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Electroencephalography (EEG) is considered a primary tool for monitoring the

electrical activity of the brain. Recent advances in wearable sensing techniques allow

continuous and mobile monitoring of EEG signals during daily life activities. How-

ever, such method of EEG recording is prone to different sources of artifacts: eye-

movement, electrode movement, muscle contraction, line noise, head movement and

others. Among these sources, motion-related artifacts are a major challenge for clean

EEG data acquisition. The significant effect of motion artifacts is evident in two main

aspects. First, they overlap with all EEG frequency bands. Second, they spread over

the entire scalp affecting all sensing electrodes. For some neuro applications, such

as epileptic seizure detection and prediction, high quality EEG signals are required

to accurately depict the electrical activity of the brain and thus track seizure mark-

ers for correct classification. The main focus of this thesis work is to record EEG

data with defined motion artifacts in a controlled lab environment, to utilize various

algorithmic methods for the effective elimination of motion artifacts, to assess the per-

formance of the adopted artifact removal technique using statistical measures, and to

employ the latter technique in the application of seizure detection and prediction. The

adopted approach for artifact removal is based on applying independent component

analysis (ICA) as a blind source separation technique for removing mobility artifacts

from EEG data. The quality of the reconstructed EEG signals is assessed first using

various statistical measures and then through investigating the seizure-prediction and

seizure-detection capabilities of the reconstructed signals as opposed to the capabili-

ties of the original noise-free signals. For detection and prediction purposes, the EEG

signals are analyzed by extracting distinctive features using an N-gram based algo-

rithm. These features are used to train a predictive model, which is in turn used it to

classify EEG segments based on the random forest classifier. In the testing phase, the

reconstruction of seizure-related data (namely, ictal data) by ICA was validated using

time, frequency, and statistical signal similarity measures. In addition, the effect of
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mobility artifacts on seizure detection and prediction is analyzed extensively on stan-

dard EEG recordings from the Freiburg EEG database, to which simulated mobility

noise is added. The testing results showed that the prediction and detection accuracies

decreased upon the addition of mobility noise then increased after implementing ICA

for artifact separation. This proves that ICA was capable of separating the recorded

and simulated mobility artifacts from EEG data while preserving signal trends and

seizure-related features what consequently led to prediction and detection accuracies

that are comparable to the noise-free case.
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Chapter 1

Introduction

Electroencephalography (EEG) is an electrophysiological monitoring method to record

the electrical activity of the brain. It is typically noninvasive, with the electrodes placed

on the scalp. Invasive electrodes are mainly used in specific surgical cases. EEG mea-

sures voltage fluctuations resulting from ionic current circulating the neurons of the

brain [1]. In clinical contexts, EEG refers to the recording of the brains spontaneous

electrical activity over a period of time, as recorded from multiple electrodes placed

on the scalp. Diagnostic applications generally focus on the spectral content of EEG,

that is, the type of neural oscillations (popularly known as brain waves) that can be

observed in EEG signals. EEG is most often used to diagnose epilepsy, which causes

abnormalities in EEG readings [2]. It is also used to diagnose sleep disorders, coma,

encephalopathy, and brain death. EEG used to be a first-line method of diagnosis for

tumors, stroke and other focal brain disorders [3] but this use has decreased with the

advent of high-resolution anatomical imaging techniques such as magnetic resonance

imaging (MRI) and computed tomography (CT). Despite limited spatial resolution,

EEG continues to be a valuable tool for research and diagnosis, especially for applica-

tions that require millisecond-range temporal resolution what is not possible with CT

or MRI.

Traditional EEG systems require the subject to stay still in the hospital while brain

signals are being acquired. Engineering advancements in terms of sensor design, low

energy wireless transmission and frugal processing hardware have led to the devel-

opment of new wireless headsets which are more suitable for mobile recording [4].

However, such continuous mobile recording of EEG is prone to motion-related ar-

tifacts, which potentially originate from cable sway or movements of the recording

electrodes in relation relative to the scalp [5]. EEG artifacts from cyclical motions

such as walking are influenced by movement speed and can have a power spectral den-

sity covering a relatively wide range of low and high frequencies [5]. This imposes

a major challenge on current signal processing techniques and limits their ability to

handle such type of motion artifacts in mobile EEG recording.

1



EEG has been extensively used in epilepsy monitoring units (EMUs) for long contin-

uous recording of patients brain activities that is later used for research and diagnostic

purposes. Epilepsy is one of the most common neurological disorders, second only to

stroke, with a prevalence of 0.6-0.8% of the worlds population. Epilepsy can signifi-

cantly impact a patients career choice, lifestyle, and recreational activities (e.g. bathing

and swimming alone). Even simple daily life tasks like using a knife or driving a car

could present a serious threat on an epilepsy patient who cant predict seizure onsets.

These potential harmful consequences of epilepsy and the fact that not all patients re-

spond to treatment gave an incentive for developing a continuous monitoring system

with a predictive capability that gives alarms of incoming seizure episode ahead of

time so that the patient can take necessary precautions. Not only the prediction but

also the detection of epileptic seizures is of great importance. Detection can be ex-

tremely useful in extensive care units or for coma patients in order to apply targeted

stimulation that mitigates the seizures effect. For proper functioning of an epilepsy

monitoring system, a systematic approach is required for recognition, source identifi-

cation, and elimination of motion artifact to reduce the chance of inaccurate diagnosis

and limit the potential for adverse clinical consequences. Accurate ambulatory detec-

tion and prediction of epileptic seizures require clean and artifact-free EEG signals.

However, such a requirement is considered a major challenge because EEG signals

are vulnerable to various forms of artifacts caused by muscle activity and body move-

ment [6]. Thus, customized signal processing techniques are required to remove these

motion related artifacts and to ensure high quality EEG signals.

Motion artifacts due to body movements share the same frequency spectra with EEG

(up to 50Hz) and have amplitude that is an order of magnitude larger than the clean

brain-related EEG signals [7]. Some studies have suggested various methods to clean

EEG signals from motion artifacts. Most of these studies have been limited to highly-

controlled laboratory environments [8]. Filtering is the most widely used signal pro-

cessing technique to remove artifacts. In [9], several approaches such as Wiener,

adaptive, and Kalman filtering techniques have been used to remove different types

of artifacts from EEG. However, one major limitation of these filtering approaches is

their dependency upon a measured or reliably estimated reference for proper opera-

tion. Alternatively, blind source separation (BSS) techniques have been proposed to

estimate brain signals from noisy observations, without the need for a reference wave-

form. Among the different approaches of BSS, independent component analysis (ICA)

is the most frequently used technique for the removal of artifacts from EEG [10]. By

applying ICA techniques, it has been shown that artifacts and epilepsy related brain

signals can be successfully separated as independent components [11].

This thesis work deals with the mobility artifactual EEG data acquisition followed by

a thorough analysis of different types of motion artifacts and an investigation of vari-

ous artifact removal techniques. The efficiency of these approaches has been assessed

in the scope of seizure detection and prediction application based on artifact-colored
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EEG signals. The resulting accuracies and sensitivities of the algorithms would then

be used as a performance metric to estimate the quality of artifact removal. In partic-

ular, high levels of accuracy and sensitivity would reflect the fact that the distinctive

seizure markers have been correctly identified in the EEG signals and that the artifact

related components hiding these markers have been successfully removed. The key

contributions of this thesis work are highlighted below:

1. Analyzing EEG artifacts resulting from physical mobility using an experimen-

tal approach. This entails acquiring EEG data with recorded motion artifacts

using wearable sensing EEG headset (This work is specifically concerned with

variable speed walking artifacts).

2. Studying the performance of different artifact removal techniques. ICA was then

adapted to separate mobility artifacts, and its parameters were optimized in this

context.

3. Investigating the impact of mobility artifacts and the effectiveness of the artifact

removal techniques on epileptic seizure prediction and detection. Recorded mo-

bility artifacts as well as simulated mobility noise were added to EEG data from

the Freiburg database. Distinctive features were extracted using the N-Gram

approach and the random forest machine learning algorithm was later used for

classification in prediction and detection of seizures.

The thesis is organized as follows. Chapter 2 includes a detailed review of various re-

lated artifact removal techniques as well as epilepsy prediction and detection methods

available in the literature. Chapter 3 presents the setup for mobile EEG data acquisi-

tion with details analysis. Chapter 4 describes the proposed methodology for mobility

artifact removal with evaluation of effective reconstruction. Chapter 5 includes assess-

ment of the impact of those mobility artifacts on epilepsy prediction and detection.

Finally, Chapter 6 concludes the thesis.
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Chapter 2

Literature Survey

The objective of this literature survey is to investigate previous work related to the

thesis topic. It starts with a brief introduction on EEG artifacts and their classification.

Then, it discusses the mobility artifact removal techniques available in the literature

with a comparison of different approaches. After that, it presents different epilepsy

prediction and detection techniques with emphasis on the N-gram based approach,

and it includes a brief overview about the Freiburg epileptic database. Finally, this

chapter presents a brief summary of the major relevant finding in literature with their

limitations in the scope of the presented work.

2.1 EEG Artifacts
Artifacts can be defined as unwanted components overlapping with the signal of inter-

est [12]. Usually, the characteristics of artifacts differ from those of the signals under

study. In the frequency domain, artifacts are known to occupy a defined frequency

range. They correspond to discrete frequencies and their harmonics. They are also

limited to a certain time range defined by the duration of the events that caused them

(e.g., the case of eye blinks) and to a subspace of the signal space. Also they are

characterized by particular temporal patterns such as exponential decay. An important

characteristic of artifacts is that they can be assumed to be sufficiently independent of

the observed signals.

2.1.1 Artifact Types
Various types of artifacts associated with EEG recordings are briefly described in the

following subsequent sections.

Ocular Artifact

The ocular artifact (OA) is generated upon eye movements and is normally strong

enough to be recorded along with the EEG signals. The amplitude of the blinking
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artifact is generally much larger than that of the background EEG activity. OA occurs

within the range of 0-16Hz.

Muscle Artifacts

The muscle artifact (EMG) is caused by the contraction of muscles. This artifact is

commonly present during the recordings of patients who are awake since it appears

when the patient swallows, talks, walks, etc.. EMG presents a wide spectral distribu-

tion, thus it perturbs all classical EEG frequency bands; in particular it considerably

overlaps with beta activity in the 15-30 Hz range but can also be as low as 2 Hz what

makes the widely used alpha band also vulnerable to muscle artifacts.

Artifacts due to Cardiac Activity

Cardiac activity or electrocardiogram (ECG) measures the electrical activity of the

heart. The amplitude of the cardiac activity on the scalp is usually low. ECG has a

very characteristic repetitive and regular pattern, which may sometimes be mistaken

for epileptiform activity when the ECG is barely visible in EEG recordings.

physiological artifacts

Other physiological artifacts such as perspiration artifacts are manifested as slow waves

caused by shifts in the electrical baseline of certain electrodes. To a smaller extent,

the sympathetic skin response, which also consists of slow waves and is an autonomic

response produced by sweat glands and skin potentials, may be present in EEG record-

ings.

Non-physiological artifacts

There are also non-physiological artifacts which may interfere EEG. The electrical and

wireless interference of external equipment such as power lines, wireless devices, ca-

bles, computers and high-frequency signal generators in addition to internal electrical

noise interference caused by electrodes, electrode positions, caps, cables and ampli-

fiers.

2.2 Artifacts Removal

This section gives a comprehensive overview of techniques that can be used for the

removal of artifacts from EEG.
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2.2.1 Linear Regression

Regression algorithms were arguably the most frequently used EEG artifact correction

techniques up to the mid-1990s, especially for ocular interferences. Linear regres-

sion assumes that each EEG channel is the sum of the non- noisy source signal and

a fraction of the artifact that is available through a reference channel. The goal of

regression is to estimate the optimal value for the factor that represents such a prop-

agation fraction. In multiple linear regressions the measured signal of each electrode

is influenced by more than one (fraction of the) reference wave forms (for instance:

vertical, horizontal and radial ocular artifacts). Regression methods had been replaced

by more sophisticated algorithms primarily because the former need one or more ref-

erence channels a disadvantage that mainly limits their applicability to removing EOG

and ECG artifacts [13].

2.2.2 Filtering

Generally, filtering is not suitable for canceling artifacts from EEG recordings because

of the overlapping frequency spectrum corresponding to the artifacts and the signal of

interest. However, various artifact removal techniques based on filtering, as described

in this section, try to adapt filter parameters to minimize the mean square error between

the estimated and the desired EEG signals. What follows briefly highlights the main

filtering techniques employed in the removal of artifacts from EEG.

Adaptive filtering

In the scope of artifact removal, adaptive filtering works based on the assumption that

a correlation between the brain signals and the artifacts. A noisy signal is estimated

from a noisy reference signal and subtracted from the acquired EEG [14]. The main

challenge here is the selection of the noisy reference signal for proper functioning of

the algorithm. For instance, EOG signals can be used as a reference for the removal of

eye movement or blinking artifacts [15] and similarly EMG signals can be used for the

removal of muscle artifacts [16]. Adaptive filters iteratively adjust a vector of weights

based on an optimization algorithm. These weights model the degree of contamination

of EEG with artifacts. The most prevalent family of algorithms is based on the least

mean squares method, which is linear in complexity and convergence. Another well-

known family is based on the recursive least squares (RLS) method, which is quadratic

in complexity and convergence [14].

Wiener filtering

Wiener filtering is another parametric technique, based on a statistical approach, which

produces a linear time-invariant filter to minimize the mean square error between the

desired signal and its estimate [17]. The minimization is done using an estimation of
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the power spectral densities of the signal and the artifacts; hence it does not need a

reference waveform. The disadvantages are the need for calibration prior to usage and

the inability to run in real time. However, when properly calibrated, it can achieve a

better signal to noise ratio (SNR) compared to adaptive filters [17].

Bayes filtering

Bayes filtering is a probabilistic system estimation method that starts from noisy ob-

servations [9]. These filters overcome some of the limitations of the aforementioned

techniques as they are capable of working without a reference signal and can operate in

real time. Bayes filters are not directly implementable due to their complexity; instead,

they are approximated through Kalman filters and particle filters- the former has been

used for nonlinear EEG artifact removal in [18]. Bayes filters first estimate the state at

any given time instance and then obtain a feedback in the form of noisy measurements,

which is used to predict a new a priori estimate [18].

2.2.3 Blind Source Separation
Blind source separation, also known as blind signal separation, is the separation of a set

of source signals from a set of mixed signals, without the aid of information (or with

very little information) about the source signals or the mixing process. Among the BSS

techniques, principal component analysis (PCA) and independent component analysis

(ICA) are two well-known algorithms utilized in the literature for artifact separation.

Principle Component Analysis

PCA uses an orthogonal transformation to convert the observations of possibly cor-

related variables into values of linearly uncorrelated variables called principal com-

ponents, less than or equal in number to the original variables. The greatest problem

with PCA is that the assumption of Orthogonality between neural activity and typical

physiological artifacts does not generally hold. In fact, it has been demonstrated that

PCA is unable to separate some artifactual components from brain signals, especially

when they have similar amplitudes [19].

Independent component analysis

Independent component analysis (ICA) is a computational method for separating a

multivariate signal into additive subcomponents. This is done by assuming that the

subcomponents are non-Gaussian signals and that they are statistically independent

from each other. Independence is a stronger assumption than uncorrelateness. In con-

trast to the possibly incorrect assumptions of PCA, it is the case that artifacts and brain

activity are usually sufficiently independent, which explains the effectiveness of ICA

for artifact removal [20].
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2.2.4 Source Decomposition

Alternatively, the problem of finding artifact-free signals from observations can be

tackled directly by decomposing each individual channel signal into a basic waveform

that represents either the signal or the artifact, what allows removing the latter when

present. Successful algorithms of this type are based on the fact that some sources

(either signals or artifacts) can be represented by a single decomposition unit, such as

an intrinsic mode function (IMF) for empirical mode decomposition, or by a certain

wavelet basis for the wavelet transform.

Empirical mode decomposition [22] is a heuristic one-dimensional technique

that aims at decomposing a signal into its basis functions, called intrinsic mode func-

tions (IMFs), which are amplitude and frequency modulated zero mean components,

plus a non-zero mean low degree polynomial remainder.

Wavelets are ideal for biomedical applications because of their versatility; they

allow designing robust methods, and they have a finely tunable time frequency trade-

off such that they can accommodate biomedical signals that generally combine features

with good time or frequency localization [21].

2.2.5 Seminal Work on Motion Artifacts Removal

As mentioned earlier, obtaining a good quality EEG signal is crucial for the correct

performance of any epilepsy related application. Motion artifacts are mainly related

to the electrical activity on the body surface caused by the contraction of muscles.

These artifacts are typical of patients who are awake and occur whenever the patient

performs a muscular activity [17]. Shapes, trends, and amplitudes of the interference

corresponding to motion related artifacts depend on the type of the involved muscle

and its degree of contraction; hence, they are hard to stereotype [16].

Several properties of motion artifact are responsible for its adverse effects on the back-

ground EEG activity [23] what imposes great challenges relative to other types of

artifacts [24]. Motion artifacts have a wide spectral distribution, thus they perturb all

classical EEG frequency bands. In particular, their corresponding frequency spectrum

considerably overlaps with beta band in the 15-30Hz range [25]. Their spectrum can

also extend to as low as 2Hz [26], making the widely used alpha band also vulnerable

to muscle artifacts [24]. Finally, motion artifacts are also associated with less repet-

itive trends as compared to other biological artifacts. Consequently, they are more

difficult to characterize. This arises from the fact that these artifacts originate from the

activity of spatially distributed, functionally independent muscle groups, with distinct

topographic and spectral signatures [15].

The aforementioned properties of motion artifacts increase the complexity of the

preprocessing stage required before the safe use of EEG signals. Several approaches

were proposed in the literature to deal with motion artifacts. Table 2.1, outlines the

most influential work done in motion artifact removal. In [27] eight healthy volunteers

participated in an experiment for recording EEG signals while standing still, walking
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Types of Motion Algorithm used Result 

Treadmill Walking with 
a speed of 0.4-1.6 m/s  

Infomax ICA ICA and dipole fitting accurately localized 99% of 
the independent components in non-neural 
locations or lacked dipolar characteristics. 

Head Movement Two classifier 
1. Decision Tree 
2. HMM 

Authors claim a substantial reduction in motion 
artifact. 

Head Shaking, 
Nodding, Walking 

CCA** and MLP* 
filtering 

Recovery-82.4% 

Walking in Real time Kalman Filter Restore contaminated EEG up to 93% 

Real Time Walking and 
Running 

Moving average and 
Wavelet decompose 

This study showed that mechanical artifact can be 
minimized using the mentioned algorithm. 

Table 2.1: Seminal work on motion artifacts removal

(0.8 and 1.25 m/s) and running (1.9 m/s) on a treadmill. Recorded data was decom-

posed using infomax ICA and after removing the noisy component, reconstructed EEG

signals were reported with 99% accuracy. The work in [28] aimed to classify the head

movement artifact using a data driven machine learning approach. Decision tree and

Hidden Markov Model (HMM) classifiers were used and resulted in respective accu-

racies of 85% and 95%. A motion artifact reduction algorithm was proposed in [29]

based on a multi-channel linear prediction filter(MLP). Canonical correlation analy-

sis (CCA) was performed to detect artifacts what resulted in a substantial reduction

of motion artifacts. Kalamn filter was used to estimate artifact template and EEG in

the work of [30]. Then artifacts were subtracted from raw EEG signals and a 93%

reconstruction was reported. In [31], motion artifactual EEG data was recorded from

9 subjects walking on a treadmill with a speed of 0.4 to 1.6 m/s. Moving average and

wavelet decomposition were utilized to separate motion artifacts. This study in [31]

claimed that motion artifacts cannot be fully removed from EEG.

2.3 Epileptic Seizures

A seizure is a sudden change in the normal electrical activity of the brain, which may

produce a physical convulsion, minor physical signs, thought disturbances, or a com-

bination of symptoms [32]. The symptoms that appear during a seizure depend on

a variety of factors including: the location in which the irregular electrical activity

takes place, the patients age, and the patients health condition. Seizure occurrences

can be initiated by head wounds, brain tumors, lead poisoning and mal development
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of the brain, genetic and infectious illnesses, and fevers. However, in nearly half of the

cases, no clear cause can be tracked or identified. Seizures can be mainly divided into

three categories:

• Absence seizures: these seizures disconnects a patient from the surrounding

while he/she stare off vacantly for a moment until recovering a normal state

without remembering what happened.

• Generalized tonic clonic seizures: these seizures begin with stiffening of the

arms and legs followed by jerking motions of the limbs. Many individuals may

fall from standing position while experiencing such seizures since generalized

seizures may last for about five minutes.

• Partial seizure: unlike generalized seizures, these seizures affect only one side

of the brain. Their symptoms depend on which area of the brain is affected. For

example, if the motor area is affected, the patient may jerk fingers or move hands

while if a sensory area is affected, the patient may hear sound or smell an odor

that is not present.

2.3.1 Seizure Detection

Epileptic seizure detection refers to correctly identifying the seizure onset by distin-

guishing ictal periods from pre-ictal ones based on the variation in time, frequency

and time-frequency domain features of the signals [33]. This detection provides use-

ful data especially to personnel responsible for epilepsy monitoring units. The aim of

seizure detection systems is to locate a seizure onset if present in the data. Most of

the seizure detection algorithms involve the extraction of features to differentiate ictal

from pre-ictal periods. This allows later classification of the EEG segments based on

different learning techniques.

2.3.2 Seizure Prediction

Epileptic seizure prediction algorithms try to forecast the onset of a seizure ahead of

time without a priori knowledge of the exact time of occurrence [34]. Seizure predic-

tion methods can widely vary given the abundance of signal processing, mathematical,

and statistical tools that could be applied to the problem of tracking pre-ictal changes

throughout long stretches of EEG recordings. The performance of seizure prediction

algorithms is usually assessed based on the sensitivity, which measures the proportion

of correctly identified seizures among all seizure events and the false alarm rate, which

measures the rate of falsely raised alarms.
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2.3.3 Seminal Work on Seizure Detection and Prediction
Algorithms developed in this area mainly look at the variations of EEG signals across

three dimensions: time variations, spectral (frequency) variations, and spatial varia-

tions (among different locations in the brain). Table 2.2 highlights the most influential

work related to epileptic seizure prediction and detection.

Time domain features measure entities of the EEG signal that depend only on time.

Classical and advanced signal analysis techniques are used to derive a wide range of

time domain features capable of characterizing linear and non-linear behaviors of EEG

signals. An n-gram based approach was adopted in [35] for extracting distinctive fea-

tures from EEG data. The method uses a symbolic data analysis of EEG based on

n-gram modeling, a probabilistic pattern recognition technique which identifies and

predicts the occurrence of symbolic data sequences based on previous occurrences of

these sequences. The variations of the number of occurrences of amplitude patterns in

sequences of defined lengths give evidence of certain brain activity. The abrupt change

in the electrical activity of the brain during a seizure would increase the variability

of the EEG signal amplitudes and thus decrease the counts of previously recurrent

and rhythmic amplitude patterns. Simulation results in [36] on the Freiburg dataset

demonstrate high sensitivity values with relatively low false alarm rates. Frequency

 Approach  Data Set  Feature Classification 
 Model

 Result

 Time Domain[6] Freiburg, 623h iEEG, 
87 Seizure,  

 21 Patients

Significant Pattern, 
 N-Gram

 Thresholding 93.81% Sensitivity,  
 6% false alarm

 Frequency Domain [7] European, 183 
seizures, 3565h,  

 24 Patients

 Sub-band 
 Spectral Power 

 SVM  Sensitivity -75.8%
 False Alarm - 0.1/h

 Time-Frequency [8] 15 Patients, iEEG,  
 24 months

 Statistical, Energy  One-class SVM  97.1% Sensitivity
 1.56% False alarm/h

 Neuronal model [9]  7 Patients, 50 seizure Time averaged 
 Spiking rate

 Thresholding
     83-91%

Only 2 false alarm 
 reported

 

Table 2.2: Seminal work on epileptic seizure detection and prediction

domain analysis looks at the spectral components of the EEG signals. Frequency do-

main features are derived from the spectral content of the EEG obtained through a

transformation of the time-domain signal. The main spectral feature is the spectral

power, often defined as the statistical estimate of the signal power in each frequency

component and referred to as the power spectral density(PSD). The PSD has been ex-

tensively used in EEG analysis to identify and classify activities and states. The study

in [37] presents an algorithm based on spectral power ratios. The authors trained and

tested their learning models on long-term continuous datasets from 24 patients of the

EPILEPSIAE database (183 ictal events in 3565 hours). Channels from 3 electrodes

in the seizure onset area and 3 in remote areas were analyzed. Normalized spectral
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powers of the EEG standard spectral bands (Delta, Theta, Alpha, Beta, and Gamma),

were calculated for each channel over a five-second moving window. The authors used

the ratio between normalized spectral powers as a feature to track pre-ictal changes. A

feature selection routine along with a support vector machine classifier were used for

building a machine learning model to classify events into inter-ictal events (not pre-

ceding a seizure onset) to pre-ictal events (preceding a seizure onset ).

Finally, time-frequency analysis combines both time and frequency information into a

single representation. This technique has proven to be a powerful tool for the analysis

of non-stationary signals and have been used for seizure prediction. An example of

such a study was performed in [38] where seizure prediction was assessed for 15 adult

patient with drug resistant focal epilepsy.

As an alternative to a direct analysis of EEG characteristics, neural computation mod-

els were investigated to simulate the behavior of the neuronal activity by mathematical

and computational processes in an attempt to describe the individual or collective neu-

ral mechanisms and obtain a mathematical model of the EEG activity for different

brain states. An example of an epilepsy related study can be found in [39]. Another

study in [40] presents a seizure prediction algorithm based on a computational model

where features are estimated from the model fitted to EEG data. After pre-processing

the data through filtering, the model was fitted to the frequency spectrum of intracranial

EEG segments using a Bayesian inference method. The method was evaluated using

the Freiburg database. The system achieved an average sensitivity of 87.1% and 92.6%

and an average false prediction rate of 0.15 and 0.2 per hour, for a seizure prediction

horizon of 30 and 50 min, respectively.

2.4 The Freiburg Seizure EEG Database
The Freiburg EEG database was proposed in the early 2000s as an EEG database

available for download to researchers working primarily on seizure prediction. The

database contains intracranial EEG recordings from 21 patients with medically in-

tractable focal epilepsy. The recordings were acquired with a 128 channel EEG system

at 256 Hz sampling rate. The database contains at least 24 hours of continuous inter-

ictal recordings for 13 patients and discontinuous inter-ictal recordings for 8 patients

in addition to 50 min pre-ictal recordings from three focal and three extra-focal elec-

trode contacts. Each patient had 2 to 5 pre-ictal recordings (average of 4.2 seizures per

patient). Altogether, the database contained 582 hours of EEG data, including pre-ictal

recordings of 88 seizures. Since 2012, the Freiburg database has been discontinued to

be complemented and replaced by the larger EPILEPSIAE database [41] which con-

tains data sets of annotated long-term scalp and intracranial EEG recordings from 275

patients. In this thesis, extensive analysis have been done on the Freiburg data sets

mainly to assess the performance of the artifact removal algorithms for seizure predic-
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tion and detection applications.

2.5 Scope of Work
To the best of our knowledge, this is the first work on mobility artifactual data acquisi-

tion in controlled and simple lab setup, as other studies used complex lab environments

such as a camera mounted on a treadmill for data acquisition. As for the artifact sepa-

ration technique, the well-known versatile signal processing tool ICA was adopted for

artifact removal since it does not require a reference artifactual signal (unlike adaptive

filters) and does not necessitate an assumption that artifacts and brain EEG signals are

orthogonal (unlike PCA). Most uniquely, unlike other studies that worked with stati-

cally in-hospital recorded EEG data, this work studies the impact of mobility artifacts

recorded from moving subjects as well as the effectiveness of ICA in removing these

artifacts within the scope of epileptic seizure detection and prediction.
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Chapter 3

Mobility EEG Data Acquisition

This chapter of the thesis describes the mobility artifactual EEG data acquisition pro-

cess. The experiment involved ten subjects in a controlled lab environment with prede-

fined speed patterns such as 120 steps/min walking EEG, 90 steps/min walking EEG,

and others. The first section of this chapter presents the experimental setup followed

by the procedure for mobility data acquisition and a summary of the collected infor-

mation that includes EEG recordings, duration of the data files, and information about

the subjects. In the second section, acquired mobility data is analyzed extensively

through the comparison of patterns in acquired signals for both time and frequency do-

mains. In addition, different statistical comparisons such as band power, total power,

and zero crossing rates were established to characterize signals corresponding to dif-

ferent speeds of walking.

3.1 Experimental Setup

3.1.1 Headset

The DSI-24 wireless EEG headset from Wireless Sensing [52] is used as shown in 3.1

to capture EEG in real time while the user is moving in a lab environment with pre-

determined speeds. The headset is designed for rapid recording of continuous EEG

data from the scalp. It is equipped with 21 sensors localized on the scalp based on the

10-20 international system [53]. The recorded EEG signal is sampled at 300 Hz with

a resolution of 16 bits per sample.

3.1.2 Data Collection Procedure

For data collection, the headset was mounted on the participants head and the signal

quality was assessed through visual inspection of EEG data and through making use of

the built-in indicators for the quality of recording. In case a large impedance or discon-

nection between the scalp and the conductor is observed, the headset is re-positioned to
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Figure 3.1: DSI-24 wearable EEG headset.

overcome any unwanted artifacts. The experimental procedure consist of six sessions

with a break of two to five minutes between any two consecutive sessions. A detailed

flow diagram for data collection is shown in Figure 3.2. The six sessions are divided

as follows:

Relax EEG
Data Collection (2-5 min)

120 Steps/min EEG
Data Collection (2-5 min)

60 Steps/min EEG
Data Collection (2-5 min)

Normal Walking EEG
Data Collection (2-5 min)

90 Steps/min EEG
Data Collection (2-5 min)

Relax EEG After Walking
Data Collection (2-5 min)

  

Figure 3.2: Mobility EEG data collection flow graph

1. The subject is asked to sit on a chair and relax with eyes open. EEG data is

recorded for 2-5 minutes. Such data is considered clean EEG and is used for

validation purposes.

2. The subject is asked to walk normally. EEG data is recorded for 2-5 minutes.

3. The subject is asked to walk with a speed of 60 steps per minute without blink-

ing. EEG data is recorded for 2-5 minutes.

4. The subject is asked to walk with a speed of 90 steps per minute. EEG data is

recorded for 2-5 minutes.

5. The subject is asked to walk with a speed of 120 steps per minute. EEG data is

recorded for 2-5 minutes.
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6. 7)6) Finally, the subject is asked to relax again on the chair with eyes open. EEG

data is recorded for 2-5 minutes. This allows detecting any differences between

EEG data for relaxed mode before and after walking.

For tracking steps per minute, a timer which produces the desired number of beep

sounds per minute was used and the subject was asked to walk on the same pace as the

beeps.

3.1.3 Data Collection Summary
EEG data was recorded with mobility artifacts using the aforementioned procedure

from ten healthy subjects. Details for the collected data are summarized in Table 3.1.

For each subject, six sets of EEG data were recorded: two of them are for relax EEG

(before and after mobility) and four data sets are for normal walking with speeds of

60 steps/min, 90 steps/min, and 120 step/min. The experiment was repeated over

three different days. 180 data sets were collected with a total duration of about 500

minutes. Filters were applied over the band 0.5Hz to 64Hz (with the 50Hz notch filter

to eliminate power line interference).

Table 3.1: Data collection summary table

Subject Age Phy. Cond. Data Sets Lenth(Min.)

Total 10 21-30(M) Healthy 180 360-900

There were some difficulties while collecting EEG data using the wireless EEG

headset. For example, the connections of the conductors frequently became unstable

when the subject increased the walking speed (120 steps per minute or more). An-

other problem was that the headset Bluetooth connection was lost at times when the

subject exceeded the maximum coverage range in such cases when electrodes were

disconnected from the scalp or the Bluetooth connection was interrupted, a window of

EEG recording containing the event was eliminated. If multiple events occurred dur-

ing a single recording set and their durations added up to 5% from the total recording

duration, the set was discarded.

3.2 Mobility EEG Data Analysis
The collected data was analyzed using various techniques in the time and frequency

domains in order to identify the changes in EEG patterns and trends with the variations

in the mobility levels.

3.2.1 Relax EEG for Different Subjects
In Figure 3.3, relax EEG data for four subjects are shown for illustration. This type

of data is acquired when subjects sit on a chair in a relaxed mode. The subject was
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asked to avoid excessive blinking to avoid EOG artifact. Furthermore, a band pass

filter was used over the frequency band between 0.5Hz and 60Hz to avoid low and

high frequency interference as well as a notch filter at 50Hz to suppress power line

noise. The acquired data is sampled at 300Hz and a stretch of 5 second for relax EEG

is shown in the plots. On the Y-axis, 20 electrodes are shown with their corresponding

position (p for parietal, f for frontal etc.). For each electrode, scalp EEG is plotted in

millivolts. The X-axis contains 1500 data points that represent time steps summing

for a total of 5 seconds. The plots show a clear similarity between the recordings of

different subjects for the same mobility level.
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Figure 3.3: Relax EEG data comparison for different subjects

3.2.2 Normal Walking EEG for Different Subjects
Figure 3.4 represents 5 seconds EEG traces for four subjects while they were normally

walking in a controlled lab setup. On the Y-axis, 20 electrodes are shown with their

corresponding position (p for parietal, f for frontal etc.). For each electrode, scalp

EEG is plotted in millivolts. The X-axis contains 1500 data points that represent time

steps summing for a total of 5 seconds. The plots also show similarity between the

recordings of different patients for the same mobility level, but they show an observ-

able difference compared to the traces of the relax EEG. The plots also show that

increasing the mobility results in increased amplitudes of the scalp voltage as well as

an increased variability in the EEG signals.
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Figure 3.4: Normal walking EEG data comparison for different subjects

3.2.3 120 Steps/min walking EEG for Different Subjects

Figure 3.5 represents 5 seconds EEG traces for four subjects while they were walking

with a speed of 120 steps/min in a controlled lab setup. This is the highest mobility

level in terms of speed. The plots in the Figure 3.5 depicts how high peak noise ap-

peared in every step. It is also observable that the mobility noise is being added to

the brain source signal in a linear fashion. That is, the acquired data becomes noisier

as the level of mobility increases. At the same time, the amplitudes of scalp voltage

increase with the increase of movement speed.

3.2.4 All Mobility Data Type Comparison

Figure 3.6 shows sample EEG plots obtained using the aforementioned experimental

procedure for different mobility scenarios. A clear visual difference is evident between

relax time series EEG data and mobility artifactual EEG data. Relax EEG data shows

low signal amplitudes and more synchronized patterns while normal walking and other

predefined mobility EEG data show high signal amplitudes with less synchronization.

This difference is expected since in the relaxed case, the neurons in most of

the brain regions are in the same state with low activity. On the other hand, while

walking, more neurons fire and the accumulation of neural activities result in high

amplitudes [8]. Moreover, these changes in neural activities alter the patterns of EEG
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Figure 3.5: 120 steps/min walking EEG data comparison for different subjects

data what can be observed when comparing the relaxed state with the walking state.

Upon comparing the relax EEG before walking and after walking, one can observe

similar patterns what validates our assumption that both relaxed states are similar and

correspond to the same neuronal activity of the brain. Additionally, a relationship of

direct proportionality between speed and mobility noise is evident in Figure 3.6 (The

higher the speed the more noisy the data becomes). This finding would help in future

modeling of mobility artifacts in EEG data.

3.2.5 Power Spectrum Comparison for Different Mobility Patterns
For frequency domain comparison, the power spectrum of relax EEG opposed to dif-

ferent walking artifactual EEG is plotted for different subject as illustrated in Fig-

ure 3.7. From the power spectrum plots, it appears that relax EEG, both before and

after walking, show a similar power spectrum while all other walking EEG show higher

power over the entire frequency range. Among the different walking EEG cases, 120

steps/min shows the highest power content followed by 90 steps/min and then by nor-

mal walking EEG.

Differences in power spectrums correlate with the difference in amplitudes of the

brain activity between resting modes and walking modes. The linear relation between

power and speed of the mobility artifactual EEG data is also evident in Figure 3.7.

The highest power is observed for 120 steps/min mobility EEG, followed by that of 90
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Figure 3.6: Example plot of 5 second trace of relax and different mobility EEG

steps/min EEG and then that of the normal walking EEG.

3.2.6 EEG Band Power Comparison for Different Mobility Pat-
terns

For comparing power levels among different mobility artifactual EEG data, the power

for each EEG frequency band was calculated. The bands are: Delta band (0-4Hz),

Theta band (4-8Hz), Alpha band (8-16Hz), Beta band (16-32Hz) and Gamma band

(32-64Hz). Detailed findings are tabulated in the subsequent section for each mobility

level. Difference in power, especially in the delta band, is notable between relax and ar-

tifactual EEG. Delta waves are usually present with high amplitude and low frequency

when the subject is in a sleeping state and their power increases significantly upon

movement as claimed in [cite]. An almost linear increase in band power is noticed

when changing state from relaxed to walking as well as when increasing the speed of

walking.
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Figure 3.7: Power spectrum comparison for different mobility patterns

Band Power Comparison of Relax EEG for all Subjects

Table 3.2 represents the relative powers of different EEG bands (namely: delta, theta,

alpha, beta and gamma) for relax EEG. The obtained results show that 55% of the

power of relax EEG lies in delta band, 12% of the power lies in theta band, 18% of

the power lies in alpha band, 8% and 3% of the power lies in beta and gamma band

respectively for all ten subjects. The majority of relative powers for the delta band are

between 50% and 70% while those of the gamma band always show the lowest relative

power.

Band Power Comparison of Normal Walking EEG for all Subjects

For normal walking EEG, the power distribution among different bands is shown in

the Table 3.3. In this case, the delta power increased to an average of 73% of the total

power and it was greater than that of the relax EEG for all subjects. Notably, other

band powers becomes smaller compared to those of relax EEG.
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Subject Delta Power Theta Power Alpha Power Beta Power Gamma Power 
Subject-1 69.11 11.77 9.99 6.39 2.86 
Subject-2 63.43 10.05 18.18 6.24 2.24 
Subject-3 58.32 9.29 18.50 10.82 3.22 
Subject-4 60.36 9.54 13.94 8.96 7.28 
Subject-5 67.26 14.76 8.53 6.97 2.68 
Subject-6 60.45 18.47 13.32 5.94 2.08 
Subject-7 47.54 20.05 19.71 9.40 3.55 
Subject-8 66.07 9.18 12.03 8.35 4.43 
Subject-9 51.42 12.46 23.33 9.90 3.12 

Subject-10 29.36 10.70 44.71 12.12 3.23 

Table 3.2: Different EEG band power comparison of relax EEG for all subjects

Subject Delta Power Theta Power Alpha Power Beta Power Gamma Power 
Subject-1 72.52 13.15 6.81 4.86 2.93 
Subject-2 75.24 9.09 6.62 5.51 3.64 
Subject-3 71.52 11.36 8.33 5.56 3.39 
Subject-4 60.79 16.16 14.06 6.78 2.31 
Subject-5 70.45 8.41 11.54 6.54 3.16 
Subject-6 78.24 7.84 4.93 5.05 4.08 
Subject-7 73.08 10.04 8.49 5.27 3.27 
Subject-8 79.65 9.05 5.12 3.58 2.67 
Subject-9 76.04 11.57 6.51 3.80 2.48 

Subject-10 75.99 12.29 6.97 3.19 1.70 
 

Table 3.3: Different EEG band power comparison of normal walking EEG for all

subjects

Band Power Comparison of 120 Steps/min EEG for all Subjects

The highest delta band power is reached in the 120steps/min case where it reached an

average of 85% and the lowest gamma power was recorded (about 1%) as shown in

Table 3.4. A key conclusion from the observations of the power distribution across

frequency bands is that increasing the mobility level (i.e. the speed) results in increas-

ing the relative power for the delta band while decreasing relative powers of all other

bands.

3.2.7 Zero Crossing Rate Comparison for Different Mobility Pat-
terns

To further evaluate the difference between relax and mobility EEG, the zero crossing

rate (ZCR) test was performed for all subject cases. Details results are shown in Table

3.5, where high ZCR value is observed for relax EEG, both before and after walking, as
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Subject Delta Power Theta Power Alpha Power Beta Power Gamma Power 
Subject-1 78.20 10.91 6.38 3.18 1.39 
Subject-2 82.45 9.13 3.92 2.72 1.88 
Subject-3 86.64 6.40 3.80 2.02 1.23 
Subject-4 62.36 18.04 12.60 5.43 1.76 
Subject-5 98.15 0.87 0.67 0.26 0.07 
Subject-6 77.55 10.69 5.34 4.17 2.36 
Subject-7 93.17 4.28 1.77 0.64 0.18 
Subject-8 94.63 3.51 1.22 0.50 0.16 
Subject-9 92.68 4.73 1.59 0.76 0.28 

Subject-10 83.82 5.88 5.82 3.09 1.45 
 

Table 3.4: Different EEG band power comparison of 120 steps/min EEG for all sub-

jects

compared to different mobility EEG. It is also evident from Table 3.5 that the relation-

ship between the ZCR value and the mobility speed is almost inversely proportional

(That is, the higher the speed, the less the ZCR value becomes). It is worth noting

that low zero crossing rates indicate high power while high zero crossing rates indicate

low power which is consistent with the previous observations on power as shown in

Figure 3.7). Moreover lower ZCR value indicate more activity of the brain neuron

while high zero crossing reflects less activity [?] and it support our finding of low ZCR

during walking as at this time more neurons are active. On the other hand during relax

state less activity in the brain. This time we have observed an inversely proportional

relationship between zero crossing rate and mobility speed that is the more speedy the

EEG data is,the less ZCR rate.

Subject Relax EEG (bf) Relax EEG(af) Normal Walking EEG 60 Steps/min EEG 90 Steps/min EEG 120 Steps/min EEG 
Subject-1 6.74 8.20 5.63 6.20 4.55 3.86 
Subject-2 7.50 7.45 4.58 4.76 2.92 2.93 
Subject-3 7.91 5.12 3.08 3.37 3.17 2.81 
Subject-4 8.76 6.99 5.75 6.48 5.41 4.29 
Subject-5 8.67 7.18 4.51 4.66 4.44 4.84 
Subject-6 7.32 6.60 3.22 1.85 2.67 1.95 
Subject-7 6.06 6.48 4.78 4.64 4.43 3.32 
Subject-8 5.45 4.84 3.50 1.94 1.52 2.43 
Subject-9 5.94 6.23 3.07 4.25 4.20 3.07 

Subject-10 7.01 7.23 4.97 5.34 4.70 3.96 
 

Table 3.5: Zero crossing rate comparison for different mobility patterns

3.2.8 Total Power Comparison for Different Mobility Patterns
The final evaluation metric is the total power (in dB). Results for the different mobility

levels are summarized in Table 3.6 for all ten subjects. It is clear that the highest total

average power is recorded for the 120 steps/min EEG (1109 dB) followed by that of

23



the 90 steps/min EEG (600 dB) and then followed by that of normal walking EEG

(300 dB). The lowest total average power is for relaxed EEG (91 dB). This stresses the

linear relation between power the mobility level.

 

Subject Relax EEG (bf) Relax EEG(af) Normal Walking EEG 60 Steps/min EEG 90 Steps/min EEG 120 Steps/min EEG 
Subject-1 111.09 96.32 337.65 272.62 255.47 417.17 
Subject-2 84.82 147.83 710.78 714.16 639.46 1158.21 
Subject-3 36.60 40.57 181.89 154.40 625.87 543.14 
Subject-4 67.46 90.75 299.12 309.06 810.89 956.49 
Subject-5 172.74 158.57 232.75 204.50 177.62 304.31 
Subject-6 69.50 62.18 683.07 267.25 336.59 325.48 
Subject-7 102.85 69.83 269.82 188.53 971.11 3136.13 
Subject-8 87.87 73.41 3626.27 315.90 1007.18 935.08 
Subject-9 85.04 77.96 643.24 400.27 859.60 1797.22 

Subject-10 101.17 61.70 255.95 424.75 2598.20 1524.52 

Table 3.6: Total power comparison for different mobility pattern for all subjects

3.3 Summary
In summary of chapter 3, mobility artifactual EEG data was recorded in a controlled

lab setup with predefined speed levels. Extensive data analysis was performed for

all ten subjects in different domains (time, frequency etc.). Based on the analysis,

the following was concluded. Relaxed EEG and mobility artifactual EEG are indeed

different what was manifested in significant differences of their respective time and

frequency domain properties as well as in their band powers and zero crossing rates. A

positive correlation between the power level (mainly for the delta band) and the speed

of mobility was evident for all subject cases.
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Chapter 4

Mobility Artifacts Removal

This chapter proposes a procedure for removing mobility artifacts from in-lab recorded

artifactual EEG data. This chapter also deals with processing of simulated noise which

is added to the recorded EEG data. ICA is implemented for source separation of the

pure EEG signals and the mobility artifact related components. The reconstructed

noise free EEG signals are then characterized using different statistical test.

4.1 Proposed Methodology
Figure 4.1 shows a detailed scheme of the experimental setup for removing mobility

artifacts. Initially, ICA is applied to EEG data corresponding to relaxed cases and to

cases for different mobility levels. This results in separating data to clean and artefac-

tual components based on visual inspection of time series and the comparison of the

measures for auto correlation, power spectrum and scalp topography between com-

ponents. Upon eliminating the noisy components, clean brain EEG signals are re-

constructed and compared with reference relaxed EEG signals in time and frequency

domains using different statistical tests such as power improvement, signal to noise

ratio (SNR) improvement, etc. The bottom part of Figure 4.1 outlines the processing

of simulated noise where simulated EMG artifacts are added to the recorded mobility

artefactual EEG data before processing it with ICA. Similarly comparison methods are

then used to assess the reconstruction capability of ICA.

4.2 Independent Component Analysis
Figure 4.1 presents an overview of the artifact removal approach which is essentially

based on independent component analysis. ICA separates original signals from any

set of two or more observed signal mixtures, where each signal mixture can be a lin-

ear combination of original signals [50].The success of ICA depends on some key

assumptions. Mainly, source signals must be non-Gaussian and mutually statistically

independent while their mixture must be Gaussian. Another key assumption is that the
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Figure 4.1: Mobility artifacts removal procedure

number of observed signals must be greater than or equal to the number of independent

components of the mixture [51]. separates components based on the maximum mu-

tual information among the sources. Equation 4.1 expresses the separated independent

components in terms of the input data.

S = WX (4.1)

The input to the algorithm is the collected EEG data matrix X of dimension m × N ,

where m is the number of EEG electrodes and N is the total number of data points. S
is the source activity (independent components) with a dimension of n × N , where n
is the number of components. The weight matrix W of dimension mxn is then used

to express the independent components in terms of the input data.

The MATLAB toolbox, EEGLab, provides an interface for running ICA and other

signal processing techniques [55].The number of components in ICA is fixed to the

number of channels. The below features are used to distinguish artefactual from non-

artifactual components:

• Component Topographies: Each artifactual component presents a unique dis-

tinguishable topography [49] which make it suitable for separation of artifactual

components from brain signal.

• Auto-correlation: EMG artifacts are expected to have low auto-correlation [8].

For this reason, the auto-correlation have been used as a possible feature for

selecting artifactual components.

• Spectrum:Spectrum analysis is commonly used to identify artifacts manually

due to the characteristic shape corresponding to each artifact [56].
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4.3 Signal Reconstruction Evaluation Metrics
After detecting artifactual components through the above mentioned features, noisy

components are separated and clean EEG is reconstructed. The following evaluation

metrics are used to validate signal regeneration as commonly used in literature [57].

1. Artifact reduction is calculated using the following equation:

ARed = 100

(
1− Cref − Crec

Cref − Cart

)
(4.2)

Cref is the auto-correlation of the reference signal, Cart is the cross-correlation be-

tween the artifactual and the reference signals, and Crec is the cross-correlation

between the reconstructed and the reference signal.

2. Signal to Noise ratio (SNR) improvement is calculated by following equation:

Simp = 10 log10

(
Vref

Veraf

)
− 10log10

(
Vref

Verbf

)
(4.3)

Vref is the variance of the reference signal, Verbf is the variance of the error signal

before ICA, and Veraf is the variance of the error signal after ICA.

3. Root Mean Square Error (RMSE) improvement is calculated using following

formula:

Rimp =

√√√√ 1

N

N∑
i=1

(xi − x̄i)2 −
√√√√ 1

N

N∑
i=1

(si − x̄i)2 (4.4)

x represents the artifactual signal, x̄ represents the econstructed signal, s repre-

sents the reference Signal, and N is the length of the EEG Data.

4. Power Spectral Density distortion improvement after ICA is found using:

Pimp =
PSDart

PSDref

− PSDrec

PSDref

(4.5)

PDSart , PDSrec and PDSref are the power spectral densities of the artifactual

signal, the reconstructed signal, and the reference signal respectively.
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5. Correlation improvement is calculated by:

Cimp = 100

(
Cart − Crec

Cref

)
(4.6)

where Cref, Cart and Crec correspond respectively to the auto-correlations of the

reference signal, the artifactual component, and the reference signal.

6. Coherence improvement

Chimp = 100

(
Chafter − Chbefore

Chbefore

)
(4.7)

Chafter =
G2

xy

Gxx ∗Gyy

(4.8)

Gxy is the cross spectral density of the reconstructed and the reference signal.

Chbefore =
G2

xy

Gxx ∗Gyy

(4.9)

Gxy is the cross spectral density of the artifactual and the reference signal, Gxx is

auto spectral density of the artifactual signal, and Gyy is the auto spectral density

of the reconstructed signal.

4.4 Results: In-lab Mobility Artifacts Processing

4.4.1 Relax EEG Processing

The Figure 4.2 shows relax EEG data processing using independent component anal-

ysis. Top left plot of the Figure 4.2 represents 5 second time series EEG data of 20

channels when subject was sitting in a chair with relaxed mood. We have suggested

subject to fixed eye in a fixed position to avoid ocular artifact. To avoid low and high

frequency we have used band pass filter between .0.5Hz and 64Hz while recording.

Top middle plot of Figure 4.2 represents reconstructed EEG after ICA implementa-

tion through selecting and separating noisy components based on time series and scal

topography as shown. Reconstructed EEG is looking similar in time domain. Also

the power spectrum comparison proves that relax EEG and reconstructed EEG show

similar power content over the entire frequency range. This shows that ICA maintains

high quality reconstruction of signals that originally contains no mobility artifacts.
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Figure 4.2: Relax EEG data processing and comparison of power spectrum

4.4.2 Normal Walking EEG Processing
Figure 4.3 illustrates the case for processing normal walking EEG data. This type of

data was acquired while the subject was walking with a normal speed. Proper ex-

perimental control measures were taken to reduce and eliminate sources of artifacts

other than mobility-related ones. Normal walking EEG appears noisy with clear dif-

ference compared to relax EEG. However, after ICA implementation, the reconstructed

clean EEG signals, corresponding to the originally noisy normal walking EEG, appear

closely comparable to relax EEG with similar power content as well.

4.4.3 120 Steps Walking EEG Processing
Figure 4.4 illustrates the case for the processing of 120 steps/min walking EEG data.

The top left plot in the figure shows the time domain signals corresponding to ten

channels with contaminated EEG data (The case when the subject was walking in a

speed of 120 steps per minutes). The top right plot in the figure shows the scalp topog-

raphy for the independents components. The middle left plot shows the time series of

the ten independent components. The middle right plot shows the reconstructed EEG

signals after removing the noisy components that were detected based on the scalp

topography and the visual inspection of the time series for the output independent

components. The bottom left plot shows the reference relaxed EEG which appears

similar to the reconstructed EEG after the implementation of ICA. To validate the re-

construction capability, the power spectrum of 120 steps walking EEG is compared to

the reconstructed and the relax EEG. Comparable curves are shown in the bottom right
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Figure 4.3: Normal walking EEG data processing and comparison of power spectrum

plot of the figure. It is notable that both relax and reconstructed EEG is showing simi-

lar power spectrums while the 120 steps walking EEG is showing higher powers over

the entire frequency domain. The similarities between the spectrums of relax EEG and

that of the reconstructed EEG reflects that ICA is successful and effective in separating

artifactual components from brain signal.

4.5 Results: Simulated Mobility Artifacts Processing

4.5.1 Normal Walking EEG Processing
Figure 4.5 illustrates the processing of normal walking EEG data with added simulated

noise using independent component analysis. The top left plot in the figure shows the

time domain signals corresponding to 20 channels. These signals are for normal walk-

ing EEG. The middle top plot of the figure shows the simulated noise with the same

sampling frequency and number of channels. After the addition of noise, the resulting

noisy signal is shown in the top right plot of the figure. Upon processing the noisy

EEG using ICA and removing the artifactual components, the reconstructed EEG sig-

nals are plotted in the bottom left plot of the figure. By visual inspection, it is clear

that the reconstructed EEG is almost noise free. Also, the reconstructed noise shows

similar time domain pattern to the added noise.

To further assess the quality of the reconstruction, the power spectrums of the various

signals are shown in the bottom right plot. It is notable that both relax and recon-
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Figure 4.4: 120 walking steps/min EEG data processing and comparison of power

spectrum

structed EEG is showing similar spectrums while both added noise and reconstructed

noise are also showing similar temporal and spectral behavior. Again, the results prove

that ICA is able to separate and remove EMG artifacts from brain EEG data.

4.5.2 60 Steps/min Walking EEG Processing
Figure 4.6 illustrates the case for processing the 60 steps/min walking EEG data after

adding simulated noise. The top left plot of the figure shows the time domain signals

for 20 EEG channels with mobility artifacts corresponding to the case when the subject
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Figure 4.5: Processing of normal walking EEG data colored with simulated noise
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Figure 4.6: Processing of 60 steps/min walking EEG data colored with simulated noise

was walking with a speed of 60 steps per minutes. Simulated noise is added to the sig-

nals of the previous plot resulting in the noisy signals shown in the top right plot of the

figure. After applying ICA, both EEG signals and simulated noise are reconstructed.
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The reconstructed EEG signals appear noise-free in the time domain and show simi-

lar power spectrum to those of relax EEG as depicted in the bottom right plot of the

figure. The deviation of the power spectrum for the reconstructed noise from that of

the original simulated noise can be explained by the fact that the reconstructed noisy

component is a mixture of the simulated noise and the noise recorded with the 60 steps

EEG.

4.5.3 90 Steps/min Walking EEG Processing

Figure 4.7 illustrates the case for processing the 90 steps/min walking EEG data after

adding simulated noise. The top left plot of the figure shows the time domain signals

of the 20 channels with mobility artifacts corresponding to the case when the subject

was walking with a speed of 90 steps per minutes. This signal is made further noisy

by adding simulated noise as shown in the top right plot of the figure. After the im-

plementation of ICA, both EEG signals and simulated noise are reconstructed. Also in

this case, the reconstructed EEG seems to be noise-free and similar to the relax EEG in

both time and frequency domains. The shift in the power spectrum of the reconstructed

noise is also due to fact that noise here corresponds to the addition of the simulated

and recorded noise.

 

 90 Steps Walking EEG

  Power Spectrum Comparison Reconstructed Noise

 90 Walking EEG+Noise Simulated Noise

 Reconstructed EEG

S

0 1 2 3 4 5
  

20
19
18
17
16
15
14
13
12
11
10
 9
 8
 7
 6
 5
 4
 3
 2
 1

0 1 2 3 4 5
  

20
19
18
17
16
15
14
13
12
11
10
 9
 8
 7
 6
 5
 4
 3
 2
 1

S

S

0 1 2 3 4 5
  

20
19
18
17
16
15
14
13
12
11
10
 9
 8
 7
 6
 5
 4
 3
 2
 1

0 1 2 3 4 5
  

20
19
18
17
16
15
14
13
12
11
10
 9
 8
 7
 6
 5
 4
 3
 2
 1

S

5 6 7 8 9 10
  

20
19
18
17
16
15
14
13
12
11
10
 9
 8
 7
 6
 5
 4
 3
 2
 1

0 50 100 150
-50

-40

-30

-20

-10

0

10

20

30

 

 
Relax EEG
Noise
90 Walking EEG+Noise
Reconstructed EEG
Reconstructed Noise
90 Walking EEG

Figure 4.7: Processing of 90 steps/min walking EEG data colored with simulated noise
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4.6 Statistical Validation: Artifacts Removal

4.6.1 In-lab Mobility Noise

To validate the effectiveness of ICA in eliminating recorded noise from brain EEG

signals, different signal reconstruction metrics, as described in Section 4.3, are calcu-

lated and analyzed. Results are summarized in Table 4.1. On average, 10% artifact

reduction, about 13 dB signal to noise ratio (SNR) improvement, and around 40 mV

root mean square error improvement (RMSE) are evident for all ten subjects. The cor-

relation and coherence improvements show around 70% and 95% respectively. These

notable improvements emphasize the successful removal of mobility noise from brain

EEG. They also confirm that the reconstructed signals are indeed similar in terms of

correlation and coherence to the reference relax signals.

Subject 
 

Artifact 
Reduction 

Signal to 
Noise Ratio 
Improvement 

Root Mean 
Square Error 
Improvement 

Power 
Distortion 
Improvement 

Correlation 
Improvement 

Coherence 
Improvement 

Subject-1 8.25 4.49 13.80 1.04 80.52 99.72 
Subject-2 13.01 4.92 20.98 6.28 83.78 84.85 
Subject-3 6.10 6.58 8.34 67.00 84.99 99.99 
Subject-4 3.09 11.67 67.58 74.09 39.43 83.38 
Subject-5 5.08 16.70 16.46 35.80 73.15 99.92 
Subject-6 3.97 9.30 24.00 65.08 59.43 95.38 
Subject-7 5.71 16.63 97.14 60.16 67.95 99.85 
Subject-8 7.93 15.04 98.28 63.32 70.56 99.90 
Subject-9 4.89 8.34 69.87 77.85 91.58 100.00 
Subject-10 5.04 11.99 43.54 44.17 97.17 99.97 

 

 

Table 4.1: Performance evaluation of ICA technique for in-lab mobility noise separa-

tion

4.6.2 Simulated Mobility Noise

Aforementioned evaluation was done for simulated noise removal. An interesting ob-

servation in the results is that after the processing of simulated noise, more significant

improvements are noticeable in all of the evaluation metrics as compared to the case

of in-lab recorded mobility artifacts shown in Table 4.2. The reason for this is that the

amplitude of the simulated noise (160-200 V ) is more significantly higher than the

that of the recorded EEG (50-150 V ) as compared to the recorded noise what makes

simulated noise less correlated with pure EEG data and thus easier to separate and

eliminate.
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Subject 
 

Artifact 
Reduction 

Signal to 
Noise Ratio 
Improvement 

Root Mean 
Square Error 
Improvement 

Power 
Distortion 
Improvement 

Correlation 
Improvement 

Coherence 
Improvement 

Subject-1 31.51 19.81 82.82 85.53 76.04 99.98 
Subject-2 81.77 19.38 81.89 35.10 99.07 99.90 
Subject-3 43.95 20.74 81.77 76.14 76.51 99.97 
Subject-4 56.61 18.25 81.36 60.66 95.79 99.20 
Subject-5 62.31 16.65 79.09 67.61 76.49 99.97 
Subject-6 58.68 18.03 98.56 42.83 87.66 97.56 
Subject-7 68.72 18.49 81.11 52.91 76.55 99.76 
Subject-8 54.05 17.93 80.96 63.62 71.13 99.76 
Subject-9 47.08 20.29 83.76 79.25 94.14 89.42 
Subject-10 76.38 19.05 76.51 47.82 96.15 99.92 

 

 

Table 4.2: Performance evaluation of ICA technique for simulated mobility noise sep-

aration

4.7 Regeneration Performance Test of ICA Technique

4.7.1 In-lab Mobility Noise

To test the regenerative performance of ICA, the complete 180 data sets along with an-

other 180 simulated noisy data sets were used. The aim is to quantify the effectiveness

of ICA in removing mobility artifacts and regenerating the original noise-free EEG sig-

nal. Figure 4.8 uses a boxplot to illustrate the improvement of the validation metrics

used in this paper for different types of mobility EEG data after reconstruction using

ICA. The plots show that the correlation and coherence improvements of both relax

EEG vary between 35-80%. The improvements for all considered metrics were more

significant in the cases where the subject was walking. For normal walking, a corre-

lation improvement of 60-80% and a coherence improvement between 95% to 98%

was recorded. For 60, 90 and 120 walking steps, around 50-80% correlation improve-

ment and 95-98% coherence improvement were acheived. These improvements are

expected, as we showed earlier. After ICA, the reconstructed EEG and the reference

relax EEG are close both in time and in frequency domains what hints on their high

correlation. Again, the spectral content of the reconstructed and the reference relax

EEG are very similar what reflects the high coherence between the signals (coherence

quantifies the similarity between two signal in terms of their spectral content). It can

also be noted that the improvements are consistent as shown in the boxplot of Fig-

ure 4.8. For instance, the range for coherence improvement is only 3% for all subjects

what shows that ICA is generating artifact-free signals with high consistency.
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Figure 4.8: Regeneration test of ICA algorithm in processing in-lab mobility noise for

all subjects
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Figure 4.9: Regeneration test of ICA algorithm in processing simulated noise for all

subjects

4.7.2 Simulated Mobility Noise

To further evaluate the regeneration capability of ICA, EMG noise from the Physionet

EMG Database (Physionet) were added to the recorded data and the same processing
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was performed. Consistent results are observed in this case except for correlation im-

provement which varies from 20-80% as shown in the boxplot of Figure 4.9. All other

metrics such as Power distortion (75-85%) and coherence (95-97%) improvement lie

within small ranges what reflects the generalized artifact-processing capability of the

ICA technique. Since EMG is independent from the normal brain EEG, ICA can easily

and effectively separate those simulated EMG artifacts and thus result in high correla-

tion, power distortion and coherence improvements for the reconstructed EEG signals.

4.8 Summary
In summary, this chapter illustrates the implementation of infomax ICA algorithm

from EEGLAB MATLAB toolbox for processing mobility artifactual EEG data. It

also assesses ICAs capability of removing recorded mobility artifacts and simulated

noise. Results in this chapter show that the reconstructed EEG signals and the sep-

arated mobility artifacts exhibit similar patterns and properties compared to their re-

spective original sources in time and frequency domain analysis as well as in the terms

of the considered statistical measures. This proves that ICA is a very effective tool for

separating pure EEG data and mobility artifacts from their mixture.
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Chapter 5

Impact of Mobility Artifacts on
Epilepsy Detection and Prediction

The third objective of this thesis work is to conduct necessary experiments to inves-

tigate the impact of mobility artifacts on epileptic seizure prediction and detection.

This chapter is designed to fulfill the aforementioned thesis goal. The chapter de-

scribes the necessary signal processing tools and machine learning algorithms for the

application of epileptic seizure detection and prediction. Its first part is dedicated to

test the effectiveness of ICA in eliminating mobility noise (recorded and simulated)

while preserving seizure markers in the reconstructed signals. The second part deals

with pre-processing, feature extraction, training and testing classification models, and

finally evaluating the performance of epilepsy detection and prediction in the cases

of: noise free Freiburg epileptic data, noisy epileptic data, and reconstructed epileptic

data. The detailed methodology and experimental setup are described in subsequent

section.

5.1 Proposed Methodology

To investigate the effect of mobility artifacts on seizure detection and prediction, mo-

bility noise was analyzed in the case of the recorded 120 walking steps EEG and in

the case of EMG simulated noise from Physionet added to the Freiburg epileptic EEG

data. The proposed methodology is presented in Figure 5.1.

1. Infomax ICA is implemented on noisy Freiburg epileptic data. Noisy compo-

nents are selected based on visual inspection of different time series and based

on scalp topography (The noisy component selection procedure was described

in Section 4.1).

2. Selected noisy components are separated from the noisy mixtures and clean

epileptic data is reconstructed. The added noise is also reconstructed by sub-
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Figure 5.1: Methodology for investigation the impact of mobility artifacts on epileptic

seizure application

tracting the reconstructed clean epileptic data from the noisy mixture for alter

assessment.

3. Performance of ICA algorithm is evaluated in terms of the reconstruction of both

epileptic data and mobility noise using different statistical signal regeneration

evaluation metrics as well as time and frequency domain similarity measures.

This ends the signal processing part of this chapter.

4. The Machine learning part begins with pre-processing of all data corresponding

to the three type: noise-free Freiburg, noisy Freiburg (with simulated noise), and

reconstructed Freiburg epileptic data after ICA. Pre-processing is necessary to

avoid low and high frequencies that are insignificant in EEG diagnosis as well as

to suppress power line interference. A band pass filter between 0.5Hz and 64Hz

was used with a notch filter at 50Hz.

5. N-gram based feature extraction is implemented for all three data types, and it

is followed by training and testing of classification models for prediction and

detection. Finally, the classification capability is evaluated for all three data

types using different performance evaluation metrics: accuracy, sensitivity and

false alarm rate.
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Figure 5.2: Epilepsy prediction and detection Procedure

5.2 N-gram Algorithm for Anomaly Ratio Feature Gen-
eration

An N-gram based approach was used to extract seizure distinctive features for noise

free, noisy and reconstructed data. Upon training different learning models and classi-

fying segments of EEG recordings, prediction and detection accuracies are then com-

pared and analyzed for the three data type. For detection, learning models are trained

on ictal data (from the onset of the seizure to its end) and pre-ictal (directly preceding

the seizure onset). For prediction, learning models are trained on pre-ictal data and

inter-ictal data (data other than pre-ictal or inter-icta). The overall scheme is depicted

in Figure 5.2.

5.2.1 Overview of the N-gram Algorithm

N-gram based techniques have been previously applied in the context of EEG data

analysis [35]. This work uses the N-gram approach described in [58] where sequence

counts give an indicator for the variability of EEG signals. The abrupt change in

the amplitude of EEG signals during seizures will reduce counts of long patterns or

sequences. The gradual decrease in the pattern counts in the EEG data can be used

as a marker for epileptic seizure prediction. Thus, the variability, also referred as the

anomalies ratio (AR), is adopted as a distinctive feature for seizure prediction.

5.2.2 Anomaly Ratio Generation

The adopted N-gram approach relies on different parameters, namely: window size,

interval length, pattern length and weight. Optimized parameters from [58] are used to

run the N-gram algorithm. EEG data is analyzed in segments of length specified by the
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window size. These windows of EEG data are partitioned into multiple sub-intervals

whose length is determined by the interval length parameter. For every interval, time

series sample values are quantized by multiplying with a conversion factor of 0.165

and dividing by a weight of 8. After quantification, the algorithm searches every in-

terval for repeated significant patterns with a predefined pattern length. A pattern is

significant if it is repeated more than a certain threshold in a particular interval (For

example, if pattern [10 11 10 10 11] is repeated more than twice, it is considered as a

significant pattern). Within an interval, the sample value that was not included in any

of the significant patterns will be termed as un-sequenced sample. These samples are

used to calculate AR for a particular interval as follows:

AR =
Count(Unsequenced Samples)

Count(All Samples)
(5.1)

For feature extraction, analysis is limited to channels at which the seizure onset was

clinically observed. This is due to the fact that the considered seizures are partially

located on a specific region of the brain so channels that are away from the seizure

onset region are not significant for prediction nor for detection.

Model Development and Classification

Ensemble learning is a technique where multiple classifiers are developed by randomly

sampling the training data sets. The process of classification in ensemble learning is

depicted in Figure 5.3. There are basically two approaches used in ensemble modeling

namely bagging and boosting. In bagging modeling, also known as parallel modeling,

ensemble models are built independently where the whole training data is divided into

multiple folds using bootstrap sampling. For every fold, classifiers are trained and de-

cisions are taken by each classifier on each test vector. The final result of classification

is found by majority voting. On the other hand, boosting is a sequential approach that

works by assigning high weights for miss-classified class levels. From the family of

bagging ensemble modelling, the random forest classifier is used to predict seizures

due to its suitable prediction and stability properties [59] as it works well for small

variances in data. The random forest classifier starts by splitting the feature data into

subsets for which separate decision trees are built. Each developed tree (classifier)

gives a vote on any new testing feature vector. Finally the predicted class level of

the tested vector is found based on majority voting or averaging. Majority voting is

used for binary classification decisions while averaging is used in probabilistic clas-

sification. In the developed learning models, unbiased data sets are used with equal

numbers of seizure and non-seizure feature vectors for training. For example, Patient

586 from Freiburg database has 22 recorded seizure and a total of 104 channels de-

tected the onsets of these seizures. To develop an unbiased data set, we have generated

anomaly ratios (ARs) from the ictal periods of those 104 channels. At the same time,

we also extracted ARs for the same number of pre-ictal periods (with the same size as
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the ictal-periods) of those channels. Thus we have a data set of 208 entries with 104

seizure cases and another 104 non-seizure cases.

 

Figure 5.3: Classification model use to evaluate the impact of artifacts on epileptic

seizure detection and prediction

5.2.3 Performance Evaluation
To evaluate the performance of the seizure detection and prediction algorithms, the

following metrics are used:

Accuracy =
TP + TN

TP + FP + FN + TN
(5.2)

Sensitivity =
TP

TP + FN
(5.3)

FalseAlarm =
FP

FP + TN
(5.4)

The metrics defined in (5.2)-(5.4) depend on the following variables:

1. True Positive (TP) refers to a case where an alarm is raised when a seizure actu-

ally occurred.

2. True Negative (TN) refers to a case where an alarm is not raised when a seizure

did not occur.

3. False Negative (FN) refers to a case where an alarm is not raised when a seizure

actually occurred.

4. False Positive (FP) refers to a case where an alarm is raised when a seizure did

not occur.
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5.3 Result and Discussion on Signal Reconstruction

5.3.1 Signal and Noise Regeneration Analysis
To investigate the impact of mobility artifacts on epileptic seizure prediction we have

applied the same procedure we followed in Chapter 4 Section 4.1 for mobility artifacts

processing.
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Figure 5.4: Processing of simulated mobility artifacts from Freiburg ictal data and

comparison of reconstructed signals after ICA implementation

The datasets of five patients from the Freiburg dataset were used. First, ictal

data was extracted and then the mobility noise, which was originally separated from

different mobility EEG data sets as discussed in Section 4.1, was added to the clean

ictal data. After adding mobility noise, infomax ICA was implemented on the noisy

Freiburg ictal data and artifactual components are separated and both clean ictal data

and mobility noise are reconstructed. Figure 5.4 shows the separation of simulated

mobility artifacts from Freiburg ictal data and the comparison of reconstructed signals

after the implementation of ICA. Figure 5.5 shows separation of the in-lab recorded

mobility artifacts from Freiburg ictal data and the comparison of reconstructed sig-

nals after ICA. It is clear that after adding the simulated noise, the data become more

abnormal with some visible spikes. These spikes might be mistaken by learning mod-

els for seizure markers what would increase the challenge in detection and prediction.

However, the reconstructed ictal signals as well as the power spectrum comparison

show that ICA is able to separate the added mobility noise from Freiburg Epileptics

data and thus remove misleading markers. It is notable that the reconstructed noise
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Figure 5.5: Processing of in-lab mobility artifacts from Freiburg ictal data and com-

parison of reconstructed signals after ICA implementation

as well as the ictal data is not perfectly similar to their respective original sources as

shown in visual observation. The reason for perfect recovery is that the in-lab gener-

ated noise lacks definite patterns (unlike the simulated noise) what makes it difficult to

select noisy components throughout the implementation of ICA. This was reflected in

the deviation of the power spectrum as well.

5.3.2 Comparison of Noise Types

Simulated noises as well as in-lab generated noise were added to Freiburg epileptic

data. Figure 5.6 we see the difference between the simulated noise and the noise

extracted from the 120 steps/min recorded mobility EEG data, the latter was obtained

by subtracting raw noisy data from reconstructed data. EOG and EMG noise from

physionet were used as simulated noise. The two noise signals have the same size and

same sampling rate (256Hz). In the simulated noise there is a clear variation from

one channel to another. However, in the experimentally recorded noise, there is a

pattern observed in almost all channels. This is mainly because the experimental data

was recorded in a controlled lab setup with predefined speeds. This specific pattern

in the 120 steps/min noise makes it easier to remove the noisy components after the

implementation of ICA while at the same time, irregular patterns in the simulated noise

make it difficult to identify the artifacts. Consequently, this would affect the prediction

and detection capabilities shown.
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Figure 5.6: Comparison of simulated noise with in-lab mobility noise

5.3.3 Signal and Noise Similarity Test

To measure the similarity between reconstructed ictal and original ictal data as well

as mobility noise and reconstructed noise we have estimated the cross correlation as

shown in Figure 5.7. The cross correlation results show a strong correlation between

ictal and reconstructed ictal after ICA as there is a high peak at the origin wile any

shift has a relatively too low correlation. A similar correlation plot for mobility noise

and reconstructed noise was obtained.

Furthermore, the similarity of the reconstructed signals is evident in both time and

frequency domain as shown in Figures 5.8. In this plot, we see that both reconstructed

ictal and noise show similar shape in time domain. On the other hand, ictal and re-

constructed ictal show similar frequency content while reconstructed noise shows a

deviation in frequency content than that of mobility noise (in right plot of Figure 5.8).

One reason for this is that due to the absence of regular patterns in simulated noise, it

is not possible to perfectly separate those noise components.

Finally, different statistical measures were evaluated to see the similarity be-

tween ictal and reconstructed ictal as well as between the mobility noise and the re-

constructed noise. The results are summarized in Table 5.1. The table shows about

76.21% artifact improvement as well as 55.97% coherence improvement between ictal

and reconstructed ictal. For the noise, the table shows around 60% artifact improve-

ment, 99% coherence improvement, and 82% correlation improvement between mo-

bility noise and reconstructed noise. Also, there is a substantial improvement in SNR

and RMSE for both Freiburg EEG data and mobility noise. These statistical test are

important in validating the previous findings recording the reconstruction capability of

ICA.
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reconstructed noise after ICA implementation
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Figure 5.8: Time and frequency domain similarity measure of original and recon-

structed signal after ICA implementation

5.3.4 Statistical N-Gram Analysis
Prior to applying machine learning algorithms for seizure prediction, preliminary com-

parison was performed for the extracted N-gram anomaly ratio (AR) values of our

in-lab generated artifactual EEG data. The comparison included AR values of noisy

and reconstructed data for all ten subjects. The left subplot of Figure 5.9 shows the

cumulative distribution function (CDF) plot of AR values for artifactual and recon-

structed EEG. The plot shows that the reconstructed EEG (dotted line) has lower AR
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Data Type Artifact 
Reduction 

Signal to 
Noise Ratio 
Improvement 

Root Mean 
Square Error 
Improvement 

Power 
Distortion 
Improvement 

Correlation 
Improvement 

Coherence 
Improvement 

Freiburg 
Epileptic 
EEG 

76.21 11.82 18.5 1.12 1.2 55.97 

Simulated 
Noise 

60.63 10.50 44.58 22.83 37.19 99.97 

120 
Steps/min 
EEG noise 

59.33 13.69 60.12 4.82 82.92 99.64 

 

Table 5.1: Performance evaluation of ICA technique for artifact removal from Freiburg

epileptic data

values compared to the noisy EEG (solid line). The right subplot of Figure 5.9 is the

CDF plot for the AR values of the artifactual EEG with added simulated noise and the

reconstructed EEG. In this plot, a clear difference in AR values is observed between

reconstructed EEG (dotted line) noisy EEG (solid line). Reconstructed EEG shows

smaller anomaly ratio values compared to noisy EEG. Another key observation is the

linear increase of AR values with speed. The increase in AR values with the increase

in speed is expected given the fact that the abnormal behavior of signals increase with

speed what results in a lower number of significant patterns.
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Figure 5.9: CDF plots of AR values of noisy EEG and reconsctructed EEG data

AR values for ictal and pre-ictal periods of duration 2-6 min are also extracted

for ten epileptic patients from Freiburg database. Figure 5.10 shows the CDF plots of

the AR values for ictal (blue) and pre-ictal (red) periods of noise-free, noisy and recon-

structed data. It is notable that the AR values for ictal periods are higher than those for

pre-ictal periods for all three types of data sets. However, after adding mobility noise
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Figure 5.10: Comparison of AR values for noisy and noise free Freiburg epileptic EEG

data

or in-lab generated noise, the CDF plots look similar for both ictal and pre-ictal data

what imposes a challenge in the classification process. Finally, after the implementa-

tion of ICA, the difference in AR values between ictal and pre-ictal periods becomes

clearer and thus easier for later classification.

5.4 Epilepsy Detection Results

To investigate the impact of mobility artifacts on epilepsy detection, N-gram features

are extracted for ictal periods and pre-ictal periods from the Freiburg datasets for five

epileptic patients using the same parameters (pattern length, sampling frequency, inter-

val length, weight etc.) as used in [58]. Anomaly ratio (AR) values are calculated for

noise free Freiburg EEG data, noisy Freiburg data (i.e. with added mobility noise), and

reconstructed Freiburg data after ICA. The added mobility noises are either extracted

from 120 steps/min walking EEG or collected from Physionet as simulated mobility

48



noise. Random forest classifier is then trained and tested with different validation and

testing data set.

5.4.1 Hard Separation Results Analysis
To obtain an unbiased learning model, the used dataset was split into 80% for training

and 20% for testing. Ten-fold cross validation was then applied on the training data

to optimize models before testing. The accuracy of the optimized model was then

assessed using test data what resulted highest 100% accuracy, 100% sensitivity and

0% false alarm rate is recorded for noise-free Freiburg epileptic data of patient 300

(p300) among five patients as shown in Table 5.2. After adding noise, the accuracy

drops to 95.63%, the sensitivity to 92.5% and the false alarm rate increases to 1.25%.

These accuracy measures improve upon ICA implementation after which accuracy

increased to 97.5% and the sensitivity increased to 100%. The high accuracy and

high sensitivity in the case of reconstructed Freiburg epileptic data reveal that ICA is

preserving seizure markers of the ictal data while removing any misleading spikes that

arise from mobility noise addition. The findings prove the applicability of ICA in the

scope of seizure detection.

Training 
Data 

Testing 
 Data 

Accuracy Sensitivity False Alarm 

P1 P226 P300 P308 P586 P1 P226 P300 P308 P586 P1 P226 P300 P308 P586 

Noise Free 
80% 

Noise Free 20
% 

90 82.5 100 90 88.02 100 87.5 100 100 90.27 20 22.5 0 20 11.21 

Noise Free 
80% 

Noisy 20% 80 82.5 94.38 73.33 86.07 83.33 85 90 71.43 87.27 22.22 20 2.5 25 11.7 

Noise Free 
80% 

Reconstructed 
20% 

93 84 97.5 100 88.52 100 88 100 100 89.45 13.33 20 3.75 0 10.47 

 

Table 5.2: Detection: hard separation results summary

5.4.2 10 Fold Cross Validation Results Analysis
Ten-fold cross validation makes use of the entire data set rather than splitting it into

training and testing data. In this process, sample data is divided into 10 folds. About

90% of the sample data is picked up randomly for model development and the remain-

ing 10% of the data is used for validation. The process is repeated 10 times so that each

fold of the data is used once for testing. Detailed average results for all five epilep-

tic patients of this approach are tabulated in Table 5.3. For noise free Freiburg data,

88.02% accuracy, 90.27% sensitivity and 11.21% false alarm rate are achieved. After

adding noise, the accuracy reduces to 86.07%, the sensitivity to 87.27% and the false
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alarm rate increase slightly. Upon implementing ICA, improvement is observed for all

three accuracy measures: the accuracy increases to 88.52%, sensitivity to 89.45%, and

the false alarm rate decreases to 10.47%. It is notable that the accuracy measures for

10-fold cross validation are lower than those of hard separation as the former results

are calculated by average accuracies of all ten folds. A fold might have low accuracies

if its ictal and pre-ictal AR values are similar. Nevertheless, the effectiveness of ICA

for the removal of mobility noise from Freiburg data is also proven suitable for the

seizure detection application as it results in standard accuracy levels.

Table 5.3: Detection: ten fold cross validation results summary

Data Type Accuracy Sensitivity False Alarm
Noise Free EEG 88.02 90.27 11.21

Noisy Simulated EEG 86.07 87.27 11.7

Noisy 120 Steps EEG 87.07 88.27 11.59

Recon. Simulated EEG 88.52 89.45 10.47

Recon. 120 Steps EEG 86.07 88.27 12.12

5.4.3 Biased Results Analysis
In the biased case, the model is trained on one type of data (e.g. noise-free EEG) and

tested with different types of data (noise-free, noisy, and reconstructed). In the testing

phase, the test data was divided into 10 chunks and tabulated results are presented for

every chunk. For noise free Freiburg data, average result of 100% accuracy, 100% sen-

sitivity and 0% false alarm rate were recorded for all five patients as shown in Table

5.4. This high accuracy result is expected as the test data is the same as the train data.

After adding mobility noise to the test data, a substantial reduction in performance is

observed, sensitivity becomes 90%, accuracy becomes 94.34% and the false alarm rate

increases to 1.25%. This reduction in accuracy result reveals that the added mobility

noise confuses the classifier with misleading noise spikes and markers. After the im-

plementation of ICA and the effective removal of mobility noise, the accuracy reaches

97.5% and the sensitivity reaches 98.75%. In this case as well, ICA proves capable of

removing added noise while maintaining high accuracy results for seizure detection.

5.4.4 Insights Related to Epilepsy Detection
The three types of validation tests discussed earlier in Section 5.4, a clear general

trend in accuracy measures is observed. Initially the detection result for noise free

Freiburg is high. It falls after adding mobility noise. Results are then improved after

ICA implementation. This observation stresses the applicability of ICA in seizure

detection for moving patients as it removes mobility artifacts while preserving seizure

markers and thus maintaining high detection accuracies.
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Table 5.4: Detection: biased results summary

Train Data Test Data Accuracy Sensitivity False A.
Noise Free EEG Noise Free EEG 100 100 0.0

Noise Free EEG Noisy EEG 94.34 90 1.25

Noise Free EEG Reconstructed EEG 97.5 98.75 3.75

Noisy EEG Noise Free EEG 96.25 98.75 6.25

Noisy EEG Noisy EEG 100 100 0.0

Noisy EEG Reconstructed EEG 96.88 100 1.48

5.5 Epilepsy Prediction Results
While epilepsy detection is considered with correctly identifying the seizure onset by

distinguishing ictal period from pre-ictal time course, epileptic seizure prediction is

concerned with forecasting the onset of a seizure ahead of time without a priori knowl-

edge of the seizure onset. In terms of difficulty, seizure prediction surely imposes

greater challenges for correct classification. For prediction, the classifier must distin-

guish between pre-ictal periods and inter-ictal periods given the high similarity be-

tween the two as seizures do not have gradual variations preceding their onsets. An-

other challenge in this respect is the choice of the prediction offset; that it how early

before a seizure onset shall an alarm be raised. A too long prediction offset would

allow no distinction between pre-ictal and inter-ictal periods while a too short offset

may hamper the patient’s ability to take necessary precautions.

To investigate the impact of mobility artifacts on epilepsy prediction, N-gram fea-

tures were extracted for pre-ictal and inter-ictal periods from the Freiburg datasets

(datasets for patient-300 and patient-586). The same parameters as in [58] were used

(pattern length- [10,8,6,4], sampling frequency-256Hz, interval length-5s, Weight-8

and Window-5 min). Anomaly ratio (AR) values are calculated for noise free Freiburg

EEG data, noisy Freiburg data (i.e. with added mobility noise), and reconstructed

Freiburg data after ICA. In this section, the added mobility noise is either extracted

from the 90 steps/min walking EEG or collected from the simulated mobility noise.

Random forest classifier is then trained and tested with different validation and testing

data sets.

5.5.1 Hard Separation Results Analysis
As in the case of seizure detection, unbiased models were obtained after using 80% of

the data for training and the remaining 20% for testing as shown in Table 5.5. Ten-fold

cross validation is applied on the training data to develop the model and optimize it.

The accuracy of the optimized model was then assessed using test data what resulted in

78.56% accuracy, 90.35% sensitivity and 35% false alarm rate for noise-free Freiburg

data of patient-586. To investigate the reason for the high false alarm rate and the low
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accuracy in prediction, preliminary analysis is performed on the AR values (features)

what showed that these values are almost similar for both pre-ictal and inter-Ictal peri-

ods. Similarity in AR values confuses the classifier in distinguishing between pre-ictal

and inter-ictal feature vectors. Another potential reason for the high false alarm rate

in prediction could be due to hard separation and the variability of types and locations

of seizures in Freiburg epileptic data [41]. This doesnt allow the learning model to be

trained for all types of pre-ictal data due to hard separation. Consequently, while test-

ing, new seizure types or locations would result in feature vectors that do not clearly

correspond to pre-ictal or inter-ictal periods what leads to poor accuracy and high false

alarm rate. The performance of the classifier becomes even worse after adding noise:

the accuracy drops to 69.05%, the sensitivity drops to 71.43%, and the false alarm rate

remains high 33.33%. However, evaluation measures for accuracy and sensitivity still

improve after ICA as shown in Table 5.5: the accuracy reaches 76.19% and the sen-

sitivity reaches 85%. The improvements achieved upon implementing ICA prove the

capability of ICA to successfully remove added mobility noise from Freiburg epileptic

data while maintaining standard accuracy and sensitivity results with an explainable

false alarm rate.

Table 5.5: Prediction: hard separation results summary

Train Data Test Data Accuracy Sensitivity False A.
Noise Free 80% Noise Free 20% 78.56 90.48 35

Noise Free 80% Noisy 20% 55 75 65

Noise Free 80% Reconstructed 20% 78.56 90.48 33.33

Noisy 80% Noise Free 20% 69.05 71.43 33.33

Noisy 80% Noisy 20% 70 90 28.57

Noisy 80% Reconstructed 20% 76.19 85.71 28.56

5.5.2 10 Fold Cross Validation Results Analysis
Ten-fold cross validation makes use of the entire data set rather than splitting it into

training and testing data. In this process, sample data is divided into 10 folds. About

90% of the sample data is picked up randomly for model development and the re-

maining 10% of the data is used for validation. The process is repeated 10 times so

that each fold of the data is used once for testing. Detailed results of this approach

are tabulated in Table 5.6. The obtained results for noise-free Freiburg data (patient-

586) are as follows: an accuracy of 87.43%, a sensitivity of 81.73%, and a false alarm

rate of 7.40% . After adding noise, the accuracy decreases to 81.19%, the sensitivity

decreases to 77.91%, and the false alarm rate is doubled 15.32%. Upon the imple-

mentation of ICA, the accuracy improves to 84.64%, the sensitivity reaches 83%, and

the false alarm rate is reduced to 13.90%. Improved accuracy, sensitivity, and false

alarm rate results were obtained in this testing case as compared to the case of hard
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separation. More importantly, the results are consistent in terms of emphasizing the

applicability of ICA epileptic seizure prediction for moving patients.

Table 5.6: Prediction: ten fold cross validation results summary

Data Type Accuracy Sensitivity False Alarm
Noise Free EEG 87.43 81.73 7.40

Noisy Simulated EEG 85.55 83.09 12.82

Noisy 120 Steps EEG 81.19 77.91 15.32

Recon. Simulated EEG 80.22 73.28 14.29

Recon. 120 Steps EEG 84.64 83.0 13.90

5.5.3 Biased Results Analysis
In the biased case, the learning model is trained using one data type and tested using

the others as outlined in sub-section 5.4.1. For noise free Freiburg data, 100% accu-

racy, 100% sensitivity and 0% false alarm rate are recorded for both patient-300 and

patient-586 as it is a control case. After adding mobility noise to the test data, a sub-

stantial reduction in performance is observed: the sensitivity is reduced to 86.56%, the

accuracy is reduced to 86.87%, and the false alarm increases to 13.55%. After imple-

menting ICA, the accuracy increases to 95.63%, the sensitivity increases to 97.5%, and

the false alarm rate reduces to 6.25%. Therefore, this further stresses the advantage of

using ICA in seizure prediction for moving patients.

Table 5.7: Prediction: biased results summary

Train Data Test Data Accuracy Sensitivity False A.
Noise Free EEG Noise Free EEG 100 100 0.0

Noise Free EEG Noisy EEG 86.56 86.87 13.75

Noise Free EEG Reconstructed EEG 88.44 87.15 10

Noisy EEG Noise Free EEG 79.68 84.38 25

Noisy EEG Noisy EEG 100 100 0.0

Noisy EEG Reconstructed EEG 95.63 97.5 6.25

5.5.4 Insights Related to Epilepsy Prediction
Based on the discussed three types of validation tests, an improvement in performance

metrics was clearly evident upon the implementation of ICA. Initially the prediction

accuracy for noise-free Freiburg is high. This is expected since in the absence of noise,

AR values of pre-ictal and inter-ictal data are distinguishable. However, after adding

mobility noise, AR values for both pre-ictal and inter-ictal periods appear similar (this

was evident in the CDP plots of Section 5.3) what was reflected in the poor accuracy
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and sensitivity results and the high false alarm rate. Upon implementing ICA and

removing the artifact components, the difference in AR values reappears between pre-

ictal and inter-ictal periods what improved all three prediction performance metrics.

The overall findings of this section prove that ICA is capable of removing mobility

noise from epileptic data while maintaining a prediction accuracy similar to that of

the noise-free EEG data. This would help in developing epileptic seizure prediction

systems for patients who are involved in daily life activities.

5.6 Model Validation: Student t-test
To assess the results of detection and prediction for the biased and unbiased cases, the

student t-test is performed based on the hypothesis that both biased results (accuracy,

sensitivity and false alarm) and unbiased results are similar. This test compares the t-

value, calculated in equation 5.5, for the sample distribution (accuracy in our case) with

the reference distribution table of the t-value. If the calculated t-value is greater than

the t-value of the table with a certain degree of tolerance and with a certain probability

(e.g. probability 5%), then we can reject our null hypothesis that two results (biased

and unbiased) are different from each other with a certain confidence level (95% for

the given example). The t-value is calculated using equation 5.5.

t =
x̄1 − x̄2√
s21
n1

+
s22
n2

(5.5)

where x̄1 is mean of the accuracy for biased result,x̄2 is mean of the accuracy for

unbiased result, s1 is the standard deviation of accuracy result for biased case, s2 is

the standard deviation of accuracy result for unbiased case, n1 and n2 are number of

values in biased and unbiased result respectively. x̄1 is the mean of the accuracies

in the biased case, x̄2 is the mean of the accuracies in the unbiased case, s1 is the

standard deviation of accuracies in the biased case, s2 is the standard deviation of

accuracies in the unbiased case, and n1 and n2 correspond respectively to the number

of accuracy evaluations in biased and unbiased cases. Comparing this value to values

Table 5.8: Student t-test results model validation
Model t-value(calculated) t-value(from table)
Hard Separation Vs Biased 1.988 1.671

Hard Separation Vs 10 Fold 2.100 1.671

10 Fold Vs Biased 2.109 1.671

in the t-distribution table [60] for a degree of freedom of 60 (sample value), the t-

value is 1.671 with 90% confidence level. Since the calculated t-value is greater than

table value, the null hypothesis can be rejected. Accordingly, the biased and unbiased

models accuracy results are indeed different with a 90% confidence level. That is, there

54



is only a 10% chance for both biased and unbiased model to be same. Similarly, the

t-test for the biased versus ten-fold and the ten-fold versus unbiased cases resulted in

a similar conclusion. This statistical test proves that the biased results are statistically

different from the unbiased results of 10-fold cross validation and hard separation.

5.7 Summary
This chapter we have investigates the impact of mobility artifacts on epileptic seizure

prediction and detection. First, the signal reconstruction capability of the ICA algo-

rithm is assessed what proved that ICA can successfully separate our added mobility

noise from pure brain EEG data. This was validated using time and frequency domain

characteristics as well as statistical similarity measures. After that, the effect of mobil-

ity noise on detection and prediction is analyzed extensively on Freiburg epileptic data.

This shows that adding mobility noise results in a decrease of prediction and detection

accuracies. Finally, the model based on reconstructed EEG signals from ICA is tested

and it shows improved accuracy results. In conclusion, this chapter proves that ICA is

capable of separating the in-lab recorded mobility noise as well as the simulated mo-

bility noise from artifactual epileptic EEG data while preserving seizure markers and

removing misleading spikes what consequently leads to improved accuracy results for

both detection and prediction.
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Chapter 6

Conclusion and Future Work

The work in this thesis was focused upon three major lines. First, physical mobility

EEG data with different predefined speeds of walking was acquired in a controlled

lab environment and then extensively analyzed in time and frequency domains. For

this purpose, a total of 180 mobility EEG data sets with duration of 500 minutes were

recorded from ten healthy subjects. Based on data analysis, the following conclusions

were derived: Relaxed EEG and mobility artifactual EEG are indeed different what

was manifested in significant differences of their respective time and frequency do-

main properties, and a positive correlation between the power level (mainly for the

delta band) and the speed of mobility was evident for all subject cases.

Second, the performance of a well-known versatile signal processing technique, ICA

was assessed for our in-lab recorded mobility noise and for the simulated noise. ICA

was adopted as an artifact removal technique for the flexibility of its application and

its superiority against other alternatives within the context of the thesis application.

Filtering requires reference artifacts signal and PCA assumes that the artifacts and the

source signal are orthogonal and Gaussian which does not hold in the case of mobility

artifact and brain EEG signals. Since mobility artifacts and brain EEG signals are in-

dependent and nearly non-Gaussian, the required assumptions for ICA were met and

thus it was the most suitable technique. Throughout the study, mobility artifactual EEG

data have been processed by the infomax ICA algorithm from EEGLAB a signal pro-

cessing toolbox in MATLAB. The reconstruction of brain EEG and mobility noise was

then extensively analyzed using different signal regeneration evaluation metrics what

helped assess the separation capability of ICA. The reconstructed EEG signal and the

separated noise showed similar patterns and properties in the time and the frequency

content to those of the original EEG signal and the added noise respectively. Also in

terms of statistical measures, the reconstructed signals showed high correlation and

coherence with the original ones. This proved the effectiveness of ICA in separating

mobility artifacts from pure EEG brain activity.

Third, the challenge imposed by the mobility artifacts was considered in the context of
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advanced neurological applications such as epileptic seizure prediction and detection.

A thorough investigation for the impact of mobility artifacts on epileptic seizure pre-

diction and detection was performed using both a signal processing and a data driven

approach to discover any effect, if any, on prediction or detection accuracies. The ef-

fectiveness of ICA in eliminating mobility noise, both recorded and simulated, while

preserving EEG signal properties and seizure markers was as well rigorously ana-

lyzed. For comparison purposes, such analysis was done for noise free Freiburg EEG

data, noisy EEG data, and reconstructed epileptic data following the approach of pre-

processing, feature extraction, training learning models, and classification of unlabeled

EEG segments.

In term of results, a substantial artifact reduction capability was evident with an im-

proved coherence between the original noise-free EEG signals and the reconstructed

EEG signals. Improvement in SNR and RMSE was also substantial for the recon-

structed signals. These statistical measures validated the previous findings that showed

observable similarity between the noise-free and the reconstructed EEG signals in both

time and frequency domains. For the evaluation of the epileptic seizure detection capa-

bility, three testing scenarios were investigated: biased, hard separation and ten folds

division. For the three scenarios, a similar trend in accuracies was observed. The

detection accuracy was initially high for noise-free data. It decreased for data con-

taminated mobility noise. Then it was improved after ICA implementation for the

reconstructed EEG data. For epileptic seizure prediction, a similar approach was fol-

lowed for evaluation. The trend in variation of accuracy was the same as that in the

detection case: high for the noise-free case, lower for the noisy case, and improved for

the reconstructed case. Overall, the high detection result and the standard prediction

results were comparable to literature for reconstructed Freiburg epileptic EEG data.

These observations led to the conclusion that ICA is capable of removing mobility

noise from EEG data while preserving seizure related features and markers. Findings

were unique in the scope of analyzing the effect of motion artifacts in seizure detection

and prediction applications.

Future work in this area would make use of the evident correlation between mobility

speed pattern and the different time, frequency and statistical features of the mobility

artifactual EEG data for EEG data modeling as well as mobility noise modeling. Given

that visual inspection of the noisy components was required to separate them from

pure EEG data, future work can be done on the automation of the process by assigning

some well-chosen data driven threshold values to separate noise from pure EEG. High

detection results for reconstructed Freiburg data give hope that future epilepsy detec-

tion systems can be developed for real time monitoring. On the other hand, standard

accuracy results for epileptic seizure prediction give an insight for future research in

the field. Moreover, high false alarm rates for the hard separation testing case trig-

gers curiosity to further investigate the impact of seizure types and their localization

on epileptic seizure detection and prediction results. As for learning techniques, only
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ensemble methods for classification were investigated, so other techniques like deep

learning can also be investigated.
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Appendix A

Abbreviations

AR Anomaly Ratio

BSS Blind Source Separation

CCA Canonical Correlation Analysis

CDF Cummulative Distribution Function

CT Computed Tomography

DSI Dry Sensor Interface

ECG Electrocardiogram

EEG Electroencephalography

EMG Electromyography

EOK Electrooculography

FN Flase Negative

FP Flase Positive

HMM Hidden Markov Model

ICA Independent Component Analysis

IMF Intrinsic mode function

Infomax Information Maximization

MLP Multi-channel Linear Prediction

MRI Magnetic Resonance Imaging

OA Ocular Artifacts

PCA Principle Component Analysis

PSD Power Spectral Density

RMSE Root Mean Square Error

SNR signal to noise ratio

TP True Positive

TN True Negative
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