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Kalman filtering methods have long been regarded as efficient adaptive Bayesian
techniques for estimating hidden states in models of linear dynamical systems
under Gaussian uncertainty. Recent advent of the nonlinear Cubature Kalman
Filter (CKF) allows for stable parametric estimation in inherently nonlinear sys-
tems driven by random inputs of Gaussian nature. Employing CKF techniques,
therefore, carries high promise for modeling many biological phenomena where
the underlying processes exhibit inherently nonlinear, continuous, and noisy dy-
namics and the associated measurements are uncertain and time-sampled. As
with any estimation technique, the solution accuracy remains dependent on the
quality of the input/output data sets over finite recording horizon. To improve
accuracy, an Adaptive Design Optimization (ADO) can be employed for intelli-
gently choosing inputs whose corresponding outputs are maximally informative
about unknown parameters and/or hidden states.

In this dissertation, we address improving model fitting (states and parameters
estimation) and model assessment (model selection) procedures in a Kalman-
based framework and by integrating techniques from Adaptive Design Optimiza-
tion (ADO). We proposed efficient identification algorithms that select in sin-
gle experimental trials those system inputs that cause the output trajectory to
be maximally informative about the nonlinear system model parameters. We
demonstrated the performance of these algorithms in several simulated scenarios
that are derived from benchmark nonlinear problems (Double-well and Van der
Pol oscillators), as well as from nonlinear stochastic neuronal models of electric
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potential generation (conductance-based neuronal models and the Jansen model)
and metabolic activity signals (hemodynamic model). Such algorithms include
OID-SCKF algorithm which is an adaptive approach for joint input design and
parametric identification of nonlinear system models. When compared to esti-
mation with Kalman filter with inputs being randomly selected, the proposed
method in combining Kalman filtering with optimally designed inputs showed
that, in principle, better convergence and higher estimation accuracy can be at-
tained for a set of simulated scenarios that are derived from benchmark nonlinear
problems as well as from nonlinear stochastic neuronal models. Yet, these gains
in estimation accuracy posed heavy computational load making this procedure
intractable for on-line applications. Moreover, we introduced a method based on
Dual Kalman filters to circumvent solving the optimization problem associated
with the OID-SCKF method and hence drastically reduced the computational
needs to design informative input/output data. Investigation of the Dual Kalman
method for a set of simulated models demonstrated the immense gain in compu-
tational power against the OID-SCKF method in designing informative inputs
while maintaining the out-performance in estimation accuracy over those cased
where the inputs are randomly selected.

The proposed Dual Kalman method was extended to be applied for on-line ap-
plications in which the underlying model structure along with a set of model
parameters are considered unknown. The proposed on-line single-phase proce-
dure in which model fitting (parameters estimation) and model assessment (model
selection) were carried out simultaneously using Bayesian approaches to model
selection and by designing experiments that produce informative outcomes about
model unknowns. This procedure demonstrated to accurately identify the true
underlying model structure (and its unknown parameters) from a pool of model
candidates having different levels of complexity.

For off-line model fitting (states and parameters estimation) problems, we pro-
posed a procedure to optimally design the tuning parameters of the Kalman filter
based on sensitivity analysis of the model. The proposed approach is demon-
strated on input deconvolution problem and showed to produce more confident
estimates and better convergence without the need of an iterative tuning process
from the designer.

Finally, we addressed the accuracy of state and parameter estimation using CKF
and CD-CKF techniques in the context of neural state estimation from EEG and
fMRI recordings as specific examples of physiological dynamical system modeling.
Starting with nonlinear state-space simulation models, we elaborate estimation
performance while varying conditions related to (i) the observation sampling fre-
quency, (ii) the observation signal-to-noise ratio and (iii) the structure of the
additive noise process underlying the state dynamics. In particular, we aim to
highlight those situations where an added benefit can be obtained by explicitly
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employing a hybrid filtering (CD-CKF). Our results showed that the explicit con-
sideration of the continuous nature of the underlying biological process can (1)
provide a significant improvement in the accuracy of the estimates and (2) allow
for a wider range of noise processes that are commonly thought to adversely affect
the applicability of Gaussian-based techniques such as the Kalman filter.
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Chapter 1

Introduction

Physiological signal recordings have long played a central role in probing and de-
ciphering the functional state of the underlying biological process. Towards this
goal, dynamical system modeling aims principally to develop a causal link be-
tween the observed signals and the predicted process outputs. In brain sciences,
modeling is generally intended to provide a link between the ongoing activity of
a neuronal system and a host of associated aggregate recordings including di-
rectly related electrical measurements (such as the electroencephalogram EEG,
electrical corticogram ECoG, Local Field Potentials LFP) and indirectly related
metabolic measurements (such as fMRI). For a vast majority of these models,
the computational and identification complexity of these models quickly increases
with the inclusion of realistic assumptions on both the process and its measure-
ment conditions.

First, at the process level, realistic descriptions often result in continuous-time,
nonlinear, stochastic and possibly time-varying dynamics. Starting with a set of
ordinary differential equations, models commonly include (i) nonlinear relation-
ships among several variables (e.g. voltage-dependent ionic conductances), (ii)
uncertainty or randomness in describing the process response to its environment
(e.g. in vivo synaptic noise), and (iii) modulation of the process itself by external
inputs or factors (e.g. effect of neuromodulators ACh). Second, at the measure-
ment level, observation of the process is attained indirectly through one or more
continuous-time variables that relate to the neuronal activity and are limited by
spatial smearing (e.g. extracellular currents) or temporal filtering (e.g. blood
oxygenation levels). These observation variables are subsequently recorded over
regular intervals in time to produce a sequence of noisy discrete-time physiological
recordings.

Along with the increase in model complexity, the correct identification of the
model parameters and the accurate estimation of its hidden internal states be-
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come key challenges, particularly since the efficiency and performance of available
estimation tools depends on a set of assumptions on the process dynamics (lin-
earity, time-invariance) and its operating conditions (process and measurement
noise structure) that become clearly violated in these models.

The temporal dynamics for a wide array of physical and biological systems can
be described by a set of nonlinear ordinary differential equations relating the
system outputs to several internal (or intermediate) states and to the system in-
puts. These equations, furthermore, often contain sets of parameters that reflect
the topology of the system, its operating conditions, as well as other exogenous
environmental factors acting on it. The development of input/output predictive
models for such systems, therefore, hinges upon the ability to obtain accurate es-
timates of both the internal states and the parameters of the system model based
on experimental recordings. Major challenges to performing such model iden-
tification include (a) the limited flexibility in performing repeated experimental
manipulations, (b) the noisy character of the measured output in vivo, and/or (c)
the availability of auxiliary output measurements rather than the direct process
output.

From a system theoretic viewpoint, state-space formulations constitute a flexible
framework whereby both the modeling and estimation problems can be combined
for a wide range of realistic physiological modeling assumptions. In the context
of modeling, state-space allows for separate descriptions of the dynamic processes
and their uncertainties (continuous-time dynamics and noise impact in both the
hidden states and observation variables) from the method of observation and its
imperfections (discrete time noisy multiple channel recordings) [2]. State-space
formulations of dynamical systems allow for describing the system response to
both controlled and random inputs (ut) in terms of a measurement function g
of the output yt (the static observation equation (1.2)) and a dynamic evolu-
tion function f on the internal system states xt (the process equation (1.1)) as
determined by a set of model parameters θ:

ẋt = fθ (xt,ut) + wt (1.1)

yt = gθ (xt,ut) + et (1.2)

Moreover, it is noted that this approach allows for a distinct, more natural treat-
ment of the uncertainty in the dynamics (the process noise wt) and the recording
imperfections and noise (the measurement noise et).

In the context of estimation, state-space summarizes the system history in a set
of first order dynamics memory elements (or states) whereby knowledge of their
current value and future inputs completely characterizes the system evolution into
the future (first order Markov chain), thereby allowing for efficient time-recursive
estimation.
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This type of state estimation problems is usually solved with Bayesian filters
whereby the posterior probability density function (pdf) of the states is con-
structed, based on all available information up to current time, to provide a
complete statistical description of the states at current time [3]. Subsequently,
new information that becomes available from new measurements is combined
with the old information to modify the posterior pdf using Bayes theorem.

Arguably, the Kalman filter is the most widely used type of Bayesian filters avail-
able to solve the state estimation problem. In the Kalman setup, it is assumed
that both the state noise and the measurement disturbance are samples of an
additive, zero mean random processes that admit Gaussian probability distribu-
tions [4].

The Kalman Filter (KF) was originally formulated for linear time-varying systems
but has recently received increased attention with the introduction of techniques
for estimating nonlinear time varying dynamical systems. Such filters are the
Extended Kalman filter (EKF) [5], the Unscented Kalman filter (UKF) [6, 7, 8],
and the most recently introduced filter the Cubature Kalman filter (CKF) [9, 3].

Kalman filter extensions (EKF, UKF, and CKF) that deal with nonlinear sys-
tems have also found their way to numerous applications in a wide variety of
areas in Biology [10, 11, 12, 13, 14, 15, 16]. In the neural sciences, Kalman fil-
ter applications include neural activity modeling and estimation [11, 17, 18, 19],
Seizure prediction and control [20, 21, 22, 23, 24], Sleep and EEG modeling [25,
26, 27, 28], and particularly brain connectivity estimation in psychology and cog-
nition [29, 30, 31, 32, 33]. The time-varying adaptive nature of Kalman filtering
continues to place it among other popular estimation techniques, particularly
those based on Dynamic Causal Modelling (DCM) [34]. DCM is based on gen-
erative models that are compared within a Bayesian framework in order to infer
the functional connectivity between neuronal populations or brain regions from
observed data (EEG, MEG, or fMRI) [35, 36, 37, 38].

From a system identification perspective, finding the correct set of unknown sys-
tem parameters θ assumes that (a) the parameters are identifiable, i.e., unique
parameter estimates are produced for a given data set and a given fitting criterion,
and (b) the input data is sufficiently rich to excite the dynamics of the system. In
a Kalman filter setting, the model parameters are commonly treated as additional
hidden states of the overall system, and are thus estimated at a discrete time step
θk as part of an augmented state vector xaug

k based on the available input/output
data. When both identifiability and input richness conditions are satisfied, the
ability of a Kalman filter to estimate the system parameters as hidden states is
constrained by the sensitivity of the output measurements to changes in these
parameters, which in turn might vary with changes in the system operating point.
Accordingly, and for a given set of experimental input/output data, the accuracy
of the parameter estimates is contingent upon the parameters’ correlation to the
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output measurements. It is therefore highly advantageous to choose those “cor-
rect” data sets that are highly informative about the model parameters. Upon
constraining with the limited flexibility of performing lengthly, repeatable and
controlled practical experiments (as presented earlier), it becomes crucial to de-
sign an efficient single-experiment input profile that maximizes the observability
of the parameters from the measured outputs.

In systems biology, the actual circuitry of the underlying systems are usually un-
known, and expert knowledge has to be converted into a suitable model structure
that represents the interaction of model components. This is achieved through
the proposition of model candidates Mm,m = 1, . . . ,M which represent com-
peting hypotheses of the underlying circuitry. Moreover, each model candidate
Mm,m = 1, . . . ,M has pm unknown parameters θ(Mm) representing system’s
underlying unknown interactions and mechanisms. Typically, assessment and val-
idation procedures are carried out in order to identify the most plausible model
candidateMm, that most likely to represent the actual circuitry of the underlying
system. In validating candidate models, first, they are fitted to a given experimen-
tal input/output data set and, second, their generality is tested against novel data
recordings. A winning model is one that achieves high accuracy-generality score.
Again, as in system identification problems, the distinguishably between model
candidates depends on the quality of available input/output data. Therefore, it is
convenient to choose those suitable operation conditions (maximally informative
data sets) to ensure proper discrimination between model candidates.

Adaptive design optimization (ADO) refers to a large set of techniques that are
often used to select, from a set of possible experimental scenarios, those scenarios
that can maximally reduce the parametric uncertainty in a predetermined model
or choose the highest evidence model from a set of potential candidates. Opti-
mal experiment design has been employed for parameter estimation in systems
biology [39, 40, 41, 42, 43, 44, 45], Bio-chemical systems [46, 47, 48, 49], and cog-
nitive neuroscience [50, 51, 52]. Optimal experiments are also designed in order
to select the most plausible model from a pool of candidate models in systems
biology [53, 42, 54], and in cognitive neuroscience [50, 55, 56].

In the present work, we address improving model fitting (states and parameters
estimation) and model assessment (model selection) procedures in a Kalman-
based framework and by integrating techniques from Adaptive Design Optimiza-
tion (ADO). We aim to introduce efficient identification algorithms that select in
single experimental trials those system inputs that cause the output trajectory to
be maximally informative about the nonlinear system model parameters. We will
demonstrate the performance of these algorithms in several simulated scenarios
that are derived from benchmark nonlinear problems (Double-well and Van der
Pol oscillators), as well as from nonlinear stochastic neuronal models of electric
potential generation (conductance-based neuronal models and the Jansen model)

4



and metabolic activity signals (hemodynamic model).

This dissertation is organized as follows.

Chapter two presents a comprehensive literature review on the neuronal structure
of the human brain and the means of monitoring the electrical activity of these
structure with imaging techniques such as the electroencephalography (EEG). As
well as a mathematical description of the Cubature Kalman Filter (CKF) along
with its derivatives (the square-root CKF and the square-root Cubature Kalman
Smoother), and its most recent extension, the Continuous-Discrete Cubature
Kalman Filter (CD-CKF) and its derivative (the square-root CD-CKF). Finally,
a highlight on existing approaches of designing experiments to improve parametric
estimation and model inference.

Chapter three presents the mathematical description of various simulation non-
linear models used to demonstrate the performance of the proposed techniques
and algorithms aimed to improve the performance of Kalman filter techniques in
model fitting (hidden states and parameters estimation) and model selection in
the context of neural state estimation from EEG and fMRI (functional magnetic
resonance imaging) recordings as specific examples of physiological dynamical
system modeling.

Chapter four introduces an adaptive approach for joint input design and para-
metric identification of nonlinear system models. By integrating techniques from
Adaptive Design Optimization (ADO) and square-root Cubature Kalman filter-
ing (SCKF). Along with a demonstration of the algorithm performance in several
simulated scenarios that are derived from benchmark nonlinear problems as well
as from nonlinear stochastic neuronal models of electric potential generation.

Chapter five proposes an approach whereby the tuning parameters of the Kalman
filter are optimally designed based on sensitivity analysis of the underlying sys-
tem. The method of designing the tuning parameters is demonstrated on a hemo-
dynamic model against manual iterative tuning.

Chapter six presents a new on-line adaptive approach for joint input design and
parametric identification of nonlinear system models based on a dual Kalman
filters setup which will circumvent the computational demands exerted by the in-
troduced method in chapter four. A demonstration of the algorithm performance
is carried out with benchmark nonlinear problems as well as from nonlinear neu-
ronal models.

Chapter seven addresses the problem where the model structure of the underlying
system is unknown. Given a pool of model candidates Mm,m = 1, . . . ,M each
with pm unknown parameters θ(Mm), a single-phase on-line procedure which
include simultaneous model fitting (parameter estimation using Kalman filter
techniques) and model selection (identifying most plausible model structure using
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Bayesian approaches) is proposed in which input design is included to improve
parametric estimation. A demonstration of the proposed method is conducted
by simulating a multi-neuronal-area model based on Jansen model for cortical
activity.

Chapter eight presents Kalman-based estimation of effective connectivity between
cortical areas from experimental data collected from human subjects while per-
forming a cognitive task (i.e. Picture-Naming task). A comprehensive descrip-
tion of data collection and data processing procedures are introduced. For our
application, the cortical areas of interest were chosen from the visual cortex,
namely the primary visual cortex (V1) and the secondary visual cortex (V2)
from both left and right hemispheres. The cortical areas were modeled with the
multi-neuronal-area Jansen model for cortical activity. Parameters estimation
and model assessment results for two suggested model candidates of the effective
connectivity between these areas based on Cubature Kalamn filter and Cubature
Kalman smoother are presented.

Chapter nine addresses those situations where an added benefit (improved esti-
mation accuracy) can be obtained by explicitly employing a hybrid filtering (i.e.
CD-CKF). The accuracy of state and parameter estimation is addressed using
CKF and CD-CKF techniques in the context of neural state estimation from EEG
and fMRI recordings as specific examples of physiological dynamical system mod-
eling. Estimation performance is evaluated while varying conditions related to (i)
the observation sampling frequency, (ii) the observation signal-to-noise ratio and
(iii) the structure of the additive noise process underlying the state dynamics.

Finally, implications and future directions are included in chapter ten.
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Chapter 2

Literature Review

In this chapter, we will present a brief biological review about the human brain
and its underlying neuronal structure, an introduction about a medical imaging
technique, the electroencephalography (EEG), which is used to monitor the brain
electrical activity. In addition, we will describe the mathematical formulation of
the Cubature Kalman Filter (CKF) and its derivatives, namely the square-root
CKF and the square-root Cubature Kalman Smoother. As well as its most recent
extension, the Continuous-Discrete Cubature Kalman Filter (CD-CKF) which
was introduced to deal with state-space models of the continuous-discrete kind
(continuous-time processes with discrete-time measurements) and its derivative
(the square-root CD-CKF). Finally, we will introduce the Adaptive Design Op-
timization method which refers to a large set of techniques that are often used
to select, from a set of possible experimental scenarios, those scenarios that can
maximally reduce the parametric uncertainty in a predetermined model or choose
the highest evidence model from a set of potential candidates.

2.1 Neuron

The human brain is estimated to have 1011 interconnected neurons. The neurons
are the basic functioning unit in the central nervous system (CNS). They are
specialized to process motor and sensory information coming from peripheral
receptors, and are responsible for cognitive processes such as planning, learning,
attention and memory.
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Figure 2.1: Structure of the Neuron.

2.1.1 Neuron Structure

Although there are many types of neurons, they all typically have the following
common characteristics (Fig. 2.1):

• Cell body or Soma: it is involved in the main metabolic functions of the cell,
and contains the nucleus and all of the other structures that are essential
for cell functioning.

• Axon: it represents the conduction component of the neuron over which in-
formation (the action potential) is transmitted from one part of the neuron
(e.g. the cell body) to the terminal regions of the neuron.

• Dendrites: they are tree-like structures that extend away from the Soma and
serve as the input part to the neurons where they receive action potentials
from other neurons at specialized junctions called synapses.

• Synapses: These are the terminal regions located at the very end of an axon,
at which one neuron forms a connection with another neurons dendrites.

2.1.2 Action Potential

Action potentials (AP) represent the fundamental means of communication in
the nervous system. They are electrical signals by which neurons transmit in-
formation to one another. They can either cause excitation or inhibition in the
post-synaptic neuron. Neurons in a resting state normally have a membrane
potential around −70 mV. This means that the voltage difference between the
inside of the cell relative to the outside of the cell is negative (Fig. 2.2). When
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Figure 2.2: Neuron’s action potential.

a neuron sends an AP to a post-synaptic neuron, then this AP will be added to
all other APs targeting that post-synaptic neuron. If it increases the membrane
potential then it is exciting the post-synaptic neuron, and if it decreases the
membrane potential it is inhibiting the neuron. If all APs cause the membrane
potential to pass the firing threshold then the post-synaptic neuron will fire an
action potential.

2.1.3 Neocortex

The neocortex is the seat of the highest forms of biological intelligence in all
sensory and cognitive modalities. It is responsible for cognitive processes such as
analysis and conscious perception of sensory stimuli, planning and regulation of
goal-directed movements, learning, attention and memory [1]. The mammalian
sensory neocortex is characterized by its laminar architecture in which neocortical
neuronal populations can be horizontally segregated into six different lamina or
layers that lie parallel to the cortical surface (Fig. 2.3). These layers fall into
three categories:

• Superficial layers: these are layer I, layer II and layer III.

• Middle layer: Layer IV.

• Deep layers: Layer V and layer VI.

Each layer is characterized by the anatomical and electrophysiological properties
of its constituent neurons. Another feature of the sensory neocortex is its vertical
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Figure 2.3: Acute coronal slice through the cortex of a rat. All cortical layers are
indicated by the Roman numerals. Scale bar 200 µm; m: medial, v: ventral [1].

organization in which neurons stacked on top of each other through the depth
of the cortex tend to be connected and have similar response properties despite
residing in different layers [57]. This type of vertical structure is called a cortical
column or functional column, and has been hypothesized to represent a basic
functional unit of sensory information processing [57].

2.1.4 Neurons Types

Based on the segregation of the neocortex into six layers, each layer is charac-
terized by the anatomical and electrophysiological properties of its constituent
neurons.

Layer I contains a few neurons. These neurons are all inhibitory neurons and
synapse mainly to dendrites of neurons from the deeper layers. Dendrites in layer I
not belonging to the population of layer I inhibitory cells are apical dendrites from
deep layer pyramidal cells [58]. Layer II/III contains a mix of small pyramidal
cells and inhibitory neurons mainly bipolar cells and double bouquet cells. It also
contains apical dendrites of layer pyramidal cells [58].

Layer IV contains excitatory spiny stellate cells and a variety of inhibitory cells [58].
The spiny stellate cells are exclusively located in layer IV. Layer V contains large
pyramidal cells and a smaller population of inhibitory cells. Axons and basal
dendrites of bipolar cells (which are inhibitory and located in layer II/III) are
also found in layer V [58].

Layer VI contains large pyramidal cells that project their axons back to the tha-
lamus. Layer VI also contains a class of inhibitory neurons called Martinotti cells
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whose axonal outputs make long projections across all layers of the neocortex [58].

2.2 Electroencephalography

Electroencephalography (EEG) is a medical imaging technique that records elec-
trical activity of the brain by means of electrodes placed on the scalp. Brain
electrical activity includes action potentials that produce circumscribed electri-
cal fields, and slower, more widespread, post-synaptic potentials [59]. The activ-
ity of a single neuron can be recorded by an adjacent microelectrode, but it is
too small to be detected by distant scalp electrode. Synchronous activity in a
horizontal laminar aggregate of neurons with parallel orientation may, however,
be detectable on the scalp [59]. Thus the EEG is a spatio-temporal average of
synchronous activity arising in thousands of neurons that have similar spatial
orientation.

Cortical pyramidal neurons are considered to be main source of EEG signal be-
cause they are well-aligned and fire together [59]. Because voltage fields fall off
with the square of distance, activity from deep sources is more difficult to be
detected than activity near the skull.

EEG recordings show oscillations that represent synchronized neuronal activity at
a variety of frequencies. Several of these oscillations have characteristic frequency
ranges, and are associated with different brain states during resting and cognitive
tasks.

These characteristic frequencies or rhythms have distinct spatio-temporal. There
are five classical brain rhythms (Fig. 2.4):

• Delta rhythm: This is a slow rhythm that ranges between 0.5 and 4 Hz,
which is mainly observed in adults during a deep sleep.

• Theta rhythm: Has a frequency band 4-8 Hz. It is observed mainly during
drowsiness and idling states.

• Alpha rhythm: Oscillations in the alpha rhythm range between 8-13 Hz
band, which appear mainly in the posterior regions of the head (occipital
lobe) relaxation states with the eyes closed.

• Beta rhythm: This is a relatively fast rhythm having a band of 13-30 Hz in
frequency. It is observed in awaken and conscious states, active thinking,
focus, anxiety and stress.

• Gamma rhythm: This rhythm is defined for fast oscillations having fre-
quencies above 30 Hz. It is observed during short-term memory matching
of recognized objects, sounds, or tactile sensations.

11



Figure 2.4: Examples of EEG rhythms.

EEG signals measurements are performed using 1 to 256 electrodes. Electrodes
are generally placed and named according to a standard model, namely, the 10-20
international system (Fig. 2.5).

2.3 Cubature Kalman Filter

Cubature Kalman filter is a nonlinear filter designed for hidden state estimation
from nonlinear dynamic system with additive noise. The nonlinear dynamic
system is described by a state-space model comprising a process and measurement
equation described in discrete-time domain. The state-space model is defined by
the pair of difference equations in discrete-time:

Process Equation: x
k

= f
d
(x

k−1
, I

k−1
) + v

k−1
(2.1)

Measurement Equation: z
k

= h(x
k
) + w

k
(2.2)

Where x
k
∈ Rn is the state vector of the dynamic system at discrete time time

k, z
k
∈ Rd is the measurement at discrete time instance k, f

d
: Rn × R → Rn is

the process function, h : Rn×R→ Rd is the measurement function, v
k−1
∈ Rn is

a vector of random Gaussian noise with zero mean and covariance Vk−1, w
k
∈ Rd

is a vector of random Gaussian noise with zero mean and covariance Rk.
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Figure 2.5: Location and nomenclature of a 74-Channel electrodes arrangement.

Typically, The process equation describing a given system has continuous-time
dynamics and it is expressed by a continuous stochastic differential equation
(SDE):

Process Equation: dx(t) = f(x(t), t)dt+
√

Qdβ(t) (2.3)

Where x(t) ∈ Rn is the state of the dynamic system at time t, f : Rn × R→ Rn

is the drift coefficient, β(t) ∈ Rn is a standard Wiener process assumed to be
independent of states and measurement noise, and Q ∈ Rn×n is the diffusion
coefficient.

In order to deal with the continuous process equation, we can discretize the SDE
using Local Linearization (LL) method as proposed in [30]; this will transform
the process equation into a stochastic difference equation.

Local Linearization method consists of transforming a nonlinear SDE to a lin-
ear SDE by applying the truncated Itô-Taylor expansion to the drift coefficient
f(x(t), t), then evaluate the analytical solution of the resulting linear SDE and
finally approximate the Itôs integral in the obtained solution by means of the
composite Trapezoidal rule [60]. The resultant discrete difference equation will
be as follows:

x
k

= f
d
(x

k−1
, k − 1) + v

k−1
(2.4)
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Where

f
d
(x

k−1
, k − 1) ≈ x

k−1
+ J −1

k−1
[exp(J

k−1
∆t)− Ie ]f(x

k−1
, k − 1) (2.5)

J
k

is the Jacobian of f at discrete time k and ∆t is the time interval between
samples, and Ie is the identity matrix.

The state-space model in discrete time description becomes:

Process Equation: x
k

= f
d
(x

k−1
, I

k−1
) + v

k−1
(2.6)

Measurement Equation: z
k

= h(x
k
) + w

k
(2.7)

Where v
k−1
∈ Rn is a vector of random Gaussian noise with zero mean and

covariance Vk−1, w
k
∈ Rd is a vector of random Gaussian noise with zero mean

and covariance Rk.

The CKF is based on Bayesian filtering paradigm under Gaussian domain, in
which the posterior density of the state provides a complete statistical description
of the state at that time [9]. This filter includes two steps:

• Time update: compute the predicted density p(xk|z1:k−1) ∼ N (x̂k|k−1, Pk|k−1).
Where:

x̂k|k−1 = E[xk|z1:k−1]

= E[f
d
(xk−1, k − 1)|z1:k−1]

=

∫
f
d
(xk−1, k − 1)p(xk−1|z1:k−1)dxk−1

=

∫
f
d
(xk−1, k − 1)×N (xk−1; x̂k−1|k−1, Pk−1|k−1)dxk−1 (2.8)

Pk|k−1 = E
[
(xk − x̂k|k−1)(xk − x̂k|k−1)T |z1:k−1

]
=

∫
f
d
(xk−1, k − 1)f

d
(xk−1, k − 1)T ×N (xk−1; x̂k−1|k−1, Pk−1|k−1)dxk−1

− x̂k|k−1x̂
T
k|k−1 + Vk−1 (2.9)

• Measurement update: compute the posterior density p(xk|z1:k) ∼ N (x̂k|k, Pk|k).
The filter likelihood density is assumed to be Gaussian:

p(zk|z1:k) ∼ N (zk; ẑk|k−1, Pzz,k|k−1)

Where the predicted measurement:

ẑk|k−1 =

∫
h(xk, k)×N (xk; x̂k|k−1, Pk|k−1)dxk (2.10)
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and the associated covariance

Pzz,k|k−1 =

∫
h(xk, k)h(xk, k)T ×N (xk; x̂k|k−1, Pk|k−1)dxk

− ẑk|k−1ẑ
T
k|k−1 +Rk (2.11)

The cross-covariance between the state and the measurement is given by:

Pxz,k|k−1 =

∫
xkh(xk, k)T ×N (xk; x̂k|k−1, Pk|k−1)dxk − x̂k|k−1ẑ

T
k|k−1 (2.12)

Thus, the conditional Gaussian density of the joint state and the measure-
ment can be written as:

p
([

xTk zTk
]
|z1:k

)
∼ N

([
x̂k|k−1

ẑk|k−1

]
,

[
Pk|k−1 Pxz,k|k−1

P T
xz,k|k−1 Pzz,k|k−1

])
From which the posterior density p(xk|z1:k) ∼ N (x̂k|k, Pk|k) is computed
on the receipt of a new measurement zk through the computation of the
so-called Kalman gain Kk:

x̂k|k = x̂k|k−1 +Kk(zk − ẑk|k−1)

Pk|k = Pk|k−1 −KkPzz,k|k−1K
T
k

Kk = Pxz,k|k−1P
−1
zz,k|k−1

2.3.1 Third-Degree Cubature Rule

The Bayesian filter in the Gaussian domain reduces to the problem of how to
compute integrals of the following form [3]:

I(f) =

∫
f(x)×N (x; ., .)dx (2.13)

Where f(x) is some nonlinear function.

The heart of Cubature Kalman Filter is to numerically approximate this type
of integrals by third-degree spherical-radial rule using an even set of 2n equally
weighted symmetric cubature points {ξi, ωi}2n

i=1 (where n is the dimension of the
state vector):

I(f) =

∫
f(x)×N (x;µ,Σ)dx ≈

2n∑
i=1

ωif
(
µ+
√

Σξi
)

(2.14)

Where:

15



Σ =
√

Σ
√

Σ
T

ωi =
1

2n

ξi =

{ √
nei i = 1, . . . , n

−
√
nei i = n+ 1, . . . , 2n

Using this numerical approximation of integrals, the time update of the CKF
becomes:

x̂k|k−1 =

∫
f
d
(xk−1, k − 1)×N (xk−1; x̂k−1|k−1, Pk−1|k−1)dxk−1

=
1

2n

2n∑
i=1

X ∗i,k|k−1 (2.15)

Where
X ∗i,k|k−1 = f

d
(x̂k−1|k−1 +

√
Pk−1|k−1ξi, k − 1) (2.16)

And the corresponding error covariance:

Pk|k−1 =

∫
f
d
(xk−1, k − 1)f

d
(xk−1, k − 1)T ×N (xk−1; x̂k−1|k−1, Pk−1|k−1)dxk−1

− x̂k|k−1x̂
T
k|k−1 + Vk−1

=
1

2n

2n∑
i=1

(
X ∗i,k|k−1X ∗Ti,k|k−1

)
− x̂k|k−1x̂

T
k|k−1 + Vk−1 (2.17)

And the measurement update equations are approximated as:

ẑk|k−1 =

∫
h(xk, k)×N (xk; x̂k|k−1, Pk|k−1)dxk

=
1

2n

2n∑
i=1

Zi,k|k−1 (2.18)

Where
Zi,k|k−1 = h(x̂k|k−1 +

√
Pk|k−1ξi, k − 1) (2.19)

and the associated covariance:

Pzz,k|k−1 =

∫
h(xk, k)h(xk, k)T ×N (xk; x̂k|k−1, Pk|k−1)dxk

− ẑk|k−1ẑ
T
k|k−1 +Rk

=
1

2n

2n∑
i=1

(
Zi,k|k−1ZTi,k|k−1

)
− ẑk|k−1ẑ

T
k|k−1 +Rk (2.20)
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The cross-covariance between the state and the measurement is given by:

Pxz,k|k−1 =

∫
xkh(xk, k)T ×N (xk; x̂k|k−1, Pk|k−1)dxk − x̂k|k−1ẑ

T
k|k−1

=
1

2n

2n∑
i=1

(
Xi,k|k−1ZTi,k|k−1

)
− x̂k|k−1ẑ

T
k|k−1 (2.21)

Where:
Xi,k|k−1 = x̂k|k−1 +

√
Pk|k−1ξi (2.22)

2.3.2 CKF Algorithm

A. Time update:

1) Assume at time k that the posterior density function p(xk−1|z1:k−1) ∼
N (x̂k−1|k−1, Pk−1|k−1) is known. Factorize

Pk−1|k−1 = Sk−1|k−1S
T
k−1|k−1 (2.23)

2) Evaluate the cubature points (i = 1, 2, . . . , 2n)

Xi,k−1|k−1 = x̂k−1|k−1 + Sk−1|k−1ξi (2.24)

Where the cubature-point set ξ is defined as:

ξi =

{ √
nei for i = 1, . . . , n

−
√
nei for i = n+ 1, . . . , 2n

3) Evaluate the propagated cubature points (i = 1, 2, . . . , 2n)

X ∗i,k|k−1 = fd(Xi,k−1|k−1, k − 1) (2.25)

4) Estimate the predicted state

x̂k|k−1 =
1

2n

2n∑
i=1

X ∗i,k|k−1 (2.26)

5) Estimate the predicted error covariance

Pk|k−1 =
1

2n

2n∑
i=1

(
X ∗i,k|k−1X ∗Ti,k|k−1

)
− x̂k|k−1x̂

T
k|k−1 + Vk−1 (2.27)
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B. Measurement update:

1) Factorize

Pk|k−1 = Sk|k−1S
T
k|k−1 (2.28)

2) Evaluate the cubature points (i = 1, 2, . . . , 2n)

Xi,k|k−1 = x̂k|k−1 + Sk|k−1ξi (2.29)

3) Evaluate the propagated cubature points (i = 1, 2, . . . , 2n)

Zi,k|k−1 = h(Xi,k|k−1, k) (2.30)

4) Estimate the predicted measurement

ẑk|k−1 =
1

2n

2n∑
i=1

Zi,k|k−1 (2.31)

5) Estimate the innovation covariance matrix

Pzz,k|k−1 =
1

2n

2n∑
i=1

(
Zi,k|k−1ZTi,k|k−1

)
− ẑk|k−1ẑ

T
k|k−1 +Rk (2.32)

6) Estimate the cross-covariance matrix

Pxz,k|k−1 =
1

2n

2n∑
i=1

(
Xi,k|k−1ZTi,k|k−1

)
− x̂k|k−1ẑ

T
k|k−1 (2.33)

7) Estimate the Kalman gain

Kk = Pxz,k|k−1P
−1
zz,k|k−1 (2.34)

8) Estimate the updated state

x̂k|k = x̂k|k−1 + Kk(zk − ẑk|k−1) (2.35)

9) Estimate the corresponding error covariance

Pk|k = Pk|k−1 −KkPzz,k|k−1K
T
k (2.36)
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2.3.3 Square-root Cubature Kalman Filter

The CKF algorithm requires the error covariance matrix (Pk|k) to be symmetric
and positive definite. This condition is often lost by the numerical factorization
of Pk|k during the time and measurement updates of the CKF, and hence cause
the estimation scheme to become unstable. The solution is to use the square-
root Cubature Kalman Filter (SCKF) which essentially propagates square-root
factor of Pk|k (Sk|k) avoiding matrix square-rooting operations while preserving
the symmetry and positive definiteness of the covariance matrix and improving
numerical accuracy.

In SCKF, matrix triangular factorizations or triangularizations (e.g., the QR
decomposition) is used for covariance updates. The triangularization essentially
computes a triangular square-root factor of the covariance without square-rooting
a squared-matrix form of the covariance. The triangularization algorithm ( e.g.,
the QR decomposition) is denoted as S = Tria(A) where S is a lower triangular
matrix. The matrices A and S are related as follows: Let R be an upper triangular
matrix obtained from the QR decomposition on AT ; then S = RT [9].

SCKF Algorithm

A. Time update:

1) Sk−1|k−1 is available.

2) Evaluate the cubature points (i = 1, 2, . . . , 2n)

Xi,k−1|k−1 = x̂k−1|k−1 + Sk−1|k−1ξi (2.37)

Where the cubature-point set ξ is defined as:

ξi =

{ √
nei for i = 1, . . . , n

−
√
nei for i = n+ 1, . . . , 2n

3) Evaluate the propagated cubature points (i = 1, 2, . . . , 2n)

X ∗i,k|k−1 = fd(Xi,k−1|k−1, I) (2.38)

4) Estimate the predicted state

x̂k|k−1 =
1

2n

2n∑
i=1

X ∗i,k|k−1 (2.39)
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5) Estimate the square-root factor of the predicted error covariance

Sk|k−1 = Tria
(
[Xk|k−1 SV,k−1]

)
(2.40)

Where SV,k−1 denotes the square-root of Vk−1 such that Vk−1 =

SV,k−1S
T

V,k−1, and the weighted centered matrix:

Xk|k−1 =
1√
2n

[
X ∗1,k|k−1−x̂k|k−1 X ∗2,k|k−1−x̂k|k−1 . . . X ∗2n,k|k−1−x̂k|k−1

]
B. Measurement update:

1) Evaluate the cubature points (i = 1, 2, . . . , 2n)

Xi,k|k−1 = x̂k|k−1 + Sk|k−1ξi (2.41)

2) Evaluate the propagated cubature points (i = 1, 2, . . . , 2n)

Zi,k|k−1 = h(Xi,k|k−1) (2.42)

3) Estimate the predicted measurement

ẑk|k−1 =
1

2n

2n∑
i=1

Zi,k|k−1 (2.43)

4) Estimate the square-root factor of the innovation covariance matrix

SZZ,k|k−1 = Tria
(
[Z∗k|k−1 SR,k]

)
(2.44)

Where SR,k denotes the square-root of Rk such that Rk = SR,kS
T

R,k,
and the weighted centered matrix:

Z∗k|k−1 =
1√
2n

[
Z1,k|k−1− ẑk|k−1 Z2,k|k−1− ẑk|k−1 . . . Z2n,k|k−1− ẑk|k−1

]
5) Estimate the cross-covariance matrix

PXZ,k|k−1 = Xk|k−1Z∗
T

k|k−1 (2.45)

Where the weighted centered matrix:

Xk|k−1 =
1√
2n

[
X1,k|k−1−x̂k|k−1 X2,k|k−1−x̂k|k−1 . . . X i2n,k|k−1−x̂k|k−1

]
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6) Estimate the Kalman gain

Kk = (PXZ,k|k−1/S
T

ZZ,k|k−1)SZZ,k|k−1 (2.46)

7) Estimate the updated state

x̂k|k = x̂k|k−1 + Kk(zk − ẑk|k−1) (2.47)

8) Estimate the square-root factor of the corresponding error covariance

Sk|k = Tria
(
[Xk|k−1 −KkZ∗k|k−1 KkSR,k]

)
(2.48)

2.3.4 Square-root Cubature Kalman Smoother

The square-root Cubature Kalman smoother (SCKS) is a backward pass proce-
dure that follows the forward Kalman filter pass (SCKF) for rolling backwards
from p(xN |z1:N) to p(x1|z1:N) (where N is the total number data points) in order
to compute suitable corrections to the forward filtering results [61]. This proce-
dure is used for computing smoothed estimates of time step k from estimates of
time step k + 1 by starting from the last step k = N and proceeding backward
to the initial step k = 1. In other words, starting from x̂N |N and SN |N at the
end of SCKF forward pass, the algorithm computes the smoothed state estimates
x̂k|N and the corresponding error covariance Sk|N of time step k given the already
smoothed state estimates x̂k+1|N and the corresponding error covariance Sk+1|N
of time step k + 1 [61].

SCKS Algorithm

1) Evaluate the cubature points (i = 1, 2, . . . , 2n)

Xi,k|k = x̂k|k + Sk|kξi (2.49)

Where the cubature-point set ξ is defined as:

ξi =

{ √
nei for i = 1, . . . , n

−
√
nei for i = n+ 1, . . . , 2n

2) Evaluate the propagated cubature points (i = 1, 2, . . . , 2n)

X ∗i,k+1|k = fd(Xi,k|k, I) (2.50)
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3) Estimate the predicted state

x̂k+1|k =
1

2n

2n∑
i=1

X ∗i,k+1|k (2.51)

4) Estimate the square-root factor of the predicted error covariance

Sk+1|k = Tria
(
[Xk+1|k SV,k]

)
(2.52)

Where SV,k denotes the square-root of Vk such that Vk = SV,kS
T

V,k, and the
weighted centered matrix:

Xk+1|k =
1√
2n

[
X ∗1,k+1|k− x̂k+1|k X ∗2,k+1|k− x̂k+1|k . . . X ∗2n,k+1|k− x̂k+1|k

]
5) Compute the matrices U11,U21,U22 using the triangularization algorithm:(

U11 0
U21 U22

)
= Tria

(
Xk+1|k SV,k+1

Xk|k 0

)
Where:

Xk|k =
1√
2n

[
X1,k|k − x̂k|k X2,k|k − x̂k|k . . . X2n,k|k − x̂k|k

]
Xk+1|k =

1√
2n

[
X ∗1,k+1|k − x̂k+1|k X ∗2,k+1|k − x̂k+1|k . . . X ∗2n,k+1|k − x̂k+1|k

]
6) Compute the smoother gain:

Gk = U21/U11 (2.53)

7) Compute the smoothed state:

x̂k|N = x̂k|k + Gk(x̂k+1|N − x̂k+1|k) (2.54)

8) Compute the square-root of the smoothed state error covariance:

Sk|N = Tria
(
[U22 GkSk+1|N ]

)
(2.55)

2.4 Continuous-Discrete Cubature Kalman Fil-

ter

The presented derivation of CKF in section 2.3 was originally limited to discrete-
time domain, where the process and measurement equations are both described by
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stochastic difference equations. In order to apply the CKF for continuous-time
dynamical systems, we had to discretize the continuous-time process equation
using the LL method to transform it to stochastic difference equation.

The motivation behind Continuous-Discrete Cubature Kalman Filter (CD-CKF)
is to extend the CKF to deal with state-space models of the continuous-discrete
kind. In CD-CKF formulation, the Itô-Taylor expansion of order 1.5 is used to
transform the process equation in the stochastic differential equation (SDE) form
into a stochastic difference equation. Once more, the behavior of the dynamic
system is observed through noisy measurements acquired at discrete time points
and it is described by a discrete difference equation. The state-space model is
given by:

Process Equation: dx(t) = f(x(t), t)dt+
√

Qdβ(t) (2.56)

Measurement Equation: z
k

= h(x
k
, k) + w

k
(2.57)

Where x(t) ∈ Rn is the state of the dynamic system at time t, z
k
∈ Rd is the

measurement at discrete time instance k, f : Rn×R→ Rn is the drift coefficient,
h : Rn × R → Rd is the measurement function, β(t) ∈ Rn is a standard Wiener
process assumed to be independent of states and measurement noise, Q ∈ Rn×n

is the diffusion coefficient, w
k
∈ Rd is a vector of random Gaussian measurement

noise with zero mean and covariance Rk.

Applying the Itô-Taylor expansion of order 1.5 to the process equation over the
time interval (t, t+ δ) yields [3]:

x
k+1

= f
d
(x

k
, k) +

√
Qw + (Lf(x

k
, k))y (2.58)

Where:

f
d
(x

k
, k) = x

k
+ δf(x

k
, k) +

1

2
δ2L0f(x

k
, k) (2.59)

L0 and L are two differential operators defined as:

L0 =
∂

∂t
+

n∑
i=1

fi
∂

∂xi
+

1

2

n∑
j=1

n∑
p=1

n∑
q=1

√
Qpj

√
Qqj

∂2

∂xp∂xq

Where fi denotes the ith element of function vector f .

And the term Lf denotes a square matrix with its (i, j)th element being Ljfi, (i, j =
1, . . . , n):

Ljfi =
n∑
p=1

√
Qpj

∂fi
∂xp
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(w,y) is a pair of correlated n-dimensional Gaussian random variables, which
can be generated from a pair of independent n-dimensional standard Gaussian
random variables (u1,u2) as follows:

w =
√
δu1

y =
1

2
δ3/2(u1 +

u2√
3

)

Accordingly, the correlated Gaussian random variables (w,y) have the following
three covariance matrices (with In being the identity matrix of size n× n):

E[wwT ] = δIn

E[wyT ] =
1

2
δ2In

E[yyT ] =
1

3
δ3In

This CD-CKF filter includes two steps:

• Time update: compute the predicted density p(xk|z1:k−1) ∼ N (x̂k|k−1, Pk|k−1).
Where:

x̂k|k−1 = E[xk|z1:k−1]

= E[f
d
(xk−1, k − 1)|z1:k−1]

=

∫
f
d
(xk−1, k − 1)p(xk−1|z1:k−1)dxk−1

=

∫
f
d
(xk−1, k − 1)×N (xk−1; x̂k−1|k−1, Pk−1|k−1)dxk−1 (2.60)

Pk|k−1 = E
[
(xk − x̂k|k−1)(xk − x̂k|k−1)T |z1:k−1

]
=

∫
f
d
(xk−1, k − 1)f

d
(xk−1, k − 1)T ×N (xk−1; x̂k−1|k−1, Pk−1|k−1)dxk−1

+
δ3

3

∫
(Lf(x

k
, k))(Lf(x

k
, k))T ×N (xk−1; x̂k−1|k−1, Pk−1|k−1)dxk−1

+
δ2

2

√
Q

(∫
(Lf(x

k
, k))×N (xk−1; x̂k−1|k−1, Pk−1|k−1)dxk−1

)T
+
δ2

2

∫
(Lf(x

k
, k))×N (xk−1; x̂k−1|k−1, Pk−1|k−1)dxk−1

(√
Q
)T

− x̂k|k−1x̂
T
k|k−1 + δQ (2.61)

To compute the predicted state and its error covariance more accurately at
time k given z1:k−1 , the sampling interval dt = tk − tk−1 (tk and tk−1 are
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the discrete-time instances at k and k − 1 respectively) is divided into m
steps of length δ, where δ = dt/m.

Let xjk denotes x at time k + jδ, (1 ≤ j ≤ m), the statistics of xj+1
k are

given by:

x̂j+1
k|k =

∫
f
d
(xjk, k + jδ)×N (xjk; x̂

j
k|k, P

j
k|k)dx

j
k

=
1

2n

2n∑
i=1

X ∗(j+1)
i,k|k (by applying third-degree cubature rule) (2.62)

Where

X ∗(j+1)
i,k|k = f

d

(
x̂jk|k +

√
P j
k|kξi, k + jδ

)
(2.63)

And the corresponding error covariance:

P j+1
k|k ≈

∫
f
d
(xjk, k + jδ)f

d
(xjk, k + jδ)TN (xjk; x̂

j
k|k, P

j
k|k)dx

j
k

+
δ3

3
(Lf(xjk, k + jδ))(Lf(xjk, k + jδ))T

+
δ2

2

√
Q
(
Lf(xjk, k + jδ)

)T
+
δ2

2
Lf(xjk, k + jδ)

(√
Q
)T

− x̂jk|k(x̂
j
k|k)

T + δQ

≈ 1

2n

2n∑
i=1

(
X ∗(j+1)
i,k|k X

∗(j+1)T
i,k|k

)
+
δ3

3
(Lf(xjk, k + jδ))(Lf(xjk, k + jδ))T

+
δ2

2

√
Q
(
Lf(xjk, k + jδ)

)T
+
δ2

2
Lf(xjk, k + jδ)

(√
Q
)T

− x̂j+1
k|k (x̂j+1

k|k )T + δQ (by applying third-degree cubature rule)

(2.64)

• Measurement update (exactly the same as CKF measurement update):
compute the posterior density p(xk|z1:k) ∼ N (x̂k|k, Pk|k). The filter like-
lihood density is assumed to be Gaussian:

p(zk|z1:k) ∼ N (zk; ẑk|k−1, Pzz,k|k−1)
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Where the predicted measurement:

ẑk|k−1 =

∫
h(xk, k)×N (xk; x̂k|k−1, Pk|k−1)dxk

=
1

2n

2n∑
i=1

Zi,k|k−1 (by applying third-degree cubature rule) (2.65)

Where

Zi,k|k−1 = h(x̂k|k−1 +
√
Pk|k−1ξi, k − 1) (2.66)

and the associated covariance:

Pzz,k|k−1 =

∫
h(xk, k)h(xk, k)T ×N (xk; x̂k|k−1, Pk|k−1)dxk

− ẑk|k−1ẑ
T
k|k−1 +Rk

=
1

2n

2n∑
i=1

(
Zi,k|k−1ZTi,k|k−1

)
− ẑk|k−1ẑ

T
k|k−1 +Rk (2.67)

The cross-covariance between the state and the measurement is given by:

Pxz,k|k−1 =

∫
xkh(xk, k)T ×N (xk; x̂k|k−1, Pk|k−1)dxk − x̂k|k−1ẑ

T
k|k−1

=
1

2n

2n∑
i=1

(
Xi,k|k−1ZTi,k|k−1

)
− x̂k|k−1ẑ

T
k|k−1 (2.68)

Where:

Xi,k|k−1 = x̂k|k−1 +
√
Pk|k−1ξi (2.69)

Thus, the conditional Gaussian density of the joint state and the measure-
ment can be written as:

p
([

xTk zTk
]
|z1:k

)
∼ N

([
x̂k|k−1

ẑk|k−1

]
,

[
Pk|k−1 Pxz,k|k−1

P T
xz,k|k−1 Pzz,k|k−1

])
From which the posterior density p(xk|z1:k) ∼ N (x̂k|k, Pk|k) is computed
on the receipt of a new measurement zk through the computation of the
so-called Kalman gain Kk:

x̂k|k = x̂k|k−1 +Kk(zk − ẑk|k−1)

Pk|k = Pk|k−1 −KkPzz,k|k−1K
T
k

Kk = Pxz,k|k−1P
−1
zz,k|k−1
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2.4.1 CD-CKF Algorithm

A. m-steps Time update: The sampling interval dt is divided into m steps of
length δ, where δ = dt/m. For k + jδ, j = 1, . . . ,m

1) Factorize
P j
k|k = Sjk|kS

jT
k|k (2.70)

2) Evaluate the cubature points (i = 1, 2, . . . , 2n)

X j
i,k|k = x̂jk|k + Sjk|kξi (2.71)

Where the cubature-point set ξ is defined as:

ξi =

{ √
nei for i = 1, . . . , n

−
√
nei for i = n+ 1, . . . , 2n

3) Evaluate the propagated cubature points (i = 1, 2, . . . , 2n)

X ∗(j+1)
i,k|k = fd

(
X j
i,k|k, k + jδ

)
(2.72)

4) Estimate the predicted state

x̂j+1
k|k =

1

2n

2n∑
i=1

X ∗(j+1)
i,k|k (2.73)

5) Estimate the predicted error covariance

P j+1
k|k =

1

2n

2n∑
i=1

(
X ∗(j+1)
i,k|k X

∗(j+1)T
i,k|k

)
+
δ3

3
(Lf(x̂jk, k + jδ))(Lf(x̂jk, k + jδ))T

+
δ2

2

√
Q
(
Lf(x̂jk, k + jδ)

)T
+
δ2

2
Lf(x̂jk, k + jδ)

(√
Q
)T

− x̂j+1
k|k (x̂j+1

k|k )T + δQ (2.74)

6) Increase j by one and repeat the steps (2.70)–(2.74) until j reaches m.

B. Measurement update:

1) Factorize
Pk+1|k = Sk+1|kS

T
k+1|k (2.75)
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2) Evaluate the cubature points (i = 1, 2, . . . , 2n)

Xi,k+1|k = x̂k+1|k + Sk+1|kξi (2.76)

3) Evaluate the propagated cubature points (i = 1, 2, . . . , 2n)

Zi,k+1|k = h(Xi,k+1|k, k + 1) (2.77)

4) Estimate the predicted measurement

ẑk+1|k =
1

2n

2n∑
i=1

Zi,k+1|k (2.78)

5) Estimate the innovation covariance matrix

Pzz,k+1|k =
1

2n

2n∑
i=1

(
Zi,k+1|kZTi,k+1|k

)
− ẑk+1|kẑ

T
k+1|k +Rk+1 (2.79)

6) Estimate the cross-covariance matrix

Pxz,k+1|k =
1

2n

2n∑
i=1

(
Xi,k+1|kZTi,k+1|k

)
− x̂k+1|kẑ

T
k+1|k (2.80)

7) Estimate the Kalman gain

Kk+1 = Pxz,k+1|kP
−1
zz,k+1|k (2.81)

8) Estimate the updated state

x̂k+1|k+1 = x̂k+1|k + Kk+1(zk+1 − ẑk+1|k) (2.82)

9) Estimate the corresponding error covariance

Pk+1|k+1 = Pk+1|k −Kk+1Pzz,k+1|kK
T
k+1 (2.83)

2.4.2 Square-root Continuous-Discrete Cubature Kalman
Filter

The square-root Continuous-Discrete Cubature Kalman Filter essentially propa-
gates square-root factor of Pk|k (Sk|k) avoiding matrix square-rooting operations
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while preserving the symmetry and positive definiteness of the covariance matrix
and improving numerical accuracy. Matrix triangular factorizations or triangular-
izations (e.g., the QR decomposition) is used for covariance updates. The trian-
gularization essentially computes a triangular square-root factor of the covariance
without square-rooting a squared-matrix form of the covariance. The triangular-
ization algorithm ( e.g., the QR decomposition) is denoted as S = Tria(A) where
S is a lower triangular matrix. The matrices A and S are related as follows: Let
R be an upper triangular matrix obtained from the QR decomposition on AT ;
then S = RT [3].

Square-root CD-CKF Algorithm

A. m-steps Time update: The sampling interval dt is divided into m steps of
length δ, where δ = dt/m. For k + jδ, j = 1, . . . ,m

1) Sjk|k is available.

2) Evaluate the cubature points (i = 1, 2, . . . , 2n)

X j
i,k|k = x̂jk|k + Sjk|kξi (2.84)

Where the cubature-point set ξ is defined as:

ξi =

{ √
nei for i = 1, . . . , n

−
√
nei for i = n+ 1, . . . , 2n

3) Evaluate the propagated cubature points (i = 1, 2, . . . , 2n)

X ∗(j+1)
i,k|k = fd

(
X j
i,k|k, k + jδ

)
(2.85)

4) Estimate the predicted state

x̂j+1
k|k =

1

2n

2n∑
i=1

X ∗(j+1)
i,k|k (2.86)

5) Estimate the square-root factor of the predicted error covariance

Sj+1
k|k = Tria

([
X ∗(j+1)

k|k

√
δ
(δ

2

√
QLf(x̂jk, k + jδ)√

δ3

12
Lf(x̂jk, k + jδ)

)])
(2.87)

Where the weighted centered matrix:

X ∗(j+1)
k|k =

1√
2n

[
X ∗(j+1)

1,k|k − x̂
j+1
k|k X ∗(j+1)

2,k|k − x̂
j+1
k|k . . . X ∗(j+1)

2n,k|k − x̂
j+1
k|k
]
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B. Measurement update:

1) Evaluate the cubature points (i = 1, 2, . . . , 2n)

Xi,k+1|k = x̂k+1|k + Sk+1|kξi (2.88)

2) Evaluate the propagated cubature points (i = 1, 2, . . . , 2n)

Zi,k+1|k = h(Xi,k+1|k) (2.89)

3) Estimate the predicted measurement

ẑk+1|k =
1

2n

2n∑
i=1

Zi,k+1|k (2.90)

4) Compute the matrices T11,T21,T22 using the triangularization algo-
rithm: (

T11 0
T21 T22

)
= Tria

(
Zk+1|k SR,k+1

Xk+1|k 0

)
Where:

Xk+1|k =
1√
2n

[
X1,k+1|k − x̂k+1|k . . . X2n,k+1|k − x̂k+1|k

]
Zk+1|k =

1√
2n

[
Z1,k+1|k − ẑk+1|k . . . Z2n,k+1|k − ẑk+1|k

]
5) Estimate the Kalman gain

Kk+1 =
T21

T11

(2.91)

6) Estimate the updated state

x̂k+1|k+1 = x̂k+1|k + Kk+1(zk+1 − ẑk+1|k) (2.92)

7) The square-root factor of the corresponding error covariance is given
by:

Sk+1|k+1 = T22 (2.93)
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2.5 Adaptive Design Optimization

Collecting informative measurements is essential in order to ensure proper model
inference and/or unknown parameter estimation. Such measurements can also be
critical when experiments are costly, time-consuming, or offer a limited quantity
of observables.

Optimal design or optimal experiment design refers to a statistical technique that
finds the best experiment that produces the most informative measurements and
experimental outcome about the underlying model and/or its unknown parame-
ters.

Given the mathematical description of a model and the design space which con-
sists of all possible values of design variables that are controlled by the experi-
menter, each potential design is treated as a gamble whose payoff is determined
by the outcome of an experiment conducted with that design [62]. The payoff
represents some measure of the goodness or the utility of the design [62]. The idea
is to estimate the utilities of hypothetical experiments carried out with each de-
sign so that an “expected utility” of each design can be computed. The expected
utility of a given design is computed as the average payoffs across all possible
outcomes that could be observed in an experiment carried out with the chosen
design [62]. Finally, the optimal design is identified as the design with highest
expected utility.

Adaptive design optimization (ADO) is an integrative approach to experimen-
tation that leverages the complementary strengths of design optimization and
data modeling [62]. The result is an efficient and informative method of scientific
inference [62].

ADO is formulated as a Bayesian sequential optimization algorithm that is exe-
cuted over the course of an experiment, where the optimal experimental design is
updated at intervals (referred as “stages”) during the experiment. The algorithm
is essentially a Bayesian decision problem where, at each stage, the most informa-
tive design is chosen based on the observations of the previous experiments [55].
Specifically, on each stage, given the current knowledge (prior) about statistical
model of data, the optimal design with the highest expected utility is identified.
Then an experiment is conducted with the optimal design, and measured out-
comes are observed and recorded. The observations are used to update the priors
of current stage to the posteriors using Bayes theorem. The updated posteriors
of current stage will serve as priors for the next stage of the experiment. This
iterative process continues until a suitable stopping criterion is met.

The criterion that identifies a design as informative often depends on the objec-
tives of the experimenter. The experiment that yields the most precise parameter
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estimates may not be the most effective at discriminating among competing mod-
els [55].

Solving for the optimal design at each stage is in general a nontrivial optimiza-
tion problem since the computation entails simultaneous optimization and high-
dimensional integration, which can be analytically intractable for the complex,
nonlinear models as often used in many real-world problems [55].

At each stage, the objective of ADO is to find the best design d∗ by solving the
following optimization problem:

d∗ = argmax
d∈D

U(d) (2.94)

Where D is the design space and U(d) is a real-valued function called the global
utility function that is a metric of goodness or utility of design d.

2.5.1 ADO for parameter estimation

Suppose that we have a model that mathematically describes our system, but
it has some unknown parameters θ that we need to estimate. An experimental
design d specifies the choice of the external input to our system. The task is to
find the best design (or input) that will give the most informative observations
about the unknown parameters.

The global utility function is defined as:

U(d) =

∫∫
u(d, θ, y)p(y|θ, d)p(θ)dydθ (2.95)

Where θ is the unknown parameter vector of the model, y is the outcome vector
resulting from a hypothetical imaginary experiment conducted with design d, and
u(d, θ, y) is referred to as the local utility function of design d. It measures the
utility of a hypothetical experiment carried out with design d when the parameters
of the model take the value θ, and the outcome y is observed.

Thus, U(d) represents the expected value of the local utility function u(d, θ, y)
averaged over the full parameter space, and all possible observations, taken with
respect to parameter prior p(θ) and the probability distribution p(y|θ, d), respec-
tively [62].

To evaluate the global utility U(d), one must provide explicit specifications for
three functions: the parameter prior p(θ); the probability distribution given pa-
rameter θ and design d, p(y|θ, d); and the local utility function u(d, θ, y) [62].
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2.5.2 ADO for model discrimination

In the case when we do not have an exact model description of our system. Thus
we propose a set of models and the task consists of finding the best design (or
input) that will give the most informative observations about the most plausible
model from a pool of M potential model candidates.

The global utility function is defined as:

U(d) =
M∑
m=1

p(m)

∫∫
u(d, θm, ym)p(ym|θm, d)p(θm)dymdθm (2.96)

Where m = {1, 2, . . . ,M} is one of a set of M models being considered, d is a
design, ym is the outcome of a hypothetical imaginary experiment with design d
under model m, and θm is a parameterization of model m.

Thus, U(d) represents the expected value of the local utility function u(d, θm, ym)
averaged over all models, the full parameter space, and all possible hypothetical
observations, taken with respect to the model prior p(m), parameter prior p(θm)
and the probability distribution p(ymθm, d), respectively [62].

Again, we must provide explicit specifications for the model and parameter priors
p(m) and p(θm); the probability distribution given parameter θm and design d,
p(ymθm, d); and the local utility function u(d, θm, ym) [62].

2.5.3 Bayesian Updating of the Optimal Design

The above formulations of ADO for both parameter estimation and model dis-
crimination are presented for finding the optimal design for a single stage. To
extend this framework for sequential ADO, let us introduce the subscript symbol
s = {1, 2, 3, . . .} to denote an ADO stage. Suppose that at stage s the optimal
design d∗s was obtained by maximizing U(d) on the basis of:

• A set of parameter prior, ps(θ) for the case of parameter estimation.

• A set of model and parameter priors, ps(m) and ps(θm) withm = {1, 2, . . . ,M},
respectively, for the case of model discrimination.

Suppose that an experiment was subsequently carried out with design d∗s, and
an outcome vector zs was observed. The observed data are used to update the
priors to the posteriors by Bayes rule:

• For parameter estimation:

ps+1(θ) =
p(zs|θ, d∗s)ps(θ)∫
p(zs|θ, d∗s)ps(θ)dθ
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Figure 2.6: Schematic illustration of the steps involved in ADO.

• For model discrimination:

ps+1(θm) =
p(zs|θm, d∗s)ps(θm)∫
p(zs|θm, d∗s)ps(θm)dθm

ps+1(m) =
p0(m)∑M

i=1 p0(i)BFi,m(zs|d∗s)

Where m = {1, 2, . . . ,M}, and BFi,m(zs|d∗s) denotes the Bayes factor de-
fined as the ratio of the marginal likelihood of model i to that of model
m,

BFi,m(zs|d∗s) =

∫
p(zs|θi, d∗s)ps(θi)dθi∫
p(zs|θm, d∗s)ps(θm)dθm

Fig. 2.6 shows a diagram of basic elements and processes of the ADO algorithm.

2.5.4 Local utility function

The choice of the local utility function depends on whether we want to design an
experiment for parameter estimation or for model selection. In designing optimal
experiments for parameter estimation, different proposed local utility functions
are based some metrics of the Fisher information matrix (FIM) which is defined
as the expectation of the second derivative of the log-likelihood of the system
output function with respect to the change in the parameters:

• A-optimality: seeks to minimize the trace of the inverse of the information
matrix.

u(d, θ, y) = −trace(FIM−1)
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• D-optimality: seeks to maximize the determinant of the Fisher information
matrix.

u(d, θ, y) = det(FIM )

• E-optimality: maximizes the minimum eigenvalue of the Fisher information
matrix.

u(d, θ, y) = λmin(FIM )

• T-optimality: This criterion maximizes the trace of the information matrix.

u(d, θ, y) = trace(FIM )

In designing optimal experiments for model discrimination, one can formulate
local utility function motivated from information theory. The local utility of a
design for a given model and experiment outcome is the log ratio of the posterior
probability to the prior probability of that model [55]:

u(d, θm, ym) =
p(m|y, d)

p(m)
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Chapter 3

Simulation Models

In this chapter, we will introduce the mathematical description of various sim-
ulation non-linear models used to demonstrate the performance of the proposed
techniques and algorithms aimed to improve the performance of Kalman filter
techniques in model fitting (hidden states and parameters estimation) and model
selection in the context of neural state estimation from EEG and fMRI (functional
magnetic resonance imaging) recordings as specific examples of physiological dy-
namical system modeling. The presented models herein are examples of EEG
generation models based on non-linear stochastic neuronal models of electric po-
tential generation, and fMRI models based on non-linear stochastic models of
BOLD (Blood-oxygen-level dependent) signals. Moreover, we will demonstrate
the proposed algorithms performance in several simulated scenarios that are de-
rived from benchmark nonlinear problems.

We will present the simulation dynamical models and derive their state-space
representations. State-space formulations of dynamical systems provide a partic-
ularly flexible framework for predictive models since they allow for describing the
system response to both controlled and random inputs in terms of a measurement
function h of the output zt (the static observation equation (3.2)) and a dynamic
evolution function f on the internal system states xt (the process equation (3.1))
as determined by a set of model parameters θ

ẋt = fθ (xt, It) + wt (3.1)

zt = hθ (xt, It) + et (3.2)

Moreover, it is noted that this approach allows for a distinct, more natural treat-
ment of the uncertainty in the dynamics (the process noise wt) and the recording
imperfections and noise (the measurement noise et).

A discretized form of the state-space equations can be used to provide future
predictions of the states xk using the knowledge on its current value (Marko-
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vian property), thereby simplifying computations in a Bayesian Framework. The
celebrated Kalman filtering approach is an efficient recursive Bayesian estimator
that has long been applied to state prediction and (joint) parameter identification
problems under Gaussian-distributed noise in linear systems. Kalman filtering
extensions, such as the Unscented Kalman Filter and more recently the Cubature
Kalman Filter, allow for efficient state estimation under nonlinearities in both the
process and observation equations, thus significantly increasing the utility of the
Kalman framework in modeling of biophysical phenomena.

We will describe the benchmark nonlinear models, namely the Van der Pol oscil-
lators and Double well. We then introduce simplified models of continuous neural
activity (NA) dynamics and associated electric potentials (EP) recordings based
on simplified anatomical and physiological properties of the sensory neocortex.
Two types of neuronal models will be presented (a) conductance-based neuronal
models: a simplified Morris–Lecar model to a describe the neuronal dynamics of
different layers of a cortical column, and (b) Jansen neuronal model which is a
model for cortical column aimed to emulate the EEG activity of a cortical area.
Finally, we will present the hemodynamic model for BOLD signal generation
which relates input neural activity (NA) to measured BOLD signals.

3.1 Van der Pol Oscillator

The Van der Pol is a non-conservative oscillator with non-linear damping. It is
mathematically represented by the following second-order differential equation:

ẍ− µ(1− x2)ẋ+ x = 0 (3.3)

where x is the oscillator position and µ is a constant indicating the strength of
damping. The second-order differential equation can be transformed to first order
system using the transformation x2 = ẋ1:{

ẋ1 = x2

ẋ2 = µ(1− x2
1)x2 − x1

(3.4)

where x1 is the oscillator position and the state vector x = [x1 x2]
T
. For estima-

tion purposes we consider the following two cases.

• Single forced oscillator: A Van der Pol oscillator can be driven by an ex-
ternal input here assumed periodic of the form I(t) = A sin(wt), as follows{

ẋ1 = x2

ẋ2 = µ(1− x2
1)x2 − x1 − I(t)

(3.5)
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• Heterogeneous network of oscillators: We consider a set of N non-identical
oscillators connected in a ring configuration (each oscillator coupled to its
two nearest neighbors) is considered [63, 64]. Each oscillator i is represented
by the following second-order differential equation:

ẍ(i) − µ(i)
(
1− (x(i))2

)
ẋ(i) + x(i) = K

(
x(i−1) − 2x(i) + x(i+1)

)
i = 1, . . . , N

(3.6)

where K is the coupling parameter, and it is assumed that only the first
oscillator (i = 1) is driven by an external input I(t).

ẋ
(1)
1 = x

(1)
2

ẋ
(1)
2 = µ(1)

(
1− (x

(1)
1 )2

)
x

(1)
2 − x

(1)
1 − I(t) +K

(
x(N) − 2x(1) + x(2)

)
ẋ

(i)
1 = x

(i)
2

ẋ
(i)
2 = µ(i)

(
1− (x

(i)
1 )2

)
x

(i)
2 − x

(i)
1 +K

(
x(i−1) − 2x(i) + x(i+1)

)
i = 2, . . . , N

(3.7)

Both the single and coupled oscillators systems are assumed to be subjected to
random process noise and observation noise. Specifically, their dynamics are
governed by a set of stochastic differential equations, and can be formulated in
state-space form:

Process Equation: ẋ(t) = f(x(t), I(t)) + Γ (3.8)

Measurement Equation: z
k

= h(x
k
) + w

k
(3.9)

where x(t) ∈ Rn, (n = 2 for the single oscillator system, n = 2N for the coupled
oscillators system) is the state vector at time t, I(t) is the external periodic input,
z
k
∈ Rd (d = 1 for the single oscillator system, d < N for the coupled oscillators

system) is the measurement at discrete time t
k
, f : Rn × R → Rn is the drift

coefficient, h : Rn × R→ Rd is the measurement function, Γ ∈ Rn and w
k
∈ Rd

are vectors of random Gaussian noise with zero mean and covariance Q and R
respectively.

The observations collected from this system are the oscillators positions. For the
single forced oscillator case, noisy observations of the oscillator position x1 are
collected. Whereas for the heterogeneous network of oscillators only a subset of
oscillators positions x

(j)
1 , j ∈ d < N serves as observations. Fig. 3.1 shows the

behavior of a single noisy Van der Pol oscillator variables for the presented input
with damping constant µ = 2. The model was simulated for 50sec with sampling
rate dt = 0.1sec.

38



Figure 3.1: Single noisy Van der Pol oscillator variables for a given input (top
plot).

3.2 Double Well

Another system to be considered is the double-well potential model that repre-
sents a dissipative system with bimodal variability [30]. The model has a single
state and is driven by a periodic input:

ẋ =
ax

1 + x2
− x

16
+
I(t)

4
= f(x, I) (3.10)

where I(t) = A sin(wt) is the input and a is a constant parameter.

When subjected to noise, the above dynamics are transformed to stochastic dif-
ferential equation governing the system evolution. By further assuming that only
a set of noisy discrete observations are available, a hybrid state-space represen-
tation of this system ensues, as follows:

Process Equation: ẋ(t) = f(x(t), I) + Γ (3.11)

Measurement Equation: z
k

= h(x
k
) + w

k
(3.12)

where Γ ∈ R and w
k
∈ R are random Gaussian noise with zero mean and variance

Q and R respectively. In the measurement equation, z
k
∈ R is the measurement

at discrete time t
k

and h : R× R → R, h(x
k
) =

x2k
4

is the measurement function
having a quadratic form which makes this system a challenging inversion problem.
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Figure 3.2: Double well behavior for the presented input (top plot).

Fig. 3.2 shows the behavior of a noisy double well system for the presented input
with constant parameter a = 2. The model was simulated for 50sec with sampling
rate dt = 0.1sec.

3.3 Conductance-Based Neuronal Model

3.3.1 Simple Area Neuronal Model

We will adopt a simplified neuronal network based on Morris–Lecar model. The
network consists of a single neuronal population driven by an external excitatory
input. The neuronal population has a self-inhibition connection in order to bal-
ance the total excitation from the external input (Fig. 3.4). The dynamics of the
neuronal membrane potential are given by the following stochastic differential
equation [65]:

CV̇ = g
L
(V

L
− V ) + g

I
(V

I
− V ) + I + Γ

V
(3.13)

Where C is the membrane capacitance, V is the membrane potential, I is the ex-
ternal excitatory input current, Γ

V
is Gaussian noise, g

I
represents the inhibitory

conductance, V
L
, and V

I
are the reversal potentials, and V

R
is the threshold

potential.
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Figure 3.3: Sigmoid activation function for different values of α, as α increases
the function becomes highly nonlinear.

The inhibitory conductance can also be described by stochastic differential equa-
tion whose dynamics depend on the pre-synaptic input ς and a characteristic rate
constant κ [66]:

ġ
I

= κ(ς − g
I

+ g̃
I
) + Γ

I
(3.14)

ς
I

= γσ(V − V
R

) (3.15)

Where the pre-synaptic input to the neuronal population, denoted by ς, is the
firing rate in that population times a coupling parameter γ, g̃

I
is the mean (static)

inhibitory conductances, Γ
I

is Gaussian noise, and σ(.) is a sigmoid activation
function that transforms the post-synaptic potential to firing rate and is given
by [67]:

σ(V − V
R

) =
1

1 + e−α(V−V
R

)
(3.16)

Where V
R

is a threshold potential, and α is a constant that determines the slope
(voltage sensitivity) of the activation function (Fig. 3.3).

The stochastic differential equations describing the simple neuronal area can be
formulated in state-space model of the form:

Process Equation: ẋ(t) = f(x(t), I) + Γ (3.17)

Measurement Equation: z
k

= h(x
k
) + w

k
(3.18)

Where x(t) ∈ Rn is the state vector of the dynamic system at time t, I is the
exogenous input, z

k
∈ Rd is the measurement at discrete time t

k
, f : Rn×R→ Rn

is the drift coefficient, h : Rn×R→ Rd is the measurement function, Γ ∈ Rn and
w
k
∈ Rd are vectors of random Gaussian noise with zero mean and covariance Q

and R respectively.
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Figure 3.4: Simple neuronal model: a single self-inhibitory neuronal population
driven by excitatory external input.

The state vector x comprises the membrane potential and the inhibitory con-
ductance, and f(.) is a vector that comprises the equations of motion of each
state:

x = [ V g
I

]
T

f(x(t), I) =

[
1
C

[
g
L
(V

L
− V ) + g

I
(V

I
− V ) + I

]
κ[γσ(V − V

R
)− g

I
+ g̃

I
]

]

The measurement equation function h(x
k
) depends on the membrane potentials

V :
h(x

k
) = V

3.3.2 Multi-Area Neuronal Model

Single Area Model Description

As a basic building block of single area, we employ a simplified Morris–Lecar
model to a describe the neuronal dynamics of different layers of a cortical column.
A cortical column is a vertical structure and hypothesized to represent a basic
functional unit of sensory processing, which contains densely connected neurons
that are stacked throughout the cortical depth into anatomically distinct layers
and that share similar response properties [57]. Herein, a cortical column is
summarized to consist of of three primary layers (Fig. 3.5) namely:

• Granular layer that containing excitatory spiny stellate cells.

• Supra-granular layer containing inhibitory interneurons.
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Figure 3.5: Cortical column architecture segregated into three layers. Intrinsic
connections between layers are illustrated with arrows: red arrows are inhibitory,
and blue arrows are excitatory.

• Infra-granular layer consisting of excitatory pyramidal cells.

The dynamics of the membrane potential are formulated as a parallel RC circuit
where capacitive synaptic current flow balances the sum of all currents across the
membrane [65]. The governing dynamics are given by the following stochastic
differential equations:

CV̇ = g
L
(V

L
− V ) + g

E
(V

E
− V ) + g

I
(V

I
− V ) + I + Γ

V
(3.19)

where C is the membrane capacitance, V is the membrane potential, I is the
input current, Γ

X
is Gaussian noise, and the currents across the membrane are

as follows (see Table 3.1):

• g
E

(V
E
− V ): is the excitatory sodium (Na+) current with conductance g

E

and reversal potential V
E

.

• g
I
(V

I
− V ): is the inhibitory chloride (Cl−) current with conductance g

I

and reversal potential V
I
.

• g
L
(V

L
− V ): is the potassium (K+) leak current with conductance g

L
and

reversal potential V
L
.

To simulate in vivo-like fluctuations in the background activity, the conductances
are customarily described by stochastic differential equations whose dynamics
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depend on the pre-synaptic input ςl and a characteristic rate constant κl (l =
E, I):

ġ
l

= κ
l
(ς
l
− g

l
+ g̃

l
) + Γ

l
(3.20)

where g̃
l

(l = E, I) are the mean (static) excitatory and inhibitory conductances,
and Γ

l
is Gaussian noise.

In turn the synaptic coupling of a given neuron is dictated by the pre-synaptic
input ς(i)

l
, as the product of the firing rate in another neuron j and a coupling

parameter γ(j,i) [66]:

ς(i)
l

= γj,i
l
σ(V (j) − V

R
), l = E, I (3.21)

where σ(.) is a sigmoid activation function that transforms the post-synaptic
potential of neuron j to firing rate, and is given by [67]:

σ(V (j) − V
R

) =
1

1 + e(−α(V (j)−V
R

)
(3.22)

where V
R

a a threshold potential, and α is a constant that determines the slope
(voltage sensitivity) of the activation function.

The above model described above is adopted here to describe the stochastic
dynamics of interacting populations in a cortical column. Thus, for each layer
i = 1, 2, 3 representing Granular, Supra-granular, and Infra-granular respectively:

CV̇ (i) = g
L
(V

L
− V (i)) + g(i)

E
(V

E
− V (i)) + g(i)

I
(V

I
− V (i)) + I + Γ(i)

V
(3.23)

ġ(i)
E

= κ
E

(ς(i)
E
− g(i)

E
+ g̃

E
) + Γ(i)

E
(3.24)

ġ(i)
I

= κ
I
(ς(i)
I
− g(i)

I
+ g̃

I
) + Γ(i)

I
(3.25)

ς(i)
l

= γ(j,i)
l

σ(V (j) − V
R

), l = E, I (3.26)

where the input I is assumed to excite only the granular (input) layer.

These stochastic differential equations can be formulated in state-space model of
the form:

ẋ(t) = f(x(t), I) + Γ (3.27)

Where the state vector x comprises the membrane potentials, the excitatory and
inhibitory conductances, and f(.) is a vector that comprises the equations of
motion of each state:

x = [ V (1) g(1)
I

g(1)
E

V (2) g(2)
I

g(2)
E

V (3) g(3)
I

g(3)
E

]
T
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f(x(t), I) =



1
C

[g
L
(V

L
− V (1)) + g(1)

E
(V

E
− V (1)) + g(1)

I
(V

I
− V (1)) + I]

κ
I
(γ(2,1)

I
σ(V (2) − V

R
)− g(1)

I
+ g̃

I
)

κ
E

(γ(3,1)
E

σ(V (3) − V
R

)− g(1)
E

+ g̃
E

)

1
C

[g
L
(V

L
− V (2)) + g(2)

E
(V

E
− V (2)) + g(2)

I
(V

I
− V (2))]

κ
I
(γ(2,2)

I
σ(V (2) − V

R
)− g(2)

I
+ g̃

I
)

κ
E

(γ(3,2)
E

σ(V (3) − V
R

)− g(2)
E

+ g̃
E

)

1
C

[g
L
(V

L
− V (3)) + g(3)

E
(V

E
− V (3)) + g(3)

I
(V

I
− V (3))]

κ
I
(γ(2,3)

I
σ(V (2) − V

R
)− g(3)

I
+ g̃

I
)

κ
E

(γ(1,3)
E

σ(V (1) − V
R

)− g(3)
E

+ g̃
E

)


Table 3.1: Conductance-Based neuronal model parame-
ters.

Parameter Interpretation Value Unit

V (i) Membrane potential, i = 1, 2, 3 for granular,
supra-granular, and infra-granular respectively

— mV

V
L

potassium (K+) reversal potential −70 mV

V
E

sodium (Na+) reversal potential 60 mV

V
I

chloride (Cl−) reversal potential −90 mV

V
R

Threshold potential −40 mV

C Membrane capacitance 10 µF

I Input current at the granular layer — µA

g
L

Conductance of potassium leak current 1 mS

g(i)
E

Excitatory sodium current conductance, i =
1, 2, 3 for granular, supra-granular, and infra-
granular respectively

— mS

g̃
E

Mean excitatory sodium current conductance 0.2 mS

g(i)
I

Inhibitory chloride current conductance, i =
1, 2, 3 for granular, supra-granular, and infra-
granular respectively

— mS

g̃
I

Mean inhibitory chloride current conductance 0.5 mS
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κ
E

Sodium diffusion rate constant (opening of
sodium channels)

0.25 s−1

κ
I

Chloride diffusion rate constant (opening of
chloride channels)

0.0625 s−1

α
Constant that controls the voltage sensitivity of
the activation function

0.56 —

γ(2,1)
I

Inhibitory connection strength from supra-
granular to granular layers

0.7 —

γ(2,3)
I

Inhibitory connection strength from supra-
granular to infra-granular layers

2 —

γ(2,2)
I

Inhibitory connection strength within the
supra-granular layer

0.25 —

γ(3,1)
E

Excitatory connection strength from infra-
granular to granular layers

0.5 —

γ(3,2)
E

Excitatory connection strength from infra-
granular to supra-granular layers

1 —

γ(1,3)
E

Excitatory connection strength from granular to
infra-granular layers

1 —

A qualitative description of the model dynamics is as follows: an exogenous input
arrives at the granular layer and excites the spiny stellate cells, and that in turn
sends post-synaptic excitation to pyramidal neurons located in the infra-granular
layer. The activated pyramidal cells send a feedback signal to both granular and
supra-granular layers, where the inhibitory interneurons in supra-granular layer
tend to inhibit both granular and infra-granular cells as well as the interneurons
themselves. Moreover, each layer is affected by the background activity resultant
from their respective noisy excitatory and inhibitory conductances. The activity
of infra-granular layer is considered as the main output in a cortical column [68].
Thus, this layer will serve as an output layer in which its activity is observed and
serve as measurement in the Kalman setup.

To illustrate the basic network dynamics, we examined the neuronal responses
of different layers (shown in Fig. 3.6) with the application of afferent input (The
exogenous input consisted of random DC currents applied for time windows of
length 200 ms) by integrating the equations aforementioned for one second.
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Figure 3.6: Cortical model activity for all states at different layers for the exoge-
nous input shown in the top left panel.

Multi-Area Model

To extend the single area model to represent multiple interacting areas, salient
long range inter-areal connections and an extended state-space representation
will be described. We assume that the long-range connections between two areas
are made by the excitatory connection from the infra-granular pyramidal cells in
a given area to those residing in another area. We proposed a network consisted
of four areas having a ring configuration, in which each area is receiving an
excitatory input at its infra-granular level from the infra-granular activity of
its adjacent area (Fig. 3.7). The long-range connections are summarized by an

47



IIN SSC 

IIN 

SSC 

IIN 

�
�

�,�
 

�
�

�,�
 

SSC 

IIN 

PC 

SSC 

IIN 

PC 

SSC 

PC 

SSC 

 

�
�

�,�

�
�

�,�
 

�
�

�,�

�
�

�,�
 

PC 
PC 

Figure 3.7: Network of four areas in a ring configuration. PC: pyramidal cells,
SSC: spiny stellate cells, IIN: inhibitory interneurons.

excitatory coupling parameter γ(i,j)
L

from area i to area j. Thus, in addition to
local columnar inputs, the infra-granular layer in area i receives an additional
pre-synaptic input, through the excitatory conductances, originating from the
adjacent area j:

(ġ(3)
E

)(i) = κ
E

(ς(i,j)
L

+ (ς(1)
E

)(i) − (g(3)
E

)(i) + g̃
E

) + Γ(3)
E

(3.28)

Where (ς(1)
E

)(i) is the pre-synaptic input from the respective granular layer, ς(i,j)
L

is the pre-synaptic input from infra-granular layer in area j:

ς(i,j)
L

= γ(i,j)
L

σ[(V (3))(j) − V
R

] (3.29)

Where (V (3))(j) is the membrane potential of infra-granular cells in area j.

As before, the stochastic differential equations describing the neuronal multi area
model can be formulated in state-space as follows:

Process Equation: ẋ(t) = f(x(t), I) + Γ (3.30)

Measurement Equation: z
k

= h(x
k
) + w

k
(3.31)

Where x(t) ∈ Rn is the state vector of the dynamic system at time t, I is the
exogenous input, z

k
∈ Rd is the measurement at discrete time t

k
, f : Rn×R→ Rn

is the drift coefficient, h : Rn×R→ Rd is the measurement function, Γ ∈ Rn and
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w
k
∈ Rd are vectors of random Gaussian noise with zero mean and covariance

Q and R respectively. The state vector x comprises the membrane potentials,
the excitatory and inhibitory conductances for all four areas, and f(.) is a vector
that comprises the equations of motion of each state:

x = [ x(1) x(2) x(3) x(4) ]
T

x(i) =
[
(V (1))(i) (g(1)

I
)(i) (g(1)

E
)(i) (V (2))(i) (g(2)

I
)(i) (g(2)

E
)(i) (V (3))(i) . . .

(g(3)
I

)(i) (g(3)
E

)(i)
]T

Where the superscript i correspond to area i = 1, 2, 3, 4.

f(x(t), I) =
[
f (1)(x(t), I) f (2)(x(t), I) f (3)(x(t), I) f (4)(x(t), I)

]
f (i)(x(t), I) =

1
C

{
g
L
[V

L
− (V (1))(i)] + (g(1)

E
)(i)[V

E
− (V (1))(i)] + (g(1)

I
)(i)[V

I
− (V (1))(i)] + I

}
κ
I
{γ(2,1)

I
σ[(V (2))(i) − V

R
]− (g(1)

I
)(i) + g̃

I
}

κ
E
{γ(3,1)

E
σ[(V (3))(i) − V

R
]− (g(1)

E
)(i) + g̃

E
}

1
C

{
g
L
[V

L
− (V (2))(i)] + (g(2)

E
)(i)[V

E
− (V (2))(i)] + (g(2)

I
)(i)[V

I
− (V (2))(i)]

}
κ
I
{γ(2,2)

I
σ[(V (2))(i) − V

R
]− (g(2)

I
)(i) + g̃

I
}

κ
E
{γ(3,2)

E
σ[(V (3))(i) − V

R
]− (g(2)

E
)(i) + g̃

E
}

1
C

{
g
L
[V

L
− (V (3))(i)] + (g(3)

E
)(i)[V

E
− (V (3))(i)] + (g(3)

I
)(i)[V

I
− (V (3))(i)]

}
κ
I
{γ(2,3)

I
σ[(V (2))(i) − V

R
]− (g(3)

I
)(i) + g̃

I
}

κ
E
{γ(i,j)

L
σ[(V (3))(j) − V

R
] + γ(1,3)

E
σ[(V (1))(i) − V

R
]− (g(3)

E
)(i) + g̃

E
}



Where f (i)(x(t), I) is the vector of equations of motion for each area i = 1, 2, 3, 4,
and γ(i,j)

L
σ[(V (3))(j)−V

R
] is the pre-synaptic input from area j = 4, 1, 2, 3 to area

i = 1, 2, 3, 4.

The measurement equation function h(x
k
)depends on the infra-granular layer

membrane potentials (V (3))(i), where i = 1, . . . , 4 denotes neuronal areas.The
output of this network is considered to be the mean value of all infra-granular
membrane potentials of all areas. This output is regarded as a simplified approx-
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imation of local field potential (LFP) measurement [69]:

h(x
k
) =

1

n

np∑
i=1

(V (3))(i) (3.32)

Where np = 4 represents the total number of areas in the network.

To illustrate the network dynamics, we examined the responses of different layers
in all four neuronal areas (shown in Fig. 3.8) and observed the resultant LFP of
this network with the application of afferent input (The exogenous input consisted
of random DC currents applied for time windows of length 200 ms) by integrating
the equations aforementioned for one second.

3.4 Jansen Model

Single Area Model Description

The Jansen model was originally introduced as a model for a cortical column in
order to emulate the EEG activity of a cortical area [70]. This model consists of
three sub-populations corresponding to spiny stellate input cells (granular layer),
deep pyramidal output cells (infra-granular layer) and inhibitory inter-neurons
(supra-granular layer).

The dynamics in each layer are based on two operators: The first is a transfor-
mation of the incoming average density of pre-synaptic input (u(t)) to that layer
into an average post-synaptic membrane potential (v(t)). This operator is mod-
eled as a convolution between the incoming input and a parameterized impulse
response h(t):

v(t) = h
l
(t) ∗ u(t) (3.33)

h
l
(t) = H

l
κ
l
t exp(−tκ

l
) l = E, I (3.34)

Where h
l
, l = E, I represents the excitatory (E) and inhibitory (I) impulse re-

sponses and are parameterized by H
l

and κ
l
. The parameter H

E
and H

I
tune

the maximum amplitude of post-synaptic membrane potential, and κ
E

and κ
I

are lumped representations of the sum of the reciprocal of the time constants
of passive membrane and all other spatially distributed delays in the dendritic
network [70].

Whereas, the second operator is a transformation of the average membrane po-
tential of the population into the average firing rate of action potentials. This
transformation is assumed to be instantaneous and is described by the sigmoid
function:

S(v) =
1

1 + exp(−ρ1(v − ρ2))
− 1

1 + exp(ρ1ρ2)
(3.35)
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Figure 3.8: Multi-area model activity for all states at different layers for the
exogenous input shown in the top left panel. The observed LFP signal (computed
as the mean of infra-granular activity in all areas) is shown in the top right panel

Where ρ1 and ρ2 are parameters that determine the shape (e.g. voltage sensitiv-
ity) and position of the sigmoid function [71].

The convolution function in equation (3.34) can be formulated as a second-order
differential equation of the form:

v̈(t) = H
l
κ
l
u(t)− 2κ

l
v̇(t)− κ2

l
v(t) l = E, I (3.36)
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Which in turn can be decomposed in state-space form:

v̇(t) = i(t) (3.37)

i̇(t) = H
l
κ
l
u(t)− 2κ

l
i(t)− κ2

l
v(t) l = E, I (3.38)

We will consider a cortical column that is composed of three layers:

• Granular layer: consists of excitatory spiny stellate cells.
• Supra-granular layer: consists of inhibitory interneurons.
• Infra-granular layer: consists of excitatory pyramidal cells.

The interactions between these layers in a cortical column depend on coupling
parameters γi which control the strength of intrinsic connections and the total
number of synapses expressed by each subpopulation [72]. The granular layer
receives excitatory input from the infra-granular layer via a coupling parameter
γ1 as well as from exogenous input (I(t)) coming to the cortical column. The
pyramidal cells in infra-granular layer are driven by excitatory spiny stellate cells
in the granular layer mediated by coupling parameter γ2, and inhibitory input
from the inter-neurons in supra-granular layer mediated through coupling pa-
rameter γ4. The inhibitory inter-neurons in supra-granular layer receives inputs
from the excitatory pyramidal cells in the infra-granular layer mediated by the
coupling parameter γ3 as well as from recurrent connections from the inhibitory
population itself, by the inhibitory–inhibitory coupling parameter γ5 (Fig. 3.9).
The model parameters are listed in Table 3.2.The dynamics of these interactions
are governed by the model given in equations (3.38) and (3.38):

1. Supra-granular layer:

v̇4 = i4 (3.39)

i̇4 = H
E
κ
E
γ3S(v6)− 2κ

E
i4 − κ2

E
v4 (3.40)

v̇5 = i5 (3.41)

i̇5 = H
I
κ
I
γ5S(v7)− 2κ

I
i5 − κ2

I
v5 (3.42)

v̇7 = i4 − i5 (3.43)

2. Granular layer:

v̇1 = i1 (3.44)

i̇1 = H
E
κ
E

(γ1S(v6) + I)− 2κ
E
i1 − κ2

E
v1 (3.45)

3. Infra-granular layer:

v̇2 = i2 (3.46)

i̇2 = H
E
κ
E
γ2S(v1)− 2κ

E
i2 − κ2

E
v2 (3.47)

v̇3 = i3 (3.48)

i̇3 = H
I
κ
I
γ4S(v7)− 2κ

I
i3 − κ2

I
v3 (3.49)

v̇6 = i2 − i3 (3.50)
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Figure 3.9: Jansen model for a single area, where S(.) is a sigmoid functions,
γ1, . . . , γ5 are the coupling parameters between layers and I is the exogenous
input.

The model described above will be adopted to describe the stochastic dynamics
of interacting layers in a cortical column. These differential equations can be
formulated in state-space model of the form:

ẋ = f(x, I) + Γ (3.51)

Where Γ is a vector of random Gaussian noise, x is the state vector that comprises
the neuronal states of the cortical column, and f(.) is a vector that comprises the
equations of motion of each state:

x = [ v4 i4 v5 i5 v7 v1 i1 v2 i2 v3 i3 v6 ]
T
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Table 3.2: Jansen model parameters.

Parameter Interpretation Value Unit

H
E

Maximum amplitude of excitatory post-
synaptic potential

3.25 mV

H
I

Maximum amplitude of inhibitory post-
synaptic potential

28 mV

κ
E

= 1/τ
E

Excitatory rate constant 1/10 ms−1

κ
I

= 1/τ
I

Inhibitory rate constant 1/20 ms−1

γ1
Average number of synaptic contacts to gran-
ular layer cells

135 –

γ2 = 0.8γ1
Average number of synaptic contacts to
infra-granular layer excitatory cells

108 –

γ3 = 0.25γ1
Average number of synaptic contacts to
supra-granular layer inhibitory inter-neurons

33.75 –

γ4 = 0.25γ1
Average number of synaptic contacts to
infra-granular layer inhibitory cells

33.75 –

γ5 = 0.01γ1

Average number of synaptic contacts to
supra-granular layer inhibitory–inhibitory
inter-neurons

1.35 –
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f(x, I) =



i4

H
E
κ
E
γ3S(v6)− 2κ

E
i4 − κ2

E
v4

i5

H
I
κ
I
γ5S(v7)− 2κ

I
i5 − κ2

I
v5

i4 − i5

i1

H
E
κ
E

(γ1S(v6) + I)− 2κ
E
i1 − κ2

E
v1

i2

H
E
κ
E
γ2S(v1)− 2κ

E
i2 − κ2

E
v2

i3

H
I
κ
I
γ4S(v7)− 2κ

I
i3 − κ2

I
v3

i2 − i3



Fig. 3.10 shows neuronal responses of different layers with the application of
afferent input (The exogenous input consisted of random DC currents applied for
time windows of length 200 ms) by integrating the equations aforementioned for
one second.

Multi-Area Model

In this section, the single area model is extended to represent multiple interacting
areas. We define the long-range connections between two areas to be made by
an excitatory connection from the infra-granular pyramidal cells in a given area
to cells residing in the granular layer of another area.

We proposed a network consisted of three areas, in which each area is receiving an
excitatory input at its granular level from the infra-granular layer of another area.
The strength of such excitatory activity is defined by a connectivity parameter
γ(i,j)
L

(long-range coupling parameter from area i to area j) (Fig. 3.11).

Thus, for multi-area model, the granular layer in area i receives an additional
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Figure 3.10: Jansen model activity for all membrane potentials, excitatory and
inhibitory potentials at different layers for the exogenous input shown in the top
left panel.

pre-synaptic input originated from area j:

v̇
(i)
1 = i

(i)
1 (3.52)

i̇
(i)
1 = H

E
κ
E

{
(γ1S(v

(i)
6 ) + I +

3∑
j=1

[γ(i,j)
L

S(v
(j)
6 )]

}
− 2κ

E
i
(i)
1 − κ2

E
v

(i)
1 (3.53)

Where v
(j)
6 is the membrane potential of infra-granular cells in area j.

The stochastic differential equations describing the neuronal areas can be formu-
lated in state-space model of the form:

Process Equation: ẋ(t) = f(x(t), I) + Γ (3.54)

Measurement Equation: z
k

= h(x
k
) + w

k
(3.55)
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Figure 3.11: Network of three areas with all possible long-range coupling connec-
tions between them. PC: pyramidal cells, SSC: spiny stellate cells, IIN: inhibitory
interneurons.

Where x(t) ∈ Rn is the state vector of the dynamic system at time t, I is the
exogenous input, z

k
∈ Rd is the measurement at discrete time k, f : Rn×R→ Rn

is the drift coefficient, h : Rn×R→ Rd is the measurement function, Γ ∈ Rn and
w
k
∈ Rd are vectors of random Gaussian noise with zero mean and covariance Q

and R respectively.

The state vector x comprises the membrane potentials, the excitatory and in-
hibitory currents for all three areas, and f(.) is a vector that comprises the
equations of motion of each state:

x = [ x(1) x(2) x(3) ]
T

x(i) = [ v
(i)
4 i

(i)
4 v

(i)
5 i

(i)
5 v

(i)
7 v

(i)
1 i

(i)
1 v

(i)
2 i

(i)
2 v

(i)
3 i

(i)
3 v

(i)
6

]
T
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Where the superscript i correspond to area i = 1, 2, 3.

f(x(t), I) =


f (1)(x(t), I)

f (2)(x(t), I)

f (3)(x(t), I)



f (i)(x(t), I) =



i
(i)
4

H
E
κ
E
γ3S(v

(i)
6 )− 2κ

E
i
(i)
4 − κ2

E
v

(i)
4

i
(i)
5

H
I
κ
I
γ5S(v

(i)
7 )− 2κ

I
i
(i)
5 − κ2

I
v

(i)
5

i
(i)
4 − i

(i)
5

i
(i)
1

H
E
κ
E

[γ1S(v
(i)
6 ) + I +

∑3
j=1[γ(i,j)

L
S(v

(j)
6 )]− 2κ

E
i
(i)
1 − κ2

E
v

(i)
1

i
(i)
2

H
E
κ
E
γ2S(v

(i)
1 )− 2κ

E
i
(i)
2 − κ2

E
v

(i)
2

i
(i)
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Where f (i)(x(t), I) is the vector of equations of motion for each area i = 1, 2, 3.

The measurement equation function h(x
k
) depends on the infra-granular layer

membrane potentials v
(i)
6 , where i = 1, . . . , 3 denotes neuronal areas. The ob-

servations from this network are assumed to be the infra-granular membrane
potentials of all areas:

h(x
k
) =


v

(1)
6

v
(2)
6

v
(3)
6
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3.5 Hemodynamic Model

We introduce the mathematical description of the hemodynamic model that re-
lates input neuronal activity (NA) (u) to measured BOLD signals [34, 73, 74].
The model is based on four physiological state variables: vasodilatory signal (s),
cerebral blood flow (CBF) (f), cerebral blood volume (CBV) (v), and deoxyhe-
moglobin content (dHb) (q). The hemodynamic model is given by:

ṡ = u− κs− γ(f − 1) (3.56)

ḟ = s (3.57)

τ v̇ = f − v
1
α (3.58)

τ q̇ =
E(f, ρ)f

ρ
− q

v
v

1
α (3.59)

The vasodilatory signal (s) is a linear function of NA input (u) (expressed as firing
rate of a given neuronal population) and is subject to auto-regulatory feedback by
CBF (f). The rate of change in CBV (v) is the difference of blood inflow (CBF)
and blood outflow (which is function of CBV) from the venous compartment, and
the rate of change in dHb (q) is the delivered deoxyhemoglobin into the venous
compartment minus that expelled (blood outflow (v1/α) times deoxyhemoglobin
concentration (q/v). Where κ is the rate constant of signal decay, γ is the rate
constant of feedback regulation, u is the input NA, τ is the hemodynamic transit
time (average time needed for the blood to traverse the venous compartment), α is
the stiffness or Grubbs exponent, E(f, ρ) = 1−(1−ρ)1/f is the oxygen extraction
function, and ρ is the resting oxygen extraction fraction. The hemodynamic
model parameters are listed in Table 3.3.

Table 3.3: Hemodynamic model parameters.

Parameter Physiologic Interpretation Value Unit

κ Rate of signal decay 0.65 sec−1

γ Rate of feedback regulation 0.38 sec−1

α Grubbs exponent 0.32 —

τ Hemodynamic transit time 0.98 sec

ρ Resting oxygen extraction fraction 0.34 —

The hemodynamic model can be generalized by incorporating an additive noise
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process, and thus the model can be formulated by the following stochastic differ-
ential equations system:

ẋ = F (x, u) + Γ (3.60)

Where Γ is a Gaussian noise vector, the hemodynamic state vector x and the
model functions F (x, u) are as follow:

x = [ s f v q ]
T

F (x, u) =



u− κs− γ(f − 1)

s

1
τ
[f − v 1

α ]

1
τ
[E(f,ρ)f

ρ
− q

v
v

1
α ]


The observation BOLD signal is a nonlinear function of CBV (v), dHb (q) and
the resting blood volume fraction (V0):

z = V0[k1(1− q) + k2(1− q

v
) + k3(1− v)] (3.61)

k1 = 7ρ, k2 = 2, k3 = 2ρ− 0.2

The stochastic differential equations describing the hemodynamic model can be
formulated in state-space model of the form:

Process Equation: ẋ(t) = F (x(t), u) + Γ (3.62)

Measurement Equation: z
k

= h(x
k
) + w

k
(3.63)

Where x(t) ∈ Rn is the state of the dynamic system at time t, u is the NA input,
z
k
∈ Rd is the measurement at discrete time k, F : Rn × R → Rn is the process

function, h : Rn × R → Rd is the measurement function, Γ ∈ Rn and w
k
∈ Rd

are vectors of random Gaussian noise with zero mean and covariance Q and R
respectively. The state vector x includes the hemodynamic model variables, the
process equation function F (.) is a vector that comprises the equations of motion
of each state, and the measurement equation function h(x

k
) is the observation

BOLD signal.

Fig. 3.12 shows the behavior of hemodynamic variables for the presented neural
activity input (u). The model was simulated for 200 s with sampling rate dt =
0.1sec without adding noise to the system.
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Figure 3.12: Noiseless BOLD signal and the dynamics of the hemodynamic vari-
ables for a given neuronal activity input (top plot).
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Chapter 4

Optimal Input Design for
Kalman-based Estimation of
Nonlinear Dynamical System
Models

In this chapter, we present an adaptive approach for joint input design and para-
metric identification of nonlinear system models. By integrating techniques from
Adaptive Design Optimization (ADO) and square-root Cubature Kalman filter-
ing (SCKF), we aim to introduce an efficient identification algorithm that selects
in single experimental trials those system inputs that cause the output trajectory
to be maximally informative about the nonlinear system model parameters. We
demonstrate the algorithm performance in several simulated scenarios that are
derived from benchmark nonlinear problems (Double well and Van der Pol oscil-
lators) as well as from nonlinear stochastic neuronal models of electric potential
generation.

4.1 Problem Definition and Setup

We consider the identification of dynamic models of biological processes for which
repeated experimental manipulations are time consuming, costly, or impractical
due to the nonstationarity of in vivo operating conditions. The temporal dy-
namics of a large class of such processes can be described by nonlinear stochas-
tic nonhomogeneous differential equations, and are therefore amenable to state
space reformulations that separate the dynamical character of the system from
the measurement or observation method utilized (equations (3.1) and (3.2)). For
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a prescribed state-space model structure, and for a given set of discrete observa-
tions (e.g. equations (4.1) and (4.2)), it is desired to conduct single experimental
runs and to employ estimation techniques that allow (a) the recovery of accu-
rate estimates of the hidden state variables (often directly related to one or more
internal physiological quantities), and (b) the identification of unknown (but de-
terministic) parameters of the model structure.

At the estimation level, we seek the employment of a Bayesian estimator that
minimizes the covariance of the prediction error for hidden states based on dis-
crete and noisy observations. We assume that both the process and measurement
equations are affected by noise processes that are Markovian in nature and Gaus-
sian distributed. This allows the use of of a Kalman filter for state predictions.
At the model identification level, parameters are searched for as the mean of ad-
ditional states that follow a random walk process. Again, a Kalman filter setup
allows finding the augmented state vector (hidden states and parameters) that
minimize the one step prediction error.

Finally, at the experimental level, we assume that the system’s exogenous or
driving input(s) can be manipulated over an operational range. It is therefore
desired to provide a time sequence of inputs over a single experimental trial that
maximize the accuracy of the obtained estimates. In a simulated set of exper-
iments, we seek to employ adaptive design optimization (ADO) techniques to
provide, based on current Kalman estimates of the system model, designed in-
puts that, when applied over future time windows, produce the most informative
measurements about the hidden states and the unknown parameters.

4.1.1 State estimation using Cubature Kalman filters

Given the state-space formulation of a dynamical system:

Process Equation: ẋ(t) = f(x(t), I) + Γ (4.1)

Measurement Equation: z
k

= h(x
k
) + w

k
(4.2)

The stochastic differential equation (SDE) represented in the process equation
(4.1) is in continuous time, we can discretize the SDE using Local Linearization
(LL) method as described in section (2.3); this will transform the state-space
model to a pair of difference equations in order to apply the CKF.

The discrete state-space model becomes:

Process Equation: x
k

= f
d
(x

k−1
, I) + v

k−1
(4.3)

Measurement Equation: z
k

= h(x
k
) + w

k
(4.4)
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Where v
k−1
∈ Rn is a vector of random Gaussian noise with zero mean and

covariance Vk−1, w
k
∈ Rd is a vector of random Gaussian noise with zero mean

and covariance Rk, and z
k

is the discrete noisy observation at discrete time k.

Since the Kalman filtering approach estimates the hidden state vector, we will
augment the hidden state vector to include the presumed dynamics of the un-
known parameter vector θ (“augmented” states). The augmented state vector is
composed of (a) model hidden states, (b) unknown parameter vector:

xaug
k

= [ x
k

θ ]
T

The augmented discrete nonlinear process equation f aug
d

(x
k−1
, I) is the discrete

version of f aug(x(t), I)

f aug(x(t), I) =

 f(x(t), I)

fθ(x(t))


Where fθ(x(t)) describes the dynamics of the unknown parameters which are
assumed to follow a random walk, thus, fθ(x) is just vector of zeros.

θ̇ = Γθ (4.5)

Input specification using Adaptive Design Optimization

We will adopt a method commonly used to find the optimal exogenous input
I∗ that produces the most informative observations about the unknowns of a
given model [39, 40]. Under the hypothesis that the measurements have additive
zero-mean Gaussian noise with a diagonal covariance matrix, the practical iden-
tifiability of model unknown parameters has been noted to improve through the
maximization of the Fisher information matrix (FIM) [40].

In formulating the optimization problem, it is necessary to define a scalar cost
function which depends on the FIM. Among several candidates, we herein adopt
the T-Optimality criterion under which I∗ is computed by solving the following
problem:

argmax
I

trace(FIM )

subject to Imin ≤ I ≤ Imax
(4.6)

Given the state-space model in equations (4.3) and (4.4), the elements of the
Fisher information matrix are combinations of partial derivatives of the system
response variables with respect to the model parameters. The FIM elements and
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sensitivities are obtained by solving the so-called sensitivity equations [75]. The
FIM is determined by the following equation:

FIM =
N∑
k=1

nz∑
l=1

(∂z
l,k

∂θ

)T
R−1

(∂z
l,k

∂θ

)
(4.7)

Where N is the total number of available measurements points, R is the co-
variance matrix of the measurement noise, and the sensitivities ∂z

l,k
/∂θ are the

partial derivatives of the lth observation z
l,k

at discrete time k (l = 1 . . . nz) with
respect to unknown parameters vector θ ∈ Rnθ and they are solutions of:


d

dt

( ∂x

∂θj

)
=

n∑
i=1

{ ∂f
∂xi

∂xi
∂θj

}
+
∂f

∂θj

∂z
l,k

∂θj
=

n∑
i=1

{∂hl
∂xi

∂xi
∂θj

}
+
∂hl
∂θj

l = 1 . . . nz

(4.8)

Where n is the total number of states, and θj (j = 1 . . . nθ) refers to unknown
parameters.

Typically, optimal experiment design is a sequential process whereby, at each time
stage and using the current estimates of the parameters, a new optimal experi-
ment is identified and conducted. The loop of planning an optimal experiment
based on previous results and conducting a new experiment has to be repeated
several times, until satisfactory results are achieved.

We proposed an iterative method which consists of finding the optimal input
for the next time-stage based on parameters estimated using the Kalman filter at
the current stage and by solving the optimization problem in equation (4.6) using
brute-force approach (in which all possible solutions are calculated and and the
optimal solution is selected) with the analytical solution of the partial derivatives.
The proposed iterative method is detailed next.

4.1.2 Framework of Optimal Input Design and Kalman
Filter Estimation (OID-SCKF)

The time-line of an experiment (simulation) is divided into time-stages of equal
length1. Each stage of the proposed sequential method is composed of N samples
(e.g. 500 ms time window for the neural modeling scenario). For a given stage
s, starting at a time k = s ∗ N , the algorithm designs for the optimal input

1inequality or uniformity of the length of time stages does not affect the procedure described
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Figure 4.1: Schematic of the proposed OID-SCKF algorithm.

for the next time stage k = s ∗ N, . . . , N + s ∗ N (total of N samples). This
requires evaluating the sensitivity functions (equation (4.7)) that depend on the
values of the states and the parameters which are obviously unknown for that
next stage. Accordingly, predictions of these unknown states and parameters are
first obtained by evaluating the time-update step of the SCKF over the horizon
k = s ∗ N to k = N + s ∗ N prior to input design. This procedure is repeated
for different input values in [Imin, Imax] interval until the optimizer has found a
maximum.

Thereafter, this optimized input is applied to the system generating measure-
ments data for the next stage, during which the SCKF is applied to provide
estimates of the states and the parameters for the s (k = s∗N−N, . . . , s∗N−1)
time window. Fig. 4.1 shows a diagram of basic elements and processes of the pro-
posed algorithm and Algorithm (1) shows the the pseudo-code for the proposed
OID-SCKF method.

4.1.3 Performance assessment

To aid in the quantitative assessment of the introduced OID-SCKF algorithm
against estimation with no input design, we use performance terms similar to
those used in control and input tracking applications. This is particularly useful
since we are concerned with single trial experiments. Starting from arbitrary ini-
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Algorithm 1 Framework for the sequential optimal design and SCKF estimation

1: Initialization: Set initial states and parameters values x̂0 and the square-root
of process and measurement noise covariances: SR,0 and SV,0.

2: Define: the input space Is ∈ [Imin, Imax]
3: Define: the time-stages for fixed inputs, s = 1, . . . , S.
4: s = 1 . initialization time-stage or window
5: Define a random initial input I1.
6: for k = 0 to N do
7: Simulate model and collect measurements z

k

8: Apply SCKF and get the states and parameters estimates x̂
k

9: end for
10: for s = 2 to S do . design stages
11: function Design Input(s,x̂

k
, Sk|k) . Find the optimal input I∗s given

the states and parameters estimates x̂
k

and their corresponding square-root
error covariance SK|K where k = N + (s− 1) ∗N − 1 (i.e. the last time step
from previous time window)

12: for k = s ∗N to K = N + s ∗N do
13: Apply the time update of SCKF to get uncorrected estimates x̂

k|k−1

14: Evaluate the sensitivity functions given x̂
k|k−1

15: Evaluate the FIM and its trace trace(FIM (Is))
16: end for
17: I∗s = max trace(FIM (Is))
18: end function
19: function Apply and Estimate(s, I∗s )
20: for k = s ∗N to K = N + s ∗N do
21: Simulate model and collect measurements z

k
for stage s

22: Apply SCKF and get the states and parameters estimates x̂
k

for
stage s

23: end for
24: end function
25: end for

tial conditions for the estimate of an unknown parameter, we set out to determine
the speed of the approach of this estimate to the true value of that parameter
and its confinement around that true value for the remainder of the experiment.
Accordingly, we utilize (i) Rise time, which is defined as the time required for the
estimate to rise from 10% to 90% of its steady-state value, and (ii) settling time is
defined as the time required for the estimate to get within 2% of its steady-state
value. Finally, statistical assessment of these values is conducted over a set of re-
peated simulations to reduce the effect of randomness in process and observation
noise.
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4.2 Results

In this section, we will present estimation results based on the optimal input de-
sign for square root Cubature Kalman filter (OID-SCKF) algorithm and compare
them with those estimated based on random (not designed) inputs.

4.2.1 Van der Pol System

The Van der Pol oscillator has two states x = [x1 x2]T (oscillator position and ve-
locity) in addition to one unknown damping parameter which is set here to µ = 3
(See section 3.1). For the single oscillator as well as the coupled oscillator net-
works considered next, the exogenous driving input is assumed to be of periodic
nature I(t) = A sin(wt), w = 0.2π rad/sec. Furthermore, the input amplitude A
falls within a finite set of quantized levels A ∈ [0, 0.1, 0.2, . . . , 3]. Two types of
inputs are considered: a randomly selected sequence of amplitudes, henceforth
denoted by “random input”, and a sequence of amplitudes that would be designed
online based on the suggested algorithm, denoted by ”designed input”.

Single Oscillator

The output of the oscillator is considered to be a noisy discrete measurement
of its position x1. In the Kalman setup, the state vector is augmented as xa =
[x1 x2 µ]T . The proposed OID-SCKF method is applied for a simulation length
of 300 seconds with sampling interval dt = 0.1 seconds. The design stages or time
windows were of length 25 sec whereby a designed (optimal) or random input is
applied over that stage with fixed amplitude. For statistical assessment of the
algorithm performance, a total of 50 independent Monte Carlo runs were made.

The estimate of the damping parameter µ is shown in Fig. 4.2 where the means
and 95% confidence intervals (shaded region) under designed and random inputs.
The figure qualitatively demonstrates that, under designed input estimate (left
graph) converges faster to its final value when compared to the random input
(right graph). Under designed input, the final mean value (solid blue line) is also
closer to the true parameter value (red line) when compared to the random input
case (solid green line). In addition, the standard error in the average value (95 %
interval) is tighter under the designed input case (shaded blue region) indicating a
higher confidence in the estimate than the random case (shaded green region). A
more quantitative assessment of these observations will be included in subsequent
larger simulations.
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Figure 4.2: Estimated damping parameter µ (blue and green traces) in terms of
their mean (solid lines) and a 95% confidence interval (shaded regions), and the
true parameter (red trace). Left: under designed optimal inputs. Right: Under
random inputs.

Network of Coupled Oscillators

Three Oscillators:

A ring network of three non-identical oscillators (N = 3) with coupling parameter
K = 1.3 and damping parameters µ = [µ(1) µ(2) µ(3)]T = [3 2 1]T is considered
(Fig. 4.3).

In this scenario, the external periodic input is assumed to drive the first oscillator
only. We also consider the two cases of randomly or optimally designed inputs.
It is assumed that two noisy observation signals, corresponding to the positions
x

(1)
1 and x

(3)
1 of the first and third oscillators, are available. It is here desired to

estimate the augmented state vector which includes six states x = [x
(i)
1 x

(i)
2 ]T , i =

1, . . . , 3 in addition to three unknown damping parameters µ.

The OID-SCKF method is applied for a simulation length of 500 seconds with
sampling interval dt = 0.1 sec whereby a designed (optimal) or random input
is applied for 25 sec time windows. For statistical assessment, a total of 50
independent Monte Carlo runs were made.

Fig. 4.4 shows the means and 95% confidence intervals of the estimated damping
parameters µ under designed and random inputs. Similar results to that of the
single oscillator case, as will be presented quantitatively next. Specifically, the
summarized statistics about the estimated damping parameters and their rate
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Figure 4.3: Ring configuration of N Van der Pol oscillators. Each Oscillator has
two states: position and velocity. Damping factors are unknown parameters of
the model

of convergence are listed in Table 4.1. When compared with SCKF estimation
with random inputs, it is seen that the OID-SCKF method achieved, for all three
parameters, (a) mean values that are closer to their corresponding true values,
(b) attained a smaller variance and hence tighter confidence intervals around the
final value across the 50 simulations, and (c) faster convergence rates– as assessed
by the smaller rise time values and the settling time (see section 4.1.3).

Table 4.1: Statistics of the estimated damping parame-
ters for three coupled non-identical oscillators averaged
over 50 Monte Carlo runs under optimal and random in-
puts.

Parameter Mean
Standard
deviation

Rise Time
(in sec)

Settling
Time (in sec)

Optimal
Input

µ1 = 3 2.91 0.065 70.6 119.1

µ2 = 2 1.68 0.09 82.6 153.8

µ3 = 1 1.007 0.036 66.8 141.4

Random
Input

µ1 = 3 2.9 0.065 72.4 125.6

µ2 = 2 1.67 0.101 117.2 197.1
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µ3 = 1 0.98 0.034 55.2 112.1

Figure 4.4: Estimated damping parameters µ = [3; 2; 1] (blue and green traces)
in terms of their mean (solid lines) and a 95% confidence interval (shaded regions),
and the true parameter (red trace). Left: under designed optimal inputs. Right:
Under random inputs.

Five Oscillators:

A ring network of five non-identical oscillators (N = 5) with coupling parameter
K = 1.3 and damping parameters µ = [3 2 1 1 3]T is considered. This system
has ten states in addition to five unknown damping parameters µ. The external
periodic input is assumed to drive the first oscillator only and can be either a
random or a designed input. The augmented state vector of fifteen quantities is
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now to be estimated from three noisy observation signals corresponding to the
positions x

(1)
1 , x

(3)
1 and x

(5)
1 of the first,third, and fifth oscillators.

The proposed method is applied for a simulation length of 500 seconds with sam-
pling interval dt = 0.1 whereby a designed or random input is applied for time
stages or windows of 25 sec. A total of 50 independent Monte Carlo runs were
made. Fig. 4.5 shows the means and 95% confidence intervals of the estimated
damping parameters µ = [µ(2); µ(4)] (of the oscillators whose positions are not
observed) under designed and random inputs. The figures show that, unlike the
designed input case, there are considerable variations in the random input sce-
nario (wider confidence tube, right graphs). While the estimates under designed
input remains close to the corresponding true values, the random input scenario
exhibits a slow divergence of the mean of µ(4) estimate from its true value of
1.0. The summarized statistics as listed in Table 4.2 show predominantly more
accurate estimates, smaller variances and faster approach towards final values for
the designed input.

Table 4.2: Statistics of the estimated damping param-
eters for five coupled non-identical oscillators averaged
over 50 Monte Carlo runs under optimal and random in-
puts.

Parameter Mean
Standard
deviation

Rise Time
(in sec)

Settling
Time (in sec)

Optimal
Input

µ1 = 3 2.88 0.075 42 85

µ2 = 2 1.96 0.12 87.1 125.1

µ3 = 1 1.04 0.058 19.3 36.7

µ4 = 1 1.1 0.093 73.6 145.9

µ5 = 3 2.92 0.061 38 72.7

Random
Input

µ1 = 3 2.9 0.076 41.7 76.4

µ2 = 2 1.92 0.18 138.4 200.1

µ3 = 1 1.08 0.058 21.3 45

µ4 = 1 1.14 0.14 117.2 320

µ5 = 3 2.94 0.067 37.3 90.3
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Figure 4.5: Estimation of damping parameters µ = [2; 1] for oscillators i = 2,
and 4 in a five-oscillator network. Note that the states of these oscillators are
not measured. Shown are the means of the estimates (solid lines), their 95%
confidence interval (shaded regions), and the true parameter (red traces). Left:
under designed optimal inputs (blue traces). Right: Under random inputs (green
traces).

4.2.2 Double Well

This system has one states x in addition to one unknown free parameter a = 2
(See section 3.2). The external periodic input I(t) = A sin(wt), w = 0.08π rad/sec,
with the amplitude A being considered as a variable A ∈ [2.5, 3, 3.5, . . . , 17.5] and
was selected either randomly or optimally designed over time stages. The aug-
mented state vector had two quantities to be estimated from one noisy observation
signal x.

The proposed method is applied for a simulation length of 500 seconds with
sampling interval dt = 0.1 seconds whereby a designed (optimal) or random
input is applied for 50 sec time windows. For statistical assessment, a total of 50
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Figure 4.6: Estimated parameters a (blue and green traces) in terms of their mean
(solid lines) and a 95% confidence interval (shaded regions), and the true param-
eter (red trace). Left: under designed optimal inputs. Right: Under random
inputs.

independent Monte Carlo runs were made.

Fig. 4.6 shows the mean and 95% confidence intervals of the estimated parameter
a under designed and random inputs. It is noted here that, in addition to faster
approaching the steady state value and more accurate means, the designed input
exhibited here a considerably more consistent estimation as time progresses as
is demonstrated by a narrower confidence interval. This is in contrast to the
random input case where high variability across trials become more prominent
later in the procedure (green shaded region in right graph).

4.2.3 Conductance-Based Neuronal Model

We consider a four area network connected in a ring, non reciprocal configuration
(see section 3.3.2). Each area is composed of three layers with a total of 9 hid-
den internal states including the membrane potential, excitatory and inhibitory
conductances for each layer with local field potential (LFP) as observations pro-
portional to the membrane potential of the infra-granular layer. A schematic of
the OID-SCKF algorithm for neural estimation is shown in figure 4.7.

Two neural network models of increasing complexity were utilized. For the first
scenario, we consider a homogeneous connectivity pattern, that is, connection
strengths between the all areas are the same, and hence induce one unknown
parameter to be augmented with all hidden states in the estimation scheme.
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Figure 4.7: Basic elements of the neuronal model estimation. OID design an
input for the system from which we collect the observations, whereas the SCKF
provides estimates of the hidden states based on the collected observations. Blue
traces are the estimated states and the red traces are the system’s hidden states.

For the second scenario, a heterogeneous network is considered with varying
connectivity strengths among the four areas, resulting in a total of four connection
parameters to estimate within the augmented state vector.

First Scenario: homogenous connections

The augment state vector has a total of 36 hidden neural states in addition to
one unknown parameter that are to be estimated from one noisy observation LFP
signal corresponding to the mean infra-granular activity in all four areas. The
proposed method is applied for a total simulation length of 10 seconds whereby a
designed or random input are applied over time windows of 500 ms. A total of of
50 independent Monte Carlo runs were made for each case for statistical assess-
ment. Fig. 4.8 shows the means and 95% confidence intervals of the estimated
connectivity strength between areas under optimal inputs and random inputs.
Over the 50 simulations, estimation under designed input (Left, blue traces) is
noted to exhibit faster convergence, more accurate mean value and smaller vari-
ance when compared to that under random input (Right, green traces).
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Figure 4.8: First scenario: Estimated connectivity parameter (blue and green
traces) in terms of their mean (solid lines) and a 95% confidence interval (shaded
regions), and the true parameter (red trace). Left: under designed optimal inputs.
Right: under random inputs.

Second Scenario: Non homogenous connections

With four unknown connectivity parameters γ
L

= [γ(1,4)
L

; γ(4,3)
L

; γ(3,2)
L

; γ(2,1)
L

] =
[1; 0.8; 0.7; 0.5], the augmented state vector had 40 quantities to be estimated.
Under this heterogenous conditions, it was not possible to estimate the param-
eters from one LFP signal. A more relaxed condition was assumed on the the
number of available observations. The proposed method is applied for a total
simulation length of 4 seconds whereby a designed or random input are applied
over time windows of 500 ms. A total of of 50 independent Monte Carlo runs
were made for each case for statistical assessment.

Case a: Two LFP observations:

Two LFP signals corresponding to the average infra-granular activity in each
two adjacent areas were considered as noisy observation signals for the SCKF.
Fig. 4.9 shows the means and 95% confidence intervals of the estimated connec-
tivity parameters between areas under optimal inputs and random inputs.The
summarized statistics about the estimated connectivity strengths between areas
and their rate of convergence are listed in Table 4.3. It is noted here that un-
der the optimal input design, the estimated unknown connectivity parameters
show more consistency indicated by the lower variance values and their rates of
convergence are faster as determined by the rise and settling times.
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Figure 4.9: Second scenario: Case a: Two LFP observations: Estimated connec-
tivity parameters (blue and green traces) in terms of their mean (solid lines) and
a 95% confidence interval (shaded regions), and the true parameter (red trace).
Left: under random inputs. Right: under designed optimal inputs.
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Table 4.3: Statistics of the estimated parameters (con-
nectivity strengths between areas) from two LFP obser-
vation signals averaged over 50 Monte Carlo runs under
optimal and random inputs.

Parameter Mean
Standard
deviation

Rise Time
(in sec)

Settling
Time (in sec)

Optimal
Input

γ1,4
L = 1 0.88 0.046 1.4 2.27

γ4,3
L = 0.8 0.81 0.046 0.86 1.33

γ3,2
L = 0.7 0.67 0.044 1.17 2.11

γ2,1
L = 0.5 0.47 0.034 0.88 1.73

Random
Input

γ1,4
L = 1 0.84 0.056 1.55 2.26

γ4,3
L = 0.8 0.81 0.052 1.19 1.76

γ3,2
L = 0.7 0.64 0.055 1.47 2.11

γ2,1
L = 0.5 0.47 0.036 1.21 1.97

Case b: Four LFP observations:

Four LFP signals corresponding to the infra-granular activity of each area were
considered as observation signals for the SCKF. Fig. 4.10 shows the means and
95% confidence intervals of the estimated connectivity parameters between areas
under optimal inputs and random inputs. The summarized statistics about the
estimated connectivity strengths between areas and their rate of convergence
are listed in Table 4.4. It is noted here that, when compared to estimation
under random inputs, estimated unknown parameters under optimal inputs have
comparable mean values but with tighter confidence intervals (smaller variances)
across the 50 Monte Carlo runs and exhibit faster convergence rates towards final
values.
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Figure 4.10: Second scenario: Case b: Four LFP observations: Estimated connec-
tivity parameters (blue and green traces) in terms of their mean (solid lines) and
a 95% confidence interval (shaded regions), and the true parameter (red trace).
Left: under random inputs. Right: under designed optimal inputs.
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Table 4.4: Statistics of the estimated parameters (con-
nectivity strengths between areas) from four LFP obser-
vation signals averaged over 50 Monte Carlo runs under
optimal and random inputs.

Parameter Mean
Standard
deviation

Rise Time
(in sec)

Settling
Time (in sec)

Optimal
Input

γ1,4
L = 1 0.95 0.034 1.19 1.99

γ4,3
L = 0.8 0.77 0.029 0.94 1.85

γ3,2
L = 0.7 0.67 0.027 0.93 1.78

γ2,1
L = 0.5 0.48 0.025 0.86 1.55

Random
Input

γ1,4
L = 1 0.93 0.041 1.43 2.24

γ4,3
L = 0.8 0.77 0.037 1.19 2

γ3,2
L = 0.7 0.67 0.032 1.19 1.98

γ2,1
L = 0.5 0.48 0.029 1.15 2

4.3 Discussion

The presented approach in combining Kalman filtering with optimally designed
inputs showed that, in principle, better convergence and higher estimation accu-
racy can be attained. The rates of such improvements, however, depends on the
complexity of the inversion problem. For instance, for well-posed problems such
as the single Van der Pol oscillator, the estimation accuracy and convergence
under optimal inputs were close to but slightly better than those under random
inputs (Fig. 4.2). Presumably, these comparable results are due to the well-posed
nature of the inversion problem, that is the hidden states and unknown param-
eter are well observable from the available input/output data (for both random
and optimal inputs).

For the three coupled non-identical Van der Pol oscillators (Fig. 4.4 and Ta-
ble 4.1), the results show comparable estimation accuracy of the damping pa-
rameters of the oscillators whose positions are observed (oscillators i = 1 and 3)
and better estimation accuracy under optimal inputs of the damping parameter
of the oscillator whose position is not observed (oscillator i = 2). The same
conclusion was drawn for the case of five coupled oscillators ( Fig. 4.5 and Ta-
ble 4.2) with estimation accuracy under optimal inputs being significantly better
for unobserved oscillators (oscillators i = 2 and 4). For the Double Well system,
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a challenging problem to invert due to its quadratic observation signal although
it is a single state system, parameter estimation under optimal inputs was signifi-
cantly better than those under random inputs case which showed high variability
across trials as shown in Fig. 4.6.

The neuronal model results showed that the number of available observation
signals has a great impact on the estimation problem. For one unknown connec-
tivity parameter, one observation LFP signal is sufficient to identify the model
correctly with improved accuracy under optimal inputs (Fig. 4.8). With four
unknown connectivity parameters, one LFP signal was not enough for model
identification (parameter estimates did not converge). For this case, at least two
LFP signals were needed for proper convergence (Fig. 4.9 and Table 4.3) yet
again with better accuracy under optimal inputs. As the number of available
observations increases, parametric estimation improves in accuracy. This is con-
cluded from the estimation results with four LFP observations (Fig. 4.10 and
Table 4.4) which had closer mean values to true parameters, smaller variances
across the 50 Monte Carlo simulations, and faster convergence when compared to
estimation with two LFP observations. Once more, for this case, the estimation
accuracy and convergence were better under optimal inputs than those under
random inputs.

In conclusion, improved identification of models including those for neuronal ac-
tivity generation from limited, yet carefully designed observations has large po-
tential gains in the general modeling field as well as the field of computational
neuroscience and other areas of biophysical modeling. Yet, these gains in estima-
tion accuracy pose heavy computational load making this procedure intractable
for on-line applications, an issue that we will address later on by proposing an al-
ternative procedure to significantly reduce the computational needs for designing
experiments suitable for on-line applications.
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Chapter 5

Optimal Design of Process Noise
Covariance in Nonlinear Kalman
Filters

In a Kalman framework, an a priori statistical knowledge about all the above
Gaussian noise processes, namely their covariance matrices, is necessary for cor-
rect performance. These covariances are referred to as the filter tuning param-
eters and need to be determined by the designer for proper performance of the
filter. This manual tuning is often time consuming since performance is assessed
post estimation and the direction and magnitude of change in tuning parameters
is left to the tweaking skills of a modeler, a challenging endeavor that becomes
considerably more complicated in nonlinear systems setups.

It is therefore highly desirable to automate this tuning procedure to both aid in
estimation convergence and produce more confident estimates of the augmented
states. Earlier efforts on this topic include [4, 76].

In this chapter, we propose an approach whereby the tuning parameters of the
Kalman filter are optimally designed based on sensitivity analysis of the underly-
ing system. We demonstrate this method on a benchmark hemodynamic model
where driving neuronal activity input (NA) is unknown (input deconvolution).
Using state augmentation in the Kalmak setup, NA input is assumed to follow
a random walk process whose tuning parameter (covariance of this process) is
designed using an Adaptive Design Optimization (ADO) method within the for-
ward pass of the Cubature Kalman filter. A final backward pass of the CKF
(namely the Cubature Kalman Smoother, CKS) demonstrates superior perfor-
mance of the proposed solution to the tedious manual iterative, and approximate
tuning.
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5.1 Problem Definition and Setup

Given the discrete state-space form of the hemodynamic model :

Process Equation: x
k

= F
d
(x

k−1
, u) + v

k−1
(5.1)

Measurement Equation: z
k

= h(x
k
) + w

k
(5.2)

Where v
k−1
∈ Rn is a vector of random Gaussian noise with zero mean and

covariance Vk−1, w
k
∈ Rd is a vector of random Gaussian noise with zero mean

and covarianceRk,and z
k

is the discrete noisy observation BOLD signal at discrete
time k.

The problem at hand is defined as recovering unobserved hemodynamic variables
and estimating unknown NA input from observed BOLD signal (input decon-
volution) (see section 3.5). In order to solve this problem, we will utilized the
square-root Cubature Kalman Filter (SCKF) (see section 2.3) as an estimation
tool for the model in state-space form. Accordingly, the unknown input is esti-
mated as an augmented state variable which is assumed to follow be a random
walk dynamic process in the SCKF setup. This leads to a parameter tuning
problem, tuning the covariance of random walk process which is unknown and
can highly affect the stability and accuracy of the filter estimates. The tuning
parameter is achieved using the ADO method so as to search for those optimal
covariance values that produce the most informative measurements about the
unknown input. Moreover, since the assumed unknown NA input is a time vary-
ing variable, a backward smoothing pass using square-root Cubature Kalman
Smoother (SCKS) is applied after the forward SCKF pass in order to improve
input estimation (SCKS algorithm is listed in section 2.3.4).

The augmented state vector includes (a) the hemodynamic model states and (b)
the unknown NA input.

xaug
k

= [ x
k
u ]

T

The augmented discrete nonlinear process equation F aug
d

(x
k−1
, u) is the discrete

version of F aug(x(t), u)

F aug(x(t), u) =

 F (x(t), u)

Fu(x(t))


Where Fu(x(t)) describes the dynamics of the unknown NA input as a random
walk process:

u̇ = Γu (continuous time representation) (5.3)

u
k−1

= u
k−1

+ vuk−1
(discrete time representation) (5.4)

Where vuk−1
is random Gaussian noise with zero mean and covariance Quk−1

.
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5.1.1 Optimal Covariance Design Problem

For optimal covariance design, we will rely on an approach used for optimal input
design ( [39, 40]), but instead of searching for the optimal input we will search
for the optimal covariance that will produce most informative observations about
the unknown NA input. The optimization problem is formulated through the
maximization of a scalar function of the Fisher information matrix (FIM). Here,
the optimal covariance Q∗u is computed by solving the following optimization
problem:

Q∗u = argmax
Qu

trace(FIM )

subject to Qumin ≤ Qu ≤ Qumax

(5.5)

Given the state-space model in equations (5.1) and (5.1), the elements of the
Fisher information matrix are combinations of partial derivatives of the system
response variables with respect to the unknown NA input u. The FIM elements
and sensitivities are obtained by solving the sensitivity equations. The FIM is
determined by the following equation:

FIM =
N∑
k=1

(∂z
k

∂u

)T
R−1

(∂z
k

∂u

)
(5.6)

Where N is the total number of available measurements points, R is the covari-
ance matrix of the measurement noise, and the sensitivities ∂z

k
/∂u are the partial

derivatives of the observation z
k

at discrete time k with respect to unknown input
u ∈ R and they are solutions of:


d

dt

(∂x

∂u

)
=

n∑
i=1

{∂F
∂xi

∂xi
∂u

}
+
∂F

∂u

∂z
k

∂u
=

n∑
i=1

{ ∂h
∂xi

∂xi
∂u

}
+
∂h

∂u

(5.7)

Where n is the total number of states, and u refers to unknown NA input.

5.1.2 Framework of Optimal Covariance Design and Kalman
Filter Estimation (OCD-SCKF)

For each time step, a new input covariance was designed and used for the next
time step of the SCKF. In designing the input covariance, we solved the opti-
mization problem using brute-force approach (in which all possible solutions are
calculated and and the optimal solution is selected) with the analytical solution
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Figure 5.1: Schematic of the proposed OCD-SCKF algorithm.

of the partial derivatives. This is done by solving for the sensitivity functions
in equation (5.7) and their corresponding FIM for the input covariance space
[Qumin , Qumax ] based on current state vector estimates x̂k and its corresponding
error covariance Skk and their predicted evolution for the next time step (using
the time update step of the SCKF).

Since we are estimating an unknown input, the designed covariance values at each
cycle of the forward SCKF run were stored in order to be used in the backward
smoothing run (SCKS). Fig. 5.1 shows a diagram of basic elements and processes
of the proposed algorithm.

5.2 Results

In this section, we will present estimation results based on optimally designed
input covariance and compare them with those estimated based on fixed covari-
ance.

The proposed method is applied for a simulation length of 200 seconds for which
the observation BOLD signals were generated with sampling interval dt = 0.1
and then re-sampled at dt = 0.5 (sampling rate at which the Kalman Filter
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is applied). The search range for Qu is Qumin = 0.01 and Qumax = 0.06.The
estimation accuracy of unknown NA input under optimal covariance design is
compared with that under fixed input covariance. For statistical assessment, a
total of 50 independent Monte Carlo runs were made. The estimation accuracy
is computed in terms of the Mean Square Error and its variance:

MSE =
1

MK

M∑
m=1

K∑
k=1

(
ureal
k − ûk,m

)2

(
max(ureal)−min(ureal)

)2 (5.8)

Where K is the length of the total simulation time vector, M is the Monte Carlo
runs, ureal

k the true input at time k, ûk,m is the estimated input at time k in the
mth Monte Carlo run, and (max(ureal)−min(ureal))2 is a normalizing factor.

Figure 5.2: Estimated NA inputs in terms of their mean (solid lines) and a 95%
confidence interval (shaded regions), and the true NA input (red trace). Top
left: under designed input covariance. The rest of sub-figures are under fixed
input covariance, top right: Cov = 0.02, bottom left: Cov = 0.04, bottom right:
Cov = 0.06.

Fig. 5.2 shows the means and 95% confidence intervals of the estimated unknown
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NA input under designed and fixed input covariance. The summarized statistics
about estimation accuracy are listed in Table 5.1 where the term “deviation
counts” refers to the number of times at which the Kalman filter diverges out
of total 50 Monte Carlo runs. From Fig. 5.2 we can see that optimally designed
covariance provided better input estimates in terms of their mean as compared to
low and intermediate fixed covariance values (Cov = 0.02 and Cov = 0.04) and
this also can be inferred from Table 5.1 where the MSE score for the optimal case
was lower than those of the fixed covariance cases. It is also noted that for high
fixed covariance value case (Cov = 0.06), the accuracy of the estimated input was
comparable to that of the optimal case (almost similar MSE values between these
two cases), but for the fixed covariance case (Cov = 0.06) the filter failed twice
out of 50 Monte Carlo runs and it scored higher variance value (this is shown
in Fig. 5.3 as fixed covariance case (Cov = 0.06) has a wider confidence interval
around the mean as compared to the optimal covariance case).

Table 5.1: Statistics of the estimated NA inputs averaged
over 50 Monte Carlo runs under optimal and fixed input
covariance.

Covariance
Value

Mean Square
Error (MSE)

Variance
of MSE

Deviation
counts

Q∗u 0.0015 0.9e−3 0

Qu = 0.02 0.0058 0.36e−3 0

Qu = 0.04 0.002 0.69e−3 0

Qu = 0.06 0.0016 1e−3 2
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Figure 5.3: Accuracy in terms of confidence intervals. Left: under designed input
covariance. Right: fixed input covariance Cov = 0.06.

5.3 Discussion

In this chapter, we proposed a procedure to optimally design the tuning param-
eter (the covariance of the unknown input which follows a random walk process)
of the Kalman filter based on sensitivity analysis of the model (solving for the
sensitivity functions and the FIM). We demonstrated this procedure on a hemo-
dynamic model where driving neuronal activity input (NA) is unknown (input
deconvolution).

The proposed approach is demonstrated to produce more confident estimates
and better convergence without the need of an iterative tuning process from
the designer, as seen in Fig. 5.2 and Table 5.1, optimally designed covariance
provided better input estimates in terms of their mean as compared to low and
intermediate fixed covariance values (Cov = 0.02 and Cov = 0.04). Moreover,
optimally designed covariance showed better estimation accuracy when compared
to the best manually tuned input covariance case (Cov = 0.06) which scored
higher variance value (wider confidence interval around the mean as shown in
Fig. 5.3) and more importantly the filter failed twice out of 50 Monte Carlo runs
for this case whereas for the optimal case the filter remained stable throughout
all Monte Carlo simulations.

It is worth to mention that this procedure is aimed for off-line model estima-
tion, that is model identification using Klaman filters from already collected in-
put/output data. Thus, the computational complexity associated with designing
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the tuning parameters of the Kalman filter does not pose any serious limitations
and this procedure may provide a solution to the tedious manual iterative, and
approximate tuning.
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Chapter 6

Dual Kalman Filter Setup for
Input Design and Estimation of
Nonlinear Dynamical System
Models

In chapter 4, we have introduced the OID-SCKF method for optimal input design
using ADO method and showed that optimally designed inputs produce more
informative input/output data about the model unknowns and better Kalman
performance in terms of estimation accuracy of unknown model states and pa-
rameters. However, this was accomplished with the cost of higher computational
burden exerted by solving the optimization problem associated with ADO method
to find the optimal input that produces the most informative output about the
model unknowns. Since the optimization problem of the OID part is non-convex
and nonlinear, the computational complexity tied with finding an optimal input
makes the proposed OID-SCKF method unsuitable for on-line applications.

In this chapter, we will introduce a new method based on a dual Kalman fil-
ters setup which will circumvent the computational demands for solving for the
optimal input. The main idea is to “transform” the optimization problem into
a Kalman filter setup which will “estimate” a sub-optimal input that achieves
informative observations about unknown parameters and hidden states. In doing
so, by transforming and setting up the optimization problem in a Kalman filter
setup, this will discard the optimization problem along with its computational
burden and hence drastically reduces the computational needs to design an input.
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6.1 Problem Definition and Setup

We consider experiment design paradigms suitable for on-line applications in
which inputs are designed to generate informative observations that aid in im-
proving estimation accuracy of the hidden state variables and unknown parame-
ters of the model structure. We propose a method based on two Kalman filters
aimed to circumvent solving a non-convex and nonlinear optimization problem
associated with the introduced OID-SCKF method.

The proposed Dual Kalman setup consists of two SCKF filters with different
sampling times, (i) the first SCKF filter, operating at a sampling rate ∆t1 as
same as the collected observations from conducted experiments, will estimate
hidden states and unknown parameters given input/output data, and (ii) the
second SCKF filter, operating at a sampling rate ∆t2 much higher than that of
the first filter ∆t1 (the time-line of an experiment (simulation) is divided into
time windows or stages of equal length ∆t2 ), is aimed to provide designed inputs
based on current estimates of the system model states and parameters provided
from the first SCKF filter.

In what follows, we will describe in details the setup for the Dual Kalman filters
for a given dynamical system formulated in state-space form as:

Process Equation: ẋ(t) = f(x(t), I) + Γ (6.1)

Measurement Equation: z
k

= h(x
k
) + w

k
(6.2)

6.1.1 First Kalman filter setup

The first SCKF is aimed to estimate model states and unknown parameters, the
role of this filter is exactly the same as the one described in section 4.1.1.

Given the state-space model as defined in equations (6.1) and (6.2), we will aug-
ment the hidden state vector to include the presumed dynamics of the unknown
parameter vector θ. The augmented state vector is composed of (a) model hidden
states, (b) unknown parameter vector:

x1(t) = [ x(t) θ ]
T

The resultant state-space formulation for the first SCKF is defined as:

Process Equation: ẋ1(t) = f1(x1(t), I) + Γ1 (6.3)

Measurement Equation: z1k = h1(x1k) + w1k (6.4)

Where x1(t) ∈ Rn1 is the augmented state vector of the system at time t (n1 is
the size of the augmented state vector for the first SCKF), I is the exogenous
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input, z1k ∈ Rd1 is the measurement at discrete time k (d1 is the size of the
measurement vector for the first SCKF), f1 : Rn1×R→ Rn1 is the drift coefficient,
h1 : Rn1 × R → Rd1 is the measurement function, Γ1 ∈ Rn1 and w1k ∈ Rd1 are
vectors of random Gaussian noise with zero mean and covariance Q1 and R1

respectively.

The stochastic differential equation (SDE) represented in the process equation
(6.3) is in continuous time, we can discretize the SDE using Local Linearization
(LL) method as described in section (2.3); this will transform the state-space
model to a pair of difference equations in order to apply the SCKF.

The discrete state-space model becomes:

Process Equation: x1k = f1,d(x1k−1
, I) + v1k−1

(6.5)

Measurement Equation: z1k = h1(x1k) + w1k (6.6)

Where v1k−1
∈ Rn1 is a vector of random Gaussian noise with zero mean and

covariance V1k−1
, w1k ∈ Rd1 is a vector of random Gaussian noise with zero mean

and covariance R1k ,and z1k is the discrete noisy observation at discrete time k.

Where the discrete nonlinear process equation f1,d(x1k−1
, I) is the discrete version

of f1(x1(t), I):

f1(x1(t), I) =

 f(x1(t), I)

fθ(x1(t))


Where fθ(x(t)) describes the dynamics of the unknown parameters which are
assumed to follow a random walk:

θ̇ = Γθ (6.7)

6.1.2 Second Kalman filter setup

The second SCKF filter is aimed to design the exogenous excitatory input to the
system for future time windows based on current estimates of the system model
states and parameters provided from the first SCKF filter.

As described in section 4.1.1, the OID part is based on an optimization problem
defined as maximizing a scalar function of the Fisher information matrix (FIM)
over the input space [Imin, Imax], where the optimal input I∗ is computed by
solving the following optimization problem:

argmax
I

trace(FIM )

subject to Imin ≤ I ≤ Imax
(6.8)
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The basic idea of the dual Kalman filters is to transform the optimization problem
in equation (6.8) into a Kalman filter setup in order to circumvent the compu-
tational burden of solving this optimization problem. We propose to do so by
setting the second SCKF to estimate the exogenous input I that achieves FIM
values higher than the current FIM values that are computed from current model
states and parameters provided from the first SCKF filter. In other words, the
second SCKF will update the current exogenous input I towards a more infor-
mative input estimates that generates observations with higher FIM values. The
second SCKF will update the input every ∆t2 � ∆t1 where ∆t2 is the size of the
time window during which the first SCKF is applied and model states and un-
known parameters are estimated with the updated input is being applied to the
system and observations are collected with sampling time ∆t1. In what follows
we will describe the setup of the second SCKF in details.

The purpose of the second SCKF is to update the exogenous input I based on
current model estimates from the first SCKF. the state-space formulation for this
filter in discrete time is given by:

Process Equation: x2k = f2,d(x1k−1
,x2k−1

) + v2k−1
(6.9)

Measurement Equation: z2k = h2(x1k) + w2k (6.10)

Where x1k ∈ Rn1 is the augmented state vector of the dynamic system at time
k (n1 is the size of the augmented state vector for the first SCKF), x2k ∈ Rn2 is
the augmented state vector of the second SCKF at time k (n2 is the size of the
augmented state vector for the second SCKF), z2k ∈ Rd2 is the measurement for
the second filter at discrete time k (d2 is the size of the measurement vector for
the second SCKF), f2 : Rn2×R→ Rn2 is the drift coefficient, h2 : Rn2×R→ Rd2

is the measurement function for the second filter, v2k−1
∈ Rn2 and w2k ∈ Rd2

are vectors of random Gaussian noise with zero mean and covariance Q2 and R2

respectively. The state vector for the second SCKF in discrete time is defined as:

x2k = [ x
k

θ
k
I
k

]
T

Or equivalently as function of the augmented state vector of the first SCKF:

x2k = [ x1k I
k

]
T

The measurement equation function h2(x1k) is a function of the FIM of the model
computed based on current estimates of model states (i.e. model states and
parameters provided from the first SCKF filter x1k):

h2(x1k) = FIM (x1k) + δ (6.11)
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Where FIM (x1k) is the FIM computed at the end of a given time window after
the first SCKF has completed estimation of the model states x1, and δ is a small
fraction of FIM (x1k) to make the measurement of the second SCKF (z2k) updates
the input towards higher values of the current FIM.

δ = 0.05 FIM (x1k) (6.12)

Thus, the measurements of the second CKF are computed to drive the state
vector x2 to be updated towards a higher FIM values.

Given the state-space model (6.1) and (6.1), the Fisher information matrix el-
ements are combinations of partial derivatives of the system response variables
with respect to the model parameters. The FIM elements and sensitivities are
obtained by solving the sensitivity equations [75]. The following equation is set
to compute the FIM values at the end of the time window at time k:

FIM =

d1∑
l=1

(∂z1l,k

∂θ

)T
R−1

1

(∂z1l,k

∂θ

)
(6.13)

Where R1 is the covariance matrix of the measurement noise of the first SCKF,
and the sensitivities ∂z1l,k/∂θ are solutions of:


d

dt

(∂x1

∂θj

)
=

n1∑
i=1

{ ∂f1

∂x1i

∂x1i

∂θj

}
+
∂f1

∂θj

∂z
l,k

∂θj
=

n1∑
i=1

{∂h1,l

∂x1i

∂x1i

∂θj

}
+
∂h1,l

∂θj
l = 1 . . . d1

(6.14)

Where n1 is the total number of states of the first SCKF, and θj (j = 1 . . . nθ)
refers to unknown parameters.

In this setup, we are computing the FIM (equation (6.13)) as a single value at the
end of the time window (not as summation over the entire time window), thus,
we are looking at the FIM when the system reaches its steady state (assuming
that the time window or ∆t2 is large enough). Hence, we are interested in finding
the model states that achieve the higher FIM value at steady state (or at the end
of the time window). For that, we have defined the second SCKF to estimate
the model states that achieve a higher FIM value at steady state. Thus, the
equations of motion of model states (x) are defined as random walk processes in
f2,d(.) in order to be updated towards the higher FIM value, and the equation of
motion of the exogenous input I is based on the steady state solution of process
equation (6.1) (that is at ẋ = 0). Thus, the equation of motion that governs the
dynamics of the input in the second SCKF are defined as:
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İ = fI(x(t)) + Γθ (6.15)

fI(x(t)) = f−1(x(t), I)

∣∣∣∣
ẋ(t)=0

(6.16)

In other words, the second SCKF is designed to find the model states that achieve
better FIM value at steady state, and from these estimated model states the
exogenous input for the next time window is estimated.

The equations of motion for the second SCKF are defined in f2,d(.) for the state
vector x2 as follows:

f2d(x1k−1
,x2k−1

) =


x
k−1

θ
k−1

fI,d(xk−1
)


Where fI,d(xk−1

) is the discrete version of fI(x(t)) defined in equation (6.16).

6.1.3 Framework of the Dual Kalman filters

The Dual Kalman filters are defined to estimate hidden states (x) and model
unknown parameters (θ), in addition to designing the input that produces more
informative observations. The first SCKF is aimed to estimate the model vari-
ables, whereas the second filter is aimed to design the input. The two filters have
different sampling times, the first SCKF (model estimation) has a sampling time
∆t1 dictated by the sampling rate of collected noisy observations, whereas the
second SCKF (input design) has a sampling time ∆t2 � ∆t1 defined as the time
window or stage s during which the designed input is applied to system. Starting
from an initial input, observations are collected and the first SCKF is applied to
provide model estimates. At the end of each time window or stage s: (a) The
FIM values are computed given current model states x and unknown parameters
θ estimates from the first SCKF, which will serve as measurements for the second
SCKF. (b) As for the second SCKF, the model states and unknown parameters
in state vector x2 are initialized by current estimates of x and θ, and based on
FIM measurements, the second SCKF will predict the model variables (x and θ
which follows random walk processes) along with the input (I whose dynamics
are governed by the inverse of process equation at steady state) that produce
better FIM values and update the state vector x2 (x, θ and I) towards targeted
better FIM values. From the second SCKF state vector x2, the input I is the

95



Figure 6.1: Basic elements of the proposed Dual Kalman filters. The first SCKF
provides estimates of the hidden states and parameters based on the collected
noisy observations from the system, and supply the observations for the second
SCKF. The second SCKF provides the designed input to the system based on
the FIM observations and model estimates from the first SCKF.

only variable of interest (the updated x and θ in the state vector x2 are discarded
at the end of the second SCKF cycle, since these variables are estimated and up-
dated by the first SCKF from the available system dynamics and observations).
The designed (updated) input I at the end of the second SCKF cycle will be
supplied to the system for the next stage s+ 1.

Fig. 6.1 shows a diagram of basic elements and processes of the proposed Dual
Falman filters and Algorithm (2) shows the the pseudo-code for the proposed
OID-SCKF method.

6.1.4 Performance assessment

The quantitative assessment of the introduced Dual Kalman method against esti-
mation under other input design methods (e.g. OID-SCKF algorithm and random
inputs) is carried out with performance assessment tools such as “Rise time” and
“Settling time” as defined in section 4.1.3. Moreover, we utilize “Computation
time” defined as the time required to apply a given algorithm to conduct a single
simulation run. Finally, statistical assessment of these values is conducted over
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Algorithm 2 Framework for the Dual Kalman filters estimation problem

1: Initialization: Set initial states and parameters values x̂1(0) x̂2(0) and the
square-root of process and measurement noise covariances: SR1,0, SV1,0,SR2,0

and SV2,0.
2: Define the input space [Imin, Imax].
3: for s = 0 to S do . % for each stage s or time window ∆t2 %
4: if s = 0 then . % First stage or time window%
5: Define a random initial input I0.
6: else
7: Define the designed input from the state vector x̂2(s) of the second

Kalman Is = x̂2(s).
8: end if
9: for k = s ∗N to K = N + s ∗N do

10: Simulate model and collect measurements z1k

11: Apply first Kalman filter and get the states and parameters estimates
x̂1(k)

12: end for
13: Evaluate the FIM given x̂1(K).
14: Set the observations for the second Kalman h2(x1(K)) = FIM (x1(K))+δ.
15: Initialize the state vector for the second Kalman filter given the state

vector of the first Kalman filter. That is by setting x̂2(s) = x̂1(K) with their
corresponding the corresponding error covariance matrix.

16: Apply the second Kalman filter and get the input estimates from the
corrected state vector x̂2(s+ 1) for stage s+ 1.

17: end for

a set of repeated simulations to reduce the effect of randomness in process and
observation noise.

6.2 Results

In this section, we will present estimation results based on designed inputs us-
ing Dual Kalman method and compare them with (i) those estimated based on
random (not designed) inputs and (ii) those estimated based on optimal input
design using OID-SCKF method.

6.2.1 Van der Pol System

The Van der Pol oscillator has two states x = [x1 x2]T (oscillator position and ve-
locity) in addition to one unknown damping parameter which is set here to µ = 3
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Figure 6.2: Estimated damping parameter µ (green, blue and purple traces) in
terms of their mean (solid lines) and a 95% confidence interval (shaded regions),
and the true parameter (red trace). Left: Under random input. Middle: under
designed (Dual Kalman) input. Right: Under optimal (OID-SCKF) input.

(See section 3.1). For the single oscillator as well as the coupled oscillator net-
works considered next, the exogenous driving input is assumed to be of periodic
nature I(t) = A sin(wt), w = 0.2π rad/sec. Furthermore, the input amplitude A
falls within a finite set of quantized levels A ∈ [0, 0.1, 0.2, . . . , 3]. Three types of
inputs are considered: (i) a randomly selected sequence of amplitudes, henceforth
denoted by “random input”, (ii) a sequence of amplitudes that would be designed
based on Dual Kalman algorithm, denoted by ”designed input”, and (iii) a se-
quence of amplitudes that would be designed based on OID-SCKF algorithm,
denoted by ”optimal input”.

Single Oscillator

The output of the oscillator is considered to be a noisy discrete measurement
of its position x1. In the Kalman setup, the state vector is augmented as xa =
[x1 x2 µ]T .

The proposed Dual Kalman method is applied for a simulation length of 300 sec-
onds with sampling interval ∆t1 = 0.1 sec. The design stages or time windows
were of length ∆t2 = 25 sec whereby a designed input is applied over that stage
with fixed amplitude. The same applies for the random and optimal input cases
where the SCKF is applied for 300 seconds with sampling interval ∆t1 = 0.1 sec
and with time window of length ∆t2 = 25 sec whereby a random or optimal
(OID-SCKF method) input is applied. For statistical assessment, a total of 50
independent Monte Carlo runs were made. The estimate of the damping param-
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eter µ is shown in Fig. 6.2 where the means and 95% confidence intervals (shaded
region) under designed (Dual Kalman), random, and optimal (OID-SCKF) in-
puts. The summarized statistics about the estimated damping parameters and
their rate of convergence are listed in Table 6.1. From Table 6.1 we can see that
all three methods achieved comparable mean values, however, when compared
with SCKF estimation with random inputs and with OID-SCKF method, the
Dual Kalman method (a) attained a smaller variance than both methods (opti-
mal and random inputs) and hence tighter confidence intervals around the final
value across the 50 simulations, (b) faster convergence rates than the random
inputs case but slower than OID-SCKF method, and (c) in terms of computation
times, the Dual Kalman method was much more efficient than the OID-SCKF
method in designing informative inputs as the time needed to simulate a single
run was much lower than OID-SCKF method and close to that of random inputs
method.

Table 6.1: Statistics of the estimated damping parameter
for single Van der Pol oscillator averaged over 50 Monte
Carlo runs.

Parameter Mean
Standard
deviation

Rise
Time
(sec)

Settling
Time
(sec)

Compu-
tation
Time
(sec)

Optimal
Input

µ 2.9 0.055 64.7 110.1 84.2

Designed
Input

µ 2.89 0.054 65.2 110.9 3.2

Random
Input

µ 2.87 0.059 65.5 117.4 3

Network of Three Coupled Oscillators

A ring network of three non-identical oscillators (N = 3) with coupling parameter
K = 1.3 and damping parameters µ = [µ(1) µ(2) µ(3)]T = [3 2 1]T is considered.

In this scenario, the external periodic input is assumed to drive the first oscillator
only. We also consider the three cases of designed (Dual Kalman), randomly, or
optimally (OID-SCKF) designed inputs. It is assumed that two noisy observa-

tion signals, corresponding to the positions x
(1)
1 and x

(3)
1 of the first and third

oscillators, are available. It is here desired to estimate the augmented state vec-
tor which includes six states x = [x

(i)
1 x

(i)
2 ]T , i = 1, . . . , 3 in addition to three

99



unknown damping parameters µ.

The Dual Kalman method is applied for a simulation length of 500 seconds with
sampling interval ∆t1 = 0.1 sec where a designed input is applied for ∆t2 = 25 sec
time window. The same applies for the random and optimal (OID-SCKF) input
cases. For statistical assessment, a total of 50 independent Monte Carlo runs
were made.

Figure 6.3: Estimated damping parameters µ = [3; 2; 1] in terms of their mean
(solid lines) and a 95% confidence interval (shaded regions), and the true param-
eters (red traces). Left: Under random input. Middle: under designed input.
Right: Under optimal input.

Fig. 6.3 shows the means and 95% confidence intervals of the estimated damping
parameters µ under designed, random, and optimal inputs. The summarized
statistics about the estimated damping parameters and their rate of convergence
are listed in Table 6.2. For this scenario, the Dual Kalman method did slightly

100



worse (for the second damping parameter µ(2)) than the random and optimal
cased in terms of the mean values of estimated parameter but for damping pa-
rameter µ(1) and µ(3) the mean values under designed inputs were comparable
with those estimated under random and optimal inputs. However, this method
showed smaller variance values (tighter confidence intervals) around the final
mean values across the 50 simulations. Similar results to that of the single os-
cillator case, the computation times per simulation run were considerably slower
for the Dual Kalman method as compared with the OID-SCKF method.

Table 6.2: Statistics of the estimated damping parame-
ters for three coupled non-identical oscillators averaged
over 50 Monte Carlo runs.

Parameter Mean
Standard
deviation

Rise
Time
(sec)

Settling
Time
(sec)

Compu-
tation
Time
(sec)

Optimal
Input

µ1 2.91 0.065 70.6 119.1

µ2 1.68 0.09 82.6 153.8 129.1

µ3 1.007 0.036 66.8 141.4

Designed
Input

µ1 2.88 0.057 70.6 121.2

µ2 1.59 0.08 114.1 203.2 17.3

µ3 0.98 0.03 59.7 111.3

Random
Input

µ1 2.9 0.065 72.4 125.6

µ2 1.67 0.101 117.2 197.1 16.4

µ3 0.98 0.034 55.2 112.1

6.2.2 Double Well

This system has one states x in addition to one unknown free parameter a = 2
(See section 3.2). The external periodic input I(t) = A sin(wt), w = 0.08π rad/sec,
with the amplitude A being considered as a variable A ∈ [2.5, 3, 3.5, . . . , 17.5]
and was selected either by design (Dual Kalman), randomly, or optimally (OID-
SCKF) designed over time stages. The augmented state vector had two quantities
to be estimated from one noisy observation signal x.

The proposed method is applied for a simulation length of 500 seconds with
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Figure 6.4: Estimated parameter a (green, blue and purple traces) in terms of
their mean (solid lines) and a 95% confidence interval (shaded regions), and the
true parameter (red trace). Left: Under random input. Middle: under designed
input. Right: Under optimal input.

sampling interval ∆t1 = 0.1 sec whereby a designed (Dual Kalman), random,
or optimal (OID-SCKF) input is applied for ∆t2 = 50 sec time windows. For
statistical assessment, a total of 50 independent Monte Carlo runs were made.

Fig. 6.4 shows the mean and 95% confidence intervals of the estimated parameter
a under under designed, random, and optimal inputs. The summarized statis-
tics about the estimated damping parameters and their rate of convergence are
listed in Table 6.3. Similar to the three Van der Pol oscillators results, the Dual
Kalman method scored lower estimation mean value across the 50 simulations,
however, the estimated parameter demonstrated more consistency as time pro-
gresses particularly toward the end of simulation time (> 300 sec) as compared
to the random input case which showed higher variability (jumps in the green
shaded region at times > 300 sec).

Table 6.3: Statistics of the estimated parameter a for the
double well averaged over 50 Monte Carlo runs.

Parameter Mean
Standard
deviation

Rise
Time
(sec)

Settling
Time
(sec)

Compu-
tation
Time
(sec)

Optimal
Input

a 2.05 0.06 88.4 158.9 115
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Designed
Input

a 1.81 0.12 73 129.8 3.4

Random
Input

a 1.89 0.13 85.3 144.3 3.3

6.2.3 Conductance-Based Neuronal Model

Simple Neuronal Model

We consider a simple neuronal model consisted of one self-inhibited neuronal
population driven by an exogenous excitatory input, for which the coupling pa-
rameter γ is considered unknown (See section 3.3.1). The proposed method was
applied for a simulation length of 7.5 seconds with sampling interval ∆t1 = 0.1 ms
whereby a designed (Dual Kalman), random, or optimal (OID-SCKF) input is
applied for a time window ∆t2 = 500 ms. For statistical assessment, a total of
50 independent Monte Carlo runs were made.

The model had one hidden state (inhibitory conductance gI) in addition to one
unknown parameter (coupling parameter γ). The resultant augmented state vec-
tor had two quantities to be estimated from one noisy observation (membrane
potential V ) sampled at ∆t1 = 0.1 ms. Fig. 6.5 shows the means and 95% con-

Figure 6.5: Estimated coupling parameter γ in terms of its mean (solid lines) and
a 95% confidence interval (shaded regions), and the true parameter (red trace).
Left: Under random input. Middle: under designed input. Right: Under optimal
input

fidence intervals of the estimated coupling parameter γ under designed inputs,
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random inputs, and optimal inputs. The summarized statistics about the esti-
mated coupling parameter γ (under designed, random , and optimal inputs) and
their rate of convergence are listed in Table 6.4. From Table 6.4, we can see that
estimation accuracy in terms of the mean and variance across the 50 simulations
for the Dual Kalman method were better than that of the random inputs case.
This is also valid in terms of convergence rates. As compared to the optimal
inputs (OID-SCKF), the Dual Kalman method did worse in terms of mean, vari-
ance, and convergence rates, however, the Dual Kalman method was substantially
more efficient than the OID-SCKF method in designing informative inputs as the
time needed to simulate a single run was much lower than OID-SCKF method
and close to that of random inputs method.

Table 6.4: Statistics of the estimated coupling parameter
γ for the neuronal model averaged over 50 Monte Carlo
runs.

Parameter Mean
Standard
deviation

Rise
Time
(sec)

Settling
Time
(sec)

Compu-
tation
Time
(sec)

Optimal
Input

γ 0.5 0.018 2.12 3.43 1476.4

Designed
Input

γ 0.49 0.02 2.7 4 58.9

Random
Input

γ 0.48 0.026 2.96 4.32 58.4

Multi-Area Neuronal Model

We consider a four area network connected in a ring, non reciprocal configuration
(see section 3.3.2). Each area is composed of three layers with a total of 9 hid-
den internal states including the membrane potential, excitatory and inhibitory
conductances for each layer with local field potential (LFP) as observations pro-
portional to the membrane potential of the infra-granular layer. we consider a
heterogeneous network with varying connectivity strengths among the four ar-
eas, resulting in a total of four connection parameters to estimate within the
augmented state vector.

The model had 36 hidden states in addition to four unknown parameters γ
L

=
[γ(1,4)
L

; γ(4,3)
L

; γ(3,2)
L

; γ(2,1)
L

] = [1; 0.8; 0.7; 0.9], the augmented state vector had 40
quantities to be estimated. Under this heterogenous conditions, four LFP sig-
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nals corresponding to the infra-granular activity of each area were considered as
observation signals for the SCKF.

For this scenario, each neuronal area is considered to be excited by a distinct
external input. That is this network has four external inputs to be designed or
selected randomly, the input vector defined as I = [I(1); I(2); I(3); I(4)] where I(i)

(i = 1, . . . , 4) is the input that excites area i and defined over the input space
I(i) ∈ [Imin, Imax] = [25, 60].

Since the OID-SCKF method is carried out by solving the optimization problem
in equation (6.8) using brute-force approach (see section 4.1.1), applying the OID-
SCKF method for this scenario is infeasible due to the size of input space over the
input vector I as a single run would take days to solve the optimization problem
associated with OID-SCKF method (since we are using brute-force technique
to search for a solution). Hence, for this scenario, we consider applying the
Dual Kalman method for a simulation length of 6 seconds with sampling interval
∆t1 = 0.1 ms whereby a designed is applied for a time window ∆t2 = 500 ms.
The Dual Kalman method is compared with the case where random inputs are
applied under the same simulation conditions. For statistical assessment, a total
of 50 independent Monte Carlo runs were made.

Fig. 6.6 shows the means and 95% confidence intervals of the estimated coupling
parameters γ(i,j)

L
under designed inputs and random inputs. The summarized

statistics about the estimated connection strengths between the areas γ(i,j)
L

(un-
der designed and random inputs) and their rate of convergence are listed in
Table 6.5. When compared with SCKF estimation with random inputs, it is seen
that the Dual Kalman method achieved, for all four parameters, (a) mean values
that are closer to their corresponding true values, (b) attained a smaller variance
and hence tighter confidence intervals around the final value across the 50 simu-
lations, and (c) faster convergence rates. Moreover, the computation load for the
Dual Kalman method was comparable with the random inputs case, whereas, the
OID-SCKF method was impractical to simulate due to the computational power
needed to find an optimal input vector I for this scenario.
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Table 6.5: Statistics of the estimated connectivity param-
eters γ(i,j)

L
for the multi-area neuronal model averaged

over 50 Monte Carlo runs.

Parameter Mean
Standard
deviation

Rise
Time
(sec)

Settling
Time
(sec)

Compu-
tation
Time
(sec)

Designed
Input

γ1,4
L 0.98 0.023 1.09 2.1

139.3
γ4,3
L 0.79 0.022 0.99 1.82

γ3,2
L 0.68 0.023 0.98 1.77

γ2,1
L 0.88 0.024 1.08 2.06

Random
Input

γ1,4
L 0.97 0.026 1.27 2.28

127.3
γ4,3
L 0.78 0.025 1.09 2.05

γ3,2
L 0.68 0.026 1.07 2.07

γ2,1
L 0.87 0.029 1.24 2.13
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Figure 6.6: Estimated connectivity parameters γ(i,j)
L

in terms of their mean (solid
lines) and a 95% confidence interval (shaded regions), and the true parameter
(red trace). Left: Under random input. Right: under designed input.
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6.3 Discussion

The proposed Dual Kalman filters method aimed to design sub-optimal inputs
that achieve informative observations about unknown parameters and hidden
states by “transforming” the optimization problem associated with OID-SCKF
(that solves for the optimal inputs) into a Kalman filter setup. The proposed
setup discarded the optimization problem along with its computational burden
and drastically reduced the computational needs to design an input.

The presented Dual Kalman approach showed that, in principle, better conver-
gence and higher estimation accuracy can be attained when compared to random
inputs cases. When compared to optimal inputs (OID-SCKF method), the Dual
Kalman method showed comparable convergence and estimation accuracy, and
more importantly, substantially more efficient than the OID-SCKF method in
terms of computational time needed in designing informative inputs.

For the Van der Pol oscillator, the overall performance of estimation accuracy
was comparable under different input specification methods (Dual Kalman, OID-
SCKF, or random) with slight improvement for the OID-SCKF method over
the other two methods (Figs. 6.2 and 6.3, Tables 6.1 and 6.2), noting that the
estimated parameters under Dual Kalman method showed tighter confidence in-
tervals (smaller variance values) around the mean values across Monte Carlo
simulations.

Same conclusions are also drawn for the Double Well system in terms of supe-
rior estimation accuracy under optimal inputs (OID-SCKF). When comparing
the Dual Klaman method estimation with that under random inputs, the for-
mer showed more consistency as time progresses particularly toward the end of
simulation time and faster convergence rates, whereas the latter showed higher
inconsistency across the Monte Carlo runs (Fig. 6.4 and Table 6.3).

Investigation of the Dual Kalman method for the simulated neuronal model
demonstrated the immense gain in computational power against the OID-SCKF
method in designing informative inputs while maintaining the out-performance
in estimation accuracy over the random inputs case. For the single area model
(Fig. 6.5 and Table 6.4), the Dual Kalman method, as compared to the random
inputs case, performed better in terms of the estimated means and their corre-
sponding variances, as well as scored faster convergence rates. For the multi-area
neuronal model, we considered four neuronal areas each having its distinct input
(four areas and four inputs) which made the input space fairly large (each input
is defined over the input space I(i) ∈ [Imin, Imax] = [25, 60]). Thus, this made the
application of OID-SCKF method for this scenario infeasible as a single run would
take days to solve the optimization problem associated with this method (since
we are using brute-force technique to search for a solution). However, applying
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the Dual Kalman method did not pose additional computational demands when
compared to the random inputs case (Table 6.5 shows comparable computation
time per run between Dual Klaman and random inputs cases). Moreover, the
Dual Kalman method achieved (a) better mean values that are closer to their
corresponding true values, (b) attained a smaller variance and hence tighter con-
fidence intervals around the final value across the 50 simulations, and (c) faster
convergence rates.

In conclusion, we have shown that the proposed Dual Kalman method, in prin-
ciple, can achieve better convergence and higher estimation accuracy when com-
pared to random inputs cases without posing any serious additional computa-
tional needs. Yet, when compared the OID-SCKF method, the proposed pro-
cedure showed comparable estimation accuracy while significantly reduces the
computational demands. Since the Kalman filter is theoretically an on-line al-
gorithm, the proposed method could be suitable for designing experiments for
on-line applications.
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Chapter 7

Model Selection for Identification
of Functional Connectivity based
on Input Design

In the previous chapters, we focused on introducing techniques to improve model
parameters estimation for which we always assumed that the structure of the
mathematical model describing the studied system is known. For the cases where
the structure of the system under investigation is unknown, one will resort to sta-
tistical procedures called “model discrimination” or “model selection” techniques
to decide from a pool of competing model candidates, on the basis of available
observation data, which model is the most appropriate.

In this chapter, we will address the problem where the model structure of the un-
derlying system is unknown. Given a whole bank of model candidatesMm,m =
1, . . . ,M which represent competing model hypotheses of the investigated system,
where each model Mm,m = 1, . . . ,M has pm unknown parameters θ(Mm) to
be estimated from measurement data, we aim to incorporate ADO technique to
design experiments to improve model fitting (parameter estimation) and model
selection (identifying most plausible model structure). We will demonstrate the
proposed method for a multi-neuronal-area model based on Jansen model for
cortical activity (section 3.4).
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7.1 Problem Definition and Setup

Given the state-space formulation of multi-area Jansen model:

Process Equation: ẋ(t) = f(x(t), I) + Γ (7.1)

Measurement Equation: z
k

= h(x
k
) + w

k
(7.2)

Where x(t) ∈ Rn is the state vector of the dynamic system at time t (n is the
total number of states in all considered neuronal areas) , I is the exogenous input,
z
k
∈ Rd is the measurement at discrete time k (d is the size of measurement

vector), f : Rn × R → Rn is the drift coefficient, h : Rn × R → Rd is the
measurement function, Γ ∈ Rn and w

k
∈ Rd are vectors of random Gaussian

noise with zero mean and covariance Q and R respectively.

We consider a network consisted of three areas, in which each area is receiving an
excitatory input at its granular level from the infra-granular layer of another area.
The strength of such excitatory activity is defined by a connectivity parameter
γ(i,j)
L

(long-range coupling parameter from area i to area j) (see section 3.4). These

connectivity parameters γ(i,j)
L

define the architecture of the neuronal network and
they can be expressed in matrix form to simplify model representation:

γL =


γ(1,1)
L

γ(1,2)
L

γ(1,3)
L

γ(2,1)
L

γ(2,2)
L

γ(2,3)
L

γ(3,1)
L

γ(3,2)
L

γ(3,3)
L


This is also referred to as the “connectivity matrix” where the rows denote area
i and the columns denote area j.

It is assumed that the structure of the multi-area network is unknown. That
is, we are assuming that the number and the values of long-range connectivity
parameters γ(i,j)

L
are unknown. In order to identify the true structure of the

network, a pool of M model structure candidates will be suggested, each model
Mm,m = 1, . . . ,M has pm unknown connectivity parameters γ(i,j)

L
which need to

be estimated. The proposed model candidates are defined by connectivity matri-
ces, that is, for each model candidate Mm,m = 1, . . . ,M we define a particular
connectivity matrix γL,m. Model candidates differ from each other by the number

(pm) of assumed unknown connectivity parameters γ(i,j)
L

. The goal is to identify
the most plausible model structure through statistical model selection procedure.

One can incorporate ADO method to design experiments to improve model fitting
(parameter estimation) and model selection (identifying most plausible model
structure).
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A straight-forward (yet inefficient) implementation of ADO would consist of a
two-phase procedure: In the first phase, for each model candidate Mm,m =
1, . . . ,M , the optimal input could be designed to identify the unknown parame-
ters for model Mm (OED is repeated M times to estimate unknown parameters
for each model candidate). In the second phase, after the parameters of each
model have been estimated, the input could be designed for discriminating the
competing models. This procedure, however, is very time consuming and will
not be suitable for applications in which experiments are costly, their repetition
is impractical, and/or are time-consuming.

We propose a method that does not require repeated experiments in which model
fitting (parameters estimation) and model assessment (model selection) are done
in a single phase procedure. The method is a sequential algorithm in which at each
stage the input is designed to produce the most informative observations about
unknown parameters of the current most plausible model. Model assessment is
carried out by computing the posterior probability of a model Π(Mm|zk) (at time
k) among all model candidates and given a set of collected observations, using
Bayesian approaches to model selection [77, 78, 79, 80]:

Π(Mm|zk) =
p(zk|Mm)Π(Mm|zk−1)
M∑
m=1

p(zk|Mm)Π(Mm|zk−1)

(7.3)

Where p(zk|Mm) is the likelihood probability density function (PDF), and
Π(Mm|zk−1) is the prior probability of model Mm.

For any model candidate Mm, the likelihood function p(zk|Mm) can be com-
puted from estimated model states and parameters at time k assuming that the
likelihood function is normally distributed [79, 81]:

p(zk|Mm) ≈ 1

(2π)d/2(detΣk)1/2
exp(−1

2
rTkΣ−1

k rk) (7.4)

Where r is the residual error between the observed measurements and the esti-
mated measurements (computed from the Kalman update step, see section 2.3
equation (2.43)) at time k:

rk = zk − ẑk (7.5)

And Σk = STZZ,kSZZ,k is the corresponding error covariance matrix (computed
from the Kalman update step, see section 2.3 equation (2.44)).

We proposed an iterative method which consists of performing model assessment
(computing Π(Mm|zk),m = 1, . . . ,M from equation (7.3)) at each time instant
k based on states and parameters estimated using the Kalman filter. At the end
of each stage, an input is designed for the next stage to maximize parameters
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identifiability of the most plausible model (by maximizing the FIM of the most
plausible model):

argmax
I

trace(FIMm∗)

subject to Imin ≤ I ≤ Imax
(7.6)

Where FIMm∗ is the Fisher information matrix of model candidate m having the
highest model probability Π(Mm|zk) value.

7.1.1 Framework of Model Selection based on Input De-
sign

The time-line of an experiment (simulation) is divided into time-stages of equal
length. Each stage of the proposed method is composed of N samples. For a
given stage s, starting at a time k = s ∗ N up to k = s ∗ N + N , the algorithm
computes model probabilities Π(Mm|zk),m = 1, . . . ,M (equation (7.3)) at each
time instant k based on estimated states and parameters (x̂m,k, θ̂m,k) of each
model candidate Mm. At the end of stage s (i.e. at k = s ∗ N + N), the
algorithm designs an input for the next stage s+ 1 using OID-SCKF method or
Dual Kalman method based on the most plausible (Mm∗) model estimated states
and parameters (x̂m∗,k, θ̂m∗,k) .

Thereafter, this designed input is applied to the system generating measure-
ments data for the next stage, during which the SCKF is applied to provide
estimates of the states and the parameters (x̂m,k, θ̂m,k) for each model candidate
Mm,m = 1, . . . ,M and performing model assessment (equation (7.3)). Fig. 7.1
shows a diagram of basic elements and processes of the proposed algorithm and
Algorithm (3) shows the the pseudo-code for the proposed method.

7.1.2 Performance assessment

As in previous chapters, the quantitative assessment of the introduced method
of simultaneous model selection and parameter estimation is carried out with
performance assessment tools“Rise time” and “Settling time” as defined in sec-
tion 4.1.3 to quantify estimation performance under designed (Dual Kalman),
random, and optimal (OID-SCKF) inputs.

7.2 Results

In this section, we will present estimation and model assessment results based
on optimally designed inputs using OID-SCKF method (introduced in chapter 4)
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Figure 7.1: Schematic of the proposed model selection algorithm.

and compare them with those based on random inputs, as well as those based on
designed inputs using the Dual Kalman method (see chapter chapter:Dual).

We propose a network of three neuronal areas (as described in section 3.4) for
which the long-range connectivity parameters γ(i,j)

L
defining the architecture of

the neuronal network are given as:

γL,true =


0 40 30

30 0 50

60 0 0


Where γL,true represents the true model structure of the system under investiga-
tion.

For the problem at hand, the architecture of the network is considered unknown.
Thus, we suggest three candidate models defined by connectivity matrices and
apply our proposed method of model assessment and input design (design an
exogenous excitatory input I that drive all three neuronal areas) to estimate
connectivity matrices of model candidates and to select the most plausible model
structure.

The first model M1 is defined to have three unknown connectivity parameters
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Algorithm 3 Framework for model selection and input design

1: Initialization: Set initial states and parameters values x̂1(0) x̂2(0) and the
square-root of process and measurement noise covariances: SR1,0, SV1,0,SR2,0

and SV2,0.
2: Define the input space [Imin, Imax].
3: Initialization: Π(M1|z0) = Π(M2|z0) = . . . = Π(MM |z0) = 1/M
4: for s = 0 to S do . % for each stage s %
5: if s = 0 then . % First stage or time window%
6: Define a random initial input I0.
7: else
8: function Design Input(s,x̂m∗,k,m

∗) . % Using OID-SCKF method
or Dual Kalman method %

9: I∗s = max trace(FIMm∗)
10: end function
11: end if
12: for k = s ∗N to K = N + s ∗N do
13: Simulate model and collect measurements z

k

14: Apply SCKFr and get the states and parameters estimates x̂m,k for
each model candidate Mm,m = 1, . . . ,M

15: Update model probabilities Π(Mm|zk),m = 1, . . . ,M by performing
model assessment using equation (7.3)

16: end for
17: Identify the most plausible model Mm∗ : m∗ = max Π(Mm|zk),m =

1, . . . ,M
18: end for

(under-parametrized model structure):

γL,1 =


0 γ(1,2)

L
γ(1,3)
L

0 0 0

γ(3,1)
L

0 0


The second model M2 is defined to have five unknown connectivity parameters
(true model structure):

γL,2 =


0 γ(1,2)

L
γ(1,3)
L

γ(2,1)
L

0 γ(2,3)
L

γ(3,1)
L

0 0


The third model M3 is defined to have seven unknown connectivity parameters
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(over-parametrized model structure):

γL,3 =


0 γ(1,2)

L
γ(1,3)
L

γ(2,1)
L

0 γ(2,3)
L

γ(3,1)
L

γ(3,2)
L

γ(3,3)
L


Each model candidate Mm,m = 1, . . . , 3 had 36 hidden states (membrane po-
tentials, excitatory and inhibitory currents) in addition to pm unknown param-
eters, resulting in a total of 36 + pm quantities to be estimated within the aug-
mented state vector for each model candidate from three noisy observations (infra-

granular membrane potentials v
(i)
6 , i = 1, . . . , 3).

The proposed method was applied for a simulation length of 4 seconds with sam-
pling interval ∆t1 = 0.2 ms whereby a designed (Dual Kalman method), random,
or optimal (OID-SCKF method) input is applied for a time window of length
∆t2 = 500 ms. The input space over which the exogenous input I was designed
(or selected randomly) was defined over I ∈ [Imin, Imax] = [0.1, 0.45]. For statis-
tical assessment, a total of 25 independent Monte Carlo runs were made. The
summarized statistics about model selection (under designed, random and opti-
mal inputs) are listed in Table 7.1, which shows that the Dual Kalman (designed
input) and OID-SCKF (optimal input) methods identified the true model (M2)
25 times out of 25, whereas random inputs selection method failed to identify
the true model structure once out of 25 runs and selected the over-parameterized
model M3.

Table 7.1: Statistics of model selection over 25 Monte
Carlo runs.

M1 M2 M3

Designed
Input

0/25 25/25 0/25

Random
Input

0/25 24/25 1/25

Optimal
Input

0/25 25/25 0/25

Figs. 7.2, 7.3, and 7.4 show the means and 95% confidence intervals of the es-
timated connectivity parameters γ(i,j)

L
under designed (Dual Kalman), random,

and optimal (OID-SCKF) inputs for the first M1, second M2, and third M3

models respectively. The summarized statistics about the estimated connectivity
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parameters between areas γ(i,j)
L

(under designed, random, and optimal inputs)
and their rate of convergence are listed in Tables 7.2, 7.3, and 7.4 for M1, M2,
and M3 respectively.

By examining estimation results for M1 listed in Table 7.2, we can see that
estimated parameters under optimal inputs (OID-SCKF) were closest to true
values in terms of mean values across 25 runs, whereas Dual Kalman method
(designed input) scored faster convergence rates (smaller rise and settling times)
and tighter confidence intervals around the final value across the 25 simulations.

Table 7.3 list estimation statistics for modelM2 (representing the true structure
of the simulated system) which was correctly identified by the Dual Kalman
(designed inputs) and OID-SCKF (optimal inputs) methods as the true system
structure 100 % rate out of the total 25 simulations. Once more, the OID-SCKF
method (optimal inputs) showed superior estimation accuracy in terms of the
mean values across simulations. In terms of scored variance values across 25
simulations, the Dual Kalman did better than The OID-SCKF, however, from
Fig. 7.3 we can see that the standard error in the average value (95 % interval)
under optimal input case (shaded purple region) becomes tighter towards the
end of simulation time as noted in Fig. 7.3 for γ2,1

L (first column), γ3,1
L (second

column), and γ2,3
L (last column) for the optimal inputs case (shaded purple region)

for procedure time> 2.5 sec. Estimation under random inputs case showed wider
confidence intervals around the mean values and slower convergence rates as
indicated in Table 7.3 and shown in Fig. 7.3 (first row, green shaded regions).

As for model M3 (the over-parametrized model), some estimated parameters
showed high variability across trials and failed to converge properly to a given
value (marked by ∗∗ in Table 7.4). This is clearly evident in Fig 7.4 where the
parameters γ3,1

L (second column), γ3,2
L (third column), and γ3,3

L (last column) ex-
hibit wide confidence intervals (green, blue, and purple shaded regions) around
the mean values (green, blue, and purple solid lines). It is worthwhile to mention
that the two additional parameters γ3,2

L and γ3,3
L (true parameter value of 0) that

add to the actual model structure have affected the convergence of γ3,1
L (true

parameter value of 60) and one might conclude by solely examining these esti-
mation results without referring to model selection procedures that this model is
over-parametrized due to the high variability of some parameters across multiple
runs.
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Table 7.2: Statistics of the estimated connectivity pa-
rameters γ(i,j)

L
for the first model M1 averaged over 25

Monte Carlo runs.

Parameter Mean
Standard
deviation

Rise Time
(sec)

Settling
Time (sec)

Designed
Input

γ3,1
L 59.3 0.92 0.8 1.57

γ1,2
L 38.1 1.2 0.9 2.1

γ1,3
L 31.2 1.12 0.44 0.68

Random
Input

γ3,1
L 59.2 1.32 0.86 1.73

γ1,2
L 38.5 1.25 1 2.14

γ1,3
L 31 1.27 0.44 0.68

Optimal
Input

γ3,1
L 59.7 0.87 0.86 1.76

γ1,2
L 38.8 1.32 1 2.09

γ1,3
L 30.8 1.23 0.45 0.67

Table 7.3: Statistics of the estimated connectivity pa-
rameters γ(i,j)

L
for the first model M2 averaged over 25

Monte Carlo runs.

Parameter Mean
Standard
deviation

Rise Time
(sec)

Settling
Time (sec)

Designed
Input

γ2,1
L 32.2 1.76 0.38 0.56

γ3,1
L 59.3 0.92 0.8 1.57

γ1,2
L 38.1 1.19 0.9 2.15

γ1,3
L 31.2 1.12 0.44 0.67

γ2,3
L 47.4 1.85 1.37 2.49

Random
Input

γ2,1
L 32.3 2.13 0.38 0.57

γ3,1
L 59.2 1.32 0.86 1.73

γ1,2
L 38.5 1.24 1 2.14

γ1,3
L 31 1.27 0.44 0.68

γ2,3
L 47.4 2.3 1.28 2.51
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Optimal
Input

γ2,1
L 31.2 1.54 0.37 0.52

γ3,1
L 59.7 0.87 0.86 1.76

γ1,2
L 38.8 1.32 1 2.09

γ1,3
L 30.8 1.23 0.45 0.66

γ2,3
L 48.6 1.51 1.29 2.29

Table 7.4: Statistics of the estimated connectivity pa-
rameters γ(i,j)

L
for the first model M3 averaged over 25

Monte Carlo runs.
Convergence rates marked by ∗∗ denote parameters that
showed high variability across Monte Carlo runs.

Parameter Mean
Standard
deviation

Rise Time
(sec)

Settling
Time (sec)

Designed
Input

γ2,1
L 32.2 1.76 0.38 0.56

γ3,1
L 44 6.5 ∗∗ ∗∗
γ1,2
L 38.1 1.18 0.9 2.15

γ3,2
L 9.2 5 ∗∗ ∗∗
γ1,3
L 31.2 1.11 0.44 0.68

γ2,3
L 47.3 1.85 1.37 2.49

γ3,3
L 6.3 5.1 ∗∗ ∗∗

Random
Input

γ2,1
L 32.3 2.13 0.38 0.57

γ3,1
L 45.6 8 ∗∗ ∗∗
γ1,2
L 38.5 1.24 1 2.14

γ3,2
L 7.6 5.3 ∗∗ ∗∗
γ1,3
L 31 1.27 0.44 0.68

γ2,3
L 47.4 2.3 1.28 2.51

γ3,3
L 5.9 5.5 ∗∗ ∗∗

Optimal
Input

γ2,1
L 31.2 1.55 0.37 0.52

γ3,1
L 51.08 6.3 ∗∗ ∗∗
γ1,2
L 38.8 1.32 1 2.09
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γ3,3
L 5.7 4.8 ∗∗ ∗∗
γ1,3
L 30.8 1.23 0.45 0.67

γ2,3
L 48.6 1.51 1.29 2.29

γ3,3
L 1.8 3.2 ∗∗ ∗∗

Figure 7.2: Estimated connectivity parameters γ(i,j)
L

for the first model M1 in
terms of their means (solid lines) and a 95% confidence interval (shaded regions),
and the true parameter (red trace). Top: Under random input. Middle: under
designed input. Bottom: Under optimal input.

120



Figure 7.3: Estimated connectivity parameters γ(i,j)
L

for the first model M2 in
terms of their means (solid lines) and a 95% confidence interval (shaded regions),
and the true parameter (red trace). Top: Under random input. Middle: under
designed input. Bottom: Under optimal input.

Figure 7.4: Estimated connectivity parameters γ(i,j)
L

for the first model M3 in
terms of their means (solid lines) and a 95% confidence interval (shaded regions),
and the true parameter (red trace). Top: Under random input. Middle: under
designed input. Bottom: Under optimal input.
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7.3 Discussion

In this chapter, We addressed the problem of model assessment within the frame-
work of input design where we proposed a method that does not require repeated
experiments in which model fitting (parameters estimation) and model assess-
ment (model selection) are done in a single phase procedure. Given a pool of
model candidates M which represent competing model hypotheses of the in-
vestigated system, input design is employed to produce the most informative
observations about unknown parameters of the current most plausible model.
Model assessment is carried out by computing the posterior probability of a model
Π(Mm|zk) (at time k) among all model candidates and given a set of collected
observations, using Bayesian approaches to model selection. We demonstrated
the proposed method for a multi-neuronal-area model based on Jansen model for
cortical activity.

Given three candidate models defined by connectivity matrices (under-
parametrized, true, and over-parameterized model structures), the proposed
method of model assessment and input design was applied to estimate connectiv-
ity matrices of model candidates and to select the most plausible model structure.
For the input design part, the procedure was conducted with inputs generated
based on optimally designed inputs using OID-SCKF method, on random in-
puts, and on designed inputs using the Dual Kalman method. The investigated
multi-area neuronal model was assumed to consist of three neuronal areas driven
by the same input. The single input assumption was used to keep the input-
space as compact as possible in order to simulate the proposed method with the
OID-SCKF method in a reasonable time.

In terms of model assessment accuracy (Table 7.1), the proposed procedure when
combined with either OID-SCKF (optimal inputs) or the Dual Kalman (designed
inputs) had 100 % correct selection rate. Whereas, when combined with random
inputs, the procedure failed to identify the true model structure once out of 25
simulation runs.

In terms of estimation accuracy (Figs. 7.2, 7.3, and 7.4), and Tables 7.2, 7.3, 7.4)
the reported results are in line with those observed in chapter 6; parameter esti-
mations with the OID-SCKF method showed the best accuracy and were compa-
rable with those obtained with the Dual Kalman method, however, these gains
in estimation accuracy came at the cost of additional computational demands for
the OID-SCKF method. When compared with estimation under random inputs,
the Dual Kalman method performed better in terms of estimation accuracy and
convergence rates.

It is worth to mention that this single phase procedure when incorporated with
the Dual Kalman method could be appropriate for on-line applications in which
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one can benefit from the simultaneous model assessment tools along with designed
experiments that produce informative outcomes about model unknowns.
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Chapter 8

Estimation of Effective
Connectivity in The Visual
Cortex During a Picture-Naming
Task

There are three different patterns of brain connectivity that exist between dis-
tinct anatomically segregated brain regions. The first is formed by structural or
anatomical links such as fiber pathways between distant cortical areas, these are
refereed to as “Structural connectivity” [82]. Another pattern type is referred
to as “Functional connectivity” which is defined as the temporal dependency of
neuronal activation patterns of anatomically separated brain regions [82]. It re-
flects statistical dependencies between distinct and distant brain regions and can
be quantified with statistical measures, such as correlations, coherence, transfer
entropy, or phase locking [82, 83]. lastly, “Effective connectivity” which may be
viewed as the union of structural and functional connectivity, as it describes the
influence one cortical region exerts upon another, thus reflecting causal inter-
actions between activated brain regions [82]. It can be quantified by time series
causality measures such as Granger causality or by specification of parameterized
models to test hypotheses concerning coupling architectures between different
brain regions [29, 84].

In this chapter, we address Kalman-based estimation of effective connectivity be-
tween cortical areas residing in the visual cortex from experimental data. The
experimental data1 are recorded with dense-EEG system (256 electrodes) from
subjects while performing a cognitive task, namely the Picture-Naming task.

1Made available by Prof. Fabrice Wendling, Reaserch Director at Inserm 1099 - Signal and
Image Processing Laboratory - University of Rennes 1
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From recorded EEG data, source localization techniques are applied to solve the
inverse EEG problem in order to estimate the the location and strengths of elec-
tric current sources, generated by macro-columns of pyramidal cells lying in the
cortical mantle, that generate the observed scalp EEG electric potentials. The
inverse-problem is solved based on anatomical segmentation of structural MRI
images to obtain the time series of reconstructed sources corresponding to 148
cortical regions (for the detailed data acquisition procedures and inverse-problem
solution, the reader is advised to refer to [85, 86]. For our application, the corti-
cal areas of interest are chosen from the visual cortex, namely the primary visual
cortex (V1) and the secondary visual cortex (V2) from both left and right hemi-
spheres. The cortical areas are modeled with the multi-neuronal-area Jansen
model for cortical activity (section 3.4). We aim to estimate the effective con-
nectivity between these areas based on Cubature Kalamn filter and Cubature
Kalman smoother as detailed in next sections, as we describe data collection and
source localization procedures.

8.1 Picture Naming Task

As in [86], the research group at University of Rennes performed the cognitive
task as follow: Twenty one right-handed healthy volunteers (11 women: mean
age 28 year; min: 19, max: 40 and 10 men: mean age 23 years; min: 19, max:
33), with no neurological disease, were involved in the study. Participants were
asked to name at a normal speed 148 displayed pictures on a screen. The images
were selected from a database of 400 pictures and were used during session about
eight minutes. All pictures were shown as black drawings on a white background.
Order of presentation was randomized across participants. Naming latencies were
determined as the time between picture onset and the beginning of vocalization
recorded by the system. Oral responses were recorded and then analyzed to set
the voice onset time. A typical trial started with the appearance of an image
during 3 seconds followed by a jittered inter-stimulus interval of 2 or 3 seconds
randomly. Most responses were given while the image was still present on the
screen. Errors in naming were discarded for the subsequent analysis [86]. The
task structure is illustrated in Fig. 8.1.

8.2 Data

The brain activity was recorded using dense-EEG, 256 electrodes. The main fea-
ture of this system is the large coverage of the subject’s head by surface electrodes
allowing for the improved analysis of the intracerebral activity from noninvasive
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Figure 8.1: Picture-naming paradigm: Picture-naming task. Each picture was
presented for 3 seconds interval during which the participants were required to
name (response) the stimulus appearing on the computer screen. Picture stimuli
were separated by 2 or 3 seconds intervals.

scalp measurements, as compared with 32- to 128-electrodes standard systems.
EEG signals were collected with a 1 kHz sampling frequency and band-pass fil-
tered between 3 and 45 kHz [86].

8.3 Source Localization

According to the linear discrete equivalent current dipole model, EEG signals
s(k) measured from q channels can be expressed as linear combinations of p
time-varying current dipole sources d(k):

S = G.D + e (8.1)

Where S is a q × T matrix containing data measurements at different times
from different channels s(j, k), j = 1, . . . , q; k = 1, . . . , T , D is p × T matrix of
dipole moments at different time instants at different dipole positions d(i, k), i =
1, . . . , p; k = 1, . . . , T , e is an additive noise, and the gain matrix G (q × p) is
often referred to as the “lead-field” matrix and it describes the current flow for a
given electrode through each dipole position [87].

The inverse problem consists in finding an estimate D̂ of the dipolar source pa-
rameters (typically, the position, orientation and magnitude), given the EEG
measurement matrix S and the gain matrix G. This matrix can be computed
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from a multiple layer head model (volume conductor) and from the EEG elec-
trodes’ positions on the scalp. For instance, the Boundary Element Method is a
numerical method classically used in the case of realistic head models [86].

As this problem is ill-posed (p� q), physical and mathematical constraints have
to be added to obtain a unique solution among the many solutions that minimize
the residual term in the fitting of measured EEG signals. Using segmented MRI
data, the source distribution can be constrained to a field of current dipoles
homogeneously distributed over the cortex, and normal to the cortical surface [86].

Technically, in the source model, it is assumed that EEG signals are generated
by macro-columns of pyramidal cells lying in the cortical mantle and aligned
orthogonally with respect to its surface. Thus, the electrical contribution of each
macro-column to scalp electrodes can be represented by a current dipole located
at the center of gravity of each triangle of the 3-dimensional mesh and oriented
normally to the triangle surface. Using this source space, the weighted Minimum
Norm Estimate (wMNE) method only estimates the moment of dipole sources.
The wMNE compensates for the tendency of classical MNE to favor weak and
surface sources. This is done by introducing a weighting matrix WS [85, 86]:

D̂wMNE = (GTWSG+ λIe)
−1GTWSS (8.2)

Where matrix WS adjusts the properties of the solution by reducing the bias
inherent to MNE solutions, WS is a diagonal matrix built from matrixG with non-
zero terms inversely proportional to the norm of the lead field vectors. The value
of λ is computed relatively to the signal to noise ratio for each signal computed
as the ration between the post-stimuli period to the pre-stimulus (200 ms), and
Ie is the identity matrix.

8.4 Problem Definition

Given the estimated current dipole sources D̂ for the 148 cortical regions from
observed EEG data, we selected those that correspond to cortical areas residing
in the visual cortex, namely the primary visual cortex (V1) and the secondary
visual cortex (V2) from both left and right hemispheres (Fig. 8.2). The cortical
areas are modeled with the multi-neuronal-area Jansen model for cortical activity
(section 3.4).

Given the state-space formulation of multi-area Jansen model:

Process Equation: ẋ(t) = f(x(t), I) + Γ (8.3)

Measurement Equation: z
k

= h(x
k
) + w

k
(8.4)
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Figure 8.2: Cortical areas of interest.

Where x(t) ∈ Rn is the state vector of the dynamic system at time t (n is the
total number of states in all considered neuronal areas) , I is the exogenous input,
z
k
∈ Rd is the measurement at discrete time k (d is the size of measurement

vector), f : Rn × R → Rn is the drift coefficient, h : Rn × R → Rd is the
measurement function, Γ ∈ Rn and w

k
∈ Rd are vectors of random Gaussian

noise with zero mean and covariance Q and R respectively.

The current dipole measurements z
k

(from the estimated current dipole sources

D̂) are related to model states through the measurement function h(x
k
) which

relates the current dipole source (z
k
) to membrane potentials. A common method

that relates a current source (ι) to potential (Φ) in a homogeneous conductor is
given by [88, 89]:

Φ(r) =
ι

4πσr
(8.5)

Where ι is a point current source, Φ(r) is the potential at distance r, and σ is
the medium conductivity. Thus, given that we are assuming that the activity
of infra-granular layer is considered as the main output in a cortical area [68].
The measurement function h(x

k
) depends on the infra-granular layer membrane

potentials v
(i)
6 , where i = 1, . . . , 4 denotes cortical areas, and it is given by:

h(x
k
) =


4πσr v

(1)
6

4πσr v
(2)
6

4πσr v
(3)
6

4πσr v
(4)
6


Where r = 1.2 - 1.5 mm is the distance from the cortical surface to infra-granular
layer pyramidal cells, and σ = 0.3 - 0.4 S/m is the cortical grey matter conduc-
tivity. -

128



We consider a network consisted of four cortical areas (V1 and V2 from both
hemispheres), in which each area is receiving an excitatory input at its granular
level from the infra-granular layer of another area. The strength of such exci-
tatory activity is defined by a connectivity parameter γ(i,j)

L
(long-range coupling

parameter from area i to area j) (see section 3.4). These connectivity parameters
γ(i,j)
L

define the architecture of the neuronal network and they can be expressed
as “connectivity matrix”:

γL =


γ(1,1)
L

· · · γ(1,4)
L

...
...

...

γ(4,1)
L

· · · γ(4,4)
L


Where the rows denote area i and the columns denote area j.

The problem at hand is defined to estimate the effective connectivity (γ(i,j)
L

)
between the cortical areas using Cubature Kalman filter and smoother (SCKF and
SCKS) as an estimation tool and under the assumption that the cortical areas are
modeled by the Jansen model. In addition to estimating the unknown effective
(inter-areas) connectivity, we will estimate intra-area connectivity (γ1, . . . , γ5)
and the unknown inputs I which considered to account for the total unmodeled
afferent excitation originated from other cortical areas. We assumed that all
areas have similar intra-area connections and that these connections are assumed
to be as a fraction of one constant, C, where γ1 = C, γ2 = 0.8C, γ3 = 0.25C, γ4 =
0.25C, γ5 = 0.01C (see section 3.4 and Table 3.2). In order to keep the number
of unknowns as low as possible, we assumed that V1 areas in the left and right
hemispheres share the same input, and left and right V2 areas share the same
input.

In this application, we considered as an estimation procedure applying the
SCKF forward pass (see section 2.3.3) followed by SCKS backward pass (see
section 2.3.4) to obtain smoothed estimates (since we are dealing with unknown
inputs to cortical areas). Since the initial conditions of this system are unknown,
this procedure was iterated five times as in [30] in order to estimate the initial
conditions and improve parameters estimates.

8.5 Problem Setup

We consider two scenarios (models M1 and M2) with reciprocal connections
(in order to keep the number of unknowns as low as possible) that differ in the
number of assumed inter-areas connections.
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8.5.1 First Scenario

For model M1, the assumed inter-areas connectivity is shown in Fig. 8.3 with
reciprocal connections as represented in the connectivity matrix γL:

γL =


γ(1,1)
L

γ(1,2)
L

γ(1,3)
L

γ(1,4)
L

γ(2,1)
L

γ(2,2)
L

γ(2,3)
L

γ(2,4)
L

γ(3,1)
L

γ(3,2)
L

γ(3,3)
L

γ(3,4)
L

γ(4,1)
L

γ(4,2)
L

γ(4,3)
L

γ(4,4)
L

 =


0 G3 G1 G5

G3 0 G5 G1

G2 G4 0 G3

G4 G2 G3 0


Where the assumed reciprocal connections are:

G1 = γ(1,3)
L

= γ(2,4)
L

G2 = γ(3,1)
L

= γ(4,2)
L

G3 = γ(1,2)
L

= γ(2,1)
L

= γ(3,4)
L

= γ(4,3)
L

G4 = γ(3,2)
L

= γ(4,1)
L

G5 = γ(1,4)
L

= γ(2,3)
L

Figure 8.3: First scenario: model M1 inter-areas connections. Blue arrows: G1,
black arrows: G2, red arrows: G3, green arrows: G4, purple arrows: G5.
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Figure 8.4: Second scenario: model M2 inter-areas connections. Blue arrows:
G1, black arrows: G2, red arrows: G3, purple arrows: G4.

8.5.2 Second Scenario

Fig. 8.4 shows inter-areas connectivity between cortical areas for modelM2, the
connectivity matrix γL is defined as:

γL =


γ(1,1)
L

γ(1,2)
L

γ(1,3)
L

γ(1,4)
L

γ(2,1)
L

γ(2,2)
L

γ(2,3)
L

γ(2,4)
L

γ(3,1)
L

γ(3,2)
L

γ(3,3)
L

γ(3,4)
L

γ(4,1)
L

γ(4,2)
L

γ(4,3)
L

γ(4,4)
L

 =


0 G3 G1 0

G3 0 0 G1

G2 0 0 G4

0 G2 G4 0


Where the assumed reciprocal connections are:

G1 = γ(1,3)
L

= γ(2,4)
L

G2 = γ(3,1)
L

= γ(4,2)
L

G3 = γ(1,2)
L

= γ(2,1)
L

G4 = γ(3,4)
L

= γ(4,3)
L

8.6 Results

The available dataset consisted of the estimated current dipole sources D̂ over
820 ms sampled at dt = 1 ms for 148 cortical regions from observed EEG data

131



collected from one subject during Picture-Naming task. The task was repeated
over 60 trials.

In this section, we will present estimation results based on repeated SCKF-SCKS
algorithm of effective connectivity between primary and secondary visual cortices
(V1 and V2) from left and right hemispheres.

8.6.1 First scenario

The augmented state vector has a total of 56 states and is composed of: 48 hidden
neuronal states (Jansen model states for all four areas), six unknown model pa-
rameters corresponding to one unknown intra-area connection (parameter C) and
five inter-areas connections (parameters G1, . . . , G5), and two unknown inputs (I1

and I2), to be estimated from four current dipole observations.

Fig. 8.5 shows the box-plots of the estimated effective connections across 60 trials
for the first scenario.

Figure 8.5: First scenario: Box-plots of the estimated intra-area connectivity
variable C and the estimated effective (inter-areas) connections G1, . . . , G5 over
60 trials. Each box-plot is based on 60 data trials. The horizontal red lines inside
the boxes are the medians, The boxes contain 50% of the trials where the lower
and upper edges of each box are the 25th and 75th percentiles, the ”whiskers”
above and below the box indicate the range of the samples (the locations of
minimum and maximum sample data points that are not considered outliers),
and the red plus signs are the outliers.
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8.6.2 Second scenario

The augmented state vector has a total of 55 states and is composed of: 48 hidden
neuronal states (Jansen model states for all four areas), five unknown model pa-
rameters corresponding to one unknown intra-area connection (parameter C) and
five inter-areas connections (parameters G1, . . . , G4), and two unknown inputs (I1

and I2), to be estimated from four current dipole observations.

The box-plots of the estimated effective connections across 60 trials for the second
scenario are shown in Fig. 8.6.

Figure 8.6: Second scenario: Box-plots of the estimated intra-area connectivity
variable C and the estimated effective (inter-areas) connections G1, . . . , G4 over
60 trials.

8.6.3 Model Selection

Model assessment is carried out by computing the posterior probability of a
model Π(Mm|zk) (at time k) among proposed model candidates and given a set
of collected observations, using Bayesian approaches to model selection [77, 78,
79, 80]:

Π(Mm|zk) =
p(zk|Mm)Π(Mm|zk−1)
M∑
m=1

p(zk|Mm)Π(Mm|zk−1)

(8.6)
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Where p(zk|Mm) is the likelihood probability density function (PDF), and
Π(Mm|zk−1) is the prior probability of model Mm.

For model candidatesM1 andM2, the likelihood function p(zk|Mm),m = 1, 2 is
computed from estimated model states and parameters at time k assuming that
the likelihood function is normally distributed [79, 81]:

p(zk|Mm) ≈ 1

(2π)d/2(detΣk)1/2
exp(−1

2
rTkΣ−1

k rk) (8.7)

Where r is the residual error between the observed measurements and the esti-
mated measurements (computed from the Kalman update step, see section 2.3
equation (2.43)) at time k:

rk = zk − ẑk (8.8)

And Σk = STZZ,kSZZ,k is the corresponding error covariance matrix (computed
from the Kalman update step, see section 2.3 equation (2.44)).

The summarized statistics about model selection are listed in table 8.1, which
shows that (M2) 25 times out of 25,

Table 8.1: Statistics of model selection over 60 trials.

M1 M2

Selection
Rate

26/60 34/60

8.7 Discussion

In this chapter, we addressed estimation of effective connectivity between cortical
areas residing in the visual cortex from experimental data. The cortical areas of
interest were chosen from the visual cortex, namely the primary visual cortex (V1)
and the secondary visual cortex (V2) from both left and right hemispheres and
were modeled with the multi-neuronal-area Jansen model for cortical activity.
The estimation procedure was based on repeated SCKF-SCKS algorithm with
current dipole sources D̂ sering as observations estimated from observed EEG
data (by solving the EEG inverse-problem) collected from one subject during
Picture-Naming task (overall of 60 trials). We considered two models (M1 and
M2) with reciprocal connections that differ in the number of assumed inter-areas
connections. Furthermore, model assessment was performed and carried out using
Bayesian approaches to model selection in order to statistically choose the best
fitting model of experimental data.
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In terms of estimation accuracy (Figs. 8.5 and 8.6), the estimated parameters for
the first scenario M1 showed more consistency across trials than those for the
second scenario M2. This is interpreted from the tighter box-plots of estimated
parameters (C, G1, G2, G3, and G4) for M1 (Fig. 8.5). The parameter G3

(assumed connection V1-to-V1 in the first model, assumed connection V1-to-V1
and V2-to-V2 in the second model) showed higher variability across trials for
both models (wider box-plot).

In terms of model assessment (Table 8.1), M1 was chosen as the best model 34
times out of 60 (56.66% selection rate), and M2 was selected 26 times out of 60
(43.33% selection rate).

The reported results suggest a moderate tendency towardsM1, however, further
propositions of model candidates with non-reciprocal connections are highly re-
quired, specifically, non-reciprocal V1-to-V1 and V2-to-V2 connections as well
as cross hemisphere V1-to-V2 connections might present clearer insight of the
connectivity structure between these cortical areas.
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Chapter 9

Improving Estimation Accuracy
with Hybrid Cubature Kalman
Filtering

Representations of physiological processes, such as neural systems, often admit
state-space models that are of the continuous-discrete hybrid types (continuous-
time process dynamics and discrete time measurements). For estimation of these
systems, therefore, the hybrid Continuous-Discrete Cubature Kalman Filter (CD-
CKF), introduced as an extension of the CKF for mixed systems, seems to be
more natural. The CD-CKF discretizes the continuous process equation in SDE
form using the Itô-Taylor expansion of order 1.5 and transforms it to stochas-
tic difference equation in discrete time. This transformation will result in a
state-space model with both process and measurement equations expressed in
stochastic difference equations in discrete time.

In the chapter, we address the accuracy of state and parameter estimation us-
ing CKF and CD-CKF techniques in the context of neural state estimation from
EEG and fMRI recordings as specific examples of physiological dynamical system
modeling. Starting with nonlinear state-space simulation models, we elaborate
estimation performance while varying conditions related to (i) the observation
sampling frequency, (ii) the observation signal-to-noise ratio and (iii) the struc-
ture of the additive noise process underlying the state dynamics. In particular,
we aim to highlight those situations where an added benefit can be obtained by
explicitly employing a hybrid filtering (CD-CKF).

We pay specific attention to the effect of the sampling interval of the observations
principally because it relates to the inherent time constants (speed of dynam-
ics) of the underlying continuous processes and hence constrains the modelers
ability to recover detailed dynamics from observations obtained using a given
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recording modality. We also compare the accuracy of the CD-CKF and CKF
techniques in estimating the neural activity and parameters for simulated neural
models in cases where the observation signal-to-noise ratio are decreased, and/or
the Gaussian process noise assumptions are violated. Low signal to noise ratios
are common for modalities that record electrical potentials at a location distant
from the source (depth electrodes, scalp EEG) due to spatial filtering (smearing
(∼0.5 cm2) and activity aggregation across numerous neural subtypes (leading
to unmodeled signal components). Finally, and since Kalman-based techniques
invariably assume that process noise is of Gaussian nature (for a continuous time,
the derivative of the state is driven by a Wiener process), we aim to assess, us-
ing Monte-Carlo simulations, the performance of both CKF and CD-CKF when
noise structures violate Gaussianity. In neural estimation, non-Gaussian noise
models are common. Examples include the additive noise in synaptic dynam-
ics (approximating in vivo conductance fluctuations) that has specific structures
(OrnsteinUhlenbeck process [90]), and the afferent neural activity impinging onto
a given population, that has been reported to possess an un-symmetric tailed dis-
tribution [91, 92, 93, 94, 95, 96].

9.1 Problem Definition

Given the state-space model of a given nonlinear dynamical system in continuous-
discrete form:

Process Equation: ẋ(t) = f(x(t), t) +
√

QΓ (9.1)

Measurement Equation: z
k

= h(x
k
, k) + w

k
(9.2)

Where x(t) ∈ Rn is the state of the dynamic system at time t, z
k
∈ Rd is the

measurement at discrete time instance k, f : Rn×R→ Rn is the drift coefficient,
h : Rn×R→ Rd is the measurement function, Γ ∈ Rn is a Gaussian noise process
assumed to be independent of states and measurement noise, Q ∈ Rn×n is the
diffusion coefficient, w

k
∈ Rd is a vector of random Gaussian measurement noise

with zero mean and covariance Rk.

We seek to compare the estimation accuracy between CKF and CD-CKF tech-
niques (sections 2.3 and 2.4). Starting with nonlinear state-space simulation
models, we elaborate estimation performance while varying conditions related to
(i) the observation sampling frequency, (ii) the observation signal-to-noise ratio
(SNR) and (iii) the structure of the additive noise process underlying the state
dynamics. In particular, we aim to highlight those situations where an added
benefit can be obtained by explicitly employing a hybrid filtering (CD-CKF).

In order to apply the CKF, the continuous-discrete state-space model in equa-
tions (9.1) and (9.2) is transformed to a pair of stochastic difference equations by
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discretizing the continuous-time SDE process equation (equation (9.1)) using the
LL method (as described in section 2.3). Whereas, the formulation of the CD-
CKF is inherently accounting for the continuous-time process equation. States
and parameters estimation are carried out with square-root versions of both CKF
and CD-CKF (sections 2.3.3 and 2.4.2) since they have improved numerical ac-
curacy.

9.2 Simulation Data

9.2.1 Conductance-Based Neuronal Model

We consider a single neuronal area modeled with conductance-based neuronal
model (see section 3.3.2). The neuronal area is composed of three layers with
a total of 9 hidden internal states including the membrane potential, excitatory
and inhibitory conductances with the membrane potential of the infra-granular
layer is considered as observations.

We address estimation performance of Kalman filters (CKF and CD-CKF) while
varying simulation conditions related to:

• Observation sampling frequency: Measurements collection from this model
is carried out by simulating the system with low sampling interval ∆t =
0.01 ms, then they are re-sampled at different high sampling intervals dt =
0.1, 0.5, 1, 2, 4, 8 ms.

• Observation signal-to-noise ratio (SNR): Measurement data was generated
by this model with different levels of background noise. A total of eight
cases were taken into consideration to simulate conditions for a range of
SNR (Table 9.1). The SNR is defined as:

SNRdB = 10 log10

(
Psignal

Pnoise

)
= 10 log10

(
E[V 2

signal]

σ2
noise

)
(9.3)

Where P is the average power, E[V 2
signal] is the mean squared value of output

amplitude, and σ2
noise is the variance of the noise.

Table 9.1: SNR values in dB over the observation signal
(membrane potential of infra-granular layer).

Case 1 2 3 4 5 6 7 8

SNR (dB) 4 7 8 9 11 12 14 18
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• Structure of the additive noise process: Different noise processes other than
the Gaussian process are considered to affect the dynamics of the system,
as described in the subsequent subsections.

Additive White Noise

For the case where the assumed additive noise has a Gaussian distribution, ap-
plying the Itô-Taylor expansion of order 1.5 to the process equation over the time
interval (t, t+ ∆t) yields [3]:

x
k+1

= f
d
(x

k
, k) +

√
Qw + (Lf(x

k
, k))y (9.4)

Where:

f
d
(x

k
, k) = x

k
+ ∆tf(x

k
, k) +

1

2
∆t2L0f(x

k
, k) (9.5)

L0 and L are two differential operators defined as:

L0 =
∂

∂t
+

n∑
i=1

fi
∂

∂xi
+

1

2

n∑
j=1

n∑
p=1

n∑
q=1

√
Qpj

√
Qqj

∂2

∂xp∂xq

Where fi denotes the ith element of function vector f .

And the term Lf denotes a square matrix with its (i, j)th element being
Ljfi, (i, j = 1, . . . , n):

Ljfi =
n∑
p=1

√
Qpj

∂fi
∂xp

(w,y) is a pair of correlated n-dimensional Gaussian random variables, which
can be generated from a pair of independent n-dimensional standard Gaussian
random variables (u1,u2) as follows:

w =
√

∆tu1

y =
1

2
∆t3/2(u1 +

u2√
3

)

Accordingly, the correlated Gaussian random variables (w,y) have the following
three covariance matrices (with In being the identity matrix of size n× n):

E[wwT ] = ∆tIn

E[wyT ] =
1

2
∆t2In

E[yyT ] =
1

3
∆t3In
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The model is simulated by integrating the state-space model (equations (9.1) and
(9.2)) using IT-1.5 discretization method for SDE as described above, and obser-
vations z

k
were collected with sampling interval ∆t by applying equation (9.2).

Additive Colored Noise

We will describe the process model for the case where the additive noise is colored
noise. The SDE process equation is formulated as:

ẋ(t) = f(x(t), t) + Ψ (9.6)

Where Ψ is filtered white noise.

In order to be able to simulate this model with colored noise using the IT-1.5
discretization method for SDE, we augmented the state vector to include the
colored noise as state variables driven by white noise. The augmented state
vector becomes:

xaug = [ x Ψ ]
T

Using the augmented vector notation, the process equation is defined as:

ẋaug(t) = faug(xaug(t), t) +
√

ΘΓ (9.7) ẋ

Ψ̇

 =

 f(x(t), t) + Ψ

fΨ(t)

+
√

ΘΓ (9.8)

Where

fΨ(t) = − 1

α
Ψ (9.9)

Θ =

 0 0

0 1
α2 Q

 (9.10)

And Q is the covariance matrix of the white noise process driving the colored
noise vector Ψ, and α is a constant that determines the cutoff frequency of the
colored noise.

The aforementioned reformulation of the process equation allows the expression
of affected model states with additive colored noise in terms of a white noise
process. By augmenting the state vector with additional variables Ψ and setting
the process function faug to act as a low-pass filter of the white noise process for
variables Ψ, and then adding these variables Ψ to the states without the model
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sates being directly affected by the white noise process. The state-space model
for the additive colored noise case becomes:

Process Equation: ẋaug(t) = faug(xaug(t), t) +
√

ΘΓ (9.11)

Measurement Equation: z
k

= h(xaug
k
, k) + w

k
(9.12)

Where xaug(t) ∈ R2n is the state of the dynamic system at time t, z
k
∈ Rd

is the measurement at discrete time instance k, faug : R2n × R → R2n is the
drift coefficient, h : R2n × R → Rd is the measurement function, Γ ∈ R2n is a
Gaussian noise process assumed to be independent of states and measurement
noise, Θ ∈ R2n×2n is the diffusion coefficient, w

k
∈ Rd is a vector of random

Gaussian measurement noise with zero mean and covariance Rk.

Now, as the state-space model is generally reformulated as a system driven by
additive Gaussian noise, the model is simulated by integrating the state-space
model (equations (9.11) and (9.12)) using IT-1.5 discretization method for SDE
as same as in section 9.2.1, and observations z

k
were collected with sampling

interval ∆t by applying equation (9.12).

Other Types of Noise Processes

In order to examine the effect of Gaussianity assumption for the noise structure in
neural model on the performance of Kalman filter in estimating neuronal hidden
states, we assumed that the actual continuous system could be driven by different
types of noise processes whereas these processes are assumed to be a Wiener
process in the Kalman setup. The system will be examined under the following
noise types:

• Poisson process.

• Exponential process.

• Gamma process.

• Low frequency noise.

The simulation of a given model driven by Poisson, Exponential and Gamma
noise processes is carried out under the assumption that these noise processes are
the resultant discrete processes after the discretization of the continuous process
equation; that is we are assuming that by discretizing the process equation we
do not have any prior knowledge about what kind of original continuous noise
process could produce these discrete noise processes. Hence, in order to simulate
such system driven by these noise types, the continuous system will be discretized
with the LL method and the noise process will be added as a discrete process to
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the discrete dynamics. Thus, given the continuous time dynamics of the system
without the noise term:

ẋ(t) = f(x(t)) (9.13)

The discrete version of this ODE system by the LL method is given by [97]:

x
k
≈ x

k−1
+ J −1

k−1
[e(J

k−1
∆t) − Ie ]f(x

k−1
) (9.14)

Where J
k

is the Jacobian of f at discrete time k and ∆t is the time interval
between samples, and Ie is the identity matrix.

Given this discrete version of the continuous system dynamics, we can add the
noise from a discrete process to get a process equation with additive noise as
follow:

x
k

= x
k−1

+ J −1
k−1

[e(J
k−1

∆t) − Ie ]f(x
k−1
, k − 1) + Ω (9.15)

Where Ω represents a discrete Poisson, Exponential or Gamma process.

The state-space representation in discrete time for these cases is:

Process Equation: x
k

= x
k−1

+ J −1
k−1

[e(J
k−1

∆t) − Ie ]f(x
k−1

) + Ω (9.16)

Measurement Equation: z
k

= h(x
k
, k) + w

k
(9.17)

Where x
k
∈ Rn is the state vector of the dynamic system at discrete time time k,

z
k
∈ Rd is the measurement at discrete time instance k, h : Rn × R→ Rd is the

measurement function, Ω ∈ Rn is a discrete noise process, w
k
∈ Rd is a vector of

random Gaussian noise.

The model is simulated by integrating the state-space model (equations (9.16)
and (9.17)) as described above for the cases where the system is assumed to be
driven by Poisson, Exponential and Gamma noise processes. Observations z

k

were collected with sampling interval ∆t by applying equation (9.17).

In addition, we will consider the case where the system is driven by very slow
varying noise which is considered as filtered white noise. This model will be
simulated in the same manner as the colored noise case was simulated (see sec-
tion 9.2.1) but by varying the constant α in the covariance matrix Θ in order
to produce noise process having frequency components in the range of 1–5 Hz.
This type of slow noise is aimed to test the performance of Klaman filters for
situations in which the frequency components of the noise are mainly focused in
the operational band of the system (the 1–5 Hz band is the frequency range of
the system output of the conductance-based neuronal model).

9.2.2 Hemodynamic Model

In simulating the hemodynamic model (see section 3.5), the continuous time
dynamics are assumed to be driven by Wiener noise processes. The neural activity
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took the shape of Gaussian-bump functions with different amplitudes. The IT-1.5
discretization method with a simulation time step of ∆t = 0.1 sec was adopted
to generate the continuous observation BOLD signal, which was then artificially
re-sampled at the repeat time (TR = 1 sec). The states, observation, and inputs
to the model are assumed to be driven by random noise having precisions similar
to those reported in [30].

The blind deconvolution procedure was applied for two scenarios: (a) only the
input is unknown, and (b) the input as well as two model parameters (rate of
signal decay κ and rate of feedback regulation λ) are unknown.

For the estimation problem, linear interpolations between successive samples were
obtained at uniform time steps (dt = 0.2, 0.5 sec) and are utilized as effective
discrete-time observations. Subsequent estimation consisted of a forward pass
using the square-root CKF and square-root CD-CKF then a backward smooth-
ing pass (namely SCKS and SCD-CKS). Since the unknown quantities are the
input (first scenario) as well as two parameters (second scenario), the backward
pass is necessary to improve on the estimates of the forward pass, as reported
in [30]. Furthermore, estimation of unknown parameters (second scenario) was
constrained to specific intervals (rate of signal decay κ ∈ [0.6 − 0.9] and rate of
feedback regulation λ ∈ [0.3 − 0.5]) and were initialized randomly within these
intervals and sampled from uniform distributions.

9.3 Performance assessment

The performance of CKF and CD-CKF was evaluated as the accumulative mean
square error (MSE) of all normalized states over a total of 100 Monte-Carlo
simulations. For a state vector x ∈ Rn, the MSE is defined as:

MSE =
1

nMK

M∑
m=1

K∑
k=1

n∑
i=1

(
xreal
i,k − x̂i,k,m

)2

(
max(xreal

i )−min(xreal
i )
)2 (9.18)

Where K is the length of the total simulation time vector, M is the total number
of Monte Carlo runs, n is the size of the state vector x, xreal

i,k is the true ith state at

time k, x̂i,k,m is the estimated ith state at time k in the mth Monte Carlo run, and(
max(xreal

i )−min(xreal
i )
)2

is a normalizing factor and it is defined as the square
of the difference between the maximum and minimum true values of the ith state.
This factor is introduced in order to make all states magnitude in [0, 1] range.

Another assessment quantity for performance evaluation is the squared error (SE)
ratio between the two filters. For a state vector x ∈ Rn, The SE ratio for the
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mth, (m = 1, . . . ,M) Monte Carlo run (Rm) is defined as follow:

Rm =
(SEm)CD-CKF

(SEm)CKF
, m = 1, . . . ,M (9.19)

Where the squared error (SE) of each filter is defined as:

SEm =
1

nK

K∑
k=1

n∑
i=1

(
xreal
i,k − x̂i,k,m

)2

(
max(xreal

i )−min(xreal
i )
)2 (9.20)

Where K is the length of the total simulation time vector, , n is the size of the
state vector x, xreal

i,k is the true ith state at time k, x̂i,k,m is the estimated ith

state at time k in the mth Monte Carlo run, and
(
max(xreal

i ) −min(xreal
i )
)2

is a
normalizing factor.

Finally, a deviation analysis to examine the inaccuracy rates of each filter by
introducing probability of inaccuracy metric that will be used as a measure of
the inaccuracy of a given filter. The filer is said to be inaccurate when the
normalized error between estimated and real states exceeds 20%. The probability
of inaccuracy (PI) measure is regarded as the probability of the obtaining an
inaccurate state estimate, that is, the estimated states being 20% far from the
true states. It can further be considered as the total fraction of time when the
estimated states were 20% far away from the true states. The probability of
inaccuracy (PI) measure is defined as:

PI =
1

nMK

M∑
m=1

K∑
k=1

n∑
i=1

U

(xreal
i,k − x̂i,k,m
xreal
i

)2

> β2

 (9.21)

Where K is the length of the total simulation time vector, M is the total number
of Monte Carlo runs, n is the size of the state vector x, xreal

i,k is the true ith state

at time k, x̂i,k,m is the estimated ith state at time k in the mth Monte Carlo run,
β = 0.2 is the accuracy threshold, and the function U [.] is the Heaviside function
defined as:

U
[
s2 > β2

]
=

{
0 if s2 < β2

1 if s2 > β2 (9.22)

9.4 Results

9.4.1 Single Area Conductance-Based Neuronal Model

The single neuronal area model has a total of 9 hidden states including the
membrane potential, excitatory and inhibitory conductances to be estimated from

144



noisy observations considered as the membrane potential of the infra-granular
layer. The model was simulated with different levels of background noise (total
of eight SNR cases as in Table 9.1)for a simulation length of 200 ms with sampling
interval ∆t = 0.01 ms using IT-1.5 discretization method as described above. For
each SNR case, measurement data were collected with sampling interval ∆t and
then were re-sampled at different sampling time steps dt = 0.1, 0.5, 1, 2, 4, 8 ms,
in order to examine the effect of decreasing the sampling rate on the estimation
error.

The square-root CKF and square-root CD-CKF filters were applied, in which
the measurement update for the observations in both filtering cases is obviously
dictated by the assumed sampling rate. For the CKF, the time update occurs in
concurrence with the measurements every dt millisecond (see section 2.3.3). For
the CD-CKF, however, the time update occurs every δ milliseconds where each
sampling interval dt is divided into m steps of length δ, where δ = dtm (m is
taken to equal 5) (see section 2.4.2).

The performance of both filters was evaluated for different noise scenarios (6
cases, white, colored, Poisson, Exponential, Gamma, and Low frequency noise),
several sampling rates (6 different dt cases), and signal-to-noise ratios (8 SNR
cases). We will consider in detail two main noise scenarios (white and colored
noise).

White Noise Case

The continuous time system is assumed to be driven by a Wiener noise process for
different SNRs. For the purpose of simulation, a time step of ∆t = 0.01 ms was
adopted in IT-1.5 discretization method in order to generate measurement data.
The output data of the simulation were then artificially re-sampled at different
sampling rates (dt = 0.1, 0.5, 1, 2, 4, 8 ms) and made available as measurement
data for the two filters.

Fig. 9.1 shows the MSE values averaged over 100 Monte-Carlo runs of CD-CKF
and CKF for different SNRs at different sampling rates. From the figure, it is
clear that the CD-CKF outperformed the CKF for all cases. For a given SNR,
both filters showed improved convergence to true underlying processes as the
sampling rate decreases. However, for a given sampling rate, the CD-CKF scored
smaller MSE values than those of the CKF.

In order to statistically examine how better the CD-CKF performed than the
CKF, Fig. 9.2 shows the box-plots at different sampling rates of CD-CKF squared
error to CKF squared error ratio ( the squared error ratio R is computed as
described in section 9.3). Each box-plot refers to ratios computed for a given
SNR at a given sampling rate for the 100 Monte-Carlo runs. As seen in Fig. 9.2,
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Figure 9.1: Performance of CD-CKF and CKF under white noise. MSE values
averaged over 100 Monte-Carlo runs of CD-CKF and CKF for different SNRs and
different sampling rates where the underlying system is perturbed by additive
white noise.

the median ratio was consistently greater than one for all simulations. Seen in
terms of the length of sampling time step dt, it is noted that the CD-CKF to
CKF ratio is highest for very small time step (dt = 0.1 ms) and large time steps
(dt = 4− 8 ms). At intermediate time step, (dt = 1− 2 ms), the ratio is nearly
unity (performance is comparable) only for very low SNR (4 dB). In terms of the
SNR variation, it is noted that the ratio was the highest for all SNR levels at
very small time steps (dt = 0. ms, or frequent measurements). An increase in the
SNR value generally improves the ratio for smaller time steps (both in median
value and overall spread but not at wider time steps (dt = 4− 8 ms), where the
ratio does not increase in neither median nor overall spread with large SNR).

The system is again simulated using the IT-1.5 (as described in section 9.2.1) with
∆t = 0.01 ms to produce observations which then were re-sampled at different
sampling rates for the application of filters and the MSE values averaged over
100 Monte-Carlo runs for both filters under different SNRs and sampling rates
were computed and shown in Fig. 9.3.
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Figure 9.2: Distribution of squared error ratios of 100 Monte-Carlo runs for
different sampling rates and different SNRs for the additive white noise case.
Each box plot is based on 100 data samples. The horizontal red lines inside the
boxes are the medians, The boxes contain 50% of the samples where the lower
and upper edges of each box are the 25th and 75th percentiles, and the ”whiskers”
above and below the box indicate the range of the samples (the locations of
minimum and maximum sample data points that are not considered outliers).

It is noted here that these results are in line with those observed in the white
noise case; the CD-CKF performed better than the CKF with an improvement
of performance with decreasing sampling times for both filters. Fig. 9.4 shows
the box-plots of squared error ratio for different SNRs and sampling times for
the 100 Monte-Carlo runs. When compared to the white noise case, dependence
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Figure 9.3: Performance of CD-CKF and CKF under colored noise. MSE values
averaged over 100 Monte-Carlo runs of CD-CKF and CKF for different SNRs and
different sampling rates where the underlying system is perturbed by additive
colored noise.

of the ratio on time steps and SNR in the colored noise case follows a similar
pattern (Figs 9.2 and 9.4): The ratio is highest at the two opposite ends of the
sampling rate (dt = 0.1 msanddt = 8 ms), and the performance improves with
increasing SNR particularly at intermediate step lengths (dt = 1− 2 ms) but not
at large time steps (dt = 8 ms). Notably, however, the actual value of the ratio
was higher (CD-CKF was better) for low SNR in the colored noise case of all
sampling intervals. That is, it is apparent that the CD-CKF is more resilient to
additive colored-noise particularly under large noise components.

Effect of the Simulation Method

The continuous time simulations of the system were performed using IT-1.5 dis-
cretization methods. Therefore, and since the CD-CKF uses the IT-1.5 method
to discretize the continuous process equation while the CKF uses the local lin-
earization scheme (LL), a legitimate concern is whether the improvement in re-

148



Figure 9.4: Distribution of squared error ratios of 100 Monte-Carlo runs for
different sampling rates and different SNRs for the additive colored noise case.

sults obtained with CD-CKF is simply caused by the matching discretization
techniques in CD-CKF and system simulation.

We therefore repeated the estimation problem for both scenarios with the obser-
vations obtained by simulating the system using the LL discretization method.
The MSE values averaged over 100 Monte-Carlo runs of both filters for additive
white and colored noise in this case are shown in Fig. 9.5. We can see that CD-
CKF still performed better than the CKF and hence the simulation method has
no effect on the relative performance of both filters.
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Figure 9.5: Performance of CD-CKF and CKF with the observations obtained
by simulating the system using the LL discretization method. MSE of CD-CKF
and CKF for different SNRs and different sampling rates where the underlying
system is perturbed by additive white noise (top) and colored noise (bottom).

Other types of noise processes

In the Kalman estimation framework, the additive noise is assumed to be derived
from a Wiener process. To address the sensitivity of the obtained results on
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this assumption, we examine in this section the performance of CD-CKF and
CKF under the assumption that the actual continuous time system is driven by
other forms of additive noise processes. Here, the continuous system is discretized
with the LL method and the noise process is added as a discrete process to the
discrete dynamics in the same manner that we have simulated the system with
additive white noise case. (Note here that the correspondence of discrete white
noise to a continuous Wiener process is a well-known phenomenon. The discrete
non-white processes as incorporated here, however, are assumed to correspond to
other continuous processes that are generally unknown and are intended solely
to study the robustness of the Kalman filtering techniques). In particular, the
performance of the two filters is examined under discrete-time noise derived from
(i) Poisson, (ii) Exponential, and (iii) Gamma distributions. A final noise case to
be considered is that of (iv) additive very slowly varying noise that is concentrated
in the frequency range of the observed signals. Specifically, noise is modeled as
filtered white noise having frequency components of 1 − 5 Hz which is in the
frequency range of the measured membrane potential.

Performance of the CD-CKF:

The PI measure (as introduced in section 9.3) of the CD-CKF filter for white
noise case is listed in Table 9.2. The values are the percentage out of 100 Monte-
Carlo runs of the time where the estimated states were 20% away from the true
states. From Table 9.2 it is noted that the total fraction of time (PI) is decreasing
with increasing SNR. That is, the states will wander off for shorter periods of
time from the true value as the SNR is increased. In terms of the sampling time
dt, and for a given SNR, this measure is decreasing with dt, that is, the CD-CKF
will produce more accurate estimates more often (longer periods of time) with
smaller sampling rates.

The CD-CKF performance when the whiteness assumption is violated was also
evaluated and shown in Fig. 9.6. Here, the error ratio PInoise/PIwhite was com-
puted for different time steps and multiple SNRs to quantify the deterioration in
performance. It is seen that this ratio was closest to unity for additive colored
noise while it was largest for additive low frequency noise. Importantly, Poisson-
type noise, a common approximation of background input in neuronal networks,
showed mild performance deviation from that of white noise. At small time steps
(dt = 0.1 − 1 ms), the computed ratio is (very) high since the CD-CKF under
white noise performance was significantly better than the CD-CKF performance
under other noise types. This distinction becomes less obvious for larger time
steps(dt > 2 ms), particularly with increasing SNR. Hence, the CD-CKF perfor-
mance was most sensitive to whiteness assumption for small time steps and is
least sensitive to this assumption at large time steps and high SNR values.
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Table 9.2: Probability rates of CD-CKF filter for white noise. Each number
denotes the percentage out of 100 Monte-Carlo simulations of the time where the
estimated states were 20% away from the true states

CD-CKF Probability measure PI:

White noise case

dtdtdt in ms

0.1 0.5 1 2 4 8

4 6.67 7.69 7.75 7.53 8.06 11.61

7 2.37 3.33 3.51 3.77 4.79 6.64

8 1.37 2.43 2.52 2.84 3.69 4.94

9 0.68 1.76 2 2.28 3.23 4.03

11 0.19 0.92 1.18 1.86 2.79 3.68

12 0.003 0.46 0.75 1.28 2.45 3.47

14 0 0.08 0.23 0.78 1.87 3.37

SNR
in dB

18 0 0 0 0.45 1.63 3.26

Figure 9.6: Probability ratios PInoise/PIwhite for CD-CKF for different sampling
intervals and noise structures.
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Performance of the CKF:

The analysis of the CKF performance for different additive noise cases has also
been conducted and results are summarized in Table 9.3, and Fig. 9.7. In Fig. 9.7,
it is again seen that colored noise had the closest performance to white while
low frequency noise was the farthest from satisfying the whiteness assumption.
Importantly, Fig. 9.7 show that quality of the CKF estimates mildly deteriorate
from white noise to other noise types as the SNR increase at low sampling rates
(dt = 0.1 ms), unlike the performance sensitivity shown for the CD-CKF at
small time. Furthermore, the CKF performance becomes largely independent of
the noise structure at large sampling rates (dt = 8 ms).

Table 9.3: Probability rates of CKF filter for white noise. Each number de-
notes the percentage out of 100 Monte-Carlo simulations of the time where the
estimated states were 20% away from the true states

CKF Probability measure PI:

White noise case

dtdtdt in ms

0.1 0.5 1 2 4 8

4 7.98 7.82 7.74 7.76 10.8 24.49

7 3.77 3.71 3.57 3.95 7.06 21.49

8 2.63 2.62 2.59 2.68 5.29 17.63

9 2.1 2.16 2.15 2.29 4.67 14.72

11 1.35 1.28 1.43 1.94 4.23 12.66

12 0.9 0.9 1.01 1.34 3.46 11.61

14 0.35 0.44 0.64 1.03 3.27 10.54

SNR
in dB

18 0.02 0.04 0.17 0.67 3.43 9.28

Comparison of CD-CKF and CKF:

For a simple and concise comparative assessment of the performance of CD-CKF
and CKF for different noise types, the probability rates for each scenario are
plotted after being normalized by the worst probability PI0 value of the CD-
CKF with white noise case (which were obtained for lowest SNR = 4 dB and
largest time step (dt = 8 ms).

Figs. 9.8 and 9.9 show the normalized probability rates for the CD-CKF and the
CKF respectively. Here again, we notice that while both filters improve their per-
formance as the SNR increase, the CD-CKF has a sharper SNR-related improve-
ment (faster slop decline) for a given time step and all noise types tested. Fur-
thermore, the CD-CKF performance improved steadily with smaller time steps
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Figure 9.7: Probability ratios PInoise/PIwhite for CKF estimation.

while the CKF performance remains essentially unchanged as the sampling time
steps decrease below dt = 1 ms.

To examine the performance improvement of the CD-CKF over the CKF, we
computed the ratios of the values obtained for CKF over those of CD-CKF for
the probability measure PI, that is:

Ratioi,j,l =

(
PICKF

i,j

PICD-CKF
i,j

)
l

(9.23)

Where l denotes the noise type, i for SNR value, and j denotes the sampling rate
dt value. Fig 9.10 shows the ratios of the probability of inaccuracy (PI) measure
of the CKF values to that of the CD-CKF values. We can see that the CD-CKF
quality of estimates are better (ratio > 1) for most cases tested.

First, for large sampling intervals (dt = 8 ms), the CD-CKF is nearly twice
more accurate for Gaussian noise (white, colored) with the CKF performance
improving as the SNR increases (slope of ratio decreases). The CD-CKF is also
significantly more accurate under other noise types (Poisson, Exponential, low
frequency) with the CKF performance lagging behind that of the CD-CKF as
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Figure 9.8: Normalized probability rates for the CD-CKF.

the SNR increases (slope of ratio increases). Second, for small sampling intervals
(dt = 0.1, 0.5 and 1 ms), the CD-CKF performance improves at a much higher
rate compared to that of the CKF as the SNR increases, regardless of the noise
structure assumed. Finally, for intermediate sampling step (dt = 2 − 4 ms), the
CD-CKF performance is comparable to that of the CKF for a wide SNR range
and is only significantly better for the largest SNR tested (18 dB).
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Figure 9.9: Normalized probability rates for the CKF.

Figure 9.10: Ratios of the performance index PI of the CKF to that the CD-CKF
values for different process noise structures and observation noise levels.
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9.4.2 Hemodynamic Model

The performance of CKF and the hybrid CD-CKF in performing blind input
deconvolution was tested under two scenarios of first unknown neural activity
(NA) input and, second unknown NA inputs and model parameters (see Methods
section). Fig. 9.11-A shows the simulated BOLD signals (red trace) and estimated
BOLD signal (overlapping blue trace) for both filters under the first scenario
(unknown NA input) for two time steps (dt = 0.2, 0.5 sec). The corresponding
estimated NA input, which was obtained after a smoothed backward pass of
both filters (Cubature smoother), is shown in Fig. 9.11-B (red trace: true input,
blue trace: estimated input). It is noted here that the CKF produced inaccurate
estimates of the input at larger time steps (Fig. 9.11-B1 and Fig. 9.11B3, bottom).
More importantly, it is seen that the CKF was unable to accurately localize the
time of occurrence of the NA input (input timing) for both time steps (Fig. 9.11-
B1 and enlarged plots in Fig. 9.11-B3). On the other hand, the CD-CKF is
shown to produce more robust estimates of both the magnitude and input timing
dynamics for the two sampling times (dt = 0.2, 0.5 sec) (Fig. 9.11-B2 and enlarged
plots in Fig. 9.11-B4). Finally, Fig. 9.11-C shows the estimates of one hidden
state, the vasodilatory signal (s), which exhibits similar performance limitations
of the CKF (in terms of signal shape and timing inaccuracy) when compared to
the CD-CKF.

The estimation accuracy for the second scenario (unknown NA input and
unknown model parameters) is shown in Fig. 9.12. Again, it is seen that
while the BOLD signal is fitted properly with both CKF and CD-CKF, the
timing accuracy of the input (Fig. 9.12-B) and hidden states (Fig. 9.12-
C) continues to be better for the hybrid filter under the two time steps
(dt = 0.2, 0.5 sec). The average value of the two parameters estimates show
performance of the two filters (Fig. 9.12-A3 and Fig. 9.12-A4). To gain more
understanding, the normalized MSE values obtained for both CD-CKF and
CKF are averaged over 100 Monte-Carlo runs of the two scenarios at differ-
ent sampling rates are given in Table 9.4. A clear superior performance of
the CD-CKF is seen in all the cases for the input, state and parameter estimates.
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Figure 9.11: (previous page) Performance of the square-root CKF and square-
root CD-CKF (with backward smoothers) for estimating hemodynamic states
from simulated BOLD signals under unknown NA inputs. A: BOLD signal and
its CKF (left) and CD-CKF (right) estimates for sample interval dt = 0.2, and
0.5 sec (top and lower rows, respectively). In all figures, simulated signals are
in red and estimates in blue. Shaded blue regions correspond to 95% confidence
intervals (100 simulations) which are extremely tight around the mean value.
B: NA input for CKF (B1) and CD-CKF (B2), which are enlarged in B3, B4
respectively. C: vasodilatory signal for different time dt = 0.2, and 0.5 sec.

Table 9.4: Normalized MSE values averaged over 100 Monte-Carlo runs of the
Hemodynamic estimation for both CKF and CD-CKF filters.

dtdtdt in sec

0.5 0.2

MSE of the states 14 e-4 1.8 e-4
CKF

MSE of the input 169 e-4 31 e-4

MSE of the states 0.62 e-4 0.13 e-4
First scenario

CD-CKF
MSE of the input 5.7 e-4 2.8 e-4

MSE of the states 13 e-4 1.8 e-4

MSE of the input 148 e-4 29 e-4CKF

MSE of the parameters 109 e-4 48 e-4

MSE of the states 0.62 e-4 0.14 e- 4

MSE of the input 6.04 e-4 7.7 e-4

Second scenario

CD-CKF

MSE of the parameters 58 e-4 14 e-4
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Figure 9.12: (previous page) Performance of the square-root CKF and square-
root CD-CKF (with backward smoothers) for estimating hemodynamic states
from simulated BOLD signals under unknown NA inputs and two unknown pa-
rameters. A1-A2: BOLD signal and its CKF (left) and CD-CKF (right) estimates
for sample interval dt = 0.2, and 0.5 sec (top and lower rows, respectively). A3-
A4: Estimated parameters (rate of signal decayκ and rate of feedback regulation
λ). B: NA input for CKF (B1) and CD-CKF (B2), which are enlarged in B3, B4
respectively. C: Estimated vasodilatory signal.

9.5 Discussion

In this chapter, we analyze the performance of two relatively novel nonlinear
Bayesian estimation techniques, namely the discrete Cubature Kalman filter and
the hybrid ContinuousDiscrete Cubature Kalman filter, that carry significant
promise in efficiently and recursively estimating causal nonlinear models of hid-
den continuous random processes using a limited set of indirect observations. Ex-
amples of such processes are dispersed throughout biological phenomena, and are
especially abundant and relevant in the field of Neuroscience. We here focus on
the two problems of (a) estimating neural firing and intra-cortical conductances
from direct real-time observations such as electric field potential (or EEG), and
(b) estimating neural activity drive and hemodynamic parameters from indirect
time-sampled observations such as BOLD signals (or fMRI).

Our results show that the explicit consideration of the continuous nature of the
underlying biological process can (1) provide a significant improvement in the
accuracy of the estimates and (2) allow for a wider range of noise processes that
are commonly thought to adversely affect the applicability of Gaussian-based
techniques such as the Kalman filter.

First, simulated noisy electric potential recordings were used to assess the accu-
racy of discrete and hybrid Kalman techniques in estimating the cortical neural
firing rates as hidden realizations of the continuous time process that is governed
by nonlinear dynamics and subjected to in vivo random noise. We have ad-
dressed, using multiple Monte-Carlo simulation runs, the accuracy of the hidden
states obtained with the two tested Kalman filtering techniques under different
assumptions on (i) the data sampling rate at which the observations are ob-
tained, (ii) the signal-to-noise ratio in the observations, and (iii) the structure
of the modeled process noise that additively affect the hidden process dynamics.
The performance of a given filter was quantified in terms of the common mean
square error (MSE) in the estimate (averaged over 100 Monte-Carlo simulations)
and one devised measure of accuracy of the obtained estimates: the total fraction
of time (PI) that an estimate is farther away than a threshold percentage (20%)

161



from the true states.

Second, simulated BOLD signal recordings were obtained to assess the ability of
the two Kalman techniques in (i) deconvolving the input neural activity and (ii)
estimating model parameters. We here focus on the superior ability of the hybrid
filter (CD-CKF) in estimating the amplitude and, critically, the timing of the
neural input.

We summarize our key findings as follows:

9.5.1 Performance of the Two Filters under Gaussian
Process Noise:

For the two cases of white (independent) and colored (dependent) Gaussian noise
structures (Figs. 9.1–9.4), state estimates that were obtained with either the CKF
and CD-CKF techniques expectedly improved as the sampling time step size dt
is decreased and the observation quality (SNR) is increased. In comparing the
performance of both filters (in terms of MSE ratios over 100 simulations), the
estimation accuracy for the cases of intermediate time step sizes (dt = 12 ms) was
(i) comparable under low SNR level but (ii) higher for the CD-CKF under larger
SNR levels. Importantly, the CD-CKF estimation accuracy was significantly
higher in the simulated cases of both very small and very large time steps (dt =
0.10.5ms, dt = 48 ms, respectively) regardless of noise levels. The obtained results
were consistent regardless whether the observations were obtained by simulating
the system using the IT-1.5 or the LL discretization methods.

9.5.2 Effect of Observation Noise Level:

An improvement in the signal quality (higher SNR) expectedly resulted in an
increase in the accuracy of the estimates for both filtering techniques. Still, the
rate of increase was significantly larger when using the CD-CKF, particularly for
lower SNR values. This result was consistent regardless of the noise structure
and the sampling interval tested.

9.5.3 Effect of Sampling Time Step:

For all the noise structures tested, the state estimation accuracy (MSE) obtained
when using the CKF and CD-CKF was generally comparable for intermediate
step sizes (dt = 2− 4 ms) particularly under low SNR levels (Figs. 9.6–9.10). At
the largest sampling interval, the estimated obtained with CD-CKF were signif-
icantly better than those obtained with the CKF, regardless of the observation
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noise levels and structure. Importantly, collecting even more frequent samples,
or reducing the sampling interval below dt = 1 ms, resulted in a continuous im-
provement in the performance of the CD-CKF but no improvement in that of the
CKF performance which exhibited a plateau in its accuracy.

9.5.4 Effect of Process Noise Structure:

The CD-CKF was more robust than the CKF against a wide range of additive
noise structures that violated the Gaussianity assumption inherent to Kalman
filtering techniques. The CD-CKF outperformed the CKF in all the cases of
non-Gaussian additive noise considered. Furthermore, the CD-CKF performance
at high SNR levels was less dependent on the actual noise structure and ap-
proached that of Gaussian noise, that is, the CD-CKF was able to utilize the
decrease in observation uncertainty (noise power) to adaptively correct the state
estimates. Among all the tested discrete random noise structures, low frequency
noise constituted the most challenging structure for both filters, possibly since
the power of this specific signal is more concentrated within the frequency range
of the system output (leading to effective lower SNR levels). In the case of neural
systems, this is a less likely scenario since the electric potential recordings (i.e.
observations or output), are often noted to have lower frequency range compared
to in-vivo fluctuations in the firing rate or synaptic conductances (i.e. hidden
process noise).

Another important result is the ability of non-linear Kalman filtering techniques
to overcome the limiting Gaussianity assumption on process noise structure in
neural modeling. For the latter class of models, it is commonly assumed that the
background noise impinging on local neural populations is the resultant of neu-
ronal firing that is well approximated by a Poisson process. Current simulations
demonstrated that the performance of both Kalman filters under Poisson process
noise showed mild deterioration compared with that under Gaussian (white or
colored) noise. In particular, the CD-CKF estimates under Poisson noise were
very close to their counterparts under Gaussian noise and the quality of such
estimates can be significantly improved by employing faster output sampling, a
property that did not seem to hold for the CKF estimates.

9.5.5 Hemodynamic Model Estimation:

While both the CKF and CD-CKF were able to estimate the overall profile of
a low-frequency neural activity driving the hemodynamic model, only the CD-
CKF provided an accurate profile at increased time steps. Critically, only the
CD-CKF with backward smoothing was able to provide an accurate time localiza-
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tion of the neural input particularly since it explicitly accounts for the continuous
dynamics over increasingly smaller interpolation steps of the low frequency ob-
servations. The ability to obtain accurate timing is of obvious importance to the
whole series of studies that provide model-based estimates of the causal func-
tional connectivity (directed information transfer) among brain areas using fMRI
experiments [37, 83].
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Chapter 10

Conclusion

In this dissertation, we addressed improving model fitting (states and parameters
estimation) and model assessment (model selection) procedures in a Kalman-
based framework by integrating techniques from Adaptive Design Optimization
(ADO). We proposed identification algorithms that select in single experimental
trials those system inputs that cause the output trajectory to be maximally infor-
mative about the nonlinear system model parameters. We showed that gains in
estimation accuracy can be achieved using these algorithms in designing experi-
ments/inputs when compared to those cases where no such designing is performed
(i.e. randomized input application).

10.1 Contributions

The main contributions of this dissertation can be summarized as follows:

1. Proposing the OID-SCKF algorithm which is an adaptive approach for
joint input design and parametric identification of nonlinear system mod-
els. When compared to estimation with Kalman filter with inputs being
randomly selected, the proposed method in combining Kalman filtering with
optimally designed inputs showed that, in principle, better convergence and
higher estimation accuracy can be attained for a set of simulated scenar-
ios that are derived from benchmark nonlinear problems as well as from
nonlinear stochastic neuronal models. Yet, these gains in estimation accu-
racy posed heavy computational load making this procedure intractable for
on-line applications.

2. Proposing the Dual Kalman filters method suitable for designing experi-
ments for on-line applications. This method aimed to design sub-optimal
inputs that achieve informative observations about unknown parameters
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and hidden states by “transforming” the optimization problem associated
with OID-SCKF (that solves for the optimal inputs) into a Kalman filter
setup. The proposed setup discarded the optimization problem along with
its computational burden and drastically reduced the computational needs
to design an input. The presented Dual Kalman approach showed that
better convergence and higher estimation accuracy can be attained when
compared to estimation with random inputs. When compared to optimal
inputs (OID-SCKF method), the Dual Kalman method showed comparable
convergence and estimation accuracy, and more importantly, substantially
more efficient than the OID-SCKF method in terms of computational time
needed in designing informative inputs. Investigation of the Dual Kalman
method for the simulated neuronal model demonstrated the immense gain in
computational power against the OID-SCKF method in designing informa-
tive inputs while maintaining the out-performance in estimation accuracy
over the random inputs case.

3. For off-line model fitting (states and parameters estimation) problems, we
proposed a procedure to optimally design the tuning parameters of the
Kalman filter based on sensitivity analysis of the model. The proposed
approach is demonstrated on input deconvolution problem and showed to
produce more confident estimates and better convergence without the need
of an iterative tuning process from the designer.

4. Proposing an on-line single-phase procedure in which model fitting (param-
eters estimation) and model assessment (model selection) are carried out
simultaneously using Bayesian approaches to model selection and by design-
ing experiments that produce informative outcomes about model unknowns.
This procedure demonstrated to accurately identify the true underlying
model structure (and its unknown parameters) from a pool of model can-
didates having different levels of complexity. Moreover, this single-phase
procedure when incorporated with the Dual Kalman method could be ap-
propriate for on-line applications in which experiments are costly, their
repetition is impractical, and/or are time-consuming.

10.2 Open Research Directions

As we have shown in chapter 9, implementing a hybrid Kalman filter (i.e. the
CD-CKF) could (1) provide a significant improvement in the accuracy of the
estimates and (2) allow for a wider range of noise processes that are commonly
thought to adversely affect the applicability of Gaussian-based techniques such as
the Kalman filter. Therefore, further investigations about the possible gains in es-
timation accuracy by implementing the hybrid Kalman filter within the proposed
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algorithms instead of the CKF are highly needed especially when considering real
life applications in which Gaussianity assumption on process noise structure in
neural modeling might be violated.

As an experimental application, “Transcranial Current Stimulation” (tCS) with
direct (tDCS) or alternating (tACS) current is emerging as a promising non-
invasive brain stimulation technique for the treatment of neuropsychological dis-
orders (including major depression, Parkinsons disease, and rehabilitation after
stroke) as well as the study of human cognitive function. tCS can induce both
immediate as well as long-lasting effects on brain electric activity by modulating
cortical excitability in humans, albeit with limited understanding of the elec-
trophysiological substrate underlying such modulation. Specifically, it remains
unclear (i) how the applied currents delivered by tCS electrodes propagate and
modify the ongoing neuronal population activities in the targeted areas, and (ii)
which parameters of the stimulus (e.g. electrode location, current intensity, and
duration) are key factors in achieving such neuronal activity modification.

The tCS might serve as an interesting technique for probing effective connectivity
between brain areas along with the proposed procedures for model fitting (param-
eters estimation) and model assessment (model selection) with the Dual Kalman
filters algorithm (which were aimed to be applicable for on-line applications).
Such paradigms could involve designing (with the Dual Kalman algorithm) and
applying current stimuli (tCS procedure) with EEG being used as an observation
tool of brain activity from which effective connectivity between cortical areas
under investigation are established as well as the most plausible effect of a given
tCS stimulation on the underlying brain activity is highlighted.
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