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AN ABSTRACT OF THE THESIS OF

Youmna Hussein Abdallah for  Master of Engineering
Major: Civil Engineering

Title: A Reliability-Based Decision Framework for Designing Pile-Load test Programs

There is currently an inconsistency in the recommendations that are available
in pile-design codes and practices regarding the required number of proof-load tests and
the level of the proof loads for piles. This inconsistency has led to the implementation
of unnecessarily costly pile load test programs in some cases and to insufficient or
deficient load test programs in others. In both cases, the depletion of resources is the
major outcome of the lack of rational methodologies for designing pile test programs.

In this thesis, first, we study the effect of choosing different proof-load test
programs on the reliability of piles. This is achieved by utilizing a Bayesian approach to
update the capacity distributions of piles at a site given the results of the proof-load test
program. The results of the updating process constitute necessary input to a proposed
rational decision framework; it is reliability-based, pre-posterior decision-making
framework to allow for selecting the optimal pile-load test program that would result in
the maximum expected benefit to a project, while maintaining a target level of
reliability in the pile design at the site.

This proposed methodology is original, practical, and is based on site-specific
information that is unique to any given project. In the final part of the thesis, the
efficiency of the proposed decision framework is demonstrated by applying it on a
practical design example.
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CHAPTER 1

INTRODUTION

1.1 Background

Pile load tests have proven to act as an efficient mean in reducing the
uncertainties associated with pile capacity prediction. Traditionally, proof-load tests
have been utilized to validate design methods and construction procedures in foundation
engineering. In the allowable-stress design approach, the foundation is sized based on
an empirical design method using a reduced factor of safety (typically 2.0) provided that
it passes a proof-load test up to twice the design load (ASTM D1153 1994). Recently,
and in the framework of reliability-based design, researches have shown that
information from pile load tests may have a considerable effect on reducing the
probability of failure, thus allowing for the use of lower factors of safety for the piles in
a site. In many international design codes and practices that allow for the use of reduced
factors of safety of different magnitudes, the proposed factors of safety are dependent
on the number and type of pile load tests that are conducted in a given site. However,
there is currently an inconsistency in the recommendations that are available in pile
design codes and practices regarding the required number of proof-load tests and the
level of the proof loads.

For example, some common recommendations from international pile design
codes are summarized in Table 1.1. An investigation of the recommendations from
different codes indicates a large variability in the correlation between the type and

number of the specified pile load tests and the recommended reduced design factor of



safety. In addition to the variability between the recommendations of different design
codes, a major drawback of any recommendation is that the designer does not have any
indication of the inherent reliability/safety that is associated with the resulting design.
This is due to the fact that the recommendations summarized in Table 1.1 are generally
based on experience and are not associated with any robust reliability or risk analysis
that supports their use and sheds light on the reliability of the resulting pile design.

In the last decade, some research efforts have targeted analyzing the impact of
proof-load tests on the design of foundations in the framework of a reliability analysis.
Examples include the work of Zhang and Tang (2002), Zhang (2004), Su (2006), Najjar
and Gilbert (2009), and Park et al. (2011). Except for the study by Najjar and Gilbert
(2009), current reliability analyses focus on utilizing results from proof-load tests to
update the mean or median of the capacity distribution. Results from these reliability
analyses indicate that the magnitude of the proof load has to be higher than the
predicted mean capacity so that the updating process will have a significant effect on the
reliability. As an example, Zhang (2004) recommends conducting 1 to 3 tests using
proof loads that are larger than 1.5 times the predicted pile capacity (larger than 3 times
the design load) so that the value of the proof-load test can be maximized.

Proof-load tests that are conducted up to 3 times the design load can be quite
expensive and time consuming relative to the time scale of a given project. In addition,
the likelihood of failing the pile during the test increases significantly as the proof-load
level increases. For geotechnical engineering applications, the left-hand tail of the
capacity distribution governs the probability of failure since the uncertainty in the
capacity is generally larger than the uncertainty in the load. As a result, the reliability of

a foundation is expected to be strongly affected by the presence of a lower-bound



capacity (Najjar and Gilbert 2009). This is clearly shown in Figure 1.1 which illustrates

the effect of a lower-bound capacity on the probability of failure for a typical foundation

(Najjar and Gilbert 2009).

Table 1.1 - Worldwide recommended safety factors for static-dynamic pile load tests programs

Country S F 5 F 5 F Number of load tests required in a site and notes
wio LT withSLT  with DLT
China 1.65 1.60 160 pre-case pile (including steel pile)
1.65 1.60 1.60 large-diameter cast-in-place pile
1.67 1.62 1.62 wet work driven cast-in-place pile
1.70 1.65 1.65 dry work driven cast-in-place pile
SLTs on 1% of constructed pilles
(3 SLTs at least in a site if total quantities greater than 50 piles,
2 SLTs if wotal quantitics is within 50 piles).
DLTs on 5% of constructed piles (5 DLTs at least in a site).
Europe 229 if one SLT is performed
ECT 2001 164 if SL.Tx greater than 5 are performed
223 if two DLTs are performed
1.95 if DILTs greater than 20 are performed
Europe 218 if number of esis is equal or less than 2.
ECT 2003 1.91 il number of tests is equal or greater than 20.
German 1.93 if 2 tests are performed
DIN 1054-2003 1.67 if tests greater than 4 are performed
India 2.5 25 2.5 1o 2 % of wdal piles
Minimum 2 piles for highway bridges
Japan 30 27 2.7 nod specified, number load tests is not taken into account.
Kazakhstan 1.5 1.2 - SLTs on 1% of constructed piles (2 SLTs at least in a site)
Mexico 30 2. 20025  Bewween 1% to 5% depending the project. Minimum 3 piles.
The specifications varie in cach project- A global specification
does not exist.
Netherlands 206 0 eeee pile design based on CPT
1.78 pile design based on CPT
171
Norway 1.6 14 14 not specified
Singapore 3.0 when there is less certainty of the value of the ultimate
2.0 capacity.
where the ultimate has been determined by a number of loading
tests or where they may be justified by local experience.
Sweden 1980 30 ?
2.5 il 5% of piles are tested.
20 if 25% of piles are tested.
Sweden 2000 20 if 25% of piles are tested.
1.6 if 100% of piles are tested,
USA AASHTO 1992 2.0 225
1.9 if SL'T and DLT are performed.
USA ASCE 1996 30 theoretical or empirical prediction
1.6w 1.9 1.710 2,0 in case of design capacity is 0.4 10 1.0 MN,
181022 201024  incase of design capacity is over 1.0 MN.
USA IBC 2000 20 20 for design load greater than 0.4 MN.




The curves on Fig. 1.1 represent the case where the uncertainty in the capacity
is relatively large compared to the uncertainty in the load. This example is
representative of many geotechnical designs where the capacity is more uncertain than
the load (McVay 2000; Kulhawy and Phoon 2002; Phoon et al. 2003; AASHTO 2004).
The primary conclusion from Fig. 1.1is that a lower-bound capacity can have a
significant effect on the calculated reliability. For example, consider a typical case
where the factor of safety is 3.0. If the lower-bound capacity is anything greater than
0.6, the probability of failure is reduced by more than an order of magnitude compared

to the case where there is no lower bound.

1.E-01
5 Load 1.E-02 A
-~ .
: 5 1.E-03 2.5
2 & 1.E04 3.0 \
s ks
a > 1.E-05 - 3.5
2 Lower /‘ =
pr=d o) - 4
§ Bound\ Capacity g 1.E-06 Factor of Safety — 4.0
o
g £ 16071 \
| - ; : 1E-08 t t t t t T T t
) 20 500 50 000 0 01 02 03 04 05 0.6 0.7 0.8 0.9
Load and Capacity (kN) Ratio of Lower-Bound to Mean Capacity

Figure 1. 1 - Effect of lower-bound capacity on the reliability (Najjar and Gilbert 2009)

When a limited number of proof-load tests are conducted on a small
percentage of foundations at a site, Bayesian techniques can be used to update the
probability distribution of the foundation capacity at the site. In the updating process,
the results of proof-load tests are typically used to update the middle of the capacity
distribution (mean or median). However, Bayesian techniques have been also utilized to
update the lower-bound capacity (rather than the mean capacity) at the tail of truncated

capacity distributions. Najjar and Gilbert (2009a) proved through an illustrative



example that running successful proof-load tests of relatively small magnitude (0.6 of
the predicted capacity) on 3% of the piles at a site with 1000 piles resulted in a 30%
reduction in the required median factor of safety while still maintaining the same level
of reliability. The analysis assumes that all the piles survive the proof load tests and that
the results of the load test program are used to update the lower-bound pile capacity.
Using the updated lower-bound distribution, the median factor of safety required to
achieve the desired reliability index of 3.0 was reduced from 3.2 to 2.5.

Results from previous studies show that different combinations of reduced
factor of safety, proof load level, and number of positive proof load tests could be
selected to achieve the desired level of reliability. For example, designers have the
option of choosing test programs that are based on a few number of load tests that are
conducted to a relatively high proof load level, or load tests that include larger number
of proof tests that are conducted to a relatively smaller proof load level. There is a need
for systematic and rational approaches that would allow for choosing the number of
proof-load tests and the magnitude of the proof load that would maximize the value of

any pile load test program.

1.2 Objectives

The current research study aims at:

(1) Formulating a robust mathematical code that is based on Bayesian techniques for
updating the pile capacity distribution and the associated reliability given results from
pile load tests.

(2) Incorporating the lower-bound capacity in the probabilistic model and the updating

process according to two different approaches: In the first approach, the lower- bound



capacity is defined as a lower-bound for the actual distribution of the pile capacity while
in second approach the lower-bound capacity is defined a lower-bound for the
distribution of the mean of the pile capacity.

(3) Investigating according to the two different probabilistic model approaches the
effect of choosing different proof-load test programs on the reliability of pile design. In
the analysis, the parameters that will be changed are the level of the proof load (relative
to the design load), the number of proof-load tests, and the possible results of the proof-
load tests.

(4) Studying the effect of the lower-bound capacity on the updating process for both
approaches. Thus, the updating process for a given proposed load test program will first
be conducted by updating the median capacity only, then, the analysis will be repeated
for the case where the lower-bound capacity is updated only. Finally, the updating will
be done for the two parameters simultaneously.

(5) Constructing a simple, logical, and practical decision-making framework for
choosing the number of proof-load tests and the magnitude of the proof load that would

maximize the value of information of a test program.

1.3 Thesis Organization
The thesis will be comprised of seven chapters encompassing all the aspects of the

study. A brief summary of the contents of each chapter is presented below:

(1) Chapter 1I: The formulation of the reliability problem according to two different
approaches is described. This includes the characteristics of the design parameters
involved in the probabilistic modeling of the load and the resistance as well as the

details of the MATLAB code used to perform the Bayesian updating process.



(3) Chapter 1lI: Results of the Bayesian updating based on the first approach are

presented and analyzed.

(4) Chapter 1V: Results of the Bayesian updating based on the second approach are

presented and analyzed.

(5) Chapter V: Based on the conclusions of previous chapters, a reliability-based
decision tool is recommended for establishing a rational and practical decision-making
framework for choosing the optimum testing program that will maximize the value of
information at a given site.

(6) Chapter VI: Conclusions and Future Work.



CHAPTER 2

FORMULATION OF THE PILE RELIABILITY PROBLEM

2.1 General Probabilistic Form

The main objective of the proposed study centers around updating the capacity
distribution of piles at a site given results from a pile load testing program. The three
parameters that will be assumed to define the pile capacity distribution are the mean
capacity, the lower-bound capacity and the coefficient of variation. The incorporation of
a lower-bound capacity in the probabilistic model of pile capacity distinguishes the
work presented in this thesis from other studies in the literature. Two different
approaches for incorporating the lower-bound capacity in the problem will be tested
since there are currently two common schools for modeling the total uncertainty in pile
capacity based on databases of pile load tests. The performance of the two approaches
will be compared in Chapters 3 and 4 and a recommendation regarding the effectiveness

of the two approaches will be presented.

2.2 Approach 1 - Prior Statistics of the Pile Capacity

In approach 1, the uncertainty in the pile capacity will be assumed to be
modeled by a truncated lognormal distribution (Najjar 2005) as shown in Figure 2.1.
The use of the lognormal distribution (rather than any other distribution) as a basis for
the uncertainty in the capacity stems for the common use of the lognormal distribution
in the published literature regarding the reliability-based design of piles coupled with

the added advantage provided by the lognormal distribution in relation to it being



confined to positive numbers.  The use of a “truncated” distribution allows for
incorporating the lower-bound capacity, which has been shown by Gilbert et al. (2005)
to provide a realistic representation of the left-hand tail of the capacity distribution for
driven piles in sands and clays. The lower-bound capacity is a physical quantity that is
predicted using models that take into consideration the pile dimensions and the
properties of the soil (Gilbert et al. 2005). It is not a simple statistical parameter that is
enforced on the capacity distribution.

In approach 1, both the mean capacity (rmean) and the lower-bound capacity
(rus) are assumed to be random variables (model parameters) following a lognormal
distribution since both rmean and ris cannot physically assume negative values. The prior
statistics and probability distributions of the two parameters were determined based on

several realistic assumptions and existing empirical models.
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Figure 2. 1 - Parameters of Truncated Lognormal Pile Capacity Distribution

The Bayesian updating tool which will be discussed in the next section will allow for
updating either or both of these two parameters given the results of pile load tests. More
information about the prior statics for the load and for each of the three statistical

parameters describing the prior capacity distribution is provided below.



a. The load (s): mean and coefficient of variation

The load was assumed to follow a lognormal distribution with a coefficient of variation
of 0.15 as is the convention. For comparison, the coefficients of variation specified by
AASHTO (2004) to represent the uncertainty in bridge loads are 0.13 and 0.18 for the
dead and live load respectively. For illustration and computational purposes, the mean
load was assumed to take a value of 200 tons. In fact, a numerical estimate of the mean
load is needed to illustrate the methodology presented in this paper for updating the pile
capacity distribution using proof load tests. The results and conclusions will however be

general and independent of the actual value of the mean load.

b. The mean of the pile capacity (mean)

It was assumed that the mean of rmean could be estimated from databases of pile load
tests as is conventionally done in evaluating the bias of pile capacity prediction models.
The coefficient of variation of rmean Was assumed to be equal to 0.1 to account for
systematic and random uncertainties in the determination of the soil properties at each
test site in the database, uncertainties due to pile testing procedures and instrumentation,
and uncertainties due to the interpretation of the pile capacity from the load-settlement

curves of the pile tests in the database.

c. The Lower-bound of the pile capacity (RLg)

With regards to the prior statistics of rs, it was assumed that the mean of rs is equal to
about 0.5 of the mean of rmean. This value is supported by the results presented in Gilbert
et al. (2005) who show based on analyses of databases for driven piles in clays and

sands that the ratio of the lower-bound capacity to the mean capacity for driven piles

10



could range from 0.4 to 0.9, with an average of about 0.55 to 0.60. The lower-bound
capacities are computed using physical models (ex. Najjar 2005 and Gilbert et al. 2005)
and are not based on statistical minimum values of pile capacity. The prior coefficient
of variation in r_g was assumed to be equal to 0.2 (Najjar and Gilbert 2009b) to account
for (1) uncertainty due to spatial variability in the soil properties needed in the
estimation of the lower-bound capacity and (2) uncertainty in the models available for

predicting the lower-bound capacity.

d. The coefficient of variation of the pile capacity (dr)

For simplicity, the coefficient of variation &r will be assumed to be a deterministic
parameter that is generally evaluated for different pile capacity prediction models using
databases of pile load tests (ex. Barker et al. 1991, Withiam et al. 1997, Goble
1999,Liang and Nawari 2000, McVay et al. 2000, 2002 and 2003, Zhanget al. 2001,
Kuo et al. 2002, Kulhawy and Phoon 2002, Phoon et al.2003a and 2003b, Honjo et al.
2003, Paikowsky 2003, Withiam2003 and Gilbert et al. 2005). As an example, Gilbert
et al. (2005) report &r values of 0.25 and 0.55 for the API (1993) method for driven steel
pipe piles in clays and sands, respectively. Along the same lines, Zhang (2004) reports
or values ranging from 0.21 to57 for about 14 methods of pile capacity prediction. Table
2.1 summarizes the statistical parameters used in the reliability assessments conducted

in this thesis with regards to approach 1.

11



Table 2. 1 - Statistics of Model Parameters - Approach 1

Design Parameter Mean, p Coefficient of Variation,
Load, S us = 200 tons 0.15
Mean of Pile Capacity, rmean FS.us 0.1
Lower-Bound of Pile Capacity, r.s X.FS.us 0.2
Coefficient of Variation of Pile Capacity, 6 0.40 -

Note: FS is the mean factor of safety (ratio of mean capacity to mean load) and x is the ratio of the mean lower-
bound capacity to the mean of the mean pile capacity.

2.3 Approach 1 - Probability Models

The model parameters to be updated based on proof-load test results are the
mean and the lower-bound of the pile capacity at a given site. Given the mathematical
complexities that are expected to exist in updating the probability density functions
(PDFs) of the lower-bound and the mean of the pile capacity, a decision was made to
model the two variables as discrete random variables rather than continuous variables.
As a result, the lognormal distributions that model the uncertainties in rig and rmean Were
replaced with probability mass functions (PMFs) that provided a simplified but accurate
representation of the variation of the lognormal distribution. This representation is
translated into a MATLAB code, and then, three MATLAB files were generated in
order to update (1) prior PMFs of the mean of the pile capacity (2) prior PMFs the
lower-bound capacity and (3) prior joint PMFs based on proof-load test scenarios. As
shown in Table 2.1, the mean value of the pile capacity and the mean lower-bound
capacity are both dependent on the mean factor of safety (FS). In addition, trial and
error runs have shown that the mean design factor of safety will have a significant effect
on determining the updated probability distributions. Thus, for the random variable to
be updated, the range of values to be represented by the PMF modeling the random

variable is selected based on the input value of FS so that to ensure a mathematically
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adequate coverage of the corresponding probability density functions before and after
the updating.

For almost all cases, the minimum value in the PMF range is determined as the
mean value of the modeled random variable minus 4 standard deviations. Then, when
the mean pile capacity is the parameter to be updated (first MATLAB file), the
maximum value in the PMF range was chosen to be equal to the minimum value plus
about 15 to 24 standard deviations, depending on the used FS. When the lower-bound
capacity is the parameter to be updated (second MATLAB file), the maximum value in
the PMF range will be equal to the minimum value plus 12 to 20 standard deviations.
When the random variable is not the one to be updated, run trials showed that adding 8
standard deviations to the minimum value of the PMF ensures an adequate coverage of
the corresponding probability density function.

Once the minimum and maximum values that define the range of the PMF
were chosen, the range was divided into 45 equal intervals, resulting in a total of 45
values of r.g Or rmean in the PMF. This number was chosen using trial and error (1) to
ensure that the simplification that is brought by replacing the PDF with a PMF does not
compromise the accuracy in modeling the uncertainty in rig and rmean for both the prior
and the updated distributions and (2) to minimize the computational effort as much as
possible. It should be noted that runs based on a number of divisions that is greater than
45 did not show noticeable changes in the prior and updated reliability. Thus, for the
specific mean load considered in this paper (200 tons), a fixed interval width of
approximately 20 tons will be used in modeling the PMF for the mean capacity and

about 15 tons for the lower-bound capacity.
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As an example, required PMF range and resulting interval width for two

typical factors of safety (2 and 3) are given in Table 2.2 where:

e =z stands for the number of standard deviations to be added to the minimum value in

the selected range,
e o stands for the standard deviation, ¢ = &. i, and

e the interval width w is calculated as w = z. & /45.

Table 2. 2 - Examples of input data for generating PMF using MATLAB when the parameter to update is
a) the mean of the pile capacity and (b) the lower-bound of the pile capacity

(a) (b)
6 Of mean W 6 Of Imean w
FS (tons) z (tons) FS (tons) z (tons)
2 40 22 19.6 2 40 18 16
3 60 15 20 3 60 12 16

The values of the PMF range will be those corresponding to the centers of the
corresponding w intervals, and the associated probabilities (probability mass densities,
PMD) are calculated as the cumulative probabilities between the boundaries of the
corresponding intervals. For example, for the mean pile capacity parameter:

o means=((i-1) w +(i) w) /2

e PMD(mean;) = o(()w) — o((i — 1)w), () referring here to the

lognormal cumulative distribution function.
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2.4 Approach 1 - Updating the Parameters of the Capacity Distribution

a. General concept of the updating

In order to investigate the effect of choosing alternative proof-load test programs on the

reliability of the pile, a MATLAB code was developed to return the updated PMFs and

the probability of failure (or reliability index) based on input proof-load test programs
and their results. In the analysis, the proof-load test program parameters that will be
changed are:

1. The level of the proof load relative to the design load which is assumed as the mean
load in this paper, and defined in the MATLAB code as proof = a.DL where a
will be taking values of 1, 1.5, 1.75, 2, 2.5, and 3 and DL is the design load.

2. The number of proof-load tests, n which refers to the total number of proof-load
tests including the successful and failed tests. The term “successful” indicates that
the pile passes the test without failure while the test is considered “failed” when
pile failure occurs at the proof load level. In the code, the number of successful
tests is referred to as k and the number of failed tests as(n — k).

3. The magnitude of the design factor of safety, FS. In our analysis, we will be
concerned with the following magnitudes: 1.75,2, 2.25, 2.5, 2.75, and 3.

In order to isolate the effect of the lower-bound capacity from the mean capacity and to

highlight the importance of the lower-bound capacity on the design of the piles at the

site, the updating process for a given proposed load test program will be conducted
according to three ways of analysis:

1. The updating process will first be conducted by updating the mean capacity only.

2. The analysis is repeated for the case where the lower-bound capacity is updated

only.
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3. Finally, the updating will be done for the two parameters simultaneously. In this
case, the combined effect of the mean and the lower-bound is studied according to
a joint probability model. The prior and updated joint PMFs of the mean and the
lower-bound capacities in this case are used to calculate prior and updated
marginal PMFs of the two parameters.
Accordingly, three separate MATLAB files will be created; the corresponding
algorithms will be based on the Bayesian updating mathematical tool as described in the

next section.

b. Bayesian Updating

When a limited number of proof-load tests are conducted on a small percentage of
foundations at a site, Bayes’ Theorem (Eq. 2.1) could be used to update the probability
distribution of the model parameters for a given set of data such that:

Lig|®)r5 (@)
L[__:L[E@ )5 (& i, 42,

f,i,lg 1¢f’|§:| = r

o =10

@.1)

e =]

Where fﬂE[&:F] and 13 (@) are the updated (given the new data £ ) and prior joint

distributions of the model parameters, & , L{§|&>] is the likelihood function,
+ar +am = P . I -

and J_ J_ LI,_5|:I>] fz|® P4, s anormalizing constant. The assumption that the

prior distributions of the mean and the lower-bound ri g are modeled using probability

mass functions instead of probability density functions facilitates the solution of

Equation 2.1.

For illustration purposes, consider the case where the lower-bound is to be

updated, if “n” proof-load tests are conducted using a proof-load level rproor, and if all
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the piles are able to withstand the proof load (n in this context refers to the number of
positive tests), the prior probability distribution of the lower-bound capacity can be

updated such that:

n

@ In rlpl‘OOf -1R _(I)(m I’LB—ﬁ.RJ
1 SR SR

Py (rLB)
17®(In ne 7/1R ] Mo VLB
¢R
P, (rB) = ;
. q{lnrpr?f —ZRJ_(D[IangB—ARJ
R R
1- P ;
2 1af P01 e (3 9)
¢R

where p (r)and P’ (r,) are the prior and updated lower-bound probability mass

functions respectively and Ar and &g are the parameters of the lognormal distribution
which are calculated as a function of the mean and coefficient of variation of the
resistance. The updated distribution of the lower-bound capacity is then used to
calculate an updated estimate of the reliability of the foundations at the site. It should be
noted that Equation (2.2) is only illustrative since it assumes that rmean is deterministic
and r.g is the random parameter that is being updated. In reality, rmean in this thesis is
assumed to be also a random parameter that follows a given PMF. As a result, Equation
2.2 needs to be amended to take that into consideration by adding the contribution of all
possible values of rig (in the likelihood function and in the normalizing constant) and
weighing them by their respective probabilities (evaluated from the prior PMF of rmean).
The same principal is used to update rmean instead of rig and in updating rmean and ros

together.
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In MATLAB, a double loop operation system was built in order to account for
the contribution of all the possible values of both the mean and the lower-bound
capacity to the likelihood and the normalizing constant. For the case of updating the
lower-bound, the likelihood, defined as the probability of getting a certain poof-load test

result € given a certain lower-bound value j will be calculated in the inner loop as:

=45

o p (¢/LBj) = E:':i p(e / LB; /[ mean;) X p(mean;) (2.3)
Note that, for each modeled random parameter, the prior and updated PMFs will be
associated with 45 specific values of the parameter. The normalizing constant will be

then calculated in the outer loop as:

e k=3T"7p(e/LB)Xp(LB) (2.4)

o For the joint probability problem, the prior joint probabilities or PMDs are
defined as p(mean,, LB;) = p(mean;) X p(LB;) then we will be updating
them using Bayes’ theorem by weighing with probabilities of all possible

values of mean and lower-bound.

c. Formulation of the Reliability Problem

For the case where a truncated lognormal distribution is used to model the capacity, r,
and a conventional lognormal capacity is used to model the load, s, the probability of

failure pr could be calculated as:

q{lns—lR]_@[lanB_gRj

_OO SR ¢R Ins—Ag i o

Pf—_([ 1_¢(W2J @{ &s jSJdS (- p) (2.5)
SR
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where ®() is the standard normal cumulative distribution function, ¢() is the standard
normal probability density function, and f is the reliability index. The probability of
failure in Equation (2.3) is for one combination of r.g and rmean and is calculated using
numerical integration. For the case where rg and rmean are random model parameters,
the total probability of failure will be obtained using the theorem of total probability by

incorporating all the probability of failure for all combinations of r.g and rmean.

2.5 Approach 2 - Prior Statistics of the Pile Capacity

In approach2, the uncertainty in the pile capacity is modeled by a conventional
lognormal distribution (not a truncated distribution) with (1) a deterministic coefficient
of variation that represents the uncertainty due to spatial variability in pile capacity in a
given site and (2) an uncertain mean capacity that incorporates the model uncertainty of
the pile capacity prediction method. This model for the uncertainty of pile capacity was
adopted by Zhang (2004) and is based on the principal of isolating the model
uncertainty (reflected in the mean resistance) from the uncertainty in the pile capacity
due to spatial variability in a given site (reflected in the coefficient of variation of the
pile capacity at the site). The model adopted by Zhang (2004) does not include the
lower-bound capacity in its formulation.

Since the concept of the lower-bound capacity as presented in Gilbert et al.
(2005) and Najjar and Gilbert (2009) is targeted primarily at reducing the uncertainty in
the pile capacity predictions of available models, the lower-bound capacity in approach
2 in this thesis will be incorporated in the distribution of the mean capacity (rmean) by
truncating the left-hand tail of the distribution of the mean at the assumed lower-bound

capacity. Similar to approach 1, the lower-bound capacity (r.g) in approach 2 will be
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assumed to be a random variable to account for uncertainties in the models used to
predict the lower bound and to account for the effect of spatial variability on the
predicted lower-bound capacity.

As a result, both the mean capacity (rmean) and the lower-bound capacity (r.s)
are assumed to be random variables (model parameters) following a lognormal
distribution. The coefficient of variation of the mean of the pile capacity rmean Will be
assumed to be equal to 0.4 while the coefficient of variation of the lower-bound
capacity (rus) is assumed to be equal to 0.2. What remains is the coefficient of variation
of the distribution of the pile capacity (covr), which reflects the uncertainty due to
spatial variability of the pile capacity in a given site. Based on data presented in Zhang
and Tang (2002) from pile load tests that were conducted in the same site (done for
several sites), it could be shown that the coefficient of variation of pile capacities in a
given site is expected to be between 0.1 and 0.2, with the upper bound being a more
realistic and conservative estimate of the uncertainty. In this thesis, the base case that
will be investigated will involve a (covy) of 0.2. The sensitivity of the results to the
assumed value of (covr) will be also be investigated. Table 2.3 summarizes the prior

statistics corresponding to approach 2.

Table 2. 3 - Statistics of Model Parameters - Approach 2

Design Parameter Mean, p Coefficient of Variation, &
Load, S us = 200 tons 0.15
Mean of Pile Capacity, rmean FS.us 0.4
Lower-Bound of Pile Capacity, r.g X.FS.us 0.2
Coefficient of Variation of Pile Capacity, & 0.2 -

Note: FS is the mean factor of safety (ratio of mean capacity to mean load) and x is the ratio of the mean lower-
bound capacity to the mean of the mean pile capacity.
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A comparison between the probabilistic models adopted in approach 1 and approach 2
for modeling the uncertainty in the pile capacity is presented in Fig. 2.2. The main
differences between the two approaches are the following:

1. In approach 1, the model uncertainty in pile capacity prediction models is
considered the basis for the uncertainty in the pile capacity, whereas in approach 2, the
model uncertainty is assumed to be representative of the uncertainty in the mean pile
capacity.

2. In approach 1, the uncertainty in the pile capacity resulting from spatial variability
of soil properties with a given site is assumed to be implicit in the coefficient of
variation of the pile capacity, whereas in approach 2, spatial variability is explicitly
accounted for by assuming that the pile capacity distribution in a given site is modeled
by a coefficient of variation that models the uncertainty due to spatial variability.

3. In approach 1, the lower-bound capacity is used to truncate the pile capacity
distribution while in approach 2, the lower-bound capacity is used to truncate the tail of
the distribution of the mean pile capacity. The other sources of uncertainties (those
related to the determination of the soil properties, to pile testing procedures and
instrumentation, and to the interpretation of the pile capacity from the load-settlement
curves) are accounted ror through the coefficient of variation of the pile capacity (ér =

0.2). Prior statics data of the lower-bound are the same as in the first approach.
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(a) Approach 1 (b) Approach 2
e Pile Pile
o Capacity Capacity
0 200 400 600 800 1000 0O 200 400 600 800 1000
Pile Capacity, r Pile Capacity, r
Lower-Bound (a) Approach 1 Lower-Bound (b) Approach 2
Capacity Capacity
&: Mean &'\.
wo ’." '. Capacity .!
e o Mean
HE Capacity
T = T T T . m
0 200 400 600 800 1000 O 200 400 600 800 1000

F'mean OF I F'mean OF I

Figure 2. 2 - Probabilistic models of pile capacity for (a) Approach 1, and (b) Approach 2

It should be noted that the probabilistic model for pile capacity as assumed in approach
2 is relatively similar to the model adopted by Zhang et al. (2004), where the mean of
the capacity distribution is updated based on proof-load tests results. In one of the
example, Zhang et al. (2004) assume that the mean pile capacity for the case where the
pile capacity is predicted using SPT-based methods (Meyerhof 1976) is modeled by a
coefficient of variation of 0.5 while the within-site variability of the pile capacity was
assumed to be 0.2. As mentioned previously, previous studies (including the work done
by Zhang and his colleagues) do not incorporate the lower-bound capacity into the pile
capacity mode. The incorporation of the lower-bound capacity in this study represents
an essential improvement in the model relative to available models. The current work

will assess the effectiveness of each of the two approaches with regards to the results of
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the updating exercise to decide on the superiority of one method with regards to the
other. The importance of incorporating a lower-bound in such type of reliability

problems for both approaches will be emphasized.

2.6 Approach 2 - Probability Models

As in the first approach, the model parameters to be updated based on proof-
load test results are the mean and the lower-bound of the pile capacity at a given site
using probability mass functions (PMFs).The same code will be used for establishing
the new MATLAB algorithms for approach 2.Three new MATLAB files were
established to conduct the reliability calculations according to the new approach for the
purpose of updating (1) the prior PMFs of the mean of the pile capacity (2) the prior
PMFs of the lower-bound capacity and (3) prior joint PMFs based on proof-load test
scenarios. Several runs were done to determine the number of standard deviations to be
added to the first value in the range of the values of the random parameter to be
updated. As stated before, these numbers will be dependent on the used factor of safety.
Table 2.4 shows the number of standard deviations to be added to the first value in the
PMF range when updating the mean, then the lower-bound for factors of safety of 2 and
3. In terms of the number of divisions in the range of the parameter to be updated, 90
divisions (n1=90) will be assigning to the distribution of the mean capacity and 45
divisions (n.=45) for the distribution of the lower-bound. Thus, for the specific mean
load considered in this paper (200 tons), a fixed interval width of approximately 20 tons
will be adopted for the mean capacity and about 10-15 tons for the lower-bound
capacity, given that these numbers satisfy both the accuracy in the prior and updated

reliabilities and the adequacy in modeling uncertainties in the lognormal distributions.
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Table 2. 4 - Examples of input data for generating PMFs using MATLAB when the parameter to be

updated is (a) the mean of the pile capacity and (b) the lower-bound of the pile capacity

(@) (b)
6 Of I'mean w 6 Of Imean w

FS (tons) z (tons) FS (tons) z (tons)
2 160 12 21 2 40 10 9
3 240 8 21 3 60 10 13

2.7 Approach 2 - The Updating Process

As previously stated, the updating of the pile capacity distribution will be
using Bayesian technique, where the formulation of the updating exercise is based on
Equation 2.1. The main difference between approaches 1 and 2 is the fact that the
lower-bound in approach 1 is used to truncate the pile capacity distribution, whereas in
approach 2, the lower bound is used to truncate the distribution of the mean of the pile
capacity. This difference affects the formulation and solution of the Bayesian updating
process, as will be reported in the following sections. In approach 1, the likelihood of
observing a set of test results is calculated using the distribution of pile capacity which
is truncated at the lower-bound capacity, whereas in approach 2, the likelihood is
calculated from the non-truncated capacity distribution which does not explicitly
include the effect of the lower-bound capacity. The likelihood is indirectly affected by
the presence of the lower-bound capacity which only affects the distribution of the mean
pile capacity.

For the case of updating the mean of the pile capacity, prior and updated PMFs
will be associated with 90 specific values of the model parameter. Since the lower-
bound capacity is used to truncate the distribution of the mean pile capacity in approach

2, the two parameters are considered to be statistically correlated and not independent.
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For each possible value of the lower-bound capacity in the PMF of the lower bound, the
probability mass function of the mean pile capacity will be conditional on the lower
bound. Thus, in order to get the prior probability of each mean capacity value (i), we

have to account for all the possible values of the lower-bound according to:
j=45
. Prior probability (mean;) = Z p(mean; /LB;) X p(LB;) (2.6)
=1

Where

& (iw |—&((i—1w)
1-2(LB; |

. p(mean,/LB;) =

Then, in order to get the updated PMDs of the mean, the likelihood and the normalizing
constant are calculated so that all the mean and lower-bound values are taken into
consideration through a double loop operation system.

For the case of updating the lower-bound, the effect of all the values of the
mean on a certain lower-bound value will be taken into account in the likelihood
function. In fact, probabilities of failure and success of a pile load test scenario depend
on the statistical characteristics of the pile capacity distribution, and thus on the value of
the mean. Accordingly, the likelihood expression for updating a determinate value of
the lower-bound will take into consideration all the possible values of the mean by

weighing with all their corresponding probabilities.
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CHAPTER 3

RESULTS AND ANALYSIS - APPROACH 1

3.1 Introduction

Based on the mathematical formulation devised in the previous chapter,
approach one for modeling the pile capacity distribution will be utilized in this chapter,
together with a Bayesian updating scheme, to update the prior pile capacity distribution
based on results from proof load testing programs. The target is to investigate the effect
of choosing alternative proof-load test programs on the reliability of the pile design and
the required factors of safety. The parameters that will be changed in the analysis are:
(1) the level of the proof load, rproof (relative to the design load which is assumed as

the mean load in this thesis, us = 200 tons),
(2) the number of proof-load tests, and
(3) the magnitude of the design factor of safety.

To isolate the effect of the lower-bound capacity from the mean capacity, the
updating process for a given proposed load test program will first be conducted by
updating the mean capacity only. The analysis is repeated for the case where the lower-
bound capacity is updated only. Finally, the updating will be done for the two

parameters simultaneously.

Given the properties of the statistical parameters shown in Table 2.1 in the
previous chapter, it could be shown that the required mean factor of safety would have

to be around 3.0 to achieve atypical target reliability index of 3.0 for the piles at the site.

26



If proof load tests are to be conducted on a limited number of piles at the site, the
required mean factor of safety could be reduced provided that the majority of the tests

are successful.

3.2 lllustration of the Updating Process

To illustrate the updating process utilized in approach 1, it is assumed that 15
statistically independent proof-load tests of up to 2 times the design load are conducted
on 15 piles that are designed and constructed at a reduced mean factor of safety of 2. If
the tests were successful, the results of the load test program could be used to update the
capacity distribution of the piles at the site. This is illustrated in Figs. 3.1a, b, and c
where the results of the testing program are used to update the probability mass
functions of the mean capacity alone, the lower-bound capacity alone, and the joint
PMF of the mean and the lower-bound capacity, respectively.

Results in Fig. 3.1 indicate that the impact of the successful proof load tests is
to shift the distributions of both the mean capacity and the lower-bound capacity to the
right. In other words, the probabilities of relatively low values of the mean and lower-
bound capacities decrease, while the probabilities of the higher values increase as a
result of the updating process. The shifting of the mean and the lower-bound capacity to
the right is expected to be translated into improvements in the reliability index and
reductions in the probabilities of failure of the piles at the site, thus allowing for the
utilization of lower factors of safety for a given level of reliability.

Further analysis of the data on Fig. 3.1 indicates that when the updating
process is conducted on the joint PMF of rmean and rig, the major thrust of the updating
process is on updating the lower-bound capacity rather than the mean. This observation

could be explained by two facts. First, the uncertainty in the prior distribution of rig
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(6Le=0.2) is larger than the uncertainty in the prior distribution of rmean (6mean =0.1). This
makes the lower-bound capacity a more favorable parameter for updating. Second, the
likelihood function is expected to be more sensitive to changes in the lower-bound
capacity (clearly illustrated in Fig. 2.1) than the mean capacity, particularly for values of

r.e that exceed 0.4 to 0.5 of the mean capacity, as is the case in this problem.

0.3
(a) Updating Mean Capacity Only

. Updated PMF of Mean Capacity
0.2 Prior PMF ?f (15 successful Proof-Load Tests
Mean Capacity up to 2 x Design Load)

T .

0.1 -

Probability Mass Density

0.0 -
225 303 381 460 538 616 694

Mean Pile Capacity (tons)

Figure 3.1. a - Updating the Probability Mass Functions of rmean and rig (15 proof load tests,
Ioroof = 2 X Design Load, FSmean = 2.0) — Updating Mean Capacity only

0.3
(b) Updating Lower-Bound Capacity Only Updated PMF of
Lower-Bound
Prior PMF of Capacity
02 1 Lower-Bound (15 successful Proof-
Capacity Load Tests up to 2 x

Design Load)

0.1 -

Probability Mass Density

0.0 -

64 128 192 256 320 384 448 512 576

Mean Pile Capacity (tons)

Figure 3.1. b - Updating the Probability Mass Functions of rmean and rig (15 proof load tests,
Moroof = 2 X Design Load, FSmean = 2.0) — Updating Lower-Bound Capacity only
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Probability Mass Density

Probability Mass Density

For the case considered in Fig. 3.1, the mean design factor of safety was assumed to be

0.3

(c) Updating Mean and Lower-Bound Capacity
Prior Marginal PMF of Updated Marginal
0.2 { Lower-Bound Capacity PMF of Lower-
Bound Capacity
\ (15 successful Proof
Load Tests up to
0.1 2 x Design Load)
0.0 -
64 128 192 256 320 384 448
Lower-Bound Pile Capacity (tons)
0.3
(c) Updating Mean and Lower-Bound Capacity
Updated Marginal PMF of Mean Capacity
0.2 { Prior Marginal (15 successful Proof-Load Tests up to 2 x
PMF of Mean Design Load)
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0.0 - — T T
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Figure 3.1. ¢ - Updating the Probability Mass Functions of rmean and rg (15 proof load tests,

Moroof = 2 X Design Load, FSpean = 2.0) — Updating Mean and Lower-Bound Capacity

equal to 2.0. For the prior scenario (assuming no load tests are conducted), this
relatively low factor of safety results in a relatively small and virtually unacceptable
reliability index that is slightly less than 1.9. When 15 successful proof load tests with
rproof €qual to twice the design load are conducted, the distribution of pile capacity at the

site is updated through the PMFs of rmean and rig as indicated in Fig. 3.1. The positive
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effect of the updating process is reflected in improved values of the reliability index as

indicated in Fig. 3.2.

3.3 Updated Pile Reliability for Different Proof-Load Test Scenarios for
FSmean = 2.0

For the specific case of the 15 proof load tests that are conducted to twice the
design load and assuming a factor of safety of 2.0, results on Fig. 3.2 indicate that the
reliability index increases from its prior value of 1.9 to values of about 2.2, 2.56, and
2.86 for cases where the mean capacity is updated alone, the lower-bound capacity is
updated alone, and both the mean and the lower-bound capacity are updated together,
respectively.

Results on Fig. 3.2 indicate that the effect of almost all the proof-load test
programs is to increase the reliability compared to the case where no proof-load tests are
conducted. As expected, the reliability index generally increases as the number of proof-
load tests increases and as the proof-load level increases. Results on Fig. 3.2a indicate
that utilizing the results of the proof-load tests to update rmean, results in relatively small
increases in the reliability index. For example, the reliability index increases from
around 1.9 (for the case where no proof tests are conducted) to a maximum of about 3.0
(2.95) for the case where 30 tests are conducted to up to 3 times the design load. On the
other hand, results on Fig. 3.2b indicate that updating the lower-bound capacity results
in significant increases in the reliability index, with maximum values exceeding 6 for
the largest number of tests and the highest proof-load levels.

These results are significant because they indicate that for the probabilistic
model of the pile capacity that was adopted in approach 1, the results of a proof-load

testing program could be more efficient at updating the lower-bound capacity than the
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mean capacity. The results on Fig. 3.2c where the proof-load tests were used to update
the joint PMF of the mean and lower-bound capacity confirm this observation since the
updated marginal PMFs indicate that the lower-bound capacity governed the reliability
index since it was the most affected by the updating process compared to the mean
capacity.

A general comparison between the results on Figs. 3.2b and 3.2c indicates that
updating rmean and rig together (Fig. 3.2c) generally results in slightly higher values of
the reliability index compared to the case where only ri g is updated. However, this
observation is reversed for the few cases where the calculated reliability index was very
large (generally greater than 4.0), where higher reliability indices were calculated for
the case where only r.s was updated. From a physical standpoint, this observation might
not be logical and is expected to be attributed to inaccuracies in the numerical
computations and assumptions which could only be evident at such small values of the
probability of failure and which are not expected to be relevant at typical target risk

levels for foundation design (target reliability indices ~ 3.0).

3.4 Factor of Safety vs Reliability for Different Test Programs

Since the main objective of this thesis is to study the effect of choosing
different proof-load test programs on the required factor of safety for piles, the target
factor of safety needed to achieve target reliability indices of 2.5, 3.0, and 3.5 for the
different proof-load testing programs considered in this study was calculated and plotted
in Figs. 3.3a, 3.3b, and 3.3c, respectively. The results in Fig. 3.3 show that different
combinations of factor of safety, proof-load level, and number of proof-load tests could

be selected to achieve the desired level of reliability.
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For cases involving foundation systems that are redundant (example, large pile groups),

it has been shown that the added redundancy allows for reducing the target reliability

index of the individual foundation without compromising the reliability of the
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foundation system. For a reduced reliability index of about 2.5, results on Fig. 3.3a
indicate that no load tests are required to achieve the target reliability index if mean
factors of safety that are greater than 2.5 are adopted. However, further reduction in the
required factor of safety could be achieved with proof-load testing. For example, the
factor of safety could be reduced to 2.0 by running 9 tests up to 3 times the design load,

or 15 tests up to 1.5 times the design load.

For cases where the desired level of reliability is required to be higher than the
typical acceptable reliability levels (example, sensitive structures, heavily loaded
foundations with no redundancy, etc.), reliability indices that are in excess of 3.0 may
be desired. Results on Fig. 3.3c indicate that if a target reliability level of 3.5 is desired,
the required number of proof-load tests and the level of the proof loads will need to be
higher compared to the previous cases where the reliability index was lower. As an
example, one possible design scenario could involve the use of a factor of safety of 3.0.
To achieve the desired reliability level with this design scenario, the designer has the
option of using a test program consisting of 4 load tests up to 3 times the design load or
20 load tests up to 1.5 times the design load. Another design scenario could consist of
using a reduced factor of safety of 2.0. In this scenario, the designer could choose a
program consisting of 15 tests conducted up to 3 times the design load or 43 tests
conducted up to 1.5 times the design load. Other combinations of design scenarios and

load testing programs could also be selected to achieve the same reliability level.

3.5 Effect of Failures on the Updated Reliability
In all the results and observations presented in the previous sections of this

chapter, it was assumed that all the tested piles survived the proof-load tests. In reality,
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a proof load testing program could witness a number of foundation failures during its
implementation. The impact of these failures could be incorporated in the updating
methodology presented in this thesis by modifying the likelihood function to reflect
both survivals and failures. When a number of piles fail during a proof-load test
program, the updated probability of failure is expected to increase compared to the case
where all the piles survive the proof tests. With a large percentage of failed piles, the
updated distributions of the mean pile capacity and lower-bound capacity could shift to
the left, resulting in updated probabilities of failure that are even greater than the prior

probability of failure (Zhang, 2004).

To study the impact of pile failures on the updated capacity distribution and
resulting reliability index, the case is considered where 10 pile load tests are conducted
resulting in either 0, 3, or 8 failures respectively. In this illustrative analysis, the proof
load level is taken as 2 times the design load and the design factor of safety is
considered to be 2.0. Results of the updating process indicate that the updated reliability
index increases from 1.91 to 2.44 when all the tests are successful. When 3 out of 10
piles fail during the tests, the reliability index still increases compared to the prior value
but only slightly, with a computed 3 of 2.11. When 8 tests are assumed to fail, results of

the updating process indicate that 3 decreases to a low value of 1.74 (smaller than the

prior B) due to the effect of the pile failures.

To shed light on the mechanism behind the impact of failed tests on the
reliability, the prior and updated marginal PMFs for the mean and the lower-bound
capacity for the cases of 0, 3, and 8 failures are plotted on Figs. 3.4a, b, and c. Results
on Fig. 3.4 indicate that the updated distributions for both the mean and the lower bound

capacity shift to the left as the number of failures increase. For the case with 8 failures,
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the updated PMFs of the mean and the lower bound shift to the left excessively, making
the updated distribution fall to the left of the prior distribution. This explains the drop in

the reliability index to values that are smaller than the prior in this particular case.
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The results on Fig. 3.4 illustrate the impact of failures on the updated capacity
distributions for a particular case. To investigate the impact of different failure scenarios
on the updated reliability of the pile design, several design scenarios (as reflected in the
assumed mean factor of safety), several proof-load testing programs (as reflected in the
number of proof-load tests), and several alternatives for the results of the proof-load
tests (as reflected in the number of failed piles) were considered. The mean factor of
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safety was varied from 2.0 to 3.0 and the updated reliability indices for test programs
involving 5, 10, 20, and 30 proof-load tests that are conducted up to twice the design
load was calculated. For each proof-load test program considered, the analysis was
conducted for the cases where no failures occurred and for 5 other cases whereby a
certain percentage of the test piles was assumed to have failed. The reliability indices
that are associated with these cases are presented in Fig. 3.5 together with the reliability
indices of the base case whereby no test program is implemented at the test site. A

thorough analysis of the results on Fig. 3.5 leads to several interesting observations:

e as expected, for a given design scenario and a given proof-load test program, the
updated reliability index was found to decrease as the percentage of failed piles
increase,

e the magnitude of the relative decrease in the updated reliability index seems to
decrease as the number of failed piles increases,

e the design scenarios that involve relatively large factors of safety generally suffer the
most from the negative impact of the pile failures, and

e the percentage of failed piles that seem to result in updated reliability index that is
almost equal to the prior reliability index (i.e., the proof-load test program becomes
inefficient) seems to be in the range of 30 to 40% of the tested piles.

The above observations are significant in that they shed light on the impact of
failures of proof-load tested piles on the updated reliability of the pile design. In the
design phase of a project, and before the proof-load testing program is established, a
designer has to consider all the possible scenarios that could occur with regards to the
possible results of the proof load test program. The likelihood of occurrence of each

possible test result could be evaluated using the prior distribution of the pile capacity at
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the site. These likelihoods could be combined with the calculated updated reliability
indices for the different test scenarios and utilized within a decision making framework
at the design stage of the project to establish the load test program that would maximize

the value of information of the test program.
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3.6 Effect of the lower-bound to the mean capacity ratio

Since Approach 1 for updating the pile capacity distribution has been shown to
affect the lower-bound capacity distribution significantly, it is necessary that the
sensitivity of the results to the assumptions made in defining the prior lower-bound
capacity distribution be studied. In particular, the sensitivity of the results to the
assumed value of the ratio “x” of the mean of r_g to the mean of rmean is of importance.
The results reported in the previous sections of this chapter are based on an “x” value of

0.5, which is a realistic estimate of the mean of the ratio of rig to rmean as reported in the
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published literature (ex. Gilbert et al. 2005 and Najjar and Gilbert 2009b). The effect of
the ratio (x) of the mean lower-bound to the mean pile capacity on the prior and updated
reliability indices is illustrated on Fig. 3.6, where the ratio “x” was taken as either 0.4,
0.5, or 0.6 for comparison. Results are shown for realistic mean factors of safety of 2.0
and 2.5 and for the common case where rproof is taken as 2.0 times the design load. The
curves on Fig. 3.6 show the variation of the reliability index with the number of pile
load tests, which were assumed to be all successful in this sensitivity analysis.

Results of Fig.3.6 show that, prior to any updating, a higher value of the ratio
“x” results in a higher prior reliability index. This is expected since the probability of
failure and the reliability index are governed by the left-hand tail of the capacity
distribution (Najjar and Gilbert 2009), so a larger value for the lower-bound capacity
will truncate the left hand tail of the capacity distribution closer to the mean, resulting in
a lower probability of failure and thus a higher reliability index. Fig. 3.7, which is
published in Najjar and Gilbert illustrates how the probability of failure of a pile is
affected by the presence of a lower-bound capacity for different factors of safety. The
prior reliability indices corresponding to the three values of “x” are presented in Table
3.1. For FSmean = 2, the prior b increases from 1.65 to 2.24 as “x” is increased from 0.4

to 0.5. The equivalent increase in b for the case of FSmean = 2.5 is from 2.29 to 3.03.

Table 3. 1 - Prior Reliability Indices for Different Lower-Bound to Mean Capacity ratios

Prior B for FSmean= 2 Prior B for FSmean = 2.5
X (Fig. 3.6) (Fig. 3.6)
0.4 1.65 2.29
0.5 1.91 2.64
0.6 2.24 3.03
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The results on Fig. 3.6 indicate the ratio of the mean r.g to the mean rmean has a
significant impact on the resulting updated reliability index for a given number of
successful proof load tests. For a target reliability level, the required number of
successful proof load tests is expected to differ significantly depending on the assumed
value of “x”. This indicates that any effort that is aimed at recommending optimum load
test programs for a given pile design scenario and soil conditions should take into
consideration the ratio “x” as a major parameter that will affect the outcome of the

decision making exercise.

3.7 Effect of uncertainty in the pile capacity distribution

Another parameter that is also expected to play a role in the reliability-based
updating using approach 1 is the coefficient of variation of the capacity distribution
COVR, Which was taken as 0.4 in the previous sections of this chapter. The pile capacity
is modelled using a truncated lognormal distribution with a coefficient of variation
covr. Based on data collected from the literature (Zhang 2004), the covr is shown to
generally range between 0.3 and 0.5 for different pile capacity prediction models and
different soil types. In general, the smaller levels of uncertainty are for driven piles in

clay while the highest levels of uncertainty are for driven piles in sands.

To investigate the sensitivity of the problem to the assumed covr, the variation
of the reliability index with the number of pile load tests (assumed to be all successful)
was plotted on Fig. 3.8 for covr of 0.3, 0.4, and 0.5. Results were produced for different
proof load levels, rproof Starting from 1 times the design load to 3 times the design load.
All results pertain to an assumed typical FSmean 0f 2.0 (Fig. 3.8a) and FSmean 0Of 2.5 (Fig.

3.8b). Before discussing the results of the updating process, it is worth noting that for

44



the case of no load tests, an increase in the coefficient of variation of the pile capacity is
expected to translate into an increase in the probability of failure and a decrease in the
reliability index. This is clearly shown in Fig.3.8 for the cases were the number of tests
was zero, where the reliability index was shown to decrease from 2.16 to 1.78 (FSmean Of

2.0) and from 2.94 to 2.47 (FSmean Of 2.5) as covr was increased from 0.3 to 0.5.
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Figure 3.8. a - Effect of the uncertainty in the pile capacity for FS = 2

Teroof = 1XDL

o 3
o 4»_0—0——0—’.’_.?_*—4"_"
% A
52.5 ]M/**_“
g

% —8— cov,=0.3
E —o— cov, =04

—— cov,=0.5

M
o

10 20 30 40 50

(=]

Number of Successful Proof Load Tests

Mproof = 2XDL

Reliability Index, B

1 T T T T T
0 10 20 30 40 50

Number of Successful Proof Load Tests

Reliability Index, p

Reliability Index, 8

Moroof = 1.5XDL

—a— cov,=0.3
—e— cov, =0.4

—— cov,=0.5

10 20 30 40 50

Number of Successful Proof Load Tests

Moroof = 2.0XDL

—&— cov, =03
—— cov, =04

—— cov, =05

10 20 30 40 50

Number of Successful Proof Load Tests

71 Mproof = 3XDL

Reliability Index, p
i

—+— cov,=0.4

—a— cov,=0.3

—a— cov, = 0.5

0 10 20 30 40

Number of Successful Proof Load Tests

50

Figure 3.8. b - Effect of the uncertainty in the pile capacity for FS = 2.5

The results of the updating process on Figs. 3.8a and 3.8b lead to the following

observation: when the number of successful tests is less than about 20, it seems that the



computed reliability index is the lowest for a cov, = 0.5 and the highest for a cov = 0.3,
while the opposite is true when the number of successful proof load tests become larger
than 20. In addition, the updating process seems to be more effective for the cases were
the covy = 0.5, in the sense that the updated reliability index for these cases exhibited a
relatively faster increase as the number of tests increased compared to the cases with the
lower cov, of 0.4 and 0.3. Despite this relatively faster increase, the fact that the curve
corresponding to the cov, = 0.5 initiates from a lower prior reliability index compared to
the lower cov; dictates the observed behavior on Fig. 3.8, where the curve representing
the variation of § with the number of tests for cov, = 0.5 was found to be initially lower
than the other two curves, only to cross them as the number of tests increased.

It could thus be concluded that for a certain factor of safety, the improvement
in the updated pile reliability relative to the prior reliability is greater for greater degrees
of uncertainty in the prior pile capacity distribution. An explanation to this observation
from the Bayesian updating perspective could be that the high uncertainty associated
with the prior pile capacity distribution will allow for the data to be more effective at

updating the distribution.

3.8 Conclusions

Results of the analysis conducted in this chapter prove that proof-load testing
may be very efficient in improving pile reliability which indicates for engineers the
importance of incorporating programs about pile-load testing programs in the prior

stage of the design.

In general, the impact of conducting a number of successful proof-load tests is

to shift the distributions of the mean capacity and lower-bound capacity to the right,
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resulting in an improved reliability index and a reduced probability of failure. The
impact of the proof-load tests increases as the number of proof-tested piles increases
and as the level of the proof-load tests increases. In addition, the higher the required
target level of reliability, the more the successful tests that are needed and the higher the

associated safety factors.

The positive impact of proof-load test programs was found to decrease when
the results indicated a number of failed piles. The percentage of failed piles that seem to
result in an updated reliability index that is almost equal to the prior reliability index
(i.e., the proof load test program becomes inefficient) seems to be in the range of 30 to

40% of the tested piles.

Note that the analysis developed in this chapter are based on the statistical
model of approach 1 according to which the pile capacity distribution is assumed to
have a coefficient of variation of 0.4 and a lower-bound capacity characterized by cov
of 0.2 and a mean value of 0.5 times the mean pile capacity. Extra analyses were
introduced at the end of the chapter to see how changes in some assumptions as the
lower-bound to mean capacity ratio and the cov of the pile capacity may affect the prior
and updated reliability. Corresponding results show that these two parameters have an
effect on the prior reliability and on the value of information to add to the prior
reliability from a certain proof-lad test program. Interest about these observations will

be dependent on the kind of data available for a specific pile design project.
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CHAPTER 4

RESULTS AND ANALYSIS — APPROACH 2

4.1 Introduction

Approach two will be utilized in this chapter to update the pile capacity
distribution based on results from proof-load testing programs. In approach 2, the
lower-bound capacity is used to truncate the left-hand tail of the distribution of the
mean pile capacity as indicated in Chapter 2 of this thesis. As was the case for approach
1, the target of the analysis is to investigate the effect of choosing alternative proof-load
test programs on the reliability of the pile design and the required factors of safety. The
updating process for a given proposed load test program will first be conducted by
updating the mean capacity only, then the lower-bound capacity then the two

parameters simultaneously.

4.2 lllustration of the Updating Process

In the base case analysis, the coefficient of variation of the capacity
distribution covr, which reflects within-site variability, will be assumed to be equal to
0.2 as recommended by Zhang et al. (2002), while the coefficient of variation of the
mean capacity will be assumed to be equal to 0.4 to reflect model uncertainty in the pile
prediction method. Assuming 15 statistically independent proof-load tests of up to 2
times the design load on 15 piles that are designed and constructed at a reduced mean

factor of safety of 2, and assuming all the tests are successful, the prior distributions are
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updated as shown in Figs 4.1a, b, and c. The results of the testing program are used to
update the probability mass functions of the mean capacity alone, the lower-bound

capacity alone, and the joint PMF of the mean and the lower-bound capacity,

respectively.
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(c) Updating Mean and Lower-Bound Capacity
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The results a presented in Fig. 4.1 are interesting since they indicate that the effect of

conducting proof load tests in approach 2 is concentrated on the distribution of the mean

pile capacity and negligible with regards to the distribution of the lower-bound capacity.

For the case of 15 successful proof load tests of up to twice the design load, the updated
PMF of the mean pile capacity shifted significantly to the right, indicating that the

updated values of the mean pile capacity given the results of the assumed proof load test
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program are much higher than the prior values. In fact, there is almost no overlap
between the prior and updated PMFs of the mean pile capacity for the example under
consideration. On the other hand, the lower-bound capacity distribution did not show
any significant sensitivity to the results of the proof load testing program. This
observation may be explained by the fact that the uncertainty in the prior distribution of
rmean (Omean = 0.4) is larger than the uncertainty in the prior distribution of r.g (s = 0.2)
which makes the mean the parameter with the higher potential to be updated. In
addition, the fact that the lower-bound is truncating the distribution of the mean
increases this potential by eliminating the low values of the mean in the distribution.

In order to get a more detailed representation of the combined effects of
updating both the mean and the lower-bound, the prior and updated probabilities are
plotted as joint probability mass functions as shown in Figure 4.2. The representation of
the prior and updated distributions in three-dimensional PMFs is important for approach
2, since the two parameters of interest (rLg and rmean) are correlated and not statistically
independent. The correlation is related to the fact that the lower-bound capacity r.s in
approach 2 truncates the lower-tail of the mean capacity distribution rmean. This renders
the conditional probability distribution of rmean With respect to r g sensitive to assumed
values of rig. This is clearly illustrated in Figs. 4.3a and b, which show the prior and
updated conditional PMF of rmean for two specific values of the lower-bound capacity
(mainly 204.4 and 337.8 tons). It is interesting to note that although the lower-bound
capacity is clearly shown to truncate the distribution of the mean capacity in the prior
distributions, the fact that the updating process shifted the distribution of the mean to
the right and did not affect the distribution of the lower-bound renders the lower-bound

capacity ineffective in the updated probability distributions (Fig. 4.3a). This observation
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is important because it indicates that for approach 2, the impact of the lower-bound

capacity on the reliability after updating is expected to be relatively weak, contrary to

the results presented in Chapter 1V for approach 1.
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4.3 Updated Pile Reliability for Different Proof-Load Test Scenarios for
FSmean = 2.0

The effect of the updating process on the reliability index of piles tested at
different proof load levels and for different assumed number of tested piles is
investigated on Fig. 4.4 For the specific case of the 15 proof load tests that were
conducted to twice the design load and assuming a factor of safety of 2.0
(corresponding to results on Figs.5.1 to 5.3), the reliability index increases from its prior
value of 1.59 to 4.08 for the case where the mean capacity is updated alone and the case
where both the mean and the lower-bound capacity are updated together. When
updating the lower-bound alone, the reliability index remains almost constant.
Combinations of high proof-load levels and high numbers of tests result in updated
reliabilities as high as 5 and 5.5; however, the significant improvement in the reliability,
especially for high proof-load level, is achieved at the first 3 to 5 positive tests.

The main observations that could be made based on the results presented in the
previous paragraphs are summarized below:

(1) the lower-bound capacity does not seem to play a role in improving the
reliability index in approach 2.

(2) The impact of the load test program is reflected almost completely in the
updated distribution of the mean pile capacity.

(3) The updated reliability index seems to be very sensitive to the initial 5 proof
load tests. The sensitivity of the reliability index to the number of tests seems
to decrease as the number of successful proof load tests is increased further.

For example, for FS = 2 and proof load levels of 2 times the design load, the

reliability increases from 1.59 to 2.74 at the first positive test then to 3.4 at 3
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positive tests. Then, the rate of improvement in reliability decreases. The

reliability reaches 3.66 at 5 tests and 4.08 at 15 tests.
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Figure 4. 4 - Effect of Load Test Programs on the Reliability of Pile Design (FSmean= 2)
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These results indicate that for the probabilistic model of the pile capacity that was
adopted in this approach, the mean capacity governs the reliability index since it was the
major parameter to be affected by the updating process whereas the effect of the lower-
bound capacity on the updating seems to be negligible. This observation constitutes the
major difference between approach 2 and approach 1, where the results of the
probabilistic model of the first approach where affected significantly by the lower-
bound capacity. Moreover, the results of the second approach as compared to those of
the first approach indicate a high potential of saving in the number of positive tests
required to achieve a typical target reliability index. This will be further examined in

future sections of this chapter.

4.4 Factor of Safety vs Reliability for Different Test Programs

Figs. 4.5a, 4.5b, and 4.5c show plots for different combinations of design
factor of safety, proof-load level, and number of proof-load tests required to achieve the
desired level of reliability of 2.5, 3, and 3.5.As shown in the Fig. 4.5, no more than few
positive tests are required to achieve these levels of reliability according to the second

approach.

To get a target reliability index of 3.0 for relatively high proof-load levels (2.5
or 3 times the design load), no more than one positive proof-load test is required even
for a low factor of safety as 2. On the other hand, when the proof-load level is 1.5 times
the design load, 2 positive tests are required if we choose to use a factor of safety of 3,
and 7 tests if we choose to minimize the factor of safety to 2. Comparing results of the
two approaches show a large margin of minimizing the required number of tests in this
approach relative to the first one. For example, according to the results of the first

approach, in order to minimize the factor of safety to a value of 2 when the target
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reliability is 3, one possible proof-load test program is 12 tests up to 3 times the design

load, or even 27 tests up t01.5 x design load.

For a relatively low target reliability index of 2.5 (generally for redundant pile
foundation systems), results show that for any proof-load level greater than 1.5 times
the design load, no more than one positive proof-load test is required. In addition, no
tests are required when the factor of safety is 3. On the other hand, for a relatively
higher target reliability index of 3.5, a reduced design factor of safety of 2 could be
adopted with 28 successful low level proof-load tests of 1.5 times the design load. If the
poof-load level is increased slightly to 1.75DL, the number of positive proof-load tests
decreases to 9 if a reduced factor of safety of 2 is adopted. For the same case, the
number of successful tests with proof load level of 1.75DL could be reduced further to 4
tests, if a factor of safety of 3 is adopted. The above observations are limited to cases

where all the tests are positive. The effects of failures will be studied in the next section.

4.5 Effect of Failures on the Updated Reliability

The effect of pile failures on the updated marginal PMFs oOf rmean and rig is
studied in Figures 4.6a and 4.6b, respectively. For illustration purposes, results are
shown for the typical case were a reduced factor of safety of 2 is adopted and a total of
10 tests that are conducted at a proof level of 2 times the design load are considered in
the analysis. The prior and updated PMFs of the mean capacity for cases with no
failures, 3 failures (out of 10) and 8 failures (out of 10) are presented in Fig. 4.6a.,
while the prior and updated PMFs of the lower-bound capacity are presented in Fig.

4.6b.
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Results on Figs 4.6a (prior and updated mean capacity) lead to the following
observations: (1) when all the tests are successful (no failures), the updated PMF of the
mean capacity shifts to the right indicating higher reliability level in the updated

scenario. (2) when 3 out of a total of 10 piles are assumed to fail, the updated PMF of
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the mean capacity is still shifted to the right relative to the prior distribution, but to a
much lesser degree in comparison to zero failures. More importantly, the uncertainty in
the mean pile capacity seems to be reduced significantly compared to the prior
distribution. (3) for the case with 8 pile failures (out of 10), the updated PMF of the
mean capacity indicates that the position of the PMF is almost similar to the position of
the prior, but the uncertainty in the updated mean capacity is reduced significantly
compared to the prior. For the lower-bound capacity, results on Fig. 4.6b indicate that
the lower-bound capacity is not very sensitive to the updating process and to the number

of failed piles.

The impact of failures on the updated PMF of the mean capacity is translated
into an impact on the updated reliability index as indicated in Fig. 4.7 which shows the
variation of the updated reliability index with the number of failed piles and the
assumed factor of safety for tests conducted at twice the design load. For illustration,
the analysis is conducted for the cases of 5 tests, 10 tests, 20 tests, and 30 tests,
respectively. Results on Fig. 4.7 indicate that failures reduce the updated reliability
indices compared to the 100% successful case, with the reduction in the reliability index
being more significant as the number of failed tests increase. It could also be noted that
the effect of the design factor of safety on the updated reliability for an assumed number

of failed piles seems to be relatively negligible.
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A thorough investigation of the results presented in Fig. 4.7 indicates that for approach
2, the proof-load test program seems to be become inefficient at a percentage of failed
piles of about 60 to 80% of the tested piles. At this percentage of failed piles, the
updated reliability index becomes almost equal to the prior reliability index. For
comparison, the equivalent percentage of failed piles in approach 1 was 30-40% of the
total number of tested piles. These results are interesting since they indicate that for
approach 2, the pile load testing program will have a benefit even of 60 to 80% of the
piles fail. This could be explained by studying the updated PMFs of the mean pile
capacity in Fig. 4.6a. These PMFs indicate that even when the majority of piles fail, the
left hand tail of the updated capacity distribution which governs the reliability does not
extend to low values of capacity as is the case for the prior distribution. This could be
further explained by noting that the level of the proof load chosen in this illustrative
example is in the 400 tons (twice the design load). Even if some piles fail at this proof
load, the Bayesian approach still shows improvements in the left hand tail of the
distribution since from a statistical perspective, a failed proof load test indicates that the
capacity of the pile is less than the proof load level (400 tons). This means that the mean
pile capacity could have assumed values that are very close to 400 tons even if the piles
failed during the test. These values that are close to the value of the proof load (although
smaller than the proof load) could be considered to be an improvement in comparison to
very low values that exist in the tail of the prior distribution and which lead to very low

reliability indices in the prior distribution.
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Figure 4.7 - Effect of Pile Failures on the Updated Reliability Index

4.6 Effect of the lower-bound to mean capacity ratio

Results of approach 2 have shown that the effect of the lower-bound capacity
on the updating process is negligible. These results were based on an assumed lower-
bound to mean capacity ratio (x) of 0.5. In order to illustrate the importance of the effect
of this ratio on the results, the sensitivity of the results to the assumed value of x was

studied.

The effect of the ratio (X) on the prior and updated reliability indices is
illustrated on Fig. 4.8, where the ratio “x” was taken as 0.4, 0.5, or 0.6 for comparison.

The curves on Fig. 4.8 show the variation of the reliability index with the number of
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pile load tests, which were assumed to be all successful for a proof-load level of 2.0
times the design load.

Results show that the updated reliability index corresponding to a certain
proof-load test scenario is independent of the ratio (x). This ratio will only play a role
into determining the prior reliability where the prior reliability indices corresponding to

x = 0.4, 0.5, and 0.6 are respectively 1.43, 1.59, 1.78 for FS = 2 and 1.98, 2.2, 2.44 for

FS=25.
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Figure 4. 8 - Effect of the Lower-bound to the Mean Capacity Ratio for FS=2 and FS =2.5

4.7 Effect of uncertainty in the distribution of the mean of the pile capacity
Another parameter that is also expected to play a role in the reliability-based
updating using approach 2 is the coefficient of variation of the mean pile capacity,

which was taken as 0.4 in the previous sections of this chapter.

To investigate the sensitivity of the problem to the assumed covr, the variation
of the reliability index with the number of pile load tests (assumed to be all successful)
was plotted on Fig. 4.9 for covr of 0.3, 0.4, and 0.5. Results were produced for different

proof load levels, rproof Starting from 1 times the design load to 3 times the design load.
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All results pertain to an assumed typical FSmean 0f 2.0 (Fig. 4.9a) and FSmean Of 2.5 (Fig.
4.9b). Before discussing the results of the updating process, it is worth noting that for
the case of no load tests, an increase in the coefficient of variation of the pile capacity is
expected to translate into an increase in the probability of failure and a decrease in the
reliability index. This is clearly shown in Fig, 4.9 for the cases were the number of tests
was zero, where the reliability index was shown to decrease from 1.64 to 0.97 (FSmean Of

2.0) and from 2.45 to 2.00 (FSmean Of 2.5 ) as covr was increased from 0.3 to 0.5.

The results of the updating process on Figs. 4.9a and 4.9b indicate that for a
certain factor of safety, the improvement in the updated pile reliability relative to the
prior reliability is insensitive to the uncertainty in the prior mean pile capacity
distribution. Some sensitivity of the updated reliability index to the coefficient of
variation of the mean pile capacity is observed at very small number of load tests due to
the effect of the prior reliability index. Also, at a relatively high number of proof load
tests, the updated reliability index for the large prior COV of 0.5 seems to be slightly
higher than the smaller COVs. This is related to the Bayesian updating which affects
parameters with higher prior uncertainty levels more than parameters with smaller

uncertainty levels.
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4.8 Comparing Results for Approach 1 and Approach 2

Based on the results presented in Chapter 3 for approach 1 and this chapter for
approach 2, it could be observed that although the two approaches are common
approaches for modelling uncertainty in pile capacity and although the two approaches
result in relatively similar reliability indices for the prior analysis, the two methods
show very distinct trends in the updated distributions and the corresponding updated

reliability indices.

Two illustrate the difference between the two methods, graphs showing the
variation of the reliability index with the number of successful tests for the case of FS =
2 and proof load levels of 1.5, 2, and 2.5 the design load are presented in Fig. 4.10 for
approaches 1 and approach 2. Results on Fig. 4.10 indicate that the updating process for
approach 2 (with covr = 0.2 which is the case analysed in this chapter) is more effective
than approach 1 with regards to the resulting reliability level. It is clear that in approach
2, significant improvements in the reliability index are obtained at a relatively small
number of tests, with the rate of improvement decreasing dramatically as the number of
tests is increased. On the other hand, in approach 1, the increase in the reliability index
for a relatively small number of piles is very slow. Contrary to approach 2, the rate at
which the reliability index increases with the number of tests increases as the number of
tests increases. At a relatively large number of tests (approximately30 to 40), the two
curves converge indicating that the two methods become equally effective at updating
the reliability. The number of tests at which the two curves converge seems to decrease

at the level of the proof load increases (see Fig. 4.10).

This observed behaviour is mainly attributed to the fact that in approach 1, the

main thrust of the updating process is the lower-bound capacity while in approach 2, the
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main thrust of the updating is the mean of the capacity distribution. The slow rate of
improvement in approach 1 is due to the fact that the lower-bound capacity does not
affect the reliability except after a threshold value (see Chapter 3) after which the
updated reliability index becomes very sensitive to the value of the lower-bound. For
the relatively lower number of tests, although the lower-bound is updated, the values of
the updated distribution do no cross the threshold value at which these values become
effective. This causes a relatively slow rate of improvement in the reliability index as
the number of tests increase. On the other hand, results from approach 2 indicate that
the distribution of the mean capacity is very sensitive to the number of tests even when
the number of tests is very small (1 to 3 tests). The major improvements are obtained at
the lower range of the number of proof tests with improvement levelling out at higher

number of tests.

A thorough investigation of the curves on Fig. 4.10 indicates that the starting
or prior reliability indices for approaches 1 and 2 (with typical covr = 0.2) are not
exactly identical. To provide a one to one comparison between approaches 1 and 2, the
case where a lower within-site variability that is reflected with a cov, = 0.1 is considered
for approach 2 and the analysis repeated for all the cases analyzed on Fig. 4.10. The
curves corresponding to this case were added to Fig. 4.10 for comparison with the base
case in approach 2 where the covr = 0.2. An investigation of the curves on Fig. 4.10
leads to the following observations: (1) the prior reliability indices for approach 1 and
approach 2 with a reduced covr = 0.1 show a perfect match, (2) although the two
approaches start from the same point, the results of the updating process indicated an
immediate shift in behaviour for cases with proof load tests, with the shift being the

most evident for very small number of tests (1 to 5 tests), and (3) a comparison between
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the results of approach 2 for cov, = 0.1 and covr = 0.2 indicate that the updated
reliability index are sensitive to the assumed value of the within-site variability in pile
capacity. As expected, the case with the smaller within site variability (cov, = 0.1)
resulted in higher updated reliability indices compared to the more realistic base case
with a cov; of 0.2. Since published data show that the cov; is most likely to be close to
0.2 than 0.1, the results of the base case of cov, of 0.2 will be assumed to be more

representative of realistic within site variability data.
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4.9 Conclusions

In this Chapter, the results pertaining to the case where the prior capacity
distribution was modeled using approach 2 were presented. These results indicated that
the distribution of the mean capacity is the most affected by the updating process and
that significant improvements in the updated reliability index are obtained with a
relatively small number of tests, with the improvements leveling out at higher number
of tests. A comparison between the results from approach 1 and approach 2 indicate that
for a given number of successful proof load tests, the updated reliability indices from
approach 2 are higher than those obtained from approach 1, as long as the number of

tests is less than 30 to 40 tests.

As a result, it is recommended that approach 2 be adopted in any decision
making exercise that is aimed at providing a framework for selecting the number of
proof load tests and the level of the proof load based on a reliability analysis. The
results of this method are reliable and effective and are expected to lead to more

economical proof load test programs for piles.
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CHAPTER 5

DECISION MAKING

5.1 Introduction

In previous chapters, we have used results from different proof-load test
scenarios to update the pile reliability according to two different approaches.
Accordingly, we have been studying the effects of the number of the tested piles and the
proof-load level on the updated reliability. In this chapter, we will be constructing,
based on the second approach, a simple, logical, and practical decision-making
framework for choosing the number of proof-load tests and the magnitude of the proof
load that would maximize the value of information of a test program. Such analysis will
study the possibility of using lower design factors of safety while incorporating pile-
load test programs in the study and this will be based on the saving in total costs

associated with each program.

5.2 Decision Making Framework

With the mathematical formulation devised in approach 2 for updating the
probability of failure given results from proof load tests, a rational decision making
framework could be envisaged to facilitate the choice of a load test program that has the
maximum expected benefit to the project. The proposed framework is presented in this
section and is supplemented with a practical example that illustrates its use.

In the context of a decision analysis, the main decision alternatives that are

relevant to the problem at hand are (1) the proof load level rprof and (2) the number of
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proof load tests to be conducted, n. Since the decision regarding the optimal
combination of proof load level and number of tests has to be made prior to conducting
any real load testing in the site, the decision analysis will have to be based on a pre-
posterior approach (Ang and Tang 1984) that incorporates the different possible
outcomes of any given decision alternative. For example, consider one decision
alternative (among several other alternatives) which entails conducting 3 proof load
tests at 2 times the design load. The outcomes of such a test program could include four
possible scenarios: (1) all the piles will fail, (2) all the piles will survive, (3) one pile
fails and two survive, and (4) one pile survives and two fail. The likelihood of obtaining
any of the different outcomes 6 can be determined using the prior knowledge about the
pile capacity distribution at the site.

For each of the potential test outcomes that are associated with a given
decision alternative, the updated reliability index could be evaluated. The resulting
updated reliability index will depend on the outcome, with relatively high indices
expected for cases involving positive tests and relatively low indices for cases involving
failures. These reliability indices could be lower or higher than a target reliability index
that is set for the piles in the project. In the decision making framework that is proposed
in this paper, it will be assumed that the decision to be made following any potential test
outcome should involve a pile design with a typical target reliability index of 3.0. As a
result, outcomes where the updated reliability index is below 3.0 indicate that the
allowable capacity per pile (design load per pile) will have to be reduced in light of the
load test results. On the other hand, outcomes where the updated reliability index is
above 3.0 allow for an increase in the allowable capacity (design load) per pile in

comparison to the base case.
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The allowable pile capacity (design load) could be calculated by utilizing the
updated capacity distribution for that particular outcome and searching for the mean
load (design load) that would ensure that the target reliability level is achieved. For
example, for the test outcomes where the updating process resulted in reliability indices
that are greater than 3.0, the mean of the load distribution could be increased
systematically until the reliability index of 3.0 is achieved. The mean load that ensures a
reliability index of 3.0 is then selected as the new design load for the piles at the site.

The consequences that are associated with each possible test outcome for any
decision alternative could be quantified in light of the updated pile design load that
ensures a Prarget OF 3.0. From a practical design standpoint, any increase or decrease in
the allowable capacity per pile as a result of conducting the proof load tests can be
translated to (1) reduction/increase in the total number of piles required to support the
superstructure loads without changing the geometry of the piles, or (2)
reduction/increase in the geometry of the piles (length and/or diameter) without
changing the total number of piles required. In this paper, the consequences associated
with the outcomes of any decision alternative are assumed to be reflected in the total
number of required piles without resorting to any change in the pile length or diameter.
Any attempt to revise the length or diameter of the pile design as a result of the updating
process may be prohibitive since such revisions may require detailed knowledge
regarding the contribution of skin friction and end bearing to the updated design load. In
a pre-posterior decision analysis that is conducted in the design stage of the project, the
potential outcomes from proof load tests do not include enough information to allow for

revising the length or diameter of the piles with certainty.
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Based on the above, the consequences of any potential test outcome will be
reflected in the benefits/costs associated with reducing/increasing the required number
of piles to support the superstructure load without changing the geometry of the piles
under consideration. Inherent in this approach are the assumptions that the piles are
perfectly plastic and are loaded equally in the vertical direction. Despite of these
simplifying assumptions, this approach is considered practical and could be of value in
making decisions at the design stage of the project and even at the construction stage by
adopting a flexible construction sequence that will allow for adding or eliminating piles
at the site depending on the results obtained from the proof load test program which
could be implemented as the construction of the piles is underway.

To quantify the benefit associated with each possible test outcome in the
decision analysis, one could calculate the required number of piles to support the
superstructure load for each test outcome. For the case where the allowable capacity per
pile increases due to successful test results, the required number of piles decreases and
the opposite is true for outcomes in which the updated allowable capacity per pile
decreases. The financial benefit is reflected in the cost savings associated with this
reduction in the number of piles. On the other hand, there is a negative financial cost
that is associated with the cost of conducting the load test program alternatives and the
cost of replacing failed piles when relevant. The net benefit of any test outcome can be
calculated by subtracting the benefits due to reducing (or cost due to increasing) the
number of piles in the site from the costs associated with conducting the proof load tests
including the cost of replacing failed piles. The net benefit corresponding to a potential

outcome 4 of decision test alternative aj could be expressed as B(ai, 4).
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Once the net benefit of all the test alternatives and their associated potential

outcomes are calculated, the “expected” benefit E(B, )of each alterative load test

program a; can be calculated by multiplying the net benefit B(ai, 4) of each outcome by
the likelihood of occurrence of that outcome P(&) and summing the contributions of all

outcomes such that:
E(Ba.):_zn:B(ailgj)'P(gj) (.1)
j=1

The alternative pile testing program that has the highest expected benefit could

then be selected as the test alternative that has the highest value.

5.3 lllustrative Decision Making Example

To illustrate the practicality and value of the proposed decision making
framework, a practical design example that involves piles that are driven in a site
consisting of medium dense sand is considered. The pile dimensions and soil profile
utilized in the design example were adopted from Goble (1996). A similar design
example was used by Najjar and Gilbert (2009b) to illustrate the importance of
incorporating a lower-bound capacity in the design of driven piles. The pile design
adopted in this paper consists of closed-ended steel pipe piles with an outside diameter
of 355 mm and a length of 25 m. A simplified schematic of the soil profile at the site is
shown in Fig. 5.1. The predicted nominal axial capacity of a single driven pile is 1.8
MN (as calculated by the API method-API 1993) and the lower-bound is calculated in
Najjar and Gilbert (2009b) to be equal to 0.9 MN accounting to about 0.5 of the

nominal axial capacity.
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N
6m sandy silty clay, SPT N values ~ 6
/
12m medium — dense sand w. fine gravel, N values ~ 10 to 25
Y
N
7m medium coarse sand w. some gravel, N values ~ 20 to 30
A4

Figure 5. 1 - Illustrative soil profile for example case study (Goble 1996)

For the purpose of illustrating the decision making methodology, hypothetical
cases that involve different superstructure loads will be adopted. For simplicity, it will
be assumed that the superstructure load will be supported by a group of identical steel
pipe piles that will share the superstructure load equally. In addition, it will be assumed
that the piles are separated enough to eliminate any pile group effects that could affect
the efficiency of the pile group.

Since the design example involves the case of driven steel pipe piles in sands,
the coefficient of variation of rmean Was assumed to be equal to 0.5 (and not 0.4) as
reported in Gilbert, Najjar, and Choi (2005). In addition, the predicted ultimate capacity
of 1.8 MN was assumed to be equal to the mean of rmean Since the analysis of the
database assembled in Gilbert, Najjar, and Choi (2005) for driven steel pipe piles in
sandy soils indicate that the API (1993) method is relatively unbiased. Based on these
assumptions, if no pile load tests are to be conducted, a reliability-based analysis
indicates that a mean factor of safety in the order of 3.5 is required to achieve a target

reliability index of 3.0 for the piles at the site. As a result, the allowable capacity
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(design load) per pile could be estimated to be around 0.514 MN if no proof load tests
are to be conducted at the site. If the total load that is applied by the superstructure Ssuper

is given, the required number of piles could be calculated as:
Nrequired = Ssuper (MN) / 0.514 (MN) (5.2)

It could be argued that the required number of piles Nrequired COUld be reduced assuming
that a proof load pile testing program is implemented in the site. To limit the scope of
the analysis, it will be assumed that the load testing program will be conducted on piles
that have been designed with a reduced factor of safety of 2.0 as is the convention. The
decision framework will be limited to determining the optimum proof load level and the
optimum number of tests to be conducted. For simplicity, the number of pile load tests
to be considered as decision alternatives is 1, 2, 3, 5, 7, and 10 proof tests to be
conducted at load levels of 1.5, 2, and 2.5 times the design load or 0.75, 1.0, and 1.25
times the predicted capacity. These decision alternatives are presented in the context of
a simplified decision tree in Fig. 5.2. Detailed calculations pertaining to the case of the
test alternative that includes a proof load level of 2.0 times the design load are presented
in Fig. 5.2. For each of the alternative load test programs, the likely outcomes and their
associated likelihoods are presented.

For each of the test outcomes, the updated reliability indices were calculated
and presented in Fig. 5.2. For the case of the 3 tests, the reliability indices range from a
low value of 0.98 for the case with 3 pile failures to a high value of 3.5 for the case
involving 3 pile successes. Following the results of the updating process, the updated
allowable capacity per pile (design load per pile) is calculated for each outcome to
ensure a Prarget Of 3.0 (see Fig. 5.2). As an example, the revised allowable capacities per

pile for the different test outcomes for the case involving 3 proof load tests range from

80



0.47 MN to 1.03 MN for test outcomes with 3 failures and 3 successes, respectively. For
comparison, the allowable pile capacity that results in a target reliability index of 3.0 for
the case where no proof load tests are conducted is equal to 0.514 MN. Based on the
updated allowable capacity (design load) per pile Sdesign, the required number of piles

could be revised as:

N ’required = Ssuper (MN) / Sdesign (MN) (5.3)

If the cost of conducting a proof load test (Cr proof) IS assumed to be directly proportion
to the magnitude of the proof-load level, and if the cost of replacing (n-k) failed piles is
assumed to be simply equal to the actual cost of the failed piles (Cypile), the net benefit of

any test alternative and its associated outcomes could be calculated as:

B(ai ) 9] ): (N Irequired - Nrequired )'CPiIe - n'Cr,proof - (n - k)'CPiIe (54)
Where Cpile is the cost of manufacturing and installing a closed-ended steel pipe pile

with a diameter of 355 mm and a length of 25 m and Ci proof is the cost of conducting a

single proof load test.
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Likelihood Updated Designload Net Expected
of reliability per pile for  benefit Benefit
outcomes  index B=3.0 of Test
QOutcome
L=054 Pp=116 0.48MN $-119,020 }
$194,858
L=046 Pp=278 086MN $566,850
L=044 B=105 0.47MN §-174,987
L=020 P=231 074MN $412,285 > $232,138
L=036 P=324 095MN $637,008
L=039 p=098 0.47MN $-211,568
L=015 B=2.11 0.71MN $335176
L=014 B=274 0.86MN $532,941
L=032 B=350 1.03MN $674,289
L=0.34 PB=088 0.46 MN $-285,439
L=012 B=1.90 0.67MN $228,920
L=0.09 PB=238 077MN $384750 | $249,359
L=009 P=276 086MN $492,944
L=010 B=3.17 0.93MN $558,544
L=026 PB=383 111MN 5693711 J
L=030 B=082 0.46MN $-342,142 )
L=011 B=177 0.65MN $150,150
L=0.08 B=2.19 0.73MN §$288,588
L=006 PB=250 O0.80MN 5382319
L=006 B=278 0.87MN $457,917 > $232,025
L=0.07 PB=3.07 091MN $496,182
L=0.08 PB=342 0.99MN $568,347
L=024 P=405 116MN $687,444
L=027 B=076 045MN $-429,296 ~
L=0.09 B=163 063MN $42,267
L=006 p=202 070MN $173,140
L=0.05 P=228 076 MN $254,243
L=0.05 PB=250 0.80MN §$318,319
$191,190
L=005 B=270 0.86MN $385935 p
L=005 B=2.89 0.89MN $412,538
L=005 PB=3.10 0.91MN §445324
L=0.05 B=335 0.97MN $494,401
L=0.07 PB=3.68 1.04MN $556,605
L=021 B=430 1.21MN §$662,712 ~

Figure 5. 2 - Proposed decision tree for choosing the best proof load test program

It should be noted that the choice of a Brarget Of 3.0 is in line with typical target

reliability indices that are considered acceptable in the design of foundation systems. It

could be argued that lower target reliability levels (Btaget Of 2.0 or 2.5) could be
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considered acceptable for piles that carry the load as part of a system as is the case in
the example presented in this paper (see Zhang 2004). The proposed decision making
methodology allows for the selection of any target reliability index to be used as a basis
for making the decision. It is expected that the choice of the target reliability index will
have a significant impact on the optimal load test program.

For the example under consideration, it is assumed (as a base case analysis)
that (1) the total superstructure load (Ssuper) to be supported by the pile group is equal to
150 MN, (2) the cost of production and installation of a single closed ended steel pipe
pile is $ 5000, and (3) the cost of running a static proof load test on such piles is in the
order of $10 per kKN of test load. Based on these realistic base case assumptions, the
required number of piles Nrequirea prior to conducting any proof load tests can be
calculated to be around 292 piles and the net benefits of the different test outcomes for
the different decision alternatives are presented in Fig. 5.2. The calculated values of the
net benefit were used to calculate the “expected” net benefit of any decision alternative
using Equation (5). The resulting values are presented in Fig. 5.2 for the case involving
a proof load level of twice the design load. For this particular proof load level, the
results on Fig. 8 indicate that the alternative pile testing program that has the highest
expected benefit ($ 253,980) is that corresponding to n = 3. When the same exercise
was repeated for the other load test program alternatives that involve proof tests with
smaller (1.5xDL) and larger (2.5xDL) proof load levels, the expected net benefits of the
different decision alternatives changed and are presented in Fig. 5.3. The results indicate
that the proof-load test program alternative that is based on conducting 5 proof load
tests up to a proof load level of 1.5 times the design load yields the largest expected

benefit ($ 297,965) among all other test alternatives.
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Figure 5. 3 - Expected benefit of alternative proof load test programs

5.4 Discussion

The illustrative example presented above indicates that the optimal proof load
level for the case considered is only 1.5 times the design load. Given that a factor of
safety of 2.0 was adopted in the decision making exercise, the optimal value of the
proof load accounts to 0.75 times the mean pile capacity. This proof load value could be
considered to be relatively smaller than that typically used in practical projects whereby
a proof load level of 2 times the design load is usually adopted. The optimal proof load
level is also considered to be much smaller than 3 times the design load (1.5 times the
mean capacity) which has been shown by previous studies to have the highest impact in
updating the reliability of piles at a site.

To investigate the reasons leading to the choice of the relatively smaller proof
load level (0.75 times the mean capacity) as the optimal proof load, the following
analysis was conducted and portrayed in Fig. 5.4. The analysis involves the two extreme

proof load levels adopted in the case study (rproof = 1.5DL and rproor = 2.5DL). For each
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case, the factor of safety that is required to achieve a target reliability index of 3.0 given
the results of the proof load test (after updating) was calculated for all the test
alternatives considered (1, 2, 3, 5, and 7 tests) and for all possible test outcomes
(including failures and successes). The resulting factors of safety (see Fig. 5.4), when
compared to the factor of safety of 3.5 which is needed for the case where no tests are
conducted, reflect the benefit of the different test alternatives and associated outcomes.
Required factors of safety that are less than 3.5 indicate that the outcomes of the test

alternative will have a beneficial effect on the design and vice versa.

5.0 5.0
as el . ) it {b) Fyro0p = 2.5DL, Fppope = 1.250 0,
.5 4 ail. : ) : 5 A
=) 1 Fail : . . 5 Fail
6 4o |02 4o J1Fail. 2Fail. 3 Fail a7 Fail
no ’\ ' (0.72) (0.69) (059 (0.54) 0.51)
(=}
= 35 35 , S WL
R
v i
w 30 0 Failures 3.0
o (0.71}
g 25 2.5 4
g_ D Failures
. (0.61) . 2.0 028 ,
l:ch 2.0 {0.56) (0.51) o (0.28) -
1.5 1 1.5 1 (0.20) (0.07) 0,05
(0) Fyroos = 1.5DL, ¥ pyp0p = 0.75F Lo (0.17) (0.13) 012)
1.0 T T T T T T ' f f T T T T
0 1 y) 3 4 5 6 7 0 1 2 3 4 5 6 7
Number of Proof Load Tests Number of Proof Load Tests

Figure 5. 4 - Comparison between results of cases with (a) rproof = 1.5DL and (b) rproor = 2.5DL

A comparison between the required factors of safety for the two proof load
test cases (Figs. 5.4a and 5.4b) indicates that for any given test alternative and test
outcome, much smaller required factors of safety are needed for the case of the higher
proof load in Fig. 5.4b. The relatively lower factors of safety reflect the added value of

conducting proof load tests at a high level (2.5 times the design load) particularly for
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cases involving positive tests. However, the factor that is not reflected in the required
factor of safety and which will eventually render the smaller proof load level as the
optimal proof load level is the likelihood associated with each test outcome. These
likelihoods are shown on Fig. 5.4 (in parenthesis) next to each test outcome. For the
cases involving the smaller proof load level, the likelihood of having 100% positive
tests for all the tested piles ranges from 0.47 to 0.71. This associated range of likelihood
for the case of the higher proof load level is only 0.12 to 0.28. On the other hand, there
is 51% to 72% chance that all the piles will fail for the case of the higher proof load
level compared to 10% to 29% for the case involving the smaller proof load level. Since
the decision regarding the optimal proof load level is based on the “expected” benefit,
the likelihoods of successes and failures will play a significant role in the decision
making framework, rendering the smaller proof load level an optimal decision
alternative in the case analyzed.

The illustrative example that was analyzed in the previous section indicates
that the proposed decision making framework is project specific and reflects the
contribution of all the factors that affect the design process including: (1) the site-
specific soil profile and properties (reflected in the mean values of rig and rmeanand in
the coefficients of variation of rig, rmean, and r), (2) site specific loads (reflected in the
superstructure load ssuper), and (3) project-specific load testing parameters (reflected in
the cost of the pile Cpile and cost of conducting a load test Crproof). It is expected that the
proof-load test program that results in the largest expected benefit to the project would
depend on the above factors.

To illustrate the sensitivity of the decision to the superstructure load, cost of

manufacturing and installing piles, and the cost of implementing the load test program,
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the decision analysis of the illustrative example was repeated for several possible
scenarios where the total super structure load was varied from 25 MN to 300 MN. For
each load scenario, the cost of pile testing was taken as $10/kN (base case used in
example) and $20/kN, and the cost of the piles (including installation) was taken as
$2000, $5000 (base case) and $8000 per pile. For each scenario, the number and level of
proof load tests that would maximize the expected benefit were calculated. Results of all
tests indicate that the optimum proof load level was 1.5 times the design load. The

optimal number of proof load tests for each scenario is presented in Table 5.1.

Table 5. 1 - Sensitivity of Optimal Pile Load Test program to Input Parameters

Load(MN) No. of

Piles Optimal Number of Tests for Optimal Number of Tests for
Nireq , Cr,proof =10 $/kN Cr,prOOfZ 20 $/kN
required
Crile=$2000 Crile= $5000 Crile= $8000 Crile=$2000  Cpile=$5000 Crile= $8000
25 49 0 1 2 0 1 1
50 97 1 2 3 1 1 2
100 195 2 3 5 1 2 3
150 292 3 5 7 2 3 3
300 584 5 7 10 3 5 5

Interestingly, results indicate that the optimal number of tests is highly
dependent on the applied superstructure load, since high loads require a larger number
of piles. For example, for the smallest superstructure load considered (25 MN), the
required number of piles if no tests are to be conducted is 49 piles. The optimal number
of proof load tests for this case is only one test for the base case considered. If the
superstructure load is assumed to increase to 300 MN (584 piles required in this case),
the optimal number of tests increases to 7 tests. The sensitivity of the optimal number of
tests to the total number of piles in the site is expected since the benefits associated with

reducing the number of piles will outweigh the costs of implementing the load test
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program as the number of piles increase. It is interesting to note that the optimum
number of piles is found to be around 1% to 2% of the total number of piles required for
the case where no pile load tests (FS = 3.5) are conducted. These percentages are in line
with typical values that are currently being implemented in the pile design and testing
industry for test programs involving static proof load tests.

Results in Table 5.1 also indicate that the optimal number of proof load tests
depends on the cost of the pile and the cost of the proof load test. For the base case
example, as the cost of piles increases from $2000 to $8000 per pile, the optimal
number of tests increases from 1 to 3 for a superstructure load of 50 MN (97 piles in the
site) and from 5 to 10 tests for the case of a load of 300 MN (584 piles in the site).
These results are expected since they indicate that as the cost of manufacturing and
installing a pile increases, the benefits associated with the cost savings due to reducing
the number of piles increase, allowing for conducting more pile load tests. On the other
hand, as the cost of conducting the pile load test increases, the optimal number of tests
has to be reduced so as not to negatively affect the net benefit significantly. This is
clearly illustrated in Table 5.1 where the optimal number of tests is found to decrease
for cases involving test costs of 20 $/kN compared to the base case where the test cost is

10 $/kN.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

A rational decision making framework that is based on reliability-based
principles was presented in this thesis to address the current world-wide inconsistencies
that are inherent in the design of proof-load test programs for piles. The proposed
methodology will probably reduce the need for conducting unnecessarily costly pile
load test programs in some cases and insufficient or deficient load test programs in
others. In both cases, the proposed decision framework constitutes a tangible solution to
the problem of depleting resources due to the lack of rational methodologies for
designing pile load test programs. The methodology has been proven to be simple,
realistic, and efficient in quantifying the value of different test program alternatives and
could be used in the future as a basis for recommending international guidelines on the
selection of efficient pile load test programs in civil engineering design and
construction.

Several simplifying but realistic assumptions have been adopted in this study to
simplify the mathematical complexities that are associated with the Bayesian updating
and reliability calculations required. Another major simplifying assumption that was
required to quantify the benefits of the proof-load test alternatives involved the
assumption that all piles in the site are part of a group and that the superstructure load is

transferred to the piles equally. In addition, it was assumed that the major design
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decision following a pile load test program involves adding or reducing the number of

piles in the site, without any change to the geometry.

An illustrative example whereby the proposed decision making framework

was utilized to choose the number and level of proof load tests for steel pipe piles that

were driven in a site with medium dense sand resulted in the following observations:

The optimum proof load level that resulted in the maximum benefit to the
project was 1.5 times the design load or 0.75 of the ultimate pile capacity,
irrespective of the number of piles in the site, the cost of the pile, and the cost of
the test.

The optimum number of tests was found to be a function of the number of piles
(superstructure load) and the costs of the pile construction and testing.

As the number of piles in the site increases (due to large superstructure load), the
optimal required number of proof load tests also increase. Interestingly, the
optimum number of pile load tests is found to be around 1% to 2% of the total
number of piles required for the case where no pile load tests are conducted.
These percentages are realistic and in line with typical values adopted in the
industry.

Finally, the optimal number of pile load tests is found to increase as the cost of
pile construction and installation increases and as the cost of implementing the

pile test program decreases.

6.2 Recommendations for Future Work

Future work should be mainly focused on two main areas: (1) relaxing most (if

not all) of the assumptions and constraints that were made in the proposed decision
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framework with regards to the inability to introduce changes in the geometry (length or
diameter) of the pile in the current framework, and (2) developing the Bayesian

methodology to allow it to update the within-site variability in the pile capacities in a

given site.
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