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An Abstract of the Thesis of

Md Shafiqul Islam for Master of Engineering
Major: Electrical and Computer Engineering

Title: EEG Artifact Removal for Ambulatory Epileptic Seizure Prediction Applications

Electroencephalography (EEG) is considered a primary tool for monitoring the
electrical activity of the brain. Recent advances in wearable sensing techniques allow
continuous and mobile monitoring of EEG signals during daily life activities. How-
ever, such method of EEG recording is prone to different sources of artifacts: eye-
movement, electrode movement, muscle contraction, line noise, head movement and
others. Among these sources, motion-related artifacts are a major challenge for clean
EEG data acquisition. The significant effect of motion artifacts is evident in two main
aspects. First, they overlap with all EEG frequency bands. Second, they spread over
the entire scalp affecting all sensing electrodes. For some neuro applications, such
as epileptic seizure detection and prediction, high quality EEG signals are required
to accurately depict the electrical activity of the brain and thus track seizure mark-
ers for correct classification. The main focus of this thesis work is to record EEG
data with defined motion artifacts in a controlled lab environment, to utilize various
algorithmic methods for the effective elimination of motion artifacts, to assess the per-
formance of the adopted artifact removal technique using statistical measures, and to
employ the latter technique in the application of seizure detection and prediction. The
adopted approach for artifact removal is based on applying independent component
analysis (ICA) as a blind source separation technique for removing mobility artifacts
from EEG data. The quality of the reconstructed EEG signals is assessed first using
various statistical measures and then through investigating the seizure-prediction and
seizure-detection capabilities of the reconstructed signals as opposed to the capabili-
ties of the original noise-free signals. For detection and prediction purposes, the EEG
signals are analyzed by extracting distinctive features using an N-gram based algo-
rithm. These features are used to train a predictive model, which is in turn used it to
classify EEG segments based on the random forest classifier. In the testing phase, the
reconstruction of seizure-related data (namely, ictal data) by ICA was validated using
time, frequency, and statistical signal similarity measures. In addition, the effect of

vii



mobility artifacts on seizure detection and prediction is analyzed extensively on stan-
dard EEG recordings from the Freiburg EEG database, to which simulated mobility
noise is added. The testing results showed that the prediction and detection accuracies
decreased upon the addition of mobility noise then increased after implementing ICA
for artifact separation. This proves that ICA was capable of separating the recorded
and simulated mobility artifacts from EEG data while preserving signal trends and
seizure-related features what consequently led to prediction and detection accuracies
that are comparable to the noise-free case.
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Chapter 1

Introduction

Electroencephalography (EEG) is an electrophysiological monitoring method to record
the electrical activity of the brain. It is typically noninvasive, with the electrodes placed
on the scalp. Invasive electrodes are mainly used in specific surgical cases. EEG mea-
sures voltage fluctuations resulting from ionic current circulating the neurons of the
brain [1]. In clinical contexts, EEG refers to the recording of the brains spontaneous
electrical activity over a period of time, as recorded from multiple electrodes placed
on the scalp. Diagnostic applications generally focus on the spectral content of EEG,
that is, the type of neural oscillations (popularly known as brain waves) that can be
observed in EEG signals. EEG is most often used to diagnose epilepsy, which causes
abnormalities in EEG readings [2]. It is also used to diagnose sleep disorders, coma,
encephalopathy, and brain death. EEG used to be a first-line method of diagnosis for
tumors, stroke and other focal brain disorders [3] but this use has decreased with the
advent of high-resolution anatomical imaging techniques such as magnetic resonance
imaging (MRI) and computed tomography (CT). Despite limited spatial resolution,
EEG continues to be a valuable tool for research and diagnosis, especially for applica-
tions that require millisecond-range temporal resolution what is not possible with CT
or MRLL

Traditional EEG systems require the subject to stay still in the hospital while brain
signals are being acquired. Engineering advancements in terms of sensor design, low
energy wireless transmission and frugal processing hardware have led to the devel-
opment of new wireless headsets which are more suitable for mobile recording [4].
However, such continuous mobile recording of EEG is prone to motion-related ar-
tifacts, which potentially originate from cable sway or movements of the recording
electrodes in relation relative to the scalp [5]. EEG artifacts from cyclical motions
such as walking are influenced by movement speed and can have a power spectral den-
sity covering a relatively wide range of low and high frequencies [5]. This imposes
a major challenge on current signal processing techniques and limits their ability to
handle such type of motion artifacts in mobile EEG recording.



EEG has been extensively used in epilepsy monitoring units (EMUs) for long contin-
uous recording of patients brain activities that is later used for research and diagnostic
purposes. Epilepsy is one of the most common neurological disorders, second only to
stroke, with a prevalence of 0.6-0.8% of the worlds population. Epilepsy can signifi-
cantly impact a patients career choice, lifestyle, and recreational activities (e.g. bathing
and swimming alone). Even simple daily life tasks like using a knife or driving a car
could present a serious threat on an epilepsy patient who cant predict seizure onsets.
These potential harmful consequences of epilepsy and the fact that not all patients re-
spond to treatment gave an incentive for developing a continuous monitoring system
with a predictive capability that gives alarms of incoming seizure episode ahead of
time so that the patient can take necessary precautions. Not only the prediction but
also the detection of epileptic seizures is of great importance. Detection can be ex-
tremely useful in extensive care units or for coma patients in order to apply targeted
stimulation that mitigates the seizures effect. For proper functioning of an epilepsy
monitoring system, a systematic approach is required for recognition, source identifi-
cation, and elimination of motion artifact to reduce the chance of inaccurate diagnosis
and limit the potential for adverse clinical consequences. Accurate ambulatory detec-
tion and prediction of epileptic seizures require clean and artifact-free EEG signals.
However, such a requirement is considered a major challenge because EEG signals
are vulnerable to various forms of artifacts caused by muscle activity and body move-
ment [6]. Thus, customized signal processing techniques are required to remove these
motion related artifacts and to ensure high quality EEG signals.

Motion artifacts due to body movements share the same frequency spectra with EEG
(up to 50Hz) and have amplitude that is an order of magnitude larger than the clean
brain-related EEG signals [7]. Some studies have suggested various methods to clean
EEG signals from motion artifacts. Most of these studies have been limited to highly-
controlled laboratory environments [8]. Filtering is the most widely used signal pro-
cessing technique to remove artifacts. In [9], several approaches such as Wiener,
adaptive, and Kalman filtering techniques have been used to remove different types
of artifacts from EEG. However, one major limitation of these filtering approaches is
their dependency upon a measured or reliably estimated reference for proper opera-
tion. Alternatively, blind source separation (BSS) techniques have been proposed to
estimate brain signals from noisy observations, without the need for a reference wave-
form. Among the different approaches of BSS, independent component analysis (ICA)
is the most frequently used technique for the removal of artifacts from EEG [10]. By
applying ICA techniques, it has been shown that artifacts and epilepsy related brain
signals can be successfully separated as independent components [11].

This thesis work deals with the mobility artifactual EEG data acquisition followed by
a thorough analysis of different types of motion artifacts and an investigation of vari-
ous artifact removal techniques. The efficiency of these approaches has been assessed
in the scope of seizure detection and prediction application based on artifact-colored
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EEG signals. The resulting accuracies and sensitivities of the algorithms would then
be used as a performance metric to estimate the quality of artifact removal. In partic-
ular, high levels of accuracy and sensitivity would reflect the fact that the distinctive
seizure markers have been correctly identified in the EEG signals and that the artifact
related components hiding these markers have been successfully removed. The key
contributions of this thesis work are highlighted below:

1. Analyzing EEG artifacts resulting from physical mobility using an experimen-
tal approach. This entails acquiring EEG data with recorded motion artifacts
using wearable sensing EEG headset (This work is specifically concerned with
variable speed walking artifacts).

2. Studying the performance of different artifact removal techniques. ICA was then
adapted to separate mobility artifacts, and its parameters were optimized in this
context.

3. Investigating the impact of mobility artifacts and the effectiveness of the artifact
removal techniques on epileptic seizure prediction and detection. Recorded mo-
bility artifacts as well as simulated mobility noise were added to EEG data from
the Freiburg database. Distinctive features were extracted using the N-Gram
approach and the random forest machine learning algorithm was later used for
classification in prediction and detection of seizures.

The thesis is organized as follows. Chapter 2 includes a detailed review of various re-
lated artifact removal techniques as well as epilepsy prediction and detection methods
available in the literature. Chapter 3 presents the setup for mobile EEG data acquisi-
tion with details analysis. Chapter 4 describes the proposed methodology for mobility
artifact removal with evaluation of effective reconstruction. Chapter 5 includes assess-
ment of the impact of those mobility artifacts on epilepsy prediction and detection.
Finally, Chapter 6 concludes the thesis.



Chapter 2

Literature Survey

The objective of this literature survey is to investigate previous work related to the
thesis topic. It starts with a brief introduction on EEG artifacts and their classification.
Then, it discusses the mobility artifact removal techniques available in the literature
with a comparison of different approaches. After that, it presents different epilepsy
prediction and detection techniques with emphasis on the N-gram based approach,
and it includes a brief overview about the Freiburg epileptic database. Finally, this
chapter presents a brief summary of the major relevant finding in literature with their
limitations in the scope of the presented work.

2.1 EEG Artifacts

Artifacts can be defined as unwanted components overlapping with the signal of inter-
est [12]. Usually, the characteristics of artifacts differ from those of the signals under
study. In the frequency domain, artifacts are known to occupy a defined frequency
range. They correspond to discrete frequencies and their harmonics. They are also
limited to a certain time range defined by the duration of the events that caused them
(e.g., the case of eye blinks) and to a subspace of the signal space. Also they are
characterized by particular temporal patterns such as exponential decay. An important
characteristic of artifacts is that they can be assumed to be sufficiently independent of
the observed signals.

2.1.1 Artifact Types

Various types of artifacts associated with EEG recordings are briefly described in the
following subsequent sections.

Ocular Artifact

The ocular artifact (OA) is generated upon eye movements and is normally strong
enough to be recorded along with the EEG signals. The amplitude of the blinking
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artifact is generally much larger than that of the background EEG activity. OA occurs
within the range of 0-16Hz.

Muscle Artifacts

The muscle artifact (EMG) is caused by the contraction of muscles. This artifact is
commonly present during the recordings of patients who are awake since it appears
when the patient swallows, talks, walks, etc.. EMG presents a wide spectral distribu-
tion, thus it perturbs all classical EEG frequency bands; in particular it considerably
overlaps with beta activity in the 15-30 Hz range but can also be as low as 2 Hz what
makes the widely used alpha band also vulnerable to muscle artifacts.

Artifacts due to Cardiac Activity

Cardiac activity or electrocardiogram (ECG) measures the electrical activity of the
heart. The amplitude of the cardiac activity on the scalp is usually low. ECG has a
very characteristic repetitive and regular pattern, which may sometimes be mistaken
for epileptiform activity when the ECG is barely visible in EEG recordings.

physiological artifacts

Other physiological artifacts such as perspiration artifacts are manifested as slow waves
caused by shifts in the electrical baseline of certain electrodes. To a smaller extent,
the sympathetic skin response, which also consists of slow waves and is an autonomic
response produced by sweat glands and skin potentials, may be present in EEG record-
ings.

Non-physiological artifacts

There are also non-physiological artifacts which may interfere EEG. The electrical and
wireless interference of external equipment such as power lines, wireless devices, ca-
bles, computers and high-frequency signal generators in addition to internal electrical
noise interference caused by electrodes, electrode positions, caps, cables and ampli-
fiers.

2.2 Artifacts Removal

This section gives a comprehensive overview of techniques that can be used for the
removal of artifacts from EEG.



2.2.1 Linear Regression

Regression algorithms were arguably the most frequently used EEG artifact correction
techniques up to the mid-1990s, especially for ocular interferences. Linear regres-
sion assumes that each EEG channel is the sum of the non- noisy source signal and
a fraction of the artifact that is available through a reference channel. The goal of
regression is to estimate the optimal value for the factor that represents such a prop-
agation fraction. In multiple linear regressions the measured signal of each electrode
is influenced by more than one (fraction of the) reference wave forms (for instance:
vertical, horizontal and radial ocular artifacts). Regression methods had been replaced
by more sophisticated algorithms primarily because the former need one or more ref-
erence channels a disadvantage that mainly limits their applicability to removing EOG
and ECG artifacts [13].

2.2.2 Filtering

Generally, filtering is not suitable for canceling artifacts from EEG recordings because
of the overlapping frequency spectrum corresponding to the artifacts and the signal of
interest. However, various artifact removal techniques based on filtering, as described
in this section, try to adapt filter parameters to minimize the mean square error between
the estimated and the desired EEG signals. What follows briefly highlights the main
filtering techniques employed in the removal of artifacts from EEG.

Adaptive filtering

In the scope of artifact removal, adaptive filtering works based on the assumption that
a correlation between the brain signals and the artifacts. A noisy signal is estimated
from a noisy reference signal and subtracted from the acquired EEG [14]. The main
challenge here is the selection of the noisy reference signal for proper functioning of
the algorithm. For instance, EOG signals can be used as a reference for the removal of
eye movement or blinking artifacts [15] and similarly EMG signals can be used for the
removal of muscle artifacts [16]. Adaptive filters iteratively adjust a vector of weights
based on an optimization algorithm. These weights model the degree of contamination
of EEG with artifacts. The most prevalent family of algorithms is based on the least
mean squares method, which is linear in complexity and convergence. Another well-
known family is based on the recursive least squares (RLS) method, which is quadratic
in complexity and convergence [14].

Wiener filtering

Wiener filtering is another parametric technique, based on a statistical approach, which
produces a linear time-invariant filter to minimize the mean square error between the
desired signal and its estimate [17]. The minimization is done using an estimation of
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the power spectral densities of the signal and the artifacts; hence it does not need a
reference waveform. The disadvantages are the need for calibration prior to usage and
the inability to run in real time. However, when properly calibrated, it can achieve a
better signal to noise ratio (SNR) compared to adaptive filters [17].

Bayes filtering

Bayes filtering is a probabilistic system estimation method that starts from noisy ob-
servations [9]. These filters overcome some of the limitations of the aforementioned
techniques as they are capable of working without a reference signal and can operate in
real time. Bayes filters are not directly implementable due to their complexity; instead,
they are approximated through Kalman filters and particle filters- the former has been
used for nonlinear EEG artifact removal in [18]. Bayes filters first estimate the state at
any given time instance and then obtain a feedback in the form of noisy measurements,
which is used to predict a new a priori estimate [18].

2.2.3 Blind Source Separation

Blind source separation, also known as blind signal separation, is the separation of a set
of source signals from a set of mixed signals, without the aid of information (or with
very little information) about the source signals or the mixing process. Among the BSS
techniques, principal component analysis (PCA) and independent component analysis
(ICA) are two well-known algorithms utilized in the literature for artifact separation.

Principle Component Analysis

PCA uses an orthogonal transformation to convert the observations of possibly cor-
related variables into values of linearly uncorrelated variables called principal com-
ponents, less than or equal in number to the original variables. The greatest problem
with PCA is that the assumption of Orthogonality between neural activity and typical
physiological artifacts does not generally hold. In fact, it has been demonstrated that
PCA is unable to separate some artifactual components from brain signals, especially
when they have similar amplitudes [19].

Independent component analysis

Independent component analysis (ICA) is a computational method for separating a
multivariate signal into additive subcomponents. This is done by assuming that the
subcomponents are non-Gaussian signals and that they are statistically independent
from each other. Independence is a stronger assumption than uncorrelateness. In con-
trast to the possibly incorrect assumptions of PCA, it is the case that artifacts and brain
activity are usually sufficiently independent, which explains the effectiveness of ICA
for artifact removal [20].



2.2.4 Source Decomposition

Alternatively, the problem of finding artifact-free signals from observations can be
tackled directly by decomposing each individual channel signal into a basic waveform
that represents either the signal or the artifact, what allows removing the latter when
present. Successful algorithms of this type are based on the fact that some sources
(either signals or artifacts) can be represented by a single decomposition unit, such as
an intrinsic mode function (IMF) for empirical mode decomposition, or by a certain
wavelet basis for the wavelet transform.

Empirical mode decomposition [22] is a heuristic one-dimensional technique
that aims at decomposing a signal into its basis functions, called intrinsic mode func-
tions (IMFs), which are amplitude and frequency modulated zero mean components,
plus a non-zero mean low degree polynomial remainder.

Wavelets are ideal for biomedical applications because of their versatility; they
allow designing robust methods, and they have a finely tunable time frequency trade-
off such that they can accommodate biomedical signals that generally combine features
with good time or frequency localization [21].

2.2.5 Seminal Work on Motion Artifacts Removal

As mentioned earlier, obtaining a good quality EEG signal is crucial for the correct
performance of any epilepsy related application. Motion artifacts are mainly related
to the electrical activity on the body surface caused by the contraction of muscles.
These artifacts are typical of patients who are awake and occur whenever the patient
performs a muscular activity [17]. Shapes, trends, and amplitudes of the interference
corresponding to motion related artifacts depend on the type of the involved muscle
and its degree of contraction; hence, they are hard to stereotype [16].

Several properties of motion artifact are responsible for its adverse effects on the back-
ground EEG activity [23] what imposes great challenges relative to other types of
artifacts [24]. Motion artifacts have a wide spectral distribution, thus they perturb all
classical EEG frequency bands. In particular, their corresponding frequency spectrum
considerably overlaps with beta band in the 15-30Hz range [25]. Their spectrum can
also extend to as low as 2Hz [26], making the widely used alpha band also vulnerable
to muscle artifacts [24]. Finally, motion artifacts are also associated with less repet-
itive trends as compared to other biological artifacts. Consequently, they are more
difficult to characterize. This arises from the fact that these artifacts originate from the
activity of spatially distributed, functionally independent muscle groups, with distinct
topographic and spectral signatures [15].

The aforementioned properties of motion artifacts increase the complexity of the
preprocessing stage required before the safe use of EEG signals. Several approaches
were proposed in the literature to deal with motion artifacts. Table 2.1, outlines the
most influential work done in motion artifact removal. In [27] eight healthy volunteers
participated in an experiment for recording EEG signals while standing still, walking
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Types of Motion Algorithm used Result
Treadmill Walking with | Infomax ICA ICA and dipole fitting accurately localized 99% of
a speed of 0.4-1.6 m/s the independent components in non-neural
locations or lacked dipolar characteristics.
Head Movement Two classifier Authors claim a substantial reduction in motion
1. Decision Tree artifact.
2. HMM
Head Shaking, CCA™ and MLP~ Recovery-82.4%
Nodding, Walking filtering
Walking in Real time Kalman Filter Restore contaminated EEG up to 93%
Real Time Walking and | Moving average and This study showed that mechanical artifact can be
Running Wavelet decompose minimized using the mentioned algorithm.

Table 2.1: Seminal work on motion artifacts removal

(0.8 and 1.25 m/s) and running (1.9 m/s) on a treadmill. Recorded data was decom-
posed using infomax ICA and after removing the noisy component, reconstructed EEG
signals were reported with 99% accuracy. The work in [28] aimed to classify the head
movement artifact using a data driven machine learning approach. Decision tree and
Hidden Markov Model (HMM) classifiers were used and resulted in respective accu-
racies of 85% and 95%. A motion artifact reduction algorithm was proposed in [29]
based on a multi-channel linear prediction filter(MLP). Canonical correlation analy-
sis (CCA) was performed to detect artifacts what resulted in a substantial reduction
of motion artifacts. Kalamn filter was used to estimate artifact template and EEG in
the work of [30]. Then artifacts were subtracted from raw EEG signals and a 93%
reconstruction was reported. In [31], motion artifactual EEG data was recorded from
9 subjects walking on a treadmill with a speed of 0.4 to 1.6 m/s. Moving average and
wavelet decomposition were utilized to separate motion artifacts. This study in [31]
claimed that motion artifacts cannot be fully removed from EEG.

2.3 Epileptic Seizures

A seizure is a sudden change in the normal electrical activity of the brain, which may
produce a physical convulsion, minor physical signs, thought disturbances, or a com-
bination of symptoms [32]. The symptoms that appear during a seizure depend on
a variety of factors including: the location in which the irregular electrical activity
takes place, the patients age, and the patients health condition. Seizure occurrences
can be initiated by head wounds, brain tumors, lead poisoning and mal development
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of the brain, genetic and infectious illnesses, and fevers. However, in nearly half of the
cases, no clear cause can be tracked or identified. Seizures can be mainly divided into
three categories:

e Absence seizures: these seizures disconnects a patient from the surrounding
while he/she stare off vacantly for a moment until recovering a normal state
without remembering what happened.

e Generalized tonic clonic seizures: these seizures begin with stiffening of the
arms and legs followed by jerking motions of the limbs. Many individuals may
fall from standing position while experiencing such seizures since generalized
seizures may last for about five minutes.

e Partial seizure: unlike generalized seizures, these seizures affect only one side
of the brain. Their symptoms depend on which area of the brain is affected. For
example, if the motor area is affected, the patient may jerk fingers or move hands
while if a sensory area is affected, the patient may hear sound or smell an odor
that is not present.

2.3.1 Seizure Detection

Epileptic seizure detection refers to correctly identifying the seizure onset by distin-
guishing ictal periods from pre-ictal ones based on the variation in time, frequency
and time-frequency domain features of the signals [33]. This detection provides use-
ful data especially to personnel responsible for epilepsy monitoring units. The aim of
seizure detection systems is to locate a seizure onset if present in the data. Most of
the seizure detection algorithms involve the extraction of features to differentiate ictal
from pre-ictal periods. This allows later classification of the EEG segments based on
different learning techniques.

2.3.2 Seizure Prediction

Epileptic seizure prediction algorithms try to forecast the onset of a seizure ahead of
time without a priori knowledge of the exact time of occurrence [34]. Seizure predic-
tion methods can widely vary given the abundance of signal processing, mathematical,
and statistical tools that could be applied to the problem of tracking pre-ictal changes
throughout long stretches of EEG recordings. The performance of seizure prediction
algorithms is usually assessed based on the sensitivity, which measures the proportion
of correctly identified seizures among all seizure events and the false alarm rate, which
measures the rate of falsely raised alarms.
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2.3.3 Seminal Work on Seizure Detection and Prediction

Algorithms developed in this area mainly look at the variations of EEG signals across
three dimensions: time variations, spectral (frequency) variations, and spatial varia-
tions (among different locations in the brain). Table 2.2 highlights the most influential
work related to epileptic seizure prediction and detection.

Time domain features measure entities of the EEG signal that depend only on time.
Classical and advanced signal analysis techniques are used to derive a wide range of
time domain features capable of characterizing linear and non-linear behaviors of EEG
signals. An n-gram based approach was adopted in [35] for extracting distinctive fea-
tures from EEG data. The method uses a symbolic data analysis of EEG based on
n-gram modeling, a probabilistic pattern recognition technique which identifies and
predicts the occurrence of symbolic data sequences based on previous occurrences of
these sequences. The variations of the number of occurrences of amplitude patterns in
sequences of defined lengths give evidence of certain brain activity. The abrupt change
in the electrical activity of the brain during a seizure would increase the variability
of the EEG signal amplitudes and thus decrease the counts of previously recurrent
and rhythmic amplitude patterns. Simulation results in [36] on the Freiburg dataset
demonstrate high sensitivity values with relatively low false alarm rates. Frequency

Approach Data Set Feature Classification Result
Model

Time Domain[6] Freiburg, 623h iEEG, | Significant Pattern, | Thresholding 93.81% Sensitivity,
87 Seizure, N-Gram 6% false alarm
21 Patients

Frequency Domain [7] European, 183 Sub-band SVM Sensitivity -75.8%
seizures, 3565h, Spectral Power False Alarm - 0.1/h
24 Patients

Time-Frequency [8] 15 Patients, iEEG, Statistical, Energy | One-class SVM | 97.1% Sensitivity
24 months 1.56% False alarm/h

Neuronal model [9] 7 Patients, 50 seizure | Time averaged Thresholding Only 2 false alarm

Spiking rate 83-91% reported

Table 2.2: Seminal work on epileptic seizure detection and prediction

domain analysis looks at the spectral components of the EEG signals. Frequency do-
main features are derived from the spectral content of the EEG obtained through a
transformation of the time-domain signal. The main spectral feature is the spectral
power, often defined as the statistical estimate of the signal power in each frequency
component and referred to as the power spectral density(PSD). The PSD has been ex-
tensively used in EEG analysis to identify and classify activities and states. The study
in [37] presents an algorithm based on spectral power ratios. The authors trained and
tested their learning models on long-term continuous datasets from 24 patients of the
EPILEPSIAE database (183 ictal events in 3565 hours). Channels from 3 electrodes
in the seizure onset area and 3 in remote areas were analyzed. Normalized spectral
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powers of the EEG standard spectral bands (Delta, Theta, Alpha, Beta, and Gamma),
were calculated for each channel over a five-second moving window. The authors used
the ratio between normalized spectral powers as a feature to track pre-ictal changes. A
feature selection routine along with a support vector machine classifier were used for
building a machine learning model to classify events into inter-ictal events (not pre-
ceding a seizure onset) to pre-ictal events (preceding a seizure onset ).

Finally, time-frequency analysis combines both time and frequency information into a
single representation. This technique has proven to be a powerful tool for the analysis
of non-stationary signals and have been used for seizure prediction. An example of
such a study was performed in [38] where seizure prediction was assessed for 15 adult
patient with drug resistant focal epilepsy.

As an alternative to a direct analysis of EEG characteristics, neural computation mod-
els were investigated to simulate the behavior of the neuronal activity by mathematical
and computational processes in an attempt to describe the individual or collective neu-
ral mechanisms and obtain a mathematical model of the EEG activity for different
brain states. An example of an epilepsy related study can be found in [39]. Another
study in [40] presents a seizure prediction algorithm based on a computational model
where features are estimated from the model fitted to EEG data. After pre-processing
the data through filtering, the model was fitted to the frequency spectrum of intracranial
EEG segments using a Bayesian inference method. The method was evaluated using
the Freiburg database. The system achieved an average sensitivity of 87.1% and 92.6%
and an average false prediction rate of 0.15 and 0.2 per hour, for a seizure prediction
horizon of 30 and 50 min, respectively.

2.4 The Freiburg Seizure EEG Database

The Freiburg EEG database was proposed in the early 2000s as an EEG database
available for download to researchers working primarily on seizure prediction. The
database contains intracranial EEG recordings from 21 patients with medically in-
tractable focal epilepsy. The recordings were acquired with a 128 channel EEG system
at 256 Hz sampling rate. The database contains at least 24 hours of continuous inter-
ictal recordings for 13 patients and discontinuous inter-ictal recordings for 8 patients
in addition to 50 min pre-ictal recordings from three focal and three extra-focal elec-
trode contacts. Each patient had 2 to 5 pre-ictal recordings (average of 4.2 seizures per
patient). Altogether, the database contained 582 hours of EEG data, including pre-ictal
recordings of 88 seizures. Since 2012, the Freiburg database has been discontinued to
be complemented and replaced by the larger EPILEPSIAE database [41] which con-
tains data sets of annotated long-term scalp and intracranial EEG recordings from 275
patients. In this thesis, extensive analysis have been done on the Freiburg data sets
mainly to assess the performance of the artifact removal algorithms for seizure predic-
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tion and detection applications.

2.5 Scope of Work

To the best of our knowledge, this is the first work on mobility artifactual data acquisi-
tion in controlled and simple lab setup, as other studies used complex lab environments
such as a camera mounted on a treadmill for data acquisition. As for the artifact sepa-
ration technique, the well-known versatile signal processing tool ICA was adopted for
artifact removal since it does not require a reference artifactual signal (unlike adaptive
filters) and does not necessitate an assumption that artifacts and brain EEG signals are
orthogonal (unlike PCA). Most uniquely, unlike other studies that worked with stati-
cally in-hospital recorded EEG data, this work studies the impact of mobility artifacts
recorded from moving subjects as well as the effectiveness of ICA in removing these
artifacts within the scope of epileptic seizure detection and prediction.

13



Chapter 3

Mobility EEG Data Acquisition

This chapter of the thesis describes the mobility artifactual EEG data acquisition pro-
cess. The experiment involved ten subjects in a controlled lab environment with prede-
fined speed patterns such as 120 steps/min walking EEG, 90 steps/min walking EEG,
and others. The first section of this chapter presents the experimental setup followed
by the procedure for mobility data acquisition and a summary of the collected infor-
mation that includes EEG recordings, duration of the data files, and information about
the subjects. In the second section, acquired mobility data is analyzed extensively
through the comparison of patterns in acquired signals for both time and frequency do-
mains. In addition, different statistical comparisons such as band power, total power,
and zero crossing rates were established to characterize signals corresponding to dif-
ferent speeds of walking.

3.1 Experimental Setup

3.1.1 Headset

The DSI-24 wireless EEG headset from Wireless Sensing [52] is used as shown in 3.1
to capture EEG in real time while the user is moving in a lab environment with pre-
determined speeds. The headset is designed for rapid recording of continuous EEG
data from the scalp. It is equipped with 21 sensors localized on the scalp based on the
10-20 international system [53]. The recorded EEG signal is sampled at 300 Hz with
a resolution of 16 bits per sample.

3.1.2 Data Collection Procedure

For data collection, the headset was mounted on the participants head and the signal
quality was assessed through visual inspection of EEG data and through making use of
the built-in indicators for the quality of recording. In case a large impedance or discon-
nection between the scalp and the conductor is observed, the headset is re-positioned to
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Figure 3.1: DSI-24 wearable EEG headset.

overcome any unwanted artifacts. The experimental procedure consist of six sessions
with a break of two to five minutes between any two consecutive sessions. A detailed
flow diagram for data collection is shown in Figure 3.2. The six sessions are divided
as follows:

Relax EEG _ | Normal Walking EEG R 60 Steps/min EEG
Data Collection (2-5 min) " Data Collection (2-5 min) | Data Collection (2-5 min)
\ 4
Relax EEG After Walking | 120 Steps/min EEG » 90 Steps/min EEG
Data Collection (2-5 min) | Data Collection (2-5 min) | Data Collection (2-5 min)

Figure 3.2: Mobility EEG data collection flow graph

1. The subject is asked to sit on a chair and relax with eyes open. EEG data is
recorded for 2-5 minutes. Such data is considered clean EEG and is used for
validation purposes.

2. The subject is asked to walk normally. EEG data is recorded for 2-5 minutes.

3. The subject is asked to walk with a speed of 60 steps per minute without blink-
ing. EEG data is recorded for 2-5 minutes.

4. The subject is asked to walk with a speed of 90 steps per minute. EEG data is
recorded for 2-5 minutes.

5. The subject is asked to walk with a speed of 120 steps per minute. EEG data is
recorded for 2-5 minutes.
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6. 7)6) Finally, the subject is asked to relax again on the chair with eyes open. EEG
data is recorded for 2-5 minutes. This allows detecting any differences between
EEG data for relaxed mode before and after walking.

For tracking steps per minute, a timer which produces the desired number of beep
sounds per minute was used and the subject was asked to walk on the same pace as the
beeps.

3.1.3 Data Collection Summary

EEG data was recorded with mobility artifacts using the aforementioned procedure
from ten healthy subjects. Details for the collected data are summarized in Table 3.1.
For each subject, six sets of EEG data were recorded: two of them are for relax EEG
(before and after mobility) and four data sets are for normal walking with speeds of
60 steps/min, 90 steps/min, and 120 step/min. The experiment was repeated over
three different days. 180 data sets were collected with a total duration of about 500
minutes. Filters were applied over the band 0.5Hz to 64Hz (with the 50Hz notch filter
to eliminate power line interference).

Table 3.1: Data collection summary table
Subject | Age Phy. Cond. | Data Sets | Lenth(Min.)
Total | 10 21-30(M) | Healthy 180 360-900

There were some difficulties while collecting EEG data using the wireless EEG
headset. For example, the connections of the conductors frequently became unstable
when the subject increased the walking speed (120 steps per minute or more). An-
other problem was that the headset Bluetooth connection was lost at times when the
subject exceeded the maximum coverage range in such cases when electrodes were
disconnected from the scalp or the Bluetooth connection was interrupted, a window of
EEG recording containing the event was eliminated. If multiple events occurred dur-
ing a single recording set and their durations added up to 5% from the total recording
duration, the set was discarded.

3.2 Mobility EEG Data Analysis

The collected data was analyzed using various techniques in the time and frequency
domains in order to identify the changes in EEG patterns and trends with the variations
in the mobility levels.

3.2.1 Relax EEG for Different Subjects

In Figure 3.3, relax EEG data for four subjects are shown for illustration. This type
of data is acquired when subjects sit on a chair in a relaxed mode. The subject was
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asked to avoid excessive blinking to avoid EOG artifact. Furthermore, a band pass
filter was used over the frequency band between 0.5Hz and 60Hz to avoid low and
high frequency interference as well as a notch filter at 50Hz to suppress power line
noise. The acquired data is sampled at 300Hz and a stretch of 5 second for relax EEG
is shown in the plots. On the Y-axis, 20 electrodes are shown with their corresponding
position (p for parietal, f for frontal etc.). For each electrode, scalp EEG is plotted in
millivolts. The X-axis contains 1500 data points that represent time steps summing
for a total of 5 seconds. The plots show a clear similarity between the recordings of
different subjects for the same mobility level.
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Subject-3: Relax EEG Subject-4: Relax EEG

Figure 3.3: Relax EEG data comparison for different subjects

3.2.2 Normal Walking EEG for Different Subjects

Figure 3.4 represents 5 seconds EEG traces for four subjects while they were normally
walking in a controlled lab setup. On the Y-axis, 20 electrodes are shown with their
corresponding position (p for parietal, f for frontal etc.). For each electrode, scalp
EEG is plotted in millivolts. The X-axis contains 1500 data points that represent time
steps summing for a total of 5 seconds. The plots also show similarity between the
recordings of different patients for the same mobility level, but they show an observ-
able difference compared to the traces of the relax EEG. The plots also show that
increasing the mobility results in increased amplitudes of the scalp voltage as well as
an increased variability in the EEG signals.
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Subject-3: Normal Walking EEG Subject-4: Normal Walking EEG

Figure 3.4: Normal walking EEG data comparison for different subjects

3.2.3 120 Steps/min walking EEG for Different Subjects

Figure 3.5 represents 5 seconds EEG traces for four subjects while they were walking
with a speed of 120 steps/min in a controlled lab setup. This is the highest mobility
level in terms of speed. The plots in the Figure 3.5 depicts how high peak noise ap-
peared in every step. It is also observable that the mobility noise is being added to
the brain source signal in a linear fashion. That is, the acquired data becomes noisier
as the level of mobility increases. At the same time, the amplitudes of scalp voltage
increase with the increase of movement speed.

3.2.4 All Mobility Data Type Comparison

Figure 3.6 shows sample EEG plots obtained using the aforementioned experimental
procedure for different mobility scenarios. A clear visual difference is evident between
relax time series EEG data and mobility artifactual EEG data. Relax EEG data shows
low signal amplitudes and more synchronized patterns while normal walking and other
predefined mobility EEG data show high signal amplitudes with less synchronization.

This difference is expected since in the relaxed case, the neurons in most of
the brain regions are in the same state with low activity. On the other hand, while
walking, more neurons fire and the accumulation of neural activities result in high
amplitudes [8]. Moreover, these changes in neural activities alter the patterns of EEG
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Subject-1: 120 Steps Walking EEG Subject-2: 120 Steps Walking EEG
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Subject-3: 120 Steps Walking EEG Subject-4: 120 Steps Walking EEG

Figure 3.5: 120 steps/min walking EEG data comparison for different subjects

data what can be observed when comparing the relaxed state with the walking state.
Upon comparing the relax EEG before walking and after walking, one can observe
similar patterns what validates our assumption that both relaxed states are similar and
correspond to the same neuronal activity of the brain. Additionally, a relationship of
direct proportionality between speed and mobility noise is evident in Figure 3.6 (The
higher the speed the more noisy the data becomes). This finding would help in future
modeling of mobility artifacts in EEG data.

3.2.5 Power Spectrum Comparison for Different Mobility Patterns

For frequency domain comparison, the power spectrum of relax EEG opposed to dif-
ferent walking artifactual EEG is plotted for different subject as illustrated in Fig-
ure 3.7. From the power spectrum plots, it appears that relax EEG, both before and
after walking, show a similar power spectrum while all other walking EEG show higher
power over the entire frequency range. Among the different walking EEG cases, 120
steps/min shows the highest power content followed by 90 steps/min and then by nor-
mal walking EEG.

Differences in power spectrums correlate with the difference in amplitudes of the
brain activity between resting modes and walking modes. The linear relation between
power and speed of the mobility artifactual EEG data is also evident in Figure 3.7.
The highest power is observed for 120 steps/min mobility EEG, followed by that of 90
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Relaxed EEG Normal Walking EEG 60 Walking Steps/min

90 Walking Steps/min 120 Walking Steps/min Relaxed after 120 Steps

Figure 3.6: Example plot of 5 second trace of relax and different mobility EEG

steps/min EEG and then that of the normal walking EEG.

3.2.6 EEG Band Power Comparison for Different Mobility Pat-
terns

For comparing power levels among different mobility artifactual EEG data, the power
for each EEG frequency band was calculated. The bands are: Delta band (0-4Hz),
Theta band (4-8Hz), Alpha band (8-16Hz), Beta band (16-32Hz) and Gamma band
(32-64Hz). Detailed findings are tabulated in the subsequent section for each mobility
level. Difference in power, especially in the delta band, is notable between relax and ar-
tifactual EEG. Delta waves are usually present with high amplitude and low frequency
when the subject is in a sleeping state and their power increases significantly upon
movement as claimed in [cite]. An almost linear increase in band power is noticed
when changing state from relaxed to walking as well as when increasing the speed of
walking.
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Figure 3.7: Power spectrum comparison for different mobility patterns

Band Power Comparison of Relax EEG for all Subjects

Table 3.2 represents the relative powers of different EEG bands (namely: delta, theta,
alpha, beta and gamma) for relax EEG. The obtained results show that 55% of the
power of relax EEG lies in delta band, 12% of the power lies in theta band, 18% of
the power lies in alpha band, 8% and 3% of the power lies in beta and gamma band
respectively for all ten subjects. The majority of relative powers for the delta band are
between 50% and 70% while those of the gamma band always show the lowest relative
power.

Band Power Comparison of Normal Walking EEG for all Subjects

For normal walking EEG, the power distribution among different bands is shown in
the Table 3.3. In this case, the delta power increased to an average of 73% of the total
power and it was greater than that of the relax EEG for all subjects. Notably, other
band powers becomes smaller compared to those of relax EEG.
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Subject Delta Power | Theta Power | Alpha Power | Beta Power | Gamma Power
Subject-1 69.11 11.77 9.99 6.39 2.86
Subject-2 63.43 10.05 18.18 6.24 2.24
Subject-3 58.32 9.29 18.50 10.82 3.22
Subject-4 60.36 9.54 13.94 8.96 7.28
Subject-5 67.26 14.76 8.53 6.97 2.68
Subject-6 60.45 18.47 13.32 5.94 2.08
Subject-7 47.54 20.05 19.71 9.40 3.55
Subject-8 66.07 9.18 12.03 8.35 4.43
Subject-9 51.42 12.46 23.33 9.90 3.12
Subject-10 29.36 10.70 44.71 12.12 3.23

Table 3.2: Different EEG band power comparison of relax EEG for all subjects

Subject Delta Power | Theta Power | Alpha Power | Beta Power | Gamma Power
Subject-1 72.52 13.15 6.81 4.86 2.93
Subject-2 75.24 9.09 6.62 5.51 3.64
Subject-3 71.52 11.36 8.33 5.56 3.39
Subject-4 60.79 16.16 14.06 6.78 2.31
Subject-5 70.45 8.41 11.54 6.54 3.16
Subject-6 78.24 7.84 4.93 5.05 4.08
Subject-7 73.08 10.04 8.49 5.27 3.27
Subject-8 79.65 9.05 5.12 3.58 2.67
Subject-9 76.04 11.57 6.51 3.80 2.48
Subject-10 75.99 12.29 6.97 3.19 1.70

Table 3.3: Different EEG band power comparison of normal walking EEG for all
subjects

Band Power Comparison of 120 Steps/min EEG for all Subjects

The highest delta band power is reached in the 120steps/min case where it reached an
average of 85% and the lowest gamma power was recorded (about 1%) as shown in
Table 3.4. A key conclusion from the observations of the power distribution across
frequency bands is that increasing the mobility level (i.e. the speed) results in increas-
ing the relative power for the delta band while decreasing relative powers of all other
bands.

3.2.7 Zero Crossing Rate Comparison for Different Mobility Pat-
terns

To further evaluate the difference between relax and mobility EEG, the zero crossing
rate (ZCR) test was performed for all subject cases. Details results are shown in Table
3.5, where high ZCR value is observed for relax EEG, both before and after walking, as
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Subject Delta Power Theta Power | Alpha Power | Beta Power | Gamma Power
Subject-1 78.20 10.91 6.38 3.18 1.39
Subject-2 82.45 9.13 3.92 2.72 1.88
Subject-3 86.64 6.40 3.80 2.02 1.23
Subject-4 62.36 18.04 12.60 5.43 1.76
Subject-5 98.15 0.87 0.67 0.26 0.07
Subject-6 77.55 10.69 5.34 4.17 2.36
Subject-7 93.17 4.28 1.77 0.64 0.18
Subject-8 94.63 3.51 1.22 0.50 0.16
Subject-9 92.68 4.73 1.59 0.76 0.28
Subject-10 83.82 5.88 5.82 3.09 1.45

Table 3.4: Different EEG band power comparison of 120 steps/min EEG for all sub-
jects

compared to different mobility EEG. It is also evident from Table 3.5 that the relation-
ship between the ZCR value and the mobility speed is almost inversely proportional
(That is, the higher the speed, the less the ZCR value becomes). It is worth noting
that low zero crossing rates indicate high power while high zero crossing rates indicate
low power which is consistent with the previous observations on power as shown in
Figure 3.7). Moreover lower ZCR value indicate more activity of the brain neuron
while high zero crossing reflects less activity [?] and it support our finding of low ZCR
during walking as at this time more neurons are active. On the other hand during relax
state less activity in the brain. This time we have observed an inversely proportional
relationship between zero crossing rate and mobility speed that is the more speedy the
EEG data is,the less ZCR rate.

Subject Relax EEG (bf) | Relax EEG(af) Normal Walking EEG 60 Steps/min EEG 90 Steps/min EEG 120 Steps/min EEG
Subject-1 6.74 8.20 5.63 6.20 4.55 3.86
Subject-2 7.50 7.45 4.58 4.76 2.92 2.93
Subject-3 7.91 5.12 3.08 3.37 3.17 2.81
Subject-4 8.76 6.99 5.75 6.48 5.41 4.29
Subject-5 8.67 7.18 451 4.66 4.44 4.84
Subject-6 7.32 6.60 3.22 1.85 2.67 1.95
Subject-7 6.06 6.48 4.78 4.64 4.43 3.32
Subject-8 5.45 4.84 3.50 1.94 1.52 2.43
Subject-9 5.94 6.23 3.07 4.25 4.20 3.07
Subject-10 7.01 7.23 4.97 5.34 4.70 3.96

Table 3.5: Zero crossing rate comparison for different mobility patterns

3.2.8 Total Power Comparison for Different Mobility Patterns

The final evaluation metric is the total power (in dB). Results for the different mobility
levels are summarized in Table 3.6 for all ten subjects. It is clear that the highest total
average power is recorded for the 120 steps/min EEG (1109 dB) followed by that of

23



the 90 steps/min EEG (600 dB) and then followed by that of normal walking EEG
(300 dB). The lowest total average power is for relaxed EEG (91 dB). This stresses the
linear relation between power the mobility level.

Subject Relax EEG (bf) Relax EEG(af) Normal Walking EEG 60 Steps/min EEG 90 Steps/min EEG | 120 Steps/min EEG
Subject-1 111.09 96.32 337.65 272.62 255.47 417.17
Subject-2 84.82 147.83 710.78 714.16 639.46 1158.21
Subject-3 36.60 40.57 181.89 154.40 625.87 543.14
Subject-4 67.46 90.75 299.12 309.06 810.89 956.49
Subject-5 172.74 158.57 232.75 204.50 177.62 304.31
Subject-6 69.50 62.18 683.07 267.25 336.59 325.48
Subject-7 102.85 69.83 269.82 188.53 971.11 3136.13
Subject-8 87.87 73.41 3626.27 315.90 1007.18 935.08
Subject-9 85.04 77.96 643.24 400.27 859.60 1797.22
Subject-10 101.17 61.70 255.95 424.75 2598.20 1524.52

Table 3.6: Total power comparison for different mobility pattern for all subjects

3.3 Summary

In summary of chapter 3, mobility artifactual EEG data was recorded in a controlled
lab setup with predefined speed levels. Extensive data analysis was performed for
all ten subjects in different domains (time, frequency etc.). Based on the analysis,
the following was concluded. Relaxed EEG and mobility artifactual EEG are indeed
different what was manifested in significant differences of their respective time and
frequency domain properties as well as in their band powers and zero crossing rates. A
positive correlation between the power level (mainly for the delta band) and the speed
of mobility was evident for all subject cases.
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Chapter 4

Mobility Artifacts Removal

This chapter proposes a procedure for removing mobility artifacts from in-lab recorded
artifactual EEG data. This chapter also deals with processing of simulated noise which
is added to the recorded EEG data. ICA is implemented for source separation of the
pure EEG signals and the mobility artifact related components. The reconstructed
noise free EEG signals are then characterized using different statistical test.

4.1 Proposed Methodology

Figure 4.1 shows a detailed scheme of the experimental setup for removing mobility
artifacts. Initially, ICA is applied to EEG data corresponding to relaxed cases and to
cases for different mobility levels. This results in separating data to clean and artefac-
tual components based on visual inspection of time series and the comparison of the
measures for auto correlation, power spectrum and scalp topography between com-
ponents. Upon eliminating the noisy components, clean brain EEG signals are re-
constructed and compared with reference relaxed EEG signals in time and frequency
domains using different statistical tests such as power improvement, signal to noise
ratio (SNR) improvement, etc. The bottom part of Figure 4.1 outlines the processing
of simulated noise where simulated EMG artifacts are added to the recorded mobility
artefactual EEG data before processing it with ICA. Similarly comparison methods are
then used to assess the reconstruction capability of ICA.

4.2 Independent Component Analysis

Figure 4.1 presents an overview of the artifact removal approach which is essentially
based on independent component analysis. ICA separates original signals from any
set of two or more observed signal mixtures, where each signal mixture can be a lin-
ear combination of original signals [50].The success of ICA depends on some key
assumptions. Mainly, source signals must be non-Gaussian and mutually statistically
independent while their mixture must be Gaussian. Another key assumption is that the
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Figure 4.1: Mobility artifacts removal procedure

number of observed signals must be greater than or equal to the number of independent
components of the mixture [S1]. separates components based on the maximum mu-
tual information among the sources. Equation 4.1 expresses the separated independent
components in terms of the input data.

S=WX 4.1)

The input to the algorithm is the collected EEG data matrix X of dimension m x IV,
where m is the number of EEG electrodes and NV is the total number of data points. S
is the source activity (independent components) with a dimension of n x N, where n
is the number of components. The weight matrix W of dimension mxn is then used
to express the independent components in terms of the input data.

The MATLAB toolbox, EEGLab, provides an interface for running ICA and other
signal processing techniques [55].The number of components in ICA is fixed to the
number of channels. The below features are used to distinguish artefactual from non-
artifactual components:

o Component Topographies: Each artifactual component presents a unique dis-
tinguishable topography [49] which make it suitable for separation of artifactual
components from brain signal.

e Auto-correlation: EMG artifacts are expected to have low auto-correlation [8].
For this reason, the auto-correlation have been used as a possible feature for
selecting artifactual components.

e Spectrum:Spectrum analysis is commonly used to identify artifacts manually
due to the characteristic shape corresponding to each artifact [56].
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4.3 Signal Reconstruction Evaluation Metrics

After detecting artifactual components through the above mentioned features, noisy
components are separated and clean EEG is reconstructed. The following evaluation
metrics are used to validate signal regeneration as commonly used in literature [57].

1. Artifact reduction is calculated using the following equation:

Cref - Crec)

4.2
C’ref - Cart ( )

Agea = 100 (1 -

Crer 18 the auto-correlation of the reference signal, Cy is the cross-correlation be-
tween the artifactual and the reference signals, and Ci. is the cross-correlation
between the reconstructed and the reference signal.

2. Signal to Noise ratio (SNR) improvement is calculated by following equation:

Simp = 101log, (X‘fef> — 10log10 < V;ef> 4.3)

eraf erbf
Vet 1s the variance of the reference signal, V¢ is the variance of the error signal

before ICA, and Vs is the variance of the error signal after ICA.

3. Root Mean Square Error (RMSE) improvement is calculated using following
formula:

1 N

L
Rimp = NZ (; — ;)% — NZ (8; — ;)2 4.4)

i=1 i=1

x represents the artifactual signal, T represents the econstructed signal, s repre-
sents the reference Signal, and N is the length of the EEG Data.

4. Power Spectral Density distortion improvement after ICA is found using:

PSD,  PSDhe
PSDyet  PSDye

lDimp = (45)

PDSy , PDS and PD.S, are the power spectral densities of the artifactual
signal, the reconstructed signal, and the reference signal respectively.
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5. Correlation improvement is calculated by:

Cimp = 100 (CH) (4.6)
Cref

where Clet, Cyre and Cie. correspond respectively to the auto-correlations of the
reference signal, the artifactual component, and the reference signal.

6. Coherence improvement

C(hafter - C(hbefore
Rimp = 1 4.7
C P 00 < C’hbefore > ( )
G2
Chafter =2 (48)
Gxx * Gyy

Gyy is the cross spectral density of the reconstructed and the reference signal.

2
Gy

C’hbefore = m

(4.9)

Gyy is the cross spectral density of the artifactual and the reference signal, G is
auto spectral density of the artifactual signal, and G, is the auto spectral density
of the reconstructed signal.

4.4 Results: In-lab Mobility Artifacts Processing

4.4.1 Relax EEG Processing

The Figure 4.2 shows relax EEG data processing using independent component anal-
ysis. Top left plot of the Figure 4.2 represents 5 second time series EEG data of 20
channels when subject was sitting in a chair with relaxed mood. We have suggested
subject to fixed eye in a fixed position to avoid ocular artifact. To avoid low and high
frequency we have used band pass filter between .0.5Hz and 64Hz while recording.
Top middle plot of Figure 4.2 represents reconstructed EEG after ICA implementa-
tion through selecting and separating noisy components based on time series and scal
topography as shown. Reconstructed EEG is looking similar in time domain. Also
the power spectrum comparison proves that relax EEG and reconstructed EEG show
similar power content over the entire frequency range. This shows that ICA maintains
high quality reconstruction of signals that originally contains no mobility artifacts.
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Figure 4.2: Relax EEG data processing and comparison of power spectrum

4.4.2 Normal Walking EEG Processing

Figure 4.3 illustrates the case for processing normal walking EEG data. This type of
data was acquired while the subject was walking with a normal speed. Proper ex-
perimental control measures were taken to reduce and eliminate sources of artifacts
other than mobility-related ones. Normal walking EEG appears noisy with clear dif-
ference compared to relax EEG. However, after ICA implementation, the reconstructed
clean EEG signals, corresponding to the originally noisy normal walking EEG, appear
closely comparable to relax EEG with similar power content as well.

4.4.3 120 Steps Walking EEG Processing

Figure 4.4 illustrates the case for the processing of 120 steps/min walking EEG data.
The top left plot in the figure shows the time domain signals corresponding to ten
channels with contaminated EEG data (The case when the subject was walking in a
speed of 120 steps per minutes). The top right plot in the figure shows the scalp topog-
raphy for the independents components. The middle left plot shows the time series of
the ten independent components. The middle right plot shows the reconstructed EEG
signals after removing the noisy components that were detected based on the scalp
topography and the visual inspection of the time series for the output independent
components. The bottom left plot shows the reference relaxed EEG which appears
similar to the reconstructed EEG after the implementation of ICA. To validate the re-
construction capability, the power spectrum of 120 steps walking EEG is compared to
the reconstructed and the relax EEG. Comparable curves are shown in the bottom right
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Figure 4.3: Normal walking EEG data processing and comparison of power spectrum

plot of the figure. It is notable that both relax and reconstructed EEG is showing simi-
lar power spectrums while the 120 steps walking EEG is showing higher powers over
the entire frequency domain. The similarities between the spectrums of relax EEG and
that of the reconstructed EEG reflects that ICA is successful and effective in separating
artifactual components from brain signal.

4.5 Results: Simulated Mobility Artifacts Processing

4.5.1 Normal Walking EEG Processing

Figure 4.5 illustrates the processing of normal walking EEG data with added simulated
noise using independent component analysis. The top left plot in the figure shows the
time domain signals corresponding to 20 channels. These signals are for normal walk-
ing EEG. The middle top plot of the figure shows the simulated noise with the same
sampling frequency and number of channels. After the addition of noise, the resulting
noisy signal is shown in the top right plot of the figure. Upon processing the noisy
EEG using ICA and removing the artifactual components, the reconstructed EEG sig-
nals are plotted in the bottom left plot of the figure. By visual inspection, it is clear
that the reconstructed EEG is almost noise free. Also, the reconstructed noise shows
similar time domain pattern to the added noise.

To further assess the quality of the reconstruction, the power spectrums of the various
signals are shown in the bottom right plot. It is notable that both relax and recon-
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Figure 4.4: 120 walking steps/min EEG data processing and comparison of power
spectrum

structed EEG is showing similar spectrums while both added noise and reconstructed
noise are also showing similar temporal and spectral behavior. Again, the results prove
that ICA is able to separate and remove EMG artifacts from brain EEG data.

4.5.2 60 Steps/min Walking EEG Processing

Figure 4.6 illustrates the case for processing the 60 steps/min walking EEG data after
adding simulated noise. The top left plot of the figure shows the time domain signals
for 20 EEG channels with mobility artifacts corresponding to the case when the subject
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Figure 4.6: Processing of 60 steps/min walking EEG data colored with simulated noise

was walking with a speed of 60 steps per minutes. Simulated noise is added to the sig-
nals of the previous plot resulting in the noisy signals shown in the top right plot of the
figure. After applying ICA, both EEG signals and simulated noise are reconstructed.
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The reconstructed EEG signals appear noise-free in the time domain and show simi-
lar power spectrum to those of relax EEG as depicted in the bottom right plot of the
figure. The deviation of the power spectrum for the reconstructed noise from that of
the original simulated noise can be explained by the fact that the reconstructed noisy
component is a mixture of the simulated noise and the noise recorded with the 60 steps
EEG.

4.5.3 90 Steps/min Walking EEG Processing

Figure 4.7 illustrates the case for processing the 90 steps/min walking EEG data after
adding simulated noise. The top left plot of the figure shows the time domain signals
of the 20 channels with mobility artifacts corresponding to the case when the subject
was walking with a speed of 90 steps per minutes. This signal is made further noisy
by adding simulated noise as shown in the top right plot of the figure. After the im-
plementation of ICA, both EEG signals and simulated noise are reconstructed. Also in
this case, the reconstructed EEG seems to be noise-free and similar to the relax EEG in
both time and frequency domains. The shift in the power spectrum of the reconstructed
noise is also due to fact that noise here corresponds to the addition of the simulated
and recorded noise.

— 90 Walking EEG

b T 2 3 : s
Reconstructed Noise

Reconstructed EEG Power Spectrum Comparison

Figure 4.7: Processing of 90 steps/min walking EEG data colored with simulated noise
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4.6 Statistical Validation: Artifacts Removal

4.6.1 In-lab Mobility Noise

To validate the effectiveness of ICA in eliminating recorded noise from brain EEG
signals, different signal reconstruction metrics, as described in Section 4.3, are calcu-
lated and analyzed. Results are summarized in Table 4.1. On average, 10% artifact
reduction, about 13 dB signal to noise ratio (SNR) improvement, and around 40 mV
root mean square error improvement (RMSE) are evident for all ten subjects. The cor-
relation and coherence improvements show around 70% and 95% respectively. These
notable improvements emphasize the successful removal of mobility noise from brain
EEG. They also confirm that the reconstructed signals are indeed similar in terms of
correlation and coherence to the reference relax signals.

Subject Artifact Signal to Root Mean Power Correlation Coherence
Reduction | Noise Ratio Square Error | Distortion Improvement | Improvement
Improvement | Improvement | Improvement
Subject-1 8.25 4.49 13.80 1.04 80.52 99.72
Subject-2 13.01 4.92 20.98 6.28 83.78 84.85
Subject-3 6.10 6.58 8.34 67.00 84.99 99.99
Subject-4 3.09 11.67 67.58 74.09 39.43 83.38
Subject-5 5.08 16.70 16.46 35.80 73.15 99.92
Subject-6 3.97 9.30 24.00 65.08 59.43 95.38
Subject-7 5.71 16.63 97.14 60.16 67.95 99.85
Subject-8 7.93 15.04 98.28 63.32 70.56 99.90
Subject-9 4.89 8.34 69.87 77.85 91.58 100.00
Subject-10 5.04 11.99 43.54 44.17 97.17 99.97

Table 4.1: Performance evaluation of ICA technique for in-lab mobility noise separa-
tion

4.6.2 Simulated Mobility Noise

Aforementioned evaluation was done for simulated noise removal. An interesting ob-
servation in the results is that after the processing of simulated noise, more significant
improvements are noticeable in all of the evaluation metrics as compared to the case
of in-lab recorded mobility artifacts shown in Table 4.2. The reason for this is that the
amplitude of the simulated noise (160-200 V ) is more significantly higher than the
that of the recorded EEG (50-150 V ) as compared to the recorded noise what makes
simulated noise less correlated with pure EEG data and thus easier to separate and
eliminate.
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Subject Artifact Signal to Root Mean Power Correlation Coherence
Reduction | Noise Ratio Square Error | Distortion Improvement | Improvement
Improvement | Improvement | Improvement
Subject-1 31.51 19.81 82.82 85.53 76.04 99.98
Subject-2 81.77 19.38 81.89 35.10 99.07 99.90
Subject-3 43.95 20.74 81.77 76.14 76.51 99.97
Subject-4 56.61 18.25 81.36 60.66 95.79 99.20
Subject-5 62.31 16.65 79.09 67.61 76.49 99.97
Subject-6 58.68 18.03 98.56 42.83 87.66 97.56
Subject-7 68.72 18.49 81.11 52.91 76.55 99.76
Subject-8 54.05 17.93 80.96 63.62 71.13 99.76
Subject-9 47.08 20.29 83.76 79.25 94.14 89.42
Subject-10 76.38 19.05 76.51 47.82 96.15 99.92

Table 4.2: Performance evaluation of ICA technique for simulated mobility noise sep-
aration

4.7 Regeneration Performance Test of ICA Technique

4.7.1 In-lab Mobility Noise

To test the regenerative performance of ICA, the complete 180 data sets along with an-
other 180 simulated noisy data sets were used. The aim is to quantify the effectiveness
of ICA in removing mobility artifacts and regenerating the original noise-free EEG sig-
nal. Figure 4.8 uses a boxplot to illustrate the improvement of the validation metrics
used in this paper for different types of mobility EEG data after reconstruction using
ICA. The plots show that the correlation and coherence improvements of both relax
EEG vary between 35-80%. The improvements for all considered metrics were more
significant in the cases where the subject was walking. For normal walking, a corre-
lation improvement of 60-80% and a coherence improvement between 95% to 98%
was recorded. For 60, 90 and 120 walking steps, around 50-80% correlation improve-
ment and 95-98% coherence improvement were acheived. These improvements are
expected, as we showed earlier. After ICA, the reconstructed EEG and the reference
relax EEG are close both in time and in frequency domains what hints on their high
correlation. Again, the spectral content of the reconstructed and the reference relax
EEG are very similar what reflects the high coherence between the signals (coherence
quantifies the similarity between two signal in terms of their spectral content). It can
also be noted that the improvements are consistent as shown in the boxplot of Fig-
ure 4.8. For instance, the range for coherence improvement is only 3% for all subjects
what shows that ICA is generating artifact-free signals with high consistency.

35



120 steps Walking for all subject 90 steps Walking for all subject 60 steps Walking for all subject

100 _ 4 1000 - = 100 ==
90! T %0 i
sor + ] N :
& q s + 80 + LA
" T - . A o ¥ |
60 | 60~ + + 60 T .
5 | 1 s T ‘ 50 ‘
aof 1 aor | aof
: i 1 |
2 | ] 201 * 20 * l
100 10
o | o= = = =
o = %I 4 J o + o
attifact% ~ SNR%  RMSE% Pow.Dis%  Con% Coh% artifact% ~ SNR%  RMSE% Pow.Dis%  Cor% Coht% attifact% ~ SNR%  RMSE% Pow.Dis%  Cor% Coh%
Normal Walking for all subject Relax Afer for all subject Relax Before or al subject
100|
* = 100 100
+
%|
80
+ 80 8ol
. 70|
60
T . il
1 50|
40 | * +
l w0 ol +
+
+ ol
200 + R . +
+
= » . * ‘ ) .
+
= . . R
ok
= = =2 o= 1 == &=

atifact% ~ SNR%  RMSE% PowDis%  Com%  Coh% arifact’s  SNR% ~ RMSE% PowDis%  Com%  Coh% arifict%  SNR%  RMSE% PowDis%  Comd  Cohd

Figure 4.8: Regeneration test of ICA algorithm in processing in-lab mobility noise for
all subjects
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Figure 4.9: Regeneration test of ICA algorithm in processing simulated noise for all
subjects

4.7.2 Simulated Mobility Noise

To further evaluate the regeneration capability of ICA, EMG noise from the Physionet
EMG Database (Physionet) were added to the recorded data and the same processing
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was performed. Consistent results are observed in this case except for correlation im-
provement which varies from 20-80% as shown in the boxplot of Figure 4.9. All other
metrics such as Power distortion (75-85%) and coherence (95-97%) improvement lie
within small ranges what reflects the generalized artifact-processing capability of the
ICA technique. Since EMG is independent from the normal brain EEG, ICA can easily
and effectively separate those simulated EMG artifacts and thus result in high correla-
tion, power distortion and coherence improvements for the reconstructed EEG signals.

4.8 Summary

In summary, this chapter illustrates the implementation of infomax ICA algorithm
from EEGLAB MATLAB toolbox for processing mobility artifactual EEG data. It
also assesses ICAs capability of removing recorded mobility artifacts and simulated
noise. Results in this chapter show that the reconstructed EEG signals and the sep-
arated mobility artifacts exhibit similar patterns and properties compared to their re-
spective original sources in time and frequency domain analysis as well as in the terms
of the considered statistical measures. This proves that ICA is a very effective tool for
separating pure EEG data and mobility artifacts from their mixture.
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Chapter 5

Impact of Mobility Artifacts on
Epilepsy Detection and Prediction

The third objective of this thesis work is to conduct necessary experiments to inves-
tigate the impact of mobility artifacts on epileptic seizure prediction and detection.
This chapter is designed to fulfill the aforementioned thesis goal. The chapter de-
scribes the necessary signal processing tools and machine learning algorithms for the
application of epileptic seizure detection and prediction. Its first part is dedicated to
test the effectiveness of ICA in eliminating mobility noise (recorded and simulated)
while preserving seizure markers in the reconstructed signals. The second part deals
with pre-processing, feature extraction, training and testing classification models, and
finally evaluating the performance of epilepsy detection and prediction in the cases
of: noise free Freiburg epileptic data, noisy epileptic data, and reconstructed epileptic
data. The detailed methodology and experimental setup are described in subsequent
section.

5.1 Proposed Methodology

To investigate the effect of mobility artifacts on seizure detection and prediction, mo-
bility noise was analyzed in the case of the recorded 120 walking steps EEG and in
the case of EMG simulated noise from Physionet added to the Freiburg epileptic EEG
data. The proposed methodology is presented in Figure 5.1.

1. Infomax ICA is implemented on noisy Freiburg epileptic data. Noisy compo-
nents are selected based on visual inspection of different time series and based
on scalp topography (The noisy component selection procedure was described
in Section 4.1).

2. Selected noisy components are separated from the noisy mixtures and clean
epileptic data is reconstructed. The added noise is also reconstructed by sub-
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Figure 5.1: Methodology for investigation the impact of mobility artifacts on epileptic
seizure application

tracting the reconstructed clean epileptic data from the noisy mixture for alter
assessment.

3. Performance of ICA algorithm is evaluated in terms of the reconstruction of both
epileptic data and mobility noise using different statistical signal regeneration
evaluation metrics as well as time and frequency domain similarity measures.
This ends the signal processing part of this chapter.

4. The Machine learning part begins with pre-processing of all data corresponding
to the three type: noise-free Freiburg, noisy Freiburg (with simulated noise), and
reconstructed Freiburg epileptic data after ICA. Pre-processing is necessary to
avoid low and high frequencies that are insignificant in EEG diagnosis as well as
to suppress power line interference. A band pass filter between 0.5Hz and 64Hz
was used with a notch filter at 50Hz.

5. N-gram based feature extraction is implemented for all three data types, and it
is followed by training and testing of classification models for prediction and
detection. Finally, the classification capability is evaluated for all three data
types using different performance evaluation metrics: accuracy, sensitivity and
false alarm rate.
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Figure 5.2: Epilepsy prediction and detection Procedure

5.2 N-gram Algorithm for Anomaly Ratio Feature Gen-
eration

An N-gram based approach was used to extract seizure distinctive features for noise
free, noisy and reconstructed data. Upon training different learning models and classi-
fying segments of EEG recordings, prediction and detection accuracies are then com-
pared and analyzed for the three data type. For detection, learning models are trained
on ictal data (from the onset of the seizure to its end) and pre-ictal (directly preceding
the seizure onset). For prediction, learning models are trained on pre-ictal data and
inter-ictal data (data other than pre-ictal or inter-icta). The overall scheme is depicted
in Figure 5.2.

5.2.1 Overview of the N-gram Algorithm

N-gram based techniques have been previously applied in the context of EEG data
analysis [35]. This work uses the N-gram approach described in [58] where sequence
counts give an indicator for the variability of EEG signals. The abrupt change in
the amplitude of EEG signals during seizures will reduce counts of long patterns or
sequences. The gradual decrease in the pattern counts in the EEG data can be used
as a marker for epileptic seizure prediction. Thus, the variability, also referred as the
anomalies ratio (AR), is adopted as a distinctive feature for seizure prediction.

5.2.2 Anomaly Ratio Generation

The adopted N-gram approach relies on different parameters, namely: window size,
interval length, pattern length and weight. Optimized parameters from [58] are used to
run the N-gram algorithm. EEG data is analyzed in segments of length specified by the
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window size. These windows of EEG data are partitioned into multiple sub-intervals
whose length is determined by the interval length parameter. For every interval, time
series sample values are quantized by multiplying with a conversion factor of 0.165
and dividing by a weight of 8. After quantification, the algorithm searches every in-
terval for repeated significant patterns with a predefined pattern length. A pattern is
significant if it is repeated more than a certain threshold in a particular interval (For
example, if pattern [10 11 10 10 11] is repeated more than twice, it is considered as a
significant pattern). Within an interval, the sample value that was not included in any
of the significant patterns will be termed as un-sequenced sample. These samples are
used to calculate AR for a particular interval as follows:

AR — Count(Unsequenced Samples)
B Count(All Samples)

5.1

For feature extraction, analysis is limited to channels at which the seizure onset was
clinically observed. This is due to the fact that the considered seizures are partially
located on a specific region of the brain so channels that are away from the seizure
onset region are not significant for prediction nor for detection.

Model Development and Classification

Ensemble learning is a technique where multiple classifiers are developed by randomly
sampling the training data sets. The process of classification in ensemble learning is
depicted in Figure 5.3. There are basically two approaches used in ensemble modeling
namely bagging and boosting. In bagging modeling, also known as parallel modeling,
ensemble models are built independently where the whole training data is divided into
multiple folds using bootstrap sampling. For every fold, classifiers are trained and de-
cisions are taken by each classifier on each test vector. The final result of classification
is found by majority voting. On the other hand, boosting is a sequential approach that
works by assigning high weights for miss-classified class levels. From the family of
bagging ensemble modelling, the random forest classifier is used to predict seizures
due to its suitable prediction and stability properties [59] as it works well for small
variances in data. The random forest classifier starts by splitting the feature data into
subsets for which separate decision trees are built. Each developed tree (classifier)
gives a vote on any new testing feature vector. Finally the predicted class level of
the tested vector is found based on majority voting or averaging. Majority voting is
used for binary classification decisions while averaging is used in probabilistic clas-
sification. In the developed learning models, unbiased data sets are used with equal
numbers of seizure and non-seizure feature vectors for training. For example, Patient
586 from Freiburg database has 22 recorded seizure and a total of 104 channels de-
tected the onsets of these seizures. To develop an unbiased data set, we have generated
anomaly ratios (ARs) from the ictal periods of those 104 channels. At the same time,
we also extracted ARs for the same number of pre-ictal periods (with the same size as
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the ictal-periods) of those channels. Thus we have a data set of 208 entries with 104
seizure cases and another 104 non-seizure cases.

Test Learning | .
| L)
Sample 1 Algorithm | Classifier 1 .

Jest feating '—l'! Classifier 2

Training —_— £ Combined
Eeiples Samplie{Z_ " Algorithm ) |.‘ ‘ Classifiers
o Test l Learning | | . | l
Sample3 ™ Algorithm | Classifier3
- b 4 - Prediction

Figure 5.3: Classification model use to evaluate the impact of artifacts on epileptic
seizure detection and prediction

5.2.3 Performance Evaluation

To evaluate the performance of the seizure detection and prediction algorithms, the
following metrics are used:

TP+TN

A = 52
Y = TP L FP+ FN+ TN (52)

. TP
SenSltIVIty = m (53)

FP
FalseAlarm = ————— 4
alseAlarm FPLTN (5.4)

The metrics defined in (5.2)-(5.4) depend on the following variables:

1. True Positive (TP) refers to a case where an alarm is raised when a seizure actu-
ally occurred.

2. True Negative (TN) refers to a case where an alarm is not raised when a seizure
did not occur.

3. False Negative (FN) refers to a case where an alarm is not raised when a seizure
actually occurred.

4. False Positive (FP) refers to a case where an alarm is raised when a seizure did
not occur.
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5.3 Result and Discussion on Signal Reconstruction

5.3.1 Signal and Noise Regeneration Analysis

To investigate the impact of mobility artifacts on epileptic seizure prediction we have
applied the same procedure we followed in Chapter 4 Section 4.1 for mobility artifacts
processing.

Ictal Simulated Noise Ictal+Noise

Power Spectrum Comparison

Reconstructed Ictal Reconstructed Noise .
Power Spectrum Comparison

Figure 5.4: Processing of simulated mobility artifacts from Freiburg ictal data and
comparison of reconstructed signals after ICA implementation

The datasets of five patients from the Freiburg dataset were used. First, ictal
data was extracted and then the mobility noise, which was originally separated from
different mobility EEG data sets as discussed in Section 4.1, was added to the clean
ictal data. After adding mobility noise, infomax ICA was implemented on the noisy
Freiburg ictal data and artifactual components are separated and both clean ictal data
and mobility noise are reconstructed. Figure 5.4 shows the separation of simulated
mobility artifacts from Freiburg ictal data and the comparison of reconstructed signals
after the implementation of ICA. Figure 5.5 shows separation of the in-lab recorded
mobility artifacts from Freiburg ictal data and the comparison of reconstructed sig-
nals after ICA. It is clear that after adding the simulated noise, the data become more
abnormal with some visible spikes. These spikes might be mistaken by learning mod-
els for seizure markers what would increase the challenge in detection and prediction.
However, the reconstructed ictal signals as well as the power spectrum comparison
show that ICA is able to separate the added mobility noise from Freiburg Epileptics
data and thus remove misleading markers. It is notable that the reconstructed noise
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Figure 5.5: Processing of in-lab mobility artifacts from Freiburg ictal data and com-
parison of reconstructed signals after ICA implementation

as well as the ictal data is not perfectly similar to their respective original sources as
shown in visual observation. The reason for perfect recovery is that the in-lab gener-
ated noise lacks definite patterns (unlike the simulated noise) what makes it difficult to
select noisy components throughout the implementation of ICA. This was reflected in
the deviation of the power spectrum as well.

5.3.2 Comparison of Noise Types

Simulated noises as well as in-lab generated noise were added to Freiburg epileptic
data. Figure 5.6 we see the difference between the simulated noise and the noise
extracted from the 120 steps/min recorded mobility EEG data, the latter was obtained
by subtracting raw noisy data from reconstructed data. EOG and EMG noise from
physionet were used as simulated noise. The two noise signals have the same size and
same sampling rate (256Hz). In the simulated noise there is a clear variation from
one channel to another. However, in the experimentally recorded noise, there is a
pattern observed in almost all channels. This is mainly because the experimental data
was recorded in a controlled lab setup with predefined speeds. This specific pattern
in the 120 steps/min noise makes it easier to remove the noisy components after the
implementation of ICA while at the same time, irregular patterns in the simulated noise
make it difficult to identify the artifacts. Consequently, this would affect the prediction
and detection capabilities shown.
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Figure 5.6: Comparison of simulated noise with in-lab mobility noise

5.3.3 Signal and Noise Similarity Test

To measure the similarity between reconstructed ictal and original ictal data as well
as mobility noise and reconstructed noise we have estimated the cross correlation as
shown in Figure 5.7. The cross correlation results show a strong correlation between
ictal and reconstructed ictal after ICA as there is a high peak at the origin wile any
shift has a relatively too low correlation. A similar correlation plot for mobility noise
and reconstructed noise was obtained.

Furthermore, the similarity of the reconstructed signals is evident in both time and
frequency domain as shown in Figures 5.8. In this plot, we see that both reconstructed
ictal and noise show similar shape in time domain. On the other hand, ictal and re-
constructed ictal show similar frequency content while reconstructed noise shows a
deviation in frequency content than that of mobility noise (in right plot of Figure 5.8).
One reason for this is that due to the absence of regular patterns in simulated noise, it
is not possible to perfectly separate those noise components.

Finally, different statistical measures were evaluated to see the similarity be-
tween ictal and reconstructed ictal as well as between the mobility noise and the re-
constructed noise. The results are summarized in Table 5.1. The table shows about
76.21% artifact improvement as well as 55.97% coherence improvement between ictal
and reconstructed ictal. For the noise, the table shows around 60% artifact improve-
ment, 99% coherence improvement, and 82% correlation improvement between mo-
bility noise and reconstructed noise. Also, there is a substantial improvement in SNR
and RMSE for both Freiburg EEG data and mobility noise. These statistical test are
important in validating the previous findings recording the reconstruction capability of
ICA.
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Figure 5.7: Similarity measure of ictal and reconstructed ictal, mobility noise and
reconstructed noise after ICA implementation
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Figure 5.8: Time and frequency domain similarity measure of original and recon-
structed signal after ICA implementation

5.3.4 Statistical N-Gram Analysis

Prior to applying machine learning algorithms for seizure prediction, preliminary com-
parison was performed for the extracted N-gram anomaly ratio (AR) values of our
in-lab generated artifactual EEG data. The comparison included AR values of noisy
and reconstructed data for all ten subjects. The left subplot of Figure 5.9 shows the
cumulative distribution function (CDF) plot of AR values for artifactual and recon-
structed EEG. The plot shows that the reconstructed EEG (dotted line) has lower AR
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Data Type Artifact Signal to Root Mean Power Correlation Coherence

Reduction | Noise Ratio Square Error | Distortion Improvement | Improvement
Improvement | Improvement | Improvement

Freiburg 76.21 11.82 18.5 1.12 1.2 55.97

Epileptic

EEG

Simulated 60.63 10.50 44.58 22.83 37.19 99.97

Noise

120 59.33 13.69 60.12 4.82 82.92 99.64

Steps/min

EEG noise

Table 5.1: Performance evaluation of ICA technique for artifact removal from Freiburg
epileptic data

values compared to the noisy EEG (solid line). The right subplot of Figure 5.9 is the
CDF plot for the AR values of the artifactual EEG with added simulated noise and the
reconstructed EEG. In this plot, a clear difference in AR values is observed between
reconstructed EEG (dotted line) noisy EEG (solid line). Reconstructed EEG shows
smaller anomaly ratio values compared to noisy EEG. Another key observation is the
linear increase of AR values with speed. The increase in AR values with the increase
in speed is expected given the fact that the abnormal behavior of signals increase with
speed what results in a lower number of significant patterns.
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Figure 5.9: CDF plots of AR values of noisy EEG and reconsctructed EEG data

AR values for ictal and pre-ictal periods of duration 2-6 min are also extracted
for ten epileptic patients from Freiburg database. Figure 5.10 shows the CDF plots of
the AR values for ictal (blue) and pre-ictal (red) periods of noise-free, noisy and recon-
structed data. It is notable that the AR values for ictal periods are higher than those for
pre-ictal periods for all three types of data sets. However, after adding mobility noise
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Figure 5.10: Comparison of AR values for noisy and noise free Freiburg epileptic EEG
data

or in-lab generated noise, the CDF plots look similar for both ictal and pre-ictal data
what imposes a challenge in the classification process. Finally, after the implementa-
tion of ICA, the difference in AR values between ictal and pre-ictal periods becomes
clearer and thus easier for later classification.

5.4 Epilepsy Detection Results

To investigate the impact of mobility artifacts on epilepsy detection, N-gram features
are extracted for ictal periods and pre-ictal periods from the Freiburg datasets for five
epileptic patients using the same parameters (pattern length, sampling frequency, inter-
val length, weight etc.) as used in [58]. Anomaly ratio (AR) values are calculated for
noise free Freiburg EEG data, noisy Freiburg data (i.e. with added mobility noise), and
reconstructed Freiburg data after ICA. The added mobility noises are either extracted
from 120 steps/min walking EEG or collected from Physionet as simulated mobility
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noise. Random forest classifier is then trained and tested with different validation and
testing data set.

5.4.1 Hard Separation Results Analysis

To obtain an unbiased learning model, the used dataset was split into 80% for training
and 20% for testing. Ten-fold cross validation was then applied on the training data
to optimize models before testing. The accuracy of the optimized model was then
assessed using test data what resulted highest 100% accuracy, 100% sensitivity and
0% false alarm rate is recorded for noise-free Freiburg epileptic data of patient 300
(p300) among five patients as shown in Table 5.2. After adding noise, the accuracy
drops to 95.63%, the sensitivity to 92.5% and the false alarm rate increases to 1.25%.
These accuracy measures improve upon ICA implementation after which accuracy
increased to 97.5% and the sensitivity increased to 100%. The high accuracy and
high sensitivity in the case of reconstructed Freiburg epileptic data reveal that ICA is
preserving seizure markers of the ictal data while removing any misleading spikes that
arise from mobility noise addition. The findings prove the applicability of ICA in the
scope of seizure detection.

Training Testing Accuracy Sensitivity False Alarm
Data Data

P1 | P226 | P300 | P308 | P586 | P1 | P226 | P300 | P308 | P586 | P1 | P226 | P300 | P308 | P586

Noise Free | Noise Free20 |90 825 | 100 |90 88.02 | 100 |87.5 | 100 100 |90.27 |20 225 |0 20 1121
80% %

Noise Free | Noisy 20% 80 825 |94.38 | 73.33 | 86.07 | 83.33 | 85 90 7143|8727 | 2222 |20 25 25 117
80%

Noise Free | Reconstructed | 93 84 97.5 | 100 8852|100 |88 100 100 |89.45 |13.33 |20 375 |0 10.47
80% 20%

Table 5.2: Detection: hard separation results summary

5.4.2 10 Fold Cross Validation Results Analysis

Ten-fold cross validation makes use of the entire data set rather than splitting it into
training and testing data. In this process, sample data is divided into 10 folds. About
90% of the sample data is picked up randomly for model development and the remain-
ing 10% of the data is used for validation. The process is repeated 10 times so that each
fold of the data is used once for testing. Detailed average results for all five epilep-
tic patients of this approach are tabulated in Table 5.3. For noise free Freiburg data,
88.02% accuracy, 90.27% sensitivity and 11.21% false alarm rate are achieved. After
adding noise, the accuracy reduces to 86.07%, the sensitivity to 87.27% and the false
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alarm rate increase slightly. Upon implementing ICA, improvement is observed for all
three accuracy measures: the accuracy increases to 88.52%, sensitivity to 89.45%, and
the false alarm rate decreases to 10.47%. It is notable that the accuracy measures for
10-fold cross validation are lower than those of hard separation as the former results
are calculated by average accuracies of all ten folds. A fold might have low accuracies
if its ictal and pre-ictal AR values are similar. Nevertheless, the effectiveness of ICA
for the removal of mobility noise from Freiburg data is also proven suitable for the
seizure detection application as it results in standard accuracy levels.

Table 5.3: Detection: ten fold cross validation results summary

Data Type Accuracy | Sensitivity | False Alarm
Noise Free EEG 88.02 90.27 11.21

Noisy Simulated EEG | 86.07 87.27 11.7

Noisy 120 Steps EEG 87.07 88.27 11.59
Recon. Simulated EEG | 88.52 89.45 10.47
Recon. 120 Steps EEG | 86.07 88.27 12.12

5.4.3 Biased Results Analysis

In the biased case, the model is trained on one type of data (e.g. noise-free EEG) and
tested with different types of data (noise-free, noisy, and reconstructed). In the testing
phase, the test data was divided into 10 chunks and tabulated results are presented for
every chunk. For noise free Freiburg data, average result of 100% accuracy, 100% sen-
sitivity and 0% false alarm rate were recorded for all five patients as shown in Table
5.4. This high accuracy result is expected as the test data is the same as the train data.
After adding mobility noise to the test data, a substantial reduction in performance is
observed, sensitivity becomes 90%, accuracy becomes 94.34% and the false alarm rate
increases to 1.25%. This reduction in accuracy result reveals that the added mobility
noise confuses the classifier with misleading noise spikes and markers. After the im-
plementation of ICA and the effective removal of mobility noise, the accuracy reaches
97.5% and the sensitivity reaches 98.75%. In this case as well, ICA proves capable of
removing added noise while maintaining high accuracy results for seizure detection.

5.4.4 Insights Related to Epilepsy Detection

The three types of validation tests discussed earlier in Section 5.4, a clear general
trend in accuracy measures is observed. Initially the detection result for noise free
Freiburg is high. It falls after adding mobility noise. Results are then improved after
ICA implementation. This observation stresses the applicability of ICA in seizure
detection for moving patients as it removes mobility artifacts while preserving seizure
markers and thus maintaining high detection accuracies.

50



Table 5.4: Detection: biased results summary

Train Data Test Data Accuracy | Sensitivity | False A.
Noise Free EEG | Noise Free EEG 100 100 0.0
Noise Free EEG | Noisy EEG 94.34 90 1.25
Noise Free EEG | Reconstructed EEG | 97.5 98.75 3.75
Noisy EEG Noise Free EEG 96.25 98.75 6.25
Noisy EEG Noisy EEG 100 100 0.0
Noisy EEG Reconstructed EEG | 96.88 100 1.48

5.5 Epilepsy Prediction Results

While epilepsy detection is considered with correctly identifying the seizure onset by
distinguishing ictal period from pre-ictal time course, epileptic seizure prediction is
concerned with forecasting the onset of a seizure ahead of time without a priori knowl-
edge of the seizure onset. In terms of difficulty, seizure prediction surely imposes
greater challenges for correct classification. For prediction, the classifier must distin-
guish between pre-ictal periods and inter-ictal periods given the high similarity be-
tween the two as seizures do not have gradual variations preceding their onsets. An-
other challenge in this respect is the choice of the prediction offset; that it how early
before a seizure onset shall an alarm be raised. A too long prediction offset would
allow no distinction between pre-ictal and inter-ictal periods while a too short offset
may hamper the patient’s ability to take necessary precautions.

To investigate the impact of mobility artifacts on epilepsy prediction, N-gram fea-
tures were extracted for pre-ictal and inter-ictal periods from the Freiburg datasets
(datasets for patient-300 and patient-586). The same parameters as in [58] were used
(pattern length- [10,8,6,4], sampling frequency-256Hz, interval length-5s, Weight-8
and Window-5 min). Anomaly ratio (AR) values are calculated for noise free Freiburg
EEG data, noisy Freiburg data (i.e. with added mobility noise), and reconstructed
Freiburg data after ICA. In this section, the added mobility noise is either extracted
from the 90 steps/min walking EEG or collected from the simulated mobility noise.
Random forest classifier is then trained and tested with different validation and testing
data sets.

5.5.1 Hard Separation Results Analysis

As in the case of seizure detection, unbiased models were obtained after using 80% of
the data for training and the remaining 20% for testing as shown in Table 5.5. Ten-fold
cross validation is applied on the training data to develop the model and optimize it.
The accuracy of the optimized model was then assessed using test data what resulted in
78.56% accuracy, 90.35% sensitivity and 35% false alarm rate for noise-free Freiburg
data of patient-586. To investigate the reason for the high false alarm rate and the low
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accuracy in prediction, preliminary analysis is performed on the AR values (features)
what showed that these values are almost similar for both pre-ictal and inter-Ictal peri-
ods. Similarity in AR values confuses the classifier in distinguishing between pre-ictal
and inter-ictal feature vectors. Another potential reason for the high false alarm rate
in prediction could be due to hard separation and the variability of types and locations
of seizures in Freiburg epileptic data [41]. This doesnt allow the learning model to be
trained for all types of pre-ictal data due to hard separation. Consequently, while test-
ing, new seizure types or locations would result in feature vectors that do not clearly
correspond to pre-ictal or inter-ictal periods what leads to poor accuracy and high false
alarm rate. The performance of the classifier becomes even worse after adding noise:
the accuracy drops to 69.05%, the sensitivity drops to 71.43%, and the false alarm rate
remains high 33.33%. However, evaluation measures for accuracy and sensitivity still
improve after ICA as shown in Table 5.5: the accuracy reaches 76.19% and the sen-
sitivity reaches 85%. The improvements achieved upon implementing ICA prove the
capability of ICA to successfully remove added mobility noise from Freiburg epileptic
data while maintaining standard accuracy and sensitivity results with an explainable
false alarm rate.

Table 5.5: Prediction: hard separation results summary

Train Data Test Data Accuracy | Sensitivity | False A.
Noise Free 80% | Noise Free 20% 78.56 90.48 35
Noise Free 80% | Noisy 20% 55 75 65
Noise Free 80% | Reconstructed 20% | 78.56 90.48 33.33
Noisy 80 % Noise Free 20% 69.05 71.43 33.33
Noisy 80 % Noisy 20 % 70 90 28.57
Noisy 80% Reconstructed 20% | 76.19 85.71 28.56

5.5.2 10 Fold Cross Validation Results Analysis

Ten-fold cross validation makes use of the entire data set rather than splitting it into
training and testing data. In this process, sample data is divided into 10 folds. About
90% of the sample data is picked up randomly for model development and the re-
maining 10% of the data is used for validation. The process is repeated 10 times so
that each fold of the data is used once for testing. Detailed results of this approach
are tabulated in Table 5.6. The obtained results for noise-free Freiburg data (patient-
586) are as follows: an accuracy of 87.43%, a sensitivity of 81.73%, and a false alarm
rate of 7.40% . After adding noise, the accuracy decreases to 81.19%, the sensitivity
decreases to 77.91%, and the false alarm rate is doubled 15.32%. Upon the imple-
mentation of ICA, the accuracy improves to 84.64%, the sensitivity reaches 83%, and
the false alarm rate is reduced to 13.90%. Improved accuracy, sensitivity, and false
alarm rate results were obtained in this testing case as compared to the case of hard
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separation. More importantly, the results are consistent in terms of emphasizing the
applicability of ICA epileptic seizure prediction for moving patients.

Table 5.6: Prediction: ten fold cross validation results summary

Data Type Accuracy | Sensitivity | False Alarm
Noise Free EEG 87.43 81.73 7.40

Noisy Simulated EEG | 85.55 83.09 12.82

Noisy 120 Steps EEG 81.19 7791 15.32
Recon. Simulated EEG | 80.22 73.28 14.29
Recon. 120 Steps EEG | 84.64 83.0 13.90

5.5.3 Biased Results Analysis

In the biased case, the learning model is trained using one data type and tested using
the others as outlined in sub-section 5.4.1. For noise free Freiburg data, 100% accu-
racy, 100% sensitivity and 0% false alarm rate are recorded for both patient-300 and
patient-586 as it is a control case. After adding mobility noise to the test data, a sub-
stantial reduction in performance is observed: the sensitivity is reduced to 86.56%, the
accuracy is reduced to 86.87%, and the false alarm increases to 13.55%. After imple-
menting ICA, the accuracy increases to 95.63%, the sensitivity increases to 97.5%, and
the false alarm rate reduces to 6.25%. Therefore, this further stresses the advantage of
using ICA in seizure prediction for moving patients.

Table 5.7: Prediction: biased results summary

Train Data Test Data Accuracy | Sensitivity | False A.
Noise Free EEG | Noise Free EEG 100 100 0.0
Noise Free EEG | Noisy EEG 86.56 86.87 13.75
Noise Free EEG | Reconstructed EEG | 88.44 87.15 10
Noisy EEG Noise Free EEG 79.68 84.38 25
Noisy EEG Noisy EEG 100 100 0.0
Noisy EEG Reconstructed EEG | 95.63 97.5 6.25

5.5.4 Insights Related to Epilepsy Prediction

Based on the discussed three types of validation tests, an improvement in performance
metrics was clearly evident upon the implementation of ICA. Initially the prediction
accuracy for noise-free Freiburg is high. This is expected since in the absence of noise,
AR values of pre-ictal and inter-ictal data are distinguishable. However, after adding
mobility noise, AR values for both pre-ictal and inter-ictal periods appear similar (this
was evident in the CDP plots of Section 5.3) what was reflected in the poor accuracy
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and sensitivity results and the high false alarm rate. Upon implementing ICA and
removing the artifact components, the difference in AR values reappears between pre-
ictal and inter-ictal periods what improved all three prediction performance metrics.
The overall findings of this section prove that ICA is capable of removing mobility
noise from epileptic data while maintaining a prediction accuracy similar to that of
the noise-free EEG data. This would help in developing epileptic seizure prediction
systems for patients who are involved in daily life activities.

5.6 Model Validation: Student t-test

To assess the results of detection and prediction for the biased and unbiased cases, the
student t-test is performed based on the hypothesis that both biased results (accuracy,
sensitivity and false alarm) and unbiased results are similar. This test compares the t-
value, calculated in equation 5.5, for the sample distribution (accuracy in our case) with
the reference distribution table of the t-value. If the calculated t-value is greater than
the t-value of the table with a certain degree of tolerance and with a certain probability
(e.g. probability 5%), then we can reject our null hypothesis that two results (biased
and unbiased) are different from each other with a certain confidence level (95% for
the given example). The t-value is calculated using equation 5.5.

= ——— (5.9

where Z; is mean of the accuracy for biased result,z, is mean of the accuracy for
unbiased result, s; is the standard deviation of accuracy result for biased case, s, is
the standard deviation of accuracy result for unbiased case, n; and n, are number of
values in biased and unbiased result respectively. Z; is the mean of the accuracies
in the biased case, Ty is the mean of the accuracies in the unbiased case, s; is the
standard deviation of accuracies in the biased case, s, is the standard deviation of
accuracies in the unbiased case, and n; and n, correspond respectively to the number
of accuracy evaluations in biased and unbiased cases. Comparing this value to values

Table 5.8: Student t-test results model validation
Model t-value(calculated) | t-value(from table)
Hard Separation Vs Biased | 1.988 1.671
Hard Separation Vs 10 Fold | 2.100 1.671
10 Fold Vs Biased 2.109 1.671

in the t-distribution table [60] for a degree of freedom of 60 (sample value), the t-
value is 1.671 with 90% confidence level. Since the calculated t-value is greater than
table value, the null hypothesis can be rejected. Accordingly, the biased and unbiased
models accuracy results are indeed different with a 90% confidence level. That is, there
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is only a 10% chance for both biased and unbiased model to be same. Similarly, the
t-test for the biased versus ten-fold and the ten-fold versus unbiased cases resulted in
a similar conclusion. This statistical test proves that the biased results are statistically
different from the unbiased results of 10-fold cross validation and hard separation.

5.7 Summary

This chapter we have investigates the impact of mobility artifacts on epileptic seizure
prediction and detection. First, the signal reconstruction capability of the ICA algo-
rithm is assessed what proved that ICA can successfully separate our added mobility
noise from pure brain EEG data. This was validated using time and frequency domain
characteristics as well as statistical similarity measures. After that, the effect of mobil-
ity noise on detection and prediction is analyzed extensively on Freiburg epileptic data.
This shows that adding mobility noise results in a decrease of prediction and detection
accuracies. Finally, the model based on reconstructed EEG signals from ICA is tested
and it shows improved accuracy results. In conclusion, this chapter proves that ICA is
capable of separating the in-lab recorded mobility noise as well as the simulated mo-
bility noise from artifactual epileptic EEG data while preserving seizure markers and
removing misleading spikes what consequently leads to improved accuracy results for
both detection and prediction.
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Chapter 6

Conclusion and Future Work

The work in this thesis was focused upon three major lines. First, physical mobility
EEG data with different predefined speeds of walking was acquired in a controlled
lab environment and then extensively analyzed in time and frequency domains. For
this purpose, a total of 180 mobility EEG data sets with duration of 500 minutes were
recorded from ten healthy subjects. Based on data analysis, the following conclusions
were derived: Relaxed EEG and mobility artifactual EEG are indeed different what
was manifested in significant differences of their respective time and frequency do-
main properties, and a positive correlation between the power level (mainly for the
delta band) and the speed of mobility was evident for all subject cases.

Second, the performance of a well-known versatile signal processing technique, ICA
was assessed for our in-lab recorded mobility noise and for the simulated noise. ICA
was adopted as an artifact removal technique for the flexibility of its application and
its superiority against other alternatives within the context of the thesis application.
Filtering requires reference artifacts signal and PCA assumes that the artifacts and the
source signal are orthogonal and Gaussian which does not hold in the case of mobility
artifact and brain EEG signals. Since mobility artifacts and brain EEG signals are in-
dependent and nearly non-Gaussian, the required assumptions for ICA were met and
thus it was the most suitable technique. Throughout the study, mobility artifactual EEG
data have been processed by the infomax ICA algorithm from EEGLAB a signal pro-
cessing toolbox in MATLAB. The reconstruction of brain EEG and mobility noise was
then extensively analyzed using different signal regeneration evaluation metrics what
helped assess the separation capability of ICA. The reconstructed EEG signal and the
separated noise showed similar patterns and properties in the time and the frequency
content to those of the original EEG signal and the added noise respectively. Also in
terms of statistical measures, the reconstructed signals showed high correlation and
coherence with the original ones. This proved the effectiveness of ICA in separating
mobility artifacts from pure EEG brain activity.

Third, the challenge imposed by the mobility artifacts was considered in the context of
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advanced neurological applications such as epileptic seizure prediction and detection.
A thorough investigation for the impact of mobility artifacts on epileptic seizure pre-
diction and detection was performed using both a signal processing and a data driven
approach to discover any effect, if any, on prediction or detection accuracies. The ef-
fectiveness of ICA in eliminating mobility noise, both recorded and simulated, while
preserving EEG signal properties and seizure markers was as well rigorously ana-
lyzed. For comparison purposes, such analysis was done for noise free Freiburg EEG
data, noisy EEG data, and reconstructed epileptic data following the approach of pre-
processing, feature extraction, training learning models, and classification of unlabeled
EEG segments.

In term of results, a substantial artifact reduction capability was evident with an im-
proved coherence between the original noise-free EEG signals and the reconstructed
EEG signals. Improvement in SNR and RMSE was also substantial for the recon-
structed signals. These statistical measures validated the previous findings that showed
observable similarity between the noise-free and the reconstructed EEG signals in both
time and frequency domains. For the evaluation of the epileptic seizure detection capa-
bility, three testing scenarios were investigated: biased, hard separation and ten folds
division. For the three scenarios, a similar trend in accuracies was observed. The
detection accuracy was initially high for noise-free data. It decreased for data con-
taminated mobility noise. Then it was improved after ICA implementation for the
reconstructed EEG data. For epileptic seizure prediction, a similar approach was fol-
lowed for evaluation. The trend in variation of accuracy was the same as that in the
detection case: high for the noise-free case, lower for the noisy case, and improved for
the reconstructed case. Overall, the high detection result and the standard prediction
results were comparable to literature for reconstructed Freiburg epileptic EEG data.
These observations led to the conclusion that ICA is capable of removing mobility
noise from EEG data while preserving seizure related features and markers. Findings
were unique in the scope of analyzing the effect of motion artifacts in seizure detection
and prediction applications.

Future work in this area would make use of the evident correlation between mobility
speed pattern and the different time, frequency and statistical features of the mobility
artifactual EEG data for EEG data modeling as well as mobility noise modeling. Given
that visual inspection of the noisy components was required to separate them from
pure EEG data, future work can be done on the automation of the process by assigning
some well-chosen data driven threshold values to separate noise from pure EEG. High
detection results for reconstructed Freiburg data give hope that future epilepsy detec-
tion systems can be developed for real time monitoring. On the other hand, standard
accuracy results for epileptic seizure prediction give an insight for future research in
the field. Moreover, high false alarm rates for the hard separation testing case trig-
gers curiosity to further investigate the impact of seizure types and their localization
on epileptic seizure detection and prediction results. As for learning techniques, only
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ensemble methods for classification were investigated, so other techniques like deep
learning can also be investigated.
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Appendix A

Abbreviations

AR
BSS
CCA
CDF
CT
DSI
ECG
EEG
EMG
EOK
FN
FP
HMM
ICA
IMF
Infomax
MLP
MRI
OA
PCA
PSD
RMSE
SNR
TP
TN

Anomaly Ratio

Blind Source Separation
Canonical Correlation Analysis
Cummulative Distribution Function
Computed Tomography

Dry Sensor Interface
Electrocardiogram
Electroencephalography
Electromyography
Electrooculography

Flase Negative

Flase Positive

Hidden Markov Model
Independent Component Analysis
Intrinsic mode function
Information Maximization
Multi-channel Linear Prediction
Magnetic Resonance Imaging
Ocular Artifacts

Principle Component Analysis
Power Spectral Density

Root Mean Square Error

signal to noise ratio

True Positive

True Negative
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