). Fig-
ure 3.3 shows that rate increases when the user has better signal quality when
closer to WiFi AP. These results were as expected since the transmission quality
is a↵ected by the channel between the transmitter and the receiver. The data
rate increased with data size since the calculations took into consideration the
connection setup time; however, data rate saturates when data size is larger than
1 MB in our measured scenarios. In addition, the data rate depends on the load
on the WiFi network. In our model, we assumed that when the user is outside
home, the WiFi network is considered to be loaded such as in a library environ-
ment. As expected, the WiFi rate showed lower values in a loaded environment.
The results for power consumption showed that the receiving power of a Samsung
Galaxy SII device was on average 1.044 Watts for WiFi and 1.45 Watts for 3G.
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Figure 3.4: Energy consumption variation with 3G and WiFi signal strength and
data size.

These values represent the power consumed by the mobile when the application
is open and receiving and the brightness of the mobile is medium. The mobile
power consumption is approximately constant since when receiving the mobile
will be processing the data received. In general, the power consumed when 3G
is used is more than the power consumed while receiving via WiFi due due to
the additional processing requirements at the device level; these results are sim-
ilar to the results provided in [97]. The energy consumption is then computed
using (3.1). As shown in Figure 3.4, the energy consumption increased when the
data size increased since it needs more time to download the data. The results
also showed lower energy consumption when having good signal strength of WiFi
and 3G since the rate is higher and, thus, the time needed to download data
will be lower. Figure 3.5 shows the energy e�ciency variations with respect to
location and signal strength. The energy e�ciency is computed using (3.2) and
is a balance between data rate and power consumption. In our measurements,
downloading data from WiFi with good signal strength was always more energy
e�cient than downloading data via 3G. The network selection depends on the
rules discussed in Table 3.1. These rules needed additional measurements on
rate, energy consumption and energy e�ciency. The measurements presented
above were used to get these additional information. To illustrate the method
used for developing the training data set based on the rules and measurements,
real examples are presented as follows. We assumed first that a user needs to
download a 1 MB file from home having a speed lower than 5m/s. Based on the
rules, if the user is at home, the link that provides the best rate is selected. Based
on measurements, the rates provided by WiFi and 3G are compared. Table 3.3
presents sample measured data rate, energy consumption and energy e�ciency
for di↵erent combinations of L, SW, SC and D. Assuming the user is close to the
WiFi AP, and have a bad 3G signal, the rate of WiFi is greater than rate of 3G
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Figure 3.5: Energy e�ciency variation with 3G and WiFi signal strength and
data size.

therefore the annotation is WiFi. Considering another scenario where the user is
outside home having a good 3G signal and connected to a far loaded WiFi AP.
Assuming the user has a critical battery life and the application is not delay sen-
sitive and following the rules, the least energy consuming link is selected which
is in this case the 3G network as provided in Table 3.3.

Table 3.3: Data rate, energy consumption and energy e�ciency when download-
ing a 1 MB data file from di↵erent locations with di↵erent signal strengths

L S R[Mbps] E[J] ⌘[Mbits/Joule]
Home good Wifi -39dBm 1.88 4.44 1.80
Home bad WiFi -80dBm 1.40 5.96 1.34
Library good WiFi -39dBm 1.41 5.92 1.35
Library bad WiFi -80dBm 0.87 9.60 0.83
Outdoor good 3G -61dBm 1.55 7.48 1.07
Indoor bad 3G -101dBm 0.61 19.01 0.42

Based on the rules and measurements previously presented, the training data
set is developed. It is composed of the following nine attributes: AW, AC, B,
V , T , L, D, SW and SC. The training data set was formed by 7920 tuples
representing the number of scenarios considered for di↵erent combinations of the
attributes.
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Figure 3.6: First four levels of the decision tree.

Network Selection Classification Results

The supervised training data set was imported into the RapidMiner data mining
tool to generate the decision tree based on gain ratio [98]. As shown in Fig-
ure 3.6, the root attribute was AW and then AC. The tree showed that if WiFi
is not available, the model selects 3G network. As expected from the rules used
in the training data, the third highest level attribute is the speed of the user.
If the two networks are available and the user’s speed is more than 5m/s, 3G is
selected. Based on the remaining attributes, the model makes the network selec-
tion decision by following the decision tree. The results of the decision tree were
consistent with our observations and experimental results analysis. For instance,
one path of the decision tree showed that WiFi was always selected when the 3G
signal is less than -96dBm and WiFi signal is less than -70dBm. This classifi-
cation is consistent with the measurements results that showed that in the case
of having bad WiFi and 3G signals, WiFi provided better gains in term of rate,
energy consumption and e�ciency. The performance evaluation of the classifier
was tested using cross validation, with 66% of the tuples in the training data set
used as training data to build the decision tree and the remaining tuples used to
test the decision tree. The classifier for the considered scenarios led to 99.77%
average accuracy.

3.1.3 Static Network Selection Limitations and Challenges

To this extend, we considered a simplified version of network selection where
transmission rates are estimated based on previous study on signal strength chan-
nel quality. Selecting the best network for downloading data provides moderate
performance gains in terms of throughput and energy consumption, however,
some applications can compensate some energy to gain high achievable rates
when using tra�c splitting over both link simultaneously. The features intro-
duced in this work will be used for later consideration of dynamic and real-time
network selection implementations. In addition, the main concern and challenge
is to consider tra�c splitting where the user can take advantage of simultaneous
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transmission over di↵erent links to achieve performance gains.

3.2 Static WiFi/Cellular Tra�c O✏oading for
Data Download

In this section, we address user-centric tra�c splitting in HetNets where a mo-
bile device can simultaneously utilize both wireless interfaces to achieve perfor-
mance gains. We propose a multi-objective tra�c splitting approach that can
be tailored to optimize di↵erent performance metrics and to capture existing
energy-throughput tradeo↵s. The amount of data sent over each interface is de-
termined based on parameters that include both the e↵ective data rate and the
energy consumption over each link. Energy-throughput tradeo↵ results are pre-
sented including energy consumption minimization and throughput maximization
results. The main contribution of this work is utilizing the energy-throughput
tradeo↵ framework to develop optimized strategies that can guarantee a balance
between energy consumption and throughput based on the user’s needs in terms
of application service requirements and mobile device battery life. Moreover,
experimental measurements are used to determine values for key parameters in
order to evaluate the proposed tra�c splitting approach under realistic network
conditions. This work has been published in proceedings of the IEEE Wireless
Communications and Networking Conference (WCNC’14)[99].

This section is organized as follows. The system parameters are presented
in Section 3.2.1. The proposed tra�c splitting approach is detailed in Sec-
tion 3.2.2. Experimental and performance results are presented and explained
in Section 3.2.3. Static tra�c splitting limitations and challenges are presented
in Section 3.2.4.

3.2.1 System Parameters

When a mobile device has both cellular and WiFi connections available, the best
link for data transmission or the best split ratio of data over the two links should
be determined to optimize performance. The decision can be made at the user
or network end. Each link provides the user with a specific data rate depending
on the user’s location, channel conditions, and access network load. Moreover,
the energy consumed from the user’s mobile device depends on the data rate,
download time, data size, and wireless interface characteristics. In general, the
main system parameters are:

• Channel quality signal strength (SW and SC): SW and SC represent
the channel quality signal strength between the user and the WiFi access
point and cellular base station, respectively.
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• Data size (DW, DC and DHN): DHN is the total data size that the user
requests to download. It will be split into the two links, thus, the data sent
over WiFi and cellular links is DW and DC, respectively.

• Time needed to download the data (TW and TC): The time needed
to receive DW and DC over WiFi and cellular links is TW and TC seconds,
respectively.

• Data rate (RW and RC): The data rates over WiFi and cellular links are
RW and RC, respectively, expressed in bits/second.

• Power consumption (PW and PC): The power consumed by the mobile
device while receiving via WiFi and cellular links is PW and PC in Watts,
respectively.

• Energy consumption (EW and EC): The energy consumed when the
mobile device is using WiFi and cellular links is EW and EC Joules, over
download duration TW and TC, respectively; it can be computed as follows:
E = PT .

The heterogeneous network characteristics with tra�c splitting can be defined
as follows:

• The total amount of data downloaded DHN is equal to the summation of
data sent via both links as follows:

DHN = DW +DC (3.3)

• The HetNet total download time using tra�c splitting is equal to the max-
imum download time between both links:

THN = max(TW, TC) (3.4)

• The total HetNet rate RHN with tra�c splitting over both links is given by:

RHN =
DHN

THN

=
DHN

max(TW, TC)
=

DHN

max
⇣
DW
RW

, DC
RC

⌘ (3.5)

• The energy consumed by the device when using tra�c splitting is assumed
to be equal to the summation of the energy consumed by each link as
follows:

EHN = EW + EC = PWTW + PCTC

=
PW

RW

DW +
PC

RC

DC

(3.6)
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3.2.2 Multi-Objective Optimization Approach for Tra�c
Splitting

We present a multi-objective approach for tra�c splitting in cellular/WiFi het-
erogeneous networks that can be tailored to throughput and energy performance
metrics, and can be used to capture existing energy-throughput tradeo↵s. Using
the link characteristics presented in Section 3.2.1, the data splitting ratio between
both interfaces can be determined by solving the energy-throughput optimization
problem as follows:

minimize
DW, DC

(1� ↵)EHN � ↵RHN

subject to DW � 0, DC � 0

DHN = DW +DC

(3.7)

The problem is a bi-objective optimization problem for tra�c splitting aiming
to maximize the HetNet throughput RHN while minimizing the energy consump-
tion EHN of the device. The throughput RHN and energy consumption EHN are
expressed in (3.5) and (3.6), respectively. The decision variables to be determined
are DW and DC, the amount of data to be sent over WiFi and cellular links, re-
spectively. The problem is subjected to the following constraints: i) DW and DC

should be positive, and ii) the total amount of data downloaded DHN should be
equal to the summation of data sent via both links. The ↵ parameter gives bias
weights to RHN and EHN in the objective function; it varies between 0 and 1.

The optimization problem presented in (3.7) varies with ↵ as follows: i) when
↵ is 1, the objective will be maximizing RHN presented in Section 3.2.2, ii) when ↵
is 0, the objective will be minimizing EHN described in Section 3.2.2, and iii) when
↵ varies between 0 and 1, energy-throughput tradeo↵ solutions are presented in
Section 3.2.2.

User Throughput Maximization

Several real-time applications require high bit rates to give the user the best
quality of experience. Therefore, the first approach is to maximize the HetNet
throughput RHN in (3.5) under the given constraints. The problem in (3.7) will
be then reduced to maximize RHN when ↵ is equal to 1; this is equivalent to

minimizing the denominator max
⇣
DW
RW

, DC
RC

⌘
in (3.5), since the total data size

DHN is fixed. The problem can be solved by replacing the denominator by a new
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variable g and additional constraints as follows:

minimize
DW, DC

g

subject to DW � 0, DC � 0

DHN = DW +DC

DW

RW

 g and
DC

RC

 g

(3.8)

The best solution is obtained by minimizing the total transmission time THN

which is equal to max(TW, TC). Therefore, the solution obtained is to send data
over equal time durations on both links and, thus, TW will be equal to TC. The
ratio � between DW and DC will be as follows:

� =
DW

DC

=
RW

RC

(3.9)

Accordingly, the amount of data sent over WiFi to achieve maximum HetNet
throughput denoted by DW-maxR is proportional to the data rate as follows:

DW-maxR =
�

1 + �
DHN =

RW

RW +RC

DHN (3.10)

Energy Consumption Minimization

When ↵ is equal to 0, the problem in (3.7) becomes minimizing the energy con-
sumed from the battery of the mobile device expressed in (3.6). Minimum energy
consumption is achieved when downloading all the data over the more energy
e�cient link without tra�c splitting. Maximizing the energy e�ciency, which
is the ratio of the rate over the energy consumed, is solved by minimizing the
energy consumption since the total data size to be downloaded is fixed; the link
with lowest energy consumption will be used for data transmission.

Joint Energy-Throughput Considerations

In this section, we extend the tra�c splitting approach to optimize an objective
function that jointly captures the HetNet throughput and energy consumption as
presented in (3.7). Maximizing RHN can be solved by minimizing its denominator
g, as presented in Section 3.2.2. The objective function will be:

minimize
DW, DC

(1� ↵)

✓
PW

RW

DW +
PC

RC

DC

◆
+ ↵g (3.11)

It can be shown that the solution to this optimization problem varies between
two cases only: either sending all data over the most energy e�cient link, when ↵
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is below a threshold ⇥, to minimize the energy consumption; or sending data with
equal transmission time between both links which is the solution of maximizing
the throughput, when ↵ is greater than ⇥. Developing the objective function in
(3.11) and combining it with (3.3) and (3.4), ⇥ can be derived as follows:

⇥ =

8
>>>>>>>><

>>>>>>>>:

PC
RC

�PW
RW

PC
RC

�PW
RW

+ 1
RW

RW
PW

� RC
PC

PW
RW

�PC
RC

PW
RW

�PC
RC

+ 1
RC

otherwise

(3.12)

Since the optimal solution tends towards favoring one of two cases, a near-
optimal solution is needed to guarantee a balance between energy consumption
and throughput based on the user’s needs in terms of application service require-
ments and mobile device battery life. For this reason, the energy-throughput
tradeo↵ in HetNets with tra�c splitting is quantified by expressing the HetNet
energy in terms of the HetNet throughput. The HetNet throughput in (3.5) can
be expressed in terms of DW as follows:

RHN =

8
>><

>>:

RCDHN
DHN �DW

0  DW  DW-maxR

RWDHN
DW

DW-maxR  DW  DHN

(3.13)

DW-maxR is the data size downloaded over WiFi that leads to maximum HetNet
throughput, which occurs when the two links are used for the same duration. If
DW is less than DW-maxR, more data is sent over the cellular link; thus, the
denominator of (3.5) will be equal to the ratio DC/RC. If DW is greater than
DW-maxR, the WiFi link is used for longer duration; therefore, the denominator
will be equal to DW/RW. Combining (3.3), (3.6) and (3.13), the HetNet energy
consumption of the device can be represented in terms of RHN as follows:

EHN =

8
><

>:

�a
RHN

+ b 0  DW  DW-maxR

c
RHN

+ d DW-maxR  DW  DHN

(3.14)

where a, b, c and d are parameters that depend on the WiFi and cellular link
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(a) Power consumed (amplitude) by the de-
vice when using WiFi.

(b) Power consumed (amplitude) by the de-
vice when using 3G.

Figure 3.7: Power consumption by Samsung SIII device while receiving data over
WiFi and 3G links.

characteristics:

a =

✓
PW

RW

� PC

RC

◆
RCDHN (3.15)

b =

✓
PW

RW

� PC

RC

◆
DHN +

PC DHN

RC

(3.16)

c =

✓
PW

RW

� PC

RC

◆
DHNRW (3.17)

d =
PC DHN

RC

(3.18)

Using (3.14), the decision for tra�c splitting can be tailored towards satisfying
user’s requirements in terms of throughput and energy consumption and provid-
ing near-optimal tra�c splitting decisions based on the mobile battery status and
type of application. More details are presented in Section 3.2.3.

3.2.3 Results and Analysis

To validate the presented multi-objective tra�c splitting approach under realistic
conditions, experimental measurements are used to determine WiFi and cellular
key link parameters, such as e↵ective download rate and energy consumed per
second. The obtained link parameter values are then used to quantify and analyze
the energy-throughput tradeo↵s of HetNet tra�c splitting in various scenarios.

Parameter Setting Using Experimental Measurements

Experimental measurements were conducted to capture the e↵ect of signal strength
and tra�c load on the e↵ective download rate and energy consumption. An An-
droid application was developed on the Samsung Galaxy SIII device to download
data from an HTTP server via WiFi (802.11b) and 3G cellular links at di↵erent
locations. In each scenario, the data rate was obtained from the application while
power consumption was measured using a data acquisition device from National
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Instruments monitored via a LABVIEW application. Figures 3.7(a) and 3.7(b)
show the plots for the power consumed by the mobile device when using WiFi
and 3G, respectively. These plots demonstrate that the mobile device consumes
more energy when using 3G interface than when using the WiFi interface. The
average power consumed is 1.307 Watts for WiFi and 1.859 Watts for 3G.

The e↵ective download data rate is a↵ected by the link’s tra�c load and signal
strength (SS), which depends on the user’s location with respect to the WiFi AP
or 3G BS. The data rate was measured in six locations: i) user is at home near
WiFi AP (home with good WiFi SS of -39 dBm) and far from AP (home with
bad WiFi SS of -80 dBm); ii) user is at library where the WiFi AP is loaded near
(library with good WiFi SS of -40 dBm) and far (library with bad WiFi SS of
-80 dBm); iii) indoor with bad 3G SS of -101 dBm and outdoor with good 3G
SS of -61 dBm. The di↵erent data rates achieved when downloading a 6 MB file
from di↵erent locations are summarized in Table 3.4. For these case studies, the
results show that higher rates are achieved when downloading over WiFi with
close proximity to the AP, especially in a home scenario with low access network
load. Moreover, they demonstrate the notable variation in download bit rate
between WiFi and 3G for di↵erent signal strength levels.

Table 3.4: Data rates when downloading a 6 MB data file over WiFi and 3G in
di↵erent locations

Location Data Rate
WiFi home (good WiFi signal strength -39 dBm) 2.299 Mbps
WiFi home (bad WiFi signal strength -80 dBm) 1.317 Mbps
WiFi library (good WiFi signal strength -40 dBm) 2.031 Mbps
WiFi library (bad WiFi signal strength -80 dBm) 1.221 Mbps
3G outdoor (good 3G signal strength -61 dBm) 2.030 Mbps
3G indoor (bad 3G signal strength -101 dBm) 0.614 Mbps

Performance Results: Maximum HetNet Throughput and Minimum
HetNet Energy Consumption

This section presents analysis for two HetNet scenarios for downloading a 6 MB
data file showing tra�c splitting for maximum HetNet throughput and minimum
energy consumption. In the first scenario, the user has higher data rate when
connected to home WiFi AP. In the second scenario, the user has equal WiFi and
3G rates.

Scenario 1: The user is at home near the WiFi AP, and connected to 3G with
a low signal strength. The WiFi data rate is 2.3 Mbps and is larger than the
3G rate which is 614 Kbps. Figure 3.8(a) plots HetNet throughput and energy
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Figure 3.8: The left and right y-axes measure HetNet throughput in Mbps and
HetNet energy consumption in Joules, respectively, with respect to the percentage
of data sent over WiFi when downloading a 6 MB file with PW= 1.307 Watts and
PC= 1.859 Watts.

consumption as a function of the HetNet tra�c splitting ratio represented by
the percentage of data sent over WiFi. The left and right y-axes measure the
HetNet throughput in Mbps and the energy consumption in Joules, respectively.
When the percentage of data sent over WiFi increases, the throughput increases
while the energy consumption decreases which enhances the quality of service at
the user end. The maximum achieved HetNet throughput is 2.91 Mbps when
the percentage of data WiFi is 78.93% which can be obtained by the solution of
the throughput maximization objective discussed in Section 3.2.2. Using WiFi
alone is more energy e�cient but provides less throughput compared to the case
when using WiFi and 3G simultaneously. Using both links together was able to
maximize the throughput with a tradeo↵ cost in terms of energy consumption.
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Scenario 2: Assuming loaded WiFi and good 3G signal strength scenarios,
the WiFi and 3G data rates are equal to 2.03 Mbps. As shown in Figure 3.8(b),
the data rate doubles to be 4.06 Mbps when data is split equally over the two
links, while the energy consumption is higher than the energy consumed when
WiFi is used only.

Performance Results: Energy-Throughput Tradeo↵s and Tra�c Split-
ting Strategies

Figure 3.9 plots HetNet energy consumption versus HetNet throughput based on
(3.14) by varying DW from 0 to the total data size DHN. The rates RW and RC

are assumed to be equal to 2 Mbps, PW= 1.307 Watts, PC= 1.859 Watts and
DHN= 6 MB. The least energy consuming download is at point Emin when all data
is sent over WiFi which is in this case the more energy e�cient link. When DW

increases, the energy consumption and throughput increase to reach maximum
rate at 4 Mbps where the data splits equally between the two links. Downloading
more tra�c over the cellular link leads to higher energy consumption while the
same HetNet throughput can be achieved by another splitting ratio. For instance,
the highlighted points P1 and P2 provide the same HetNet throughput while P1

is more energy consuming.
The energy-throughput tradeo↵ aims to maintain a high throughput while

keeping the energy consumption low. Therefore, the lower curve (solid line)
in Figure 3.9 represents the more energy e�cient splitting ratios ranging be-
tween minimum HetNet energy consumption at point Emin, and the energy con-
sumed when data is split equally between both links providing maximum HetNet
throughput at Rmax.

When the channel conditions vary, the energy consumption and throughput
will change accordingly. Three scenarios are considered in Figure 3.10 to down-
load a 6 MB data file while RC is assumed to be fixed equal to 2 Mbps. In the
first plot, where RW=RC, the plot is symmetrical since maximum rate is achieved
when data is split equally between the two links. When RW increases, the maxi-
mum throughput increases while the minimum energy consumed decreases.

The highlighted points U1, U2 and U3 are the ideal operational points for the
each of three plots, respectively. The ideal operational point is the point where
energy consumption is minimum and throughput is maximum. The ideal oper-
ational point is shown to be always closer to the maximum throughput solution
than to the minimum energy consumption solution. From a practical implemen-
tation perspective, the selection of the most suitable operational point depends
on the applications type and quality requirements in addition to the available
battery capacity in the mobile device. On one hand, several applications require
a guaranteed bit rate. Therefore, the strategy for tra�c splitting needs to pro-
vide the minimum throughput required even if the device’s battery life is critical,
while it can o↵er higher rates when the battery capacity is high.
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Figure 3.9: The HetNet energy consumption variation with respect to HetNet
throughput with DHN= 6 MB, RW= RC= 2 Mbps.

2 3 4 5 6 7 8 9 10 11 12
5

10

15

20

25

30

35

40

45

Throughput [Mbps]

E
n

e
rg

y 
[J

o
u

le
s]

 

 

R
max1

E
max

E
min1

U
1

R
max2

E
min2

U
2

R
max3

E
min3 U

3

R
C

=R
W

=2Mbps

R
C

=2Mbps, R
W

=5Mbps

R
C

=2Mbps, R
W

=10Mbps

Figure 3.10: The HetNet energy consumption variation with respect to HetNet
throughput when downloading a 6 MB file.

On the other hand, the most suitable tra�c splitting strategy can be deter-
mined based on the available battery capacity. For instance, a target battery life
can determine the maximum possible HetNet throughput. The target battery
life can be represented by the number of remaining hours of device operation as-
suming the mobile device keeps on receiving continuously. The remaining hours
of operation can be calculated as the ratio of the available battery capacity (in
mWh) and the average power consumed (in Watts). The average power consumed
can be computed by the ratio of HetNet energy and the total transmission time.
Therefore, the remaining hours of operation depends on the available battery
capacity and on the tra�c splitting ratio which determines the HetNet through-
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Figure 3.11: The HetNet throughput variation with respect to the remaining
hours of device operation, with DHN= 6 MB , RC= RW= 2 Mbps.

put and energy consumption. Figure 3.11 shows the HetNet throughput versus
the remaining hours of device operation for di↵erent available battery capacity
levels. The device consumes more power to provide higher HetNet throughput
which decreases the battery life and reduces the remaining hours of device opera-
tion. When the battery is fully charged (100%), the Samsung Galaxy SIII device
o↵ers a capacity of 2100 mAh using a voltage of 3.8 V, which corresponds to an
available battery capacity of 7980 mWh.

The most suitable tra�c splitting strategy can be determined based on a tar-
get remaining hours of device operation at a specific available battery capacity.
For instance, if the mobile device battery is 75% charged, and the user needs
its battery to last longer than three hours, based on the highlighted point A1

in Figure 3.11, the tra�c splitting will be performed to obtain a maximum Het-
Net throughput of 2.74 Mbps. Therefore, based on (3.5), the 6 MB data file is
split as follows: 35 Mbits and 13 Mbits will be sent over WiFi and 3G cellular
links, respectively. If the target battery life duration is two hours, higher HetNet
throughput can be achieved. The highlighted point A2 shows 3.8 Mbps HetNet
throughput. If the battery capacity is 50% charged, the maximum allowed Het-
Net throughput to maintain two hours of battery life with continuous download,
is 2.75 Mbps as indicated by the highlighted point A3. When the battery life
is critical (10% charged), lower rates are recommended to extend the device’s
battery life.

3.2.4 Static Tra�c O✏oading Limitations and Challenges

In this work, we addressed the operation of cellular/WiFi heterogeneous networks
with network selection and tra�c splitting. The model presented is static with no
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parameter variation with respect to time. The decision is made only once at the
beginning of the data download. However, in real-time applications such as video
streaming, the data is dynamically downloaded, bu↵ered and played. Therefore,
we present in Chapter 4 real-time optimization formulations considering dynamic
variation of transmission parameters such as data rates, fast solutions and deci-
sion making for data splitting over two interfaces to provide the user with better
quality of experience.
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Chapter 4

Dynamic Cellular/WiFi Tra�c
Splitting for Video Streaming
with QoE Considerations

As presented in Chapter 3, tra�c splitting in HetNets was able to provide higher
throughput with a tradeo↵ cost in terms of energy consumption. This demon-
strates the potential gains of tra�c splitting in HetNets and shows the need
for intelligent dynamic strategies in practical scenarios, that are especially cus-
tomized to real-time streaming applications.

In this chapter, we address dynamic cellular/WiFi tra�c splitting for video
streaming with quality of experience considerations. Due to the real-time and
fast aspects of video streaming applications, higher quality of experience and sat-
isfaction are required. For these reasons, higher bandwidth needs to be allocated
to the user by allowing the use of multiple wireless interfaces simultaneously.
This will increase the energy consumption and cost for data plans. Previous
work in this field has considered improving throughput and reducing energy con-
sumption, but did not consider simultaneously quality of experience as perceived
by the end user. In our work, we focus on dynamic tra�c splitting decisions in
cellular/WiFi HetNets to provide the user with a balance between high quality
of experience, low energy consumption and delay while using video on demand
streaming applications. The main contributions are first, developing an optimized
multi-objective tra�c splitting solution as a function of the dynamic variation of
various system parameters. In contrast to the literature, our proposed approach
does not focus only on throughput and energy consumption, but also considers
user quality of experience based on ITU-T P.1201 standard to better capture the
video quality as perceived by the end user. The proposed approach will deter-
mine in real-time how to intelligently split tra�c between both wireless interfaces
and decide dynamically on the amount of data to be sent over each wireless link.
Real-time tra�c splitting decisions are performed based on Lyapunov drift-plus-
penalty optimization utility functions aiming at achieving high quality end-user
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experience and minimizing energy consumption while stabilizing network queues.
The proposed dynamic tra�c splitting with delay-power-QoE (TS-PQ) balance
approach is user-centric and runs in the background at the user side without
any intervention from the network or the server, and without performing any
changes to the cellular/WiFi standards. The performance is evaluated using
simulations based on parameters determined via experimental measurements on
mobile devices for video streaming and using our own test bed implementation
under realistic conditions. Results show the performance e↵ectiveness of the pro-
posed tra�c splitting approach in terms of throughput, delay, queue stability,
energy consumption and quality of user experience by monitoring the frequency
and lengths of video stalls.

This chapter is organized as follows. The potential gains of tra�c splitting
are presented in Section 4.1. The system model is presented in Section 4.2. The
proposed tra�c splitting approach is detailed in Section 4.3. Performance results
are presented and explained in Section 4.4. Test bed implementation and results
are presented in Section 4.5. Finally, dynamic tra�c splitting limitations and
challenges are drawn in Section 4.6.

4.1 Motivating the Benefits of Tra�c Splitting
in HetNets

To demonstrate the potential gains of tra�c splitting in heterogeneous networks,
a realistic toy example for video on demand transmission is presented in Fig-
ure 4.1. Simulations are conducted using MATLAB to stream a video using dif-
ferent strategies: (1) WiFi only (WO), (2) cellular only (CO), and (3) using both
links simultaneously (TS-S), and their performance in terms of average through-
put, total energy consumption, frequency of stalls and length, and satisfaction
metric evaluated based on ITU-T P.1201 (2013) QoE metric (4.15) (details are
presented in Section 4.3.2). Figure 4.1 shows the three di↵erent data transmission
decision strategies for three consecutive 117 KB data download time slots. The
video has a size of 7 MBytes, duration of 60 seconds, and frame rate of 25 fps.
The arrival rate will be 117 KBytes every second. At each time slot of duration
1 second, the mobile device will make decision on the links to use for downloading
data based on the selected strategy. if the download rate is less than the video
arrival rate, the user will experience bu↵ering events. The video data is not lost
and the frames are not skipped. Instead, they are delayed when stalls happen.

In the top-most plot, the data is always sent over WiFi. The average through-
put over WiFi was higher than the average throughput provided by cellular link
while the total energy consumed is the lowest comparing to the other two sce-
narios where data is sent over cellular only or split between the two links.

In the lowest plot, splitting the tra�c by using both links simultaneously
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Figure 4.1: Toy example illustrating the benefits of tra�c splitting by compar-
ing three scenarios of: (i) always use WiFi, (ii) always use cellular, (iii) tra�c
splitting while using the two links simultaneously, for downloading three con-
secutive 117 KB data blocks. The Figures show the performance in terms of
average throughput, total energy consumption, frequency of stalls and length
(freeze frames are marked with X), and QoE metric evaluated based on (4.15).

provides higher throughput while consuming more energy compared to using
WiFi and cellular alone. The results showed that the user experience stalls and
freezing frames while watching over WiFi and cellular only, however, no stalls are
experienced when tra�c splitting is used. The estimated QoE is 5 when using
tra�c splitting while it is lower 4.3979 and 4.0229 when using WiFi only and
cellular only, respectively.

This demonstrates the potential gains of tra�c splitting in HetNets and proves
its ability to provide high performance in terms of throughput and user satisfac-
tion with a trade of in energy consumption. The results emphasize the need for
an optimized decision making approach to achieve target performance tradeo↵
and motivate our work for proposing better solutions for designing an optimized
approach to determine the best cellular/WiFi resource management strategy con-
sidering tra�c splitting decisions in every time slot. Many questions arise for
selecting the best suitable decision at each time slot: (1) What are the available
interfaces and transmission strategies? (2) What are the e↵ects of using each
strategy on the device power consumption, queue length and user satisfaction?
(3) What is the best strategy and the amount of data to be transmitted over
each interface that reduces power consumption, queue backlog length, number
and length of stalls, and maximizes user QoE? (4) Is it possible to provide a
device centric approach performing autonomously without any intervention or
change in the standards? (5) What will be the gains under practical implemen-
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tation and operational conditions?

4.2 System Model and Parameters

Our proposed method decides on behalf of the user to use one link or multiple
links simultaneously based on system parameters such as throughput, energy con-
sumption, quality of experience and cellular/WiFi links characteristics. There-
fore, deciding on the best download strategy needs to be dynamic to provide the
user with the best performance at discrete time sample points, represented by
time slots. The notion of time slots is introduced to handle discretization of the
real-time aspect of the system and handle the queuing theory operation of the
proposed approach. It provides practical feasibility to make decisions periodically
every time slot based on data collected and previous actions.

Accordingly, at every time slot t, when a mobile device has both cellular and
WiFi connections available, the best link for data download or the best split
ratio of data over the two links should be determined to optimize performance
and provide the best balance between QoE, energy consumption and delay.
In general, the main system parameters are:

• Time slot duration (Ts): Ts is the time slot duration, in seconds, repre-
senting how often the decision is taken.

• Resource management solution (L[t]): L[t] is the possible tra�c split-
ting decision at time slot t, which can be one of the following: (1) WiFi only,
(2) cellular only, (3) both links simultaneously, and (4) no transmission.

• Strategy (`): The index ` represents one of the possible resource manage-
ment strategies represented by L[t]. ` represents the index W when WiFi
only is selected, C when cellular only is selected and WC when both links
are used simultaneously. Based on the selected strategy `, the amount of
data to be sent over WiFi and cellular links, respectively during time slot
duration Ts, can be determined.

• Transmission data rate (R`[t]): R`[t] represents RW[t] the estimated
data rate over WiFi link only, RC[t] over cellular link only, and RWC[t] when
using both links simultaneously at time slot t, expressed in bits/second.
Note that RWC[t] = RW[t] +RC[t].

• Power consumption (P`[t]): P`[t] represents the estimated power con-
sumed by the mobile device while receiving via WiFi, cellular or both
links simultaneously, PW, PC and PWC in Watts, respectively. Note that
PWC[t] = PW[t] + PC[t].
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• Arrival rate (A[t]): A[t] represents the amount of data, in bits, that
arrives to the user’s queue at the server from the application layer within
time slot t.

• Cost (C`[t]): C`[t] represents the estimated penalty function and cost in
terms of power consumption and QoE degradation when choosing resource
management strategy ` at time slot t. The selected resource management
strategy will determine the cost of the decision at time slot t.

• QoE metric (�`[t]): �`[t] represents the expected quality of experience
and user satisfaction when choosing download strategy ` at time slot t.
�`[t] represents �W[t], �C[t], �WC[t] when WiFi only, cellular only, and si-
multaneous use of both links are selected, respectively. �`[t] is expressed as
mean opinion score ranging from 1 to 5.

• Number of stalls (N`[t]): N`[t] represents the predicted number of stalls
or rebuferring events that the user is expected to experience if resource
management strategy ` is used at time slot t. If the transmission rate is
less than the required amount of data to be played, the user will experience
a re-bu↵ering event during time slot t; in this case, N`[t] = N [t� 1] + 1.

• Average stalls length (L`[t]): L`[t] represents the average length of stalls
that the user is expected to experience if download strategy ` is used at
time slot t. L`[t] considers the length of all the previous stalls experienced
by the user in addition to the expected stall length at time slot t.

The performance parameters are:

• Transmission data (µ`[t]): µ`[t] represents the amount of data that has
been transmitted in time slot t over WiFi and cellular links µW[t] and µC[t],
respectively, and on both links simultaneously µWC[t], expressed in bits.

• Transmission data (µ[t]): µ[t] represents the total amount of data that
has been transmitted till time slot t, expressed in bits.

• Queue backlog (Q[t]): The queue backlog Q[t] represents the amount, in
bits, of unfinished work as data not being downloaded yet at the beginning
of time slot t and can be expressed as follows:

Q[t+ 1] = Q[t]� µ`[t] + A[t] (4.1)

• Video data played (Y [t]): Y [t] represents the amount of video data
played till time slot t, expressed in bits.
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• Video data downloaded but not yet played (D[t]): D[t] represents
the amount of video data downloaded but not yet played till time slot t,
expressed in bits. D[t] can be computed as follows: D[t] = max(µ[t] �
Y [t], 0).

• QoE (�[t]): �[t] represents the quality of experience metric reflecting the
user satisfaction at time slot t. QoE metric does not capture subjective
quality of experience, however, �[t] will reflect the user satisfaction based
on the video stalling length and frequency objective measures.

• Number of stalls (N [t]): N [t] represents the number of stalls that the
user experiences till time slot t.

• Stalls length (W [t]): W [t] represents the length of stalls that the user
experiences till time slot t.

• Instantaneous throughput (I[t]): I[t] represents the instantaneous down-
load rate obtained at every time slot t, expressed in bits per second.

• Energy consumption (E[t]): E[t] represents the energy consumed to
download data at every time slot t, expressed in Joules.

• Actual streaming time (S[t]): Due to the channel condition variations,
the estimated rate may be di↵erent from the actual transmission rate at
time slot t. The data may be downloaded in less time if the actual trans-
mission rate is higher than the estimated. S[t] represents the actual amount
of time needed to download the video data at every time slot t, expressed
in seconds.

4.3 QoE-Aware Tra�c Splitting Optimization

This paper presents a QoE-aware resource management approach for video on
demand streaming applications. Our main aim is to solve tra�c splitting problem
capturing the balance between user QoE, delay bounds and energy consumption
for video streaming applications. To achieve high quality of experience with our
target application of video streaming, we want to minimize, if not eliminate, video
stalls for the users. As a result, the goal for QoE is to keep the network queue
backlog from building up and causing video stalls and delays. Therefore, we aim
to find the best tra�c splitting solution at every time slot t minimizing the delay
and stabilizing network queues while reducing the average power consumption
and achieving high quality of experience.

The queue length will grow infinitely when the download rate is less than the
video arrival rate; the user will then experience stalling events. The queue backlog
length is thus directly related to the system parameters and channel quality such
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as download rates over each interface. Under queue stability, all requested bits
are delivered within an acceptable limited delay experienced by the user, such
that, all video chunks will be delivered within their playback deadline [100]. To
ensure queue stability, decisions need to be made at every time slot t based on the
current queue state and system parameters, to control the change in a function
at every step. This process will allow controlling the ending value of the queue
backlog size from growing infinitely.

The tra�c splitting problem can be formulated as a multi-objective opti-
mization function leading to high QoE with a controlled tradeo↵ in energy con-
sumption. We use Lyapunov optimization framework from queuing theory, which
also provides low computational complexity and enables real-time decisions on
network transmission. The Lyapunov optimization guarantees queue stability
and achieves near-optimal performance for the chosen optimization objective [12]
[101].

Lyapunov-based utility functions are derived to provide solution for the multi-
objective optimization providing a balance between QoE, energy consumption
and delay. These utility functions are computed for the set of possible download
strategies which are in our case WiFi link alone, cellular link alone, and both
links simultaneously. The strategy providing the maximum utility function will
be selected for transmission at time slot t.

In this section, we present: (A) the Lyapunov drift-plus-penalty optimiza-
tion formulation of the multi-objective function minimizing the Lyapunov drift
and cost penalty function, (B) penalty cost function capturing the balance be-
tween the power consumption and QoE in addition to queue stability, and (C)
the proposed solution and utility functions derivation from the Lyapunov-based
multi-objective function.

4.3.1 Lyapunov Drift-Plus-Penalty Optimization Formu-
lation

The Lyapunov optimization considers controlling and minimizing the change in
the user download queue backlog size Q[t] at every time slot t resulting in a
scheduling algorithm that reduces delay bounds, stabilizes the queue over time
and enhances QoE.

Definition 1: The Lyapunov function is a scalar measure of the network
congestion.

⇣(Q[t]) =
1

2
(Q[t])2 (4.2)

Definition 2: The Lyapunov drift function �(Q[t]) measures the di↵erence
in the Lyapunov function between two consecutive time slots.

�(Q[t]) = E{⇣(Q[t+ 1])� ⇣(Q[t]) |Q[t]} (4.3)
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The function grows large when the system moves towards undesirable states.
Therefore, system stability is achieved by taking control actions that minimize
the Lyapunov function drift function �(Q[t]). If control decisions are made every
slot t to greedily minimize �(Q[t]), then backlogs are consistently pushed towards
a lower congestion state, which maintains network stability [100][101].

Lyapunov drift-plus-penalty method is used as an extension to the base Lya-
punov optimization by adding a penalty C[t] term weighted by a positive coef-
ficient V [t] that determines the significance of the penalty cost function. In our
case, the penalty cost function is expressed in function of power consumption and
quality of experience. The Lyapunov drift-plus-penalty approach uses drift steer-
ing technique for achieving real-time near-optimal performance-delay tradeo↵s
for dynamic resource management [12] [101].

The Lyapunov drift-plus-penalty method is used to capture queue backlog
stability in real-time network systems while optimizing the penalty objective
metric which allows a balance between delay, QoE and energy in our case. The
advantages of using this approach is that (1) it converges to [O(1/V ), O(V )]
performance-delay tradeo↵; it results in a time average penalty that is within
O(1/V ) of optimality, with a corresponding O(V ) tradeo↵ in average queue size,
(2) it provides local optimum guarantees even for non-convex functions, and (3)
it provides simple and fast solutions by making decisions based on the current
queue states and system parameters without requiring knowledge of the proba-
bilities associated with future random events such as arrival rates and channel
variation [101].

The objective function of the Lyapunov drift-plus-penalty approach will be:

argmin
`2L[t]

�(Q[t]) + V [t] · E{C`[t] |Q[t]} (4.4)

The objective function aims at (1) minimizing the Lyapunov drift to ensure queue
stability and prevent the queue to grow large, and (2) minimizing the cost function
at every time slot t that is in our case expressed in terms of power consumption
and quality of experience. The goal is to find the best tra�c splitting strategy `
that minimizes the Lyapunov drift to ensure minimum delay and queue stability
while reducing the transmission cost at every time slot t. Since the system is
dynamic and the channel conditions and rates estimation vary over time, the
positive weight V [t] and cost C`[t] are time dependent and may vary based on
the link selected for transmission at each time slot t.

For real-time tra�c splitting decisions, the multi-objective function will be
used to derive utility functions computed at every time slot t to choose the most
e�cient tra�c splitting strategy ` among L[t] represented by the following: (1)
WiFi only (W), (2) cellular only (C), (3) both links simultaneously (WC), and
(4) no transmission (0). These utility functions can be obtained by developing
the objective function as follows.
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Combining (4.1), (4.2) and (4.3), the Lyapunov drift function will be:

�(Q[t]) =
1

2
E{(Q[t]� µ[t] + A[t])2 �Q[t]2|Q[t]} (4.5)

 1

2
E{µ[t]2 + A[t]2 |Q[t]}�Q[t] · E{µ[t]� A[t] |Q[t]} (4.6)

Therefore, the multi-objective function in (4.4) can be upper bounded as
follows:

�(Q[t]) + V [t] · E{C`[t] |Q[t]}  1

2
E{µ`[t]

2 + A[t]2 |Q[t]}�Q[t] · E{µ`[t] |Q[t]}

+Q[t] · E{A[t] |Q[t]}+ V [t] · E{C`[t] |Q[t]}
(4.7)

The amount of data µ`[t] to be sent over link ` can be estimated at the
user side based on the transmission data rate R`[t] representing RW[t], RC[t]
or RWC[t]. Therefore, µ`[t] is replaced by its estimate amount of data transfer
when using resource management strategy ` at time slot t expressed as follows:
E{µ`[t] |R`[t]}.

Minimizing our target multi-objective function (4.4) can thus be achieved by
minimizing the upper bound of the objective function in (4.7). Define B[t] and
� as follows:

B[t] =
1

2
E{µ`[t]

2 + A[t]2 |Q[t]} (4.8)

� = E{A[t] |Q[t]} = E{A[t]} (4.9)

B[t] and � are non controllable parameters. � represents the expected data arrival
rate A[t] defined by the application which is in our case the video arrival rate. �
cannot be controlled by the user and is independent of the current queue back
Q[t]. B[t] is the sum of the variances of the transmission rate and the arrival
rate, which are non controllable parameters. In addition, B[t] is assumed to
be bounded by a fixed value B [12]. Thus, minimizing the Lyapunov drift and
penalty will result in minimizing the controllable part of the upper bound in (4.7)
�Q[t] ·E{µ`[t] |Q[t]}+V [t] ·E{C`[t] |Q[t]} which is equivalent to �E{Q[t] ·µ`[t]�
V [t] · C`[t] |Q[t]}.

Using the concept of opportunistically maximizing an expectation, the upper
bound expression is maximized by choosing the tra�c splitting strategy ` every
time slot t as follows [101]:

argmax
`2L[t]

Q[t] · E{µ`[t] |R`[t]}� V [t] · C`[t] (4.10)

L[t] is the set of possible tra�c splitting decision at time slot t. The solution of
the optimization problem is to find the best download strategy ` providing the
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highest performance gains as the best balance between QoE, delay, and energy
consumption. The selected strategy ` will determine the amount of data µ`[t] to
be downloaded during time slot t as µW[t] if WiFi link only is selected, µC[t] if
cellular link only, and µWC[t] if both links are used simultaneously.

4.3.2 Cost Function in Terms of Power Consumption and
QoE Metric For Video Streaming

We define the cost C`[t] of using a transmission link ` at time slot t as a function
of power consumption and QoE parameters as follows:

C`[t] = f(P`[t],�`[t]) = w1P`[t]� w2�`[t] (4.11)

where w1 and w2 are positive weights that define the relative importance of the
power consumption and QoE metrics. P`[t] is the power expenditure at time slot t
when using strategy ` and �`[t] is a metric representing the quality of experience.

P`[t] represents the average power consumed by the mobile device while re-
ceiving data over di↵erent interfaces over time slot following time instance t.
When WiFi link is selected, the mobile device will consume PW[t] to download
data during time slot t. Similarly, the device will consume PC[t] while receiv-
ing data over cellular link only. When both links are used simultaneously for
data download, the device will use both interfaces in parallel and will consume
PWC[t] = PW[t] + PC[t].

The quality of experience metric �`[t] is based on both objective and subjective
psychological measures of using an information and communication technology
service [102][103][104]. Several factors a↵ect quality of the video experienced by
the user end such as: (1) network parameters including transmission rate, packet
loss, delay, and jitter resulting in stalls and freeze frames (2) application type
and characteristics, for instance, video characteristics such as size, frame rate
and resolution, and (3) user characteristics such as user’s age, and interests. The
satisfaction of the user when using the application can be measured by Mean
Opinion Score (MOS) [105][106][107]. The MOS ranges between 1 (bad) and 5
(excellent) [102].

For video on demand streaming, the video bit rate, frame rate, compression
parameters, codec and resolution are non-adaptive and fixed. Video streaming is
characterized by playing synchronized media streams in a continuous way while
those streams are being downloaded from the application server without having
to wait for the entire video to be delivered. Once the playout phase starts, the
player fetches video frame from the bu↵er at a constant speed defined by the
video characteristics. When the service transmission rate is less than the arrival
data rate, the playing bu↵er becomes empty. In this case the player pauses and
the user will experience stalling and re-bu↵ering events. The video streaming
data is not lost, instead the frames are delayed, rather than being skipped. The
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last received frame freezes and is displayed until the data for the next frame
is being downloaded. Therefore, the main distraction for the user and quality
satisfaction degradation factors are stalling events, frequency and length. In our
model, compression artifacts and losses impairments are not considered since
the compression rate is non adaptive and the frame is only displayed when its
data is completely downloaded. As a result, common QoE metrics relying on
frame by frame and pixel analysis such as peak-signal-to-noise ratio (PSNR) [108],
structural similarity (SSIM) [109] and video quality metric (VQM) [104] are not
suitable for our model and cannot be considered [110].

In our work, we estimated the MOS values based on a QoE metric that is
derived from standards to better capture the video quality in our optimization
and performance assessment. We used re-bu↵ering artifact QoE metric presented
in Recommendation ITU-T P.1201 (2013) considering stalling and initial bu↵er-
ing for several reasons: (1) it assesses the e↵ect of perceptual bu↵ering-related
indicator to the overall media session quality score, (2) the model predicts mean
opinion scores on a 5-point scale as defined in ITU-T P.911, (3) it does not con-
sider the e↵ects of audio level, noise, delay and other impairments related to the
payload, and (4) it can be applied for non-adaptive, progressive download type
media streaming such as YouTube and operator managed video services over
Transmission Control Protocol (TCP) [111]. For these reasons, ITU-T P.1201
QoE metric is found to be valid and suitable to our model and consistent with
our considerations. In addition, the ITU-T P.1201 QoE metric �`[t] can be cus-
tomized to make real time decisions every time slot t. �`[t], presented in [111],
can be expressed as follows:

�`[t] = 5�max(min((⌦`[t] + �`), 4), 0) (4.12)

where ⌦`[t] and �` are the expected degradation caused by stalls and initial
bu↵ering till time t, respectively, when using link `. They are defined as follows:

⌦`[t] = max(min(s4 + s1 · exp((s2 · L`[t] + s3)N`[t]), 4), 0) (4.13)

�` =

(
max(min(d1 · log(T0 + d2), 4), 0), if T0 � 1� d2

0, otherwise
(4.14)

where T0 is the initial loading time in seconds, L`[t] is the averaged stalling
duration in seconds and N`[t] is the number of stalling events excluding initial
bu↵ering happening till time slot t when using link `. The coe�cients s1, s2, s3,
s4, d1 and d2 have the following values -1.72, -0.04, -0.36, 1.66, 0.29 and -3.29,
respectively [111].

In our model, we assume the QoE is not a↵ected by the initial bu↵ering
degradation; the video is either played without initial bu↵ering or the initial
bu↵ering is lower than 4.71 (1�d2) seconds. Accordingly, the main degradation of
the QoE is caused by the re-bu↵ering and stalling artifacts. To study the e↵ect of
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Figure 4.2: QoE ITU-T P.1201 metric and proposed QoE metric variations with
respect to the number of stalls considering average stalling length of 1 second.

the lengths and frequency of occurrence of stalling events on the QoE, Figure 4.2
shows the QoE MOS while varying the number of stalls. In the considered case
scenario, the average stalling length is considered 1 second. The results show
that the QoE varies from 5 (excellent) where the user experience no stalls, to
3.34 where the number of stalls is high. The QoE values are limited to 3.34 since
the initial bu↵ering artifacts are not considered. In addition, the re-bu↵ering
degradation score ⌦`[t], expressed in (4.13), ranges between 0 and 1.66.

In general, the MOS needs to vary between 1 and 5, however, the QoE metric
presented by ITU-T P.1201 is limited to 3.34. For this reason, we utilize an
updated metric inspired from the ITU-T P.1201 QoE metric to better emphasize
the impact of stalls on MOS. To this end, we use a logarithmic transformation
curve fitting to transform the ITU-T P.1201 QoE metric scale from 3.34-5 to 1-5.
Accordingly, the new metric �`[t] can be obtained from the ITU-T P.1201 QoE
metric �`[t] as follows:

�`[t] = a · log(b · �`[t] + c) (4.15)

where a, b and c are found to be 0.9377, 128.9 and -427.6, respectively. As
shown in Figure 4.2, the proposed QoE metric values range between 1 and 5.
For instance, when the number of stalls is 9 and 16, the MOS score provided
using ITU-T P.1201 QoE metric was 3.3715 and 3.3429, respectively. The video
is then considered fair, perceptible but not annoying for both cases. However,
when using the proposed QoE metric in (4.15), the scores were 2.0741 and 1.1590,
respectively. The results emphasized the impact of stalls; accordingly, when the
user experience 16 stalls, the video will be bad and very annoying, and in case of
9 stalls, the video will be poor and annoying.

The QoE metric �`[t] will be integrated in the Lyapunov drift-plus-penalty
objective to capture QoE-related tradeo↵s.
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4.3.3 Solution Approach: Tra�c Splitting with delay-power-
QoE Balance

The Lyapunov drift-plus-penalty problem formulated in (4.10) can be developed
by expressing the cost function in terms of power consumption and QoE. The
weighted cost function in (4.11) will be:

V [t] · C`[t] = V [t] (w1 · P`[t]� w2 · �`[t]) (4.16)

= V1[t] · P`[t]� V2[t] · �`[t] (4.17)

Therefore, the objective function will be:

argmax
`2L[t]

Q[t] · E{µ`[t] |R`[t]}� V1[t] · P`[t] + V2[t] · �`[t] (4.18)

where V1[t] and V2[t] are positive weights that define the relative importance of
the power and QoE metrics in the objective function.

In our problem, the decision variable is the strategy ` to be selected at time
slot t providing the best performance. One of four possible download strategies
can be selected. The decision will be either selecting WiFi link only, cellular
link only, both links simultaneously or no transmission at time slot t. Therefore,
the solution of the problem can be achieved by computing the following utility
function for the possible resource management strategies considered at every time
slot t. The optimal solution is given by the decision that maximizes the utility
per time slot [101].

U`[t] = Q[t] · E{µ`[t] |R`[t]}� V1[t] · P`[t] + V2[t] · �`[t] (4.19)

U`[t] is computed for di↵erent download strategies as follows:

UW[t] = Q[t] · E{µW[t] |RW[t]}� V1[t] · PW[t] + V2[t] · �W[t] (4.20)

UC[t] = Q[t] · E{µC[t] |RC[t]}� V1[t] · PC[t] + V2[t] · �C[t] (4.21)

UWC[t] = Q[t] · (E{µW[t] |RW[t]}+ E{µC[t] |RC[t]})
� V1[t] · (PW[t] + PC[t]) + V2[t] · �WC[t] (4.22)

where UW[t], UC[t] and UWC[t] are the utility functions of using WiFi link alone,
cellular link alone, and both links simultaneously, respectively, at time slot t. The
strategy providing the maximum utility function will be selected for transmission
at time slot t [101]. However, when the three utility functions are negative, there is
no benefit of sending over the links since the device will be consuming more power
than benefiting from downloading the data in terms of throughput and QoE; no
transmission is recommended in this case. The proposed TS-PQ approach
performs in real-time, autonomously at the user end following the steps shown in
Figure 4.3. The video specifications such as video size, duration and frame rate,
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Algorithm 4.1: The proposed multi-objective tra�c splitting with delay-power-QoE
balance TS-PQ

Input:
- Video specifications: video size, duration, frame rate, arrival rate A[t]
- Time slot duration: T

s

- Available interfaces (cellular/WiFi) and set of possible download strategies solutions:
L[t]
- Power consumption and QoE metric weights: V

1

[t] and V
2

[t], respectively
- Initial queue backlog size: Q[0] = 0
- Initial video data downloaded: µ[0] = 0
- Initial video data played: Y [0] = 0
- Initial video data downloaded but not yet played: D[0] = 0
- Initial number of stalls: N [0] = 0
- Initial stalls length: W [0] = 0

Output:
The download strategy `[t] 2 L[t] = {0, W, C, WC}

1: Estimate WiFi and cellular transmission rates R
W

[t] and R
C

[t], respectively, by
dividing the data downloaded over the time required for download

2: Estimate next chunk data size using each strategy `, E{µ
`

[t] |R
`

[t]}: (1)
E{µ

W

[t] |R
W

[t]}, (2) E{µ
C

[t] |R
C

[t]}, and (3) E{µ
WC

[t] |R
WC

[t]} as follows:
E{µ

`

[t] |R
`

[t]} = R
`

[t] · T
s

3: Estimate quality of experience �
`

[t] based on (4.15) for every strategy: �
W

[t],
�
C

[t], �
WC

[t] by estimating the number of stalls N
`

[t] and average length of stalls
L
`

[t] as follows:

• if D[t� 1] + E{µ
`

[t] |R
`

[t]} < A[t] then

• Update N
`

[t] = N [t� 1] + 1

• Estimate stalling length in time slot t as A[t]�(D[t�1]+E{µ`[t] |R`[t]})
A[t]

·T
s

• Compute L
`

[t] =
W [t�1]+

A[t]�(D[t�1]+E{µ`[t] |R`[t]})
A[t] ·Ts

N`[t]

• else

• Update N
`

[t] = N [t� 1]

• Compute L
`

[t] = W [t�1]

N`[t]

• end if

4: Compute the utility functions U
W

, U
C

and U
WC

as described in (4.20), (4.21),
and (4.22)

5: Select the strategy ` providing the higher utility function. No transmission when
utility functions are all negative

6: Send request to download the chunk from the server
7: Compute the actual data downloaded µ[t] and time needed to download the data
8: Update queue backlog Q[t] = Q[t� 1]� µ[t] +A[t]
9: Update data played Y [t] = min(D[t� 1] + µ[t], A[t])
10: Update data downloaded but not played D[t] = max(µ[t]� Y [t], 0)
11: Update QoE �[t] based on (4.15), number of stalls N [t], stalls length W [t],

instantaneous throughput I[t], and energy consumption E[t]
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Figure 4.3: Diagram representing the proposed TS-PQ approach for near real-
time optimized tra�c selection.

are obtained from the server before the start of the video download. The cycle
starts with estimating the rate provided by each link and updating the queue
based on the arrival rate and data received. Based on the rate estimation, the
data for the next time slot is estimated, and is considered for data download over
each interface. The quality of experience is estimated over each link using (4.15)
based on the estimated number of stalls and length over each interface. The utility
for each strategy is then computed using (4.20), (4.21), and (4.22). The strategy
providing the maximum overall utility function is selected at every time slot t
for data download. The cycle is then repeated after updating statistics such as
transmission time, data rates, queue length, number and duration of stalls, until
video data is downloaded. The steps of the method are shown in Algorithm 4.1
along with the needed parameters and computations for the proposed approach.

In regards to complexity of our method, the proposed approach is scalable
since the tra�c splitting decision is made independently at the user end. The
method can accommodate for multi-users and multi-interfaces. In the case of
multi-user scenario, every user is responsible for her or his own decisions based
on its system parameters. If n interfaces are available for a user, (2n � 1) utility
functions are computed. In our case study, we consider the coexistence of WiFi
and cellular networks. For this case, as previously described, three utility func-
tions are computed at each user end: UW[t], UC[t] and UWC[t] corresponding to
the following transmission strategies: WiFi only, cellular only and both interfaces
simultaneously, respectively.

4.4 Results and Discussion

To validate the proposed QoE-aware tra�c splitting approach under realistic
conditions, experimental measurements are used to determine WiFi and cellular
key link parameters, such as e↵ective download rate and energy consumed per
second during data reception. The obtained link parameter values are then used
to quantify and analyze the performance of the proposed QoE-aware Lyapunov-
based approach for HetNet resource management.
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4.4.1 Experimental Energy Measurements

Experimental measurements were conducted to capture the e↵ect of signal strength
and tra�c load on the e↵ective download rate and energy consumption. An An-
droid application was developed on the Samsung Galaxy SIII device to download
data of di↵erent sizes ranging between 100 KB and 1.2 MB from an HTTP server
via WiFi (802.11b) and 3G/4G cellular links. The collection was repeated at
di↵erent locations where we could have varying tra�c loads and signal strengths,
which included home (low load) and library (high load) network environments,
and di↵erent signal strengths such as close and far from the WiFi access point,
indoor and outdoor scenarios. In each scenario, the data rate was obtained from
the application while power consumption was measured using a data acquisition
device from National Instruments monitored via a LABVIEW application. The
results showed that the mobile device consumes more energy when receiving on
the 3G interface than when receiving on the WiFi interface. The average power
consumed was 1.307 Watts for WiFi and 1.859 Watts for 3G.

4.4.2 Performance Evaluation

In order to assess the performance e↵ectiveness of the proposed cellular/WiFi
tra�c splitting approach, we generated results for the following di↵erent strate-
gies including state-of-the-art related work from the literature:

1. WiFi only (WO): the user downloads data using WiFi link only.

2. Cellular only (CO): the user downloads data using WiFi link only.

3. Maximum rate network selection (MaxR-NS): the link providing the higher
rate is selected in every time slot.

4. Minimum energy network selection (MinE-NS): the link proving the lower
energy consumption is selected in every time slot.

5. Stable and adaptive link selection approach (SALSA): the network provid-
ing higher delay-power tradeo↵ utility function is selected. The authors in
[12] presented a network selection approach for energy-delay tradeo↵ using
the Lyapunov optimization framework for video upload. The weight V [t] of
the power metric is considered to be variable over time to adapt the impact
of power based on the queue size and delay. We compare our proposed ap-
proach to SALSA since it also uses Lyapunov drift-plus-penalty for HetNet
resource management, however, our approach is di↵erent since it considers
tra�c splitting in addition to quality of experience.

6. Tra�c splitting using both links simultaneously (TS-S): the user always uses
both links simultaneously to download data.
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7. Tra�c splitting with delay-power balance (TS-P): the user uses the strategy
that provides higher utility based on our proposed delay-power tradeo↵,
with fixed weighing factor V [t] of the power metric and considering tra�c
splitting option. Therefore, the cost function in this case only captures
power without considering QoE. The objective function (4.18) is reduced
to:

argmax
`2L[t]

Q[t] · E{µ`[t] |S`[t], R`[t]}� V [t] · P`[t] (4.23)

where the queue length Q[t] and V [t] give weights to the transmission rate
and power consumption respectively.

8. Tra�c splitting with delay-power-QoE balance TS-PQ : the user uses the
strategy including tra�c splitting that provides higher utility based on our
proposed QoE-aware resource management approach providing delay-cost
tradeo↵ where cost is a function of both power and QoE with weighing
factors V1[t] and V2[t], respectively.

4.4.3 Simulations Setup

We first evaluated the performance of our proposed approach using simulations
conducted using MATLAB to stream a video using di↵erent strategies. We used
MATLAB for convenience, which allowed us to easily access and modify the
physical layer and provided high flexibility in modifying the data requests.

In our model, a mobile device downloads data for video streaming application,
where the video specifications, such as video size, duration, and frame rate, are
obtained as input from the server before the start of the video download. The
chosen video has a size of 7 MBytes, a duration of 60 seconds, a frame rate of
25 fps, and an arrival rate of 117 KBytes every second. The cellular and WiFi
transmission rates were assumed to have exponential distribution with di↵erent
mean values as presented in the results section below.

As presented in Algorithm 4.1 and Figure 4.3, at each time slot of duration
1 second, the transmission rate, queue size, QoE and power consumption are
first estimated. The quality of experience is estimated over each link using equa-
tion (4.15) based on the estimated number of stalls and length over each interface.
The mobile device makes decision on the link combination that provides the high-
est utility function, where the options are: (1) WiFi only, (2) cellular only, (3)
both links simultaneously, or (4) no transmission. Once data is downloaded based
on the selected strategy, the actual parameters are recorded such as queue size,
transmission rate, QoE and energy consumption. Recordings become part of the
inputs for estimating the parameters of the next time slot. The queue is updated
based on the arrival rate and data received. If the transmission rate is lower than
the video arrival rate, the mobile device is able to download only a fraction of
the requested data. The remaining data that was not downloaded is stored in
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Figure 4.4: Average e↵ective through-
put in KBps variation with respect to
V . The highlighted value V , equal to
3.128 · 1011, represents a tradeo↵ be-
tween energy and throughput.
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Figure 4.5: Energy consumption in
Joules variation with respect to V . The
highlighted value V , equal to 3.128·1011,
represents a tradeo↵ between energy
and throughput.

the queue to be downloaded in the next time slots. If the transmission rate is
higher than the video arrival rate, the data is downloaded on time without any
delay, stalls, or freeze frames. In this case, the queue is empty with a queue size
of zero. The process is then repeated, statistics are updated every time slot until
video data is completely downloaded.

4.4.4 Simulations Results and Analysis

To compare the performance of the various strategies mentioned in Section 4.4.2,
we evaluated the queue size, the average throughput, total energy consumption,
delay and QoE for three case scenarios. In the first two case scenarios, symmetric
rate for both WiFi and cellular is considered. In the first case, WiFi and cellular
transmission rate follow exponential distribution with average rate of 110 KBps.
In the second case, WiFi and cellular transmission rate follow exponential dis-
tribution with average rate of 450 KBps. In the third scenario, we considered
asymmetric rates; we fixed the value of the average WiFi rate of 200 KBps and
varied the average cellular rate from 1 KBps to 600 KBps. In this section, we
present analysis for the selected power and QoE weights used in our simulations
and performance results for the considered scenarios. In addition, we present
a study on the duration of time slot and its e↵ect on the performance of the
considered approaches.

Study on the Power Consumption and QoE Weights

As presented in (4.23), when TS-P is used, the queue length Q[t] and V [t] give
weights to the transmission rate and power consumption, respectively. Accord-
ingly, when the queue length of unfinished work is high, the transmission rate will
have more impact than power and the transmission will occur even if the trans-
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Table 4.1: Simulations results and statistics with RW and RC average of 110 KBps

WO CO MaxR-NS MinE-NS SALSA TS-S TS-P TS-PQ

Total streaming time (s) 72.4 68.64 64.64 64.76 64.64 62.04 63.2 63.2

Total delay (s) 12.4 8.64 4.64 4.76 4.64 2.04 3.2 3.2

Average throughput (KBps) 98.9 104.3 110.8 110.6 110.8 115.4 113.3 113.3

Average e↵. throughput (KBps) 114.7 108.4 147.1 142.6 147.1 216.2 155.8 155.9

Total energy consumption (J) 88.2 126.3 85.8 83.9 85.8 143.1 88.6 90.4

Average queue size (KB) 532.1 394.6 116.6 132.3 116.6 37.3 80.3 76.82

Maximum queue size (KB) 1430.2 972.2 536.4 547.8 536.4 231.8 367.1 367.1

Number of stalls 23 21 12 12 12 7 8 7

Number of freeze frames 310 216 116 119 116 51 80 80

QoE � (4.15) 1.01 1.03 1.57 1.57 1.57 2.77 2.46 2.74

mission rate is too small. However, when the queue length is low, the power has
more impact; thus, the approach can decide to de↵er transmission to save energy.
To give the power and rate similar impact, the value V [t] should be estimated
based on the observed values for queue length, transmission rate, and power con-
sumption through simulations. Figures 4.4 and 4.5 show the average e↵ective
throughput and energy consumption variations with respect to V [t]. In this con-
sidered scenario, the WiFi and cellular transmission rate followed an exponential
distribution with average of 110 KBps. To obtain a tradeo↵ between throughout
and energy, we selected the value of V highlighted in red to be 3.128 · 1011. Simi-
larly, the value of V [t] was selected to be 6.256 · 1011 when the average WiFi and
cellular transmission rate was set to 450 KBps.

Using TS-PQ, V1[t] and V2[t] present the weights for power consumption and
QoE, respectively. Using the same analysis, V1[t] was chosen to be 3.128 · 1011
and 6.256 ·1011 when the average link transmission rate was set to 110 KBps and
400 KBps, respectively. Similarly, V2[t] is fixed to be 5.52 · 1010 and 11.04 · 1012
when the average link transmission rate was set to 110 KBps and 450 KBps,
respectively.

Results for Scenario 1: WiFi and Cellular Average Rate of 110 KBps

In the first scenario, we considered a symmetric rate for WiFi and cellular links.
The transmission rates are modeled following an exponential distribution with
average rate of 110 KBps. Table 4.1 presents the results for scenario 1 and
compares the performance of the various approaches presented in Section 4.4.2
in terms of (1) total streaming time which is the time required to stream and
play all the video, (2) delay which is the total duration of stalls, (3) average
throughput which is computed by dividing the total amount of data received
by the total streaming time, (4) average e↵ective throughput which computed by
averaging the throughput achieved in every time slot t, (5) total energy consumed
for downloading the video, (6) average and maximum queue size, (7) number of
stalls which represents to rebu↵ering events experienced by the user, (8) number
of freeze frames, and (9) QoE MOS computed based on (4.15).

The results show low performance for WiFi only, cellular only and network
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Figure 4.6: Queue size in KB variation over time with RW and RC average of
110 KBps.

selection strategies. The user will experience more delay, high queue length,
freeze frames and stalls when one link is selected instead of tra�c splitting on
both links. The proposed TS-PQ approach provided the best balance in terms of
throughput, queue stability, energy consumption and user satisfaction.

To show performance in terms of queue stability, Figure 4.6 shows the queue
length variation over time. The queue size varies based on the service transmis-
sion rate and the arrival data process. The queue size will go very large if the
transmission rate is lower than the arrival data rate. Otherwise, the data will be
downloaded on time and the queue size will be 0. The results in Figure 4.6 show
that tra�c splitting approaches TS-S, TS-P and TS-PQ provided higher queue
stability, lower queue length and lower delay. TS-S approach showed higher queue
stability since the data is always downloaded simultaneously over both links.

To quantify the tradeo↵ between QoE and energy consumption, Figure 4.7
presents the total energy consumption versus the QoE mean opinion score for
each approach. In addition, Figure 4.8 presents the tradeo↵ between total energy
consumption in Joules versus the average e↵ective throughput in KBps. The aim
is to minimize the energy expenditure while increasing user quality of experience
and throughput. The areas with best performance are highlighted in each figure;
these areas lead to high QoE and throughput with reduced energy consumption.

The approaches where tra�c splitting is considered provided the best perfor-
mance in terms of delay, queue length, throughput and user satisfaction while
consuming very high energy. TS-P consumed lower energy consumption with a
performance reduction in throughput, delay and QoE since it aims to provide a
tradeo↵ between energy-throughput without considering QoE. Our proposed ap-
proach TS-PQ aimed to provide a balance between QoE, energy consumption and
delay. The results for scenario 1 showed that TS-PQ provided QoE of 2.74 which
is higher than the QoE provided by TS-P (2.46) and close to the QoE provided
by the TS-S approach (2.77). However, the proposed approach TS-PQ provided
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Figure 4.8: Total energy expendi-
ture (J) and average e↵ective through-
put (KBps) for every approach with RW

and RC average of 110 KBps.

lower energy cost of 89.1 Joules which is 37.7% less than the energy consumed
when using both links simultaneously TS-S. The number of freeze frames and
stalls were the lowest with 7 stalls and 80 freeze frames which leads to a delay of
3.2 seconds.

Considering the same scenario 1 where the WiFi and cellular rates are sym-
metric and modeled following an exponential distribution with average rate of
110 KBps, initial bu↵ering is considered before starting video playout. We as-
sumed the video playout starts after downloading specific amount of data corre-
sponding to 2 seconds of video streaming. Table 4.2 presents the performance
results for scenario 1 with initial bu↵ering considerations and compares the per-
formance of the various approaches presented in Section 4.4.2 in terms of (1)
total streaming time which is the time required to stream and play all the video,
(2) delay which is the total duration of stalls, (3) average throughput which is
computed by dividing the total amount of data received by the total streaming
time, (4) average e↵ective throughput which computed by averaging the through-
put achieved in every time slot t, (5) total energy consumed for downloading the
video, (6) average and maximum queue size, (7) number of stalls which represents
to rebu↵ering events experienced by the user, (8) number of freeze frames, and (9)
QoE MOS computed based on equation (4.15). As presented in Table 4.2, adding
initial bu↵ering enhanced the quality of experience of all the compared strategies.
The number of stalls is reduced since the initial bu↵er allowed to download more
data before starting the video streaming playout, which enhanced the QoE met-
ric. The network selection strategies were able to provide the user with higher
QoE of 2.75 when initial bu↵ering is considered instead of 1.57 without initial
bu↵ering. Similarly, the TS-PQ proposed approach was able to provide higher
QoE of 3.37. The initial bu↵ering does not have an e↵ect on the transmission
parameters and performance in terms of download time, throughput and energy
consumption of the algorithms. The mobile is able to download data within the
same duration, however, the playout is a↵ected. Initial bu↵ering allows the video
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Table 4.2: Simulations results and statistics with RW and RC average of 110 KBps
with initial bu↵ering of 2 seconds of video data

WO CO MaxR-NS MinE-NS SALSA TS-S TS-P TS-PQ

Total streaming time (s) 72.4 68.64 64.64 64.76 64.64 62.04 63.2 63.2

Total delay (s) 12.4 8.64 4.64 4.76 4.64 2.04 3.2 3.2

Average throughput (KBps) 98.9 104.3 110.8 110.6 110.8 115.4 113.3 113.3

Average e↵. throughput (KBps) 114.7 108.4 147.1 142.6 147.1 216.2 155.8 156.2

Total energy consumption (J) 88.2 126.3 85.8 83.9 85.8 143.1 88.6 89.1

Average queue size (KB) 532.1 394.6 116.6 132.3 116.6 37.3 80.3 75.7

Maximum queue size (KB) 1430.2 972.2 536.4 547.8 536.4 231.8 367.1 367.1

Number of stalls 17 15 7 7 7 4 6 5

Number of freeze frames 260 166 66 69 66 26 55 54

QoE � (4.15) 1.1 1.22 2.75 2.75 2.75 3.72 3.06 3.37

Table 4.3: Simulations results and statistics with RW and RC average of 450 KBps

WO CO MaxR-NS MinE-NS SALSA TS-S TS-P TS-PQ

Total streaming time (s) 62.96 61.48 60.32 60.52 60.32 60 61 60

Total delay (s) 2.96 1.48 0.32 0.52 0.32 0 1 0

Average throughput (KBps) 111.1 113.7 115.9 115.5 115.9 116.5 114.6 116.5

Average e↵. throughput (KBps) 469.1 448.1 655.1 638.3 655.1 917.3 634.5 642.5

Total energy consumption (J) 42.5 56.3 31.8 30.2 31.8 44.2 26.7 32.4

Average queue size (KB) 20.1 14.3 1.3 1.7 1.3 0 5.6 0

Maximum queue size (KB) 342.1 168.6 32.7 56.7 32.7 0 115.6 0

Number of stalls 6 4 2 2 2 0 1 0

Number of freeze frames 74 37 8 13 8 0 25 0

QoE � (4.15) 3.04 3.71 4.40 4.39 4.40 5 4.70 5

playout to start after downloading 2 seconds of video, which results in a reduction
in the number of freeze frames and stalls duration. This, in turn, directly a↵ects
the quality perceived by the end user and enhance the QoE.

Results for Scenario 2: WiFi and Cellular Average Rate of 450 KBps

In the second scenario, we considered WiFi and cellular links with transmis-
sion rates following an exponential distribution with average rate of 450 KBps.
Table 4.3 presents the performance results for scenario 2 and compares the per-
formance of the various approaches and parameters presented in Section 4.4.2.
The results in Table 4.3 show that tra�c splitting approaches provide higher
performance with lower delay, freeze frames and stalls. In addition, all the ap-
proaches were able to provide better performance when the transmission rates
increased from 110 KBps in scenario 1 (see Table 4.1) to 450 KBps in scenario 2
(see Table 4.3). For instance, when WiFi is only used, the delay was reduced from
12.4 in scenario 1 where the average rate is 110 KBps to 2.96 seconds where the
average rate is 450 KBps; the number of stalls was reduced from 23 (scenario 1)
to 6 (scenario 2). The proposed approach showed an excellent performance in
terms of QoE without any stalls or bu↵ering events similar to the performance
of using both links simultaneously TS-S while consuming less energy.

Figure 4.9 shows the queue length variation over time when the WiFi and cel-
lular average transmission rates are 450 KBps. Same analysis obtained from Fig-
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Figure 4.9: Queue size in KB variation over time with RW and RC average of
450 KBps.

ure 4.6 can be drawn, except that when the transmission rate is higher, more data
can be downloaded which makes the queue length smaller. The proposed tra�c
splitting approach TS-PQ and using both links simultaneously TS-S showed an
empty queue, which indicates an excellent quality of experience. The provided
transmission rate was higher than the arrival rate. All the data is downloaded
on time without any stalls or delay which reflects an excellent QoE performance.
However, the the tra�c splitting with delay-power balance TS-P approach causes
stalls as shown in Figure 4.9(b).These results can also be reflected in Table 4.3.

Figures 4.10 and 4.11 show QoE-energy consumption and throughput-energy
consumption tradeo↵s, respectively. The proposed approach was able to perform
perfectly without any delay, stalls or freeze frames and provide the user with
excellent quality of experience MOS of 5. Similar performance analysis can be
remarked when evaluating QoE by metrics presented in [112] and [113]. Using
both links simultaneously always (TS-S) approach was able to provide similar
performance in terms of quality of experience, however, the proposed approach
consumes 26.6% less energy.

Adding initial bu↵ering enhanced the quality of experience of all the compared
strategies. Table 4.4 presents the results for scenario 2 with initial bu↵ering con-
siderations and compares the performance of the various approaches presented in
Section 4.4.2. We assumed the video playout will start after downloading specific
amount of data corresponding to 2 seconds of video streaming. The compared
strategies showed higher user quality of experience. The network selection and
tra�c splitting strategies were able to provide QoE of 5 without any stalls or
bu↵ering events.
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Figure 4.10: Total energy expenditure
(J) and QoE MOS for every approach
with RW and RC average of 450 KBps.
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Figure 4.11: Total energy expenditure
(J) and average e↵ective throughput
(KBps) for every approach with RW and
RC average of 450 KBps.

Table 4.4: Simulations results and statistics with RW and RC average of 450 KBps
with initial bu↵ering of 2 seconds of video data

WO CO MaxR-NS MinE-NS SALSA TS-S TS-P TS-PQ

Total streaming time (s) 62.96 61.48 61 61 61 61 62 61

Total delay (s) 2.96 1.48 1 1 1 1 2 1

Average throughput (KBps) 111.1 113.7 114.6 114.6 114.6 114.6 112.8 114.6

Average e↵. throughput (KBps) 469.1 448.1 655.1 638.3 655.1 917.3 634.5 642.5

Total energy consumption (J) 42.5 56.3 31.8 30.2 31.8 44.2 26.7 32.4

Average queue size (KB) 20.1 14.3 1.3 1.7 1.3 0 5.6 0

Maximum queue size (KB) 342.1 168.6 32.78 56.7 32.7 0 115.6 0

Number of stalls 3 2 0 0 0 0 0 0

Number of freeze frames 49 12 0 0 0 0 0 0

QoE � (4.15) 4.01 4.39 5 5 5 5 5 5

Results for Scenario 3: WiFi Average Rate of 200 KBps with Di↵erent
Cellular Average Rates

In the previous scenarios, we used symmetrical rate for both WiFi and cellular
links. To show the performance of more realistic scenarios, we compared the
performance of asymmetrical WiFi and cellular transmission rates considering
video streaming for 17 hours duration which corresponds to 1020 runs of 60 sec-
onds videos. The performance metrics such as QoE and energy consumption are
measured every 60 seconds and the overall metrics represent the average over
the 1020 runs. In our simulations, the WiFi transmission rate follows an expo-
nential distribution with average of 200 KBps. The cellular rate followed the
exponential distribution with average transmission rate varying from 100 KBps
to 600 KBps. The performance of the proposed QoE-aware Lyapunov based ap-
proach (TS-PQ) was compared to the maximum rate network selection approach
(MaxR-NS), WiFi only (WO) and cellular only (CO) approaches. Figures 4.12
and 4.13 show the performance of the mentioned approaches in terms of QoE and
total energy consumption, respectively. Figure 4.12 shows the QoE MOS for the
di↵erent approaches with respect to the variation of average RC rate. The ITU-T
P.1201 (2013) QoE metric is trained and validated for sequences having duration
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Figure 4.12: QoE MOS variation with
respect to cellular average rate RC.
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Figure 4.13: Total energy consumption
in Joules with respect to cellular aver-
age rate RC.

between 30 and 60 seconds, where the user does not interact with the player
such as stop, play, rewind and fast forward. Accordingly, the QoE for 17 hours
duration is measured every 60 seconds and the overall QoE metric represents the
average QoE over the whole duration.

The proposed approach was able to provide a MOS of 4.5 when the average
cellular rate was higher than 550 KBps, and a MOS of 3.9 when the cellular rate
was 100 KBps. CO performance was enhanced with the increase of average trans-
mission rate to achieve MOS of 2.8, similar to WO, when the WiFi and cellular
rates have equal average rates, and a maximum MOS of 3.9 when the average rate
is 600 KBps. The QoE performance of TS-PQ and MaxR-NS approaches also
increased with the increase of the average RC rate since the mobile device will
take advantage of the better channel quality to make better decisions reducing
energy while achieving high quality end-user experience.

Figure 4.13 shows that MaxR-NS provided lower energy consumption since
the approach decides on the link providing higher rate every time slot. When the
average RC is low, MaxR-NS tends to select the WiFi link more often; MaxR-NS
and WO have similar energy consumption. When RW and RC average rates are
equal, WO and CO presents similar QoE, however, energy consumption is higher
since mobile device consumes more power while receiving over cellular link.

TS-PQ consumed more energy than MaxR-NS and WO when the cellular
average rate was small since the proposed approach will tend to use of both links
simultaneously to download more data, reduce delay and maximize QoE. When
the average RC increases, TS-PQ consumes less energy since it took advantage of
the intelligence of the proposed approach; the data in the queue is lower when the
transmission rate is higher, thus, the impact of delay is reduced and the power
has more impact on the decision.

In addition to the average values for QoE and energy consumption, the vari-
ations in each of the measures over 1020 runs (17 hours) are captured to show
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Figure 4.14: Average e↵ective through-
put in KBps variation with respect to
time slot duration Ts.
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Figure 4.15: Total energy consumption
in Joules variation with respect to time
slot duration Ts.

the accuracy of the proposed approach. As presented in Figure 4.12, the stan-
dard deviation for QoE metric ranged between 0.2 and 0.5 which corresponds
to a range of 4.44% to 14%. The standard deviation for energy consumption
ranged between 5.6 and 11.2 Joules (Figure 4.13), which corresponds to a range
of 10.85% to 14%. This indicates a relatively acceptable variation level in the
performance of each run and validates the reliability and accuracy of our TS-PQ
proposed approach.

Study on the Time Slot Duration

In our work, we used the notion of time slot to allow the feasibility of making
decisions periodically. To evaluate the e↵ect of the duration of the time slot
on the performance of the compared approaches, simulations were conducted
for di↵erent time slot durations varying from 1 second to 16 seconds. WiFi
and cellular transmission rates follow the exponential distribution with average
rate of 110 KBps. The results in Figures 4.14, 4.15 and 4.16 show the average
e↵ective throughput, energy consumption and QoE, respectively, for maximum
rate network selection (MaxR-NS), SALSA and the proposed TS-PQ approach.
The duration of the time slot will decide how often the transmission decision is
made. In general, very small time slot duration (less than 1 second) will not
be practical due to the overhead of establishing connection between the server
and the mobile device, sending the data request and receiving the data. When
the time slot has longer duration, the system will not be able to adapt with
fast channel variations, and take advantage of better strategies and transmission
decisions, which a↵ects the quality perceived at the user end. Therefore, a large
time slot duration may lead to only one decision if the video size is small. As
shown in Figures 4.14, 4.15 and 4.16, the performance decreased with the increase
of the time slot duration. Our proposed approach TS-PQ decides every time
slot duration on the transmission strategy based on the WiFi and cellular rates
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Figure 4.16: QoE MOS variation with respect to time slot duration Ts.

estimation. The accuracy of the rates estimation decreases when the time slot
duration is longer. This results in inaccurate and ine�cient transmission decisions
a↵ecting the overall performance of the approach. Accordingly, the solution needs
to be real-time, adapt to the fast variation of the channel conditions to provide
accurate rate estimation; for these reasons, we chose to use 1 second time slot
duration in our work.

4.5 Test Bed Implementation for Cellular/WiFi
Tra�c Splitting under Realistic Operational
Conditions

In the previous section, the proposed real-time QoE-aware resource management
approach for video streaming applications was evaluated using simulations. In
this section, the approach is tested under realistic operational conditions for ac-
curate evaluation and validation using our own test bed implementation.

4.5.1 Test Bed Setup

In our test bed implementation, we considered the di↵erent components of the
HetNet architecture; they can be represented by the following three levels: (i) the
application service provider layer, (ii) the network wireless interfaces and operator
level, and (iii) the user end as shown in Figure 4.17. The test bed is implemented
using a modular approach which facilitated enhancements and extensions to im-
plement and test various protocols, design alternatives, or intelligence options.

• The application service provider layer: Video streaming applications
are deployed on an HTTP server acting as application service provider, and
the source for the video files. The server receives data requests from the
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Figure 4.17: Test bed implementation composed of three components:(1) mobile
device application, (2) network interfaces, and (3) HTTP application server.

mobile device over WiFi and cellular networks, with specific data size and
o↵set to be downloaded.

• The network wireless interfaces and operator level: In our conducted
experiments, we used two wireless interfaces WiFi (802.11b) and 3G cellular
networks.

• The user end: The client application is implemented using Java program-
ming language on an Android mobile device. The decision on the amount
of data to be downloaded over each interface every time slot is made, as
decribed in section 7.2, based on the one of the following selected trans-
mission strategy: (1) WiFi only, (2) cellular only, (3) both links simulta-
neously, or (4) no transmission. Accordingly, a specific amount of data is
then requested at time slot t from the server using cellular and WiFi links,
respectively. The requests are sent to the HTTP server indicating the o↵set
and the size of the requested data. The data downloaded is reassembled as
frames and played on the device.

The main challenge in the test bed implementation is to allow the use of multiple
interfaces simultaneously, in addition to implementing the proposed algorithms
and test them under real-time conditions. In the current mobile devices, the traf-
fic is o✏oaded directly to WiFi when WLAN is available. Some new smartphones
such as iOS 9 Iphones, Samsung Galaxy S5 and Sony Experia Z3 introduced auto-
switching between WiFi and cellular data networks to avoid poor WiFi connec-
tions. However, tra�c splitting and the use of multiple networks simultaneously
is not yet supported. Our test bed design addresses this issue by supporting both
techniques and giving the opportunity to the device to be connected to the best
network for data download or using both links simultaneously to achieve perfor-
mance gains. This can be achieved by allowing parallel transmission using the
concept of multi-threading on a rooted Android device.

The user downloads a video with specific size, duration and frame rate. For
real-time decision making, at each time slot of duration 1 second, the client
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application makes decision on the links to use for downloading data based on the
selected strategy. If the transmission rate is lower than the video arrival rate,
the mobile device downloads only a fraction of the requested video data. The
remaining data that was not downloaded is stored in the queue to be downloaded
in the next time slots. The video data is not lost, the frames are not skipped,
they are only delayed when stalls exist. If the transmission rate is higher than
the video arrival rate, the data is downloaded on time without any delay, stalls
or freeze frames. In this case, the queue is empty with a queue size of zero. To
compare the performance of the various strategies mentioned above, we based our
evaluation on performance metrics such as the queue size, the average throughput,
total energy consumption, delay and QoE.

Since the rates are varying and dependent on the channel conditions, the com-
parison of the algorithms may not be accurate. For these reasons, we developed
an emulator for transmission rate control. The emulator controls the transmis-
sion rate and provides the same rate distribution every time for fair comparison
between algorithms. To represent realistic scenarios, the WiFi and cellular net-
works were monitored, the values for WiFi and cellular transmission rates were
recorded as traces. These traces were fed into the emulator; which restricts the
downloading rates to the values in the traces. Accordingly, the performance of
the algorithms was tested under same conditions for accurate evaluation and
comparison.

4.5.2 Test Bed Experimental Results

In our considered scenario, the video has a size of 7 MBytes, duration of 60 sec-
onds, and frame rate of 25 fps. The arrival rate will be 117 Kbytes every second.
The WiFi and cellular transmission rates traces collected in Beirut Lebanon, RW

and RC, presented an average of 42 KBps and 46 KBps, respectively. Using
the same analysis presented in Section 4.4.4, V1[t] and V2[t] were chosen to be
1.25 · 1011 and 3 · 1010, respectively. The results for the di↵erent approaches are
presented in Table 4.5. In addition, we considered di↵erent scenario with RW and
RC average rates of 130 KBps. V1[t] and V2[t] chosen to be 2.5 · 1010 and 9 · 1012,
respectively. The results are shown in Table 4.6.

Similar to the simulations analysis, the results showed that our proposed
approach was able to provide the best balance between QoE, delay and energy
consumption. It provided high user satisfaction with an acceptable increase in
energy consumption. Note that the number of stalls is high in Table 4.5 since
the WiFi and cellular rates were relatively low in the traces, which led to a poor
QoE for all the compared algorithms.

The test bed results presented in Table 4.6 are highly correlated to the sim-
ulations results presented in Tables 4.1 and 4.3. Similar analysis presented in
Section 4.4.4 can be obtained when comparing the implemented approaches. The
results show low performance for WiFi only, cellular only and network selection
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Table 4.5: Test bed results and statistics with RW and RC average of 42 KBps
and 46 KBps, respectively

WO CO MaxR-NS MinE-NS SALSA TS-S TS-P TS-PQ

Total streaming time (s) 169.72 154.96 144.31 169.11 170.11 72.76 117.33 73.26

Total delay (s) 109.72 94.92 84.31 109.11 110.11 12.76 57.33 13.26

Average throughput (KBps) 42.21 46.24 49.65 42.37 42.22 100.73 61.06 98.45

Total energy consumption (J) 221.82 287.29 214.14 211.02 222.32 224.83 218.51 219.24

Average queue size (KB) 2374.21 2444.66 2367.91 2294.07 2317.01 858.06 1212.97 1106.96

Maximum queue size (KB) 4626.59 4554.67 4569.81 4567.51 4588.73 1524.61 2270.57 7165.45

Number of stalls 173 175 165 174 175 52 99 50

QoE � (4.15) 1 1 1 1 1 1 1 1

Table 4.6: Test bed results and statistics with RW and RC average of 130 KBps

WO CO MaxR-NS MinE-NS SALSA TS-S TS-P TS-PQ

Total streaming time (s) 62.02 61.87 61.81 61.81 61.97 60 60.58 60

Total delay (s) 2.02 1.87 1.81 1.81 1.97 0 0.58 0

Average throughput (KBps) 115.53 115.82 115.92 115.92 115.62 119.42 118.27 119.42

Total energy consumption (J) 79.72 112.63 112.03 79.27 80.31 95.92 81.08 84.51

Average queue size (KB) 152.14 137.60 132.00 125.37 147.84 0 12.96 0

Maximum queue size (KB) 241.66 223.08 216.58 215.68 235.84 0 69.82 0

Number of stalls 11 9 8 10 11 0 4 0

QoE � (4.15) 1.80 2.25 2.51 2.01 1.80 5 3.74 5

Table 4.7: Test bed results and statistics with RW and RC average of 110 KBps
and 450 KBps

RW and RC average 110 KBps RW and RC average 450 KBps

WO CO MaxR-NS TS-PQ WO CO MaxR-NS TS-PQ

Total streaming time (s) 72.57 68.60 66.92 62.85 62.49 61.89 60.71 60

Total delay (s) 12.57 8.60 6.92 2.85 2.49 1.89 0.71 0

Average throughput (KBps) 98.7 104.4 107.1 114.0 114.66 115.78 118.03 119.42

Total energy consumption (J) 94.85 125.35 101.55 92.61 75.48 114.03 109.56 72.65

Average queue size (KB) 197.41 241.15 148.78 23.39 86.62 8.24 2.84 0

Maximum queue size (KB) 817.61 851.00 515.83 300.04 297.44 145.79 68.49 0

Number of stalls 22 22 15 6 6 3 2 0

QoE � (4.15) 1.02 1.02 1.22 3.05 3.06 4.02 4.39 5.00

strategies. The user experienced more delay, freeze frames and stalls when one
link is selected. Comparing the approaches considering tra�c splitting, TS-P
provided the lower energy consumption with a tradeo↵ cost in terms of QoE. The
proposed TS-PQ approach provided a very high quality of experience similar to
TS-S when both links are used simultaneously with 11.8% lower energy consump-
tion. This proves the e↵ectiveness of the proposed approach and demonstrates
the feasibility of achieving performance gains in practice using standard mobile
devices.

4.5.3 Validation: Test Bed versus Simulation Results

To validate our simulation results, we conducted scenarios where data rates are
similar to those used in the simulation results (Sections 4.4.4). Table 4.7 presents
test bed results for WiFi and cellular average rates of 110 KBps and 450 Kbps
using the following approaches: (1) WiFi only (WO), (2) Cellular only (CO),
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(3) Maximum rate network selection (MaxR-NS), and (4) our proposed tra�c
splitting approach with delay-power-QoE balance (TS-PQ).

The obtained test bed results are similar to the simulation results presented in
Table 4.1 and Table 4.3. For instance, the simulated results for TS-PQ approach
showed a total streaming time of 63.2 seconds with 7 stalls and a QoE of 2.74
when the average rate is 110 KBps (see Table 1). The test bed results for the same
scenario showed a total streaming time of 62.85 seconds with 6 stalls and a QoE
of 3.04 (see Table 4.7). TS-PQ led to high performance gains in both simulations
and test bed results for average rates of 450 KBps. The total streaming time is 60
seconds without any stalls providing an excellent QoE (see Tables 4.1 and 4.7).
The results presented in Table 4.7 are also coherent with the test bed results
presented in Tables 4.5 and 4.6. Our proposed approach is shown to achieve
enhanced performance and a balance between delay, energy consumption and
QoE.

4.6 Dynamic Tra�c Splitting Limitations and
Challenges

This chapter provided a solution for real-time tra�c splitting across cellular and
WiFi heterogeneous networks that provides improved QoE while reducing energy
consumption and delay. The solution is based on a Lyapunov drift-plus-penalty
formulation. The performance of the proposed approach was evaluated using
both simulations and our own test bed implementation under realistic operational
conditions using video on demand streaming applications. Results for various
scenarios demonstrated favorable performance for the proposed tra�c splitting
approach.

The proposed solution can be extended to handle other types of applications
that may exhibit di↵erent experience for the user such as live video or large file
downloads. In these cases, the QoE metrics need to be adjusted for the specific
experience such as data loss or total delays. Additionally, it can be extended to-
wards a more optimized solution by predicting downstream performance in future
time slots, capturing the need and cost associated with data re-transmission to
recover from losses, or accounting for video multi-casting in multi-user scenarios
taking into account resource limitations.
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Chapter 5

Tra�c O✏oading for Maximum
User Capacity in Dense D2D
Cooperative Networks

In Chapters 3 and 4, we addressed user-centric cellular/WiFi resource manage-
ment strategies for a single user considering network selection and tra�c splitting.
In this chapter, we extend our work to consider multi-user cellular/WiFi resource
management in ultra dense device-to-device cooperative networks.

Ultra dense networks and device-to-device communications are expected to
play a major role in 5G networks to meet tremendous tra�c requirements. Typi-
cal UDNs include dense urban areas, open-air assembly and stadiums where a very
high number of users request simultaneously large amounts of data [8]. In conven-
tional networks, the mobile terminals receive their data from the base station or
access point. In device-to-device cooperative networks, the mobile terminals take
advantage of the co-existence of other mobile terminal to download the common
content data. D2D cooperation is considered one of the main solution to increase
the system capacity when macro network resources become scarce due to large
tra�c demands [9]. In addition, data caching and content owners distribution
in D2D networks are considered promising ways to increase the system capacity
and coverage. The content owners mobile terminals will distribute the common
content data to other mobile terminals. Accordingly, the MTs can cooperate to
receive data using di↵erent wireless interfaces, either from the BS/AP over long
range links or from other mobile terminals or content owners over short range
D2D links.

One of the major challenges in UDNs is the limited number of non-overlapping
orthogonal channels. The use of non-orthogonal channels causes interference
which decreases the achievable user throughput. Accordingly, considering channel
allocation along with tra�c o✏oading is needed to ensure that the users are
provided with their service target rate.

In our work, we formulated the resource management problem where the
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channel allocation problem is simultaneously considered with tra�c o✏oading
taking into account the interference caused by the use of non-orthogonal channels
in our problem formulation. The problem can be shown to be NP-Complete and
cannot be solvable for a large number of users. Due to the high complexity of
the problem, we divided the resource management problem into two optimization
problems. First, we address optimal tra�c o✏oading maximizing use capacity,
where the channels are assumed to be orthogonal. The solution determines the
best strategy for downloading the content either over long range connectivity from
the access points or short range connectivity from peer mobile devices. We then
solve optimal channel allocation maximizing the distance between co-channels
transmitters, thus, reducing interference.

In this chapter, we address tra�c o✏oading in dense D2D cooperative net-
work where a large number of users request simultaneously common content data
with/without content owners caching. We formulate the problem as an opti-
mization problem to find the optimal LR and SR channel allocation constrained
by the number of APs, LR and SR channels, users per cooperation cluster, and
transmission rate. We solve the optimization problem using AIMMS software and
CPLEX as a solver. To evaluate our solution, we focus on a stadium topology
to demonstrate the significant gains of optimized tra�c o✏oading in ultra dense
wireless networks.

Optimal solutions may not be achievable in real-time ultra dense D2D coop-
erative networks due to the high time complexity of the problem. In addition, the
optimization problem is holistic and considers all the existing users when provid-
ing optimal tra�c o✏oading solutions. Accordingly, with the arrival of new users,
the channel assignments and connections will change to find optimal LR and SR
channel allocation. This leads to frequent changes in the allocation of channels
and the role of users as cluster heads, LR and SR users, which is not feasible in
real-time networks. For these reasons, we propose a dynamic tree-based tra�c
o✏oading approach (TBTO) which assigns the users’ connections consecutively
based on a tree having BSs/APs and mobile terminals as nodes. We show that
the proposed approach is able to provide near-optimal solutions with very low
time complexity.

This chapter is organized as follows. The system model is presented in Sec-
tion 5.1. The resource management optimization problem formulation considering
simultaneously tra�c o✏oading and channel allocation is detailed in Section 5.2.
The optimal tra�c o✏oading for maximum user capacity in dense D2D coop-
erative networks is presented in Section 5.3. The proposed dynamic tree-based
tra�c o✏oading approach is presented in Section 5.4. Performance results are
presented in Section 5.5. Limitations and challenges are drawn in Section 5.6.
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Figure 5.1: D2D cooperative network formed by one BS/AP and four clusters
served by three CH-CRs and one CH-CO. CH-CRs receives over LR from BS/AP
and transmit to SR users. Three COs are present: one CO serves as CH-CO
transmits to other SR users and two considered served.

5.1 System Model

In our work, we address resource management in cache-enabled D2D cooperative
networks where some users are downloading common content video streaming
data while others have the data cached. The mobile terminals can use two wire-
less interfaces: one interface to communicate with the BS/AP over a long range
wireless technology (such as WLAN, UMTS/HSPA, or LTE) and another in-
terface to communicate with other MTs or content owners using a short range
wireless technology (such as LTE-Direct, WiFi-Direct, Bluetooth or WiFi ad hoc
mode).

As shown in Figure 5.1, the network is formed by BSs/APs, content owners
and clusters served by a cluster head mobile terminal. Accordingly, a mobile
terminal may receive its data from a BS/AP over LR wireless technology or from
another MT using SR wireless technology. In our work, we define: (1) LR user
as a mobile terminal receiving data from a BS/AP over LR connection, (2) SR
user as a mobile terminal receiving data from other MT acting as a cluster head
(CH) over SR connection, (3) a CH is a mobile terminal transmitting data to
SR users over SR channels. A cluster head can be either:(1) a content owner
(CH-CO) which is a mobile terminal who has already the data content cached,
or (2) a content recipient (CH-CR) who is a LR user receiving data from BS/AP
over LR channel.

Our network is formed byM BSs/APs and a large number of mobile terminals
K. A MT i requests a common content data such as live and on-demand video
streaming with a specific transmission target rate RT,i. Each small cluster com-
posed of mobile terminals served by the same mobile terminal CH is considered
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a cluster. Accordingly, one cluster head exists per cluster or group. A content
owner has already the data cached, therefore, we consider a CO i served without
receiving the data over LR or SR connections. A CO can act as a cluster head
CH-CO when it transmits data to other MTs. In our formulation, we used input
parameter ci to indicate whether a mobile terminal i is a content owner.

We assume that the rate adaptation is based on M-QAM modulation. The
rates RL,ij and RS,ij are the rates achievable on LR and SR channels between
transmitter i and receiver j, respectively, computed as Rij = log2 Mij ·W , where
W is the passband bandwidth of the channel and assuming the symbol rate is
equal to the passband bandwidth, and Mij is the highest possible order of the
M-QAM modulation scheme selected based on the following expression [114]:

Pe  0.2e�1.5�ij/(Mij�1) (5.1)

where Pe is the target probability of error, and �kj represents the signal-to-
noise ratio (SNR) when the LR and SR channels are orthogonal. It repre-
sents the signal-to-interference-plus-noise ratio (SINR) when the channels are
non-orthogonal.

In case the LR and SR channels are orthogonal, the signals will not interfere
each other. �kj will be the signal-to-noise ratio given by (5.2):

�ij = Pr,ij/�
2 (5.2)

where �2 is the thermal noise power and Pr,ij is the received power linked to the
transmit power Pt,ij of the transmitter i as follows:

✓
Pr,ij

Pt,ij

◆

dB

= 10 log10 � 10↵ log10
dij
d0

+ (hij)dB (5.3)

where  is a pathloss constant which depends on the antenna characteristics and
wireless environment, ↵ is the pathloss exponent, d0 is a reference distance (typi-
cally 1 or 10 meters in indoor or short range outdoor scenarios), dij is the distance
between transmitter i and receiver j, and hij is a random variable representing
channel fading [114].

In case the channels are non-orthogonal, interference is seen by the mobile
terminals. In general, a MT will be subjected to interference from di↵erent
BSs/APs using non-orthogonal channels while receiving data over LR, and from
cluster heads using non-orthogonal channels while receiving over SR. In our case
model, we consider a network composed by a limited number of base stations. We
then assume that the LR channels allocated are orthogonal. Therefore, the LR
mobile terminals will not be subjected to LR interference. However, the SR users
will be subjected to interference caused by cluster heads using non-orthogonal
channels. The SINR is represented by �kj as follows:

�ij =
Pr,ij

�2 +
P

c2Ci
Pr,c

(5.4)
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where Pr,ij is the received power from cluster head i over SR, Pr,cj is the received
power as interference, and c are cluster heads that belong to Ci, defined as set of
cluster heads transmitting on same channel as cluster head i.

Accordingly, based on the transmit power, distance and channel conditions
between the receiver and the transmitter, the transmission rate is estimated. The
goal is to serve the maximum number of users, while meeting the service target
rate for all the served MTs subject to system constraints and network bandwidth
limitations.

5.2 Resource Management Optimization Prob-
lem Formulation with Caching Considera-
tions

In this section, we formulate the resource management problem as an optimiza-
tion problem while considering tra�c o✏oading and channel allocation simulta-
neously. The goal is to maximize the capacity of the system by o✏oading the
data tra�c to D2D communication taking advantage of the existence of content
owners caching. We present first the optimization problem formulation including
objective function, decision variables and constraints. We then present solution
methodology and complexity analysis.

5.2.1 Resource Management Problem Formulation

We aim at serving the maximum number of mobile terminals with minimum
number of LR channels while maintaining system target performance for every
user. The system takes into consideration the existence of content owners which
are mobile terminals having the data cached. The problem is formulated as an
optimization problem aiming at determining the download strategy for every user
while meeting target transmission rate. The outcome of the solution determines
the mobile terminal connectivity for downloading data either from BS/AP via
long range connectivity or from another MT via short range connectivity, in
addition to the allocation of channels to cluster heads.

The decision variables (Table 5.1) are presented as follows:

• zi: a binary variable that indicates whether mobile terminal i is served,
i.e., receiving data via LR from a BS/AP or via SR from another mobile
terminal. In general, users might not be served due to capacity and/or
coverage limitation.

zi =

⇢
1 if MT i is served
0 otherwise

(5.5)
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• ymi: a binary variable that indicates whether mobile terminal i is receiving
data over LR from BS/AP m.

ymi =

⇢
1 if MT i receives data from BS/AP m
0 otherwise

(5.6)

• vij: a binary variable that indicates whether mobile terminal j is receiving
data over SR from MT i.

vij =

⇢
1 if MT i transmits data to MT j
0 otherwise

(5.7)

• ui: a binary variable that indicates whether mobile terminal i is a cluster
head, i.e., receiving data over LR and transmitting over SR to other mobile
terminals.

ui =

⇢
1 if MT i is a cluster head
0 otherwise

(5.8)

• Qpi: binary variable that indicates whether channel p is allocated to mobile
terminal i.

Qpi =

⇢
1 if channel p is allocated to cluster head i
0 otherwise

(5.9)

Accordingly, the decision variables are: y a matrix of size M ⇥K, v a matrix
of size K ⇥ K, Q a matrix of size K ⇥ NSRo u and z vectors of length K.
The resource management problem is subjected to several constraints in terms of
capacity and coverage limitations. The problem is formulated as follows:
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argmin
y,v,u, z,Q

MX

m=1

KX

i=1

ymi � �

KX

i=1

zi (5.10)

subject to

vij 
MX

m=1

ymi + ci, 8i, 8j (5.11)

cj +
KX

i=1,i 6=j

vij +
MX

m=1

ymj = zj, 8j (5.12)

MX

m=1

KX

i=1

ymi  NLR (5.13)

KX

i=1

ymi  KL,m, 8m (5.14)

KX

j=1,j 6=i

vij  KC,i, 8i (5.15)

ui 
MX

m=1

ymi + ci, 8i (5.16)

ui � vij, 8i, 8j (5.17)
KX

i=1

ui  NSR (5.18)

MX

m=1

RL,mi · ymi +
KX

j=1,j 6=i

RS,ji · vji � RT,i · zi · (1� ci), 8i (5.19)

NSRoX

p=1

Qpi = ui, 8i (5.20)

$PK
i=1 ui

NSRo

%


KX

i=1

Qpi · ui 
&PK

i=1 ui

NSRo

'
, 8p (5.21)

ymi 2 {0, 1}, vij 2 {0, 1}, ui 2 {0, 1}, zi 2 {0, 1}, Qpi 2 {0, 1} (5.22)

• Equation (5.10) is the objective function which aims to miminize the usage
of long range channels and maximize coverage and thus force more coop-
eration between mobile terminals. The aim is to serve the largest number
of users while using the minimum LR channels. � is a positive coe�cient
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indicating the impact of maximizing the number users served. Since our
primary goal is to serve the maximum number of users, � parameter should
have a high value. We assume � is equal to the number of active users to
give very high impact for serving users instead of minimizing the use of LR
channels.

• The first constraint (5.11) guarantees that only a mobile terminal i receiving
over LR (CH-CR) or a content owner can forward data to other mobile
terminals over SR. For instance, MT j can receive data from MT i (vij = 1)

only if MT i receive data over LR from a BS/AP m
⇣PM

m=1 ymi = 1
⌘
or if

MT i is a content owner with ci = 1. Otherwise, if MT i is not a CO and

does not receive over LR
⇣PM

m=1 ymi = 0
⌘
, MT j cannot receive data from

MT i (vij = 0).

• The second constraint (5.12) makes sure any MT j that is served by the sys-

tem (zj = 1), receives data either on LR from BS/AP m
⇣PM

m=1 ymj = 1
⌘

or SR from mobile terminal i (one of vij variables is equal to 1) or is a
content owner cj = 1.

• Constraint (5.13) ensures that the number of LR users is less than NLR.

• Constraint (5.14) guarantees that the number of users served by a BS/AP
m is less than KL,m.

• Constraint (5.15) guarantees that the number of users in a cluster served
by a cluster head i is less than the maximum allowed number KC,i.

• Constraints (5.16), (5.17) and (5.18) guarantee that the number of clusters
is less than NSR. The variable ui indicates if MT i is a cluster head which
can be a cluster head content recipient CH-CR or a content owner CH-CO.
Constraint (5.16) guarantees that MT i can be a cluster head (ui = 1) if it
is a content owner ci = 1 or it receives over LR (one of the ymi variable is
equal to 1), constraint (5.17) ensures that MT i can be a cluster head if it
transmits data over SR (one of the vij variable is equal to 1). Constraint
(5.18) limits the number of cluster heads to NSR.

• Constraint (5.19) ensures that the throughput for every mobile terminal
(considered served and is not a CO, i.e., zi = 1 and ci = 0) is greater than
target rate RT,i. If a MT is receiving data over LR, its rate Ri will be equal
to RL,mi with one of ymi variable equals to 1 and vji = 0, 8j. If the mobile
terminal i is receiving over SR from another MT j, Ri will be equal to RS,ji

with ymi = 0, 8m and vji = 1.

• Constraint (5.20) ensures that every cluster head mobile terminal is assigned
one SR channel.
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Table 5.1: Main parameters and variables

Parameters

K the set of requesting MTs, where a MT is referred to as MT i, i = 1, ...,K

M the set of BSs/APs, where a BS/AP is referred to as BS/AP m, m = 1, ...,M

� positive coe�cient indicating the tradeo↵ between maximizing the number of users served and
minimizing the number of LR channels

ci a binary variable that indicates whether MT i is a content owner

NSRo number of orthogonal non-overlapping SR channels

dij distance between transmitter (BS/AP or MT) i and MT j

RS,ij transmission rate on SR from the MT i to MT j

RL,mj transmission rate on LR from the BS/AP m to MT j

RT,i target transmission rate to MT i to meet video application requirements

NLR maximum number of LR channels in the network

NSR maximum number of clusters in the network

NCH number of cluster heads in the network

KL,m maximum number of MTs served by a BS/AP m

KC,i maximum number of MTs served over SR by a cluster head MT i in a cluster

Variables

zi a binary variable that indicates whether MT i is receiving data

ymi a binary variable that indicates whether MT i is receiving data over LR from BS/AP m

vij a binary variable that indicates whether MT j is receiving data over SR from MT i

ui a binary variable that indicates whether MT i is a cluster head

Qpi a binary variable that indicates whether channel p is allocated to cluster head i

• Constraints (5.21) ensure that all the channels are used with minimum reuse
factor. If the number of orthogonal channels NSRo is greater than the num-
ber of cluster heads NCH (

PK
i=1 ui), every channel p can be then assigned

maximum once
⇣
0 

PK
i=1 Qpi · ui  1

⌘
. If the number of orthogonal chan-

nels is less than the number of CHs, constraint (5.21) ensures that a channel

p is then allocated with minimum reuse, i.e. maximum of

&
PK

i=1 ui

NSRo

'
and

minimum of

$
PK

i=1 ui

NSRo

%
.

• The last constraint sets the decision variables y, v, u, z and Q to be binary.

The user throughput can then be computed as presented in Section 5.1. The
SINR can be presented as follows:

�ij =
Pr,ij

�2 +
PK

h=1,h 6=i

PNSRo

p=1 uh ·Qph ·Qpi · Pr,hj

(5.23)

where cluster head i sends data to mobile terminal j. The cluster heads h will
cause interference to the main transmission between mobile terminal i and j.
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5.2.2 Solution Methodology

The problem is a binary linear programming problem. The number of binary
variables is (M + NSRo)K + K2 composed of: y a matrix of size M ⇥ K, v a
matrix of size K ⇥ K, Q a matrix of size K ⇥ NSRo, u and z vectors of length
K that can be computed using values of variables y and v. The problem is NP-
complete. Starting with the first two constraints, the problem is divided into two
directions or directed graphs whether the mobile terminal is receiving data over
LR or SR. Each graph is composed of di↵erent subgraphs based on the problem
constraints. The problem is similar to Minimum Dominating Set problem in
Directed Graphs which has been shown as NP-Hard [115][116]. It can be shown
that solution for the optimal resource management problem can be verified in
polynomial time, thus the problem is NP-complete.

Due to its very high complexity, we divided the resource management problem
into two separate problems: (1) optimal tra�c o✏oading for maximum user
capacity assuming all the channels are orthogonal (Section 5.3), and (2) optimal
SR channel allocation to the cluster heads defined by the tra�c o✏oading solution
(Chapter 6).

5.3 Tra�c O✏oading Optimization Problem For-
mulation with Caching Considerations

In this section, we present the tra�c o✏oading problem formulation including
objective function, decision variables and constraints while assuming the channels
are orthogonal. We then present solution methodology and complexity analysis.

Similar to the formulation presented in Section 5.2, the decision variables are:

• zi: a binary variable that indicates whether mobile terminal i is served.

• ymi: a binary variable that indicates whether mobile terminal i is receiving
data over LR from BS/AP m.

• vij: a binary variable that indicates whether mobile terminal j is receiving
data over SR from MT i.

• ui: a binary variable that indicates whether mobile terminal i is a cluster
head, i.e., receiving data over LR and transmitting over SR to other mobile
terminals.

Accordingly, the decision variables are: y a matrix of size M ⇥K, v a matrix
of size K ⇥K, u and z vectors of length K.
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The tra�c o✏oading problem can be formulated as follows:

argmin
y,v,u, z

MX

m=1

KX

i=1

ymi � �

KX

i=1

zi (5.24)

subject to

vij 
MX

m=1

ymi + ci, 8i, 8j (5.25)

cj +
KX

i=1,i 6=j

vij +
MX

m=1

ymj = zj, 8j (5.26)

MX

m=1

KX

i=1

ymi  NLR (5.27)

KX

i=1

ymi  KL,m, 8m (5.28)

KX

j=1,j 6=i

vij  KC,i, 8i (5.29)

ui 
MX

m=1

ymi + ci, 8i (5.30)

ui � vij, 8i, 8j (5.31)
KX

i=1

ui  NSR (5.32)

MX

m=1

RL,mi · ymi +
KX

j=1,j 6=i

RS,ji · vji � RT,i · zi · (1� ci), 8i (5.33)

ymi 2 {0, 1}, vij 2 {0, 1}, ui 2 {0, 1}, zi 2 {0, 1} (5.34)

The tra�c o✏oading objective function and constraints (5.24) to (5.34) are ex-
actly similar to the resource management objective function and constraints (5.10)
to (5.22) presented in Section 5.2, respectively. However, the complexity of re-
source management optimization problem is reduced to consider tra�c o✏oading
problem without channel allocation. The decision variable Q indicating channel
allocation is not considered in addition to constraints (5.20) and (5.21).

The problem is a binary linear programming problem. The number of binary
variables is MK+K2 composed of: y a matrix of size M ⇥K, v a matrix of size
K⇥K, u and z vectors of lengthK that can be computed using values of variables
y and v. It can be shown that solution for the optimal tra�c o✏oading problem
can be verified in polynomial time, thus the problem is NP-complete [115][116].
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We solved the optimization problem using AIMMS software which is de-
signed for modeling and solving large-scale optimization and scheduling-type
problems. CPLEX optimization software package in AIMMS was used as a
solver [117]. CPLEX uses the simplex algorithm to solve very large linear pro-
gramming problems, convex and non-convex quadratic programming problems,
and convex quadratically constrained problems.

5.4 Proposed Dynamic Tree-Based Tra�c Of-
floading Algorithm

Due to the high complexity of the problem, optimal solutions may not be achiev-
able in real-network dense scenarios. We propose dynamic tree-based tra�c of-
floading TBTO algorithm to provide near-optimal solutions with very low time
complexity. The proposed dynamic tree-based tra�c o✏oading algorithm assigns
the users’ connections sequentially based on a tree having BSs/APs and mobile
terminals as nodes. Our approach is based on a 4-level tree as follows: (1) the
network as root node, (2) the BSs/APs as first level parent nodes, (3) the cluster
heads and LR users as second level nodes receiving data from BSs/APs, and (4)
SR users receiving data from cluster heads as fourth level terminal nodes.

In general, a mobile terminal can be connected to a BS/AP or another termi-
nal considered as cluster head to download common content data. Accordingly,
we consider BSs/APs or CHs as parent nodes. When connected to a BS/AP,
a MT j is considered a LR user and is added to the tree. When connected to
another mobile terminal i, MT j is added to the tree in the fourth level as a SR
user. In addition, the mobile terminal i becomes a cluster head. Accordingly,
every BS/AP forms its own sub-tree having LR users and cluster heads as their
child nodes. Similarly, the CHs form their own sub-trees, called clusters in our
model, having SR users as child nodes. We define N as the set of existing nodes
in the tree composed of BSs/APs and assigned users.

Figure 5.2 presents a tree representation of a D2D network and the connections
between the nodes. The network is formed by two BSs/APs and seven mobile
terminals. Each BS/AP has its own sub-tree serving one CH and one LR user:
BS/AP1 serves MT1 and MT4 and BS/AP2 serves MT5 and MT7. The cluster
heads MT1 and MT5 form their own cluster where MT1 serves SR users MT2
and MT3, and MT5 serves SR user MT6.

To assign users’ connections, the algorithm builds a tree considering users
sequentially, one user at a time. It starts from the root node which is in our case
the network. The root has by default all the BSs/APs as child nodes. To assign
the connection for user i, the nodes N of the current tree are considered, and the
mobile terminal i is added as a child node to the tree based on Algorithm 5.1.

In our work, we aim at maximizing network capacity by minimizing the num-
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Algorithm 5.1: The proposed tree-based tra�c o✏oading (TBTO) approach for
maximum system capacity

Input:
- K number of users,
- M number of BSs/APs,
- d

ij

distance between transmitter (BS/AP or MT) i and MT j,
- N

LR

maximum number of LR channels in the network,
- N

SR

maximum number of SR channels in the network,
- K

L,m

maximum number of MTs served by a BS/AP m,
- K

C,i

maximum number of MTs served by a cluster head MT i,
- R

T,i

target transmission rate to MT i to meet video application requirements,

Output:
- z

i

a binary variable that indicates whether MT i is receiving data
- y

mi

a binary variable that indicates whether MT i is receiving data over LR from
BS/AP m
- v

ij

a binary variable that indicates whether MT j is receiving data over SR from
MT i
- u

i

a binary variable that indicates whether MT i is a cluster head

1: Consider the network as root node
2: Assign BSs/APs as default child nodes to the network root node. The BSs/APs

will be then considered first level nodes in the tree. At this stage, N = {m|m 2
M}

3: Assign a connection and allocate a parent node for a MT j as follows:

1. Estimate the transmission rate R
X,nj

provided by a node n existing in the
tree N , where X represents either LR or SR connection:

• Estimate transmission rate R
L,mj

over LR from a node n which is
in this case a BS/AP m

• Estimate transmission rate R
S,ij

over SR from a node n which can
be a LR user or a cluster head MT i

2. Consider the nodes providing transmission rates higher than the target
rate of MT j as candidate nodes CN.
CN = {n|n 2 N , R

X,nj

� R
T,j

}

3. Check if transmission rates satisfy MT j target rate

• if CN = ; then

• Delay MT j assignment until all users are considered

• Add MT j to the non-assigned users

• else

• Consider the weight of SR rate R
S,nj

between the existing CH
and LR users nodes n and MT j twice the weight of the LR rate
R

L,nj

between the BSs/APs nodes n and MT j to encourage tra�c
o✏oading to D2D connectivity
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3: 3. • Check system constraints:

– if the candidate node n is a CH MT i & the number of its
child nodes = K

C,i

then Eliminate node n end if

– if the candidate node n is a BS/AP m & the number of its
child nodes = K

L,m

then Eliminate node n end if

– if the candidate node n is a BS/AP m & the number of LR
users = N

LR

then Eliminate node n end if

– if the candidate node n is a MT i & the number of CHs =
N

SR

then Eliminate node n end if

• Select the candidate node n providing higher system throughput

– if multiple nodes provide the same system throughput then
Select node n serving less child nodes end if

• Add the MT j as a child to node n

• Update the tree, N and decision variables:

– if MT j is added to the tree then MT j is served & z
j

is set
to 1 end if

– if node n is a BS/AP m then MT j is a LR user & y
mj

is
set to 1 end if

– if node n is a MT i then

– MT j is a SR user & v
ij

is set to 1

– MT i is a CH & u
i

is set to 1

– end if

• end if
4: Repeat process (3) for all the non-assigned users until no more users can be

added as nodes to the tree.
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Figure 5.2: A tree representation of the network connections, formed by 4 levels:
(1) network level, (2) BSs/APs level, (3) CHs and LR users level, and (4) SR
users.

ber of LR channels used, which allows to serve more users. In order to increase
the capacity of the network, the mobile terminals are encouraged to use D2D
connectivity. Accordingly, we gave twice the weights of LR connectivity to D2D
SR connectivity.

As presented in Algorithm 5.1, the connection for a mobile terminal j is
assigned as follows: (1) the transmission rates provided by existing nodes N :
BSs/APs (level 2 nodes) and LR users and cluster heads (level 3 nodes) are
estimated, (2) the nodes providing transmission rates higher than the target rate
of MT j are considered as candidates nodes (CN), (3) the weight of SR rate RS,nj

between the LR user n and MT j is considered twice the weight of the LR rate
RL,mj between the BS/AP m and MT j to encourage D2D tra�c o✏oading, and
(4) select the candidate node providing higher system throughput.

In case two nodes provide the same throughput, the mobile terminal j will
be connected to the node serving less MTs. The assignment also makes sure
the system constraints are satisfied such as the maximum number of users in a
cluster, the maximum number of LR users and SR users. If the target rate of
a MT i is not satisfied by the nodes in the current tree, the mobile terminal
assignment will be delayed and reconsidered later. This process continues until
all users are considered and no more users can be added to the tree.

To illustrate an example of the proposed tree-based tra�c o✏oading algo-
rithm, we considered a network formed by two BSs/APs and 25 users. As pre-
sented in Figure 5.3(a), the proposed TBTO approach was able to provide an
optimal solution where all the users are served with minimum number of LR
channels and clusters. The network is divided into 4 clusters as follows: (1)
MT 1 serving 3 MTs: 2, 3 and 9, (2) MT 4 serving 4 MTs: 5, 6, 7 and 8, (3)
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(a) TBTO order 1: LR users= 4,
CHs= 4, outage= 0%.
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(b) TBTO order 2: LR users= 5,
CHs= 5, outage= 0%.
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(c) TBTO order 3: LR users= 6,
CHs= 5, outage= 0%.
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(d) TBTO order 4: LR users= 5,
CHs= 5, outage= 12%.
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(e) TBTO order 5: LR users= 5,
CHs= 5, outage= 20%.
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(f) TBTO order 6: LR users= 6,
CHs= 4, outage= 36%.

Figure 5.3: Proposed tree-based tra�c o✏oading approach performance for dif-
ferent user arrival orders. The network is formed by two BSs/APs and 25 users.
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MT 10 serving 4 MTs: 11, 12, 13, and 14, and (4) MT 15 serving 10 MTs: 16 to
25. The solution of the proposed approach varies with the arrival order of users
since the tree is built consecutively based on the user arrival. For instance, the
order in Figure 5.3(b) shows sub-optimal assignment for the TBTO approach.
The MT 11 in Figure 5.3(a) arrived before MT 10 and MTs 15 to 25 before
MTs 12, 13 and 14. The TBTO solution in Figure 5.3(b) provides an outage 0%
while using 5 LR channels serving as cluster heads. The order in Figure 5.3(c)
provides an outage of 0% with 6 LR users where 5 serve as cluster heads. The
cluster served by MT 14 reached its maximum number of users within a cluster,
which made MT25 be served as LR user by BS/AP 2. Figure 5.3(d) and Fig-
ures 5.3(e) show outage of 12% and 20%, respectively, while forming 5 clusters.
In Figure 5.3(d), MTs 19, 20 and 21 were out of coverage. In Figure 5.3(e), MTs
17, 18, 19, 20 and 21 were out of coverage. The worst performance provided by
TBTO is presented in Figure 5.3(f) where the network is composed of 6 LR users,
4 cluster heads with an outage of 36%.

5.5 Tra�c O✏oading Results and Analysis

In this section, we present first the simulation setup including case study topology,
assumptions and main system parameters. In Section 5.5.2, we present the per-
formance of the network without D2D cooperation. In Section 5.5.3, we present
solutions with D2D cooperation without content owner caching as a function
of user density level. In Section 5.5.4, we consider content owner caching with
D2D cooperation and show the system performance as a function of user density
level varying the number of content owners. Performance results of the proposed
dynamic tree-based tra�c o✏oading algorithm are presented in Section 5.5.5.

5.5.1 Simulation Setup

As a case study, we consider a stadium with a capacity of 100,000 seats. Our
topology is close to the topology of Camp nou stadium, located in Barcelona,
Spain. Camp nou, with a seating capacity of 99354, is considered the largest
stadium in Europe in terms of capacity. The considered dimensions of the sta-
dium are assumed to be 280m ⇥ 240m as shown in Figure 5.4. Due to the high
complexity of the problem and the large number of users, we divided the area
into small sections of 20m⇥ 20m. The main system parameters are summarized
in Table 5.2.

Mobile terminal demands

Every 20m ⇥ 20m section is composed of 700 seats, assuming the seat width to
be 0.5m, and the space between rows to be 1.14m [118]. The attendants density
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Table 5.2: Network parameters and assumptions

Parameters Values

Section area 40m ⇥ 40m

Seats capacity C 2800 seats/section

Number of sections B 1, 2, or 4

Block area 40m ⇥ 40m for B = 1

40m ⇥ 80m for B = 2

Number of BSs/APs per block 5 or 9

M 5⇥B or 9⇥B

A 0.1 - 1

K C ⇥B ⇥A

RT,i 1 Mbps

KL,m (KL) 30 connections/AP m

KC,i (KC) 10 connections/CH i

NLR
PM

m=1 KL,m

NSR NLR ·KC

PtLR 10 Watts

PtSR 0.5 Watts

W 0.5 MHz

Pe 10�3

�2 10�3 Watts

 -31.54 dB

↵ 3.71

d0 10 m

is then equal to 1.75 users per 1m2. We based our study on an area of 40m⇥40m
composed of four 20m⇥ 20m sections, with total of 2800 seats and five deployed
BSs/APs as presented in Figure 5.4. In our work, we refer to user activity A
as the probability of users out of 2800, located in the target 40m ⇥ 40m area
and are simultaneously requesting common content distribution. The number
of active mobile terminals K can then be computed as follows: A ⇥ 2800. Non
active users are not considered present in our model. The active mobile terminals
are randomly distributed. In our considered scenarios, the MTs are assumed to
download common content real-time video streaming with 1 Mbps target rate
requirement.

Long range channels capacity and coverage

In our model, we assume the BSs/APs are using 2.4 GHz IEEE 802.11n WLAN.
Assuming an overhead of 35%, interference of 35% and a maximum PHY rate
of 72.2 Mbps, the estimated AP aggregated throughput will be around 30 Mbps.
The maximum number of users served by one AP to meet the target requirements
of 1 Mbps will be 30 users/AP. In our model, the transmit power of an AP is
assumed to be 10 Watts.
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Figure 5.4: Stadium with dimensions 280m ⇥ 240m, divided into 20m ⇥ 20m
sections, each composed of 700 seats. An area of 40m⇥ 40m area is composed of
four sections, 2800 seats and five deployed BSs/APs.

Table 5.3: Number of BSs/APs needed without D2D cooperation

Activity A 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Active users

in 40mx40m area 280 560 840 1120 1400 1680 1960 2240 2520 2800

BSs/APs needed

in 40mx40m area 10 19 28 38 47 56 66 75 84 94

BSs/APs needed

in 280mx240m area 360 684 1008 1368 1692 2016 2376 2700 3024 3384

Short range channels capacity and coverage

In our model, we assume the MTs are using 5GHz IEEE 802.11n WLAN. The
maximum number of usersKC served by one cluster head is limited to a maximum
of 10 users/cluster. The transmit power of a mobile terminal is assumed to be
0.5 Watts.

5.5.2 Performance Results: Conventional Model Without
D2D Cooperation

In conventional networks, users download their data from BSs/APs using LR
channels. In ultra dense networks, large number of users are requesting data
simultaneously. Due to the limitation of capacity and bandwidth, a large number
of BSs/APs is then required. Table 5.3 presents the number of BSs/APs required
to serve simultaneously di↵erent user density and network activity. For a network
with 0.1 low user activity, 10 BSs/APs are required to serve 280 users within a
40m⇥40m area. Our considered stadium is composed of 36 sections of 40m⇥40m,
accordingly, 360 BSs/APs are needed to serve low activity user density of 0.1 in
a total 280m⇥ 240m area. The number of BSs/APs increases with the increase
of the tra�c demand and user activity due to the limitation of LR channels
and users served per BS/AP. The number of APs reaches 94 to serve a high
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Figure 5.5: Outage percentage variation with user activity probability for di↵er-
ent network scenarios composed of 5 or 9 APs with/without D2D cooperation.

density network composed of 2800 users. A total of 3384 BSs/APs are then
needed to serve the high user density stadium. Deploying large number of APs is
expensive and causes high interference due to the limit on the number of available
IEEE802.11n orthogonal channels.

5.5.3 Performance Results: System Capacity Increase with
D2D Cooperation

Figure 5.5 shows the outage probability for di↵erent scenarios with and without
D2D cooperation while varying the user activity representing the density of the
users requesting common content simultaneously within 40m ⇥ 40m area. The
outage probability is very high when no D2D cooperation is considered. The
system capacity is limited to 150 and 270 possible connections over LR channels
when 5 APs and 9 APs are deployed, respectively. This leads to an outage
reaching 94.64% when the network density is very high.

The outage probability decreases when D2D cooperation is considered. The
coverage range and capacity of the conventional network are extended by the
cluster heads acting as providers to other MTs. When the network density in-
creases within a specific area, the MTs are closer and tend to use SR channels
for data download. Accordingly, the number of clusters formed increases to serve
more users. The outage then decreases with the increase of the network density
to reach a capacity limited by the number of LR channels KL and the maximum
number of users within a cluster KC which is 1650 when 5 APs are deployed.
For this reason, the outage probability increases for user activity more than 0.6
(1680 users). Increasing the transmit power Pt,LR of the APs from 5 Watts to
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Figure 5.6: LR and SR channel allocation for low density (A=0.3) and high
density (A=0.7) scenarios with/without cooperation.

10 Watts decreases the outage percentage from 15.35 to 6.07% for low user activ-
ity (A=0.1), and from 6.13 to 1.78% for high user activity (A=0.6). Deploying
9 APs allows the network to serve high user density. The outage probability is
less than 1% when 2800 users are simultaneously requesting data.

Figure 5.6 shows the resource allocation of LR and SR channels for low density
(A=0.3) and high density (A=0.7) network activity. The number of LR channels
is very high when no D2D cooperation is used. The number of LR users is reduced
from 840 (28 APs) when no D2D is considered to 75 (5 APs) and 76 (9 APs)
with D2D cooperation while achieving an outage less than 3% in a low activity
scenario. In a high activity scenario, the solution for the optimization problem
showed that 9 APs with only 179 LR connections were able to serve 99.95% of
the dense network when D2D cooperation is used instead of 66 APs providing
1960 LR connections when no D2D cooperation is considered.

To illustrate the solution for the proposed tra�c o✏oading optimization prob-
lem, Figures 5.7, 5.8 and 5.9 show resource allocation of SR and LR connections
in 40m ⇥ 40m dense area composed of 1960 users (0.7 user activity) for three
scenarios: (1) area composed of 5 APs without D2D cooperation, (2) area com-
posed of 5 APs with D2D cooperation, and (3) area composed of 9 APs with
D2D cooperation, respectively. As shown in Figure 5.7, 5 APs can only serve 150
LR users which leads to a very high outage percentage of 92.34% with no D2D
cooperation due to LR capacity limitation. The outage probability is reduced
to 15.81% when D2D cooperation is used (Figure 5.8). 14.54% of users are not
served due to capacity limitation (maximum possible capacity is 1650 users) and
1.28% due to coverage limitation. To increase the capacity of the dense network,
9 APs were deployed as shown in Figure 5.9. The outage probability was reduced
to 0.05%; only one user was out of coverage.

To study the e↵ect of the user target rate on the performance of the D2D
cooperative network, we varied the target rate from 1 to 4 Mbps and evaluated
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Figure 5.7: Resource allocation for
40m⇥40m area composed of 1960 users
(0.7 user activity) and 9 APs without
D2D cooperation. Outage = 92.34%.
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Figure 5.8: Resource allocation for
40m⇥40m area composed of 1960 users
(0.7 user activity) and 5 APs with D2D
cooperation. Outage = 15.81%.
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Figure 5.9: Resource allocation for
40m⇥40m area composed of 1960 users
(0.7 user activity) and 9 APs with D2D
cooperation. Outage = 0.05%.
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Figure 5.11: Outage percentage variation with user activity probability
with/without D2D and 0, 10 and 20 content owners.

the outage probability in a network composed of 5 BSs/APs and 280 users. As
shown in Figure 5.10, when the target user rate is low (1Mbps), 17 users were
not served which corresponds to an outage percentage of 6.07%. The outage
percentage increases with the increase of user target rate to reach 86.78% users
not served out of 280.

5.5.4 Performance Results: System Capacity Increase with
D2D Cooperation and Content Owners

Figure 5.11 shows the outage probability for di↵erent scenarios with and without
D2D cooperation while varying the number of users requesting common content
simultaneously within 40m⇥40m area. The outage probability is very high when
no D2D cooperation is considered. The system capacity is limited to 150 possible
connections over LR channels when 5 BSs/APs are deployed. This leads to an
outage reaching 94.64% when the network density is very high (2800 users).

The outage probability decreases when D2D cooperation is considered. The
coverage range and capacity are extended by the cluster heads acting as providers
to other MTs. When the network density increases within a specific area, the
MTs are closer and tend to use SR channels for data download. Accordingly,
the number of clusters formed increases to serve more users. The outage then
decreases with the increase of the network density to reach a capacity limited
by the number of LR channels KL and the maximum number of users within a
cluster KC which is 1650 when 5 APs are deployed. For this reason, the outage
probability increases for more than 1680 users. The existence of content owners
decreases the outage probability. As presented in Figure 5.11, we considered the
existence of 10 and 20 content owners randomly distributed within the 40m⇥40m
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area while varying the number of users. The COs served as CHs and transmitted
data to other MTs which increased the capacity of the system and reduced the
outage probability.

Figure 5.12 shows the outage percentage and LR connections for tra�c of-
floading in D2D cooperative networks where 560 users exist while varying the
number of content owners. The coverage range and capacity of the conventional
network are extended by the cluster heads acting as providers to other MTs.
When no COs are considered, the outage is 4.11%. The outage probability de-
creases with the increase of the number content owners to be below 1% when
150 COs exist. COs served as cluster heads and transmitted data to other MTs
which allow to serve more users.

Figures 5.13 show the number of clusters formed, the number of LR users and
COs serving as CHs in D2D cooperative networks where 560 users exist while
varying the number of content owners. The number of clusters increases with the
increase of the number of COs which expands the network coverage and capacity.
The users are encouraged to o✏oad to D2D connections by connecting to a CO
rather than connecting to another MT receiving over LR. Accordingly, the outage
probability and the number of LR connections decrease.

To illustrate the solution for the proposed tra�c o✏oading optimization prob-
lem, Figure 5.14 shows the resource allocation of LR and SR channels in a network
composed of 560 users with/without D2D cooperation. The number of LR chan-
nels is very high when no D2D cooperation is used. The system capacity is limited
to 150 LR connections, which leads to an outage of 410 users (Figure 5.15). The
outage probability is reduced to 4.11% when D2D cooperation is used with 50 LR
users acting as CH-CRs (Figure 5.16). The number of SR connections increases
with the increase of the number of COs, while the number of users not served
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Figure 5.15: Resource allocation with-
out D2D cooperation for 40m ⇥ 40m
area composed of 560 users and 5 APs.
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Figure 5.16: Resource allocation with
D2D cooperation for 40m ⇥ 40m area
composed of 560 users and 5 APs. Out-
age = 4.11%.
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Figure 5.17: Resource allocation with
D2D cooperation for 40m ⇥ 40m area
composed of 560 users, 5 APs and 20
COs. Outage = 2.14%.
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decreases. The LR connections are reduced to 35 users while the outage proba-
bility was reduced to 2.14% with 20 COs (Figure 5.17). The number of clusters
increased from 50 where cluster heads are all LR content recipients CRs, to reach
99 when 150 COs are considered (94 CH-COs and 5 CH-CRs). The number of LR
decreases to be only 4 users when 150 COs exist, with 0.71% outage probability.

5.5.5 Performance Results: Proposed Dynamic Tree-Based
Tra�c O✏oading Algorithm

In this section, we compare the optimal tra�c o✏oading solutions with the ones
obtained using our proposed tree-based tra�c o✏oading approach. We evaluate
the performance in terms of time complexity and user outage percentage. Re-
sults demonstrate that the proposed approach TBTO provided real-time and fast
solutions with a tradeo↵ cost in outage probability.

Solving the tra�c o✏oading problem as an optimization problem is compu-
tationally expensive. Figure 5.18 shows the solving time in minutes needed by
AIMMS to provide solution for optimal tra�c o✏oading in dense heterogeneous
networks. The solving time for a low density network (A=0.3) is 14 and 23 min
when the network is composed of 840 users, 5 and 9 APs, respectively. As the user
activity increases, the solving time increases to reach 5.46 hours and 19.32 hours
when the user activity is 0.7 and 1, respectively. Therefore, achieving optimal
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solutions may not be feasible in real-time ultra dense networks.

Our proposed tree-based tra�c o✏oading approach was able to provide near-
optimal solutions with very low time complexity. To evaluate the performance of
our proposed TBTO approach, we generated solutions for 1000 di↵erent order of
user arrival. In every simulation, the same distribution of users is used, however,
the order of arrival is randomly shu✏ed. Figure 5.19 shows the time needed to
find solutions using the proposed tree-based tra�c o✏oading algorithm. TBTO is
able to provide near optimal solutions within few seconds for networks composed
of 2800 users and denser networks of 5600 users which was not achievable using
optimal tra�c o✏oading. At high user activity (A =1), the simulation time using
TBTO was 26 seconds and 23 seconds for a network composed of 2800 users, 5
and 9 APs, respectively. The average simulation time for the networks composed
of 9 APs is lower since more users are allowed to be served as LR users, hence,
increasing the number of CHs. This increases the possibility of the users to be
connected to the tree from the first iteration while satisfying their target rate.
Accordingly, the number of delayed users and the number of iterations till all the
users are assigned is reduced. Solutions for high user density area of 40m⇥ 80m
composed of 5600 users and 18 APs was achievable in maximum of 118 seconds.

Decreasing the simulation time is faced by an acceptable increase in outage
probability. Figure 5.20 and 5.21 compares the outage performance of TBTO
and optimal tra�c o✏oading for 40m⇥ 40m area composed of 2800 users, 5 and
9 APs, respectively. As presented in Figure 5.20, TBTO provided lower than
8% more outage than optimal tra�c o✏oading in low density networks. In dense

99



Table 5.4: Performance of TBTO compared to optimal tra�c o✏oading in 40m⇥
40m area composed on 2800 users and 5 APs

Activity Optimal tra�c o✏oading Proposed TBTO approach

A Outage Time Outage Time

A=0.1 8.93% 64ms 6.07% 3.36s

A=0.2 4.46% 208ms 4.11% 15.8m

A=0.3 3.81% 173ms 2.98% 22.8m

A=0.4 1.96% 356ms 1.96% 51.6m

A=0.5 2.36% 798ms 1.36% 2.4h

A=0.6 1.79% 1.5s 1.79% 5.9h

A=0.7 15.82% 3.1s 15.82% 13.1h

A=0.8 26.34% 5.6s 26.34% 16.6h

A=0.9 34.52% 8.4s 34.52% 32.1h

A=1 41.07% 12.5s 41.07% 40.1h

networks, TBTO was able to provide very close outage probability to the optimal
solution (A >0.7). Increasing the number of APs to 9 allowed larger number of
MTs to be served by the BSs/APs and hence serve as cluster heads and decrease
the outage probability. TBTO showed an average of 1.43% increase of outage
probability when compared to the tra�c o✏oading optimal solution.

The solution of the proposed approach varies with the arrival order of users
since the tree is built sequentially based on the user arrival. Table 5.4 compares
for a specific order of user arrival (out of the 1000 shu✏es above) the outage
and simulation time for TBTO and the optimal tra�c o✏oading algorithm in a
network composed of 2800 users and 5 APs. Table 5.4 shows that, for these spe-
cific orders, TBTO was able to provide similar outage probability to the optimal
solution within few seconds.

5.6 Tra�c O✏oading Limitations and Challenges

The optimal tra�c o✏oading solutions provide optimal connections and user
assignments with minimum long range users. However, due to the complexity
of the problem, optimal solutions may not be achievable for ultra dense D2D
cooperative networks where a large number of users are requesting data simulta-
neously. Towards this goal, we proposed a dynamic tree-based tra�c o✏oading
approach which assigns the users’ connections sequentially based on a tree having
BSs/APs and mobile terminals as nodes. The order of arrival of users a↵ect the
performance of the TBTO proposed approach. The proposed approach provided
real-time and fast solutions even in very high density user activity. The cost of
reducing the time complexity is faced by an acceptable increase in user outage
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probability.
The proposed TBTO approach presented solution for tra�c o✏oading while

considering orthogonal channel allocation. However, in real network scenarios,
limited number of orthogonal channels are available which leads to high channel
reuse and degradation of service. The sub-optimal tra�c o✏oading approach
needs then to consider simultaneously the allocation of non-orthogonal channels
to reflect real network scenarios.
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Chapter 6

Non-Orthogonal Channel
Allocation for Minimum
Interference in Dense D2D
Cooperative Networks

In Chapter 5, we addressed resource management in dense D2D cooperative het-
erogeneous networks to determine the optimal tra�c o✏oading strategies while
all the channels allocated to cluster heads are assumed to be orthogonal.

In this chapter, we address non-orthogonal channel allocation using the so-
lution obtained from the tra�c o✏oading problem. We aim at allocating the
available orthogonal SR channels to the mobile terminals serving as cluster heads
while reducing the interference caused by channel reuse. We first formulate the
channel allocation as an optimization problem aiming at minimizing the reuse of
the channels and maximizing the distance between non-orthogonal channels to
reduce the interference. We then solve the optimization problem using AIMMS
software and CPLEX as a solver. Moreover, we evaluate the e↵ect of optimal
non-orthogonal channel allocation to cluster heads. Allocating non-orthogonal
channels a↵ects the service transmission rate and may lead to service degrada-
tion below the target rate. Therefore, we propose an enhanced user allocation
scheme to serve the a↵ected users by assigning them either to existing cluster
heads or BSs/APs.

Due to the complexity of the channel allocation optimization problem, opti-
mal solutions may not be achievable in real-time ultra dense D2D cooperative
networks. For this reason, we propose a dynamic tree-based resource manage-
ment (TBRM) approach that includes hierarchical tra�c o✏oading and channel
allocation simultaneously. We used similar approach presented in Chapter 5
where the users’ connections are assigned consecutively based on a tree having
BSs/APs and mobile terminals as nodes. However, we consider simultaneously
allocating available channels to cluster heads aiming at maximizing the distance
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Figure 6.1: D2D cooperative network formed by one BS/AP and five clusters.
Three cluster heads use the same channel which causes interference to SR users.

between mobile terminals using co-channels to reduce interference. To evaluate
our solutions, we focus on a stadium topology to demonstrate the significant gains
of optimized non-orthogonal channel allocation in ultra dense wireless networks.
We show that the proposed approach is able to provide near-optimal solutions
with very low time complexity.

This chapter is organized as follows. The system model is presented in Sec-
tion 6.1. The optimal channel allocation for minimum interference in dense D2D
cooperative networks is presented in Section 6.2. Enhanced allocation approach
to assign connections to the users a↵ected by non-orthogonal channel allocation
is proposed in Section 6.3. Dynamic tree-based resource management approach is
presented Section 6.4. Performance results are presented in Section 6.5. Resource
management limitations and challenges are presented in Section 6.6.

6.1 System Model

In this chapter, we use similar system model presented in Chapter 5. We consider
a network formed by M BSs/APs and a large number of mobile terminals K.
A MT i requests a common content data such as live and on-demand video
streaming with a specific transmission target rate RT,i. MT i may receive its
data from a BS/AP over LR wireless technology or from another MT cluster head
using SR wireless technology. A cluster head can be either:(1) a content owner
CH-CO which is a mobile terminal who has already the data content cached, or
(2) a content recipient CH-CR who is a LR user receiving data from BS/AP over
LR channel. SR channels are allocated to cluster heads to serve the users within
a cluster.

The number of orthogonal channels become scarce with the increase of num-
ber of users in dense device-to-device cooperative networks. For instance, 2.4GHz
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WLAN IEEE 802.11n provides three non-overlapping channels 1, 6 and 11. 5GHz
IEEE 802.11n provides three Unlicensed National Information Infrastructure (UNII)
bands: (1) UNII-1 containing channels four orthogonal channels (36, 40, 44, and
48), (2) UNII-3 containing 4 orthogonal channels (149, 153, 157 and 161), and
(3) UNII-2 containing 15 channels (52, 56, 60, 64, 100, 104, 108, 112, 116, 120,
124, 128, 132, 136, and 140) shared with radar systems [119].

Allocating same channel to multiple cluster heads causes interference to the
SR users receiving from these cluster head mobile terminals. As presented in Fig-
ure 6.1, the network is formed by BSs/APs, content owners and clusters served
by a cluster head mobile terminal. A MT is subjected to interference from clus-
ter heads using non-orthogonal channels while receiving over SR. In our case
model, we consider a network composed by a limited number of base stations or
access points. We then assume that all the LR channels allocated are orthogo-
nal. Therefore, the LR mobile terminals will not be subjected to LR interference.
However, the SR users will be subjected to interference caused by cluster heads
using non-orthogonal channels.

6.2 Optimal Channel Allocation for Minimum
Interference Formulation

In this section, we formulate the SR channel allocation problem as an optimization
problem aiming at serving the maximum number of users while reducing the e↵ect
of interference caused by channels reuse. The goal is to allocate the available non-
overlapping channels to the cluster heads assigned by the optimal tra�c o✏oading
solution. Reducing interference can be achieved by assigning orthogonal channels
with minimum reuse to distant cluster heads. Therefore, the channel allocation
problem aims at minimizing the channels reuse and maximizing the distance
between non-orthogonal channels.

Accordingly, the decision variable Q is considered to indicate the channel
allocation (Table 6.1). The binary decision variable Qpi indicates whether the
channel p is allocated to mobile terminal cluster head i to transmit the data
to other mobile terminals. The decision variable Q will then be a matrix of
dimension NCH ⇥NSRo where NCH is the number of cluster heads considered in
the network and NSRo is the maximum number of orthogonal SR channels.

• Qpi: binary variable that indicates whether channel p is allocated to mobile
terminal i.

Qpi =

⇢
1 if channel p is allocated to cluster head i
0 otherwise

(6.1)

The channel allocation problem can be formulated as follows:
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Table 6.1: Main parameters and variables

Parameters

K the set of requesting MTs, where a MT is referred to as MT i, i = 1, ...,K

M the set of BSs/APs, where a BS/AP is referred to as BS/AP m, m = 1, ...,M

NSRo number of orthogonal non-overlapping SR channels

dij distance between transmitter (BS/AP or MT) i and MT j

RS,ij transmission rate on SR from the MT i to MT j

RT,i target transmission rate to MT i to meet video application requirements

NLR maximum number of LR channels in the network

NSR maximum number of clusters in the network

NCH number of cluster heads in the network

KL,m maximum number of MTs served by a BS/AP m

KC,i maximum number of MTs served over SR by a cluster head MT i in a cluster

Variables

Qpi a binary variable that indicates whether channel p is allocated to cluster head i

argmax
Q

NCHX

i=1

NCHX

j=1

NSRoX

p=1

dij ·Qpi ·Qpj (6.2)

subject to
NSRX

p=1

Qpi = 1, 8i (6.3)

$
NCH

NSRo

%


NCHX

i=1

Qpi 
&
NCH

NSRo

'
, 8p (6.4)

Qqi 2 {0, 1} (6.5)

where

• Constraint (6.3) ensures that every cluster head mobile terminal is assigned
one SR channel.

• Constraint (6.4) ensures that all the channels are used with minimum reuse
factor. If the number of orthogonal channels NSRo is greater than the num-
ber of cluster heads NCH, every channel p can be then assigned maximum

once
⇣
0 

PNCH

i=1 Qpi  1
⌘
. If the number of orthogonal channels is less

than the number of CHs, constraint (6.4) ensures that a channel p is al-

located with minimum reuse, i.e. maximum of
l
NCH

NSRo

m
and minimum of

j
NCH

NSRo

k
.

• The last constraint sets the decision variable Q to be binary.
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6.2.1 Solution Methodology

The problem is a binary linear programming problem. The number of binary
variables is NCH ⇥ NSRo composed of the decision variable Q indicating the
channel allocation to cluster heads. The problem is NP-complete. Starting with
the first constraint, the problem is divided into multiple directions or directed
graphs based on a channel allocation to a cluster head mobile terminal. Each
graph is composed of di↵erent subgraphs based on the problem constraints. The
problem is similar to Minimum Dominating Set problem in Directed Graphs
which has been shown as NP-Hard [115][116]. It can be shown that solution for
the optimal channel allocation problem can be verified in polynomial time, thus
the problem is NP-complete.

6.3 Proposed Enhanced User Allocation Approach
in Dense D2D Cooperative Networks

Allocating non-orthogonal channels to cluster heads a↵ects the system perfor-
mance. The transmission service rate decreases due to the interference caused
by channel reuse. Even if the channels are optimally allocated to cluster head
mobile terminals, SR users are subjected to interference which may degrade the
service rate below the target service rate. Accordingly, we evaluate the e↵ect of
allocating the available orthogonal channels to the cluster heads on the SR users.
We then present possible solutions for allocating connections to the users a↵ected
either to other mobile terminals serving as cluster heads or BSs/APs.

As presented in Algorithm 6.1, we check possible assignment solutions for ev-
ery SR user i whose target rate is no longer met due to channel reuse interference.
We start by checking the transmission rates provided by every cluster head in the
network taking into consideration the interference caused by cluster heads using
same channels. The MT i will be then assigned to the cluster head n satisfying
MT i target rate and serving lower number of users (below KC,n). In case, there
is no cluster head satisfying system constraints, the LR transmission rates are
examined. MT i can be assigned to the BS/AP m satisfying MT i target rate
and serving lower number of users (below KL,m). If the system constraints are
not satisfied, the MT i is considered not served.

6.4 Dynamic Tree-Based Resource Management
in Dense D2D Cooperative Networks

Optimal solutions for tra�c o✏oading and channel allocation may not be achiev-
able in real-time ultra dense D2D cooperative networks. In additional, allocating
channels based on the solution provided by the tra�c o✏oading assuming the
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Algorithm 6.1: The proposed enhanced user allocation approach

Input:
- K number of users,
- M number of BSs/APs,
- d

ij

distance between transmitter (BS/AP or MT) i and MT j,
- N

LR

maximum number of LR channels in the network,
- N

SR

maximum number of SR channels in the network,
- K

L,m

maximum number of MTs served by a BS/AP m,
- K

C,i

maximum number of MTs served by a cluster head MT i,
- R

T,i

target transmission rate to MT i to meet video application requirements,
- z users served determined by the optimal tra�c o✏oading solution,
- y LR connections determined by the optimal tra�c o✏oading solution,
- v LR connections determined by the optimal tra�c o✏oading solution,
- u cluster heads determined by the optimal tra�c o✏oading solution,
- Q channel allocation by the optimal channel allocation solution

Output:
- Z

i

a binary variable that indicates whether MT i is receiving data,
- Y

mi

a binary variable that indicates whether MT i is receiving data over LR from
BS/AP m,
- V

ij

a binary variable that indicates whether MT j is receiving data over SR from
MT i

1: Initialize Z,Y and V to be equal to z, y and v, respectively
2: Compute SR user i transmission rate R

i

achieved after optimal channel allo-
cation considering the interference caused by cluster heads using non-orthogonal
channels R

i

3: Assign a new connection to user i if transmission rate R
i

is lower than target
rate as follows:

1. Estimate the transmission rate R
S,ni

provided by a cluster head n con-
sidering the interference caused by all the cluster heads using the same
channel of cluster head n.

2. Consider every cluster head n providing transmission rates higher than
the target rate of MT i and serving less than K

C

, n users, as candidate
cluster heads CCH.
CCH = {n|n 2 C, R

S,ni

� R
T,i

&
P

K

j=0

v
nj

< K
C,n

}

3. Check if SR and LR transmission rates satisfy MT i requirements

• if CCH = ; then

• Consider MT i no longer served as SR user and set V
xi

= 0, 8x

• Check if MT i can be served over LR links

– Consider every BS m providing transmission rates higher
than the target rate of MT i and serving less than K

L

,m
users, as candidate base station CBS.
CBS = {m|m 2 M, R

L,mi

� R
T,i

&
P

K

j=0

y
mj

< K
L,m

}
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2: 3. • – if CBS = ; then

– Consider MT i a non-assigned users and set Z
i

= 0

– else

– Assign MT i to BS/AP m with lower number of users
served and set Y

mi

= 1

– end if

• else

• Assign MT i to cluster head n serving lower number of users
and set V

ni

= 1

• end if
3: Repeat process (2) for all the SR users.

channels are orthogonal may lead to high user outage and may not be feasible in
real-time networks. Moreover, the optimization problem is holistic and considers
all the existing users when providing optimal solutions, which may not be feasi-
ble in real-time networks. Accordingly, providing sub-optimal solutions for tra�c
o✏oading with channel allocation considerations are needed to provide a balance
between time complexity, user outage, number of LR channels. For these reasons,
we propose a dynamic tree-based resource management (TBRM) approach that
includes hierarchical tra�c o✏oading and channel allocation simultaneously.

The TBRM approach is based on the TBTO approach presented in Chapter 5
where the users’ connections are assigned consecutively based on a tree having
BSs/APs and mobile terminals as nodes. However, TBRM considers simultane-
ously allocating the available channels to cluster heads consecutively while max-
imizing the distance between co-channels. The interference caused by co-channel
reuse is then considered while assigning SR links to the users.

The proposed dynamic tree-based resource management approach is based on
a four-level tree as follows: (1) the network as root node, (2) the BSs/APs as
first level parent nodes, (3) the cluster heads and LR users as second level nodes
receiving data from BSs/APs, and (4) SR users receiving data from cluster heads
as fourth level terminal nodes. In general, a mobile terminal can be connected to a
BS/AP or another MT serving as cluster head to download common content data.
Accordingly, we consider BSs/APs or CHs as parent nodes. When connected to a
BS/AP, a MT j is considered a LR user and is added to the tree. When connected
to another mobile terminal i, MT j is added to the tree in the fourth level as a SR
user. In addition, the mobile terminal i becomes a cluster head and is assigned a
channel. Accordingly, every BS/AP forms its own sub-tree having LR users and
cluster heads as their child nodes. Similarly, the CHs form their own sub-trees,
called clusters in our model, having SR users as child nodes. We define N as the
set of existing nodes in the tree composed of BSs/APs and assigned users.

108



To assign users’ connections, the algorithm builds a tree considering users
sequentially, one user at a time. It starts from the root node which is in our case
the network. The root has by default all the BSs/APs as child nodes. To assign
the connection for MT j, the nodes N of the current tree are considered, and the
mobile terminal j is added as a child node to the tree based on Algorithm 6.2.
In our work, we aim at maximizing network capacity by minimizing the number
of LR channels used, which allows to serve more users. In order to increase
the capacity of the network, the mobile terminals are encouraged to use D2D
connectivity. Accordingly, we gave twice the weights of LR connectivity to D2D
SR connectivity.

As presented in Algorithm 6.2, the connection for a mobile terminal j starts by
estimating the transmission rates provided by existing nodes N : BSs/APs (level
2 nodes) and LR users and cluster heads (level 3 nodes). The SR transmission
rate RS,nj provided by another mobile terminal n over SR link is estimated taking
into account the interference caused by the set of cluster heads Cn using same
channel as MT n. The mobile terminal j can be served by a cluster head which
has already a channel p assigned, or a LR user n which needs a SR channel
allocation. To perform channel allocation for LR MT n, we aim at maximizing
the distance between mobile terminals using co-channels to reduce interference.
Accordingly, for every channel p, we compute the total distance between the
MT n and cluster heads using the same channel p. The channel providing the
maximum distance is then selected to be allocated to LR user n.

The nodes providing transmission rates higher than the target rate of MT j
and serving less than the maximum number of allowed users, are considered as
candidates nodes. The weight of SR rate RS,nj between the MT n and MT j
is assumed to be twice the weight of the LR rate RL,mj between the BS/AP m
and MT j to encourage D2D tra�c o✏oading. The candidate node providing
higher system throughput is then selected. In case two nodes provide the same
throughput, the mobile terminal j will be connected to the node serving less
MTs. The assignment also makes sure the system constraints are satisfied such
as the maximum number of users in a cluster, the maximum number of allowed
LR users and SR users. If the target rate of a MT j is not satisfied by the nodes
in the current tree, the mobile terminal assignment are delayed and reconsidered
later. This process continues until all users are considered and no more users can
be added to the tree.

6.5 Performance Results and Analysis

In this section, we present our simulation setup and performance results and anal-
ysis. We first present performance results for optimal channel allocation while
varying the density of the network and the number of available non-orthogonal
channels. We then present possible user allocation as enhancement to the per-
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Algorithm 6.2: The proposed dynamic tree-based resource management (TBRM)
approach

Input:
- K number of users,
- M number of BSs/APs,
- d

ij

distance between transmitter (BS/AP or MT) i and MT j,
- N

LR

maximum number of LR channels in the network,
- N

SR

maximum number of SR channels in the network,
- N

SRo

maximum number of SR orthogonal non-overlapping channels,
- K

L,m

maximum number of MTs served by a BS/AP m,
- K

C,i

maximum number of MTs served by a cluster head MT i,

Output:
- z

i

a binary variable that indicates whether MT i is receiving data
- y

mi

a binary variable that indicates whether MT i is receiving data over LR from
BS/AP m
- v

ij

a binary variable that indicates whether MT j is receiving data over SR from
MT i
- u

i

a binary variable that indicates whether MT i is a cluster head

1: Consider the network as root node
2: Assign BSs/APs as default child nodes to the network root node. The BSs/APs

will be then considered first level nodes in the tree. At this stage, N = {m|m 2
M}

3: Assign a connection and allocate a parent node for a MT j as follows:

1. Estimate the transmission rate R
L,mj

over LR from a BS/AP m.

2. Estimate the transmission rate R
S,nj

over SR from a cluster head n ex-
isting in the tree N , which is assigned channel p.

3. Estimate the transmission rate R
S,nj

over SR from a LR user n existing
in the tree N , which is not assigned any channel yet. Accordingly, channel
allocation should be performed first to allocate a channel p to MT n while
aiming at maximizing the distance between user using the same channel p
to reduce interference as follows:

• Compute the distance between LR user n and the set of cluster
heads using the same channel for every channel p

• Select the channel providing the higher sum of the distances as
potential channel to be allocated to LR user n if MT j is assigned
to MT n at the end

4. Consider the nodes providing transmission rates higher than the target
rate of MT j as candidate nodes CN.
CN = {n|n 2 N , R

X,nj

� R
T,j

}
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3: 5. Check if transmission rates satisfy MT j target rate

• if CN = ; then

• Delay MT j assignment until all users are considered

• Add MT j to the non-assigned users

• else

• Consider the weight of SR rate R
S,nj

between the existing CH
and LR users nodes n and MT j twice the weight of the LR rate
R

L,nj

between the BSs/APs nodes n and MT j to encourage tra�c
o✏oading to D2D connectivity

• Check system constraints:

– if the candidate node n is a CH MT i & the number of its
child nodes = K

C,i

then Eliminate node n end if

– if the candidate node n is a BS/AP m & the number of its
child nodes = K

L,m

then Eliminate node n end if

– if the candidate node n is a BS/AP m & the number of LR
users = N

LR

then Eliminate node n end if

– if the candidate node n is a MT i & the number of CHs =N
SR

then Eliminate node n end if

• Select the candidate node n providing higher system throughput

– if multiple nodes provide the same system throughput then
Select node n serving less child nodes end if

• Add the MT j as a child to node n

• Update the tree, N and decision variables:

– if MT j is added to the tree then MT j is served & z
j

is set
to 1 end if

– if node n is a BS/AP m then MT j is a LR user & y
mj

is
set to 1 end if

– if node n is a MT i then

– MT j is a SR user & v
ij

is set to 1

– if node n is a LR user i then

– MT i is a CH & u
i

is set to 1

– Selected channel p is allocated to LR user i

– end if

– end if

• end if

4: Repeat process (3) for all the non-assigned users until no more users can be
added as nodes to the tree.
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Table 6.2: Network parameters and assumptions

Parameters Values

Section area 40m ⇥ 40m

Seats capacity C 2800 seats/section

M 5

A 0.1 - 1

K C ⇥A

RT,i 1 Mbps

KL,m (KL) 30 connections/AP m

KC,i (KC) 10 connections/CH i

NLR
PM

m=1 KL,m

NSR NLR ·KC

PtLR 10 Watts

PtSR 0.5 Watts

W 0.5 MHz

Pe 10�3

�2 10�3 Watts

 -31.54 dB

↵ 3.71

d0 10 m

formance of optimal allocation of non-orthogonal channels using our proposed
enhanced user allocation approach. We also present performance results for our
proposed dynamic tree-based resource management considering tra�c o✏oading
and channel allocation simultaneously.

6.5.1 Simulation Setup

We use similar simulation setup presented in Chapter 5. We consider a stadium
with a capacity of 100,000 seats. Due to the high complexity of the problem and
the large number of users, we divided the area into small sections of 40m⇥ 40m.
The main system parameters are summarized in Table 6.2.

6.5.2 Performance Results: Optimal Channel Allocation

Figure 6.2 shows the outage probability for optimal channel allocation in a net-
work composed of 5 BSs/APs and 280 users, while varying the number of avail-
able orthogonal non-overlapping channels. The solution of the optimal channel
allocation is based on the solution provided by the tra�c o✏oading optimization
problem, which serves in this case 263 users, 37 LR users serving as cluster heads,
226 SR users and an outage of 17 users (6.07%).

The outage probability decreases with the increase of the number of the avail-
able channels since the channels are less reused. When three orthogonal channels
are used, channels 1, 2 and 3 are reused 12, 12 and 13, respectively, to be as-
signed to 37 cluster heads. 88 SR users are a↵ected by the interference caused by
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Figure 6.2: Outage percentage variation in a network composed of 280 users
(37 cluster heads) with respect to available orthogonal channels.

channel reuse as presented in Figure 6.3, which leads to an additional outage of
31.42%. The total outage will be 37.49%. When the number of available chan-
nels used increases to 8, the outage due to co-channel allocation is reduced to
9.28% (Figure 6.4). The outage decreases with the increase of number of avail-
able non-overlapping channels to be 0% when 23 channels are used. In this case,
the channels are reused maximum twice and the mobile terminals using same
channels are distant that the interference caused is negligible.

6.5.3 Performance Results: Proposed Enhanced User Al-
location Approach

Figures 6.5(a) and 6.5(b) compare the outage percentage and number of LR
channels, respectively, while varying the user density for di↵erent scenarios: (1)
orthogonal channel allocation which is the solution of the optimal tra�c o✏oad-
ing, (2) three orthogonal channel allocation, and (3) the proposed enhanced user
allocation approach, and (4) proposed TBRM approach. The outage percentage
considering three orthogonal channel allocation increases from 37.5% at low user
density of A=0.1 (280 users) to reach 88.46% at high user density of A=1 (2800
users). The proposed enhanced user allocation approach was able to provide
lower outage probability with a tradeo↵ cost in LR channels. The outage was
reduced from 37.5% to 12.14% with an additional use of 58 LR channels for low
density networks (280 users). It was reduced from 88.46% to 57.39% with a lim-
ited number of LR channels of 150. To illustrate a solution, Figure 6.6 shows the
additional LR and SR connections assigned by the enhanced proposed approach
to serve higher number of users in a network formed by 280 users. Due to the
low number of available orthogonal non-overlapping channels, the target service
rate was not satisfied for a large number of users which limits the D2D o✏oading

113



LR	user
SR	user

BS/APNot	served	user	(coverage	limitation)
Not	served	user	(interference	limitation)

C1	(12)
C2	(12)
C3	(13)

Figure 6.3: Channel allocation of 3 or-
thogonal channels for 40m ⇥ 40m area
composed of 280 users and 5 APs.
Orthogonal channel allocation outage=
6.07%. Additional outage= 31.42%.
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Figure 6.6: Enhanced user allocation approach using 3 orthogonal channels for
40m⇥ 40m area composed of 280 users and 5 APs. Outage= 12.14%.

and force the usage of all the LR channels.

6.5.4 Performance Results: Proposed Dynamic Tree-Based
Resource Management Approach

In this section, we generated results for 100 runs of the proposed dynamic tree-
based resource management approach while varying the users’ arrival order. Fig-
ure 6.4(a) compares the outage probability of the proposed TBRM approach with
optimal channel allocation with/without orthogonal channels considerations and
enhanced proposed solution. The outage caused by optimal channel allocation
based on the solution of the tra�c o✏oading problem showed high outage prob-
ability. The outage was reduced by the enhanced proposed approach with a
tradeo↵ cost in LR channels as shown in Figure 6.4(b). The proposed TBRM
approach was able to allocate non-orthogonal channels simultaneously while per-
forming tra�c o✏oading with notably low time complexity with a tradeo↵ cost in
terms of outage probability and LR channels. The proposed tree-based resource
management provides higher outage probability than the enhanced proposed ap-
proach, however, less than the optimal channel allocation based on tra�c o✏oad-
ing optimal solution. The number of LR users was higher at low network density
and reaches the maximum LR users capacity when the number of users is above
560. This shows that our proposed TBRM approach was able to provide dynamic
sub-optimal solutions with very low time complexity.
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6.6 Resource Management Limitations and Chal-
lenges

In this chapter, we presented optimal non-orthogonal channel allocations. We
evaluated the e↵ect of the optimal channel allocations on the SR users. The
results showed high outage probability which can be improved by assigning the
users a↵ected to other cluster heads or BSs/APs. In addition, we propose a
dynamic tree-based resource management approach to simultaneously consider
tra�c o✏oading with non-orthogonal channel allocation and provide sub-optimal
solutions with low time complexity in real-time dense networks.

The solution of the tra�c o✏oading and channel allocation is first limited
by the maximum number of users served by BS/AP or by a cluster head. In-
creasing the BS/AP transmit power may be a solution for enhancing system
coverage, however, it causes higher interference to users and service degradation.
Accordingly, enhanced power allocation schemes may be proposed as a solution
for system capacity and coverage limitations providing a tradeo↵ between cover-
age, capacity and interference. In addition, we assume in our work that all the
MTs are willing to act as cluster heads, however, usually MTs are selfish and
need incentives to participate in the cooperative content distribution.
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Chapter 7

Conclusion

This chapter summarizes the main contributions of this dissertation in Section7.1.
It also highlights connections to existing wireless standards that discuss device-to-
device cooperation, and the inter-operation between di↵erent radio access tech-
nologies in Section 7.2. Finally, selected open research directions are presented
in Section 7.3.

7.1 Contributions

In this dissertation, we addressed user-centric strategies for resource management
in heterogeneous networks with quality of service considerations. Our research
work is divided between two directions: the first direction for user-centric cellu-
lar/WiFi resource management strategies for a single user, and the second direc-
tion for multi-user resource management including tra�c o✏oading and channel
allocation in dense cache-enabled D2D cooperative heterogeneous networks.

Towards the first direction, we present static cellular/WiFi and tra�c split-
ting for data download. The mobile terminal is assumed to be equipped with two
wireless interfaces (cellular 3G/4G network and WiFi). The main challenge is to
determine the amount of data to be downloaded over each interface to achieve per-
formance gains. We then extended our work to consider dynamic cellular/WiFi
tra�c splitting for video streaming with quality of experience considerations. In
this case, real-time decisions are needed every time slot duration on the amount
of data to be downloaded over cellular and WiFi interfaces maximizing quality
of experience while reducing energy consumption and delay.

Towards the second direction, we solve multi-user tra�c o✏oading in dense
cache-enabled device-to-device cooperative heterogeneous networks, where a very
high number of users request simultaneously a huge amount of data using a
stadium case model. The challenging point is to determine which MTs should
receive the content on the long range interface and to which MTs they should
transmit the received content on the short range interfaces. Moreover, the MTs
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that receive on SR can, in turn, act as relays to transmit their received content
to other MTs on the SR interfaces. We focus on finding optimized strategies for
common data download to serve the maximum possible number of users while
maintaining a target user quality of service. Due to high complexity of the
problem, sub-optimal approaches are proposed for real-time and fast resource
management including tra�c o✏oading and non-orthogonal channel allocation.

The main contributions of this dissertation can be summarized as follows:

1. Proposing a learning-based user-centric approach for performing static net-
work selection based on real-network implementations. In contrast to lit-
erature, the model considers the features that a↵ect the selection decision
known by the user: availability of the networks, signal strength reflecting
the channel quality, data size, battery life, speed of the user, location, and
type of application. We present an approach for building training data as a
basis for machine learning of network selection and then develop decision-
tree classification model for network selection that provides the user either
the highest quality of service, lowest energy consumption or highest energy
e�ciency based on pre-defined rules.

2. Developing the static user-centric tra�c splitting as an optimization prob-
lem, where a mobile device can simultaneously utilize both wireless inter-
faces. The aim is to guarantee a balance between energy consumption and
throughput based on the user’s needs in terms of application service require-
ments and mobile device battery life. Moreover, experimental measure-
ments are used to determine values for key parameters in order to evaluate
the proposed tra�c splitting approach under realistic network conditions.

3. Proposing dynamic user-centric tra�c splitting with delay-power-QoE bal-
ance for real-time video streaming applications. We developed an optimized
multi-objective tra�c splitting solution that minimizes delay, stabilizes net-
work queue while reducing energy consumption and achieving high quality
end-user experience. In contrast to the literature, our approach does not
focus only on throughput and energy consumption, but also considers user
quality of experience based on ITU-T P.1201 standard to better capture
the video quality as perceived by the end user. Lyapunov drift plus penalty
optimization approach is used to provide real-time tra�c splitting decisions
as a function of the dynamic variation of various system parameters while
achieving a balance between high quality end-user experience, low energy
consumption and delay, and allowing the use of multiple interfaces simul-
taneously to split the tra�c at a specific time slot into di↵erent links. The
proposed approach was evaluated under realistic operational conditions us-
ing our own test bed, where the proposed approach is implemented as an
Android application that functions in the background at the user side with-
out any intervention from the network or the server, and without performing

118



any changes to the cellular/WiFi standards.

4. Formulating the multi-user resource management, considering simultane-
ously tra�c o✏oading and non-orthogonal channel allocation, as an opti-
mization problem aiming at maximizing the user capacity in dense cache-
enabled device-to-device heterogeneous networks. The complexity of the
problem is studied and reduced to address first optimal tra�c o✏oad-
ing problem assuming all the channels are orthogonal, and then optimal
non-orthogonal channel allocation. The optimal tra�c o✏oading in dense
cache-enabled D2D cooperative network is formulated as an optimization
problem to find the optimal LR and SR channels allocation constrained by
the number of APs, LR and SR channels, users per cooperation cluster, and
transmission rate. To evaluate our solution, we focus on a stadium topol-
ogy to demonstrate the significant gains of optimized tra�c o✏oading in
conventional and D2D ultra dense wireless networks with/without cache-
enabled devices. In addition, we propose a sub-optimal tra�c o✏oading
approach to provide real-time solutions in ultra dense D2D cooperative
networks. A dynamic tree-based tra�c o✏oading approach is proposed to
assign users’ connections consecutively based on a tree having BSs/APs
and mobile terminals as nodes. Performance results and complexity anal-
ysis are presented to show that the proposed approach is able to provide
near-optimal solutions with very low time complexity.

5. Formulating channel allocation to cluster heads as an optimization prob-
lem aiming at minimizing interference by minimizing the channel reuse and
maximizing the distance between non-orthogonal channels. The solution of
the channel allocation is based on solutions obtained from the optimal tra�c
o✏oading problem, where cluster heads, SR and LR users are determined.
Due to non-orthogonality of the channels, user service target rate may not
be achievable. We then present possible solutions for allocating connections
for the users a↵ected by interference either to other mobile terminals cluster
heads or BSs/APs. Results showed reduction in outage percentage with a
tradeo↵ cost of LR channel allocation. In addition, due to the high com-
plexity of the optimal channel allocation, real-time and fast solutions are
needed with tra�c o✏oading in real time dense heterogeneous networks.
Accordingly, we propose a sub-optimal approach for resource management
in dense D2D cooperative networks where tra�c o✏oading is simultane-
ously considered with channel allocation. We present a dynamic tree-based
resource management where users are assigned consecutively based on a
tree having BSs/APs and mobile terminals as nodes. The mobile termi-
nals serving as cluster heads in the tree are assigned SR channels while
performing tra�c o✏oading.
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7.2 Standardization Considerations

In this section, we highlight existing standards and ongoing standardization ac-
tivities that will help facilitate the implementation of multiple wireless interfaces
usage and cooperative common content distribution architectures in practical
wireless networks.

7.2.1 Inter-Operation between Radio Access Technologies

The area of heterogeneous networks is gaining a lot of interest in the literature
recently especially that applications are becoming more diverse. In addition,
operators are looking for enhancing the quality of service and satisfying users
expectations and quality of experience.

The idea behind HetNets is to overlay existing macro networks with additional
infrastructure in the form of smaller low-power low-complexity access nodes. A
mobile terminal can then take advantage of the co-existence of the available
multiple wireless interfaces to achieve performance gains. This raises the issue
of inter-operation between the various technologies. In 3GPP, there are several
standardization e↵orts that deal with the coexistence of multiple RATs, e.g. [3,
120, 121]. The main focus related to the coexistence of multiple radio access
technologies is on achieving seamless handover while selecting the best wireless
interface.

In addition, LTE-Advanced standards are evolving towards supporting ad-
vanced features such as small cell deployments and LTE D2D communications.
The vision towards 5G is to allow the dynamic utilization of spectrum and mul-
tiple access technologies for the best delivery of services, including D2D commu-
nications, spectrum refarming and radio access infrastructure sharing [4, 9].

Along the same direction, mobile devices manufacturers are working on in-
troducing smart switching between cellular and WLAN. In the current mobile
devices, the tra�c is o✏oaded directly to WiFi when WLAN is available. Smart
mode option allowing auto-switching between WiFi and cellular data networks
are implemented in some smartphones such as iOS9 Iphones, Samsung Galaxy
S5 and Sony Experia Z3. This allows the device to switch from WiFi to cellular
network only when WiFi network is not stable with poor connectivity.

Beyond managing the switching between various RATs, standardization, op-
erators and manufacturers e↵orts dealing with the joint and collaborative trans-
mission and reception of a MT over multiple RATs are still lagging behind the
research e↵orts in this direction.

7.2.2 Device-to-Device Communications

D2D cooperation is a solution to increase system coverage and capacity, and to
reduce energy consumption of mobile devices for common content distribution.
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In the cooperative network, mobile terminals can cooperate to receive data from
other mobile terminals using a short range wireless technology (such as LTE-
Direct, WiFi-Direct, Bluetooth or WiFi ad hoc mode). This is becoming feasible
with the recent development of state-of-the-art wireless standards.

First, the Bluetooth has evolved to support advanced functionalities and
higher bit rates for ad hoc communications among a group of MTs. The two most
prevalent implementations of the specification are Bluetooth basic rate/enhanced
data rate, which was adopted as version 2.0/2.1, and Bluetooth with low energy,
which was adopted as version 4.0/4.1/4.2/5.0. Bluetooth v5.0 is the most recent
version of the standard and it includes a special mode of operation character-
ized by significantly reduced energy consumption, increase the range, speed (up
to 2Mbps) and broadcast messaging capacity of Bluetooth applications [122].
The main limitations of using Bluetooth include its relatively limited radio range
(typically around 10 m) in addition to inter-system interference since it utilizes
unlicensed spectrum.

Second, WiFi interface in ad hoc mode can be the most suitable alternative for
Bluetooth to communicate with other MTs over SR links, taking into account the
recent development of the WiFi-Direct specifications [123]. WiFi-Direct is a WiFi
standard enabling devices to easily connect with each other without requiring a
wireless access point, with a high bit rate (up to around 100 Mbps) over ranges
that can reach up to 100 m.

Third, Qualcomm Incorporated introduced FlashLinQ as an advancement in
peer-to-peer wireless technology. FlashLinQ uses a synchronous TDD OFDMA
technology operating on dedicated licensed spectrum and provides high discovery
range up to 1 km and capacity of thousands of nearby devices [124].

In addition, LTE-Direct is an innovative device-to-device technology to scale
up from todays proximal discovery solutions. LTE-Direct was proposed as Re-
lease 12 3GPP feature [125]. It uses licensed spectrum framework where devices
transmit at nominal mobile power levels. LTE-Direct provides a synchronous sys-
tem where devices boradcast their services and wakeup periodically to discover
all devices within range, in contrast to WiFi-Direct where discovery is based on
two step asynchronous messages for device and service discovery.

The main challenge with D2D communications is to still to keep the interfer-
ence to the primary cellular network at tolerable levels, especially when networks
underlay the LTE-A cellular network. Mechanisms for D2D communications ses-
sion setup and management are also under extensive search.

7.3 Open Research Directions

There are several open research problems that need to be addressed in order
to implement optimized resource management and cooperative common content
distribution architectures and algorithms in practical wireless networks. In this
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section, we highlight open research directions that complement the discussions
presented throughout the dissertation.

7.3.1 Advanced Practical Protocols and Test Beds

First, there are no standardized protocols for network selection and tra�c split-
ting in heterogeneous networks. The switching and splitting techniques pro-
posed in the literature showed performance gains, however, thresholds for net-
work switching and handover, tra�c splitting ratios and strategies are not yet
defined. In addition, tra�c splitting and the use of multiple networks simultane-
ously is not yet supported even though our results showed that using WiFi and
cellular links simultaneously may achieve higher throughput than when using one
link with a slight cost of energy consumption.

Second, there are also no standardized content distribution protocols that en-
able the mobile terminals to connect intelligently to the cellular network or other
mobile devices to download the content cooperatively. Accordingly, there is an
urge to develop practical protocols to enable the mobile terminals with/without
the assistance of the network central entity to decide on downloading data either
from BS/AP via LR links or from another cluster head mobile terminal via SR,
and on cooperating in data transmission to other mobile terminals. In addition,
the tra�c o✏oading objectives and user preferences determine whether to mini-
mize the cellular cost, reduce the required cellular resources, minimize the energy
consumption of the MTs or enhance QoS and QoE.

To achieve performance gains, future research investigation is needed to over-
come several implementation challenges: (1) mobile devices manufacturers need
to allow the simultaneous use of di↵erent wireless interfaces, (2) packet re-ordering
is one of the major challenges when using tra�c splitting, where selected data
chunks are downloaded via both interfaces, (3) content distribution protocols in
real-time networks need to accommodate for the fast network conditions varia-
tions including user mobility, (4) limited number of orthogonal non-overlapping
channels which leads to interference and reduce system performance.

Existing work in the literature addressed optimized solutions, challenges, com-
plexities whose outcome can be used in designing such protocols. Moreover, the
existence of such intelligent cooperative protocols enables the implementation of
practical test beds and actual implementation to achieve performance gains and
serve towards 5G 2020 vision.

7.3.2 Practical Implementations and Incentives for Device-
to-Device Communications

Content sharing through device-to-device communications has been proven to be
a promising method to o✏oad the tra�c of base stations. If some user devices

122



have cached a few popular on-demand contents, other interested neighbor mo-
bile terminals can reuse these contents through D2D communications, in which
the contents are directly transmitted to the mobile terminals from the content
owners. Hereby, the base station would only transmit contents which are not lo-
cally available instead of transmitting the same popular contents multiple times.
Therefore, the tra�c of the BSs is significantly o✏oaded using D2D cooperation.
This improves spectrum utilization, increases network throughput, and reduces
average access delay for mobile terminals. However, in reality, users are selfish
and only care about their own preferences. On the other hand, the base station
aims at minimizing its tra�c load and transmission cost by o✏oading to D2D
communication. Accordingly, to motivate the users to participate in the coop-
erative content sharing, incentives for cooperation are needed. As a suggestion,
the operators can reduce the cellular cost for the users acting as cluster heads,
or o↵er them special subscriptions to encourage them to participate in content
sharing [61–63].

In D2D cooperative networks, the mobile terminals sense the network param-
eters for nearby mobile and service discovery. Accordingly, signaling protocols are
needed to intelligently sense the network while reducing the energy consumption
and avoid any additional delays that may a↵ect the overall performance gains
and QoE. Furthermore, the overhead due to signaling needs to be assessed in
practical D2D network, especially, in ultra dense networks where thousands of
users are simultaneously connected.

Finally, the content reliability and availability becomes more challenging in
dense networks where intelligent caching protocols are needed to guarantee that
users is able to download all the data requested with the best performance. The
mobility of the users mobile terminals as well as the security aspects in D2D
cooperation are interesting research topics that need further investigation.

7.3.3 Resource Management in Ultra Dense Networks

Due to the growing number of mobile devices, network densification can also
be a solution to meet user demands and expectations. An ultra dense network
includes densely deployed small cells, macro base stations and large number of
mobile terminals. UDNs face multiple significant challenges, including interfer-
ence, resource management and cost.

In UDNs, inter-cell interference is caused by spectrum scarcity, where the
spectrum resource is not able to cope with the increased demand. Frequency reuse
techniques among di↵erent cells are then needed to support the large number
of MTs. This will be further complicated by D2D dense deployments, close
distance and irregular deployments. In addition, in UDNs, both the macro cells
and small cells are cross deployed throughout the network, and small cells may
reuse the same channel from the macro cell, which causes multi-tier interference.
Accordingly, intelligent resource partitioning on frequency-domain, time-domain,
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and spatial-domain in either network side or mobile terminal side are needed to
mitigate interference.

To achieve performance gains, several resource management issues are needed
including energy management and spectrum management. The most energy con-
suming component in the cellular network is the base station. For this reason,
a number of research e↵orts have been developed to propose di↵erent strategies
to reduce the energy cost of the BS via power control and scheduling. For in-
stance, in a small cell network, BSs are not equally used which leads to serious
energy waste. Energy partitions can be then proposed, where the BSs associate
with each other, taking turns in powered-on and powered-o↵ states. Spectrum
management is another aspect that will impact the system performance of UDN.
Dynamic spectrum access protocols may be developed for enhanced spectrum
sharing based on the primary/secondary strategy, where the secondary user can
utilize the channel if the primary user is not using it. Accordingly, advanced
resource management are needed to achieve the full potential gains of ultra dense
networks.
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