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Title: Optimizing the Design of a Barbed Suture for Flexor Tendon Repair Using 

Extended Finite Element Analysis 

 

Conventional surgeries for flexor tendon repair involve tying the ends of the 

suture in at least a single knot. Knots give rise to several complications at the repair site, 

from delaying wound healing, to constriction of blood flow and formation of scars. In 

addition, they present probable failure regions due to increased stress concentrations. To 

strengthen such critical locations, one approach is to use multiple suture strands.  

However, applying higher stresses on the tendon results in stiffer tissues that have reduced 

gliding ability. A promising solution implements sutures with protruding barbs that 

anchor themselves into the tissue; eliminating the need for a knot. The use of barbed 

sutures for flexor tendon repair offers several advantages over traditional knotted 

techniques. When barbs are inserted into the tendon, grip is achieved at multiple points. 

Consequently, the load is dispersed along the entire length of the suture decreasing the 

possibility of slippage. Furthermore, since knots are no longer required, regions with 

increased mass and volume of suture material are eliminated; hence, inflammation is 

reduced and healing of the wound is accelerated. 

The purpose of this study is to propose an enhanced barbed suture geometry such 

that it is capable of withstanding higher stresses, in an attempt to eliminate knots in 

tenorrhaphies and minimize the number of suture strands used. It is believed that the 

rigidity of the barb, as well as its ability to anchor surrounding tissue can be manipulated 

by the suture’s geometry via three factors: cross-sectional configuration, cut angle and 

cut depth. 

Inspired by the geometry of flexor tendons, an elliptical, rather than a circular, 

cross-section was investigated. The mechanical behavior of five different aspect ratios 

(= 1/3, 1/2, 1, 2, 3), three different cut angles (150, 154, 160) and three different cut 

depths (0.07mm, 0.12mm, 0.18mm) was studied via extended finite element analysis 

using ABAQUS, for two different loading conditions; one to assess the strength of the 

suture, the second to evaluate the strength of a single barb. 

Based on the results, an elliptical suture having an aspect ratio 1/2, cut angle 

160, and cut depth 0.12mm is recommended. 
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CHAPTER 1 

INTRODUCTION 

Several techniques have been developed for flexor tendon repair using sutures. 

These procedures include the traditional Kessler technique, modified 2-strand Kirchmayr-

Kessler technique, Pennington modified Kessler, double Pennington modified Kessler, 4-

strand Savage and 6-strand Savage [1-4] (Fig.1). These conventional methods involve 

tying the ends of the suture in at least a single knot. In addition to delaying wound healing, 

constriction of blood flow, and formation of scars, suture knots present probable failure 

regions due to increased stress concentrations. A solution is to use multiple strands of 

sutures in order to increase their strength. However, increasing the magnitude of the stress 

applied on the tendon results in stiffer tissues that have a reduced gliding ability, forming 

adhesions [1, 5-7].  

 

Figure 1: Different conventional knotted repair techniques [3, 8] 

C. Pennington Modified Kessler D. Double Pennington Modified  

E. 4-Strand Savage  F. 6-Strand Savage  

A. Traditional Kessler B. Modified 2-Strand Kessler 



2 

 

A promising technique that surpasses the disadvantages of the traditional tendon 

repair methods was first proposed by McKenzie in 1967. He developed custom-made 3-

0 nylon sutures with protruding barbs that anchor themselves into the tissue (Fig. 2.A & 

B); hence, eliminating the need for a knot. He also demonstrated that barbed suture 

tenorrhaphy is capable of achieving a tensile strength comparable with that realized with 

a two-strand Bunnell repair with G40 stainless steel wire (17.8 – 26.7 N) [6, 9] (Fig. 2C). 

Furthermore, when this method was tested on canines, flexor tendons healed after 5 weeks 

of immobilization [9].   

 

 

Figure 2: A.&B. Mckenzie's suture with protruding barbs. C. Bunnell repair [5, 10] 

 

Although little research on this novel suturing method for tendon repair has been 

conducted back then, its success in preliminary experimental procedures can be attributed 

to the following advantages. When the barbs are inserted into the tendon along the entire 

A. Unidirectional Barbed Suture 

B. Bidirectional Barbed Suture C. 2-Srand Bunnell Repair 
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length of the suture, the load is dispersed over an extended area, providing evenly 

distributed forces throughout the suture length [2, 11, 12]. Also, grip between the suture 

and the tendon is achieved at multiple points; thus, the possibility of slippage is decreased 

[12, 13]. Furthermore, since no knots are required, no regions with increased mass and 

volume of suture material are present; hence, inflammation is reduced and healing of the 

wound is accelerated [1, 2, 14].     

Recently, the application of barbed sutures for tenorrhaphy has been of great 

interest. The conducted research focuses mainly on three different aspects: the mechanical 

properties of sutures in general and available barbed sutures in specific [4, 7, 15-18], 

tendon-barbed suture interaction in terms of tensile strength and suture/tissue pullout tests 

[4, 5, 12, 19-21], and finally, though performed less extensively, finite element modeling 

of barbed sutures under loading [13, 22].  

The studies promote barbed sutures as a potential knotless flexor tendon repair 

technique. They demonstrate that knotless four strand as well as bi-directional suture 

repairs provide equivalent maximum tensile load, as well as 2-mm gapping at the repair 

site when compared with the traditional knotted techniques [1, 4, 6, 9, 11, 23]. 

Furthermore, a study performed using a large-diameter 0 unidirectional barbed suture 

showed that a four-strand Kirchmayr-Kessler procedure exhibited higher maximum 

tensile load and equivalent 2-mm gapping when implemented using a 0 barbed suture 

rather than a 3-0 braided polyester [14].  

Ingle et al. suggested that tissue-specific barbed sutures need to be developed 

[13, 19, 20, 22]. Experiments performed on both skin and tendon indicate that the latter 

has a higher tensile modulus and is significantly stiffer [19]. Also, pullout test simulations 
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reveal shear stresses that are higher by 2 order of magnitudes for tendon versus skin tissue 

[22]. Hence, tendons require barbs that are more rigid as compared to skin such that they 

are capable of penetrating the stiffer tissue and securing the medium. 

Finite element analysis of the mechanical behavior of barbed sutures imply that 

the rigidity of the barb, as well as its ability to anchor surrounding tissue can be 

manipulated by the suture’s geometry via two factors: cut angle and cut depth [13, 19, 

22] (Fig. 3). For a constant cut depth, an increase in cut angle results in barbs that are 

more flexible. On the other hand, increasing the cut depth for a constant cut angle has no 

significant effect on the barb’s stiffness, rather it enhances the barb’s ability to anchor the 

surrounding matrix [22]. With respect to tendons, a cut angle of 150 and a cut depth of 

0.18mm were found to be most suitable based on the tensile peak load withstood [13, 19]. 

 

 

Figure 3: Cut depth and cut angle of a barbed suture 

 

The failure of barbed sutures has been investigated via performing tendon/suture 

pullout tests. Two prominent failure modes were detected: suture pullout and peeling of 

Cut 

Depth 

Strand 

Depth 

Cut Angle 
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the barb [4, 12, 19-21]. However, such results have not been replicated via finite element 

modeling. Furthermore, the roughly elliptical nature of the flexor tendon’s cross-section 

has not been taken into consideration when optimizing the barbed suture’s geometry [13, 

19, 22].   

 

1.1. Objective  

In this study, an optimized barbed suture geometry for a novel single strand 

flexor tendon repair procedure is designed. Finite element analysis is implemented in 

order to investigate the effect of varying three geometrical factors: the cross-sectional 

configuration, cut angle, and cut depth, on the strength of the suture. As a first step, the 

viscoelastic mechanical properties of the suture material, polypropylene, are determined 

experimentally. A failure analysis using the extended finite element analysis is then 

performed on ABAQUS. The performance of the various geometries is studied for two 

different loading conditions; one to assess the strength of the suture, the second, to 

evaluate the strength of a single barb. In view of the results, the possibility of using a 

single barbed suture for tendon repair is assessed.  
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CHAPTER 2 

THEORETICAL BACKGROUND 

2.1. Viscoelastic material 

Barbed sutures, whether resorbable or not, are made from polymers that include 

polypropylene, polyimide, polyester, polybuster, polylactic acid, polyglyconate, and 

polydioxanone [7, 18, 24, 25], and exhibit viscoelastic behavior.   

Viscoelastic materials retain a combination of both viscous and elastic 

properties. Two major models are available for describing their behavior. The first 

method, the integral model, is based on the Boltzmann superposition principle and defines 

an integral equation to represent linear viscoelasticity. According to Boltzmann’s 

principle, the response of a specimen is affected by the entire loading history that 

preceded. Furthermore, subjecting a loaded material to an additional load produces a 

response that is exactly the same as the one that would have been induced had the total of 

both loads been initially applied and left to creep for the same time period. Based on this 

theory, a mathematical formulation is derived to describe viscoelastic behavior. In 

general, the total strain at any time t is expressed as [26]: 

where ( )nJ t   is the creep compliance. 

The second method, the differential representation, models a viscoelastic 

behavior via a combination of Hookean springs and Newtonian dashpots, resulting in a 

linear differential equation. The simplest assemblage consists of a single spring and a 

 ( ) ( ) ( )

t

n nt J t d   


   (Eq. 1) 
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dashpot, where a series combination corresponds to the Maxwell model and a parallel one 

to the Voigt/Kelvin model (Fig. 4). For stress-relaxation experiments, the Maxwell model 

results in the linear differential expression for stress decay: 

Integrating the above expression for the initial conditions 0t   and 0
( 0)t    

yields the solution:  

where the characteristic time constant /
m m

E  .  

In a similar manner, creep experiments can be modelled using the Voigt/Kelvin 

model: 

 

 

Figure 4: Differential representation of viscoelastic material: A.Maxwell and 

B.Voigt/Kelvin models 

 ( / )m m

d
E dt





   (Eq. 2) 

 
0

exp( / )t     (Eq. 3) 

 
0

exp( / )t     (Eq. 4) 

A. Maxwell B. Voigt/Kelvin 
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Creep behavior is more appropriately represented by a Voigt/Kelvin rather than 

a Maxwell model, for when the latter is subjected to a constant load, the dashpot will 

permit viscous flow, and the spring will be under constant tension. As such, only the 

Newtonian characteristics of the material are exhibited. However, creep experiments 

reveal different observations and likewise, a Maxwell model is unfitting for their 

description [26, 27].     

On the other hand, implementing a Voigt/Kelvin model to describe stress-

relaxation experiments results in an elastic behavior. In order to overcome such 

limitations, both models are combined into what is known as the standard linear solid 

model consisting of a spring in parallel with a Maxwell model. More complex models 

can be assembled; the most advantageous of which being the generalized Maxwell or 

Voigt/Kelvin models which consist of either a parallel arrangement of a spring and a 

number of Maxwell elements or a series combination of a spring and a number of 

Voigt/Kelvin elements such that a range of time characteristics is obtained (Fig. 5) [26, 

27]. 

The generalized Maxwell and Voigt/Kelvin models allow for a mathematical 

representation of a linear viscoelastic behavior subjected to stress-relaxation and creep 

respectively via a finite series of exponentially decaying elements. One common method 

utilizes a Prony series of the form
/

1

. i

N
t

i

i

e
 



 and provides a simple approach for fitting 

data obtained experimentally [27, 28].  
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When the generalized Maxwell model is used to describe the behavior of the 

material, the stress-relaxation response is represented with a Prony series as follows: 

 where E is long-term elastic modulus, iE are the stress-relaxation elastic moduli 

associated with relaxation times i  related to each Prony component by the viscosities 

of the dashpots, 
i

i

iE


  .    

 

 

Figure 5: Generalized A. Maxwell, B. Voigt/Kelvin Models 

 

 
/

1

( ) i

n
t

i

i

E t E E e






   (Eq. 5) 

A. Generalized Maxwell Model 

B. Generalized Voigt/Kelvin Model 
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2.2. Fracture Mechanics 

Barbed sutures can be regarded as suture wires with incisions introduced into 

their periphery to form barbs that, consequently, act as pre-existing cracks. The time-

dependent propagation of cracks in polymeric materials has been investigated, whether 

theoretically or experimentally, by a number of researchers including Williams [29, 30], 

Vincent and Gotham [31], Kostrov and Nikitin [32], Knauss [33-35], Schapery [36-39], 

McCartney [40-42], Christensen et al. [43, 44], and Williams and Marshall [45-47]. 

Many of these theoretical developments are based on Linear Elastic Fracture 

Mechanics (LEFM) extended to viscoelastic behavior. In particular, Schapery [36, 37] 

demonstrated that the traditional fracture mechanics developed by Barenblatt for metals 

[48] can be applied to viscoelastic media by replacing the elastic modulus with a time-

dependent viscoelastic modulus evaluated at a fictive time using linear viscoelasticity. 

Furthermore, he established a relatively simple analytical equation relating the applied 

stress intensity to the steady-state crack growth rate [49-51].  

For a material with a preexisting crack subjected to loading, Schapery divides 

the medium into two regions; a highly non-linear region at the crack tip called the process 

zone and a linear viscoelastic region termed the far field region, appropriately distanced 

from the tip (Fig. 6). In this linear region, Schapery demonstrates that the stress 

distribution can be calculated using Barenblatt’s relationship for elastic materials and that 

singularities cancel at the tip of the process zone if: 

 

1
2 1

2
1

0

2
( ) /

f
K r r dr







 
 
 

  (Eq. 6) 
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where   is the length of the process zone and f  is the stress in the process zone as a 

function of r, the distance from the crack tip.  

 

 

Figure 6: Schapery’s Crack tip model [36] 

 

In addition, the propagation of a crack at the boundary of the process zone can 

be approximated by the elastic solution when the elastic compliance is substituted with 

the viscoelastic creep compliance. Hence, Schapery determined an expression for the 

work required for the growth of the crack tip and, likewise, the process zone ultimately 

leading to failure by:  

where   is the work per unit area of the fracture surface, ( , )v t r is the displacement at the 

boundary of the failure zone. In other words, the surface energy required for a crack to 

propagate is the product of the stress and displacement integrated over the boundary of 

the process zone.  

 
0

( , )
2 ( )f

v t r
r dr

r



    (Eq. 7) 

Far Field 

Region 

Process Zone 
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Combining equations 6 and 7, and applying some manipulations, the following 

form is obtained for surface energy:  

where  vC t is the viscoelastic creep compliance as a function of the effective time t , 

which is the time required for viscoelastic deformation to take place in the process zone 

and is defined as: 

where a  is the crack growth rate and d is a proportionality constant related to the exponent 

n in the simple power law representation of the creep compliance 0 1( ) n

vC t C C t   

where 0C  is the elastic component.   

In fact, 2  is defined to be equal to 1cG , the critical strain energy release rate or 

simply, toughness. Hence, 

And according to Griffith, crack propagation occurs when the elastic energy 

released per unit area of crack growth exceeds the required work of fracture per unit area 

of the created surfaces. For an elastic wide plate containing a through crack of length 

"2 "a , the nominal stress that causes fracture is: 

where 'E  is the equivalent elastic modulus, 'E E  for plane stress and 
' 2

(1 )E E   for 

plane strain.  

   2

12 vC t K   (Eq. 8) 

 t d
a


  (Eq. 9) 

   2

1 1c vG C t K  (Eq. 10) 

 
'2

a

E

a





  (Eq. 11) 
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Also, from linear elastic fracture mechanics,  

Rearranging equations 11 and 12 yields the known relationship between IG and

IK , 
2 '

1 1cK G E . This equation is similar to the one obtained by Schapery for viscoelastic 

material except that  vC t replaces the equivalent elastic modulus. Therefore, crack 

growth in viscoelastic material is distinguished from that in elastic medium by a time-

dependent release of at least some portion of the elastic energy giving rise to a time-

dependent propagation rather than an instantaneous one.  

Furthermore, taking into consideration the Dugdale [52] assumption where a 

uniform stress exists in the process zone, Schapery derives a relationship between the 

applied stress intensity and the steady-state crack growth rate based on the 

aforementioned equations: 

where n is approximately equal to 1/3. 

 

 

 

 

 

 

 

 

 
1K a   (Eq. 12) 
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CHAPTER 3 

METHODOLOGY 

3.1. Experimentation  

The viscoelastic constants required for material definition in finite element 

modeling were determined by performing a series of tensile and stress-relaxation 

experiments. Tests were performed using unbarbed 1 polypropylene sutures 

(PROLENE). According to the USP suture standard, the nominal diameter of the samples 

is between 0.4 - 0.499mm. A micrometer was used to measure the diameter of every 

specimen at the start of each experiment.   

 

3.1.1. Tensile Test  

The modulus of elasticity, poisson ratio and tensile breaking strength are of great 

interest when assessing the performance of sutures.  

A universal testing machine (Lloyd Instruments, LS1) was used to carry out loading to 

failure tests on 12 suture specimens. A 1kN load cell was used and a strain rate of 

25mm/min was applied for a gauge length of 10cm [53].  

To avoid specimen slippage and grip-induced failures, customized mounting 

tabs were manufactured from 2.35mm thick medium-density fiberboard (MDF) using a 

laser cutting machine (Fig. 7) and pneumatic grips with rubber jaw faces (Lloyd 

Instruments) were installed (Fig. 8). According to ASTM Standard C1557 – 14, the 

gripping system should ensure axial alignment of the suture sample along the line of 
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action of the tensile testing machine such that neither spurious bending strains nor stress 

concentrations are induced [53]. The adapted mounting tabs along with the grips having 

uniform nonslip adherent surfaces make it possible to satisfy all the aforementioned 

conditions without damaging the specimen.   

 

 

Figure 7: Manufactured customized mounting tabs 
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Figure 8:The experimental setup showing the suture sample anchored into the mounting 

tab and held with pneumatic grips  

 

NEXYGENPlus materials testing software was used for test setup and for data 

collection and analysis. As aforementioned, a tension test was chosen with a preload of 

5N at a speed of 25mm/min, and an extension rate of 25mm/min. The sample height was 

specified as the gauge length.  The diameter of each suture sample obtained by averaging 

three measurements taken by a digital micrometer (Mitutoyo Series 293) from three 

different positions was inputted into the software to determine the sample area. In addition 

to the variation of stresses (forces) and strains (displacements) throughout the test, other 

essential results that include Young’s Modulus, Tensile Strength, and Load (Stress) and 

Extension (Strain) at break were requested to be reported.   
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The engineering stresses and longitudinal strains were obtained directly from the 

recorded variations in tensile force and specimen length with time where the stress is the 

force divided by the initial cross-sectional area of the suture and the longitudinal strain is 

simply the change in the gauge length of the specimen divided by the initial gauge length.  

and  

As for the elastic modulus E, it was calculated from Hooke’s law applied in the elastic 

region: 

Attaining a value for the poisson ratio   requires that the lateral strain be measured. Since 

the uniaxial testing machine is not equipped with gauges to keep a log of the shrinkage in 

suture diameter, the digital micrometer was used to measure the specimen diameter during 

tensile testing every 5seconds. The lateral strain is the ratio of the change in diameter to 

the initial value. 

and 
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3.1.2. Relaxation Test 

In order to determine the viscoelastic characteristics of polypropylene, a stress-

relaxation test was performed. Using UTM machine (Fig. 8), a 0.1 mm/mm strain was 

attained at a rate of 25mm/min and was held constant for 60 minutes. The gradual 

decrease of the stress over the relaxation time period was recorded. The experiment was 

repeated for 10 different samples.  

A curve fitting analysis of the obtained experimental data yields the prony series 

coefficients required as input for the definition of the viscoelastic material properties in 

the finite element model. This was performed with ABAQUS by inputting normalized 

shear relaxation data with respect to the initial stress as well as the respective time 

instants. The normalized shear stress relaxation modulus is expressed as a prony series 

by [54] 

where kg is the normalized shear modulus 0k kg G G , 0G  is the instantaneous shear 

modulus determined from the instantaneous elastic modulus and poisson ratio 

0 0 02(1 )G E   and k are the relaxation times. The sum of the dimensionless shear 

relaxation moduli kg cannot exceed 1. 
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3.1.3. Fracture Toughness 

Fracture toughness characterizes the ability of a material containing a crack to 

resist crack propagation and ultimately, full rupture. The propagation of a crack generally 

occurs due to the combined action of Mode I, Mode II, and Mode III loadings; that is, 

when the crack is subjected to both normal and shear displacements [55]. One of the most 

widely used mixed-mode fracture criteria is the power law criterion [56]. Each component 

of the fracture toughness is normalized by its critical pure-mode value and is expressed 

as a power law function.  

For a combined Mode I and Mode II fracture envelope, the power law follows 

the empirical equation suggested by Richard [57]:  

This criterion allows for the modeling of a broad range of material responses by 

varying the values of  and  . For 1   , a linear relation is obtained and the mixed-

mode linear criterion is realized. A concave curve is produced for 1   , while a 

convex one is generated for 1.   Responses generated for different combinations of 

 and   are shown in Fig. 9. For a specific material response, the optimal values for 

and   are determined via a fitting analysis of the experimental data obtained under 

combined mode I and mode II loadings [58]. 
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Ic IIc
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 
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 (Eq. 20) 
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Figure 9: Response of power law criterion for different combinations of  and  [58] 

 

The two-dimensional relation can be easily extended into a three-dimensional 

power law criterion consisting of six fitting parameters [56]: 

Where ICG , IICG  and IIICG  are the critical values of strain energy release rate; i.e. the 

fracture toughness, for the three orthogonal modes of loading, mode I (opening), mode II 

(sliding shear), and mode III (tearing shear) respectively. The powers, ,   and  are 

curve fitting parameters.   

Saito and Yoda [55] investigated the fracture toughness of polypropylene under 

combined Mode I and Mode II loadings. They obtained the Mode I – Mode II fracture 

toughness envelope and performed a fitting analysis for the resulting curve to determine 

 1I II III

Ic IIc IIIc
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G G G
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     

       
     

 (Eq. 21) 
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the best fit of the power law criterion. The values for the powers   and   were found to 

be 1 and 2 respectively. As such, the empirical equation for polypropylene is expressed 

as: 

 Also, Saito and Yoda indicated that the ratio of Mode II fracture toughness to 

that of Mode I is equal to  
2

0.44 . Hence, the mixed-mode power law criterion for 

polypropylene can be represented as:  

Experiments to obtain the mixed-mode fracture toughness of polypropylene 

were not performed due to the unavailability of the proper setup. The needed parameters 

are used as obtained from the literature [55] and are detailed in the Material Modeling 

section.  

   

3.2. Finite Element Analysis 

3.2.1. Viscoelastic Model 

Linear viscoelasticity can be modeled in ABAQUS by a shear stress relaxation 

modulus expressed as a prony series by [54] 
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Where 0G , the instantaneous shear modulus is determined from the instantaneous elastic 

modulus and poisson ratio 0 0 02(1 )G E   and k are the relaxation times. The sum of 

the dimensionless shear relaxation moduli kg cannot exceed 1. 

The material bulk modulus can be expressed in a similar manner. 

Where 0K , the instantaneous bulk modulus is also determined from the instantaneous 

elastic modulus and poisson ratio 0 0 03(1 2 )K E   . The sum of the dimensionless bulk 

moduli kk cannot exceed 1. 

The input parameters required for the prony series were obtained from the 

number of stress-relaxation tests conducted on the polypropylene sutures.  

 

3.2.2. Extended Finite Element Method  

In this work, the crack propagation in a barbed suture under static loading 

conditions is of interest. For modeling discontinuities, such as cracks, in ABAQUS, an 

extended finite element method (XFEM) is implemented [54]. This method, as its name 

indicates, is an extension of the conventional finite element method and is also based on 

the concept of partition of unity. Contrary to traditional FEM that allows for crack 

propagation only along a preset path that coincides with the elements’ boundaries, XFEM 

utilizes enrichment shape functions and allows for the presence of discontinuities within 

an element. As such, the mesh is not required to match the geometry of the crack.  Hence, 
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the crack propagates along a solution-dependent path without the need to remesh the bulk 

material. Most importantly, XFEM allows for both material and geometrical 

nonlinearities; thus, it is applicable for the case of viscoelastic material.  

For the nodes around the crack, the enriched displacement fields are expressed 

as:  

Where the term IN  represents the shape functions, Iu  is the nodal displacement vectors 

for conventional shape functions, ( )H x  is a Heaviside step function and Ia  is nodal 

enriched degree of freedom vector where the term ( ) IH x a  describes the displacement 

of the nodes pertaining to elements cut by the propagating crack,  
4

1

( )aF x

  is asymptotic 

crack tip functions and Ib
is nodal enriched degree of freedom vector where the term 

4

1

( ) IF x b

  describes the displacement of the nodes of the elements inclosing the crack 

tip. Hence, the behavior of three different types of elements are included in the XFEM 

method, the conventional elements, elements cut by the propagating crack, and elements 

at the crack tip (Fig. 10).  
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Figure 10: Three types of elements included in XFEM [59] 

 

The location of a crack is determined in XFEM by the Level Set Method (LSM), 

which employs two functions,   and  , where   denotes the signed distance between 

a node and the face of the crack and  represents the signed distance between a node and 

an orthogonal plane passing through the crack tip (Fig. 11). 

 

 

Figure 11: Level set method (LSM) [54] 
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Elements cut by 

propagating crack 

Elements at the crack tip 
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3.2.3. Damage Initiation and Evolution Laws 

Damage modeling in ABAQUS requires the definition of a damage initiation 

criterion and a damage evolution law. Once the initiation criterion is met, damage 

proceeds according to the specified evolution law.  

In this analysis, the damage initiation criterion is defined by traction separation 

laws, specifically maximum principal stress (Maxps). The failure of the elements by this 

criterion is characterized by the progressive degradation of the material stiffness, which 

is itself driven by a damage process.  

A traction separation law is defined by a nominal traction stress vector, t, which 

consists of three components in three-dimensional problems: tn, ts and tt [54]. These 

components represent the normal and the two shear tractions, respectively. As for the 

corresponding separations, they are denoted by n, s, and t. The original thickness of 

the element is denoted by T0, and likewise, the nominal strains can be expressed as 

Hence, the elastic behavior can then be stated as 

The elasticity matrix describes the fully coupled behavior between all 

components of the traction vector and the separation vector. For an uncoupled behavior 

between the normal and shear components, the off-diagonal terms in the elasticity matrix 

can be set to zero.  
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Rate-dependent behavior of elements can be modeled with traction-separation 

elasticity, and as such traction separation laws can be applied in combination with linear 

viscoelasticity. In this case, the evolution equations for the normal and two shear nominal 

tractions are expressed as: 

Where 
0 ( )nt t , 

0 ( )st t  , and 
0 ( )tt t  are the instantaneous nominal tractions at time t in the 

normal and the two local shear directions, respectively. The functions ( )
R

g t and ( )
R

K t

represent the dimensionless shear and normal relaxation moduli, respectively. 

For the maximum principal stress (Maxps) criterion in specific, damage 

initiation is represented as:  

Where 
0

max  represents the maximum allowable principal stress. The symbol

represents the Macaulay bracket, signifying that purely compressive stresses do not 

initiate damage. When the value of f reaches 1 within a prescribed tolerance,

1.0 1.0
tol

f f   , a new crack is initialized or an existing crack propagates. 

To describe the evolution of damage based on the principles of LEFM, a critical 

strain energy release rate criterion is defined. In the general case involving Modes I, II, 
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and III, crack propagation occurs when the equivalent strain energy release rate at the 

crack tip exceeds the specified critical equivalent strain energy release rate. In other 

words, the fracture criterion is expressed as [54]: 

Where equivG is the equivalent strain energy release rate calculated at a node, and equivCG

is the critical equivalent strain energy release rate calculated based on the user-specified 

mode-mix criterion and the bond strength of the interface.  

In this analysis, power law model is specified as the mode-mix criterion and is 

described for Modes I, II, and II by the following formula: 

Where ICG , IICG  and IIICG  are the critical values of strain energy release rate; i.e. the 

fracture toughness, for the three orthogonal modes of loading, mode I (opening), mode II 

(sliding shear), and mode III (tearing shear) respectively. The powers, ma , na  and oa are 

curve fitting parameters.    
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CHAPTER 4 

FINITE ELEMENT MODELLING 

4.1. Geometry 

The finite element analysis of the barbed suture was implemented on ABAQUS 

6.14. The geometric model consists of a three-dimensional deformable cylinder with an 

elliptical cross-sectional area to represent the suture, whereas the barb (crack) is 

introduced as a cell partition. Simulations were performed while varying three main 

factors: aspect ratio of the ellipse (  ) on one hand, and cut angle and cut depth of the 

barb on another. 

Initial studies rely on geometric dimensions of commercially available barbed 

sutures in order to gain insight regarding their performance. Existing sutures have a 

circular cross-sectional area; that is, 1  , and on average, a cut angle of 154 and a cut 

depth of 0.19mm [60-62]. Thus, as a starting point, a circular suture of diameter 0.6mm 

(USP 2), length 1mm, cut angle 154, and cut depth of 0.19mm is considered.  

 

4.1.1. Cross-Sectional Area of Flexor Tendons 

The main motivation behind varying the aspect ratio of the suture arises from 

the elliptical nature of the flexor tendons cross-section (Fig.12). It is anticipated that better 

conformity between the suture and the tendon is achieved when both possess similar 

aspect ratios. Widths and heights of flexor digitorum superficialis and profundus tendons 

(FDST and FDPT respectively) corresponding to index, middle, ring, and little fingers 
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were obtained from the literature [63, 64], in order to evaluate their aspect ratios and gain 

insight on possible design values for  . The dimensions are summarized in table 1.  

 

Figure 12: Schematic of an ellipse cross-section showing major and minor axes 

 

 Index Middle Ring Little 

FDST 

Major axis 
2

Width
a
 

 
 

 (mm) [63] 2.5 3.25 2.75 1.5 

Cross-sectional Area (CSA) (mm2) [64] 8.36 11.54 10.46 4.04 

Minor axis 
2

Height CSA
b

a

 
  

 
(mm) 1.0644 1.13 1.21 0.858 

Aspect Ratio 
a

b

 

 
 

 2.35 2.88 2.27 1.75 

 

FDPT 

Major axis 
2

Width
a
 

 
 

 (mm) [63] 2.5 3 2.5 2.25 

Cross-sectional Area (CSA) (mm2) [64] 11.4 14.44 13.42 8.84 

Minor axis 
2

Height CSA
b

a

 
  

 
(mm) 1.452 1.532 1.708 1.25 

Aspect Ratio 
a

b

 

 
 

 1.722 1.96 1.46 1.8 

Table 1: Dimensions of FDST and FDPT  
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The dimensions of the smallest tendon should be taken as the reference design 

such that the developed suture is suitable for use on all flexor tendons. As table 1 shows, 

the FDST of the little finger has the smallest major and minor axes; a=1.5mm, 

b=0.858mm. On average, the aspect ratio  is 2 and varies between a maximum of 2.88 

for the FDST of the middle finger and a minimum of 1.46 for the FDPT of the ring finger.   

Based on these findings, the values of  were varied between 1/3 and 3. The 

effect of the aspect ratio on the strength of the suture was investigated for constant cut 

angle and cut depth. Also, three different cut depths and cut angles: 0.07mm, 0.12 mm, 

and 0.19mm as depths and 150, 154, and 160 as angles were studied for a constant .

Furthermore, the radius of the suture (or the equivalent ellipse axes) was increased from 

0.3mm to a larger diameter that is suitable with both the dimensions of the smallest tendon 

(FDST of little finger) and the optimum aspect ratio. It is desired that the optimized suture 

accommodates about 30% of the tendon’s cross-sectional area. The diagram in figure 13 

clarifies the scheme that was followed.    
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Figure 13: Flowchart clarifying the plan followed throughout the analysis 

 

The values for diameter, cut angle, and cut depth were set for a circular cross-sectional 

area (CSA). When considering elliptical profiles, the major and minor axes were 

determined such that the area of the ellipse is equal to that of the circle. Furthermore, 

while the cut angles remain the same, the cut depths should be adapted for the ellipses in 

order to retain the same amount of intact area after inducing a cut in the sutures. The 

performed calculations are detailed below.  
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Finding major and minor axes: 

And for an ellipse, 

Therefore, 

and   

 

Finding equivalent cut depth: 

 

Figure 14: Diagram of an ellipse with a cut on its major axis 

    
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CSA CSA  (Eq. 35) 

 ab  = 2r  (Eq. 36) 
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The remaining area of the ellipse in figure 14 can be found by using the following 

relation: 

where a and b are the major and minor axes respectively, and d is the distance from the 

center to the cut (d= a – cut depth) as shown in figure 14. Note that 1sin
d

a

  
 
 

 should be 

in radians.  

Since the remining area of the ellipse should be equal to that of the circle, Eq.40 

was used with a b r  (radius of the circle) along with the desired cut distance d in order 

to determine the remaining area of the circle. Once the latter was known, it was set as the 

remaining area of the ellipse and the equation was solved for the equivalent “d”. The 

corresponding cut depth is simply found by subtracting the major axis from the cut 

distance; that is, cut depth = a – d.    

The dimensions of the studied geometries to determine the most suitable aspect 

ratio are summarized in table 2.  

 

 Ellipse Equivalence 

Aspect Ratio  = a/b 1/3 1/2 1 2 3 

Major axis a (mm) 0.1732 0.2121 0.3 0.4243 0.5196 

Minor axis b (mm) 0.5196 0.4243 0.3 0.2121 0.1732 

Cross-sectional Area (CSA) (mm2) 0.2827 0.2827 0.2827 0.2827 0.2827 

Remaining Area (RA) (mm2) 0.2059 0.2059 0.2059 0.2059 0.2059 

Cut distance d (mm) 0.0635 0.0778 0.11 0.1556 0.1905 

Cut depth (mm) 0.1097 0.1344 0.19 0.2687 0.3291 

Table 2: Ellipse equivalent dimensions and cut depth 
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For simplification purposes, a single barb is included in the model. The different 

geometries used in this analysis are depicted in figure 15. 

 
Aspect Ratio 1/3 

 
Aspect Ratio 1/2 

 
Aspect Ratio 1 

 
Aspect Ratio 2 

 
Aspect Ratio 3 

Figure 15: Different geometries used in modelling 
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4.2. Material Modeling 

The material properties of polypropylene were obtained as described in the 

experiment section above.  

As aforementioned, tensile tests to failure were performed on 12 different suture 

specimens to determine polypropylene’s short-term linear elastic behavior, which 

requires the definition of an instantaneous Young’s Modulus and a Poisson’s ratio. The 

averaged results for these two properties, in addition to the Tensile Strength are included 

in table 3. Their respective standard deviations are reported as well. Figure 16 shows the 

obtained stress-strain curve.   

 Mean Standard Deviation 

Young’s Modulus (MPa) 1668.67 573.37 

Poisson’s ratio 0.36878 0.06347 

Tensile Strength (MPa) 353.15 48.81 

Table 3: Elastic properties of polypropylene 

 

 

Figure 16: Stress-Strain curve for polypropylene obtained experimentally 
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The time-dependent behavior, on the other hand, was specified as previously 

described, via inputting into ABAQUS normalized shear relaxation data with respect to 

the initial stress along with the respective time instants as obtained from the relaxation 

tests. ABAQUS then performs a curve fitting analysis to determine the prony series 

coefficients. The computed values for the normalized shear ig  and bulk ik moduli, in 

addition to the corresponding relaxation times i   are listed in table 4. A plot of the 

normalized stress relaxation behavior and its curve fit is shown in figure 17.   

It is noteworthy to point out that the relaxation times gotten from 

experimentation were scaled by 100 when inputted into ABAQUS such that the total time 

becomes 36s instead of 3600s (60 minutes). This was done in order to avoid lengthy 

simulations and to be able to capture polypropylene’s relaxation behavior within the 

model.          

 

i gi ki i 

1 0.31542 0 0.63594 

2 0.32027 0 10.243 

Table 4: Prony series coefficients for polypropylene obtained from ABAQUS  
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Figure 17: Shear Relaxation curve from experimental data (red) and ABAQUS curve 

fitting (blue)  

 

As for damage initiation, the maximum principal stress was chosen. Since this 

criterion defines the nucleation of a defect within the body, and since the geometric model 

at hand has a crack already defined, the value for Maxps is not of high significance for 

this crack propagation analysis. The calculated true ultimate strength was used as the 

limiting maximum principal stress. The conversion of the engineering tensile strength 

(Table 3) obtained from tensile experiments to its true equivalent was done using the 

following relation:  

Applying Eq. 41 to polypropylene:  

 353.147 1 0.39145 491.39true MPa     

  1true eng eng     (Eq. 41) 
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As such, the value of Maxps was set at 491.39 MPa specified at the crack tip. 

For a mesh that is not sufficiently refined in the vicinity of the crack tip, the default 

centroidal approximation of the Maxps may not be accurate. It is recommended that the 

stresses be extrapolated to the crack tip [54].  As for tolerance, the default value of 0.05 

was kept. 

For a pre-existing crack, damage evolution is much more important for the 

analysis. Based on the principles of LEFM, a power law mixed mode energy-based 

criterion was selected with the power set as 1. The critical Mode I, Mode II, and Mode 

III energy release rates (GIc, GIIc, and GIIIc respectively) should be specified. These values 

were obtained as critical stress intensity factors KIc and KIIc form the literature [55] and 

converted to values for GIc and GIIc assuming plane strain conditions using the equations 

42 and 43:  

Where E is the Young’s Modulus and  is the Poisson’s ratio.  

For KIc = 5.5 MPa√𝑚, and KIIc =0.44 KIc = 2.42 MPa√𝑚 : 

     
22 2 21 5.5 1 0.36878

15.663
1668.67

Ic

Ic

K
G

E

 
   MPa.mm 

and 

     
22 2 21 2.42 1 0.36878

3.0323
1668.67

IIc

IIc

K
G

E

 
   MPa.mm 

 
 2 21Ic

Ic

K
G

E


  (Eq. 42) 

 
 2 21IIc

IIc

K
G

E


  (Eq. 43) 
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Or alternatively, 

 
2

0.44 3.0323IIc IcG G   MPa.mm 

For Mode III, it was assumed that the critical energy release rate GIIIc was equal 

to that of mode II due to the lack of fracture toughness data for this out-of-plane shear. 

As such, GIc, GIIc, and GIIIc were set to be equal to 15.663 MPa.mm, 3.0323 MPa.mm, and 

3.0323 MPa.mm respectively. 

For damage stabilization, viscous regularization was used to specify viscosity 

coefficients. When the model exhibits material softening and stiffness degradation, severe 

convergence problems arise. A viscous regularization scheme helps improve convergence 

by stabilizing the model during damage [54]. The value for the viscosity coefficient 

should be chosen such that stabilization does not significantly influence the final results. 

To make sure that this is the case, the viscous dissipation output (ALLVD) should be 

small compared to the strain energy (ALLSE). Throughout this analysis, viscous 

regularization was chosen to be 1E-005. ALLVD and ALLSE for a circular suture having 

a cut angle 154 and cut depth 0.19mm are shown in figure 18. ALLVD is nearly zero 

and is very small compared to ALLSE. Similarly, the selected value was checked for all 

other models to ensure that it did not affect the solution.   

 



40 

 

 
Figure 18: ALLSE and ALLVD for the whole model with respect to time 

 

 4.3. Configuring the Step Module 

The time-dependent material properties defined require that a Visco Step be 

created in addition to the Initial step found by default and a Static General Step. The Static 

step was applied to initialize the elastic properties of the linear viscoelastic polypropylene 

and was assigned a very small time period of 0.001s and an initial increment size of 

0.001s, minimum increment size of 1E-006s, maximum increment size of 0.001s, and 

maximum number of increments 100.  

The viscoelastic properties are taken into account in the Visco procedure that 

follows. The Visco step was given a time period of 1.2s with an initial increment size of 

0.01s, minimum increment size of 1E-030s, maximum increment size of 0.01s, and 

maximum number of increments 100000. Non-linear geometry (NLgeom) was toggled 

on for both steps to account for geometric nonlinearities.   
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 Automatic time incrementation was chosen for both steps. ABAQUS selects the 

required increment sizes based on computational efficiency without any user intervention 

[54]. It is recommended to use automatic incrementation instead of fixed. For the latter 

case, the user should make sure that the specified time increment is small enough such 

that a stable solution is obtained. ABAQUS will not check if the solution is unstable. As 

such, valid results are not always attained. 

For a model that contains a single material type, the time increment is directly 

proportional to the smallest element in the mesh. ABAQUS estimates the size of the stable 

time increment  t by computing the time it takes a dilatational wave to transit across 

any of the mesh elements [54]: 

where minL  is the smallest element dimension in the mesh and dc  is the dilatational wave 

speed expressed in terms of 0  and 0  as: 

such that for an isotropic elastic material, 0  and 0 are related to the Young’s modulus 

E and Poisson’s ratio   by: 

 

   and    

 
min

d

L
t

c
   (Eq. 44) 

 
ˆ ˆ2

dc
 




  (Eq. 45) 

 0
ˆ

(1 )(1 2 )

E
 

 
 

 
 (Eq. 46) 
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The stable time increment calculated from these relations is only an 

approximation that is not even conservative. For this reason, ABAQUS further reduces 

this t by a factor between 1 2  and 1 for two-dimensional models and between 1 3

and 1 for three-dimensional ones.    

However, in cases where local instabilities, such as cracks, may arise, a quasi-

static solution may not be attained, even when automatic incrementation is implemented. 

In order to overcome such difficulties, ABAQUS offers several methods for automatic 

stabilization whereby a damping is applied throughout the model. The introduced viscous 

forces due to damping are sufficiently large such that they stabilize the solution but at the 

same time, do not affect the solution significantly [54].  

In this analysis, the method “Use damping factors from previous general step” 

was used for both steps. Damping factors at the end of the preceding step are used as the 

initial factors for the current step, overriding any specified damping for this current step. 

In case the current step is the first step in the model or the previous step was not stabilized, 

ABAQUS implements adaptive stabilization to decide on suitable damping factors.         

With the adaptive stabilization scheme, the damping factor is determined based 

on the convergence history as well as the ratio of the energy dissipated due to viscous 

damping (ALLSD) to the total strain energy (ALLIE) [54]. ABAQUS may increase or 

decrease the damping factor based on the convergence behavior of the model. A 

maximum ratio of stabilization to strain energy is required for this method. For this model, 

the default value of 0.05 was kept, knowing that such value is suitable for most 

applications.  

 0
ˆ

2(1 )

E
 


 


 (Eq. 47) 
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When automatic incrementation is selected for a Visco step, a “Creep /swelling 

/ viscoelastic strain error tolerance” should be specified in order to limit the maximum 

permissible rate of change of the inelastic strain over an increment [54]. To ensure 

accuracy, the value for this tolerance is recommended to be, for creep problems, on the 

order of err E , where err  is a tolerable level of error in the stresses and E is the elastic 

modulus, or for problems involving viscoelasticity, is given a value on the order of the 

elastic strains. In this model, the “Creep /swelling / viscoelastic strain error tolerance” 

was set as 0.001.      

Other adjustments to the setup may be applied for better convergence. The 

“discontinuous analysis” in the time incrementation tab of the general solution controls 

was selected. This allows for more iterations before checking the solution convergence 

and as such, avoid premature reductions of the time increments. Furthermore, the IA 

parameter was increased from its default value of 5 to 30, such that more attempts (30 

attempts instead of 5) are allowed before the simulation is aborted.     

 

4.4. Crack Modeling  

For the definition of the crack in ABAQUS, the suture geometry was selected as 

the domain while the barb created as a cell partition was specified as the crack (Fig. 19). 

An XFEM crack growth interaction was created and crack propagation was allowed in 

the initial step.  
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As aforementioned, XFEM based on VCCT was implemented as the fracture 

criterion to model crack propagation. A contact interaction property was created with 

energy-based mixed mode power law. Maximum tangential shear stress was chosen to be 

the direction of crack growth. A tolerance of 0.05 and viscosity of 1E-005 were specified. 

Tolerance for unstable crack propagation was toggled on and kept at its default value of 

0.2.  

Mode I, Mode II, and Mode III critical energy release rates were given the same 

values as those previously specified for the damage evolution criterion. As for the powers 

ma , na  and oa , they were found in the literature to be 1, 2, and 1 respectively [55]. Table 

5 summarizes the parameters required for the definition of the indicated fracture criterion. 

Mode I Mode II Mode III ma  na  oa  

15.663 3.0323 3.0323 1 2 1 

Table 5: Input for mixed-mode power law 

 

Crack 

Crack Domain 

Figure 19: Defining the crack using XFEM 
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In order to visualize a crack when using XFEM analysis, PHILSM and PSILSM 

should be requested as output. PSILSM is required to view the initial crack front, while 

PHILSM is necessary to observe the location of the crack. Also, the output 

STATUSXFEM should be chosen in order to perceive the status of the enriched elements. 

A value of 0 for this output means that the element is undamaged, a value of 1 means that 

the element has been completely cut by the crack, and a value in between 1 and 0 signifies 

that the element is damaged but some traction forces remain.  

 

4.5. Boundary Conditions and Loads 

The performance of the barbed suture was investigated under two loading 

conditions. The first case studies the strength of the suture and simulates a tensile test 

whereby one end is held fixed while the other is subjected to a finite displacement. The 

second case investigates the strength of a single barb. The boundary conditions are similar 

to those of the first load case, but in this analysis, the surface of the barb is constrained in 

the direction of application of the displacement. 

 

4.5.1. Loading Case 1 

For the geometry presented in figure 20, the right extremity was fixed by an 

ENCASTRE boundary condition applied in the initial step and propagated to the 

following Static and Visco steps. As for the left edge, a displacement/rotation boundary 

condition was specified at the surface. The displacement in z-direction, U3 was set to 0 

initially. However, it was modified in the first Static step to a ramped displacement of 

magnitude 0.5mm and was propagated to the subsequent Visco step. 
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Figure 20: Boundary conditions for load case 1 

 

Average stresses and strains in the body of the suture below the crack tip were 

of interest at the onset of failure. For this reason, an element set, Elem1, was created and 

associated with a Field Output Request to report strains and stresses in the z-direction, 

NE33 and S33 respectively. Figure 21 shows the location of Elem1 in a circular suture. 

 

 

 

 

 

 

 

ENCASTRE 

U3=0.5mm 
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Figure 21: The position of Elem1 set highlighted in red 

 

4.5.2. Loading Case 2  

For the second test case, the left extremity was fixed by an ENCASTRE 

boundary condition applied in the initial step and propagated to the following Static and 

Visco steps. As for the right edge, a displacement/rotation boundary condition was 

specified at the surface. The displacements in x, y, and z-directions, U1, U2, and U3 

respectively as well as the rotations in these directions, UR1, UR2, and UR3 respectively 

were set to 0 initially. However, U3 was modified in the first Static step to a ramped 

displacement of magnitude 0.3mm and was propagated to the subsequent Visco step. 

Furthermore, a third boundary condition was applied at the crack which was constrained 

in the direction of application of the displacement; roller in z-direction. Since the created 

partition to represent the barb was defined as a crack, loads and boundary conditions could 

not be defined exactly at the surface. For this reason, a new partition was created by 

offsetting the plane of the crack by 0.005mm. The roller boundary condition was applied 

at that surface (Fig. 22).   

Elem1 
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Figure 22: Boundary conditions for load case 2 

 

Since the main concern from applying this test case is to investigate the strength 

of a single barb, average stresses at the surface of the crack were monitored at the onset 

of failure. For this reason, an element set, BabrElem, was created and associated with a 

Field Output Request to report Von-mises stresses. Figure 23 shows the location of 

BarbElem in a circular suture.  

 

ENCASTRE 

U3=0.3mm 

U3=0 
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4.5.3. Loading Case 3 

In order to investigate the behavior of the suture when loads are applied to both, 

the body of the suture and the surface of the barb, a third test case which combines the 

former test conditions was applied. The significance of this study lies in its resemblance 

to the real-life suture-tendon interaction. These loading conditions were considered for 

the final optimized geometry only.  

 

4.5.3.1. Tendon Forces 

To be able to mimic the real application, the load applied to the suture should be 

equal to those generated by a tendon during different rehabilitation exercises. Early 

tendon mobilization has been shown to facilitate tendon gliding and healing while 

reducing adhesion formation [65]. Three different schools of early rehabilitation 

programs exist [66]. The first recommends early passive mobilization combined with 

either actively extending-passively flexing the treated fingers or passively flexing and 

BarbElem 

Figure 23: The position of BarbElem set highlighted in red 
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extending. The second consists of passive flexion of the involved fingers that are then 

kept flexed actively. The last program favors early active mobilization where the treated 

fingers undergo active flexing. While active mobilization protocols are most of the time 

avoided for putting the repair at a higher risk of failure, rehabilitation programs that rely 

only on passive protocols expose the tendon to higher stakes of adhesion and the treated 

fingers to potential loss of range of motion. The most beneficial postoperative exercise 

protocol has not been agreed on yet. As a rule of thumb, finger motion during 

rehabilitation should generate forces that are high enough to induce tendon excursion but 

do not lead to gap formation or even, rupture.    

Edsfeldt et al. recorded the peak forces exerted in the FDP and FDS tendons 

during five rehabilitation exercises for two different wrist positions: neutral and flexed 

(Fig. 24) [66]. The highest median forces were noted during isolated FDP and FDS 

flexions for both wrist positions. Magnitudes as high as 25N were observed for the FDP 

maneuver.  

 

 

Figure 24: Peak forces recorded in FDP and FDS tendons during five rehabilitation 

exercises for two different wrist positions [66] 



51 

 

Although such flexion exercises should be avoided or applied with caution 

especially during the first 3 weeks after the repair surgery, a force of 25N was chosen as 

the tendon load to be applied in the model.  

Furthermore, the repair should be still able to withstand the forces produced 

during early mobilization after tendon softening has occurred. For this reason, a factor of 

safety of 18% should be added to compensate for the decrease in repair strength. To 

account for gap formation, which hinders tendon retraction and may result in rupture, an 

extra 30% safety should be considered [66].     

Taking into account all the safety factors, the 25N becomes 37N. It is reported 

in the literature that a suture with an ultimate strength of at least 30 to 55N is a must when 

gentle to moderate active rehabilitation maneuvers are involved [65]. As a result, a load 

of 40N was decided on to represent the forces generated by a tendon.  

As such, for loading case 3, the left extremity was subjected to a 

displacement/rotation boundary condition. The displacements in x, y, and z-directions, 

U1, U2, and U3 respectively as well as the rotations in these directions, UR1, UR2, and UR3 

respectively were set to 0 initially. However, U3 was modified in the first Static step to a 

ramped displacement of magnitude 0.096mm equivalent to 40N, as obtained from the 

load-displacement curve generated for the model on ABAQUS (Fig. 25). This value was 

propagated as a constant to the subsequent Visco step. The right extremity was fixed by 

an ENCASTRE boundary condition applied in the initial step and propagated to the 

following Static and Visco steps. Furthermore, a third boundary condition was applied at 

the crack. A ramped displacement of magnitude 0.05mm was defined perpendicular to 

the offset surface that was partitioned in the second test case (Fig. 26). This boundary 
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condition was created in the Visco step such that the body of the suture has been preloaded 

with a value of 40N.    

 

 
Figure 25: Force-Displacement curve as obtained from ABAQUS 

 

 

Figure 26: Boundary conditions for load case 3 

ENCASTRE 
U3=0.096mm 

U3=0.05mm 
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The main motive behind running this test case was to determine the strength of 

a single barb when the whole suture was being loaded as well. For this reason, the average 

stresses at the surface of the crack were recorded at the onset of failure. The element set, 

BabrElem created in the second test case was used to report the average Von-mises 

stresses.  

Once the force that a single barb can withstand before the onset of crack 

propagation is known, the number of barbs needed to be anchored in the tendon to support 

its action loads can be calculated. This number is approximately 40N divided by the force 

of a single barb.     

 

4.6. Meshing 

The impact of the quality of the mesh on the correctness of the generated solution 

can never be overemphasized. However, a high-quality mesh is not synonymous with a 

fine mesh. A judgment for a good mesh should be based on its ability to resolve the 

physics of the problem under study without adding unnecessary complications. Too many 

elements may result in long solver runs, and too few may lead to inaccurate results. 

Hence, a high-quality mesh is one that serves the objective of the model; obtain a solution 

with the needed accuracy by using only as many degrees of freedom as necessary.  

In order to ensure that the generated mesh is of good quality, a trial and error 

analysis can be carried out. The mesh is refined until a critical result, such as the 

maximum stress in a specific location, converges; that is, it does not change significantly 

with further refinement (h-method). 
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A mesh convergence analysis was performed for this study for the two loading 

cases. The investigation was carried out for the circular suture (=1) having a cut angle 

of 154, and a cut depth 0.19mm.    

 

4.6.1. Loading Case 1 

The nature of the geometry at hand, a cylinder with a slanted cut, makes it 

difficult to use brick elements, even when extensive partitioning is performed. For this 

reason, meshing was done using linear tetrahedral elements (C3D4). A mesh sensitivity 

analysis was carried to determine the optimum mesh size among the tested values: 0.015, 

0.02, 0.025, 0.027, 0.03, 0.031, 0.035, 0.037.  The corresponding average strains at onset 

of failure for the set Elem1 for each mesh size are summarized in table 6. Figure 27 shows 

a plot of the failure strains with respect to the number of elements. 

 

 

 

 

 

 

 

 

Mesh Convergence C3D4 

Mesh size Number of Elements Failure Strain (%) 

0.015 376896 19.2 

0.02 181649 17.76 

0.025 98739 16.7 

0.027 85062 24 

0.03 60375 24.2 

0.031 53559 18.74 

0.035 40507 16.8 

0.037 35679 16.82 

Table 6: Average strains at failure (%) detected for different mesh sizes of linear 

tetrahedral elements 
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As evident from figure 27, no significant trend was observed and convergence 

was obviously not attained. An error of 31% between the maximum and minimum values 

of the strain was noted. To resolve this problem, a local structured mesh of brick elements 

with reduced integration (C3D8R) was generated in the critical region near the crack tip 

while keeping the global mesh type as tetrahedral elements C3D4 (Fig. 29).     

Again, a mesh sensitivity analysis was performed for the mesh sizes: 0.015, 

0.022, 0.024, 0.025, 0.027, 0.03, 0.035, 0.04, 0.05.  For each mesh size, the corresponding 

average strain at onset of failure was recorded. The results are summarized in table 7. 

Figure 28 shows a plot of the failure strain with respect to the number of elements. 
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Figure 27: Average failure strain (%) versus number of elements in the mesh for the set Elem1 
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Figure 28 reveals an evident trend for the average failure strain. As such, a 

converged mesh has been obtained with a maximum error of 12% between the maximum 

and minimum values of the strain. A mesh size of 0.025 (124261 elements) was chosen, 

Mesh Convergence C3D8R 

Mesh size Number of Elements Failure Strain (%) 

0.015 469222 19.45 

0.022 174020 18.65 

0.024 134521 17.8 

0.025 124261 18 

0.027 98441 18 

0.03 80790 19.12 

0.035 46826 20.3 

0.04 32946 19.5 

0.05 16527 18.8 

Table 7: Average strains at failure (%) detected for different mesh sizes of mixed brick 

and tetrahedral elements 
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Figure 28: Average failure strain (%) versus number of elements for a mixed mesh for the set Elem1  
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taking into consideration both accuracy of the results and the required simulation time. 

The final mesh is shown in figure 29 for a circular cross-section.  

 

Figure 29: Mesh for load case 1 consisting of structured brick elements near the crack 

 

4.6.2. Loading Case 2 

When applying the mesh configuration that has been decided on as a result of 

the mesh convergence analysis performed for the first loading case, difficulties with 

reaching acceptable solutions were faced. When the crack was to propagate, nodes at the 

crack tip were being connected with ones facing them to form new elements instead of 

being deleted. For this reason, brick elements at the crack tip were found to be unsuitable 

with this type of analysis. Linear tetrahedral elements (C3D4) were used to mesh the 

whole model.  

To decide on a mesh size, another mesh convergence study was carried out for 

this specific loading case. Mesh sizes of 0.02, 0.025, 0.03, and 0.035 were considered. 
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For each mesh size, the corresponding average maximum principal stress at the surface 

of the barb when a crack started to propagate (BarbElem) was recorded. The results are 

summarized in table 8. Figure 30 shows a plot of the maximum principle stress at failure 

with respect to the number of elements. 

 

 

 

 

 

Mesh Convergence C3D4 

Mesh size Number of Elements Maximum Principal Stress (MPa) 

0.02 183967 32.5 

0.025 108708 29.9 

0.03 66309 31.59 

0.035 41139 32.5 

Table 8: Average maximum principal stress (MPa) at failure detected for different mesh 

sizes of linear tetrahedral elements 
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Figure 30: Average maximum principal stress (MPa) versus number of elements in the mesh for the 

set BarbElem 
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Figure 30 shows that a converged mesh has been attained with a maximum error 

of 8% between the maximum and minimum values of the maximum principal stress. For 

the same reasoning as in the first loading case, a mesh size of 0.025 (108708 elements) 

was chosen. The final mesh is shown in figure 31 for a circular cross-section.  

 

 

Figure 31: Mesh for load case 2 consisting of linear tetrahedral elements  
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CHAPTER 5 

RESULTS 

In this section, the finite element results of the models detailed above subjected 

to load cases 1 and 2 are reported. An optimized suture geometry is attained and tested 

under the third loading case.  

At first, the aspect ratios were varied for a constant cross-sectional area 

equivalent to that of a circle having a radius of 0.3mm, a constant cut angle (CA) of 154 

and cut depth (CD) of 0.19mm for both loading conditions. The second step was to 

investigate the effect of varying CA and CD for a constant . 

 

5.1. Constant Cut Angle and Cut Depth 

5.1.1. Loading Case 1 

An ENCASTRE and a displacement/rotation boundary conditions were applied 

to the suture geometry as thoroughly described in the Boundary Conditions and Loads 

section. Stresses and strains in the z-direction, S33 and NE33 respectively, in the body of 

the suture (Elem1) were reported at the onset of crack propagation and compared among 

the different cross-sections. The results are tabulated below (Table 9). 
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 Results for Load Case 1, constant CSA, CA=154, CD=0.19mm 

 Elem 1 

Aspect Ratio () NE33 (%) S33 (MPa) 

1/3 19.23 280 

1/2 18.65 275.92 

1 17.98 262 

2 18.05 264 

3 18.1 265 

Table 9: Average stresses (MPa) and strains (%) at failure for load case 1, constant 

CSA, CA=154, CD=0.19mm 

 

It can be noted from table 9 that changing the aspect ratio affects the strength of 

the suture. The highest strains and stresses are observed for aspect ratio 1/3.  As such, 

=1/3 is the strongest, followed by 1/2, 3, 2, and finally 1. A circular suture is found to 

be the weakest among all configurations. However, since the differences in the 

magnitudes of NE33 and S33 are not significant, the results cannot be considered 

conclusive. No clear trend is detected.  

Figure 32 depicts a propagating crack for a circular cross-section. The direction 

of propagation of the crack is almost perpendicular to the applied displacement. Rupture 

failure is spotted. Similar behaviors are observed for all other aspect ratios. 
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Figure 32: A propagating crack in a circular suture subjected to load case 1 

 

5.1.2. Loading Case 2 

An ENCASTRE and two displacement boundary conditions were applied as 

detailed in the Boundary Conditions and Loads section. Average von-mises stresses at 

the surface of the barb (BarbElem) were reported at the onset of crack propagation. The 

stresses were then converted into forces by multiplying them by the area of the barb. It 

was assumed that a barb is half an ellipse whose area is   2
barb

A ab  . The results are 

summarized in table 10. 
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 Results for Load Case 2, constant CSA, CA=154, CD=0.19mm 

 Barb Area (mm2) BarbElem 

Aspect Ratio () a (mm) b (mm) Area (mm2) Von-mises (MPa) Force (N) 

1/3 0.48343 0.250245 0.19 49 9.31 

1/2 0.39474 0.306407 0.19 45.09 8.57 

1 0.27911 0.433423 0.19 39.25 7.46 

2 0.19732 0.612951 0.19 36 6.84 

3 0.16115 0.750711 0.19 34.5 6.56 

Table 10: Average stresses (MPa) and their corresponding forces at failure for load case 

2, constant CSA, CA=154, CD=0.19mm 

 

The results in table 10 reveal an evident trend. As the aspect ratio decreases 

below 1, the barb strength increases. The opposite is noticed for increasing the aspect 

ratio beyond 1. Therefore, the strongest geometry belongs to  = 1/3, followed by 1/2, 1, 

2, and finally 3. Notice that the area of the barb remains constant despite the variations in 

both major and minor axes of the ellipses. This is anticipated since the criterion for 

determining the dimensions of the ellipses was to have the same remaining area, or 

alternatively, equal areas removed.   

Figure 33 shows the direction of propagation of the crack for a circular cross-

section as being almost parallel to the applied displacement. Under such boundary 

conditions, peeling rather than rupture failure is detected. All other aspect ratios behave 

in a similar manner. 
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Figure 33: A propagating crack in a circular suture subjected to load case 2 

 

The results for constant cross-sectional area, cut angle and cut depth for both 

load cases are summarized in figure 34. Percentage stains (%NE33) for LC1 and forces 

on the barb surfaces in Newtons (F-N) for LC2 are plotted. As aforementioned, based on 

LC1, a decisive conclusion regarding the best cross-sectional configuration cannot be 

made. A mere 7% increase in %NE33 is observed when comparing the weakest suture ( 

=1) with the strongest one ( = 1/3). Also, it is not clear which condition leads to an 

increased suture strength; decreasing the aspect ratio below one or increasing it. On the 

other hand, a 30% rise in the barb force is detected for LC2 when changing the aspect 

ratio from 3 to 1/3.      
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Figure 34: Summary of the results obtained for constant CA and CD for cases 1 and 2 

 

Since on average, the aspect ratio  of the tendon is 2, a suture with an aspect 

ratio of 1/2, given the findings up till this point, appears to be most suitable. Furthermore, 

since the smallest major and minor axes among the tendons are a=1.5mm and b=0.858mm 

respectively, the radius (or the equivalent ellipse axes) of the suture can be increased from 

0.3mm to a larger diameter that is suitable with both the dimensions of the smallest tendon 

and the optimum aspect ratio. It is desired that the optimized suture accommodates about 

30% of the tendon’s cross-sectional area. Consequently, a suggested geometry has the 

following characteristics:  =1/2, a=0.25mm and b=0.5mm. 
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5.2.  Constant Aspect Ratio 

For a constant , the influence of varying CA and CD on the strength of the 

suture was studied. A circular cross-section was used with a radius of 0.3536mm 

equivalent to an ellipse having a=0.25mm and b=0.5mm. While the cut angles remain the 

same, the cut depths were adapted for the ellipse. The circle/ellipse equivalence for the 

newly proposed suture cross-section are listed in table 11.    

 

  Ellipse Equivalence 

  Aspect Ratio 

  1/2 1 

 Major axis a (mm) 0.25 0.3536 

 Minor axis b (mm) 0.5 0.3536 

 Cross-sectional Area (CSA) (mm2) 0.3928 0.3928 

CD = 0.07 mm 

Remaining Area (RA) (mm2) 0.3726 0.3726 

Cut distance d (mm) 0.2005 0.2836 

Cut depth (mm) 0.0495 0.07 

CD = 0.12 mm 

Remaining Area (RA) (mm2) 0.3485 0.3485 

Cut distance d (mm) 0.16515 0.2336 

Cut depth (mm) 0.0849 0.12 

CD = 0.19 mm 

Remaining Area (RA) (mm2) 0.3078 0.3078 

Cut distance d (mm) 0.11565 0.1636 

Cut depth (mm) 0.1344 0.19 

Table 11:  Equivalent dimensions and cut depths for  = 1/2 

 

5.2.1. Loading Case 1 

The boundary conditions associated with this load case were applied to a 

cylinder with a circular cross-section of r = 0.3536mm for the cut angles 150, 154, and 

160, and cut depths 0.07mm, 0.12mm, and 0.19mm. The outputs of interest are the same 

as before for the same load case. The obtained results are summarized in table 12.  
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  Results for Load Case 1,  = 1, r=0.3536mm 

  Elem 1 

Cut Angle ( ) Cut Depth (mm) NE33 (%) S33 (MPa) 

160 

0.19 21.55 306 

0.12 24 325 

0.07 29.63 384 

154 

0.19 18.1 264 

0.12 21.18 297 

0.07 26.25 350 

150 

0.19 17 250 

0.12 20.05 285 

0.07 25.06 336 

Table 12: Average stresses (MPa) and strains (%) at failure for load case 1, =1 for 

varying cut angles and cut depths 

 

For a constant cut angle, decreasing the cut depth leads to stronger sutures that 

fracture at higher average strains. This result is expected since a smaller cut depth is 

synonymous with a smaller crack. On the other hand, for a constant cut depth, increasing 

the cut angle results in stronger geometries. From this analysis, the best configuration is 

CA=160 and CD=0.07mm. 

 

 5.2.2. Loading Case 2 

The analysis was performed for a circular suture of r = 0.3536mm for the cut 

angles and cut depths 150, 154, and 160, and 0.07mm, 0.12mm, and 0.19mm 

respectively. The outputs of interest are the same as before for the same load case. The 

obtained results are summarized in table 13.  
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  Results for Load Case 2,  = 1, r=0.3536mm 

  Barb Area (mm2) BarbElem 

Cut Angle 

() 

Cut Depth 

(mm) 
a (mm) b (mm) 

Area 

(mm2) 

Von-mises 

(MPa) 
Force (N) 

160 

0.19 0.313477 0.555523 0.2735 37.76 10.33 

0.12 0.265451 0.350857 0.1463 47.39 6.93 

0.07 0.211197 0.204666 0.0679 54.9 3.73 

154 

0.19 0.313477 0.433423 0.2134 39.08 8.34 

0.12 0.265451 0.273741 0.11414 41.22 4.7 

0.07 0.211197 0.159682 0.053 56.9 3.02 

150 

0.19 0.313477 0.38 0.18712 36.035 6.74 

0.12 0.265451 0.24 0.1 43.68 4.368 

0.07 0.211197 0.14 0.0464 58.42 2.71 

Table 13: Average stresses (MPa) and their corresponding forces at failure for load case 

2, =1 for varying cut angles and cut depths 

 

For a constant cut angle, decreasing the cut depth results in a weaker barb that 

can withstand lower forces. On the other hand, for a constant cut depth, increasing the cut 

angle results in stronger barbs. This is expected, for when both CA and CD increase, the 

barb area increases as well, as evident in table 13, allowing it to endure higher forces. 

From this analysis, the best configuration is CA=160 and CD=0.19mm. 

The results for a constant aspect ratio are plotted in figure 35. Percentage stains 

(%NE33) for LC1 and forces on the barb surfaces in Newtons (F-N) for LC2 are 

summarized. A cut angle of 160 shows evident superiority over other values considered 

for both load cases. For a constant cut depth of 0.19mm, an increase of 27% in %NE33 

and 53% in barb force is detected when comparing CA 150 to 154. However, detecting 

a prominent cut depth is not as straightforward as that for a cut angle. For a constant CA 

of 160, a decrease of 27% was observed for an increase in CD from 0.07mm to 0.19mm 
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under LC1. For LC2, the opposite is observed, where the same increase in CD leads to a 

higher barb force by 177%.          

 

Figure 35: Summary of the results obtained for constant aspect ratio under both load 

cases 1 and 2 

 

5.3. Optimized Geometry 

With respect to aspect ratios, it was concluded that  = 1/3 presents the strongest 

design as compared to other aspect ratios. Taking into consideration the tendon’s cross-

section, it was decided that  = 1/2 is most suitable.  

Concerning cut angles and cut depths, it was found from the first load case that 

the best configuration corresponds to CA=160 and CD=0.07mm. For the second test 

case, CA=160 and CD=0.19mm were found to offer the best results. As such, a cut angle 

25.06

20.05

17

26.25

21.18

18.1

29.63

24

21.55

2.71

4.368

6.74

3.02

4.7

8.34

3.73

6.93

10.33

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

0.07 0.12 0.19 0.07 0.12 0.19 0.07 0.12 0.19

150° 154° 160°

CUT DEPTH

CUT ANGLE

Results for constant 

%NE (LC1)

F-N (LC2)



70 

 

of 160 is evidently superior. However, a decision on the cut angle is not direct. A middle 

value between 0.19mm and 0.07mm was chosen; that is, 0.12mm. 

Therefore, the optimum geometry has an aspect ratio  =1/2, CA=160 and 

CD=0.12mm. Load cases 1 and 2 were performed again for this optimized geometry. The 

results are reported in table 14.  

 

Results for = 1/2, CA=160, CD=0.12mm 

Loading Case 1 Loading Case 2 

Elem 1 BarbElem 

NE33 (%) S33 (MPa) Von-mises (MPa) Force (N) 

26.88 362 52.69 7.71 

Table 14: Results for the optimized geometry for load cases 1 and 2 

 

Comparing the results with those obtained for a circular cross-section (Table 15)   

for the same cut angle and cut depth confirms the conclusion that aspect ratio 1/2 is 

superior. The average strains as well as the forces at the surface of the barb at onset of 

crack propagation increase by 12%, and 11% respectively. 

 

Results for = 1, CA=160, CD=0.12mm 

Loading Case 1 Loading Case 2 

Elem 1 BarbElem 

NE33 (%) S33 (MPa) Von-mises (MPa) Force (N) 

24 325 47.39 6.93 

Table 15: Results for = 1, CA=160, CD=0.12mm subjected to both load cases 1 and 2 

 

Since the values for both cut angle and cut depth were varied for a circular cross-section, 

the observed trend was to be validated for  = 1/2.  The test was performed once for a 
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constant CA of 160 and two different values for CD: 0.19mm and 0.12mm, and another 

time for a constant CD of 0.19mm while changing the CA from 160 to 154.   

The obtained results are summarized in table 16.  For a constant cut depth, decreasing the 

cut angle resulted in a weaker suture and a barb that can tolerate lower forces (decrease 

of 14% in %NE33 and 33% in the force), as observed for =1. For a constant cut angle, 

decreasing the cut depth resulted in a stronger suture (24% higher %NE33) but a weaker 

barb (120% lower barb forces). This was also noted for a circular cross-section.    

 

  Loading Case 1 Loading Case 2 

  Results for = 1/2, a=0.25mm, b=0.5mm 

  Elem 1 BarbElem 

Cut Angle 

() 

Cut Depth 

(mm) 

NE33 

(%) 
S33 (MPa) 

Von-mises 

(MPa) 
Force (N) 

160 
0.19 21.71 311 61.9 16.93 

0.12 26.88 362 52.69 7.71 

154 0.19 18.7 275 52.8 11.27 

  Results for = 1, r=0.3536mm 

160 
0.19 21.55 306 37.76 10.33 

0.12 24 325 47.39 6.93 

154 0.19 18.1 264 39.08 8.34 

Table 16: Summary of results for =1 and =1/2, for varying cut angles and cut depths 

under both load cases 

 

5.3.1. Loading Case 3 

This loading case was performed for the optimized cut angle of 160and cut 

depth of 0.12mm, but for =1, since generating a working mesh for =1/2 was 

problematic under the prescribed boundary conditions.  
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Reporting the findings for this test case, a small difference was noticed in 

comparison with the second loading condition. A force of 6.26N was obtained as opposed 

to 6.93N (10% difference). The same trend is expected for =1/2 but most likely, the 

percent variation differs. However, this decrease in barb strength would be accounted for 

in safety factors when determining the number of barbs required to be anchored within 

the tendon. The results are tabulated below (Table 17).  

 

Results for = 1, CA=160, CD=0.12mm 

Loading Case 3 

BarbElem 

Von-mises (MPa) Force (N) 

42.8 6.26 

Loading Case 2 

47.39 6.93 

Table 17: Results for optimized cut angle and cut depth for =1 for load cases 2 and 3 

 

5.3.1.1. Number of Barbs Required 

As aforementioned, an estimation of the number of barbs required to hold a 

tendon force equivalent to 40N can be simply found by dividing this force by the one 

withstood by a single barb.  

For =1/2, CA= 160, CD=0.12mm, the force at the barb surface was recorded 

to be 7.71N. This value represents the force at which crack propagation initiates. 

Certainly, the barb should be loaded at forces lower than the threshold. And since for the 

third loading case, a value lower than 7.71 is anticipated, the force at the barb surface is 

assumed to be 5N, 35% less. Taking into consideration a factor of safety of 3, the required 

number of barbs to be anchored in the tendon to withstand 40N becomes: 
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Number of barbs = 
  

 

40 3
24

5
  Barbs 

Hence, 24 barbs are required. Note that this number is a mere estimate. A method 

to obtain a more accurate number is suggested in the “Future Work” section.  
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CHAPTER 6 

DISCUSSION 

In this section, the mechanisms that led to the obtained results are discussed. The 

outcomes of the finite element analysis are not accepted at face value.  

 

6.1 Constant Cut Angle and Cut Depth 

For a constant cut angle and cut depth, it was noticed that decreasing the aspect 

ratio below =1 resulted in stronger sutures, or more accurately, barbs. For this case, since 

the remaining areas of the ellipses are the same, the only variables are the cut length 

 sin(180 )CL CD CA   and the crack length (Fig. 36). As the aspect ratio increases 

from 1/3 to 3, the cut length, which is also equal to the minor axis “b” of the elliptical 

barb, increases as well, while the crack length, twice the major axis “2a” of the barb, 

decreases proportionally (Table 13).  

With this in mind, we suspect that the main reason behind the observed results 

is the stress intensity factor. For Modes I and II, ( / )I IK aF a W   and 

( / )II IIK aF a W  respectively, where ,   are the characteristic stresses in the part, 

a is the crack length, W is the width of the part, and FI, FII are functions of the ratio of the 

crack length to the width of the specimen and the type of the load being applied. Contours 

of stress intensity factors for a stationary crack were plotted on ABAQUS. The average 

values are reported in Table 18. 
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Stress Intensity Factors 

Aspect Ratio KI (MPa√𝑚) KII (MPa√𝑚) KIII (MPa√𝑚) 

1/3 105 -122 -4.11 

1/2 106 -119 -1.6 

1 57.7 -79.5 -1.14 

2 79.4 -120 2.34 

3 66.3 -124 -0.484 

Table 18: Stress intensity factors for Modes I, II, and II 

 

It is evident that mixed-mode crack growth takes place with a slight Mode II 

dominance. The observed trend for varying the aspect ratio is a result of the combination 

of the three Modes, governed by the mixed-mode power law (Eq. 34). The resultant stress 

intensity factor, or more specifically, energy release rate is suspected to be highest for 

=3 followed by 2, 1, 1/2 and finally 1/3.  This explains the decrease in suture/barb 

strength as the aspect ratio is varied from 1/3 to 3. 

 

6.2 Constant Aspect Ratio 

For a constant aspect ratio, two opposing behaviors were noted. A stronger 

suture is obtained for a decreasing cut depth but an increasing cut angle. However, with 

respect to barb strength, an increase in both cut angle and cut depth enhanced the 

performance of the barb.  

Considering the first case, for a constant cut angle, decreasing the cut depth 

means that the crack size has been reduced (smaller barb), leading to an increased strength 

of the body of the suture. As for a constant cut depth, the increase in cut angle results in 

a longer cut length (CL), which can be observed as the moment arm that translates the 
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forces at the barb surface into compressive stresses at the crack tip (Fig. 36). The higher 

the compressive stresses, the more opposition there is to crack growth, and the stronger 

the suture is. 

 

 

Figure 36: Plot of shear stresses (S23) for = 1, CA=154, CD=0.19mm for load case 1. 

Notice the initiation of crack propagation mid crack length. 

 

For the second case, the logic is more straightforward. Increasing both the cut 

angle and cut depth lead to larger barb areas that can tolerate higher forces.   
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Crack Length 
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

 In this work, the extended finite element method (XFEM) has been successfully 

implemented on ABAQUS to predict crack growth in viscoelastic material.  The aim was 

to employ this technique as a tool to assess the mechanical performance of barbed sutures 

for use in flexor tendon repair and ultimately suggest a new optimized suture geometry 

for a novel single-stranded repair technique.    

Inspired by the geometry of flexor tendons, an elliptical suture cross-section was 

investigated. Two other geometrical factors were varied: cut angle and cut depth. In total, 

five different aspect ratios (= 1/3, 1/2, 1, 2, 3), three different cut angles (150, 154, 

160) and three different cut depths (0.07mm, 0.12mm, 0.18mm) were studied for two 

different loading conditions; one to assess the strength of the suture, the second to 

evaluate the strength of a single barb. 

The results revealed that for a constant cut angle and cut depth, decreasing the 

aspect ratio below =1 resulted in stronger sutures and barbs. For a constant aspect ratio, 

the strength of the suture was improved for lower cut depths but higher cut angles. 

However, with respect to the barb, an increase in both cut angle and cut depth enhanced 

its performance. 

Based on the results, an elliptical suture having an aspect ratio 1/2, cut angle 

160, and cut depth 0.12mm is recommended with 24 barbs anchored into the tendon.  
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7.2 Future Work 

Without doubt, the outcome of this work presents a solid foundation towards the 

use of a new barbed suture design for a novel single-stranded repair technique. For a more 

comprehensive assessment, the following points are suggested for future work:     

 In this study, the suture material was taken as polypropylene. A material that 

has superior mechanical properties, for example polyglyconate, can be 

considered to further enhance the suture strength.   

 The analysis here was performed for the properties of polypropylene at room 

temperature. Since sutures are used inside the human body, temperature 

effects on their performance should be studied. 

 An experimental validation for the optimized geometry reached can be 

conducted to confirm with the results of the finite element analysis.  

 The number of barbs required to be anchored in the tendon can be calculated 

more accurately taking into consideration that not all barbs will carry the same 

load (exponential decrease for example). Also, the length of the stitch that is 

allowed to be made in the tendon should be taken into account. 

 A single barb was modelled here. Multiple barbs can be considered in order 

to understand how they interact with each other to decide on a distance 

between them and/or an angle of spirality.  

 The barb and the suture, throughout this analysis, met in a straight line (crack 

edge) that traversed the suture from edge to edge. The effect of changing the 

length of this crack edge and/or its shape on barb performance could be 

considered.  
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