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In almost all real-life projects, activity durations are not known with certainty.  
Therefore, adopting a schedule that ensures the successful completion of a project on time 
with a high probability is critical.  This often requires, starting the project activities as 
soon as possible, while abiding by precedence constraints, as advocated by the classical 
methods of CPM and PERT.  However, from a cost control and financing prospective, 
performing an activity in early stages of a project may not be the best course of action.  
On the contrary, the present worth criterion advocates starting activities as late as 
possible, to save on financing costs.  The present research is aimed at determining the 
optimal start time of activities in a project network while accounting for both time value 
of costs and the risk of scheduling delays.  A mathematical program is developed in order 
to find the optimal starting time of each activity under different structures of the project 
network topology, while assuming that the activity durations approximately follow 
independent normal distributions.  We find that the optimal delay structure advocates 
delaying activities at the beginning of the project.  In addition, we observe that it might 
be optimal to delay activities that fall on the path with the longest expected duration, 
which are deemed “critical” in the classic CPM/PERT approach.  A bi-product of our 
work is a new method to estimate schedule risk, PERT-X, which is found to be more 
accurate than the classic PERT by comparison with Monte Carlo Simulation results.  
PERT-X approximates the duration of the maximum of all the project paths by a Normal 
random variable.  
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CHAPTER I 

INTRODUCTION AND MOTIVATION 

 

“Time is money” as Benjamin Franklin said.  In project management, this 

quotation is supported by the Triple Constraint Triangle shown in Figure 1, e.g. 

Haughey (2011).  Time, Cost and Scope constitute these constraints that every project 

should meet to be successful.  Keeping scope aside and assuming infinite resources, 

time and cost are negatively correlated.  To finish early, as in point E of Figure 1 costs 

need to be sacrificed.  Reciprocally, to cut on costs as in point L of Figure 1, scheduling 

delays are bound to occur.  This makes finding the optimal start time of project 

activities a challenging problem that has been largely ignored in the project 

management literature.  Finding a simpler approach to measure the amount by which 

each activity should be delayed in a way that balances time and cost would be a 

significant contribution to the literature.  Developing such a balancing approach is the 

main objective of this work.  We assume a fixed scope and ample resources, and focus 

on determining the optimal time-cost trade-off schedule as shown in Figure 1.  With our 

assumption of fixed scope and unlimited resources, the main trade-off we exploit is 

specifically related to time value of money in terms of the present value of the expected 

project cost. 
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Figure 1. Triple Constraint Triangle assuming constant scope 

 

For “simple” project networks, involving parallel non-overlapping paths, we 

develop a tractable optimization model (a nonlinear program) that determines the start 

time of each activity that minimizes the expected present value of cost subject to delay 

constraints.  For these parallel-path networks, we establish the quasiconvexity of the 

cost function, and develop bounds on the optimal delay of each activity.  This allows 

determining the optimal schedule easily in practice, using, for example, basic 

spreadsheets.  For more complex networks, with paths having common activities and 

experiencing “merge-bias1”, we propose an extension of the classical PERT method to 

carry the desired analysis.  Specifically, we develop PERT-X, where the duration of the 

maximum path in the project is approximated by a well-calibrated normal distribution, 

which depends, among other things, on the path covariance matrix2.  The remainder of 

the analysis then proceeds in a similar manner to more simple networks.  In Chapter 2 

of this paper, we review the literature, in Chapter 3 we present a stylized two-activity 

model.  In Chapter 4, we discuss a network with multiple activities in series.  In Chapter 

                                                 
1 See Hullet (2009) for an interesting discussion of the merge-bias phenomenon resulting from paths 
crossing in project network. 
2 The path durations in a project network are positively correlated due to the commonality of activities 
among paths. The path covariance matrix is developed base on the commonality structure. See Sculli and 
Shum (1991) for a good example. 

E 

L 
Optimal Solution 
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5, we address a network combining series and parallel activities.  In Chapter 6, we 

propose PERT-X a new method to compute the delay probability in a complex project 

network.  In Chapters 7, we apply our optimization method to cover general networks.  

In Chapter 8, we apply our optimization on a real-life network.  Finally, in Chapter 9, 

we present conclusions and ideas for future research. 
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CHAPTER II 

LITERATURE REVIEW 

 

This chapter is divided into two major sections.  The first is about time-cost 

trade-off and the second is about PERT and its improvements. 

 

A. PERT Variants 

Project scheduling is a key for the success of any project.  The Critical Path 

Method (CPM) and Project Evaluation and Review Technique (PERT) are the two 

major tools in project scheduling.  While CPM assumes activities durations are known 

with certainty, PERT is an improvement of CPM, where it is a probabilistic approach 

for activity durations, (Paul and Banerjee 2008).  While both tools focus on the critical 

path, the one having the highest mean duration, PERT assumes activity durations that 

follow PERT-Beta distribution based on three inputs; minimum, maximum and most 

likely.  In PERT, the critical path is used to compute the probability of being late, 

assuming that the central limit theorem holds and the critical path duration follows a 

normal distribution with mean and variance as the sum of the means and variances of 

activities on the critical path, (Robillard and Trahan 1977).  One major drawback of 

PERT is that it underestimates the real completion time of a project, since it neglects the 

fact that some “noncritical” paths may become “critical”.  In the literature, many 

previous attempts are made to improve the outcome of PERT by utilizing the 

multivariate normal distribution.  Monhor (2011) discusses using the normal 

distribution assumption for all the paths.  He takes into consideration the correlation by 

introducing a bivariate normal distribution method to compute bounds for the 
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probability.  Others express a method to compute the multivariate normal distribution to 

a specific extent and with much computational efforts.  For example, Anklesaria and 

Drezner (1986) consider a limited number of paths in a specific network.  PERT-M 

method consists of finding the probability of being late using the multivariate normal 

distribution.  To compute the probability using the multivariate normal distribution 

without the help of some programs although possible, it is difficult and requires so 

much time to complete.  In addition, Sculli and Shum (1991) express a method to 

approximate the mean and the variance for the whole network taking into consideration 

all the paths one at a time and continuously updating the covariance matrix.  Using a 

different approach, Hmadh (2016) suggests PERT-IA a new method to approximate the 

probability of being late by using the weighted average between PERT and IA3.  Some 

of the authors used simulation techniques to compute the probabilities e.g. Sculli (1989) 

and Haga and Marold (2004).  We propose a new method, PERT-X, which is based on 

successive approximations of the durations of parallel paths/activities two at a time with 

a normal distribution.  PERT-X is based on an approximation of the maximum of two 

normal random variables by Nadarajah and Kotz (2008) in Electrical Engineering.  

PERT-X consistently produce results. 

 

B. Time-Cost Trade-Off 

Many works aim to minimize the project duration while maintaining resource 

constraint and not taking into consideration the time value of money, according to 

Elmaghraby and Herroelen (1990). Others aim to find an optimal way to maximize the 

net present value of a project without taking into consideration duration uncertainty e.g. 

                                                 
3 IA: (Independence Analysis) is a method that takes into consideration all the paths in a network and 
assumes that these paths are independent. 
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Russell (1970). Also, Vanhoucke, Demeulemeester and Herroelen (2001) use the 

resource constraint to maximize the net present value.  Similarly, Vanhoucke, 

Demeulemeester and Herroelen (1999) discuss an unconstrained project scheduling 

problem to maximize the net present value of the project without accounting for project 

uncertainty.  On the other hand, some took into consideration this uncertainty but 

without giving much importance for the probability of being late. Buss and Rosenblatt 

(1997) discuss how to find the optimal starting time of each activity assuming 

exponential distribution, showing the importance of delaying an activity and how to 

compute the duration in which each activity is delayed and what is its NPV accounting 

for costs and revenues at the end of the project. They assume continuous compounding 

and assume that activity durations follow the exponential distribution. In addition, Buss 

and Rosenblatt (1997) claim of being the first paper studying the expected net present 

value with stochastic activity durations. Furthermore, Buss and Rosenblatt (1997) 

consider no constraint in his method to compute the delays.  According to our 

experience, this paper is the first discussing the issue of minimizing cost while 

maintaining a specific constraint which limits the risk that the project is delayed.  Our 

approach which focuses on costs appears to be more practical than the one proposed by 

Buss and Rosenblatt (1997), since revenues on a project are hard to assess.  In addition, 

our method present more general results such as convexity of the Cost function and 

structural property of the optimal activity delays.  
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CHAPTER III 

PROJECT WITH TWO PARALLEL ACTIVITIES 

 

Starting with a simple network, in this chapter we discuss a project with only 

two parallel activities as represented in Figure 2.  In Section 3.1, we formulate our 

model.  Then, in Section 3.2, we discuss our solution methodology.  Finally, in Section 

3.3, we present some numerical results, and draw useful insights. 

 

 

Figure 2. Network with Two Parallel Activities 

 

A. Formulation 

The network discussed in this chapter is shown in Figure 2.  The duration, iT  of 

both activities A and B are assumed to be normally distributed with mean and variance 

 i iE T   and   2
i iVar T   for ,i A B .  It is also assumed that AT  and BT  are 

independent.  The cost of each activity is iC , ,i A B  and it is paid at the beginning of 

the activity.  The objective is to minimize the present value of the costs.  For this project 

the expected present value of cost is 
,

i A B
rd rd rd

i A B
i A B

C C e C e C e
 



   , where r  is the 

discounting rate and id  is the delay time of Activity i  which is also the start time of 

Start Finish 

A 

B 
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Activity i  for this simple network.  The project needs to be completed by a deadline 0t

. The optimization problem of this network is formulated as follows: 

,,

min i A B

A B

rd rd rd
i A B

i A Bd d

C C e C e C e 



        (1) 

Subject to 

 0 0( ) ( )A A B B

A B

dt t d








      
     
   

          (2) 

0, ,id i A B   

where   is the probability that the project is completed without any delay and   is 

the cumulative density function of the standard normal distribution 

 
2

2
1

2

x t

x e dt






   .  Constraint (2) ensures that the project is finished on time 

%  of the time.  The left hand side (l.h.s) of this constraint is the probability of 

finishing on time which is    0 0A BP T t P T t  . 

 

B. Solution Method 

For the project in Figure 2, the completion time of  path iP , ,i A B , is 

assumed to be normally distributed with mean i id   and variance 
2
i .  Lemma 1 

ensures that (2) is binding this is a result from the l.h.s of (2) being decreasing in id , 

,i A B . 

 

Lemma 1.  Constraint (2) is binding at optimality. 

Proof.  See appendix A. 
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Lemma 1 simplifies the analysis significantly.  In particular, it allows 

determining high quality upper bounds as shown in Lemma 2.  In addition, Lemma 1 

allows replacing the two-variable non-linear constrained optimization problem with a 

quasiconvex single-variable problem, which can be carried-out easily as shown in the 

sequel. 

 

Lemma 2.  for the two parallel paths network, 

0

0 0
13i i i i i

j

j

t d
t

t 


 





 
 
 
 




      

    
  

,  ,i A B , i j    

 (3) 

A more simplified upper bound is  0
1

i it       

Proof.  See Appendix A. 

Back to the optimization problem, Zogheib and Hlynka provide an 

approximation to the standard normal distribution CDF as follows 

 
1.31.21 0.5 zz e         (4) 

In Appendix B we argue that approximation (4) is accurate with an average 

relative error of 1.8%.   Utilizing Lemma 1 and Approximation (4), the delay Ad  could 

be found in terms of Bd  as shown in (5), leading to an unconstrained optimization 

problem with the objective function described in (6),  
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0
1.3

1

1.3

0
(

1.2
)

0.5 0.25

1
ln 2

1.2 B B

B

A
dt

A Ad

e

t









  
 
 



  
  
  
     

   
   
     



 

 

 

,    (5) 

1

1.3

1.3
1.2

0
( )0

0.5 0.25

1
ln 2

1.2

min

A A
dB B

B

B

B

t
tr

e

rd
A B

d
C C e C e









  
  





 
 
 
 
 

   
  
  
  
   
 

 
  
  
  
  
  

    
  
    


  
  

      (6) 

The following theorem provides a generalized convexity result on cost in (6). 

 

Theorem 1. The cost  BC d  in (6) is quasiconvex. 

Proof. See Appendix A. 

Theorem 1 and (5) imply that the optimal delays of activities can be found 

easily, e.g. with basic spreadsheets. 

 

C. Example 

As an example, the values in Table 1 give the necessary parameters for 

Activities A and B.  In addition, it was assumed that 0 30t  , discount rate 1.5%r   and 

95%  . 

 

Table 1. Values for the Activities of the Network Described 

Activity Mean Variance Cost 

A 2 1 15 
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B 20 4 10 

 

The upper and lower bounds for the delay along with the optimal value of the 

delay as described in Section 2.2, are given in Table 2.  The optimal cost according to 

our model is 19.27 and the probability of being on time is 0.95.  On the other hand, the 

cost according to CPM and PERT is 21.45.  That is our model reduces cost by around 

10%. 

 

Table 2. Values for the Activities Delays 

Activity Lower Bound Upper Bound Optimal CPM/PERT Optimal 

A 25 26.36 25.34 18 

B 4 6.71 6.64 0 

 

Another example regarding the same network would be assigning cost 

proportional to the mean duration of each activity as presented in Table 3.  

 

Table 3. Values for the Activities of the Network Described 

Activity Mean Variance Cost 

A 2 1 3 

B 20 4 30 

 

The results are summarized in Table 4.  The optimal cost according to our 

method is 29.2 and the probability of being on time is 0.95.  The cost according to CPM 

and PERT is 32.29.  Therefore, our model reduces cost also by around 10%. 
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Table 4. Values for the Activities Delays 

Activity Lower Bound Upper Bound Optimal CPM/PERT Optimal 

A 25 26.36 24.97 18 

B 4 6.71 6.71 0 

 

CPM and PERT do not allow delaying the “critical” activity, having the highest 

mean duration, whereas our model shows that this activity should be delayed.  

Therefore, our model provides better results regarding the present value of the costs.  In 

addition, the two examples presented here demonstrate that our model is effective in 

cutting costs regardless of the cost structure, proportional to the mean activity duration 

or not. 
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CHAPTER IV 
PROJECTS WITH ONE PATH FOR MULTIPLE 

ACTIVITIES 
 

In this chapter, we deal with another project network with one path having 

multiple activities in series as shown in Figure 3.  In Section 4.1 we formulate our 

model.  Then, in Section 4.2 we discuss our solution methodology.  Finally, in Section 

4.3 we present numerical results.  Similar assumptions to Chapter 3 on the normality of 

activity duration, continuous compounding, and cost structure are maintained in this 

chapter. 

 

 

Figure 3. Single Path Network with Multiple Activities 

 
A. Formulation 

In this network, all the activities will be treated as a single activity of mean and 

variance, that is the summation of the means and variances of all activities iA  to 

compute the probability of being late.  The moment generating function of a normal 

distribution states that 

 
2 21

2x xt ttxE e e
 

        (7) 

Based on (7) and assuming t r   and based on the fact that the activities are 

assumed to be normally distributed the optimization problem can be formulated in the 

following manner  

Start Finish 
 

..... 
2A

 nA
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1 1 2 2

1 1

,...,
1

0.5

1
min C

i i

A A AJ J J
j j

i
A An

r d rn

A
id d

C e
 

 

 

   
      
   



        (8) 

Subject to 

 
1

2

0

1

i i

i

n

A A
i

n

A
i

t d 








 
 

  
 
 
 





      (9) 

 

B. Solution Method 

Theorem 2. For multiple activities in series, only the first activity may be delayed.  That 

is,     0id  , 2,...,i n . 

Proof. See Appendix A 

With the result in Theorem 2 and a similar result to Lemma 1 indicating that (9) 

is binding, the following theorem is obtained 

Theorem 3. For the network in figure 3, the delay is computed by 

 
1

12

1 1
0 i i

n n

A A A
i i

d t  
 

        (10) 

Proof. See Appendix A 

 

C. Example 

As an example, we chose a network compromising four activities in series. The 

necessary parameters are presented in Table 5.  In addition, it was assumed that 0 50t  , 

discount rate 1.5%r   and 95%  . 
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Table 5. Values for the Activities of the Network Described 

Activity Mean Variance Cost 

A 4 1 6 

B 12 4 16 

C 8 3 11 

D 17 6 23 

 

The optimal value of the delay as described in Section 4.2, are given in Table 6.  

The optimal cost according to our model is 43.88 and the probability of being on time is 

0.95.  On the other hand, the cost according to CPM and PERT is 45.79.  That is our 

model reduces cost by around 5%. 

 

Table 6. Values for the Activities Delays 

Activity Optimal CPM/PERT Optimal 

A 2.85 0 

B 0 0 

C 0 0 

D 0 0 

  



16 
 

CHAPTER V 

PROJECTS WITH MULTIPLE PARALLEL PATHS AND 

MULTIPLE ACTIVITIES PER PATH 

 

In this chapter, a model which is a combination of those in Chapter 3 and 4 is 

treated, where the network has multiple parallel paths and on each path, there are 

multiple activities in series as shown in Figure 4. In Section 5.1 we formulate our 

model.  Then in Section 5.2 we discuss our solution methodology.  Finally, in Section 

5.3 we present some numerical results. 

 

 

Figure 4.Network with Multiple Parallel Paths 

 
A. Formulation 

On each path the activities are in series.  Therefore, according to Theorem 2, 

only the first activity should be delayed. Therefore, the optimization problem can be 

formulated in the following manner  
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B. Solution Method 

Let 
1

Aij

m

i
j

 


   and 2 2

1
ij

m

i A
j

 


  , Lemma 2 can be used to compute lower and 

upper bounds for the delays as shown in (13). 

10

0

1
0

( )
3

ii i

j i

A i i

j

j

t d t
t

   











 
 
 
     

     


  






    (13) 

Similar to Lemma 1 it can be shown that (12) is binding.  Using the normal 

distribution approximation in (4) it can be stated that: 
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  (14) 

replacing 
1Ad in the unconstrained objective function and solving numerically to 

find the optimal solution for the delays. Theorem 1 proves that  
11 21 1

, ,...,
nA A AC d d d is 

quasiconvex. 
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C. Example 

As an example, the values in Table 7 were assigned for all activities in the 

network.  Also it is assumed that 0 30t   and a discount rate 1.5%r  . 

 

Table 7. Values for the Activities of the Described Network 

Path Activity Mean Variance Cost 

1 
A11 4 1 6 

A12 9 4 13 

2 

A21 1 1 2 

A22 5 2 7 

A23 8 3 12 

3 

A31 3 2 5 

A32 6 4 9 

A33 1 1 2 

A34 9 4 13 

4 A41 18 5 26 

 

The upper and lower bounds for the delay along with the optimal value of the 

delay as described in Section 5.2, are found in Table 8. 

 

Table 8. Values for the Activities Delays 

Path Mean Variance Lower Upper Optimal CPM/PERT Optimal 

1 24.29 5.00 10.29 13.32 11.57 6 
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2 23.98 6.00 8.65 11.97 10.26 5 

3 23.35 11.00 1.05 5.53 4.30 0 

4 25.21 5.00 5.29 8.32 6.96 1 

 

The optimal expected present value of the cost is found to be 80.69 and the 

probability of being on time is 0.95. Applying CPM and PERT method while using 

equation (7) the optimal present value of the cost is 87.27.  Our model reduced cost by 

around 10%.  Therefore, our method shows the importance of delaying activities on the 

critical path opposing to PERT assumption. 
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CHAPTER VI 

PERT-X 

 

This chapter highlights a new method to compute the probability of being late in 

a project network.  This method is based on a result for electrical engineers suggested 

by Nadarajah and Kotz (2008).  In Section 6.1 we describe the basic steps of PERT-X.  

Then, in Section 6.2 we present some numerical results. 

 

A. PERT-X Steps 

In their paper Nadarajah and Kotz (2008) express a method to analyze a digital 

circuit. This method consists of finding the expected value of maximum and minimum 

of correlated Gaussian random variables.  We tailor this method to estimate an 

approximation of the distribution of the longest path in project network.  This works as 

follow. First, assuming normality of all activities compute the mean and variance of 

each one. Second, choose a specific loop in this network.  Define all the parallel paths in 

this loop.  Third, using convolution, replace each path in the loop by a single activity by 

summing up the means and variances of the activities on this specific path.  Fourth, 

applying approximations (15), (16) and (17) this loop will vanish and the two parallel 

activities in it will turn into one activity having the following mean and variance. 

Mean: 1 2 2 1 1 2
1 2( )E X

     
   

  

       
          

     
  (15) 

       2 2 2 2 21 2 2 1 1 2
1 1 2 2 1 2E X

     
       

  

       
             

     
(16) 

Variance:    
22E X E X        (17) 
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Where i  and 2
i  are the mean and variance of path i  in the loop and 

2 2
1 2    . Repeat steps two through four until ending up with a single path. 

Finally, using convolution, the last-mentioned path can be turned into a single activity 

as described in step three.   

In case of a path that belong to two loops at the same time, apply the 

beforementioned steps simultaneously for both loops. 

The reason of the choice of this method is the ease of its computations and that it 

provides a mean and variance which facilitate solving the optimization problem for 

complex networks. 

PERT-X will be useful in the computation of the present value of the costs since 

it can compute the mean and variance of any loop which can directly be applied to the 

moment generating function and the path will be treated as suggested by (8). 

 

B. Example 

As an example, the network presented in Figure 5 will be analyzed.   

 

Figure 5. Network with Two Crossing Paths 

 
The required parameters are presented in Table 9. 

 

Table 9. Values for the Network Described in Figure 5 

Path Activity Mean Variance 

Start Finish 

B 

C 

A D 
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1,2 A 4 1 

1 B 10 4 

2 C 9 3 

1,2 D 5 2 

 

To verify the results of this method, the probability of being late for different 

project durations, the assigned time was compared between PERT-X results, the results 

from the simulations and the results using one of the methods that Hmadh (2017) 

proposed PERT-IA.  The results are summarized in Table 10.  Simulation results in the 

second column of the table were obtained using Arena (e.g. ).  For brief details on the 

PERT-M and PERT-IA methods reported in Table 10, refer to section 2.1.  PERT-X 

produce very accurate results with respect to the simulation, which outperform PERT 

and PERT-IA. 

 

Table 10. Comparison Between the Results of PERT-X and Other Methods 

t Simulation PERT-M PERT-X PERT Pert-IA 

15 0.97 0.98 0.97 0.93 0.94 

17 0.87 0.87 0.87 0.78 0.80 

19 0.61 0.60 0.60 0.50 0.52 

21 0.27 0.28 0.28 0.22 0.24 

23 0.08 0.08 0.08 0.07 0.07 

 

As another example, network from Hillier and Lieberman (2005) will be 

discussed.  This network is presented in Figure 6. 
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Figure 6. Networks proposed by Hillier and Lieberman (2005) 

 
Table 11 summarizes the parameters of the proposed network. 

 

Table 11. The Paths of the Network in Figure 6 

Path Name Mean Variance 

1 ABCDGHM 40 11.22 

2 ABCEHM 31 9.67 

3 ABCEFJKN 43 8.00 

4 ABCEFJLN 44 9.00 

5 ABCIJKN 41 7.56 

6 ABCIJLN 42 8.56 

 

Loop JKLN was chosen to start with, activity K and L take the form of two 

parallel activities in this loop.  Therefore, applying PERT-X these two activities will be 

converted into a single activity KL, resulting in a network of 4 paths only.  Next step 
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would be loop CEFIJ and loop CEDGH, since both loops contains activity E therefore 

we need to treat the simultaneously.  Applying PERT-X each of these loops is replaced 

by a single activity.  Activity IEF and EDG are the resulting ones.  Finally, only one 

loop is left with two path EDGHM and IEFJKLN.  Applying PERT-X those paths are 

replace by a single activity with mean 44.26 and a variance 8.32.  

To verify the results of this method, the probability of being late for different 

project durations, the assigned time was compared similar to the previous example.  The 

results are summarized in Table 12.  Again Table 12 shows that PERT-X produce very 

accurate results with respect to the simulation, which outperform PERT and PERT-IA. 

 

Table 12. Comparison Between the Results of PERT-X and Other Methods 

T Simulation PERT-M PERT-X PERT IA Pert-IA 

40 0.94 0.93 0.93 0.91 1.00 0.92 

42 0.77 0.78 0.78 0.75 0.98 0.78 

44 0.53 0.54 0.54 0.50 0.82 0.55 

46 0.26 0.27 0.27 0.25 0.46 0.28 

48 0.10 0.10 0.10 0.09 0.16 0.10 
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CHAPTER VII 

GENERAL NETWORK TIME AND COST MODE 

 

The main concern of this Chapter is to combine the previous results in order to 

analyze a network with crossing paths.  Till now only networks with independent paths 

were discussed, this chapter deals with a network of two intersecting paths as shown in 

Figure 5 of Chapter 6.  In Section 7.1 we formulate our model.  Then in Section 7.2 we 

discuss our solution methodology.  Finally, in Section 7.3 we present some numerical 

results. 

 

A. Formulation 

To formulate the optimization problem, the moment generating function was 

used to compute the expected net present value of the costs in a similar way as Chapters 

4 and 5. Furthermore, to compute the probability of not being late it is necessary to find 

the mean and the variance as stated in Section 6.1.  The optimization problem can be 

stated as follows 

      
 2 2 22 2 2 2 ,

,
2 2 2min C

A T TB CA A
A A B A A C A A B C D

A

rr r
r d d r d d r d E T T drd

A B C DC e C e C e C e
  

  
  


        


     (18) 

Subject to 

0t E




 
  
 

,      (19) 
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Where, from Nadarajah and Kotz (2008),  ,A A D D B CE d d E T T      , 

2 2
B C    , 

     , C C B B B B C C C C B B
B C C C B B

d d d d d d
E T T d d
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     
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   
222

, , ,
B CT T B C B CE T T E T T       

 and 2 2 2 2
,B CT T A D     . 

 

B. Solution Method 

To solve this network, it is necessary to find a way to simplify the long 

computations. Therefore, the following theorem was proven. 

Theorem 4.  In any network, where the activities taking the parallel form and making a 

loop, only the activity with the lowest mean is delayed. Also, in the activities taking the 

series form without making any loop, only the first activity should be delayed. For this 

network, Activity D should not be delayed and either B or C should be delayed (the one 

with the lowest mean). 

Proof.  See Appendix A.  

Therefore, since 0Bd   and 0Dd  , based on the constraint function it can be 

found that 

 0 , 1 21 2

1 ( ) ( )B C C C C B B C C
A T T C

d d d
d t d

     
    

  

                       
     

 (20) 

Thus, if the value of d A  is replaced in the objective function, an unconstrained 

single variable optimization problem is obtained. 
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C. Example 

As an example, the values in Table 11 were assigned for the activities of the 

network in Figure 5. Also 0 30t   and 1.5%r  . 

 

Table 13. Values for the Network Described in Section 7 

Path Activity Mean Variance Cost 

1,2 A 4 1 6 

1 B 10 4 13 

2 C 6 3 8 

1,2 D 5 2 7 

 

The optimal delay of Activities A and C were found to be 6.38 and 3.31 and the 

optimal expected present value of the costs is 28.19.  Using CPM and PERT method the 

present value of the costs is 31.45. This indicates that our method performs better than 

the traditional methods since it decreased costs by around 10%. 
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CHAPTER VIII 

REAL-LIFE PROJECTS 

 
A. Formulation 

In this chapter, a real-life complex network with multiple correlated paths 

suggested by Stevenson, Nsakanda and Ozgur (2009) is discussed and presented in 

Figure 7.  As per Chapters 4 and 5 the optimization problem can be formulated in the 

following manner: 

 
 

2 2

2min E
wiwi

r
rE

i
i

C C e


 



        (21) 

Subject to 

0t E




 
  
 

      (22) 

Where iw  and 2

iw  are the mean and variance of the total time till the starting 

date of Activity i ,  iC  is the cost of Activity i .  E and  are the mean and standard 

deviation for the total duration of the project. 

 

 

Figure 7. Real Life Network 
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B. Solution Method 

Using PERT-X,  iE T , 2

iT , E and  were computed for all activities as well as 

the entire project. 

Let id be the delay of Activity i , then activities P, Q and R have together higher 

mean than Activity O, activities M and N have together higher mean than Activity L, 

Activity I has higher mean than Activities H and J, Activity E has higher mean than 

Activity C and finally Activity B has higher mean than Activity D, therefore, according 

to Theorem 4, activities B, E, I, M, N, P, Q and R should not be delayed. In addition, 

activities F, G and K are in series with Activity A and other loops therefore should not 

be delayed.  Thus, only Activities A, C, D, H, J, L and O can be delayed. Similar to 

Chapter 7, Ad could be computed in terms of all other id and could be replaced in the 

objective function to obtain an unconstrained optimization problem. 

 

C. Example 

Taking 0 50t  , 1.5%r   and 12i iC   , and the values in Table 14.  
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Table 14. Values for the Network Described in Figure 7 

 

The optimal delays were found and summarized in Table 15. 

 

Table 15. Summary of the Delays of the Network Described in Chapter 8 

Activity PERT-X id  PERT id  Activity PERT-X id  PERT id  

A 3.13 0.00 J 9.39 10.00 

B 0.00 0.00 K 0.00 0.00 

C 2.86 3.00 L 5.25 6.00 

D 1.02 1.00 M 0.00 0.00 

E 0.00 0.00 N 0.00 0.00 
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F 0.00 0.00 O 6.21 7.00 

G 0.00 0.00 P 0.00 0.00 

H 9.47 10.00 Q 0.00 0.00 

I 0.00 0.00 R 0.00 0.00 

 

The present value for some of the activities are presented in Table 16. 

 

Table 16. Present Value of the Cost for Some Activities 

Activity Present Value of Cost (PVC) 

Numerical 

Value for 

PVC 
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 2 2 2
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 15.83 

N 
         
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2
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NC e
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          
 
       
 

    







 


  

6.84 

 

According to PERT-X the optimal present value of the project costs is found to 

be 456.22.  Whereas according to CPM and PERT and using (7) to compute the present 

value which is found to be 476.8.  In addition, using the fact proposed by CPM that the 

activity durations are certain the present value is 479.39.  Therefore, the PERT-X 

method showed its efficiency in a real-life project since it decreases cost by around 5%.  
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CHAPTER IX 

CONCLUSION 

 

This paper showed first the importance of delaying activities while maintaining 

a certain probability of being on time. Furthermore, a method used in electric circuits 

was applied in project management to facilitate the computation of the probabilities. In 

addition, this paper presented a new method to compute the optimal delay for each 

activity in different types of networks. Moreover, it is to note that the different methods 

presented in this paper could be combined to solve more complex networks. This 

paper’s results are sought to make a useful contribution in understanding the trade-off 

between time and cost in project risk management.  Additionally, the analysis of PERT-

X, constitutes a side-contribution to project schedule risk analysis, which offers 

computational improvements on the commonly-used Monte Carlo simulation. 

Proving the convexity of the objective function of a general network would 

make a good extension of this paper.  In addition, finding a heuristic method to easily 

approximate the delays of the activities in any network without a mathematical 

optimization constitutes another useful future extension.  The bounds on the delay we 

present in this research offer a good starting point.  In addition, taking a penalty for the 

delay along with a probabilistic model will constitute a great extension for this work. 
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APPENDIX A 

 
Proof of Lemma 1. 
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. Therefore, P is strictly decreasing with 

respect to id . Assume *
id  are the optimal solutions s.t: 
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id  can take any continuous value. Therefore, we can find *'id  such as 
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which contradicts the fact that *
id  are the optimal solutions. Therefore, the constraint 

can be switched to: 
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 . This proof can be applied for a network 

with more than 2 parallel path as well as network with crossing paths. 

 

Proof of Lemma 2. 

First assume that 0Bd   therefore using Equations (5) and (6), 
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, then Ad  is not affected.  But the present value of an activity 

costs decrease if this activity was delayed, therefore, 03i i id t     and equivalently 

0 3i i id t     .  In addition, based on (2) it can be stated that Ad  is decreasing in Bd . 

Thus, it can be stated that the maximum value for Ad  is when Bd  is zero. 

 

Proof of Theorem 1. 
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Assume 0.611   and '' ( ) 0Bf d  . 
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Therefore, for '' ( ) 0Bf d   to hold the following inequation should hold 
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negative of a quasiconvex function is quasiconcave therefore 
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a non-decreasing function therefore, 
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Proof of Theorem 2. 
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     .  Therefore, the expected value and 

the variance of the path are independent of the timing of the delay, but the present value 

of the cost will decrease if the delay happened early on. 

 

Proof of Theorem 3. 

Using Lemma 1 we can say that constraint (9) is binding. Therefore, 
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we can state that 
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Proof of Theorem 4. 

First Assume Ad a , Bd b , Cd c , Dd d  and B C  , then assume 

Ad a b d   ,  0Bd  , Cd c b  , 0Dd  .  1 2( , )E T T , 2
1 2( , )E T T   ,  ,B CE T T  and 
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 are not affected, but the expected net present value of the cost decreased. 
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APPENDIX B 

 
Approximation for the Normal Distribution CDF 

To test Approximation (4), we compare it with the real normal distribution CDF. 

Using the sum of absolute error, 
   

 0

ˆz z

z

  

  is computed numerically and 

found to be 0.018. Therefore, we can state that this approximation acts well with high 

accuracy.  Zogheib and Hlynka discussed the accuracy by providing two graphs.  The 

first one is for the difference between the normal distribution CDF and its 

approximation and the other one present the two plots overlaid as shown in Figure 8. 

 

 

Figure 8.  Difference Between the Normal Distribution CDF and Its Approximation. 

 


