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Title: Transfer Entropy Calculations Using GPUs for Determining Epilepsy Focus 

 

About one third of epilepsy patients do not respond well to drug treatment. For 

part of this population, surgical intervention is a promising solution whereby the brain 

tissue causing seizure initiation is removed (the seizure onset zone or SoZ).  Here, several 

clinical tests are normally conducted to detect and highlight the SoZ, including scalp 

EEG, MRI, SPECT, PET. Pre-surgical intracranial EEG (IEEG) is collected from multi-

electrode arrays placed on the cortical surface to improve SoZ detection.  Among the 

various multivariate techniques used to study the collected IEEG, conditional transfer 

entropy is very effective in finding causal relationships between the signals in recorded 

channels due to its generality and exhaustiveness.  It is, however computationally very 

expensive so that using traditional CPUs is impractical. In this thesis, we used GPUs 

where thousands of cores could run in parallel to implement multi-variate CTE studies. 

Moreover, we focused on code optimization where the same functions could be 

implemented in untraditional way so that faster execution is achieved. Part of the code 

optimization is memory management where different types of memories with different 

speeds are available on GPUs. We reduced time needed from few days to few hours, 

thereby rendering the ability of applying CTE to IEEG data more readily attainable for 

research in SoZ prediction as well as other studies of high-dimensional causal interaction.  
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CHAPTER 1 

INTRODUCTION 

 

Epilepsy is a chronic disease where recurrent seizures occur. A seizure is a 

hallmark of excessive brain excitation whereby normal motor, sensory, or mental 

function are negatively impacted.  Due to repeated seizures, epilepsy patients and their 

environment will be under stress and their emotional and social health will be affected. 

According to World Health Organization 50 million people worldwide have epilepsy 

[10]. Thirty percent of them don’t respond to drug treatment. Part of those patients may 

subject to epilepsy surgery in which onset zone in the brain is removed. Determining 

onset zone or seizure focus is of high importance so that the removed brain part could 

be as small as possible so as to minimize dysfunction while being large enough to stop 

seizure recurrence. Intracranial Electroencephalography (iEEG) is an effective choice 

used to measure brain activity where electrodes are put directly on the surface of the 

brain. IEEG is recorded in a controlled environment to get measures during seizure and 

in the period just before its occurrence (also called pre-ictal period). Several seizure 

episodes are commonly recorded to attain sufficient data for statistical confidence. 
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IEEG is usually formed of hundred electrode array which makes the problem 

computationally expensive. Therefore, many approaches tried to provide SoZ prediction 

using methods that, unlike transfer entropy calculations, do not require heavy 

computations. For example, correlation and coherence [1] [2], direct transfer function 

(DTF) [3] methods were used in analyzing data. However, results didn’t show good 

accuracy because of problem complexity. We preferred to use transfer entropy as the 

basis of determining information flow between every two electrodes of the iEEG. 

Transfer entropy showed precise measure of seizure focus [4] [7]. However, it needs a 

huge amount of computations to get results. Therefore, to alleviate the prohibitively 

expensive approach of classic programing, we herein propose to employ parallel 

programming where Nvidia GPUs formed by three thousand cores to apply transfer 

entropy methodology. This should give high speed up since transfer entropy 

computation is highly parallelizable. i.e. every transfer entropy computation is 

independent of the other one so that they will go all together. In fact, parallel 

programming using GPUs is an art in itself. There would be three main issues to 

consider while programming: load balance between cores, memory management, and 

code optimization. Load balance is attained upon avoiding the status where many cores 
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complete their mission and you keep waiting other ones to end up for a long period of 

time. Memory management involves maximizing the use of fast memory access, 

particularly in this case where millions of memory access are needed. In code 

optimization, number of instructions is reduced as much as possible and slow 

instructions are replaced by faster ones.  
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Figure 1 
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CHAPTER 2 

LITERATURE REVIEW 

 

To detect seizure onset zones using IEEG, several computational technique 

have been utilized that mainly study the directional connectivity or the causal 

relationship between different recordings. That is, of channel A is found to have a 

causal effect of channel B, then A is functionally connected to B and has a driver effect 

on B. In terms of seizures, channel A is preceding Channel B in the seizure. SoZ, 

therefore is finding the primary region or channel that drives the seizure activity in other 

areas. The functional connections have been traditionally studied using model-based 

measures [1][2][3] which use the concept of frequency and hence are inherently linear 

measures. Information theoretic measures, such as transfer entropy has also been used 

[4]. [4] introduced good representation of transfer entropy. However, it didn’t mention 

amount of time needed to get results although it needs complex computations. Complex 

parallelizable computations would always give better time when using GPUs as in this 

case. [4] experimental results showed a 100 % sensitivity and a false positive rate of 

1.79% for SOZ localization. Moreover, [4] introduced an automatic way for SOZ 
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localization. In [1], determining epileptic focus is done by studying the connectivity 

between different regions of the brain. They are expecting that epileptic focus has 

maximum inflow power. However, this methodology gave around 60 percent accuracy 

only while transfer entropy gave better accuracy as in [4]. [2] uses Generalized Partial 

Directed Coherence of data collected from intracranial electroencephalographic IEEG. 

This method also showed a 60 percent accuracy without a mention of time needed for 

computations. Meanwhile our proposed method has better accuracy with fast results due 

to using transfer entropy and GPUs. [3] uses directed transfer function (DTF) to detect 

the directional connectivity using intracranial electrodes. However the study need to be 

completed. No accuracy is presented to be compared to directional transfer entropy. [5] 

presented the theory of transfer entropy which is one of the main basis of our algorithm. 

[6] and [7] presented two tools for computing transfer entropy and conditional transfer 

entropy respectively. They were used in verifying some results of our research. 

Moreover, [6] and [7] would be used to determine how much speed up will be achieved. 

[8] and [9] are good references for programming GPUs using Cuda. We get benefit of 

them in developing the research software. 
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CHAPTER 3 

BACKGROUND 

 
A.  Medical Background 

As defined by Meriam-Webster dictionary: epilepsy is a disorder of the nervous system 

that can cause people to suddenly become unconscious and to have violent, uncontrolled 

movements of the body. Such recurrent seizure will put epilepsy patient and people 

surrounding him under stress. The source of this disorder is the brain as a result of 

excessive electrical discharges in its cells. Around one third of epileptic patients don't 

respond to drugs [10]. Surgery is a choice in such situation where a part of the brain is 

removed. Determining epilepsy focus is very important to minimize the size of brain 

part to be removed. IEEG (intracranial electroencephalogram) collection is used to 

record brain activity so that signals immediately before and during seizure are analyzed 

to determine epilepsy focus. 

 

B.  Information Transfer within Dynamical Networks 

To study dynamical networks there are many tools. One of them is entropy which is 

defined as: 
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𝐻(𝑋) ≜ ∑ 𝑝𝑖 log2 𝑝𝑖 

 
Entropy gives an idea about how much of information is there in the signal X. As much 

as the signal is more stochastic its entropy value will increase. You may use it to get 

amount of information of two signals X and Y by considering the entropy of their joint 

or the entropy of one conditioned on the other. However, this has nothing to do with our 

search about information flow from X to Y. 

Another suggested approach could be the use Mutual Information represented by the 

following equation: 

𝑀(𝑋, 𝑌) ≜ ∑ 𝑝(𝑥, 𝑦) log2

𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
 

 

Mutual information is an indication of how much the information between X and Y are 

dependent. When X and Y are independent, p(x,y) will equal p(x)*p(y) and M(X,Y) 

will turn to zero. However, although the Mutual Information is a good indication about 

information dependency, it leaks directionality. That is M(X,Y)=M(Y,X) so it is not 

good indication of information flow. 
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So if we have an array of random variable and we have information that is flowing in 

this array, mutual information is not enough to determine the source of information. We 

need to use transfer entropy TE(JI) defined as by [5]: 

𝑇𝐸(𝐽 → 𝐼) ≜ ∑ p(in+1 , 𝑖n
(𝑘)

, jn
(𝑙)

) log (
p (in+1 |in

(k)
, jn

(l)
)

p(in+1 |in
(k)

)
 ) 

 

J: represents driver signal or source of information signal. 

I: represents target signal or information sink signal. 

in+1: is the sample n+1 of I signal 

𝑖𝑛
(𝑘)

 : is vector formed by k successive samples of I ending at sample n.  

𝑗𝑛
(𝑙)

: is vector formed by l successive samples of J ending at sample n. 

It’s clear from the equation that TE(IJ) is completely different than TE(JI). As 

stated by [5], the absence of information flow makes the ratio inside the log to be one 

and minimizes TE. Oppositely, when there is information flow, terms of ratio inside log 

diverge will go far from one so that TE increases. An important modification introduced 

by [5] also is to include a conditional term Z in the equation: 
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𝑇𝐸(𝐽 → 𝐼|𝑍) ≜ ∑ p(in+1 , 𝑖n
(𝑘)

, jn
(𝑙)

, 𝑧𝑛
(𝑙)

) log (
p (in+1 |in

(k)
, jn

(l), 𝑧𝑛
(𝑙)

)

p(in+1 |in
(k)

, zn
(l)

)
 ) 

 

Notice that when Z and J are completely correlated or there is one to one relation 

between them, their joint probability is the probability of each one: P(J,Z)=P(J)=P(Z). 

So the fraction inside the log will be equal to one and TE will decrease. In other words, 

when Z is a similar source of information like J the TE decreases to minimum. So 

theoretically speaking when we have an array of signals and we are studying TE from 

channel X to channel Y. We should put the TE under all possible conditions. All 

possible conditions include taking every individual channel, every pair of channels, 

every triple of channels, and so on. However, generally this is not practical because it 

includes a tremendous amount of computations. However, in this paper we will consider 

every channel individually which is computationally not much more expensive and it’s 

more efficient than non-conditional transfer entropy and conditional transfer entropy 

with the condition term Z considered one block of all remaining channels. We consider 

this is adequate enough for our situation where we have single focus of epilepsy. 
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In conclusion, transfer entropy is a good mathematical basis to locate epileptic source. 

Moreover, conditional transfer entropy TE(XY/Z) is better indication of information 

flow from X to Y on the condition that source of information is not Z. 

 
C.  GPUs Background 

GPUs are considered a very good solution for problems where speedup is needed 

and parallelization is possible. They are used in artificial intelligence, machine learning, 

bioinformatics, and simulation of physical phenomena. GPUs are multi-core parallel 

programming hardware designed originally for graphic cards targeted especially for 

games. CUDA, a C like language support for GPUs, was put in market since 2007 

which enabled GPUs to be used as general purpose parallel programming units. Number 

of cores in GPUs was in the order of hundreds at the beginning. Nowadays, it's in the 

order of thousands. This gives an idea how much speed up is increasing. Moreover, the 

speed up is not only due to number of cores but also due to its memory management. 

Many current GPUs use DDR5 as global memory with data bus width more than 300 

bits which enables high memory transfer rate compared to traditional CPUs. Moreover, 

in GPUs there is what we call shared memory which is much faster than DDR. Shared 

memory could be used to allocate variables that are commonly used by the program. In 



 
 
 
 
 
 
 
 
 
 
 
 
 

13 
 
 
 
 
 
 
 
 
 
 
 
 

Nvidia, every 32 cores are grouped in a Warp. Warps are SIMT (Single Instruction 

Multiple Thread).i.e. a warp can execute one instruction at a time for all its cores. 

However, single instruction doesn't mean single parameter. Each thread of a warp could 

have its own parameter while fetching and decoding stages are common for all threads 

of a warp. This causes some limitations when programming GPUs but allows hardware 

designers to increase number of cores till few thousands which is a big advantage. 

When within the same warp cores have different instruction to execute, we have what 

we call divergence. Divergence kills parallelism and should be avoided when possible. 
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CHAPTER 4 

METHODOLOGY 

 
 

A.  General Methodology 

 
 We have N channels forming the set C, one channel per electrode. To 

determine the SOZ,  we propose to compute a simplified version of the general transfer 

entropy by considering triplets of electrodes at  a time. Specifically, we define a 

Triangular Transfer Entropy for every possible two channels Ci and Cj representing 

electrode i and electrode j respectively, as indicated in the following equation: 

 

𝑇𝑇𝐸(𝐶𝑖 → 𝐶𝑗) =  max
∀ 𝑑1 ∈𝐷1

( min
∀ k ∈ M−{i,j}

∀ 𝑑2 ∈ 𝐷2

(𝑇𝐸(𝐶𝑖,0 → 𝐶𝑗,𝑑1|𝐶𝑘,−𝑑2)))  Eq. I 

M = {1,2,…N} where N ∈ ℕ is the number of all channels(electrodes). 

Ci = {xi1, xi2, xi3, xi4,…, xiS where S is the total number of samples per channel and xin is 

the sample n value of channel i} 

C = {Ci where i ∈ M} is the set of all channels.  
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Ci,d={xi(1+d), xi(2+d), xi(3+d), xi(4+d),…, xi(S+d) } where S is the total number of samples per 

channel and xin is the sample n value of channel i. It is the shifted version of Ci . Ci0=Ci. 

D1 = {0, 1, 2…, D1max } where D1max ∈ ℕ  is the maximum delay of sink channel 

relative to source channel. 

D2 = {1, 2, 3…,D2max  }where D2max ∈ ℕ is the maximum shift of conditional 

channel relative to source channel. 

𝑇𝐸(𝑋 → 𝑌 |𝑍) ≜ ∑ p(Yn , Yn
(𝑑)−

, Xn
(𝑑)−

, Zn
(d)−

) log (
p(Yn |Yn

(d)−
, Xn

(d)−
, Zn

(𝑑)−
)

p(Yn |Yn
(d)−

,Zn
(d)−

)
 ) Eq. II 

Yn is the sample n of channel Y. 

Xn
(𝑑)−  is a vector of order d which is a subpart of length d of channel X ending at n-1 . 

Yn
(𝑑)−

 and Zn
(𝑑)−

are defined similarly as Xn
(𝑑)−

so they are defined as follows: 

Xn
(𝑑)−

≜  (𝑥𝑛−𝑑 , 𝑥𝑛−𝑑+1 , 𝑥𝑛−𝑑+2 , … , 𝑥𝑛−1 )   

Yn
(𝑑)− ≜  (𝑦𝑛−𝑑 , 𝑦𝑛−𝑑+1 , 𝑦𝑛−𝑑+2 , … , 𝑦𝑛−1 )   

Zn
(𝑑)−

≜  (𝑧𝑛−𝑑 , 𝑧𝑛−𝑑+1 , 𝑧𝑛−𝑑+2 , … , 𝑧𝑛−1 )   

 

High transfer entropy (TE) indicate that there is a flow of information from electrode X 

to electrode Y on the condition that there is no same information flow from electrode Z 
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to electrode Y where Z represents all other possible electrodes other than X and Y. 

Practically, there could be a delay in the transfer of information between X-
n and Y-

n. 

Therefore a search for the maximal transfer entropy entails the repetition of the 

computation of TE from zero delay (instantaneous) to maximum possible delay between 

X-
n and Y-

n (as would be inferred from the physical phenomenon). We need to consider 

only the maximum TE of these delayed versions. As will be demonstrated later, it is 

generally more effective to consider the effect of each electrode Z other than X and Y 

individually. That is, the quantity Z in (Eq. II) should represent only one electrode at a 

time, rather than the total remaining N-2 electrodes as one block. In effect, therefore, 

TE computation should be repeated for every possible Z, which is number of all 

electrodes minus two. From all possible Z we consider only the minimum TE whose Z 

electrode could be source of information flowing to Y similar to the flow from X to Y. 

As a result, the situation of information flow from X to Y is neglected when there is at 

least one similar flow from one Z to Y where Z precedes X. Moreover, there could be 

flow of information from X to Y that should be neglected due to similar flow from Z to 

Y where Z could be preceding X by a given time but not less than one step. Therefore, 

computation of TE should be repeated for all possible practical precedence of every Z to 



 
 
 
 
 
 
 
 
 
 
 
 
 

17 
 
 
 
 
 
 
 
 
 
 
 
 

X. Cases where Z is after X in time should not be considered because in such situation 

X is considered the source of information for both Z and Y. Cases where X and Z are 

zero shift should be counted as flow from X to Y and from Z to Y. In other words, they 

will not cancel each other. All these computations are needed for computing the 

optimum TE between one pair of electrodes naming it TTE (Triangular Transfer 

Entropy). These computations need to be repeated for all possible electrode pairs. As a 

result, the computation complexity would be as follows: 

(Dz * (N-2) * Dy * C) * N * (N-1) 

Where: 

Dz: Number of all possible forward shift of Z signal. 

N: Number of electrodes. 

Dy: Number of all possible backward shift of Y signal. 

C: The computation complexity of individual TE computation. 

Dz * (N-2) * Dy * C: is the computation complexity of every single pair of electrodes. 

For an array of 76 electrodes (N=76), 6 steps possible precedence of Z (Dz =6), 7 steps 

possible delay between X and Y (Dy =7) computation complexity is: 17,715,600*C. 



 
 
 
 
 
 
 
 
 
 
 
 
 

18 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2 
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Consider an example of five channels and we need to compute triangular transfer 

entropy TTE(C2 -> C3) as illustrated in figure 2 where source channel is blue (C2), sink 

channel is green (C3), and condition channel is red (C1,C4, and C5 one at a time). So you 

need to compute every TE under the condition of every red channel separately for all its 

possible shift and consider only the minimum of all of them. Then you should repeat the 

process for every possible shift between C2 and C3 and consider the maximum of them 

called TTE(C2-> C3). 

 

Figure 3 
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Figure 4 

 

Fig. 3 and Fig. 4 clarify where we have high and low TE value. In few words, when we 

have multiple similar information flow to electrode Y the earliest source of information 

within a predefined range is considered the real source of flow and all remaining 

sources are neglected since their optimum TE will be low although they have flow of 

information to Y. 
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In Eq. II, all vectors X-
n, Y

-
n, and Z-

n have the same length (d). Moreover they are 

normalized to the same number of quantization levels (Q). As a result, the number of 

possible outcomes (PO) in our methodology where Z-
n  represents one electrode is as 

follows at a time: 

PO=Q3d 

For Q=5 and d=2: PO= 15625. 

Whereas when you consider other methodology where Z-
n is a block of all other 

remaining electrodes. The number of possible outcomes is as follows: 

PO=QdN where N is the total number of electrodes. 

For Q=5 and d=2, N=76: PO= 1.75 e+106 

We may notice how the big difference between two POs. This will make the first 

methodology much better approximation of the probabilities introduced in the TE 

computation. When considering any probability computation number of trials should 

much greater than number of possible outcomes. Therefore, in our case where the 

number of outcomes (number of samples) is in the order of thousands we choose d=2 

and Q=5 so that better approximation is achieved. 
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[7] proposed many methods of computing TE: Linear Estimator, Nearest Neighbor 

Estimator, and Binning Estimator with Uniform Embedding and Non-Uniform 

Embedding which shows better results for determining SOZ of epilepsy. In our 

research, we are going to parallelize Binning Estimator Method with Uniform 

Embedding with some modifications on how to consider the conditional Z. Binning 

Estimator is a simple good approximation method when you have enough samples to 

compute probabilities. It’s based on the formula:  

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑥) =
𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝑥 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 

 

Using Bayes rule which states that P(a,b)=P(a|b)*P(b) the log term in Eq. II could be 

expressed as follows: 

log2 (
𝑝(𝑌𝑛|𝑌𝑛

−, 𝑋𝑛
−, 𝑍𝑛

−
)

𝑝(𝑌𝑛|𝑌𝑛
−, 𝑍𝑛

−
)

) = log2(𝑝(𝑌𝑛, 𝑌𝑛
−, 𝑋𝑛

−, 𝑍𝑛
−)) − log2(𝑌𝑛

−, 𝑋𝑛
−, 𝑍𝑛

−) +

log2(𝑝(𝑌𝑛
−, 𝑍𝑛

−)) −  log2(𝑝(𝑌𝑛, 𝑌𝑛
−, 𝑍𝑛

−))  

 

 

And TE turned to be : 
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𝑇𝐸(𝑋 → 𝑌|𝑍) = ∑ 𝑝(𝑌𝑛, 𝑌𝑛
−, 𝑋𝑛

−, 𝑍𝑛
−) ∗  (log2(𝑝(𝑌𝑛, 𝑌𝑛

−, 𝑋𝑛
−, 𝑍𝑛

−)) −

log2(𝑌𝑛
−, 𝑋𝑛

−, 𝑍𝑛
−) + log2(𝑝(𝑌𝑛

−, 𝑍𝑛
−)) −  log2(𝑝(𝑌𝑛, 𝑌𝑛

−, 𝑍𝑛
−))) Eq. III 

 

We will present below a pseudocode for the three main stages involved in computing 

TTE (X->Y/Z): 

1. Pseudocode1: 

To compute the TEX-->Y/Z for a given X, a given shifted version of Y, and a given shifted 

version of Z we need to: 

 Count the number of occurrence of every (Yn,Y
-
n, X

-
n, Z

-
n) 

 Count the number of occurrence of every (Y-
n, X

-
n, Z

-
n) 

 Count the number of occurrence of every (Y-
n, Z

-
n) 

 Count the number of occurrence of every (Yn ,Y
-
n, Z

-
n) 

 Compute the probabilities p(Yn,Y
-
n, X

-
n, Z

-
n), p(Yn, X

-
n, Z

-
n), p(Y-

n, Z
-
n), 

p(Yn,Y
-
n,Z

-
n) by dividing the number of corresponding occurrences by the 

total number of samples. 

 Compute TE1=TEX-->Y/Z as in Eq. III 
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2. Pseudocode2: 

 

 For a given X and Y repeat the computation of TE (as in pseudocode1) for 

every possible shift of every possible electrode Z. 

 Compute TE2= minimum value of all TE computed in step 1 of 

pseudocode2 

 
3. Pseudocode3: 

 

 For a given X and Y repeat the computation of TE (as in pseudocode2) for 

every possible shift of Y. 

 Compute TE3= maximum value of all TE computed in step1 of 

pseudocode3. TE3 is considered the optimum approximation of TTE(X-

>Y/Z): 

 
4. Pseudocode4: 

 

 Repeat the above stated pseudocode parts for every possible combination of  

X and Y. 



 
 
 
 
 
 
 
 
 
 
 
 
 

26 
 
 
 
 
 
 
 
 
 
 
 
 

 Store the results in a two dimensional array so that they are ready for later 

comparison and decision. The row index represents the source electrode 

(driver) and the column index represents the sink electrode (target). 

 

After getting TTE(X->Y/Z) for every X and Y, a criteria is needed to determine if there 

is a flow from X electrode to Y electrode. A good way is to compute surrogate of TE(X-

>Y/Z) for every (X,Y) couple and consider it as a reference to compare with TTE(X-

>Y/Z). 

Surrogate pseudocode is as follows: 

5. Pseudocode5: 

 For a given X and Y repeat the computation of TE (as in pseudocode1) for 

N far enough delay of Y for every possible electrode Z. 

 Compute the average of computed TEs in previous step and consider it as 

surrogateTE(X,Y) 

 Repeat steps 1 and 2 of pseudocode5 for all possible (X,Y) combination 

and store the results in a two dimensional surrogateTE array. 
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Then you build a ratio two dimensional array where every element of array is computed 

by dividing corresponding TTE array element by corresponding surrogateTE array. 

Ratioij = TTEij / surrogateTEij . 

Every Ratioij is compared to given threshold. If it’s greater than this threshold an 

outflow from electrode i to electrode j is considered positive. For every electrode i, 

count its number of outflow. Electrode with highest outflow is considered the SOZ of 

epilepsy. 
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B.  GPU Methodology 

In GPUs we may have more than three thousands cores (the basic unit of processing in a 

computer). Every core would be responsible for the computation of every optimum 

transfer entropy TTE (pseudocode1 -> peudocode4) including basic computations, 

different Y shifts, different Z and their different shifts. For N electrodes we have: (N-

1)*(N-1) possible combinations of X and Y. For N=76 we have 5625 possibilities. 

Therefore, all GPU cores will be fully loaded which implies very good speedup. 

Making every core responsible of computing every TTE makes it independent of all 

other cores so that it has many advantages: 

 No need for synchronization between different cores which may slow down the 

speed. 

 Most if not all needed variables are stored in register memory which is much 

faster than shared memory and global memory. 

 Less divergence per kernel. It’s known that divergence kills parallelism. There 

are few “if” statements in kernels. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 

29 
 
 
 
 
 
 
 
 
 
 
 
 

All possible Comparison within the same electrode are done before the execution of the 

main kernel (main function executed by the GPU) and stored in global memory as 

texture Memory with basic element of one byte length. Texture memory is part of 

global memory whose access is much faster than traditional global memory due to 

cashing. Cashing is the moving of memory blocks to a very fast memory (called cash) 

which is usually near the core so that it has the ability to be very fast. This methodology 

acquires the algorithm more speedup due to main reasons: 

 Texture memory is faster due to cashing. 

 For given X-
n, Y

-
n, or Z-

n with dimension d, when counting we don’t need to 

fetch all d components of every term. All what we need is to read one cashed 

Boolean byte instead of d bytes whatever is the value of d. 

 

After counting each term Eq. III expression need to be computed. So we need to 

compute four logs for all different terms of (Yn ,Y
- n, X

- n, Z
- n), (Y

- n, X
- n, Z

- n), (Y
- n, Z

- 

n), and (Yn ,Y
- n, Z

- n). Moreover log is a complex mathematical function (not simple as 

addition and multiplication) that need much more cycles than simple mathematical 

functions. Therefore, we computed all possibly needed values of log and store them in a 
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lookup table in shared memory. Thus to get result of log (p) all what we need is to fetch 

a value from shared memory which is much faster than invoking the log function. 

Notice that in some GPUs shared memory is hundred times faster than global memory. 

Log lookup table is computed once per block of threads which is around 1024 thread 

(one thread per core). So as overall, in situation with 76 electrode we need to compute 

the lookup table for six times only. Using lookup table accuracy is preserved since by 

using binning probability, computation is in the form of: 

 P=n/N or n/(N-1)  

 Where n: number of sample occurrence 

   N: total number of samples 

As a result it’s enough to partition the probability variable p whose log should be 

computed to N segments. So extracting probability value from lookup table would be 

precise since there is no need for interpolation. 
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CHAPTER 5 

RESULTS 

 

A.  Test 1 

The objective of this test is to show the importance of TTE where every 

conditional channel is considered individually compared to other algorithm where all 

conditional Z channels are considered as one block.  

Considering synthetic data composed of eight electrodes where there is flow of 

information from electrode one to electrode two, to electrode three, and to all remaining 

electrodes till electrode eight as shown in Fig. 5. So practically speaking if 

unconditional transfer entropy is considered we have high transfer entropy from 

electrode one to all following, from electrode two to all following but not to electrode 

one, from electrode three to all following but not to electrode one or two and so on. We 

build this data by assigning the following signals to every electrode: 

Electrode 1= random data. 

Electrode n = electrode 1 delayed by (n-1) step for: n not equal to1 
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Figure 5 

 

Tables 1 and 2 show the results of applying the TTE algorithm and one bock Z 

algorithm to the synthetic data. Table 1 shows TE from row to column where all 

remaining Z electrodes are considered as one block in computing the TE. Table 2 shows 

TTE from row to column electrodes where all remaining electrodes are considered each 

one individually.  
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Electrode 1 2 3 4 5 6 7 8 
1 - 0.047 0.047 0.047 0.040 0.045 0.045 0.044 
2 0.047 - 0.047 0.047 0.047 0.050 0.050 0.050 
3 0.047 0.047 - 0.047 0.047 0.050 0.050 0.050 
4 0.048 0.048 0.048 - 0.048 0.048 0.047 0.047 
5 0.050 0.050 0.050 0.050 - 0.050 0.044 0.044 
6 0.046 0.046 0.046 0.046 0.046 - 0.038 0.038 
7 0.050 0.050 0.050 0.050 0.050 0.050 - 0.043 
8 0.050 0.050 0.050 0.050 0.050 0.050 0.047 - 

Table – 1 

 
 

Electrode 1 2 3 4 5 6 7 8 
1 - 0.871 0.881 0.881 0.881 0.881 0.881 0.881 
2 0.838 - 0.026 0.026 0.024 0.007 0.007 0.007 
3 0.027 0.027 - 0.027 0.027 0.026 0.007 0.007 
4 0.025 0.025 0.025 - 0.023 0.023 0.021 0.006 
5 0.026 0.026 0.026 0.026 - 0.024 0.022 0.006 
6 0.026 0.026 0.026 0.026 0.026 - 0.023 0.007 
7 0.026 0.026 0.026 0.026 0.026 0.026 - 0.007 
8 0.025 0.026 0.025 0.025 0.024 0.024 0.024 - 

Table – 2 

 
Fig.6 is a plot of table 2 results: 
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Figure 6 

 
B.  Test 2 

 
The objective of this test is to show our TTE algorithm on real data that was 

previously tested with other algorithms and whose result is known. 
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TTE was applied on real data taken from [7] for ictal data. We essentially test the 

data using GPUs by applying our proposed algorithm under the following criteria: 

 Fs (sampling rate) = 100 Hz. 

 Number of samples is 1000. 

 Maximum shift is 60 msec as backward and forward shift for the sink 

electrode(Y) and for the conditional electrode (Z) respectively. This shift is with 

respect to the source electrode(X). 

 Every conditional electrode is taken individually in the computation. 

 Xn-, Yn-, and Zn- are of length 2. 

 

Fig. 9 shows results of [7].  

Fig. 7 and Fig. 8 show results of Test 2. These results were taken by computing the 

ratio:  

 R = (optimum value of TE) / (surrogate value of TE). 

 If R >= threshold ( 1.25 * mean value of R in our case). 

In Fig. 7 when a flow from source to sink is considered true, it is marked by white 

square. When there is no flow we mark it by black. 
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Fig. 8 shows the number of outflow for every electrode.  

 

Figure 7 
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Figure 8 
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Figure 9 

 

C.  Test 3  
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We repeated Test 2 naming it Test 3 with the following criteria (The only difference is 

that the conditional Z term in the TE expression is considered to be all other channels as 

one block) 

 Fs (sampling rate) = 100 Hz. 

 Number of samples is 1000. 

 Maximum shift is 60 msec as backward and forward shift for the sink 

electrode(Y) and for the conditional electrode (Z) respectively. This shift is with 

respect to the source electrode(X). 

 When considering flow from electrode X to electrode Y all remaining electrodes 

are considered as one conditional block. 

 Xn-, Yn-, and Zn- are of length 2. 

 

R should be  >= (k * mean of R ) . To consider a true outflow and mark it with a 

white square. Fig. 10 and Fig. 11 have a k =2.4 meanwhile Fig. 12 and Fig. 13 have a 

k=1.25 (same k as Test 2) for the same result data.  
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Figure 10 
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Figure 11 
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Figure 12 
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Figure 13 

 

D.  Test 4 
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We repeated Test 2 with the same data using GPUs with the only difference that 

maximum shift is 20 msec instead of 60 msec and name it Test 3. Test 3 Criteria are as 

follows: 

 Fs (sampling rate) = 100 Hz. 

 Samples number is 1000. 

 Maximum shift is 20 msec as backward and forward shift for the sink 

electrode(Y) and for the conditional electrode (Z) respectively. This shift is with 

respect to the source electrode(X). 

 Every conditional electrode is taken individually in the computation. 

 Xn-, Yn-, and Zn- are of length 2. 

Fig. 14, Fig. 15, and Fig. 16 show results for this experiment. 
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Figure 14 
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Figure 15 
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Figure 16 
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Table - 3 summarizes results of Test 2, Test 3, and Test 4 
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Test2 ( 384 cores-
Nvidia  Geforce 940MX 
GPU ) 

3122 Yes 60 1.5448 Good 1.25 

Test2 (3584 cores-
Nvidia Titan X-Pascal 
GPU) 

1323 Yes 60 1.5448 Good 1.25 

Test3 ( 384 cores-
Nvidia  Geforce 940MX 
GPU ) 

1052 NO 60 0.6714 Good 2.4 

Test3 ( 384 cores-
Nvidia  Geforce 940MX 
GPU ) 

1052 NO 60 0.6714 Not 
Good 

1.25 

Test4 ( 384 cores-
Nvidia  Geforce 940MX 
GPU ) 

430 Yes 20 0.2782 Bad No value 

Table – 3 

 

E.  Test 5 

 
Last experiment named Test 5 was conducted to compare our proposed 

algorithm with [7] Mute toolbox. However, since there is a lot of differences between 
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two algorithms we modified many parameters of both so that comparison is fair. Fig. 17 

shows the TE where the width of Xn
- , Yn

- , and Zn
- ,the order is equal to one. GPU result 

is to the left and Mute result is to the right.  

 

Figure 17 

 
The experiment is repeated with order = 2 and the result is shown in Fig. 18 (GPU result 

to the left and Mute results to the right). 
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Figure 18 

 

 Intel Core i7 -7500 

CPU 

384 cores - Nvidia  

Geforce 940MX GPU 

Speed Up 

Order one TE 56 sec 0.457 sec   123 

Order two TE 183 sec 0.943 sec 194 

Table – 4 

 

Table 4 summarizes the timings of our algorithm on GPU compared to Mute toolbox on 

CPU. 
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CHAPTER 6 

DISCUSSION 

 

A.  Test 1 

 
For Test 1, it’s clear from table 1 that there is a flow to be considered from 

electrode 1 to all following, from electrode 2 to all following, from electrode 3 to all 

following and so on as if the TE is unconditional although it’s conditional. i.e. the 

similarity of flow from electrode 1 to electrodes 3,4,5,6,7,8 didn’t cancel the flow from 

electrode 2 to electrodes 3,4,5,6,7,8 although it’s a predecessor of electrode 2 and it is 

the main source of information flow. Similarly, electrode 1 flow didn’t cancel all other 

flew from electrode 3 to the following electrodes and from electrode 4 to the following 

and so on so forth. This is due to the fact that when considering the conditional entropy 

electrode 1 is merged will others so that it loose its effect and it couldn’t cancel other 

similar flow. However, it’s clear from table 2 that there is only flow from electrode 1 to 

all remaining whereas the all other flows were neglected and have a very low value of  

optimum TE due to considering individual conditional entropy. Electrode 1 where there 

is high similarity in information flow and it’s a predecessor of all remaining electrodes 
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succeeded to minimize all remaining optimum TE and succeeded to be considered the 

only original source of information flow which is logical. Moreover, in table 1 notice 

that the value of flow is low compared to table 2. For example TE(1->2) is 0.047 

whereas it is 0.871 in table 2. This high difference is due to the fact that number of 

possible outcomes in table 1 is much higher than number of possible outcomes in table 

2. So in table 2 the computation of probabilities is more precise and have better 

approximation of probabilities. 

In case 1 (Table 1) 

Possible Outcomes=PO=QdN  

Where N is the total number of electrodes=8, d is the dimension of Xn
- =2 , Q=5 is the 

number of quantization levels=> PO1= 152587890625 

In case 2 (Table 2) 

PO2=Q3d , d=2, Q=5 => PO= 15625 
 
PO2 is much less than PO1. 
 

B.  Test 2 

After applying real data as in [7] good accuracy is achieved by our proposed 

algorithm, with good timing, and better separation of SOZ from other electrodes. 

Although there is difference between our algorithm and that used by [7] there is 
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similarity in the final result where electrode 62 region seems to be SOZ in both. Fig. 9 

shows results of [7]. Fig. 7 and Fig. 8 show results of Test 2.These results were taken by 

computing the ratio:  

Notice that in Fig. 8 the separation between SOZ electrode and its nearest one is 

around 15 for a peak value of 25 as number of outflows. In this figure it’s clear how 

much the separation between considering electrode 62 and all remaining is good enough 

to easily consider electrode 62 as SOZ. We may notice also that electrode 62 has 

completely suppressed its neighbors 60, 61, 63, and 64 although they have much more 

outflow as considered by [7]. They are not clearly separated in [7].  

  This test showed better accuracy compared to other experiments. The proposed 

algorithm increased the load too much on the GPU to achieve such accuracy (individual 

Z condition, shift of every Z in addition to the shift in Y with respect to X). However, 

due to parallel programming using CUDA the time of execution on Titan X-Pascal GPU 

was   1323 seconds = 22 minutes 3 seconds as indicated in table – 2. Which is 

acceptable for such application with such algorithm. 

 
 

C.  Test 3 
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Good accuracy is achieved, with good timing, but worse separation of SOZ from 

other electrodes. For a good separation, R should be  >= (k * mean of R where k=2.4) 

which means that wrong outflow are more spread than Test 2 and we need more criteria 

to isolate them from true outflow. In other words wrong outflows are spread around the 

ratio mean by more than 2.4 times of this mean. Comparing Test 2 and Test 3 with same 

k = 1.25 as indicated in figures 8 and 13 respectively, it clear that Test 2 has better 

separation. Notice that the difference between both tests is that in Test 3 all remaining 

conditional electrodes (other than driver and target) are considered as one block. Notice 

from the figure that this algorithm didn’t succeed to clearly suppress the neighbors of 

SOZ which is electrode 62. 

Although the main advantage of our algorithm in Test 2 is that it’s applied on 

GPUs the way Z condition is applied gave much improvement so that the original 

source of information suppresses all remaining.  

Moreover notice that max value of TE in Test 2 is much higher than that of Test 

3 because number of possible outcomes in Test 1 is much less than that of Test 2 as 

indicated in Table-3. Therefore, probabilities in Test 2 are more realistic due to the 

same reason mentioned in Test 1. 
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D.  Test 4 

Test 4 is the same as Test 2. It’s applied to the same data. The only exception is 

that the maximum shift is 20 msec instead of 60 msec in both direction. The accuracy 

was bad with better timing. The better timing is due to the need of fewer shift steps. No 

separation of SOZ from other electrodes could be achieved. See Fig. 14, 15, and 16. 

This experiment indicates that information flow due to seizure between brain parts 

needs more than 20 msec to propagate and 60 msec as in Test 2 is good enough. This 

amount of time needed for propagation will indicates how many steps you need to shift 

depending on the sampling rate. 

 

Max shift step = Fs * 60 /1000 where Fs is the sampling rate.  

E.  Test 5 

 
Test 5 is conducted to compare between our proposed algorithm and Mute 

toolbox. Both algorithms used the same data. Fig.17 shows the TE values where the 

length of Xn
- or its order is equal to one. It’s clear how much they are similar although 

there is a big difference in timing as shown in table 4. The experiment is repeated with 



 
 
 
 
 
 
 
 
 
 
 
 
 

56 
 
 
 
 
 
 
 
 
 
 
 
 

order = 2 and the result is shown in Fig.18. You may also notice the high similarities 

between two results. 

Table-4 summarizes the timings of GPU and CPU. You may notice the high 

speed up of GPU. This speedup will increase as the order increase due the fact that in 

our GPU algorithm we compare all possible samples within the same signal and store 

every comparison in one byte. Then these bytes are allocated in cashed memory to 

acquire fast access. So during counting you have only to fetch only one byte meanwhile 

you need to fetch three bytes for order 3 TE implemented in a traditional way. 

Moreover, Mute computation is based on the calculation of entropies and many matrices 

are constructed for every TE. The size of these matrices is in general proportional to the 

square of order variable and it’ll grow exponentially for conditional case. So a lot of 

memory access is needed compared to process time in the Mute toolbox. So this good 

speedup is achieved due to huge number of cores in the GPU compared to CPU and due 

to code optimization between our proposed algorithm and Mute toolbox algorithm. 
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CHAPTER 7 

CONCLUSION 

 

 TE succeeded to prove itself a powerful tool in determining SOZ especially in 

its Binning form. The parallelized form of transfer entropy computations proposed on 

this thesis aimed to show the huge time savings attained in solving the problem 

specifically for large number of channels. Since our primary purpose was employability 

of highly parallelizable code that achieve load balance across thousands of cores, we 

proposed and implemented Triangular Transfer Entropy as a specific instantiation of TE 

computations. Under the assumptions of single SoZ foci, TTE seems to produce better 

results with better accuracy. The introduction of TTE provide a practical GPU-based 

tool where amount of time needed for 100-channel study is reduced from essentially 

prohibitive (order of many days)  to feasible and in the order of tens of minutes. More 

general TE computations are expected to produce less savings due to less-than-optimal 

parallelizability of underlying computations. In all cases, more code optimization could 

be done for the computation of most inner loop (basic block of TE). Moreover, using 

multiple GPU cards will be a good choice and will guarantee more speed up. Increasing 



 
 
 
 
 
 
 
 
 
 
 
 
 

58 
 
 
 
 
 
 
 
 
 
 
 
 

speed up will allow improving accuracy of TE by increasing sampling rate, number of 

samples considered, or number of quantization levels within an acceptable time. Finally, 

and while our tests on benchmark data produced accurate  SoZ localization, it is 

essential to study the performance of TTE for a wider database of IEEG recordings in 

order to identify the specific types of seizures where the proposed approach (single 

channels as focus) can accurately detect Seizure onset zones. 
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