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AN ABSTRACT OF THE THESIS OF 

 
 
 
Ahmad El Basiouni El Masri    for Master of Engineering  

Major: Electrical and Computer Engineering 
 
 
 
Title: Automotive safety integration using Drunk driving Behavior Detection and multi-factor authentication  
 
 

With the emergence of the self-driving cars, and the expansion of the electronic controls of the 
modern vehicle, there exist a need for better security measures and self-policing capabilities. Considering 
the emerging use of 3rd party wireless connected car dongles, we explored building a prototype to expand 
upon the existing solution’s safety and security features.  

 
First, we investigated several approaches to connect our prototype to the car’s CAN Bus interface. 

Using messages collected from the car’s OBD-II port, it detects the signals: Ignition, location, trip start, trip 
end, and car shutdown. It also collects several can bus signals like speed, rpm, engine load, throttle and 
other OBD-II PIDs (Parameter IDs) . Using these signals and telematics, we can have second factor 
authentication/notification systems for the important events. These events may include unauthorized car 
start, unauthorized route, abnormal driving behavior like drunk and intoxicated driving, out of bounds, and 
any other odd behavior. The acknowledgement or decline of these events may be handled differently 
according to severity. For example, an un-authorized ignition may not allow the car to start, while a minor 
intoxicated behavior detection may send a notification to the loved ones, and a major detection of an 
intoxicated driver may lead the car to gradually stop and notify the authorities. To achieve this, the 
prototype utilizes an existing solution, ‘Acceptto’, that offers second-factor authentication capabilities.  

 
For the rest of the thesis, we propose a method to detect drunk driving patterns using only basic car 

sensors, available through off the shelf OBD-II dongles. The sensor data include standard On-Board 
Diagnostic sensor information along with an accelerometer sensor and GPS coordinates which are provided 
by the dongle. We collect the information through drive tests of normal driving behavior and controlled 
drunk driving behavior. The controlled driving emulation reflects the most common cues relating to drunk 
driving. After datasets are collected, a window-based approached was used for data smoothing and feature 
extraction. Finally, our approach makes use of a machine learning algorithm (Logistic Regression) for 
classification to achieve an accuracy of 82%.  
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CHAPTER 1 

INTRODUCTION 

1.1 MOTIVATION 

In a recent study by Gartner in [20], it is estimated that by 2020, there will be around 

a quarter billion connected vehicles on the road, introducing the IoV (Internet of Vehicles) as 

a major player in the world of IoT. Gartner predicts that the Internet of connecting things will 

reach about 25 billion by 2020. This rapid increase in the market of connected vehicles 

requires more research in the field of driving telematics. As IoT is connecting our daily used 

objects and getting valuable telematics, it is time for automotive applications to get into the 

field. Although there is already many driving analytics solutions ranging from predictive 

maintenance, driving assistance, safety oriented behavioral analysis, and energy efficiency 

applications, most of these solutions are proprietary. Furthermore, few solutions take full 

advantage of the vehicle’s internal sensor network and the richness of telematics offered by 

the CAN bus. Nevertheless, we can utilize driver behavior models with the data inferred from 

the car’s OBD-II to open the way for more complex intelligent automotive applications. 

With the emergence of many solutions for connected cars, much less attention is 

given for safety and security. While there exist many products such as Vinli, Zubie, 

automatic and HUM, they don’t provide solid security options to prevent car theft or hackers 

access to the car’s internal CAN bus system. Furthermore, these solutions provide access to 

several telematics such as car’s speed, location, throttle, engine load and other sensors. 

However, there are only few proprietary products that investigate the wealth of data collected 

from the Car’s OBD-II port. This thesis presents a security measure using Acceptto’s 

patented solution for cognitive authentication for the car’s different events like ignition, out 

of area, theft possibility, intoxication, etc. We also propose a method to detect drunk driving 

patterns using only basic car sensors, available through off the shelf OBD-II dongles.  
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The rest of the chapter includes an overview of OBD-II PIDs (Parameter IDs), an 

introduction to Acceptto Technology, and an overview to the drunk driving behavior we can 

capture using our method. 

1.2 BACKGROUND 

The project we are going to present involves three parts 

 Prototype 

 Acceptto Integration 

 Drunk Driving Analytics 

The prototype utilizes an Udoo board [21]. Udoo is an open source, open 

hardware Arduino-powered Android / Linux Mini PC. It composes an Arduino functionality 

to connect to the car’s CAN bus, and a powerful ARM processor for heavy analytics 

processing capabilities. The board is shown in figure 1, and will be used for collecting the 

telematics and events from the car’s OBD-II port, and make minor preprocessing of the data, 

and send these telematics to a back-end server. The server will run an anomaly detection 

algorithm (in our case Drunk driving behavior detection), and it will communicate with the 

board for further actions/notifications.  
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Figure 1: Udoo Quad Board 

 

1.2.1 Connected Cars 

It looks extremely exciting to imagine a world where we can control almost 

everything from a smartphone, and almost everything feeds you back status details regarding 

its surroundings. Imagine a world where you can connect everything around you and make it 

take smart decisions as a cooperative ecosystem. This is what we are emerging into with the 

evolution of wireless sensor networks, embedded systems and actuators that can be 

manifested into numerous smart applications. The IoT creates an intelligent interconnected 

network that can be controlled and programmed. IoT-enabled devices utilize embedded 

technology that allows them to collect and exchange data, and communicate, directly or 

indirectly, with each other or the Internet [22]. 
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These advances in the internet of things (IoT) and cloud computing as well have 

provided a great opportunity to resolve the challenges in a variety of applications. One of 

these applications is the automotive industry, where the concept of connected cars is being 

introduced.  

There are several projects ongoing in an attempt to standardize the connected car and 

the interconnection with the IoT. On January 6, 2014, Google announced the formation of the 

Open Automotive Alliance (OAA) a global alliance of technology and auto industry leaders 

devoted to bringing the Android platform to cars [24]. The Alliance includes now more than 

40 automotive manufacturers. Also, there have been recent works on standards released by 

ETSI within the Technical Committee on Intelligent Transportation Systems, especially ones 

related to CAM (Cooperative Awareness Messages). As an example of the awareness from 

the Automotive manufacturers to the business value of automotive IoT, Volvo has built an 

Apple Watch version of its On Call connected car platform, which provides safety and 

location services along with other intelligent services [23]. The Volvo app became available 

at the end of June 2015, needless to say, that other automotive manufacturers will follow 

soon with similar products and apps. 

1.2.2 OBD-II and CAN Bus 

OBD-II (on Board diagnostics) refers to the car’s self-diagnostic capabilities. Through 

the OBD-II port, we can gain access to the status of the various car’s subsystems. OBD-II is 

an improvement over OBD-I. The standard specifies the type of the port connector and 

pinout, the signaling protocols associated, and the messaging format. We can obtain sensor 

data and diagnostic information from the electronic control unit (ECE) through the OBD-II 

port. Thus, we can consider the OBD as a sensory network that provides standard interfaces 

to collect and analyze the internal engine sensors.  

To obtain these sensor information from the OBD-II port, we had several options to 

explore:  

 A CAN transceiver module. The CAN module will only be used as a 

transceiver to connect to the OBD-II Port. The actual communication with the 
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OBD-II port and collection/storage of data will be performed through a 

process on the Linux Board.  

 3rd party OBD-II modules: There exist a lot of 3rd party OBD modules, in 

which most communicate through Bluetooth. We have to support the 

connection to the most common OBD-II modules individually. These modules 

include a module called OpenXC, which is an open source hardware/software 

solution supported by Ford Motors to provide additional OBD-II PIDs specific 

to Ford cars. 

 Vinli, or similar products like Zubie or Automatic: Vinli has an LTE 

connection, at a sampling speed of 1 sec. If there is an internet connection 

problems, messages are buffered, and then retransmitted to the server.  

Below in Table 1 we have a list of some of the OBD PIDs (parameter IDs) that can 

help us with our driving behavior analysis. 

  

Key Description 

S Standard PID 

OXC Open XC Standard for Ford Cars 

OBD-II 
PIDs  

On-board diagnostics Parameter 
IDs 

 
Official Signals 

PID 
Type 

Possible 
use in 
Drunk 
driving 

detection 

Possible use 
in Aggressive 

driving 
detection 

Possible use 
in Sleepy 
driving 

detection 

steering_wheel_angle OXC Y Y Y 

torque_at_transmission S Y Y Minor 

engine_speed S Y Y Minor 

vehicle_speed S Y Y Minor 

accelerator_pedal_position S Y Y No 

parking_brake_status OXC Minor No Minor 

brake_pedal_status OXC Y Y Minor 

transmission_gear_position OXC Minor No No 

gear_lever_position OXC Minor No No 

odometer OXC Minor No Minor 

ignition_status OXC No No No 

fuel_level S Minor No Minor 

fuel_consumed_since_restart OXC No Minor No 

door_status OXC Minor No Minor 



 6 

headlamp_status OXC Minor No No 

high_beam_status OXC Minor Not Sure Minor 

windshield_wiper_status OXC Minor Minor Minor 

latitude OXC Biased No No 

longitude OXC Biased No No 

Absolute load value S No Y No 

Absolute throttle position 
B,C,D,E,F 

S No Minor No 

Calculated engine load value S No Minor No 

Commanded throttle actuator S No Minor No 

Engine fuel rate S No Minor No 

Relative throttle position S No Minor No 

Throttle position S No Minor No 

Engine run time S No No Minor 

Ambient air temperature S No No No 

Vehicle identification number 
(VIN) 

S No No No 

Sum 0 18 16 12 

Table 1: OBD-II PIDs List 

1.2.3 Acceptto Cognitive Authentication 

Two-factor or multi-factor authentication ensures that entities at the other end of the 

communication channel are indeed what it claims to be; i.e. provide two or more independent 

pieces of information as means of authentication such as  

 Something they know (e.g. password, PIN, pattern).  

 Something they have (e.g. smart card, key fob, mobile phone) 

 Something they are (e.g. biometric such as fingerprint, facial or voice 

recognition) 

 Some unique contextual data associated with the user (e.g. location, known 

device token, known network, etc.) 

It is important to note that not only the number of factors involved affects reliability, 

but also independence of these factors. The more correctly implemented independent factors 

we use, the higher probabilities that the entity claiming the identity is indeed the owner of the 
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identity. However, convenience is also a factor to be considered, and a security solution has 

to consider a tradeoff between security and an acceptable level of usability.  

 The strength of Multi-Factor Authentication lies on the assumption that if an 

entity has several authentication factors, then compromising all these independent factors 

seem far-fetched and much harder for the attacker to penetrate. Nowadays, many companies, 

including Google, Facebook, Twitter and Apple are now offering their users optional two-

factor authentication mechanisms based on OTPs (one-time passwords that are valid for only 

one login session or transaction).  

The solution we are going to use for our project is from a startup called Acceptto. 

Their product eGuardian is a two-factor authentication solution provider [25]. As seen in 

figure 2 below, Acceptto Adds a second factor authentication based on personal smartphone 

pairing. The smartphone is paired with your account and identity; when you Connect to a 

system and proceed with the initial authentication, the system will attempt to authenticate 

with the Acceptto’s API. Acceptto server will then authenticate your information, and send a 

notification to the smartphone paired with your account. After you receive the notification, 

you can give the authorization, deny it or ignore it, as ignoring the notification will render the 

request unauthorized [25]. 

 

 

Figure 2: Acceptto concept 
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Below is a simple illustration of a login transaction using Acceptto’s second-factor 

Authentication: 

 

Figure 3 Acceptto Authentication process 

After a user login/perform a transaction that needs authentication, the application tries 

to authenticate as usual. The backend application that has Acceptto integration, will send a 

request to Acceptto servers indicating an authentication request. Then Acceptto will send a 

request to the smartphone associated with the device via a mobile App notification. After the 

user confirms the transaction by accepting or rejecting the notification, Acceptto servers are 

notified and informs the backend server of the successful authentication status. Afterwards, 

the backend either authorize the user or deny access according to the reply from Acceptto. By 

default, Acceptto rejects authorization after a preset time limit indicated by the backend 

server where there is no reply from the smartphone user.  

1.2.4 Drunk Driving Statistics 

For the last 2 decades, the percentage of automotive crashes fatalities resulting 

from drunk driving remained relatively unchanged, averaging around 29 to 32 percent of 

total car accidents fatalities [1]. Around 10,000 to 13,000 drunk driving related deaths 
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occurred per year during this period. These numbers indicate the need for better methods 

of drunk driving behavior detection. The main detection method used so far rely on visual 

observations made by police officers. Alcohol-impaired drivers tend to have certain 

behavior while driving that can be visually detected. Accordingly, the United States 

National Highway Traffic Safety Administration (NHTSA) has conducted several 

research studies to provide the law enforcement officers with scientifically validated 

information that help predict the behavior of impaired or intoxicated drivers. Their study 

[11] has identified the main drunk driving behavior cues, which are divided into four 

categories:  

1. Problems Maintaining Proper Lane Position  

 Weaving 

 Straddling a lane line 

 Swerving 

 Turning with a wide radius 

2. Speed and Braking Problems  

 Stopping problems  

 Accelerating or decelerating for no apparent reason 

 Varying speed 

 Slow speed  

3. Vigilance Problems  

 Driving in opposing lanes or wrong way on one-way 

 Slow response to traffic signals 

 Slow or failure to respond to officer’s signals 

 Stopping in lane for no apparent reason 

 Driving without headlights at night 

 Failure to signal or signal inconsistent with action 

4. Judgment Problems p=.35–.90 

 Following too closely 

 Improper or unsafe lane change 



 10 

 Illegal or improper turn  

 Driving on other than the designated roadway 

 Stopping inappropriately in response to officer 

 Inappropriate or unusual behavior (throwing, arguing, etc.) 

 Appearing to be impaired 

We will use some of these cues (Mainly Categories 1 and 2) as our main patterns 

for drunk driving detection. According to [11], the more cues detected simultaneously, the 

more probability of drunk driving. For example, if we detect the driver to be weaving, the 

probability of the driver being intoxicated is around 50%. If we detect a combination of 

weaving, and acceleration problems, the probability of intoxication rises to around to-70%. 

For testing purposes, we emulate behaviors falling mainly in the first two categories in 

order to generate corresponding cues that we measure through the various sensors in the 

car using the OBD (onboard diagnostic) interface.  

1.3 THESIS CONTRIBUTION AND ORGANIZATION  

This opens the door for the opportunity to  develop a low cost prototype utilizing 

off the shelf open source hardware and software, to connect existing Cars to the IoT. 

Furthermore, we are going to harness the diversity of telematics offered by the Car’s 

CAN bus to provide advanced driving behavior telematics. We are going in particular, to 

explore utilizing car’s analytics for increasing energy and fuel efficiency, while also 

detecting and mitigating any driver’s or driving risky behavior. If time allows, we are 

going to investigate combining telematics from the CAN bus and from smartphones 

allowing for more complex behavioral analysis for potential driver’s risky behavior. From 

the security perspective, although we are targeting mainly non safety-critical applications, 

our solution will also incorporate a security function offered by a startup called 

‘Acceptto’ for multi-factor authentication using smartphones. 

The thesis is organized as follows:  

Chapter Two: Methods to Determine SRAM Stability 

 Various stability measures used to determine SRAM stability are presented with the 

available graphical, analytical and statistical methods of retrieving them. 
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Chapter Three: The DRV Computing Circuit 

 The proposed test circuit, the DRV Computing Circuit, is presented. 

 Each of its building blocks is described with the theory behind it and the different 

approaches to implement it.  

Chapter Four: Conclusion and Future Work 

 This chapter concludes my work and presents the opportunity to expand on this work 

in the future. 
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CHAPTER 2 

BUILDING THE PROTOTYPE 

In this chapter, an overview of the measures used to determine SRAM stability is 

presented along with the techniques – graphical, analytical and statistical – introduced in the 

literature to derive these measures. The first section introduces the stability measures, their 

significance and the graphical approaches used to derive them. In the second and third 

sections, the analytical and statistical techniques are discussed along with their advantages 

and disadvantages. The fourth section concludes the chapter by motivating the introduction of 

the DRV Computing Circuit. 

2.1 LITERATURE REVIEW 

There was extensive research regarding Car’s sensor network and the on-board 

vehicle computer system. Nowadays, OBD-II and CANbus protocol are the norms for the 

access to the various vehicle subsystems. In a recent paper [27], they investigated the use of 

smartphones sensors for automotive analytics vs the sensors from the OBD sensory network.  

They categorized the development in the products relating to driving analytics into 

two distinct classes based on how the data is sourced, first based on using the on-board 

diagnostic(OBD) devices, and second relying only on smartphones. The main questions they 

asked [27] was the ability of the smartphone to be an effective substitute for the OBD. They 

explored the ability of the smartphones to accurately measure the vehicle’s speed, more 

specifically the instantaneous speed and whether it can come close to the OBD understanding 

of the vehicle’s motion patterns such as turns, sudden stops, and a crowdsourced trend of car 

driving behavior (start/stop/decelerate/max speed, etc). Also, they claimed that smartphones 

are superior to the OBD in sensing the driver’s personal behavior.  

They found that smartphones can offer very reliable sensor data such as speed, user 

location, and others that came very similar to OBD data in terms of accuracy. The claim that 

with further sophistication and advancement in sensor fusion and machine learning 

technologies, a new range of applications would arise like enable detection of risky driving 
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behavior, such as hard braking, aggressive acceleration, road accidents and many others. 

Even though no single smartphone sensor can directly estimate speed like the OBD, they can 

together collect information from various sources to achieve a 96% similarity to OBD. This 

was achieved through understanding when a car stops and turns from accelerometers and 

compasses, utilizing crowd-sourced data from the roads, analyzing the driving pattern logs, 

etc. At the end of the paper, they didn’t get to a conclusion to whether one system (OBD or 

smartphones) is best for driving analytics. However. They showed that smartphones, through 

many data that can be collected, can provide accurate readings.  

From our side, we believe that to a wider range of applications and scenarios than 

what was explored in the paper, a hybrid solution that gets benefits from both smartphones 

and OBD can be orchestrated.  

Another interesting finding we found during the research, that although driver 

behavior analytics range to diverse applications and possible directions, the current 

concentration in research and products tends to target road safety and accident avoidance. 

Driver distraction represents an increasingly prime contributor to crashes and fatalities. Many 

research papers investigate the Technology that can detect and assuage distraction by alerting 

the distracted drivers [28]. They showed that even for a week eye-steering relationship, their 

algorithm was able to produce metrics that can indicate distraction.  

In this work [26], a system integrating the in-vehicle CAN/OBD network and an IoT 

network of wireless devices with an Intelligent Transport System deployed following the 

standards released by ETSI (European Telecommunications Standards Institute) within the 

Technical Committee on intelligent transportation system was presented. They made use of 

the Cooperative Awareness Message (CAM) to implement periodic transmission for 

vehicular communication. They have implemented the full stack from Physical and MAC 

layers (i.e. IEEE802. 11p standard) to the Networking & Transport Layer supporting 

Geonetworking and IP communications. They have also advised a model for the sensor IoT 

network for which they implemented an IEEE802. 15. 4 network with IPv6 interoperability. 

The target of the research was to find a standardized prototype bridge to enable VANETs 
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(Vehicular ad hoc Network) to communicate with the IoT network they advised in the Car’s 

added sensor network.  

 They discussed the current lack of standardization in the automotive IoT and 

the efforts for considering IPv6 over Low power Wireless Personal Area Networks 

(6LoWPAN) as a platform for the IoT of an automotive sensor network in non safety-critical 

applications.  

 They used a Beaglebone Black board commonly used as a DIY development board. 

They have demonstrated that starting with off the shelf, low cost hardware and software, a 

bridge between the IoT to the CAN and VANET network was orchestrated, and they believe 

that it will compete with proprietary applications that use silo-style solutions.  

Our project will build on this effort but with a different approach. We will not use 

M2M messages and VANET networks, as we will build a system that connects directly to the 

cloud for any intelligent decision or communication. 

2.2 METHOD 

The target of this research is to develop a product which can compete in the 

“Connected Car” market. This product will have to be modular. It should easily integrates to 

already available solutions to offer extra functions and features. 

2.2.1 Big Picture 

We have designed and tested two cases, in which we will explain later in more details. 

However, the overall architecture remains the same and only few changes are applied. Figure 

4 displays the high level design of the solution. 
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Figure 4: The high level Design 

 

 For our first prototype, we didn’t have a 3rd party OBD Dongle. Instead, we used a 

CAN-Bus transceiver module. In this case, Arduino part of the Udoo board will connect to 

the transceiver module which will only be used as a transceiver to connect to the OBD-II 

Port. The actual communication with the OBD-II port and collection/storage of data will be 

performed through a process on the Udoo board/Raspberry PI. Initial Processing of the CAN 

data will collect only the desired info and will be sent to the server every preset duration (1 

sec). The data will be buffered if there is a problem with the internet connection. The server 

will collect and display live data as simple analytics. Advanced analytics will be further 

performed on the data in the backend. Decision Engine will analyze the results and will 

communicate with Acceptto server or raspberry pi accordingly. Raspberry PI/Udoo Module 

will decide if the pattern recognized require a local decision without the need of a notification 

to the backend server. The Car Context will be determined as a collection of OBD data and 

other external sensors.  
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For our analytics collection, we used Vinli. Vinli has an LTE connection, at a 

sampling speed of 1 sec. If there is an internet connection problems, messages are buffered, 

and then retransmitted to the server. We are currently connecting to the Vinli server to 

retrieve the info via their rest API, and we have successfully created a demo that detects that 

the car’s ignition, speed and stop. We are detecting some delay in receiving the info (around 

10-20 secs) from Vinli server due to LTE connection issues. 

The Raspberry PI/Udoo will act as a central processor. The OBD-II module and other 

external sensors will connect to the central module through different interfaces. Our CAN 

Bus module will connect directly through a cable. As for Vinli, we have retrieved the data 

through a REST API on Vinli server to our back-end server.  

 

2.2.2 Components 

We are going to design a prototype to bridge the connected car to the Cloud of IoT 

network. The product would engage simple CAN data handling before sending the useful 

data to the cloud for smart analysis. We have used a very well-known open source 

prototyping board called UDOO. This board combines the power of several Raspberry Pi 

boards and an Arduino board. It already has wifi connectivity, and we added Bluetooth and 

3G connectivity via external modules. The below figure represents an overview of our system 

structure.  
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 Figure 5: Overview of the System collecting OBD-II telematics 

Our system comprises three main parts: 

 Main Processing board: This board will be connected to the CAN bus through car’s 

OBD port and be responsible for 

o Collection of car’s sensor data 

o Sending control commands to the Car (through relays) 

o Performing minor driving analytics if needed 

o Connecting to the Backend-server 

 Backend Server 

o Communication with Acceptto APIs 

o Performing intoxicated driving behavior analytics 
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Below is a List of components used in our main demo: 

 

Part Number Description Usage 

2691 FONA 3G CELLULAR BREAKOUT 3G Module provides 3G connectivity to the Udoo or 
Arduino Board 

UDOO QUAD UDOO QUAD CORE SBC 
OPENSOURCE 

Main Processing board 

UDOO-SK-EU KIT STARTER EU Cables and power supply kit for UDOO 

1991 SLIM STICKERTYPE GSM/CELLULAR 
Q 

Antenna for 3G module 

BLED112V1 RF TXRX MOD BLUETOOTH TRACE 
ANT 

Bluetooth BLE mini USB 

CAB10087 OBDII TO DB9 CABLE 10087 Cable to connect to the CANbus 

ToggleBits Arduino DUE CANShield Provides CAN bus transceiver shield for the Arduino 
DUE board  

 

2.2.3 Acceptto Integration  

For the Second factor/Cognitive authentication, we used Acceptto solution. Acceptto 

provides APIs to use its MFA solutions. The process is as follows: 

 An Authentication request is issued from the Udoo Board to the Acceptto 

Server carrying  

 application ID 

 application secret 

 Message to me displayed: For example: “Car Just started, Is it you?” 

 user email 

 Authentication mode: e.g. login, car movement, boundary application, 

etc. 

 timeout: (Optional) How much time to wait while there is no response 

from the user before rejecting the  authentication request 

 Authentication type (Optional): push notification, text or voice call. 

Push is default. 
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 Risk Profile (Optional): From low, medium and high. For example, 

high risk profile only accepts biometric authentication. 

 The application (Udoo or back-end server) receives the request ID and keep 

polling for the status of the request. 

 When the authentication type is push, the user either accepts or rejects the 

message received. Acceptto server then changes the status of the 

authentication request. 

 The application (Udoo board or back-end server) polls for the status change 

for the duration of timeout-period. If status is changed, then according to the 

status, it performs actions accordingly. 

For the integration, there exist a connection with Acceptto at both the 

Udoo/Raspberry PI board, and the back-end server. For the simple commands/action requests 

like car start/stop, speed limit, etc the Linux board directly send an authentication request to 

the Acceptto server. For any action related to advanced analytics like detecting an intoxicated 

driving behavior cue, the back-end server initiates the authentication request. Below is a 

sample code from the Udoo board describing the process. 

 
AuthStatus=false; 
 
subscription= Observable.interval(3000, TimeUnit.MILLISECONDS) 

.takeUntil(onAuthStatusReturned()) 
 .flatMap(new Func1<Long, Observable<AccepttoChannel>>() { 
    Int counter=0; 
    @Override 
    public Observable<AccepttoChannel> call(Long aLong) { 
                        if (counter ==0) { 
          counter++; 
          mAPI.getAccepttoChannel().getAuthenticationChannel(Constants.HTTP.PARAMS).takeUntil(stopPredicate); 
          return mAPI.getAccepttoChannel().getAuthenticationChannel(Constants.HTTP.PARAMS); 
       } 
       else { 
          counter++; 
       return mAPI.getAccepttoChannel().getAuthenticationStatus(Constants.HTTP.PARAMSAUTH); 
       } 
    } 

}) 
 .subscribeOn(Schedulers.io()) 
 .observeOn(AndroidSchedulers.mainThread()) 
 .subscribe(new Subscriber<AccepttoChannel>() { 
    @Override 
    public void onCompleted() { 
       Log.d("api", "rx comleted"); 

   } 
 

   @Override 
   public void onError(Throwable e) {} 
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   @Override 
   public void onNext(AccepttoChannel accepttoChannel1) { 
      if(accepttoChannel1.getChannel()!=null){ 
         Constants.HTTP.PARAMSAUTH.put("channel",accepttoChannel1.getChannel()); 
         accepttoChannel.setChannel(accepttoChannel1.getChannel()); 

       } 
      if(accepttoChannel1.getChannelStatus()!=null) { 

          accepttoChannel.setChannelStatus(accepttoChannel1.getChannelStatus()); 
          TextView authStatus = (TextView) findViewById(R.id.authStatus); 
          authStatus.setText(accepttoChannel1.getChannelStatus()); 
       } 
       if("approved".equals(accepttoChannel1.getChannelStatus())){ 
          Log.d("Approved", "onNext: test"); 
 
          if (test>0){ 
             mAdkManager.writeSerial("1"); 
          } 
 
       } 
       else if ("rejected".equals(accepttoChannel1.getChannelStatus())){ 
          mAdkManager.writeSerial("0"); 
       } 
       Log.d("api", "response: " + accepttoChannel.getChannel() + "-" + accepttoChannel.getChannelStatus()); 
}}); 

2.3 DEMO 

Our prototype was connected to the car’s diagnostic OBD-II port. As seen in the 

below figure, when our system detects a signal from the car diagnostics requiring a certain 

security check (We have tested this with car’s ignition, out of area, and over a speed limit 

check), it communicates directly with the backend server, which in turn send a request to the 

acceptto server requiring to authenticate the user. Acceptto server will then send an 

authorization request holding information to the detailed security action requested by the car 

to the user’s paired smartphone as a mobile notification. If the user gives the authorization, 

acceptto servers will confirm the identity to the backend server and our embedded in-car 

system will consider the access granted. Otherwise, if the user ignores the notification or 

sends a reject message, our system will be notified and some precautionary actions will be 

taken as in sounding the alarm, or turning off the car if it is not yet in the drive mode.  
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Figure  6:  Demo application  for Acceptto Multifactor Authentication with Car’s Ignition



 22 

 

CHAPTER 3 

DRUNK DRIVING DETECTION 

Our main focus will be the detection of drunk driving cues using any off the shelf 

OBD-II module. OBD-II is the second generation standard of the On-Board Diagnostics 

protocol (OBD). OBD-II was made mandatory for all cars manufactured in the United States 

since 1996 [17]. For our proof of concept, the device which we used in this work is called 

Vinli [16]. It connects to the diagnostics port of the car and provides access to main OBD-II 

PIDs (Parameter IDs) through an LTE connection to the backend server. The company 

provides APIs and simple SDKs to help developers build applications on top of their 

platform. The sampling rate is 1 Hz which should be adequate for our study, as in a fully 

integrated cloud solution, it will be hard to collect information at a higher frequency. The 

obtained data accuracy will serve our purpose as verified by a recent publication [2], which 

has thoroughly investigated the accuracy of the OBD-II interface parameters versus the raw 

Controller Area Network (CAN) bus values that can be extracted through a direct connection 

to the ECU (Engine Control Unit). A CAN bus is a standard for communications between 

different car’s components (ECUs), and it is one of the protocols used by the OBD-II 

interface. The authors of [2] collected the data at a 5 Hz frequency and sent it to the cloud. 

The results showed that even though the OBD-II information is not as accurate as the CAN 

data, it could still be used for data analytics, as it provides a reasonable precision, and is cost-

effective. 

The variety of the off-the-shelf products currently available on the market opens a 

great opportunity for collection of very valuable vehicular data and for performing advanced 

analytics at the backend server. These products can be classified into two categories: 

Bluetooth OBD-II Dongles and Proprietary 3G and LTE enabled OBD-II Dongles. 

Simple Bluetooth dongles can be obtained starting as low as 10$ a piece. There are 

several mobile apps created to interface with these dongles and provide limited services like 

zone notifications, tracking, and simple car health monitors like fuel level and trouble codes. 
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Proprietary dongles, on the other hand, provide cellular connectivity to extend the use of the 

connected car. These solutions include Vinli, Mojio, Verizon Hum, Automatic, Zubie, and 

others. While some dongles like Vinli provide APIs to allow 3rd party applications, some 

solutions like Hum and Automatic have their own apps and features. 

In this paper, we explore the possibility of detecting drunk driving patterns from data 

collected through a third party OBD-II module, namely Vinli.  

The rest of the paper is organized as follows. Section II, next, surveys the related 

literature and works that concern drunk driving detection and retrieving OBD data then 

analyzing it to draw a conclusion that concern driving. Next, in Section III, we describe the 

detection methodology that we employ, followed by explaining the data collection and 

preprocessing process. Section IV explains the machine learning part of our work, used to 

classify drunk driving behaviors, and then presents the obtained results. We use Section V to 

discuss how the detection probability can be improved, and how our work can be extended. 

Finally, Section VI concludes the paper. 

3.1 LITERATURE REVIEW 

The most recent works that try to detect drunk driving behavior used external sensors. 

As an example, in [3] and [4], a system was developed for drowsiness detection using a 

breath sensor. Other works and projects used eye movement detection through a camera, like 

in [5]. In a recent paper [15], a deep convolutional neural network was used to analyze and 

detect facial expressions and gestures that would imply drowsiness or distractions.   

In the most part, OBD-II sensors were used to detect fuel efficiency. In [6], for 

example, the authors used a multi-sensor fusion method using Bayesian Networks for the 

estimation of the car’s performance. The experiments used OBD-II data and a combination of 

different motor types for a precise performance evaluation. On the other hand, in [7], OBD-II 

sensors were used for fuel economy estimation using statistical data regressions. A more 

relevant study to our research employed methods that use accelerometers and OBD-II data to 

detect driving behavior. Only Phone sensors were used in [8] to detect drunk driving 

behavior, where the authors identified the main driving cues that could be detected through 

the phone’s gyroscope and accelerometer. In particular, they used longitudinal and lateral 
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acceleration pattern matching for the classification process, based on the detection of 

minimum and maximum variations. Also, using the accelerometer and gyroscope of the 

smartphone, the work in [9] introduced an algorithm for detecting dangerous driving 

behaviors. Although it is an interesting approach, the approach faces the problem of the 

willingness of the driver to install the desired app on his phone, and therefore may not be 

practical. 

A paper that appeared recently [10] uses OBD-II data, combined with phone sensors, 

to make driver classification based on driving behaviors. They used three cars and 14 drivers 

to collect the dataset. The reported results showed an accuracy of about 85% for classification 

based on OBD-II data, 75% based on the phone sensors, and 86% when using combined data. 

However, the accuracy fell down drastically with the classification of more than 3 drivers. 

From the above research, we can observe that the drunk driving behavior was being 

predicted using external sensors such as phone sensors [8] or cameras/breath analyzers [3] [4] 

[5] [15]. And while OBD-II information was mainly used for performance reports [6] [7], a 

recent paper [10] used both in-vehicle and phone sensors for the analytics, for the purpose of 

classification of drivers based on the driving behavior. Thus, we will explore the detection of 

drunk driving behavior using an OBD-II dongle providing both OBD data and GPS and 

accelerometer telematics.  

 

 

3.2 METHOD 

The Methodology is explained in Fig.1. The first step is data collection. We connect 

the Vinli dongle to the car’s OBD-II port and the device will send the data to the server for 

storage. After the data is collected and annotated, it needs to be cleaned to remove any 

outliers. The next step is feature extraction. We extracted some manual features from the 

sensors (min, max, mean, etc.) as well as 100s of automatically collected features (Entropy, # 

of peaks, etc.). This generated around 8000 features which were filtered to around 1200 

features. Lastly, for classification, we used a linear logistic regression classifier. We split the 
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data randomly at 80/20 to training and testing sets. Lastly, we validated our results using 10-

fold cross-validation. 

 

 
Figure 7. Drunk driving detection methodology 
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3.2.1 Data Collection 

To emulate drunk driving, we acquired Drunk Busters goggles [13]. The Goggles can 

simulate the effects of intoxication, including reduced alertness, visual distortion, delayed 

reaction time, depth and distance perception problems, and reduction of peripheral vision 

associated with BAC levels (Blood Alcohol Concentration) between 0.04 and 0.35 [13]. 

What motivated this approach to emulate drunk driving behavior is the fact that in [12] the 

authors used vision impairment goggles in addition to a car simulator to simulate the 

intoxicated driving patterns. 

The acquired goggles simulate impairment of 0.15 to 0.25 BAC levels and was 

planned to be used while driving the Carsim simulator [14], which was preferable (more 

convenient) over driving a real car, given such levels of intoxication and the danger in driving 

in that situation. The CarSim simulator is an internationally recognized mechanical and 

software tool for analyzing vehicle dynamics, developing active controllers, and calculating a 

car’s performance characteristics [14]. However, due to setup issues with the simulator, we 

used the goggles while driving a real car on empty side road sections, after midnight, to avoid 

collisions with passing by cars. Moreover, the car was driving by the driver wearing the 

goggles with an assistant to minimize the likelihood of causing hazards while driving.  

Two data sets of were collected, where the first set contained around one hour of 

emulated drunk driving behavior, while the second set contained more than three hours of 

normal driving behavior by four drivers in various driving conditions of open roads and 

medium traffic. The data was carefully collected and annotated, where data obtained during 

startup and turn off of the car was removed from the data for better classification and avoid 

bias. We annotated each sample of our data as either Drunk or normal driving. The collected 

data included the below parameters provided by the OBD-II device at different frequencies. 

For example, torque, RPM, speed, and others were collected every 1 second, whereas the 

relative throttle position and spark timing advance were collected every 1 minute. 

As depicted in Table 2, some parameters could only be accessed at a rate that is less 

than 1 Hz, thus making them inappropriate for our detection algorithm which needs data that 

is available at 1 Hz or higher frequency. Almost all of the current OBD-II dongle wireless 
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solutions, like Vinli and Zubie, collect OBD-II data at a frequency of 1 Hz or less. The 

collection of certain sensors at a lower frequency stems from the fact that these sensors’ 

values, like spark time advance or intake manifold temperature, change at relatively slower 

rates as compared to sensors like speed or rpm. This is mainly done to relieve the load on the 

car’s CAN bus, and also on the 3G or LTE network. 

 

 

 

Parameter Frequency 

Torque 1 Hz 

GPS 1 Hz 

Accelerometer X,Y,Z Max and Min 1 Hz 

Intake Manifold Pressure 1 Hz 

Engine RPM 1 Hz 

Vehicle Speed 1 Hz 

Acc. pedal position D and E 0.016 Hz 

Relative Throttle Position 0.016 Hz 

Timing Advance 0.016 Hz 

Table 2. Sensors used to classify drivers 

 

We plotted snapshots of the dataset at random windows to study the visual 

discrepancies. Figure 8 illustrates an example of driving drunk and normal, inferred from the 

sensor Engine Load. It is clear that in general, drunk driving has more variations and peaks in 

the data. This is true for several sensors like RPM, Engine Load, and accelerometer values. 

This gives an indication that a relatively good classification accuracy can be attained. 
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3.2.2 Drunk Driving Cues 

There are some drunk driving detection cues that are defined by the US NHTSA, as 

explained in [11]. The cues were identified as strong indicators of possible drunk driving 

scenarios. In this work, we have focused on cues that relate to speed measurements and lane 

position variations. According to NHTSA, the above parameters are two of the main driving 

cues that can be visually detected [11], and were confirmed during our drunk driving 

emulation scenarios. Figure 9 shows some of the problems that are related to maintaining 

proper lane position caused by drunk driving. These are, as indicated on the four illustrations: 

1) drifting, 2) weaving, 3) swerving, and 4) turning with a wide radius. ON the other hand, 

indications that may be derived from speed and braking measurement data are 1) jerky or 

abrupt stops, and widely carrying speeds. 

Some drives consisted of one repeating driving cue, while other drives had a 

combination of several cues that can be detected in a specific timeframe. Although during the 

drunk driving emulation through using the goggles, not all the drunk driving cues could be 

visually detected, many of the cues defined by NHTSA were observed. These observed cues 

included weaving, severing, turning with a wide angle, abrupt corrections of the trajectory, 

and varying speeds and breaking patterns.   
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Figure 8. Sample data output for the engine load parameter during drunk driving 

(top), and normal driving (bottom). 
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Figure 9. Common drunk driving trajectory scenarios [11] 

 

3.2.3 Data Cleaning and Feature Extraction 

We used python for preprocessing of the collected data from the driven cars. The 

dataset contained intermittently missing data, which were mostly GPS locations or OBD-II 

parameters. To counter-effect this, the data sets were smoothed using a rolling mean window 

on the 1 Hz parameters, whereas the rest of the features were dropped due to their lower data 

acquisition rates. Moreover, we supplemented the acquired data with computed data, like 

speed differentials (current speed – prev. speed) and distance covered during each 

measurement interval using GPS longitude and latitude data. 
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Afterwards statistical features were extracted from the time series using a 10-second window. 

These included 1) minimum, maximum, mean, median and variance per sensor; 2) PCA 

(Principal Component Analysis) and Eigenvectors; and 3) hundreds of other features, such as 

absolute energy, sum of changes, entropy, Fast Fourier Transform, number of peaks, 

skewness, and many others. In total, we extracted around 10,244 features, which were 

reduced to 1204 based on the information gain and the impact on their effect on accuracy. As 

we have mentioned earlier, we used the TFRESH python library to achieve this. During the 

feature reduction process, each feature vector was individually evaluated based on its effect 

on the target results [18] (drunk or normal). With this evaluation, ranking the significance of 

each feature was then used to filter the features using the Benjamini-Yekutieli procedure, 

which is explained in [19]. 

3.3 RESULTS 

The dataset was randomly split into two sets: a training set and a testing set that 

comprised 20% of the total data. We trained a linear Logistic Regression model to predict 

drunk driving patterns through feeding the classifier (logistic regression) with vectors of 

extracted features that are actually windows of 10 seconds of data points. That is, every 10 

points of data form a window to be classified as drunk or normal driving. We used L1 

regularization since the data we have is sparse and produced a higher prediction score. The 

L1 regularization technique is used in the Lasso Regression model (Least Absolute Shrinkage 

and Selection Operator), which adds the “absolute value of magnitude” of coefficient as a 

penalty term to the loss function. The Lasso model shrinks the less important feature’s 

coefficient to zero thus, removing some features altogether. 

We trained the model for different C and stopping criteria (tolerance). We tested for C 

values between 1.0 and 150, in increments of 25. The parameter C refers to the inverse of 

regularization strength, meaning that the lower the C parameter’s value, the stronger the 

regularization is. With more regularization, the algorithm tries to generalize the model, 

whereas with less regularization, the model may become overfitted. The model stops training 

when the score is no improving by at least the tolerance for 2 consecutive iterations. The 
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model used a tolerance of 0.01, C=1.0, and the Liblinear solver (a python library for large 

linear classification).  The Liblinear solver was better suited for our classification model as it 

is has a binary target and a relatively small dataset. The other solvers, mainly ‘sag’ and 

‘saga’, didn't perform well for our prediction. This combination generator the best F1-value at 

around 83%. Our goal was to improve the F1-value as it is a measure of both precision and 

recall. It is the harmonic mean of precision and recall which are functions of TP (True 

Positives), FP (False Negatives), and FN (False Negatives): 

FPTP

TP


Precision

 

FNTP

TP


Recall

 

RecallPrecision

RecallPrecision
1F






 

The results showed an average F1 value of 81%, which is very reasonable concerning 

the size of the dataset and the missing values associated with a commercial product. 

 

Normalized Confusion Matrix 

 Normal (Predicted) Drunk (Predicted) 

Normal (Actual) 0.86 0.14 

Drunk (Actual) 0.25 0.75 

Table 3. Normalized Confusion matrix without GPS data 

 

The normalized confusion matrix in Table 3 shows that we achieved very low values 

of False Positives (FPs) (14%), and relatively low values of False Negatives (FNs). FPs occur 

when our model predicts a drunk driving behavior while the behavior is actually normal, 

while FNs occur when we fail to predict a behavior of intoxicated driving. Our system thus 

achieves relatively good performance for minimizing FPs and FNs. 

For the window size, we tried to see the results with different window sizes of 5, 10 

and 15 seconds. We got the best results when the size was set to 10 seconds. The smallest 

window size gave a relatively low F1 value of 47%, which is reasonable as a 5 seconds 
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window does not capture the drunk driving cues within the timeframe. The F1 values were 

47%, 83% and 79% for the given 5 sec, 10 sec and 15 sec widows, respectively. 

Table 4 gives the results using a 10 seconds window without GPS data. We validated 

this data using 10-fold cross-validation, where the validation score ranged between 74 and 

87%, thus verifying the model. The scores were 0.828, 0.8268, 0.865, 0.766, 0.796, 0.873, 

0.747, 0.864, 0.796, and 0.844 respectively for the 10 iterations, thus producing a mean of 

82%. 

The results in tables 2 and 3 are without the use of the GPS data as part of the original 

dataset. When the GPS coordinates are included in the dataset before the automated feature 

extraction, we get results of around 73% accuracy. This is possibly due to the nature of the 

GPS coordinates and its weak correlation to the driving style. 

 

 Precision Recall F1-Score 

Normal 77% 86% 81% 

Drunk 85% 75% 80% 

Average 81% 81% 81% 

Table 4. Precision, Recall and F1 value 
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CHAPTER 4 

CONCLUSION AND FUTURE WORK 

This work can be built upon further in several directions. First, since our solution 

utilizes third-party OBD-II dongles for CAN bus data collection, we can develop a supporting 

system for collecting, storing, and analyzing available car’s sensors data. Hence, the car 

system can react in real time when inferring a drunk driving pattern (i.e., as produced by the 

classifier). The system’s response can be in the form of 1) producing an alarm to alert the 

driver if the probability of drunk driving is low (e.g., when the percentage of data segments 

producing drunk driving classification is low); 2) transmitting a message over the network to 

the driver’s designated contact persons, when the probability is rated medium; or 3) in the 

extreme case, when the probability is high, to control the car to drive increasingly slower 

until it comes to a complete stop by cutting the fuel pump supply. These are only possible 

outcomes that can also benefit from additional drunk driving statistics that were not available 

at the time to be included in the training datasets.  

The probability of drunk driving can be ascertained using information that is readily 

available to the car. Such information includes the current time, as most drunk driving 

incidents occur near or after midnight and on weekends [1]. Furthermore, GPS data can be 

used to detect driving near locations containing pubs and nightclubs. These are example data 

that can be used to increase the probability of correct drunk driving classification. Another 

direction that could be pursued concerns the datasets of measurements. Datasets of certain car 

sensors could be hard to obtain using a standard OBD interface (e.g., steering wheel angle), 

moreover, they take time and effort to annotate properly. Increasing the number of types (i.e., 

sensors) of datasets and their sizes can improve the reliability of the model, and can help in 

distinguish the various patterns of drunk driving (see Figure 8). This will in turn require 

annotation of the dataset with the types of drunk driving behavior cues, like weaving and 

swerving, which in turn can be used to decide on the most appropriate action to take to 

prevent an accident. We also should note that if the car can identify its position accurately on 

the road, it can force the driver to coast toward the side of the road. 
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Finally, we note the other driving behaviors that are equally dangerous, like sleepy 

driving. Indeed, such driving scenarios share with drunk driving behaviors several 

characteristics, like some of those depicted in Figure 9. Hence, our work can also be used, 

although with some alterations, to detecting sleepy driving conditions and then taking 

suitable actions. 

We investigated the ability to detect drunk driving behavior from the car’s CAN bus 

that was collected using a third-party standard OBD-II module. Our work was based on 

driving an actual car using Drunk Busters goggles to actually emulate drunk driving. Using 

machine learning, we were able to classify drunk driving versus normal driving with an 

accuracy that is upward of 80%. This opens the door for implementing on-car control 

mechanisms to prevent related accidents from occurring. 
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