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The construction industry is still considered among the most dangerous 

industries in the world as workers are exposed to a constant risk of getting injured from 

falls, slips, trips, or getting struck by moving or falling objects. In an attempt to provide 

a safe working environment, safety programs have been trying to impose an array of 

provisions and regulations, of which enforcing the use of personal protective equipment 

(PPE), in particular hardhats, proved to be of paramount importance. As the awareness 

and perception of construction workers on safety and hardhat use cannot be fully 

trusted, the responsibility has been traditionally put into the hands of safety officers to 

ensure compliance with these safety regulations. However, the task of actively 

supervising a large construction site with a sizeable number of workers is considered 

tedious, inefficient, and time-consuming. Hence, this research aims at creating a vision-

based system that can automatically detect a failure to wear the hardhat in videos 

captured from construction sites. The objective of this study is thereby two-fold: (1) 

evaluating existing computer vision techniques in efficiently detecting hardhats on 

jobsites, and (2) developing an integrated vision-based framework that can actively 

identify mobile construction workers then search for the presence of a hardhat in the 

upper region of the detected personnel. Components of the complete framework were 

implemented and results highlighted the potential of the proposed automated hardhat 

detection system in enhancing construction safety inspections.  
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CHAPTER 1  

INTRODUCTION 

 

1.1 Introduction 

Construction is still considered one of the most dangerous industries despite 

numerous measures and precautions aiming at improving the overall safety on 

construction sites. In 2014, the construction sector was responsible for 899 fatal injuries 

in the United states, second only to the trade and transportation sector with 1246 fatal 

injuries while the mining sector caused 183 (United States Department of Labor 2014). 

Causes of construction worker deaths include falls, being struck by objects and caught-

in/between, that contribute to over 50% of the total fatalities in the industry (United 

States Department of Labor 2014). Wearing Personal protective equipment (PPE) and 

more specifically hardhats and industrial safety helmets reduces the risk of injury by 

impact from falling or flying objects (HSE 2016). Hence, safety inspections are 

regularly performed to maintain a safe working environment.  These commonly consist 

of safety officers moving around the construction site to uncover unsafe working 

practices, and establish conformity with health and safety requirements.  However, the 

duty of actively supervising a sizable number of workers and constantly identifying all 

potential violations is still rated as manual and laborious (Ham et al. 2016). Moreover, 

especially in developing countries, the construction labor safety laws are not properly 

enforced (Teo et al. 2008, and Chiocha et al. 2011). Even on projects where safety 

programs are initiated, proper observations and follow up are rare (Recate Suazo and 

Jaselskis 1993). In a recent study, contractors stated that not having a safety and health 

management system (SHMS) on their construction sites was caused by the absence of 
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law requirements, the high cost of safety implementation and its time consumption 

(Awwad et al. 2016). Hence, automating and optimizing the current safety procedures 

would offer contractors more incentives to implement it, and will ultimately provide 

more protection to construction workers. 

 

1.2. Worker perception towards PPE 

To further assess the importance of properly enforcing the use of personal 

protective equipment on construction sites, a survey involving 285 construction related 

personnel of various positions and years of experience, from 7 different construction 

sites across Lebanon, was conducted. As part of the evaluation of their perception on 

hardhats use, interviewees were asked to rate the importance of hardhats on a scale from 

1 to 10 and whether the reason behind wearing it was out of personal incentive or it was 

imposed by safety officers. The survey includes as well a question on past incidents, 

whereby the answer “Yes” indicates that the construction personnel or any of the co-

workers, have previously been protected from any sort of minor or major head injury by 

wearing a hardhat. The summary of results is presented in Table 1.1. 

Table 1.1: Relationship between hardhat use and past incidents 

  Reason to wear a hardhat 

  
Personal 

incentive 

Imposed by 

site regulators 
Total 

P
a
st

 i
n

ci
d

en
t 

Yes 62 16 78 

No 71 136 207 

Total 133 152 285 
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According to table 1, the following findings can be formulated: 

• 27% of all interviewees had previous incidents involving hardhats and 

73% did not. 

• 47% of the total interviewees would wear a hardhat out of personal 

incentive while 53% would not. 

• 79% of interviewees who had a past incident would wear a hardhat out of 

personal incentive and 65% who have not experienced a past incident would only wear 

a hardhat whenever it was imposed by safety officers. 

 

The last finding clearly implies that the use of hardhat is significantly higher 

for workers that have survived an incident despite it being a common safety practice. 

This is highlighted through the average hardhat score that was computed as 4.88 in the 

case of individuals who have not previously experienced any incident compared to 7.55 

for individuals who have experienced a past incident (Figure 1.1).  

 

Figure 1.1: Impact of past incidents on hardhat evaluation 
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1.3. Objective and thesis structure 

Because the workers’ awareness could not be trusted to fully comply with 

safety requirements and regulations, and since safety officers are often incapable of 

actively monitoring large construction areas, this research aims to create an automated 

tool that can accurately detect any failure in wearing personal protective equipment 

(PPE), and more specifically hardhats. The objective of this study is thereby two-fold: 

(1) evaluating existing computer vision techniques in efficiently detecting hardhats on 

jobsites, and (2) developing an integrated vision-based framework that can actively 

identify mobile construction workers then search for the presence of a hardhat in the 

upper region of the detected personnel. Separate components were created and the 

complete framework was later implemented. 

 

This thesis presents the work achieved towards the realization of the 

aforementioned objectives, and consists, besides this introductory chapter, of two stand-

alone research papers: 

 

Paper 1 evaluates existing computer vision techniques, in particular object 

detection methods, with the aim of identifying the most suitable approach for fast and 

accurate hardhat detection in construction environments. 

 

Paper 2 presents the design, implementation, and assessment of a new 

integrated and complete framework that: (1) presents a novel vision-based motion 

detection method based on standard deviation differences between consecutive images 

to detect mobile construction workers, and (2) relies on a cascade object detector 

coupled with color analysis and segmentation to detect hardhats in the upper region of 



 5 

the detected personnel with high values of precision and recall.  

 

Relevant background and literature are presented withing the scope of each 

paper. 
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CHAPTER 2  

EVALUATION OF COMPUTER VISION TECHNIQUES FOR 

AUTOMATED HARDHAT DETECTION IN 

CONSTRUCTION SAFETY APPLICATIONS  

 
 

Abstract 

Despite various safety inspections carried out over the years to ensure compliance 

with regulations and maintain acceptable and safe working conditions, 

construction is still among the most dangerous industries responsible for a large 

portion of the total worker fatalities. A construction worker has a chance of 1-in-

200 of dying on the job during a 45-year career, mainly due to fires, falls, and 

being struck or caught-in/between objects. This in part can be attributed to how 

monitoring the presence and proper use of personal protective equipment (PPE) 

on jobsites by safety officers becomes inefficient when surveying large areas and 

a considerable number of workers. Therefore, this paper takes the initial steps and 

aims at evaluating existing computer vision techniques, namely object detection 

methods, in rapidly detecting, from videos captured on many indoor jobsites, 

whether workers are wearing hardhats. Experiments have been conducted and 

results highlighted the potential of cascade classifiers, in particular, in accurately 

and precisely detecting hardhats under various scenarios and for repetitive runs.  

 

 

Keywords 

Computer vision, Hardhat, Construction safety, feature detection, template matching, 

cascade classifier 

 

2.1. Introduction 

A construction worker has a chance of 1-in-200 of dying on the job during a 

45-year career. This statistic reveals the extent of hazard a construction laborer is 

exposed to on a daily basis. According to the Unites States Department of Labor, 874 

construction workers were killed while performing job related activities in 2014. The 

health and safety executive states that a total of 1.7 million working days were lost in 

the United Kingdom in 2014, as 6% of workers sustained or suffered from a work-
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related injury or illness. A worker’s death not only constitutes a tragic event to his 

family and surrounding, but may also provoke major legal consequences and project 

delays. Non-fatal injuries and illnesses are also a concern to construction parties as they 

incur significant waste of time and money. As such, proper use of personal protective 

equipment (PPE) greatly reduces the risk of injury. The hardhat is considered as one of 

the most fundamental means of protection against head injuries from impact with flying 

or falling objects. The importance of safety helmets is highlighted in the widely-adopted 

safety codes and regulations, which impose wearing a protective hat on any person 

entering a construction environment. However, the behavior and awareness of 

construction workers towards the importance of safety equipment cannot be fully 

trusted. A large portion of work related head injuries is sustained by workers not 

wearing hardhats. In the United States, according to the bureau of labor statistics, 84% 

of workers injured in the head region were not utilizing any form of acceptable 

protection (OSHA 2006). For this reason, safety personnel are typically deployed on 

construction sites to ensure compliance with safety regulations and maintain acceptable 

working conditions. Automating the current time-consuming safety procedures would 

create a safer environment where no preventable life loss occurs. Therefore, in this 

paper, existing computer vision techniques are evaluated in rapidly and automatically 

detecting hardhat use.  In order to test the system’s ability to detect hardhats in dynamic 

indoor construction environments, the methods are tested against numerous situations, 

including variations in orientations, colors, background contrast, image resolution, and 

lighting conditions. 
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2.2. Background 

2.2.1. Use of information technology in construction safety 

The construction field is starting to catch up with other fields regarding the use 

of information technology tools. In recent years, research has been carried out in an 

attempt to improve and automate the construction process in many different areas, 

including on-site safety whereby safety programs implemented proved to be manual, 

tedious and time-consuming, Skibniewski (2014) reported that 136 articles focusing on 

IT applications in this field were published between 2006 and 2014. Research topics 

include sensor-based systems, robotics and manipulators, and information analysis, 

management and reporting. Sensor based systems in the field of construction safety rely 

on a wide range of “Real Time Locating Systems” (RTLS). Commonly used sensors 

include “Radio Frequency Identification” (RFID) sensors, “Ultra-wide Band” (UWB) 

sensors, and laser sensors. RFID sensors are mainly employed to develop early warning 

systems for workers. Yoshida and Chae (2010) utilized RFID sensors to develop a 

system that informs workers about potential safety hazards on site. Their system 

prevents collision accidents by warning workers and equipment operators entering a 

possible conflict zone, using real-time localization. Marks and Teizer (2013) evaluated 

the potential use of semi-passive RFID in a pro-active real time personal protection unit 

(PPU), that protects workers against being struck by a machine or equipment. Their 

tests revealed that a PPU system based on semi passive two-dimensional RFID requires 

covering all possible worker-to-machine positions and orientations to be effective. They 

concluded that further research is required for the development of such PPU systems, 

particularly regarding the use of three-dimensional RFID. Wireless sensors provide real-

time localization of workers, material and equipment. Several studies about the 

accuracy and reliability of UWB sensors for safety applications have been performed 



 9 

(Teizer and Castro-Lacouture 2007, Hwang 2012). Acceptable accuracy levels could be 

obtained in sizeable open space construction sites (Cheng et al. 2011). Laser sensors and 

scanners are used to examine the visibility of a tower crane or equipment operator, 

detect his blind spots, and provide information about potential hazards to his 

surrounding workers (Lee et al. 2012, and Cheng and Teizer 2014). On the other hand, 

robotics and manipulators are replacing human workforce with robots for tasks 

performed under dangerous conditions. Kim et al. (2009) evaluated the performance of 

the Hume Concrete Pipe Manipulator (HCPM), a system commissioned by the Korea 

Ministry of Construction and Transport to perform pipe laying work. This task 

previously required laborers to work in trenches and was considered one of the most 

dangerous construction operations. In addition to eliminating potential safety hazards, 

analysis of the HCPM’s performance indicated a 65% improvement in productivity and 

a 33% reduction is costs. Other research efforts resorted to information analysis, 

management and reporting by adopting BIM for safety planning and schedule-

workspace interference visualization, to secure work performance safety and decrease 

collision risk between resources. Ding et al. (2012) created a safety risk identification 

system (SRIS) that automatically identifies hazards related to metro and underground 

construction using construction drawings. However, none of the aforementioned studies 

used computer vision in automating safety.applications. 

 

2.2.2. Use of computer vision in construction 

Computer vision techniques have been applied to extract relevant information 

from construction sites. It is used to automate field observations and replace present 

time-consuming data collection methods. Applications include progress monitoring, 

productivity analysis, object detection, tracking and motion detection, and action 
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recognition (Yang et al. 2015). Computer vision-based systems have also found a direct 

application in construction safety, in identifying unsafe acts, hazardous situations and 

awkward postures (Seo et al. 2015). For instance, texture recognition systems have been 

used to identify on-site material for construction progress monitoring (Liu et al. 2010). 

Those systems, however, have only been tested under controlled conditions and their 

accuracy drops significantly when used with images from construction sites. To address 

this issue, Dimitrov and Golparvar-Fard (2014) proposed a new vision-based algorithm 

that classifies material using joint probability distribution of responses. The system was 

capable of accurately classifying material from images taken from various viewpoints 

and under different conditions of illumination. Hamledari et al. (2016) presented a 

computer vision-based system that relies on shape and color analysis, to detect indoor 

partition components such as studs, insulation, electrical outlets and drywall sheets. 

Based on detection results from images and videos from construction sites, the system 

classifies the current stage of work into one of five possible stages: (1) framing, (2) 

insulation, (3) installed drywall, (4) plastered drywall, and (5) painted partition. The 

obtained information may then be utilized to update corresponding BIM models and 

schedules. Additionally, vision-based tracking frameworks are used to address the 

limitations of using sensor-based systems, such as high costs, time consumption and 

privacy issues. Those systems use data from multiple static cameras to identify, track 

and calculate 3D coordinates of construction entities from each frame (Brilakis et al. 

2011, and Park et al. 2012a). Chi et al. (2009) proposed an algorithm that identifies and 

tracks objects on construction sites using a high-frame-rate range sensor. Image 

matching algorithms were used to classify objects using a model database and through 

comparison with previous scans. Memarzadeh et al. (2013) presented a computer 

vision-based framework to automatically detect construction workers and equipment 
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using videos streamed from construction sites. They utilized an algorithm based on 

Histogram of Oriented Gradients and Colors (HOG + C) to make the semi-automated 

detection less time-consuming. Motion detection systems generally rely on background 

subtraction algorithms to detect foreground and moving objects (Park et al. (2015). Park 

et al. (2012b) utilized standard background subtraction to detect moving blobs in an 

image. Within the moving foreground, HOG features are used to identify peoplethen 

color gradients distinguish between pedestrians and construction workers, based on the 

color of the safety vest. 

As computer vision proved promising in the field of construction, and safety in 

particular, recent studies have adopted it for automating hardhat detection in an attempt 

to efficiently and rapidly protect construction personnel against head injuries and 

collisions. 

 

2.2.3. Use of computer vision for hardhat detection 

Proper use of personal protective equipment is essential to provide construction 

workers with adequate levels of safety. Research has been recently carried out to 

facilitate, improve, and automate appropriate PPE usage enforcement procedures 

(Bajracharya 2013). Du et al. (2011) introduced the idea of using computer vision 

techniques to detect hardhats in a video sequence. Their algorithm was divided into two 

main steps. First, a human face was detected using existing face detection algorithms 

based on Haar-Like features, introduced by Lienhart and Maydt (2002) and Viola and 

Jones (2004). The system than detects the presence of a hardhat using color 

segmentation. Their work is considered to be among the first attempts in this field. 

However, the proposed method was only tested against frontal close-up videos of 

human faces and not real-case scenarios from construction sites. On the other hand, 
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Gheisari et al. (2014) evaluated the potential applications of unmanned aerial systems 

(UAS) in construction safety by providing safety personnel with real-time visual access 

to jobsites. Their system was evaluated based on the ability of the test subjects to detect 

workers not wearing hard-hats using images and videos captured by a quadcopter from 

a construction site. Results revealed that using unmanned aerial systems would be 

useful for safety related tasks. However, a large-size interface on a tablet device is 

required to provide a precise view of the jobsite. The detection process was still manual 

and required the safety officer’s presence and perception. Shrestha et al. (2015) 

proposed an algorithm that detects workers using standard face detection then applied 

the edge detection technique on the region directly above the worker’s head. The system 

detects a hard-hat if its outline is a semicircle and its color is red. However, their 

program required a set of high resolution CCTV cameras to be installed on site, and was 

only able to detect hardhats when applied on images captured from the front. No 

validation of the efficiency of their system in an actual construction environment was 

realized. A recent study by Park et al. (2015) detected hard-hats using a support vector 

machine (SVM) classifier, as part of a complete framework that aims at enhancing on-

site safety conditions. The algorithm is based on shape recognition and utilizes 

histogram of oriented gradient (HOG) features to describe the cap style shape of the 

hard-hat. While the proposed framework was capable of detecting a hardhat under 

various conditions and independently from its color, it was also susceptible to false 

detection because the semi-circular shape of the hardhat could easily be extracted from 

other irrelevant objects. As such, Rubaiyat et al. (2016) combined the use of Circle 

Hough Transform (CHT) feature extraction that can identify the circular shape of the 

hardhat, with color analysis, to create a more efficient helmet detection system. Their 

method was capable of detecting hardhats at a rate of 79.1%. 



 13 

2.3. Limitations of existing studies and contributions 

However, the work of the aforementioned research efforts is still in its infancy. 

The exisiting systems were either only able to detect frontal views of hard-hats under 

laboratory conditions and never tested under proper site conditions, or were victims of 

overprediction and identifying unwanted objects as hardhats. Moreover, almost all 

studies in this domain put too much emphasis on the values of precision (i.e. percentage 

of detections that are true positives) and recall (percentage of true positives detected), 

calculated based on test results from a large sample of random images in a database. 

The two parameters, often considered in describing the precision of a classification 

model, may not provide an accurate evaluation of the effectiveness of the proposed 

algorithms. This is mainly due to the fact that the performance of the detection model is 

not merely random and cannot be evaluated using random samples. For instance, a 

classifier capable of detecting hardhats based on shape recognition and strong contrast 

with the background would correctly identify all images when these conditions are 

satisfied, but would also fail to identify all images with insufficient background 

contrast. The calculated values of precision and recall are directly related to the nature 

and the level of challenge of the testing images. A more convenient approach is to test 

the detector against selected scenarios of various orientations, colors, background 

contrast, image resolution, and lighting conditions in order to qualitatively assess its 

effectiveness. In addition, none of the previous studies were concerned with the time 

efficiency of the detection method. Dealing with the safety of construction workers and 

personnel has to happen relatively quickly and in real-time. After all, the detection 

speed of the algorithm is as important as its accuracy. Therefore, the aim of this paper is 

to evaluate existing computer vision techniques, in particular object detection and 

recognition methods, in order to identify the most suitable algorithm for efficiently and 
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rapidly detecting hardhat wearing under various indoor site conditions. The accuracy as 

well as time efficiency of the different vision techniques aretested in numerous 

situations, under various conditions and for several runs. 

 

2.4. Methodology 

This section describes and evaluates various computer vision algorithms 

deemed useful for detecting hardhats. Among several existing computer vision 

techniques, object detection/recognition methodsproved promising in particular: (1) 

Feature detection, extraction and matching, (2) template matching, and (3) cascade 

classifiers models. The usefulness of each visual object recognition method varies 

according to the form, color, repeatability, shape, and scale variance of the target object. 

The components of the evaluated algorithms were implemented using Matlab 2016a. 

 

2.4.1. Feature detection, extraction, and matching 

In image recognition, a local feature is defined as a “pattern which differs from 

its immediate neighborhood” (Mikolajczyk and Tuytelaars 2008). Local features and 

descriptors are the cornerstone of a large array of computer vision techniques and 

applications, including object detection, tracking and motion estimation (Dickscheid et 

al. 2011). In the feature detection stage, feature detectors or descriptors are used and 

more specifically gradient-based features such as the Speeded-Up Robust Features 

(SURF), or binary features including Binary Robust Invariant Scalable Keypoints 

(BRISK) and Features from Accelerated Segment Test (FAST) are commonly used to 

find point correspondences between the input image, and a reference image containing 

the object, or objects, of interest (Ahonen et al. 2006, and Dalal and Triggs 2005, 

Rosten and Drummond 2006, Bay et al. 2008, and Leutenegger et al. 2011). As such, 
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SURF, BRISK, and FAST features were considered in this study as depicted in the code 

snippet below: 

Surf_Features = detectSURFFeatures(rgb2gray(Image)); 

Brisk_Features = detectBRISKFeatures(rgb2gray(Image)); 

Fast_Features = detectFASTFeatures(rgb2gray(Image)); 

On the other hand, the feature extraction locates the detected features within 

each image, while feature matching identifies similarities between the sample and test 

images, using the following code snippet based on SURF features: 

[feats1, validpts1] = extractFeatures(rgb2gray(Reference), 

Surf_Features_Reference); 

[feats2, validpts2] = extractFeatures(rgb2gray(Input), Surf_Features_Input); 

Index_Matched_Features = matchFeatures(feats1, feats2); 

Outliers were then removed and the transformation matrix was calculated, 

using Random Sample Consensus (RANSAC) algorithm (Khoury et al. 2015).  A 

hardhat is detected when the number of matched features between the input and 

reference images is sufficient. The number of hardhats is then computed by hiding 

identified ones from the target image so that the next best match hardhat can be detected 

in the next iteration of the algorithm. This counting iterative process halts when no more 

hardhats can be detected in the target image. It is worth noting that this method works 

best for objects displaying non-repeating texture patterns to allow unique and numerous 

feature matches.  

 

2.4.2. Template matching 

Template matching often refers to a series of operations aiming at detecting 

and identifying a certain form or pattern in an input image, by comparison with a 

template image (Brunelli 2009). The concept of template matching is fairly 

straightforward: The template is positioned over the input image at every possible 
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position and a similarity coefficient is calculated based on pixel values. Possible metrics 

to determine the similarity include the sum of absolute differences (SAD), the sum of 

squared differences (SSD), and the maximum absolute difference (MaxAD) (Yu et al. 

2006). Template matching is best used in localizing an existing part of an overall image, 

and was found useful in applications such as quality control and mobile robot 

navigation (Aksoy et al. 2004, and Kyriacou eh al. 2005). In Matlab, methods searching 

for the minimum difference between two images consist of either an Exhaustive search 

(ES) or a Three-Step search (TSS). The former is more accurate but more 

computationally expensive, while the latter is quicker, but may not always find the 

optimal solution. In Matlab, a template matcher is typically based on SAD unless 

otherwise stated (e.g. Three-Step) as shown in the code snippet below: 

Detector = vision.TemplateMatcher('SearchMethod','Three-step'); 

A hardhat is detected when the calculated minimum difference between a 

reference image containing a hardhat and the input image is less than a required 

threshold. Generally, template matching algorithms are limited by the available 

computation power due to a required high detection accuracy that necessitates lengthy 

iteration processes.  

 

2.4.3. Cascade classifier 

In this study, cascade classifiers based on Histogram of Oriented Gradients 

(HOG), Haar-like, and Local Binary Pattern (LBP) features are assessed. This requires a 

training process, using two sets of positive and negative instances. Positive instances 

contain images of the relevant object, while negative instancesare images not containing 

the relevant object. Positive images are utilized by the detector to describe the shape and 

features of the relevant object. A varied sample of 75 positive and 164 negative 
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instances was collected from construction and was used to train the three cascade object 

detectors. The region of interest (ROI) containing the hardhat needs to be selected for 

every image in the database, using the 'Training Image Labeler' in Matlab (Figure 2.1). 

 

 
Figure 2.1: Example of ROI selection in Matlab 

 

Once the sets of positive and negative instances are obtained, training a 

cascade object detector can be performed. The training process requires as well a set of 

input parameters, including the number of cascade stages, the true positive rate and the 

false alarm rate. Experimenting with those parameters yields different results, allowing 

for the creation of a more effective detector. For example, training a cascade object 

detector based on HOG features and with the required parameters is performed using 

the following Matlab code: 

trainCascadeObjectDetector('Hog_7_10.XML', 

positiveInstances, negativeFolder, 'FalseAlarmRate', 0.10, 

'NumCascadeStages', 7, 'FeatureType', 'HOG') 

 

Relevant information about the object to be classified are stored in the created 

XML file. 
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2.5. Preliminary results and analysis 

The performance of each method is assessed against variations of orientation, 

color, background contrast, image resolution, and lighting conditions in addition to 

assessing the time efficiency of each. All the required codes and algorithms were 

implemented in Matlab 2016a, using built-in toolboxes. Since time efficiency is a main 

component in our study, all experiments were carried out on the same laptop equipped 

with an intel i7 6700HQ Skylake processor and 16 GB of RAM.  

 

2.5.1. Performance of the feature detection, extraction, and matching algorithm 

Due to the uniform shape and color of a hardhat, the number of detected 

features was found to be low (Figure 2.2 and 2.3). One suggested solution to this 

problem was to add a customized sticker to the hardhat (Figure 2.4 a). This then greatly 

increased the number of extracted features (Figure 2.4 b, 2.4 c, 2.4 d).  

 

 
Figure 2.2: Blue Hardhat: (a) Original Image, (b) Detected SURF features (29), (c) 

Detected BRISK features (29), and (d) Detected FAST features (9) 

 

 
Figure 2.3: White Hardhat: (a) Original Image, (b) Detected SURF features (4), (c) 

Detected BRISK features (0), and (d) Detected FAST features (0) 
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Figure 2.4: Hardhat with sticker: (a) Original Image, (b) Detected SURF features (285), 

(c) Detected BRISK features (172), and (d) Detected FAST features (424) 

 

 

In order to demonstrate the ability of the local features based algorithm and 

evaluate its performance, the first experiment was conducted using a close-up top view 

image captured on a construction site, clearly showing the customized stickers on both 

hardhats. The algorithm is independent from any type of feature used, but given that a 

minimum number of features needs to be extracted with the least computational power, 

the choice landed on SURF features. In the first iteration, 63 matching features were 

found between the reference and the target image (Figure 2.5). The first detected 

hardhat was then hidden from the target image and in the second iteration, 44 matching 

features were found between the reference and the new target image (Figure 2.6). 

 

 
Figure 2.5: Matching features for the first hardhat 
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Figure 2.6: Matching features for the second hardhat 

 

The iteration process then halts once the second hardhat is hidden and the 

program returns the number of detected hardhats. 

Because of the lack of pertinent features on the hardhat, the algorithm searches 

for the customized sticker and identifies its target irrespective of the color or shape of 

the hardhat. However, further testing revealed some deficiencies in the system. The 

method is actually susceptible to misclassifying any object carrying the sticker. 

Moreover, in a three-dimensional dynamic construction environment, a clear view of 

the sticker can not be always guaranteed. As a matter of fact, in another sets of 

experiments, a hardhat could not be detected because either the size or resolution of the 

sticker was low, or the sticker was not visible due to the orientation of the hardhat 

(Figure 2.7). Additionally, the feature extraction and filtering together with the iteration 

processes required a relatively high calculation cost.  

 
Figure 2.7: Example of no detection – Sticker size too low 



 21 

2.5.2. Performance of the template matching algorithm 

As shown in Figure 2.8, the algorithm wrongly predicted the location of a blue 

hardhat when using a template with a slightly different rotation. 

 

 
Figure 2.8: Wrong detection using template matching 

 As such, a unified template is not sufficient to detect all instances and a classic 

template matching is relatively inaccurate when dealing with any form of difference in 

scale and rotation. Futhermore, the lengthy calculation process of classic template 

matching eliminates any usefulness of such an algorithm in a real-time application. In 

fact, scanning full resolution images from construction sites required hours of 

processing and a lot of computational power  

2.5.3. Performance of the cascade classifier 

Cascade object detectors have proven capabilities in identifying objects of 

similar shapes and aspect ratios, such as face and pedestrian recognition (Lienhart and 

Maydt 2002, and Viola and jones 2004). Objects detectors are often sensitive to out of 

plane transformation. However, this should not be a problem in the case of a hardhat 

detection since its semi-circular shape remains unchanged regardless of the viewing 

angle.  
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Cascade classifiers based on Haar and LBP features yielded high rates of 

wrong detection in all testing images (Figure 2.9). However, a classifier based on HOG 

features provided an acceptable accuracy in this particular application. HOG features 

could accurately describe the circular shape of the hardhat independently from its color 

(Figure 2.10).  

 

 
Figure 2.9: High rate of incorrect detections: (a) Using Haar Features, and (b) Using LBP 

Features 

 

 
Figure 2.10: Extracted HOG features: (a) blue hardhat, and (b) white hardhat 

 

The ability of the detector to correctly identify hardhats from different 

perspectives is verified as well using a large set of testing images containing front, side 

and back views of a blue hardhat (Figures 2.11, 2.12 and 2.13). 
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Figure 2.11: Detected Hardhat – Front View 

 
Figure 2.12: Detected Hardhat – Side View 

 
Figure 2.13: Detected Hardhat – Back View 

 

The classifier was also capable of recognizing two objects simultaneously. 

Color variations also had no effect and the computational speed was acceptable. The 

capacity to experiment with training parameters to obtain different results is also 

another main advantage of such cascade classifiers. 
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2.5.4. Comparison and selection 

Based on preliminary experiments and results featured above, each technique is 

assessed against the following criteria summarized in Table 2.1. 

 

Table 2.1: Comparative summary of hardhat detection techniques 

 

Feature Detection, 

Extraction and 

Matching 

Template matching Cascade classifier 

Computational Duration Medium Very High Low 

Color invariance Yes No Yes 

Orientation Invariance No No Yes 

Practicality No No Yes 

Customizability Yes No Yes 

Requires Training Database No No Yes 

 

The above comparative summary clearly reflects that the cascade object detector 

outperforms the other computer vision techniques and can be potentially adopted in 

real-time safety applications, in particular hardhat detection. 

 

2.6. Experimental analysis of the cascade object detector 

In this section, further assessment of the cascade object detector is carried out.  

When training a detector, a common misconception is to put a large emphasis on 

maximizing the size of training images. In reality, and based on our preliminary tests, 

better results were obtained using a compact training set of similar positive instances, 

and a larger generalized training set yielded unwanted results. Additionally, consistency 

within the images is more important than the total sample size. For this reason, all 

images in our obtained database have the same resolution (3840 × 2160 pixels), and the 
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obtained detector produces optimal results when tested on images having the same 

resolution as database images. 

Two seven-stage cascade object detectors were trained using the same image 

datasets of 75 positive and 164 negative images, and given two different values of false 

alarm rates set to 0.05 and 0.1. In theory, a larger false alarm rate should yield more 

false positive results, and the detector should be less likely to miss a desired object. In 

the following subsections, the effectiveness of the classifier is tested against variations 

in orientations and colors, background contrast, image resolution, and lighting 

conditions. The execution of the algorithm for each test scenario is timed using the 

“Run and Time” tool in Matlab. 

 

2.6.1. Scenario 1: High contrast against background, variable colors and 

orientations: 

 

In this scenario, the level of challenge was relatively low. All hardhats could be 

easily discerned from their respective backgrounds. The two detectors were tested on 10 

images with 13 hardhats in total and the results are summarized in table 2.2: 

Table 2.2: Performance of cascade object detectors for scenario 1 

Image ID 1 2 3 4 5 6 7 8 9 10 

True number of hardhats 1 1 1 1 1 1 1 2 2 2 

Detected- False alarm rate = 0.05 1 1 0 0 1 2 1 2 1 3 

Detected- False alarm rate = 0.1 1 1 1 1 1 2 1 2 2 3 

 

As expected, the cascade object detector with the lower false alarm rate missed 

three, while the detector with the false alarm rate of 0.1 did not miss any hardhat. 

Nevertheless, both classifiers were subject to wrong identification, and for instance, in 

image 6, an object with a similar shape as the hardhat was mistakenly classified (Figure 

2.14). The time statistics of both detectors were similar with an average processing time 

per image of 2 seconds (tables 2.3 and 2.4). 
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Figure 2.14: Wrong classification of head region in image number 6 – Scenario 1 

 
Table 2.3: Time statistics for scenario 1 – False Alarm Rate = 0.05 

Action 
Number of 

Calls 
Total Time 

Percentage of 

Total Time 
Average Time 

Execution of detector 10 19.949 s 91.9 % 1.994 s 

Reading image file 10 1.734 s 8.0 % 0.173 s 

All other actions - 0.031 s 0.1 % 0.003 s 

Total - 21.714 s 100 % 2.171 s 

 

Table 2.4: Time statistics for scenario 1 – False Alarm Rate = 0.1 

Action 
Number of 

Calls 
Total Time 

Percentage of 

Total Time 
Average Time 

Execution of detector 10 20.517 s 91.9 % 2.051 s 

Reading image file 10 1.767 s 7.9 % 0.176 s 

All other actions - 0.034 s 0.2 % 0.003 s 

Total - 22.318 s 100 % 2.231 s 

 

2.6.2. Scenario 2: Low contrast against background, variable colors and orientations 

 

In this scenario, the level of challenge was greatly increased. The low contrast 

between the hardhat and its background may reduce the significance of the detected HOG 
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features which, in turn, canreduce the efficiency of the detector. Similar to the first 

scenario, 10 images containing one or more hardhats were selected and results for both 

detectors are summarized in table 5. 

 

Table 2.5: Performance of cascade object detectors for scenario 2 

Image ID 1 2 3 4 5 6 7 8 9 10 

True number of hardhats 1 1 1 1 1 1 1 2 2 2 

Detected- False alarm rate = 0.05 0 1 0 1 0 0 1 1 1 1 

Detected- False alarm rate = 0.1 0 1 1 1 1 0 1 2 2 1 

 

In this case, the performance of the cascade object detector dropped. For a false 

alarm rate equal to 0.1, the detector was able to identify 10 out of 13 hardhats. 

Nevertheless, the detector is still considered efficient even when the contrast with the 

background is very minimal (Figure 2.15). The time statistics of both detectors did not 

significantly vary and the average processing time per image was around 2 seconds 

(tables 6 and 7). 

 

Figure 2.15: Correct identification of both hardhats in image 8 – Scenario 2 
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Table 2.6: Time statistics for scenario 2 – False Alarm Rate = 0.05 

Action 
Number of 

Calls 
Total Time 

Percentage of 

Total Time 
Average Time 

Execution of 

detector 
10 20.120 s 91.8 % 2.012 s 

Reading image file 10 1.765 s 8.1 % 0.176 s 

All other actions - 0.030 s 0.1 % 0.003 s 

Total - 21.915 s 100 % 2.191 s 

 

Table 2.7: Time statistics for scenario 2 – False Alarm Rate = 0.1 

Action 
Number of 

Calls 
Total Time 

Percentage of 

Total Time 
Average Time 

Execution of 

detector 
10 20.148 s 91.7 % 2.014 s 

Reading image file 10 1.778 s 8.1 % 0.174 s 

All other actions - 0.036 s 0.2 % 0.003 s 

Total - 21.962 s 100 % 2.196 s 

 

 

2.6.3. Scenario 3: Low luminosity 

Unlike scenario 2, the variation of image luminosity did not considerably affect 

the performance of the cascade object detector. This is due to the fact that the HOG 

features are capable of describing the shape of the object irrespectiveof its color. 

 

2.6.4. Scenario 4: Different image resolutions 

To test the effect of changing the resolution of test images independently from 

other factors, this experiment was carried out using the same images of scenario 1, 

cropped or resized to obtain images having a lower resolution resolution (1920 × 1080 

pixels). Images 1 to 5 were cropped, while images 6 to 10 were resized. Cropped 

images yielded results identical to scenario 1. On the other hand, resizing the image can 

possibly decrease the size of hardhats below the trained size and accordingly does not 

allow hardhat detection (table 8). Therefore, training the detector using images of the 
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same resolution and taken from a similar distance as expected subject images is of 

paramount importance. Accordingly, the time statistics significantly improved (tables 9 

and 10). 

 

Table 2.8: Performance of cascade object detectors for scenario 4 

Image ID 1 2 3 4 5 6 7 8 9 10 

True number of hardhats 1 1 1 1 1 1 1 2 2 2 

Detected-False alarm rate = 0.05 1 1 0 0 1 2 0 1 1 3 

Detected-False alarm rate = 0.1 1 1 1 1 1 2 0 1 2 3 

 

Table 2.9: Time statistics for scenario 4 – False Alarm Rate = 0.05 

Action 
Number of 

Calls 
Total Time 

Percentage of 

Total Time 
Average Time 

Execution of detector 10 4.887 s 90.3 % 0.488 s 

Reading image file 10 0.486 s 9.0 % 0.048 s 

All other actions - 0.040 s 0.7 % 0.004 s 

Total - 5.413 s 100 % 0.541 s 

 

Table 2.10: Time statistics for scenario 4 – False Alarm Rate = 0.1 

Action 
Number of 

Calls 
Total Time 

Percentage of 

Total Time 
Average Time 

Execution of detector 10 5.150 s 90.7 % 0.515 s 

Reading image file 10 0.491 s 8.6 % 0.048 s 

All other actions - 0.040 s 0.7 % 0.004 s 

Total - 5.681 s 100 % 0.568 

 

The aforementioned experiments demonstrated the potential use of the proposed 

cascade object detector for hardhat identification. The algorithm is robust against 

variations of orientations, colors, and lighting conditions. The performance of the 

classifiers drops when the contrast against the background is low, and the system becomes 

more susceptible to missing positive instances. On the other hand, although images with 

a lower resolution require a significantly lower computational power, hardhats cannot be 
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detected if their size becomes smaller than a certain threshold, hence the importance of 

training a detector according to a specific image resolution. 

 

2.7. Conclusion and Future Work 

Despite numerous measures and code requirements aiming at improving 

construction safety and health management, construction is still considered one of the 

most dangerous industries in the world. Workers are exposed to hazards on a daily 

basis, and could not be fully trusted to abide by safety regulations. Safety officers are 

therefore employed to monitor sites and detect any non-compliance with safety 

regulations. In order to automate and improve the safety inspection process, research 

efforts have been resorting to information technology and computer vision techniques. 

This paper assessed the effectiveness of existing computer vision algorithms, in 

particular widely adopted object detection/recognition methods, in automatically 

detecting hardhat-wearing on construction sites. Experiments were conducted and 

results highlighted that a well-trained cascade classifier was found to be robust under 

various scenarios and conditions. Additionally, it was proven to be relatively time-

efficient and in a real-time application, it is capable of scanning for violations every 2 

seconds. The process can even be expedited by reducing the resolution of the training 

and test images.  

Further testing is required to evaluate the accuracy of different object detection 

algorithms, as well as to explore the potential use of heat cameras besides digital 

imagery. Future studies will aim as well to integrate this detection into a complete 

framework that: (1) detects first mobile workers, (2) scans for hardhats in the upper part 

of the detected worker region to speed up the detection process, and (3) issues a safety 

alarm or warning when a safety violation is detected. Further work will also look into 
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improving the accuracy of the hardhat detection and eliminating false detections by 

combining the cascade classifier with image and color segmentation techniques. 
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CHAPTER 3  

AN INTELLIGENT VISION-BASED FRAMEWORK FOR 

HARDHAT- WEARING DETECTION IN INDOOR 

CONSTRUCTION SAFETY APPLICATIONS 
 

Abstract 

The construction industry is still among the riskiest industries in the world despite 

numerous enforced safety regulations on jobsites. Workers are subject to getting injured 

from falls, slips, trips, or getting struck by falling objects. Hence, safety programs have 

been according great emphasis on proper use of personal protective equipment (PPE) by 

deploying safety officers on construction sitesto ensure proper implementation of those 

requirements. However, thecurrent practice of supervising large construction areas 

could prove to be manual, tedious, and ineffective. Therefore, this study aims at creating 

a comprehensive framework that can automatically and efficiently detect any non-

compliance with safety rules and regulations, in particular a failure to wear a hardhat, 

using computer vision techniques applied on videos captured from indoor construction 

sites. This is achieved by: (1) isolating mobile workers from the captured scene by 

means of a novel motion detection algorithm, and (2) detectinghardhat in the identified 

region of interest using object detection together with image and color segmentation. 

Several experiments were conducted and results highlighted that the newly developed 

motion detection algorithm showed an improved accuracy compared to common 

background subtraction methods, and the hardhat detection algorithm achieved high 

precision and recall. 

 

Keywords 

Construction safety, PPE, hardhat-wearing, motion detection, object detector, color 

segmentation. 

 

3.1. Introduction 

Construction workers are exposed to a variety of hazards on a daily basis. 

Risks include falls, slips, trips, getting struck by falling or flying objects, electrocutions, 

being caught in-between equipment or objects, and being crushed by a collapsing 

structure (OSHA 2015). And in spite of numerous measures and provisions established 

to create a safer working environment, construction still produces one of the highest 

injury and fatality rates between all sectors. 937 construction workers were fatally 
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injured in the United States in 2015, which constitutes 19.3% of the total workplace 

deaths, and a 2 percent rise from the previous year and the highest number of casualties 

in the construction field since the 975 reported cases in 2008 (Bureau of Labor Statistics 

2015). In Canada, construction had the highest number of death among all industries 

and accounted for 23.3% of the total work related fatal injuries between 2008 and 2010 

(CBC News 2012). In the United Kingdom, the rate of fatal injury per worker for the 

construction industry is over 3.5 times greater than the average rate across all other 

sectors (Health and Safety Executive 2015). In order to avoid the legal, financial, and 

moral consequences implied by the tragic loss of life on a construction site, safety codes 

and regulations have been developed. Those include the “Safety and Health Regulations 

for Construction” in the United States, the “Occupational Health and Safety 

Regulations” in Canada, and the “Health and Safety in Construction” in the United 

Kingdom. The Construction Design and Management Regulations (2007) assign the 

responsibility of planning, coordinating and managing health and safety through the 

entire project to clients, supervisors, designers and contractors alike (Ashworth 2013). 

 

Remarkable efforts have been realized to improve construction safety 

management and the implementation of safety regulations is vastly prioritized by 

owners, contractors and legal authorities in the majority of developed countries (Sherrat 

et al. 2013). On the other hand, most developing countries display a weak commitment 

to safety requirements and a poor safety performance (Teo et al. 2008, and Chiocha et 

al. 2011). In a recent study about the state of construction safety in Lebanon, a middle 

eastern developing country, contractors stated that the absence of a safety and health 

management system on their construction sites was caused by the lack of law 

enforcement, the high cost and time of safety implementation (Awwad et al. 2015). 
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Generally, safety officers are employed to monitor job sites and ensure proper 

compliance with safety regulations. They educate workers about potential hazards 

through weekly safety trainings and toolboxes, and enforce the appropriate use of 

personal protective equipment (PPE) according to the specified task, including hardhats, 

protective eyewear, high visibility vests, gloves, safety boots, fall protection and other 

means where necessary. Safety equipment and more precisely hardhats are a major 

component in any safety program and have proven capabilities in protecting against 

head injuries resulting from impact with falling or flying objects. In fact, 84% of the 

total head injuries in the construction industry are sustained by workers not wearing 

hardhats (OSHA 2006). However, the task of actively supervising a large number of 

workers on a sizeable project, using manual traditional methods, could prove to be 

inefficient, tedious, and requires an abundance of human and financial resources. For 

this reason, optimizing and automating the current construction safety process would 

offer more incentive to clients and contractors to implement the required codes and 

regulations. 

 

Therefore, this paper presents a novel safety inspection framework capable of 

efficiently identifying individuals not wearing hardhats by applying a series of computer 

vision techniques and algorithms on photos and videos captured from indoor jobsites. 

The overall system consists of two major components. In the first part, a motion 

detection algorithm is developed. The algorithm identifies moving objects in a set of 

consecutive images using standard deviation differences between the images. A 

standard classifier is then applied to the active region to identify the presence of any 

individual. In the second part, a cascade object detector is utilized to search for a 
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hardhat in the top part of the identified personnel and image and color segmentation 

techniques are then used to eliminate false detections. 

 

3.2. Background 

Traditional safety methods and programs have been the subject of numerous 

studies. Construction safety research includes behavior-based safety (BBS) management 

(Lingard and Rowlinson 1997), integration of safety and construction schedules (Chen 

et al. 2000, and Coble et al. 2000), development of safety training systems (Aranda 

2000), analysis of accident causes (Hinze et al. 1998, and Hinze et al. 2005), and safety 

hazard identification (Carter and Smith 2006). Recently, the trend has shifted to 

computer-based and IT systems to automate the current safety practices. For instance, 

Skibniewski (2014) reported that 136 articles focusing on IT applications in this field 

were published between 2006 and 2014. Research topics included sensor-based 

systems, robotics and manipulators, and information analysis, management and 

reporting. Sensor-based systems in the field of construction safety rely on a wide range 

of “Real Time Locating Systems” (RTLS) that include “Radio Frequency 

Identification” (RFID) sensors, “Ultra-wide Band” (UWB) sensors, and laser sensors, to 

create early warning systems that prevent collision accidents due to blind spots (Teizer 

and Castro-Lacouture 2007, Yoshida and Chae 2010, Hwang 2012, Lee et al. 2012, 

Marks and Teizer 2013, and Cheng and Teizer 2014). On the other hand, robotics and 

manipulators have been designed to replace human workforce when encountered with 

tasks performed under dangerous conditions. Kim et al. (2009) evaluated the 

performance of the Hume Concrete Pipe Manipulator (HCPM), a system commissioned 

by the Korea Ministry of Construction and Transport to perform pipe laying work. This 

task previously required laborers to work in trenches and was considered one of the 
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most dangerous construction operations. In addition to eliminating potential safety 

hazards, analysis of the HCPM’s performance indicated a 65% improvement in 

productivity and a 33% reduction is costs. Finally, information analysis, management 

and reporting includes the use of BIM for safety planning and schedule-workspace 

interference visualization, to secure work performance safety and decrease collision risk 

between resources Ding et al. (2012).  

 

Among other IT systems adopted in automating construction processes, in 

particular safety inspections, computer vision proved to be of paramount importance. In 

fact, computer vision techniques have been used to automate field observations and 

replace existing time-consuming data collection methods. Applications include progress 

monitoring, productivity analysis, object detection, tracking and motion detection, and 

action recognition (Yang et al. 2015). Texture recognition systems were used to identify 

on-site material for construction progress monitoring (Liu et al. 2010, and Dimitrov and 

Golparvar-Fard 2014). Hamledari et al. (2016) presented a computer vision based 

system that relies on shape and color analysis, to detect indoor partition components 

such as studs, insulation, electrical outlets and drywall sheets. Based on detection results 

from images and videos from construction sites, the system classifies the current stage 

of work into one of five possible stages: (1) framing, (2) insulation, (3) installed 

drywall, (4) plastered drywall, and (5) painted partition. The obtained information may 

then be utilized to update corresponding BIM models and schedules.  

 

Computer vision-based systems have also found a direct application in 

construction safety through identifying unsafe acts, hazardous situations and awkward 

postures (Seo et al. 2015). Some systems have been typically collecting data from 
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multiple static cameras to identify, track and calculate 3D coordinates of construction 

entities in each frame and alarming personnel of unsafe conditions (Brilakis et al. 2011, 

and Park et al. 2012a). Chi et al. (2009) proposed an algorithm that identifies and tracks 

objects on construction sites using a high-frame-rate range sensor. Image matching 

algorithms were used to classify objects using a model database and through 

comparison with previous scans. Memarzadeh et al. (2013) presented a computer 

vision-based framework to automatically detect construction workers and equipment 

using videos streamed from construction sites. They utilized an algorithm based on 

Histogram of Oriented Gradients and Colors (HOG + C) to make the semi-automated 

detection less time-consuming. On the other hand, motion detection systems were used 

in construction safety applications and generally rely on background subtraction 

algorithms to detect foreground and moving objects (Park et al. (2015). More 

specifically, Park et al. (2012b) utilized standard background subtraction to detect 

moving blobs in an image. Within the moving foreground, HOG features are used to 

identify people, then color gradients are used to distinguish between pedestrians and 

construction workers, based on the color of the safety vest. Furthermore, other research 

has been recently carried out to facilitate, improve, and automate appropriate PPE usage 

enforcement procedures (Bajracharya 2013). Du et al. (2011) introduced the idea of 

using computer vision techniques to detect hardhats in a video sequence. Their 

algorithm was divided into two main steps. First, a human face was detected using 

existing face detection algorithms based on Haar-Like features, introduced by Lienhart 

and Maydt (2002) and Viola and Jones (2004). The system then detects the presence of 

a hardhat using color segmentation. Their work is considered to be among the first 

attempts in this field. However, the proposed method was only tested against frontal 

close-up videos of human faces and not real-case scenarios from construction sites. 
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Furthermore, Gheisari et al. (2014) evaluated the applicability of unmanned aerial 

systems (UAS) or camera-equipped drones in construction safety, in particular hardhat-

wearing detection, by providing safety personnel with real-time visual access to 

jobsites. Results revealed the importance of adopting drones in safety applications. 

However, a large-size interface on a tablet device is required to provide a precise view 

of the jobsite. Additionally, the detection process is manual and required the safety 

officer’s presence and perception. Shrestha et al. (2015) proposed an algorithm that 

detects workers using standard face detection then applies the edge detection technique 

on the region directly above the worker’s head. The system detects a hard-hat if its 

outline is a semicircle and its color is red. However, their program required a set of high 

resolution CCTV cameras to be installed on site, and was only able to detect hardhats 

when applied on images captured from the front. No validation of the efficiency of their 

system in an actual construction environment was also realized. Park et al. (2015) 

detected hard-hats using a support vector machine (SVM) classifier, as part of a 

complete framework that aims at enhancing on-site safety conditions. The algorithm is 

based on shape recognition and utilizes histogram of oriented gradient (HOG) features 

to describe the cap style shape of the hard-hat. While the proposed framework was 

capable of detecting a hardhat under various conditions and independently from its 

color, it was also susceptible to false detections because the semi-circular shape of the 

hardhat could easily be extracted from other irrelevant objects. A recent effort by 

Rubaiyat et al. (2016) utilized Circle Hough Transform (CHT) feature extraction that 

can identify the circular shape of the hardhat coupled with color analysis using 

threshold-based color segmentation in RGB space to create an effective helmet 

detection system. Their method was capable of detecting hardhats at a rate of 79.1%. 
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The algorithm identifies all yellow, blue, red and white circles as hardhats. 

Nevertheless, the effect of brightness on color values was not addressed.  

 

Besides the aforementioned limitations of existing studies, prior algorithms for 

automated hardhat detection achieved moderate rates of precision and recall. An object 

detector based on HOG features proved promising, but could not achieve high rates of 

precision and recall simultaneously. Additionally, the detection of a region of interest 

for hardhat identification, defined as the upper part of an individual, was never 

investigated. Therefore, this study aims to create a comprehensive framework that first 

detects individuals and defines the region of interest (i.e. hardhat area), then uses an 

object detector coupled with color analysis and segmentation techniques to accurately 

identify the presence of worn hardhats. Comparing the number of detected personnel 

against the number of detected hardhats would allow for the recognition of any non-

compliance with the required safety rules and regulations. 

 

3.3. Methodology 

In order to achieve the aforementioned objectives, this paper presents a novel 

framework that consists of four major stages (Figure 3.1): (1) Data Acquisition, (2) 

Motion detection, (3) Human detection in moving region, and (4) Hardhat detection in 

top human region. This paper mainly focuses on the second and fourth components of 

the proposed framework that were implemented using Matlab 2016a. 
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Figure 3.1: The four stages of the hardhat detection framework 

 

The first component, data acquisition, involves the collection of images and 

videos from construction sites. Surveillance and CCTV cameras have become vastly 

employed on construction sites to monitor workers, evaluate the site and determine the 

resource usage. They offer a cheap and effective data acquisition method but require 

and installation process which can pose a disadvantage in a dynamic construction 

environment. Camera-equipped drones and Unmanned Aerial Systems (UAS) are 

infrastructure-less, and can be programmed to fly autonomously to the required 

destinations. The aim of this study, however, is to create an automated hardhat detection 

method independentof what technology was used to capture images and videos of 

construction sites.  
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In the second part of the proposed framework, motion detection utilizes a set of 

computer vision techniques to identify moving objects in videos and eliminates the need 

for complex and expensive motion sensors. In this context, this study presents a novel 

motion detection technique based on the pixel to pixel standard deviation differences 

between a set of consecutive images. To demonstrate the effectiveness of this method, 

the study first presents a classic background subtraction algorithms, then compares its 

accuracy against that of the developed algorithm, using a set of videos captured from 

construction sites.  

 

In the the third framework component, detected moving regions can be filtered 

to identify the presence of a person, instead of the whole image. Human detection 

generally relies on various object classifiers widely known in the literature and 

previously discussed in section 2. In our study, it was assumed that all moving objects 

larger than a minimum required size are identified as humans. This assumption is sound 

for indoor construction applications as every movement is either performed or caused 

by human intervention. For outdoor construction applications, possible cases of wrong 

identification include tower crane operations and objects displaced by wind. More 

specifically, mistankenly identifying an object as a construction worker followed by the 

non-identification of a hardhat in the corresponding region can result in a false detection 

and accordinglyconstitute a potential safety hazard that requires intervention. 

 

In the final stage of the framework, the algorithm searches for a hardhat in the 

top third of the region identified as an individual. This operation greatly reduces the 

duration of the required computation and eliminates the possibility of detecting hardhats 

placed on the ground or not worn by construction personnel. The detection process 
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utilizes a cascade object detector and image and color segmentation to eliminate false 

detections. 

In the following subsections, the second and fourth components are thoroughly 

explained. 

 

3.3.1. Motion detection using computer vision 

The most widely used approach to detect moving components in videos 

captured from a static camera is known as background substraction (Piccardi 2004). The 

aim of the algorithm is to separate the scene into a “Foreground” comprised of moving 

objects, and a still “Background”. The method identifies moving objects based on 

differences between the current frame and a reference frame. The basic form of 

background subtraction involves the calculation of the absolute difference between the 

two images, the current frame and the reference frameCalculation is realized on a pixel 

to pixel level and can be performed in any color space, including, but not limited to, 

RGB, CIE LAB, and grayscale . RGB is a classical representation of colors in which 

Red, Green, and Blue are combined in different ways to create an array of colors. An 

image with a height of 720 pixels and a width of 1280 pixels is stored in the RGB color 

space as a 720 × 1280 × 3 three dimensional array of three matrices, the Red, Green, 

and Blue matrices respectively. The CIE LAB (Hunter 1948) color space is another 

three dimentional representation where a given color is represented by the combination 

of three matrices: (L) lightness component, (a) Green – Red component, and (b) Blue – 

Yellow component. On the other hand, the grayscale is a one dimensional 

representation of a pixel based on the value of its intensity. A grayscale image is 

entirely composed of shades of gray. The intensity value can be calculated based on the 
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RGB values according to Eq. 3.1 and the background subtraction happens according to 

Figure 3.2 while using Eq 3.2. 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = [0.299 0.587 0.114] [
𝑅
𝐺
𝐵

]   (3.1) 

 

 

Figure 3.2: Simple Background Subtraction in Grayscale color space 

 

∆(𝑖,𝑗) = | 𝐼(𝑖,𝑗) − 𝐵(𝑖,𝑗) |    (3.2) 

 

Every pixel in the delta matrix is then classified as foreground or background by 

comparing it with a previously defined threshold. The calculation process is 

programmed in the RGB color space, taking a threshold equal to 10 for example, using 

the following code: 

Background = imread('Background.jpg'); 

Image = imread('Current.jpg'); 

Delta = abs(Image - Background); 

BinaryImage = Delta(:,:,1)>10 | Delta(:,:,2)>10 | 

Delta(:,:,3)>10; 

 

The resulting binary image has the same size as the original images whereby true values 

(1) represent moving pixels and false values (0) represent still pixels. Using the CIE 

LAB color space provides the advantage of ignoring the differences in the values of 

lightness when creating the binary image as shown in the code snippet below:: 

Background = rgb2lab(imread('Background.jpg')); 

Image = rgb2lab(imread('Current.jpg')); 

Delta = abs(Image - Background); 

BinaryImage = Delta(:,:,2)>10 | Delta(:,:,3)>10; 
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The modeling of the background image has been the subject of many studies. 

Methods included running Gaussian average, temporal median filter, Gaussian mixture 

models, Kernel Density Estimation, sequential Kernel Density approximation, co-

occurrence of image variations and Eigenbackgrounds (Wren et al. 1997, Lo and 

Velastin 2001, Stauffer and Grimson 1999, Elgammal et al. 2000, Han et al. 2004, Seki 

et al. 2003, Oliver et al. 2000). Methods vary in terms of calculation speed and accuracy 

and are only applicable for videos captured using a perfectly static camera (Piccardi 

2004). In matlab, the “foregroundDetector” system object performs background 

subtraction operations and computes the foreground mask using Gaussian Mixture 

Models (GMM) (MathWorks 2017). The object can be programmed to detect moving 

components in videos, as shown in the code snippet below: 

Detector = vision.ForegroundDetector; 

 

The created detector can then be called upon using the “step” function, and given a 

series of video frames, it performs the required computations and returns the foreground 

mask, as a binary image similar to the one created earlier. Implementation of the Matlab 

built-in background subtraction algorithm is realized using the following code: 

videoSource = vision.VideoFileReader('Video.mp4'); 

while ~isDone(videoSource) 

     frame = step(videoSource); 

     BinaryImage = step(detector, frame); 

End 

 

On the contrary, the proposed motion detection algorithmdoes not involve any 

sort of background subtraction. Instead, “Foreground” or moving regions are identified 

based on the standard deviations between the values in a particular slot (pixel position) 

in a set of consecutive images. Therefore, the classification is based on the values of the 

“Standard Deviation Matrix” (SDM) instead of the Delta Matrix. In order to calculate 

the SDM, the system first needs to acquire a set of (n) consecutive images. Our 
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implementation of the algorithm is based on the RGB color space (Figure 3.3) using the 

following code: 

In = imread('Image.jpg');  

Rn = In(:,:,1) 

Gn = In(:,:,2) 

Bn = In(:,:,3) 

 

Figure 3.3: Consecutive images stored in the RGB color space 

 

The calculation of the values in the SDM is illustrated in Figure 3.4, and is based on the 

following general formula: 

SDM(i,j,k) = Standard Deviation of [ I1(i,j,k) , I2(i,j,k) , … , In(i,j,k) ]  (3.3) 

 

Figure 3.4: Calculation of the Standard Deviation Matrix 

 

Most importantly, the calculation of standard deviation values in-between matrices is 

not commonly used and does not have an implemented Matlab function. For this reason, 

a series of transformations and operations are required. The first step is called 

linearization, whereby an a by b matrix is transformed into a 1 by a × b linear array 

(Figure 3.5) as shown in the code snippet below: 
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a = size(r1,1); b = size(r1,2); 

LRn = reshape(Rn,1,a*b); 

LGn = reshape(Gn,1,a*b); 

LBn = reshape(Bn,1,a*b); 

 

Figure 3.5: Example of Linearization – R matrix 

 

The next step involves the creation of three general matrices, GR, GG, and GB, having 

a size of n by a × b, and corresponding to the Red, Green, and Blue matrices 

respectively. Each row of the general matrix is extracted from the corresponding 

linearized matrix previously calculated. Each column represents all pixel values in the 

input images for a specific position. Once a general matrix is created, the “std” function 

is used to calculate the standard deviation of the values in each column, thus obtaining a 

linearized form of the standard deviation matrix (SLR, SLG, or SLB). The previous 

operation is illustrated in Figure 3.6 for the GR matrix, and is implemented, for n equal 

to 5, using the following code snippet: 

GR = [LR1;LR2;LR3;LR4;LR5]; 

SLR = std(GR); 

 

Figure 3.6: Calculation of Linear Standard Deviation Matrix 
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Once the three linear standard deviation matrices are calculated, the final step involves 

reshaping these matrices into the original a by b dimensions of the input images (Figure 

3.7), to obtain the three Standard Deviation Matrices, using the “reshape” Matlab 

function: 

SR = reshape(SLR,a,b); 

SG = reshape(SLG,a,b); 

SB = reshape(SLB,a,b); 

 

 

Figure 3.7: Reshaping the Linear Standard Deviation Matrix into the Standard Deviation 

Matrix 

 

The binary image can be finally created using thresholding methods similar to the ones 

used for background subtraction. In this context, foreground or moving pixels are 

identified for having a calculated standard deviation greater than five times the average 

standard deviation for the corresponding matrix, according to the following code: 

SdR = mean(SLR); 

SdG = mean(SLG); 

SdB = mean(SLB); 

BinaryImage = SR > 5*SdR & SG > 5*SdG & SB > 5*SdB; 

Similar to background subtraction, the resulting binary image has the same dimensions 

as the input images. In both methods, the size and location of the moving components 

are obtained from the binary image by applying blob analysis and morphological 

operations. Blob analysis is an algorithm that calculates the properties of connected 

pixels (Blobs) in a binary image. These properties include the area, centroid, bounding 

box, and blob count. The bounding box output of the blob analysis is a 1 by 4 array that 
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contains information about the location of the detected element. The four parameters 

used to describe the location are: (1) x, (2) y, (3) width, and (4) height (Figure 3.8). 

 

Figure 3.8: Bounding Box parameters of detected region 

 

Morphological operations are image processing operations, applied prior to the blob 

analysis to remove noise and texture distortions in binary images, include removing 

isolated pixels, bridging nearby unconnected pixels then performing morphological 

closing (dilation followed by erosion). Once an individual is identified, the later stages 

of the framework involving the detection of hardhats get initiated. The proposed motion 

detection procedure can be summarized in Figure 3.9. 
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Figure 3.9: Proposed motion detection algorithm flowchart 

 

3.3.2. Hardhat detection using computer vision 

Automated hardhat detection is an integral component of the overall 

framework. A previous study investigating the use of computer vision techniques to 

detect hardhats from images and videos concluded that training an object detector was 

the most suitable method (Mneymneh et al. 2017). The study evaluated three computer 

vision techniques, including feature detection, extraction and matching, template 

matching, and cascade object detectors, and concluded that the latter achieved better 

results in terms of accuracy and computational time. For this reason, a cascade object 

detector based on Histogram of Oriented Gradients (HOG) features was used in this 

study. The training dataset is comprised of 75 positive instances and 164 negative ones. 

The number of stages and the acceptable false alarm rate are set to 7 and 0.1 

respectively. To create the classifier, the “trainCascadeObjectDetector” function in 

Matlab writes a trained cascade detector XML file, which can be later used to identify 

and count the hardhats in an input image, as shown in the following code snippet: 
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trainCascadeObjectDetector('HOG_7_10.XML' , positiveInstances , 

negativeFolder , 'FalseAlarmRate' , 0.10 , 'NumCascadeStages' , 

7 , 'FeatureType' , 'HOG'); 

hatDetector = vision.CascadeObjectDetector('HOG_7_10.XML'); 

I = imread('TestImage.jpeg'); 

Detection = step(hatDetector,I); 

The HOG features utilized to identify a hardhat are capable of describing its semi-

circular shape, thereby enabling the created classifier to detect different colors and 

orientations. However, it also makes the detector susceptible to wrong detections since 

the semi-circular profile of the hardhats can also be extracted from other, irrelevant 

objects (Park et al 2015). To improve detection accuracy, two additional steps are 

applied. First, the object detector only searches for hardhats in the upper region of the 

identified personnel, which reduces the size of the tested sample, eliminates the 

possibility of detecting a hardhat on the ground and not actually worn by a worker, and 

greatly reduces the computational time required to scan through the entire image. The 

second step involves color segmentation, whereby positive detections not conforming 

with possible color schemes of a hardhat are filtered out. 

 

The first step requires separating the top third of the detected region into a new 

image, based on its coordinates in the input frame (Figure 3.10), using the following 

code: 

Region = 

Image(bbox(2):bbox(2)+bbox(4)/3,bbox(1):bbox(1)+bbox(3),:); 
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Figure 3.10: Coordinates of the upper third of the detected region 

 

The cascade object detection can then be applied on the new image and the output is a 

new bounding box object describing the location of the hardhat – if detected – similar to 

the detected region in Figure 3.8. On the other hand, possible color patterns are required 

to perform the second additional step, which is color segmentation. For this reason, 

numerous images of blue, orange, and white hardhats are collected under different 

lighting situations, and cropped so that the resulting image would only contain portions 

of the hardhat. In Matlab, the average and standard deviation of pixel values are 

calculated for each image, using various color spaces to determine the most accurate 

representation of the hardhat color. The blue hardhat is characterized by a relatively 

dark appearance under usual on-site lighting conditions. For this reason, the average 

values of Red, Green, and Blue in the RGB representation of 102 sample images were 

relatively low, describing the “dark” rather than the “Blue” color of the hardhat. Red, 

Green and Blue values spanning from 2.5 to 36, 3.9 to 57, and 21 to 100 respectively 

(Figure 3.11) are not a definitive representation of a blue color. 
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Figure 3.11: Average Red, Green, and Blue values in images of a blue hardhat 

 

The standard deviationbetween pixel values in every image was also large compared to 

the average values (Figure 3.12), which also highlights the inaccuracy of the RGB 

representation. 

 

 
Figure 3.12: Standard deviation of Red, Green, and Blue values in images of a Blue 

Hardhat 

Using CIE LAB color space, the average values of Lightness, A (green – Red), and B 

(blue – yellow), range from 1 to 23, 2.3 to 8, and -28 to -8 respectively (Figure 3.13). 

The low values of lightness are a result of the dark color of the hardhat, while the 

neutral values of A and the negative value of B represent the blue color of the hardhat. 

However, standard deviation values within each image were still large (Figure 3.14). 
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Figure 3.13: Average Lightness, A, and B values in images of a Blue Hardhat 

 

 

Figure 3.14: Standard deviation of Lightness, A, and B values in images of a Blue Hardhat 

 

Another color representation that could potentially provide a more accurate definition is 

HSV (Joblove and Greenberg 1978). HSV stands for Hue, Saturation and Value 

(Brightness), and is based on how colors are conceived by the human vision. Basically, 

Hue refers to pure color form (Figure 3.15), Saturation refers to the amount of color, 

while Value refers to the brightness of the color. 

 

Figure 3.15: Hue scale in HSV representation 

 

The calculated averages of Hue, Saturation, and Value for the 102 sample images range 

from 0.59 to 0.66, 0.66 to 0.95 and 0.08 to 0.39 respectively (Figure 3.16), providing 

the most accurate representation of a blue color with low brightness. The value of 
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standard deviation for Hue were also minimal (Figure 3.17), meaning that the 

uniformity of the hardhat color within each image is accurately modeled. 

 

 

Figure 3.16: Average Hue, Saturation, and Value values in images of a Blue Hardhat 

 

 

Figure 3.17: Standard deviation of Hue, Saturation, and Value values in images of a Blue 

Hardhat 

 

Accordingly, a blue hardhat is defined as having an average Hue value between 0.59 

and 0.66, and a standard deviation of Hue values less than 0.1. The other parameters are 

irrelevant. HSV color analysis for orange and white hardhats returned similar results. 

An orange hardhat is characterized by a Hue between 0.02 and 0.07, while a white 

hardhat is characterized by low values of saturation and high values of brightness. 

Standard deviation values were all less than 0.1.  

 

In this study, color segmentation in HSV color space needs to be applied to the 

parts of images containing only the detected hardhat. The presence of another object 
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(portion of the head, wall, etc.) would imply an incorrect calculation of the color 

parameters. The target area, defined as the middle third of the detected hardhat, can be 

obtained from the bounding box output of the cascade object detector, similar to the 

method used to extract the top region of the detected personnel (Figure 3.18). 

 

 

Figure 3.18: Coordinates of the hardhat target area 

 

The algorithm retrieves the target area then calculates the required average and standard 

deviation values of all pixels. The object is then classified as a blue, orange, or white 

hardhat if the calculated parameters conform with the pre-defined color schemes, 

otherwise, the detection is filtered out. The hardhat detection procedure is summarized 

in Figure 3.19. 
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Figure 3.19: Hardhat detection flowchart 

 

3.4. Experiments and results 

3.4.1. Evaluation of the motion detection algorithm 

Accurate motion detection is a critical component of the framework. 

Undetected moving objects cannot be identified as construction personnel and a failure 

to comply with required safety regulations could be missed. As such, in this section, the 

ability of the developed algorithm in detecting motion and pixel variation from image 

sequences and videos was tested. Results of the standard deviation method are then 

compared to those of the original background subtraction method, using the same image 

and video datasets.  

In the first set of experiments prior to any morphological operation, a remarkable 

improvement of accuracy and reduction of noise was noted when using the standard 

deviation difference method as opposed to background subtraction using RGB and LAB 

color spaces. A sequence of five consecutive images is required to apply the algorithm, 

while only a background and an input image are required in the case of background 
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subtraction. The sample images are extracted from a continuous video captured using a 

static camera. Figures 3.20, 3.21, 3.22, and 3.23 illustrate the obtained binary images 

using each method, prior to the application of any morphological operation. 

 

 

Figure 3.20: Sample image 1: (a) Original image, (b) Background subtraction in RGB, (c) 

Background subtraction in LAB, and (d) Standard Deviation Method 
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Figure 3.21: Sample image 2: (a) Original image, (b) Background subtraction in RGB, (c) 

Background subtraction in LAB, and (d) Standard Deviation Method 

 

 
Figure 3.22: Sample image 3: (a) Original image, (b) Background subtraction in RGB, (c) 

Background subtraction in LAB, and (d) Standard Deviation Method 
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Figure 3.23: Sample image 4: (a) Original image, (b) Background subtraction in RGB, (c) 

Background subtraction in LAB, and (d) Standard Deviation Method 

 

Using the LAB color space and ignoring differences in luminance offers a noise 

reduction improvement compared to the RGB color space. On the other hand, the 

standard deviation method eliminates most of the noise and is robust against small 

unrepeated color variations. Another advantage of the new proposed method is that it 

requires no modeling of the background, while the other methods would yield 

inaccurate results when the background model is not conveniently and actively updated. 

 

In the second set of experiments, the ability of the developed method and the 

background subtraction using Gaussian Mixture Models in detecting moving 

components was tested using a dataset of 5 videos. In both methods, similar 

morphological opperations and blob analysis functions were applied on the obtained 

binary images to detect movement. Generally, both algorithms were capable of 

accurately identifying all forms of movement. However, using the standard deviation 
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method, many wrong detections can be potentially avoided. When an object remains in 

a certain position for a relatively long period, it could be considered within the 

background model and when it eventually moves, its previous position is mistakenly 

considered as foreground (Figure 3.24). Since the standard deviation method does not 

rely on a background model, this case of wrong detection did not occur (Figure 3.25). 

Wrong detections due to noise are also greatly reduced by using the standard deviation 

method. In approximately 5 minutes of still video data, the number of false detections 

did not exceed one digit. 

 

 
Figure 3.24: Background Subtraction: (a) Initial detection, and (b) Wrong detection in 

initially detected region 

 

 

Figure 3.25: Standard Deviation Method: (a) Initial detection, and (b) Absence of wrong 

detection in initially detected region 

 

Another notable advantage is the application of the proposed algorithm on videos 

captured using a semi-stable camera. This is considered a potential opportunity for 
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adopting infrastructureless, mobile and/or wearable cameras (e.g. handheld phone, 

drones, etc.) as data acquisition systems. While the accuracy does drop, the system can 

be optimized to compromise the rate of positive detections in favor of reducing false 

detections. Detecting construction workers or personnel once every couple of seconds is 

still sufficient to identify most cases of non-compliance with PPE regulations (Park et 

al. 2015). Figures 3.26 and 3.27 depict the results generated from both algorithms (i.e. 

background subtraction and standard deviation) when applied on a short video captured 

using a hand-held mobile phone. 

 

 

Figure 3.26: Detected motion using GMM background subtraction 

 

 

Figure 3.27: Detected motion using Standard Deviation method 
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The proposed method is less susceptible to wrong detections. However, the motion of 

water was also detected (Figure 3.27). As previously stated, for an outdoor application, 

the use of a human classifier is required to filter detected movements that do not 

correspond to on-site individuals. 

 

3.4.2. Evaluation of the hardhat detection algorithm 

As aforementioned, the hardhat detection algorithm comprises two main steps: 

(1) Using a cascade object detector on the upper region of the identified personnel, and 

(2) Applying color analysis and segmentation to discard wrong detection. A hardhat 

worn by a worker needs to be inside the defined region of interest to obtain true positive 

results. On the contrary, a hardhat not worn by a worker needs to be outside the region 

of interest to avoid false detections. Using two samples of 100 positive and negative 

instances each, the two previous conditions were always met for all possible worker 

postures and orientations (Figures 3.28 and 3.29). 

 

 

Figure 3.28: Hardhats worn by workers – Inside the region of interest 
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Figure 3.29: Hardhats not worn by workers – Outside the region of interest 

 

Based on these findings, only hardhats actually worn by workers can be identified using 

the cascade object detector. When the detector mistakenly identifies an irrelevant object 

as a hardhat, the color segmentation algorithm can still rectify the mistake. However, if 

the classifier misses an existing hardhat, color segmentation can not detect it.  

In order to quantitatively assess the accuracy and precision of the cascade 

classifier, precision and recall are used as evaluation metrics. The former indicates the 

percentage of detections that are true positives, while the latter indicates the percentage 

of true positives that are detected, according to the following formulae: 

Precision = True positive / Total Detections    (3.3) 

Recall = True Positive / Total Positive Instances   (3.4) 

 

However, in this application, recall is more important than precision and over prediction 

of hardhats can be tolerated. For a precision value as low as 20%, the system can 

correctly identify the absence of a hardhat once every five iterations, meaning that a 

worker not wearing a hard had would be detected in a couple of seconds. 
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For the aforementioned reasons, a weak classifier was used, with a number of 

stages equal to 5 and an acceptable false alarm rate of 0.15. Since the value of recall is 

more important than precision, the cascade object detector was tested using 100 positive 

sample images containing one hardhat each, with different colors, orientations, 

background contrast and illumination (Figure 3.30). 

 

 

Figure 3.30: Sample of testing images 

Results indicated that the weak classifier had a low precision of 57.5%. The calculated 

precision would be lower if negative images were included in the sample, since the 

detector would be more prone to incorrectly detect portions of the head as hardhats 

(Mneymneh et al. 2017). The classifier could not detect any hardhat in images 18, 29, 

40, 52, and 93, and predicted erroneously the location of the hardhat in images 20, 65, 

70, and 78 (table 3.1). In total, 9 hardhats out of 100 were missed, achieving thereby a 

recall of 91%.  
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Table 3.1: Cascade object classifier detection results 

ID D* ID D ID D ID D ID D ID D ID D ID D ID D ID D 

1 3 11 1 21 2 31 2 41 3 51 1 61 2 71 1 81 1 91 1 

2 3 12 1 22 1 32 1 42 1 52 0 62 3 72 1 82 1 92 4 

3 2 13 2 23 1 33 3 43 1 53 1 63 3 73 1 83 3 93 0 

4 2 14 1 24 4 34 1 44 1 54 2 64 1 74 3 84 1 94 2 

5 2 15 3 25 1 35 1 45 2 55 2 65 2** 75 1 85 1 95 2 

6 1 16 1 26 2 36 1 46 2 56 1 66 1 76 1 86 1 96 1 

7 3 17 2 27 2 37 1 47 1 57 3 67 1 77 1 87 1 97 1 

8 2 18 0 28 1 38 1 48 1 58 3 68 2 78 1** 88 2 98 1 

9 1 19 1 29 0 39 1 49 1 59 2 69 3 79 4 89 2 99 1 

10 2 20 2** 30 2 40 0 50 1 60 1 70 2** 80 3 90 1 100 1 

* Number of detected hardhats 

** Detections do not include any correct identification of a hardhat 

 

The second step of the algorithm involves applying color segmentation to reduce the 

number of false identifications. Color segmentation is based on the rules defined in 

section 4.2, and is applied on regions classified as hardhats. Detections identified in 

table 3.1 were either confirmed and classified according to their color, or filtered 

(Figure 3.31). Results from the color segmentation algorithm are very promising 

whereby most of the wrong detections were filtered and all correct detections were 

confirmed (Table 3.2). The number of true positives did not change, but the precision 

was greatly improved from 57.5% to 92%. 

 

Table 3.2: Color segmentation detection results 

ID C* ID C* ID C* ID C* ID C* ID C* ID C* ID C* ID C* ID C* 

1 2 11 1 21 1 31 1 41 1 51 1 61 1 71 1 81 1 91 1 

2 2 12 1 22 1 32 1 42 1 52 0 62 1 72 1 82 1 92 1 

3 1 13 1 23 1 33 2 43 1 53 1 63 1 73 1 83 1 93 0 

4 1 14 1 24 1 34 1 44 1 54 2 64 1 74 1 84 1 94 1 

5 1 15 1 25 1 35 1 45 1 55 2 65 0 75 1 85 1 95 1 

6 1 16 1 26 1 36 1 46 1 56 1 66 1 76 1 86 1 96 1 

7 2 17 1 27 2 37 1 47 1 57 2 67 1 77 1 87 1 97 1 

8 1 18 0 28 1 38 1 48 1 58 1 68 1 78 0 88 1 98 1 

9 1 19 1 29 0 39 1 49 1 59 1 69 1 79 1 89 1 99 1 

10 1 20 0 30 1 40 0 50 1 60 1 70 0 80 1 90 1 100 1 

* Number of confirmed hardhats 
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Figure 3.31: Hardhat detection results for positive images, (a) Cascade object detector, 

and (b) Cascade object detector and color segmentation 

 

To further assess the capability of the method in detecting a failure of wearing PPE, a 

sample of 30 negative images, containing an individual not wearing a hardhat, were 

tested (Figure 3.32). Results are presented in table 3.3. 
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Table 3.3: Color segmentation detection results – negative samples 

ID D* C** F** ID D C F ID D C F 

1 1 0 1 11 1 0 1 21 1 0 1 

2 1 0 1 12 2 1 1 22 3 0 3 

3 2 0 2 13 2 0 2 23 2 0 2 

4 1 0 1 14 2 0 2 24 0 0 0 

5 2 0 2 15 1 0 1 25 1 0 1 

6 2 0 2 16 6 0 6 26 2 0 2 

7 2 1 1 17 1 0 1 27 3 0 3 

8 1 0 1 18 0 0 0 28 1 0 1 

9 2 0 2 19 0 0 0 29 2 0 2 

10 2 0 2 20 1 0 1 30 1 0 1 

* Detections using cascade object detector 

** Confirmed using color segmentation (False Positives) 

*** Filtered using color segmentation (True Negative) 

 

 
Figure 3.32: Hardhat detection results for negative images, (a) Cascade object detector, 

and (b) Cascade object detector and color segmentation 
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The full proposed method was capable of identifying a failure of wearing a 

hardhat in 28 out of 30 negative images. The weak classifier alone provided only three 

true negative results. The precision and recall values of the two proposed algorithms can 

be summarized in table 3.4. 

Table 3.4: Precision and recall value for hardhat detector 

Method 
Cascade Object 

Detector 

Cascade Object 

Detector and Color 

Segmentation 

Precision 57.5% 92% 

Recall 91% 91% 

 

3.5. Complete framework integration and assessment 

The standard deviation moving detection algorithm, the cascade object detector 

and the color segmentation analysis were integrated into one complete, integrated 

framework that acquires a video from a construction site, detects and locates motion, 

searches for hardhats in the upper third of the identified individual using a weak cascade 

object detector, and filters the obtained results using color segmentation. A warning 

message is then issued in case a hardhat can not be detected in an area identified as a 

person. In order to make the system suitable for real-time applications, the detection 

tool is programmed to be initialized once every 20 frames. As a result, the time interval 

between two detections is less than a second and the duration required to scan through a 

video is less than the actual duration of a video. Table 3.5 highlights the time 

performance of the framework when applied to a video of 55 seconds. 
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Table 3.5: Time performance of the complete framework 

Action 
Number of 

Calls 
Total Time 

Percentage 

of Total 

Time 

Average 

Time 

Reading Frame data 82 21.800 s 50 % 0.266 s 

Calculating 

Standard deviations 
82 5.476 s 12.5 % 0.067 s 

Reshape operations 82 3.326 s 7.6 % 0.040 s 

All other operations 82 13.048 s 29.9 % 0.159 s 

Total 82 43.650 s 100 % 0.532 s 

 

The system was tested using 4 videos having a total duration of 4 mins and 25 

seconds. The overall number of frames is 7960, providing a total of 398 (7960/20) test 

results. Possible outcomes of the system can be divided into four categories: (1) True 

warning, (2) False warning, (3) True no warning, and (4) False no warning. Results 

from the performed experiment are summarized in table 3.6: 

 

Table 3.6: Detection results of complete framework 

 
Hardhats worn Hardhats not worn 

Warning issued 33 (a) 138 (b) 

Warning not issued 202 (c) 25 (d) 
(a) False warning 
(b) True warning 
(c) True no warning 
(d) False no warning 

According to the aforementioned experiment, 85% of the total classifications 

were correct. On the other hand, 80.7% of the total warnings issued were correct 

(precision), while individuals not wearing hardhats were correctly identified 84.6% of 

the time (recall). Failing to detect an individual not wearing a hardhat at a rate of 15.4% 

is tolerable, since the algorithm is likely to rectify any mistake in the next iterations. 

However, once issued, a false warning cannot be corrected. The calculated values of 
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precision and recall for the integrated framework are lower than the values calculated 

for the hardhat detection algorithm alone, since some errors are induced by the motion 

detection algorithm. In our experiment, 23 of the total false warnings were provoked by 

individuals entering and exiting the scene, making the individual’s hardhat outside the 

algorithm’s detection area. The other false warnings were caused by the algorithm’s 

failure to detect an existing hardhat. Generally, incorrect results are dispersed and rarely 

occur in consecutive frames and iterations. An individual entering or exiting the scene 

can affect the detection results only once and the algorithm is unlikely to miss an 

existing individual in two consecutive frames. As a result, incorrect results are 

predominantly rectified in the following iteration, while correct results are reoccurring 

(Figures 3.33 and 3.34). For this reason, only issuing a warning when detecting a failure 

to wear a hardhat in multiple consecutive frames would greatly reduce the rate of false 

warnings. 

 

Figure 3.33: (a) Wrong decision in initial frame, and (b) Correct decision in following 

frame 

 



 73 

 
Figure 3.34: Correct decision in two sets of two consecutive images 

 
Table 3.7: Precision and recall values of the integrated framework 

Method 
Integrated 

Framework 

Precision 80.7% 

Recall 84.6% 

 

 

3.6. Conclusion and future work 

This study focused on creating an automated system that can detect compliance 

with hardhat regulations using computer vision techniques. A warning can then be 

issued when a region identified as a human does not contain a hardhat. The main 

contributions of the present study lie in: (1) creating a novel motion detection algorithm 

based on differences in standard deviations between consecutive images, (2) combining 

the use of an object detector and color segmentation and analysis for hardhats detection, 

and (3) integrating the various methods and algorithms into one complete framework. 

The proposed motion detection algorithm provided more accurate results compared with 

standard background subtraction methods. A significant noise reduction was achieved 
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and the the need for background modeling was eliminated. This method also displayed 

potential applicability on videos captured using semi-stabilized cameras. On the other 

hand, the combination of a cascade object detector together with color analysis and 

segmentation provided a precision of 92% and a recall of 91% in detecting hardhats. 

This was achieved by using a weak detector with low precision and high recall, then 

filtering the obtained results using color segmentation to improve the accuracy of the 

detector. Finally, the integration of all the proposed methods yielded promising results. 

For instance, 80.7% of the total warnings issued were correct, while individuals not 

wearing hardhats were correctly identified 84.6% of the time. All components of the 

framework functioned smoothly. The system required less time to process a video than 

its actual duration, making it practical for a real-time application. 

 

Further improvements can be realized. Issuing a warning only when multiple 

failures of wearing a hardhat are consecutively detected would greatly reduce the rate of 

false warnings. Other solutions can involve the use of a human classifier so that only 

individuals entirely visible within each frame are considered. A weaker cascade object 

detector may also be used to further reduce the number of undetected hardhats, which 

may also results in an increase in the rate of failure to issue a correct warning. In 

conclusion, future work is required to improve the accuracy of the system, most 

importantly in minimizing the rate of incorrect warnings which cannot be rectified, as 

previously mentioned. A complete framework should ultimately be able to detect 

various personal protective equipmentand hazardous situations. Additionally, localizing 

individuals not complying with safety regulations and alarming them accordingly need 

to be investigated. Finally, future efforts will be channeled towards adopting 
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infrastructureless data acquisition methods.. Autonomous drones could provide a 

method for surveying large construction areas in a rapid and effective manner. 
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