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Research in Air quality Monitoring has been gaining a great importance 

worldwide especially in areas where pollution levels are high. The main objective of 

this thesis is to develop a computer model to predict ground pollution levels based on 

meteorological conditions. In order to build this model, daily mixing height data were 

used, estimated from temperature profiles collected from a simulator (WRF) for the 

period of nine months. The analysis was performed over the region of Beirut and 

involved the usage of pollution parameters, such as the PM2.5, PM4, and PM10 

concentrations which were measured for this period, and meteorological parameters 

such as the mixing height, relative humidity, and wind speed. The study confirmed that 

there is strong anti-correlation between the mixing height and near ground level PM 

concentrations (PM 2.5 and PM10), moderate positive correlation between the relative 

humidity and near ground level PM concentrations, and weak negative correlation 

between the wind speed and near ground level PM concentrations. Regression models 

produced good results for the mixing height as a predictor for PM2.5 and PM10 

concentrations. The mixing height was the most dominant factor in the regression 

analysis among other meteorological parameters including Relative Humidity and Wind 

Speed. Multi variable regression models (depending in two and three independent 

variables) were developed to predict PM concentrations based on meteorological 

parameters. The best regression coefficients were witnessed with the multi variable 

regression models developed to predict PM concentrations based on the three 

meteorological parameters (mixing height, relative humidity, and wind speed). These 

models can be applied for prediction of near ground pollution level over for the region 

of Beirut. 
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CHAPTER 1 

INTRODUCTION 

 

In the past few decades much research on air quality has been conducted 

worldwide (Dai et al. 2014; Dye 2003; Holzworth 1967; Khandokar, Mofarrah and 

Husain 2010; Lu et al. 2012; Zang et al. 2017) in regions where pollution levels 

exceeded the normal values in such a way that affects people’s life. Conducting such 

studies is crucial since it provides people with information that are very important for 

their health which in turn can help people avoid their exposure to unhealthy air quality 

levels. In addition, many communities could use this information to initiate air quality 

actions or awareness campaigns (Qu, Han, Wu, Gao and Wang 2017) that would help 

reduce air pollution levels and improve air quality as well. One of the key concerns of 

air quality studies is air pollution. 

Air pollution can be thought of as the impurity of the atmosphere by wastes 

that are in the form of solid, liquid, or gas; this impurity has serious effects on people, 

animals, and the environment. Particulate matter, Ozone, Carbon Monoxide, Sulfur 

oxide, and Nitrogen Oxides are among the most effective pollutants of the atmosphere 

(Qu et al. 2017). Air Pollution has severe effects on our health. 

Air pollution can lead to respiratory diseases. Tens of millions of respiratory 

and other diseases are caused by air pollution worldwide (SEI 2012). Since the average 

breathing volume per day for every person on the planet is 12,870 liters, even small 

amounts of air pollutants can lead to respiratory diseases. People can be affected 

directly by air pollution when breathing unhealthy air, and indirectly through the 

damage of their living environment. Not only babies and children are vulnerable to air 
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pollution, but also people suffering from heart or respiratory diseases and elderly people 

as well. In particular the effects of air pollution are more severe in Asia and Western 

Pacific regions where millions of people die each year due to air pollution, and one 

billion people are exposed to air pollution levels that exceed the recommended health-

based air quality level according to the World Health Organization (WHO). In addition 

there exists the need to avoid the exposure to pollutants especially when we have high 

pollution levels. In order to avoid the exposure to pollutants Air Quality researchers 

should predict near future conditions based on current conditions. 

Many models in literature have been developed in order to predict near 

ground pollution levels based on meteorological conditions (temperature, relative 

humidity, and mixing height) (Dye 2003; Qu et al. 2017; Roy, Gupta and Singh 2012; 

Symeonidis 2017) . Previous studies relied mainly on mixing height measured directly 

through the use ceilometer (LIDAR) (Chen et al. 2013; Qu et al. 2017; Tang et al. 

2016), SODAR (Zang et al. 2017) , or different methods applied on radiosonde data 

(Zang et al. 2017) which include the usage of complex instrumentation. Since the 

instrumentation is expensive and because meteorological stations are needed to conduct 

such Air Quality studies, computer models, which relies on software rather than 

hardware to predict near future conditions are particularly attractive, especially in third 

world countries where there are no meteorological stations and funding for such studies. 

In this thesis I seek to develop such a model to predict near ground pollution levels; the 

novelty in my approach is that meteorological parameters are predicted, rather than 

using an online meteorological prediction software named Weather Research and 

forecasting Software (WRF).  

WRF is an advanced mesoscale forecasting system that is used for 

atmospheric research, and it can be used for research and operational forecasting. 
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Several meteorological agencies use it worldwide (e.g., National Centers for 

Environmental Forecasts, and The Air Force Weather Agencies).  

One of the most important meteorological parameters used for the assessment 

of air quality and that was investigated in this thesis is the mixing height, which defines 

the height above which pollutants are mixed by means of turbulence and convection. In 

this thesis after I compared between the commonly used methods in literature, the 

mixing height was estimated using the “Parcel Method” or “Dry-Adiabatic Method” 

(Holzworth 1967). During my analysis, it was found that the resolution offered by WRF 

in its standard form was too coarse; therefore the WRF grid resolution had to be made 

finer. While the previous resolution included five data points from zero to four hundred 

meters, the finer grid included ten data points. 

To validate the data offered by the WRF, I relied on a small unmanned air 

vehicle (UAV) equipped with a temperature sensor in order to estimate temperature 

profiles in the lower part of the atmosphere. The resulting measured temperature 

profiles were compared with those predicted using WRF in order to evaluate these 

profiles. The UAV used in this research was limited to a height of 150 meters because 

of its short flight time and low ascending speed. 

The main methodology used for predicting near ground pollution levels based 

on atmospheric conditions was based on a measurement of ground pollution levels on 

one hand, and a prediction of meteorological parameters on the other hand. For this 

purpose WRF simulations were conducted during the period ranging from November 

2016 till August 2017, where Parcel method was applied on the temperature profiles 

predicted using WRF to estimate the mixing height, and daily measurements of aerosols 

at near ground level were conducted during the same period as well.  The relation 

between the aerosols and the mixing height was then investigated using Pearson 
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correlation method. As a result, many linear regression models were built where the 

regression coefficients between the meteorological parameters and aerosols 

concentrations were calculated. It was found that there exists a linear relation between 

the mixing height and aerosols concentrations. The determination coefficient was 

calculated for each of these equations and it was found that the linear regression is a 

good estimate for the aerosols concentrations based on the mixing height as the main 

predictor. Multi variable regression models were built and examined taking into 

consideration two and three independent variables. It was found that the multi variable 

regression model relying on the three meteorological parameters gave the best 

regression coefficients in comparison with the other developed models relying on one or 

two of the meteorological parameters. The next chapter examines the air pollution 

problem and describes the mathematical and meteorological models used in air quality 

modeling.  
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CHAPTER 2 

BACKGROUND 

 

In this chapter an overview of air quality modeling and monitoring is 

presented. The definition of air pollution, its sources, and its main effects are explained 

in the first part of this chapter. The main mathematical models used for the modeling of 

air quality are presented in the second part of this chapter. An overview of air quality 

monitoring is investigated focusing on two key parameters: atmospheric aerosols and 

the mixing height. In the last part of this chapter the method used for the determination 

of the mixing height are explained, arguing that the “Parcel Method “is the most 

suitable approach for determining the mixing height. 

 

 2.1. Air Quality Modeling 

In the first part of this section a brief description of air pollution is presented 

showing the main sources, and effects of air pollution. The second part of this section 

shows a brief view of the mathematical models used in air quality modeling. 

 

 2.1.1, Air Pollution 

Air Pollution is one of the most influencing problems that is harmful to 

humans, animals, and the environment. Air pollution is mainly caused by emission of 

particulates and biological molecules into the atmosphere which are emitted into the 

atmosphere through natural or man-made activities. The emitted particles can be 

classified into two main types: primary and secondary pollutants(Arya 1999). 

The primary pollutants are: Sulfur Oxides (𝑆𝑂𝑥), Nitrogen Oxides (𝑁𝑂𝑥), 
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Carbon Monoxide (𝐶𝑂), Volatile organic compounds (𝑉𝑂𝐶), Particulate matter (𝑃𝑀), 

Persistent free radicals, toxic metals, Chlorofluorocarbons (𝐶𝐹𝐶𝑠), Ammonia (𝑁𝐻3), 

Odours, and Radioactive pollutants. The secondary pollutants include: Ground level 

ozone (𝑂3) and Peroxacetyl nitrate (𝐶2𝐻3𝑁𝑂5). The two main sources of air pollution 

are natural sources and anthropogenic sources (Symeonidis 2017). 

One of the main anthropogenic sources of air pollution is the burning of 

different types of fuels. Anthropogenic sources can be stationary (like power plants and 

manufacturing facilities) or mobile sources (like motor vehicles and aircrafts). 

Controlled burn (like practices in agriculture and forest management), Fumes (like 

paint, hair spray, varnish, and aerosol sprays), waste deposition, and Military resources 

(like nuclear weapons, toxic gases, and rocketry) are all anthropogenic sources of air 

pollution. Whereas, Natural sources include Dust from natural sources, Methane, 

Radon, smoke and Carbon Monoxide from wildfires, vegetation and volcanic activity. 

Air pollution has many severe effects on people, animals, and the environment (Sharma, 

Jain, Khirwadkar and Kulkarni 2013). 

According to (Symeonidis 2017) the main effects of air pollution are: 

 Health problems: it causes problems in cardiovascular and respiratory 

systems which may lead to asthma, chronic bronchitis, and premature death. 

 Eutrophication: it causes the excess of nutrients in water or soil which is 

dangerous to biodiversity since the excessive growth of simple plants damages other 

plants, animals, rivers, and lakes. 

 Acidification: it causes acidification of water and soil which damages 

plants, animals, and buildings. 

 Physical damage: buildings are also subject to damage because of corrosion 

and soiling of their surfaces by the effect of particulate matter and acidification. 
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 Ozone depletion: man-made activities causes depletion of ozone layer which 

is the layer that protects earth from harmful radiation. 

 

 2.1.2. Mathematical Modeling of Air Quality 

Air quality models can be classified into two types: Lagrangian models and 

Eulerian models. Lagrangian models examine the temporal and spatial movement of air 

parcel. On the other hand, Eulerian models predict atmospheric conditions using a 

gridded reference system. Currently the Eulerian 3d models are used primarily because 

they use three dimensional grids especially with advancements in IT systems that made 

these models highly adaptable. There are many factors that can affect an air quality 

model(Goyal and Kumar 2011). 

According to (Symeonidis 2017) the most important factors in the air quality 

modelling are: 

 Meteorological parameters 

 Emission characteristics 

 Topography 

The mathematical modeling of air quality is classified into two main types. The 

first main type (called meteorological models) is concerned with the modeling of the 

atmosphere for the sake prediction of main meteorological parameters. The second type 

(called dispersion models) is concerned with modeling the physical and chemical 

processes involved in the atmosphere and will not be addressed in this thesis. 

 

 2.1.2.1. Meteorological Models 

The prediction of atmospheric conditions for future times at given locations 

and altitudes require the usage of meteorological models which are computer programs 
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built on to simulate the mathematical models of atmosphere, land, and oceans, and used 

to predict the future weather conditions based on the current conditions.  

In order to predict the future weather parameters, a set of differential equations 

is solved which include ideal gas law equations along with primitive equations which 

are those for momentum, mass continuity, and energy conservation (Lions, Temam and 

Wang 1992). The meteorological parameters that are simulated by these models are: air 

density, air pressure, potential temperature, wind speed, and wind direction. The 

meteorological parameters are simulated through time and they highly depend on the 

prediction scale.  

The prediction scales classifies these models into two types which are: global 

models and mesoscale models. Examples of global models include the Integrated 

Forecast System (IFS), the Global Forecast System (GFS), and the Global 

Environmental Multiscale Model (GEM). Whereas examples of mesoscale Models 

include the MM5, and the WRF. For this project the only software of interest is WRF. 

The rest are disregarded because we don’t have access and documentation to these 

software packages, and because of its wide usage in atmospheric research (Symeonidis 

2017) . 

 

 2.2. Air Quality Monitoring 

In this section the main pollution parameters used in this thesis are presented in 

the first part. In the second part the meteorological parameters used in thesis are 

illustrated. 

 

 2.2.1. Atmospheric Aerosols 

The atmospheric aerosol is a complex mixture of solid and liquid particles that 
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are released into the atmosphere. Atmospheric aerosols can be classified into two main 

types which are primary atmospheric aerosols, and secondary atmospheric aerosols. 

Primary aerosols are those that are directly released into the atmosphere (such as dust 

and smoke). Whereas secondary aerosols are formed in the atmosphere by gas-to-

particles conversion processes (such as sulfates and nitrates) (Dye 2003). 

The size of atmospheric aerosols varies in diameters between 0.002 and100 

µm. Aerosols can be classified according to their size into two main types which are 

Fine particles (d<2.5 µm) and coarse particles (d>2.5 µm). Among the strongest fine 

particulate matter is Black Carbon. In the following sections a brief description of 

Particulate matter, PM2.5, and Black Carbon is presented(Dye 2003).  

 

 2.2.1.1. Particulate Matter 

Another main concentration of this thesis is particulate matter, which is a 

complex mixture of solid and liquid particles of organic and inorganic substances 

suspended in the air. It mainly constitutes of sulfate, nitrates, ammonia, sodium 

chloride, black carbon, mineral dust and water. The size of particulate matter varies 

where their corresponding characteristics vary with relative to their size(Dye 2003). 

 The size of PM varies from about ten nanometers to ten micrometers where 

the particles with diameter less than 0.1 micrometers are considered ultrafine, and those 

of diameter between 0.1 and 10 micrometers are considered large. The diameter of the 

particles increases as their number decrease. The residence time of particulate matter 

varies with their size where the particles with diameters between 0.1 and 1 micrometers 

has the largest residence time, and may last from few days to weeks. The light scattering 

and absorption efficiencies of particulate matter varies with their size. Figure 1 shows 

the variation per mass of light scattering and absorption efficiencies per mass with 
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respect to the diameter of particles. The particles with diameter of 0.5 micrometers has 

the highest scattering absorption efficiency (Figure 1). The below figures also shows 

that the absorption efficiency has a small variance with the particle diameter. Particulate 

matter has severe health impacts(Dye 2003). 

 

 

 
Fig. 1. Relationship between PM diameter and scattering and absorption efficiencies 

Source: Dye, T.S. (2003). "Guidelines for developing an air quality". (Ozone and PM2. 

5) Iorecasting Program. 

 

 

Particulate matter has severe health impacts even in low concentrations, and 

there is no threshold above which health effects are not observed. Particulate matter 

with diameter less than 10 micros are the most dangerous since they can penetrate deep 
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inside lungs causing cardiovascular and respiratory diseases. Also high rates of 

mortality is directly related to the exposure to high concentrations of small particulates 

(PM10 and PM2.5)(Brook et al. 2013).  

Since PM has severe health impacts even for short-time exposure, there exists 

the need for the prediction of PM concentrations in order to warn people a few days 

before they appear in order to help them avoid exposure to them, especially on days 

where the concentrations of PM are expected to be high. PM2.5 and Black Carbon were 

studied in this thesis. 

 

 2.2.1.2. PM 2.5 

PM2.5 are particulate matter of diameters less than 2.5 µm that are formed 

from fine particles of different sources. PM2.5 is mainly formed of: Sulfate, Nitrate, 

Ammonium, Salt, Organic Carbon, Elemental Carbon, and Liquid Water. PM can be 

classified into two main types which are primary and secondary aerosols (Dye 2003). 

 PM which are emitted directly into the atmosphere are called primary aerosols. 

Whereas PM which form when gaseous compounds are emitted are called secondary 

aerosols. PM2.5 has man-made and natural sources (Dye 2003). 

 Man-made sources include mobile sources (like vehicles, trains, and farm 

machinery) and stationary sources (like combustion of fuels and wood products). On the 

other hand, natural sources include primary sources (like dust and sea spray) and 

secondary sources (like ammonium sulfate and nitrate which result from oxidation of 

biogenetic hydrocarbons).  Black carbon is among the finest and most dangerous 

particulate matter (Dye 2003). 
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 2.2.1.3. Black Carbon 

Black Carbon is a type of particulate matter that is considers the most harmful 

among particulate matter. It is composed of pure carbon and has the ability to absorb 

solar radiation of different wavelengths (Organization 2012).  It’s considered the most 

effective particulate matter since it has the ability to absorb solar radiation of different 

wavelengths. Many methods were conducted in the literature for determination of 

concentrations of Black Carbon, and its effects on health and climate (Apte et al. 2011; 

Organization 2012; Sasser 2012). In this thesis I use aethalometer for measuring Black 

Carbon concentrations. 

 

 2.2.2. Definition of the Mixing Height  

One of the most important parameters for the assessment of air quality is the 

mixing height; it is defined as the volume within which pollutants are mixed or 

dispersed by means of turbulence and convection. The mixing height typically ranges 

from few meters to several kilometers during the day. The lowest levels of mixing 

height are observed during the early morning time and grow gradually to reach its 

maximum during the afternoon. Mixing height is based on the concept of heat transfer 

and it highly affects the transport and diffusion of air pollutants.  

Temperature normally decreases with the increase of altitude in the 

troposphere, at an average of 10 ℃ per kilometer (Definition of Dry Adiabatic Lapse 

Rate). Inversion occurs when temperature increases with altitude, which results in a 

stable temperature profile that restricts vertical mixing. Pollution becomes more 

stagnant and undissipated as a result of volumes of air restricted due to inversion and 

causes vertical mixing or forming of mixing height. The early morning mixing height 

was determined from the temperature profile predicted by WRF using the “ Dry-
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Adiabatic Method” or “Parcel Method” (Holzworth 1967), based on the concept of air 

parcel.  

A parcel of air that is hotter than the environment will rise at a given rate called 

the Dry Adiabatic Lapse Rate (Figure 2). Once the parcel becomes colder than the 

environment it will slow down until it stops. The point of meeting of the vertical 

temperature profile with the temperature of parcel is called the mixing height (Figure 3) 

which is the point where the environmental lapse rate is less than the dry adiabatic lapse 

rate. The environmental lapse rate defines the rate of change of temperature of the 

atmosphere with height (Figure 3).  The method for determining the mixing height was 

chosen based on a comparison that is presented in the next section. 

 

 

 
Fig. 2. Dry Adiabatic Lapse Rate 
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Fig. 3. The Mixing Height  

 

 

 2.2.2.1. Mixing Height Determination Method 

In literature, several strategies have been used to determine the mixing height. 

Mixing height can be determined based using two main approaches: the profile 

measurements (direct measurement techniques) and the simple models 

(Parametrizations) (Seibert et al. 2000). Determining mixing height from profile 

measurements depends only on measurements whereas determining it from simple 

models may depend on weather forecast models and measurements.  

Direct measurement methods may be classified into two types: remote sensing, 

and radiosoundings. Radiosoundings are the most common methods for the 

determination of mixing height, being considered as a standard for evaluating remote 

sensing methods. A radiosonde is equipped with a measurement system that is carried to 
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high altitudes by a hydrogen or helium balloons. It measures atmospheric parameters 

and transmits them to a fixed receiver. The measured atmospheric parameters are: 

longitude, altitude, longitude, temperature, barometric pressure, and humidity. 

Rawinsondes differ from radiosondes that they also can measure wind speed, and 

direction. Using these methods mixing height can be calculated based on profiles of 

temperature, relative humidity, and windspeed. Mixing height can determined based on 

radiosounding using subjective or objective methods. The mixing height determination 

methods can be classified as shown in Figure 4. 

 

 

 
Fig. 4. Mixing height determination methods 

 

 

Subjective methods depend on wind profiles and radiosondes. These methods 

determine mixing height as the height where we have sudden decrease in air moisture or 

base height of inversion layer (Dai et al. 2014; Lotteraner and Piringer 2016; Mues et 

al.) . On the other hand, objective methods simplify the determination of mixing height 
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by homogenizing it’s estimation under convective conditions (Holzworth 1967).  The 

two most common objective methods are the Parcel methods and Richardson number 

methods. 

 Parcel methods strongly depend on surface temperature where the mixing 

height is determined by the intersection between temperature vertical profile, and dry 

adiabatic lapse rate starting at the surface (Holzworth 1967). Whereas Richardson 

methods depends on potential temperature and wind speed to determine the mixing 

height. The mixing height is assumed as the height which reaches a certain threshold. 

Richardson number can be calculated at each height from potential temperature and 

wind speed at that level (Zhang et al. 2014). Richardson methods can be used for 

weather forecast models since they work at certain conditions that are reliable under 

various atmospheric conditions. The second type used for determination of mixing 

height from profile measurement is remote sensing methods. 

Remote sensing methods employ the use of operational systems for the direct 

measurement of mixing height through the use of LIDAR (Light detection and ranging) 

and SODAR (Sound detection and ranging). LIDAR uses laser light in to measure 

aerosols concentrations to measure the mixing height. The mixing height determined 

using Lidar is defined by sudden decrease in the aerosol concentration. Whereas 

SODAR (Sound detecting and ranging) uses sound waves to determine the mixing 

height. The mixing height in this case is the height at which sudden increases in 

temperature occur. Particles and aerosols mix at a height where the variance of 

temperature starts to increase. Remote sensing methods can be used to determine 

average mixing height values, but not instantaneous ones. The second main approach of 

mixing height determination is the usage of simple models. 

Simple models are used when data profile measurement techniques aren’t 
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available. They use simple parametrization based on standard surface observations. 

These models use simple parametrized equations depending on a limited number of 

input data. 

Many comparisons between these methods have been conducted in the 

literature (Coulter 1979; Khandokar, Mofarrah and Husain 2010; Seibert et al. 2000). 

Parametrization methods are confined for the treatment of atmospheric boundary layer 

in some weather forecast models. Whereas Profile measurement methods can cover up 

to 2-3 km above the ground, which enables mixing height determination in all seasons. 

These studies concluded that profile measurement methods superior are superior on 

parametrization methods due to the suggested reasons. 

Dai et al. (2014) state that the Richardson number method is inadequate for 

most cases in comparison with other used methods. The results of (Mues et al.) showed 

that it gives comparable results at 100-m vertical resolution.  

Lotteraner and Piringer (2016) presents a new method of determination of 

mixing height using an operational ceilometer, in contrast with Parcel, Heffer and 

Richardson methods applied on radiosondes profiles. It showed that the Parcel method 

gave the best fit to the ceilometer derived mixing height, whereas Richardson and 

Heffer methods overestimated the mixing height. 

A comparison between subjective method and parametrization models is 

shown (Cheng et al. 2001). Dry Adiabtic (Parcel Method) is compared with Nokazi and 

modified Nokazi model. Parcel method determines mixing height based on surface 

temperature and radiation inversion, whereas Nokazi models determine it based on 

thermal and dynamic factors. It states that Parcel methods require sounding data 

whereas Nokazi models are applicable in areas where there are no sounding data. The 

implied results showed that the Parcel method is superior on Nokazi model for 
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estimating the mixing height.  

Seibert et al. (2000) state that the determination mixing height from Profile 

measurements is preferred on determining it from Parametrization models. This papers 

shows comparison between Parcel and Richardson number methods applied on 

radiosounding data. It proves that the Parcel method is the most reliable method for the 

determination of mixing height based on the sounding temperature profile. 

In Seidel, Ao and Li (2010), six methods based on radiosonde data were 

compared concluding that the Parcel method is an obvious choice for determining the 

mixing height especially over the well dense and populated area. It concludes also that 

other methods are better for comparison with weather forecast models. 

Comparison between temperature turbulence method, gradient method, low-

level jet method, and parcel method is shown in (Coulter 1979). It states that Parcel 

Methods are more affordable than turbulence method since Temperature turbulence 

methods are more expensive, and can’t be widely applied. 

Based on the above comparisons, and since we are only measuring temperature 

profile without the usage of remote sensing systems the method used in this thesis is the 

“Dry Adiabatic Method” or “Parcel Method”.  

Using the Parcel method the mixing height can be determined by finding the 

intersection between the early morning temperature profile, and the dry adiabatic lapse 

rate line. Figure 5 shows how to calculate the early morning mixing depth from early 

morning temperature profile, by the following steps: 

 Find a representative morning ground-level temperature:  

𝑇𝐴𝑀 = 𝑇𝑚𝑖𝑛(𝑏𝑒𝑡𝑤𝑒𝑒𝑛 2 𝑎. 𝑚. & 6 𝑎. 𝑚. ) +  5 ℃ 

 From point T_AM draw a line corresponding to the dry adiabatic lapse rate. 

 Find the intersection between early morning temperature profile, and dry 



19 

adiabatic lapse rate line. 

 

 

 
Fig. 5. Parcel Method  

 

 

In this chapter an overview of the main aspects of air quality modeling and 

monitoring was presented. The air pollution problem and mathematical models used in 

air quality were described in the first part of this chapter. The meteorological parameters 

used in this thesis were explained in the second part which are: atmospheric aerosols 

and the mixing height. Finally, the method used in this thesis for the determination of 

the mixing height was presented showing an overview of the previous studies used, 

comparing between them, and explaining the method used in this thesis. In the next 

chapter the previous studies that were conducted for investigating the correlation 

between the mixing height and atmospheric aerosols are investigated. 
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CHAPTER 3 

LITERATURE REVIEW 

 

Many similar works have been conducted in literature to study the relation 

between the mixing height and PM concentrations. Most of these studies predicted PM 

concentrations using linear regression models, but they differed in the method applied 

for the estimation of the mixing height. Different correlation methods were applied to 

test the relation between the mixing height and meteorological parameters. The next 

paragraphs present an overview of these studies. 

  One of the previous studies focused on studying the correlation between  the 

mixing height and PM 2.5 concentration (Qu et al. 2017). The study concluded that low 

mixing height is associated with low wind speed and high relative humidity, and that the 

stability of Planetary Boundary Layer (PBL) is enhanced by high PM concentrations. 

The study also found that the mixing height is highest in the summer and lowest in the 

winter and that the correlation coefficient between PM 2.5 and mixing height is -0.71, a 

fact which proves that there is strong anti-correlation between PM 2.5 concentration and 

the mixing height. 

A similar study was conducted to examine the effect of mixing height on 

ground-level PM2.5 concentrations (Zang et al. 2017). A step wise regression model 

was built to estimate PM2.5-ground level concentrations based on surface relative 

humidity, mixing height, and surface temperature. The determination coefficient was 

found to be 0.65. 

A related analysis was conducted to study the mixing layer height and its 

effects on air pollution(Tang et al. 2016). The mixing layer height was estimated using 
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ceilometer, and it was observed to be low in autumn and winter, and high in spring and 

summer. A significant correlation was found between the sensible heat flux and the 

mixing height. The correlation between mixing height and visibility was investigated 

and was found to be poor. 

The empirical relationship between aerosol optical depth (AOD) and of fine 

(PM 2.5, particles with diameters less than 2.5 µm) and coarse (PM Particles between 

diameter of 2.5 and 10 µm AD) mass concentrations and compositions was investigated 

(Chen et al. 2013). Continuous hourly measurement of PM 2.5 data was done, and daily 

average measurement of PM2.5 and PM10 were obtained. The correlation coefficient 

varied from 0.56 and 0.87 depending on the season. Linear regression between PM2.5 

and AOD was investigated in order to allow the estimation of PM2.5 mass 

concentrations at the surface based on AOD data, which can be used to help interpret 

AOD measurements made in Central Asia and potentially over the regions of the world. 

The mixing height was measured by LIDAR and has a seasonal variation from 1 to 4 

km. The regression equation depends on AOD, mixing height, and relative humidity. 

The determination coefficient varied between 0.32 and 0.38 depending on the season. 

Other studies focused on the temporal variation of ventilation coefficient and 

estimated it using multi-linear regression models (Lu, Deng, Liu, Huang and Shi 2012). 

Pearson correlation analysis was conducted to investigate the relationship between 

mixing height and meteorological parameters. The meteorological parameters that were 

used in this study included: Wind speed, temperature, pressure, relative humidity, and 

dew point temperature. The largest correlation coefficient (0.799) was observed with the 

solar radiation during day time. A high correlation coefficient was observed between 

mixing layer, and relative humidity and temperature during day time. Multi-regression 

models were built based on the correlation between the mixing height and 
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meteorological parameters. The regression models estimated the day and night hourly 

mixing height based on the wind speed, pressure, temperature, relative humidity, and 

temperature dew point. 

Similarly, the relation between mixing height and atmospheric parameters was 

examined (Roy, Gupta and Singh 2012). Correlation coefficients were calculated to 

study the relation between mixing height and meteorological parameters. Regression 

analysis showed that mixing height is significantly affected by solar radiation and wind 

speed. A statistical model was developed to estimate the mixing height based on 

meteorological parameters. 

In Sansone et al. (2006), a different approach was conducted to develop a 

multiple regression approach that forecasted PM 10 concentration. The linear regression 

depended on the following meteorological factors:  daily means of wind speed, rain 

accumulation, mixing height, and thermal inversion index. The determination 

coefficient 𝑅2 was calculated to test the fitness of the regression and it was evaluated as 

0.75 during the period October 2001- September 2004 and as 0.72 during the Period 

October 2004-September 2005. The largest determination coefficient was observed 

between PM 10 and the mixing height with a value of  𝑅2 = 0.28 which proves that the 

strongest correlation is between PM10 and the mixing height. 

All the above studies are similar in forecasting PM concentrations using a 

linear regression model that depends on one or more of the meteorological parameters 

as the main predictor for these concentrations (Dye 2003; Qu et al. 2017; Roy et al. 

2012; Symeonidis 2017). However, these studies differed in the mixing height method. 

One group of studies employed the use of ceilometer for determining the mixing height 

(Chen et al. 2013; Qu et al. 2017; Tang et al. 2016). Another study employed the use of 

SODAR for the estimation of the mixing height (Zang et al. 2017). A third study 
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calculated the mixing height using different methods applied on radiosonde data (Zang 

et al. 2017). A fourth study collected the mixing height data from meteorological 

websites (Lu et al. 2012). The final study estimated the mixing height using CALMET 

meteorological model (Sansone et al. 2006). Giving the fact that most of previous 

studies adopted a linear regression model for forecasting PM concentrations, a multi 

variable linear regression model is also used to predict PM2.5, and PM4, and PM10 

concentrations based on the meteorological parameters as the main predictor for these 

concentrations in this study. The above studies differed in the mixing height 

determination method where most of them relied on meteorological stations data or 

expensive instrumentation (LIDARs and SODARs).  

To address these issues and taking into consideration the fact that my aim was 

for an automated and relatively inexpensive method, independent of meteorological 

station, I opted for a software-based-design approach, in which a current online system 

(WRF) would be augmented with ground pollution level information. In this respect this 

research is new of its kind presenting a software based approach for forecasting PM2.5, 

PM4, and PM10 concentrations based on meteorological parameters especially the 

mixing height. I estimate the mixing height using the Parcel method applied on 

temperature profiles predicted using WRF software. The next chapter outlines in details 

the methodology that was conducted for achieving the main objective of this thesis. 
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CHAPTER 4 

METHDOLOGY 

 

The different methods and tools that were used in this thesis to develop the 

linear regression models are presented in this chapter. The two main datasets that were 

used are PM Dataset and Meteorological dataset. A brief view of each dataset is 

provided in the first two sections of this chapter. The tools and methods that were used 

in this thesis are described briefly in the third section of this chapter. Finally the 

regression model that was built based on the meteorological and PM Datasets is 

elaborated in the fourth section of this chapter. 

 

 4.1. Description of Datasets 

The following datasets were used in this study: 

 PM concentration data (PM1, PM2.5, PM4, and PM10) from the station 

located in Beirut, Lebanon 

 Meteorological Data from the WRF modeling system. The datasets were 

studied for the period ranging from November 2016 to August 2017 

These datasets are described shortly in the next sections. 

 

 4.1.1. PM Dataset 

PM Measurements from air quality station were used in order to evaluate the 

possible relation between the mixing height and PM concentration. PM data contained 

the hourly variation of PM concentration for the period between November 2016 and 

August 2017. 
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  4.1.2. Meteorological Data 

The Mixing Height was predicted using meteorological data (Temperature 

vertical profiles). The main meteorological parameters were predicted using the WRF 

modeling system. The main objective is to use meteorological data estimated using 

WRF as an input for a system model that uses this data to predict near ground 

particulate matter concentrations (Figure 6). WRF resolution was refined using Python 

scripting. 

 

 

 
Fig. 6. Prediction of Particulate Matter Concentrations Using WRF 

 

 

WRF files contained the average hourly values of parameters in the vertical 

layers of the model. WRF vertical resolution was refined in order help in accurately 

comparing between predicted temperature profiles and measured temperature profiles. 

On the other hand, the relative humidity and wind speed were predicted using 

Beirut underground weather forecast website. 

 

 4.2. Tools and Methods 

In order to achieve the main objective, different tools and methods were used 

to develop the main system model. The WRF datasets preprocessing was mostly 

performed using custom Python scripts. Microsoft Excel was used in order to produce 
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the monthly or seasonal averages of PM concentrations and mixing height values 

.MATLAB software and tools were used in this study to analyze and visualize the PM 

and meteorological datasets and to investigate the relation between them. MATLAB 

provides advanced statistical tools including descriptive statistics, correlations, and 

regression analysis.  

MATLAB curve fitting tool was used in order to build the regression equations 

between PM concentrations and the mixing height where statistical analysis was 

performed. The overall process workflow is presented in the image below (Figure 7). 

 

 

 
Fig. 7. Basic Methodology 

 

 

Moreover, SPSS software was used to develop the multi variable linear 

regression models. Many models were developed relying on two or three of the above 

stated meteorological parameters, where these models were then compared to determine 

the best equations that can be used for the prediction of PM concentrations based on 

atmospheric conditions.  
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CHAPTER 5 

SYSTEM MODEL 

 

The onsite PM measurements, and the WRF model are briefly described in the 

first and second sections of this chapter respectively. The developed regression model is 

described in the third section. 

 

 5.1. Onsite PM Measurements 

The PM daily average concentrations were assessed over the region of Beirut. 

This data was provided by the Chemistry Department at the American University of 

Beirut. The location of this station is shown in the map below (Figure 8). 

 

 

 
Fig. 8. Location of PM station  

Source: Google Map, 2017. 
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 5.2. WRF 

The advanced research WRF (ARW) is a modeling system that has been 

designed for atmospheric system. It’s a flexible software suited for many kinds of 

applications including: hurricane research, forecast research, regional climate research, 

data assimilation research, and many other ones. WRF simulations were carried out 

with WRF 3.8.1 version. WRF was used in a 210 km domain with 45 levels, in which 

the first ten levels up to a height of 2 km were used. Simulation time was set to 24 h, 

with a 60s time step. WRF was used to predict vertical temperature profiles. Mixing 

height was then determined using Dry Adiabatic Method as shown in Figure 9. The 

mixing height was determined by the intersection between the temperature vertical 

profile predicted using WRF at 6 a.m. with the dry adiabatic lapse rate line assuming the 

surface temperature as the minimum temperature between 2 & 6 a.m. in addition to five 

degrees to compensate between urban and rural areas as discussed before. The basic 

flowchart of WRF is shown in Figure 9 whereby the WRF workflow consists of two 

consecutive main parts. The first part is the WRF Preprocessing System (WPS) which 

contains the tools that prepare the data that WRF uses (geogrid, ungrib, and metgrid). 

These tools were used as processers for static data and driving model data as well. The 

second main part is the WRF model. It consists of two consecutive parts which are: 

 Real.exe which is the initialization program 

 Wrf.exe which is the numerical integration program 
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Fig. 9. Basic WRF flowchart  

Source: Tran, 2014 

 

 

 5.3.  Creation of Regression Models between the PM station Data and the Model 

Data 

 

In this study, the correlation between Mixing Height predicted using WRF and 

PM concentrations measured by air quality station was studied. The hypothesis was 

tested over the area of Beirut, since Beirut is a very dense area, where a large population 

is affected by air pollution especially those exceeding the regulation limits. Thus, 

monitoring air quality in this area is of high importance. To achieve this goal many 

steps were taken. 

First, the mixing height was predicted using WRF, and PM station data were 

extracted. The available data was then compiled, where regression analysis was 

performed. The condition that was examined is that of PM concentrations with the 

meteorological parameters. The result of this analysis showed that there is a significant 

relation between these variables and the mathematical relationship between them was 

investigated statistically. Linear regression models between the meteorological 

parameters and PM concentrations (which have high correlation coefficients with the 

mixing height) were developed, and coded using MATLAB software (taking into 
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consideration the methodology described in the previous chapter) and SPSS software. 

The developed regression equations, and results of statistical analysis are shown in 

Chapter 7. In the next chapter, the main software and hardware used for the validation 

of WRF in this study are presented. 
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CHAPTER 6 

VALIDATION OF WRF 

 

The different hardware and software that were used for the validation of WRF 

in this thesis are presented and described. The hardware consists of: temperature 

sensors, Arduino Uno, Aethalometer, and an Unmanned Aerial Vehicle (UAV). Critical 

instrumentation were used in this thesis which are less commonly used in other methods 

of literature. These descriptions are confined to the measurement of temperature, and 

Black Carbon concentration. The results of flights are shown in the last section of this 

chapter. 

 

 6.1. Description of Software and Hardware Involved 

 6.1.1. Arduino Uno 

Arduino is open-source physical board, which has many applications for 

reading data from different kinds of sensors, switches, and controlling motors, and 

many other actuators. The projects built using Arduino are easily communicated with 

various software. The Arduino can be powered via a USB connection or external power 

supply. There are different kinds of Arduino models such as the Arduino UNO, the 

Arduino Leonardo, and the Arduino zero; I opted for the Arduino UNO since it has the 

lowest price among other Arduino models, and because according to the technical 

specifications of the sensors, the specifications of Arduino Uno are adequate. 

 

 6.1.1.1. Specifications of Arduino UNO 

The main specifications of Arduino UNO used in this thesis is shown in Table 
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1 below. 

 

 

Table 1. Specifications of Arduino UNO 

Operating Voltage 5V 

Input Voltage 7-12V 

Digital Input/output Pins 14 

Analog Input Pins 6 

DC Current for Input/output Pins 40 mA 

Clock Speed 16 MHz 

Flash Memory 32 KB 

SRAM 2 KB 

EPROM 1 KB 

 

 

 6.1.2. Temperature Sensors 

 6.1.2.1. SHT75 

SHT75 is sensor of temperature and relative humidity. It is fully and has lower 

power consumption with excellent long-term stability. It can be easily integrated since 

the chip contains an amplifier, A/D converter, OTP memory, and digital interface. The 

main specifications of SHT75 for sensing relative humidity and temperature are shown 

in Tables 2 and 3 respectively. 

 

 

Table 2. Relative Humidity Sensing Specifications 

Parameter Value Units 

Resolution 0.05-0.4 %RH 

Accuracy 1.8 %RH 

Repeatability 0.1 %RH 

Hysteresis 1 %RH 

Response time 8 %RH 

Operating range 0-100 %RH 

Long time drift <0.5 %RH/yr 
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Table 3. Temperature Sensing Specifications 

Parameter Value Units 

Resolution 0.01-0.04 ℃ 

Accuracy 0.3 ℃ 

Repeatability 0.1 ℃ 

Response time 5 ℃ 

Operating range -40-124 ℃ 

Long time drift <0.04 ℃/yr 

 

 

As shown in Tables 2 and 3, the response time of the SHT75 sensor for sensing 

relative humidity and temperature is 5 and 8 s respectively, which is incompatible with 

the desired sensor specifications of the temperature sensor that can be used for 

meteorological applications (Figure 11). 

 

 6.1.2.2. MCP9808 

MP9808 is a digital temperature sensor that converts temperatures to digital 

mean with maximum accuracy of ± 0.25 degrees Celsius. The sensor comes with user-

programmable registers that provide flexibility for temperature sensing applications 

allowing accurate temperature measurements. The specifications of the MCP9808 

temperature sensor are shown in Table 4. 

 

 

Table 4. MCP9808 Temperature Sensor Specifications 

Sensor Type Range Accuracy Response time 

MCP9808 High accuracy temperature sensor -40-12 ℃ +/- 0.25℃ 0,7 s 

 

 

As shown on Table 4, the response time of the MCP9808 temperature sensor is 

0.7 s. The response time of the temperature sensor was tested experimentally by 
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recording the time required by the sensor to shift from room temperature to freezer 

temperature. It was found that the temperature sensor needed more than one minute to 

shift from room to freezer temperature, which makes this sensor inapplicable. This is 

because the total flight time of the drone is six minutes, and a fast enough temperature 

sensor in this case. 

 

 6.1.2.3. 503 ET 

Many temperature sensors were implemented and tested for the sake of 

determination of vertical temporal variation (Jacob et al. 2017). The used temperature 

sensor is bead thermistor 503ET-3H87L-20073. This sensor was chosen since it has 

high accuracy, fast response time, and long reliability(Jacob et al. 2017). It utilizes the 

concept of decreasing resistance for increasing temperature where the resistance is 

transformed to voltage by the use of voltage divider. The PCB schematic diagram of the 

circuit is shown in Figure 10, as can be seen, the sensor is connected to Arduino via a 

voltage divider which transforms the output current to output voltage. This voltage is 

filtered by a low pass filter R2 & C1, and sent to ADC A0. Then the data is saved as a 

text file in a microSD card with a SPI interface. 

Table 5 presents the technical specifications of the 503ET temperature sensor. 

 

 

Table 5. Technical Specifications of the Used Temperature Sensor 

Parameter Value Units 

Rate zero-power resistance at 37℃ 29.615-30.263 KΩ 

B value by rate zero-power resistance between 30 and 

45℃ 

3944±0.5 % 

Dissipation factor  0.7 mW/℃ 

Thermal time constant 0.8 s 

Rated maximum power dissipation (at 25℃ ) 3.5 mW 

Temperature range  -40-100 ℃ 
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The specifications of a sensor that can be used for meteorological applications 

are shown in Figure 11. Based on these specifications, the temperature sensor was 

chosen since it has faster response than the other two sensors. 

 

 

 
Fig. 10. Schematic of Temperature Measurement System 
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Fig. 11. Meteorological Sensor Specifications  

Source: Jacob et al. (2017). Unmanned Aerial Systems for Atmospheric Research: 

Instrumentation Issues for Atmospheric Measurements.   

 

 

 6.1.3. Aethalometer 

The model used for measurement of Black Carbon concentrations in real time 

is the “microAeth AE51 “(Figure 12). The main uses of aethalometers is for air quality 

measurements, with data being used for studies of the impact of air pollution on health, 

climate, and visibility. In many measurements, including planes, trains, bicycles, 

weather balloons and UAVs, it constitutes one of the fundamental principles for 

acquiring information about aerosol Black Carbon concentration in real time 

(Organization 2012; Sasser 2012). Other measurements include the emission of Black 

Carbon from combustion sources such as vehicles, industrial processes, and biomass 

burning, both in wildfires and in domestic and industrial settings (Apte et al. 2011).  

In this thesis, an aethalometer is used to determine the near ground level Black 

Carbon concentration. The model I selected can work for 24 hours on a single battery 

charge.  The air sample is collected on T60 (Teflon coated glass fiber) filter media 

which can be easily replaced by simple handling in the field. Data is collected by the 

means of collection of aerosol deposit on a filter. The measurement resolution and 
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precision are 0.001 μg BC/m3 and ± 0.1 μg BC/m3 respectively. In this research, the 

chosen time base and resolution set to the aethalometer are 5 min and 100 ml/min 

respectively. According to the operating manual, the individual data point noise 

associated with this time setting base and flow rate is less than 0.05ug/m3. Data is 

stored in a microSD card which is mounted inside the aethalometer. The Black Carbon 

concentration is collected during the time of flight. 

 

 

 
Fig. 12. The Aethalometer 

 

 

 6.1.4. Unmanned Aerial Vehicle 

The UAV used in this thesis is 3DR RTF X8 (2013) (Figure 13).  The 

quadcopter has powerful motors and high-speed propellers. The quadcopter has three 

modes of flight which are: stabilize, manual, and autonomous modes. In this research, 

the UAV is set to autonomous flight mode in order to perform vertical measurement of 

temperature since we have defined vertical waypoints where the quadcopter can hover 

for a small time to collect data. Two 5200 mAh/11.1 V was used for each flight giving 

the quadcopter a total flight time of 6 minutes. The ascending and descending speeds 

that were set to the drone were 1.25 and 0.8 m/s respectively. Using RC transmitter the 
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communication between the quadcopter and the laptop were handled. Mission Planner 

software was used to communicate with the drone during flights, and store flight 

missions on a laptop. Quadrotor flights are conducted at AUB over the Green Field 

(Figure 14) that is located near to Paris Street, a high source of air pollution, where 

population and industries concentrate at Beirut city. The quadrotor was set to 

autonomous flight mode where temperature profiles were recorded up to a height of 150 

meters.  

 

 

 
Fig. 13. Quadrotor with Temperature Sensor 
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Fig. 14. AUB Green Field Location  

Source: Google Map, 2017. 

 

 

 6.2. Results of flights 

In order to validate WRF eight flights were conducted, where the temperature 

was measured to a height of 150 meters. The temperature profiles resulting from the 

flights were then compared with the temperature profiles predicted using WRF. 

Samples of resulting temperature profiles and temperature profiles predicted using WRF 

(during the same timing of flights) are shown in Figure 15. The mean, variance, and 

standard deviation of the error were calculated, whereby the error represents the 

difference between measured and predicted temperature.  

Table 6 shows the coefficients calculated for the sake of comparison between 

the measured and predicted profiles using 503 ET temperature sensor. 
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Table 6. Results of comparison between predicted and measured temperature profiles 

using 503 ET temperature sensor 

 

Mean of error  1.76℃ 

Variance 1.1 ℃ 

Standard deviation 1.2 ℃ 

 

 

As shown in Table 6, the error has a mean of 1.76℃, a variance of 1.1 ℃ , and 

a standard deviation of 1.2℃. The obtained results show that WRF is different than 

temperature measurements by 1.76℃.  

Similarly, a sample of the results of temperature measurements conducted 

using SHT75 is shown in Figure 16. Five flights were conducted, of which we have four 

flights up to a height of 70 meters, and one flight up to a height of 150 meters. 

Table 7 shows the coefficients calculated for the sake of comparison between 

the measured and predicted profiles using SHT75 temperature sensor. 

 

 

Table 7. Results of comparison between predicted and measured temperature profiles 

using SHT75 temperature sensor 

 

Mean of error  0.822921611 ℃ 

Variance 1.364782397 ℃ 

Standard deviation 1.862630991 ℃ 
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(a)  

 

(b)  

 

(c)  

 

(d)  

Fig. 15. Samples of Resulting Flights Using 503ET Temperature Sensor 
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 (a)  

 

(b)  

 

Fig. 16. Samples of Resulting Flights Using SHT75 Temperature Sensor 
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Fig. 17. Scatter Plot of Measured Temperature Profiles with Measured Temperature 

Profiles 

 

 

The scatter plot of the relation between predicted and measured temperature 

profile is shown in Figure 17. The coefficient of determination (R-squared) between the 

measured with predicted temperature profiles is 0.8661, which proves that the mixing 

height predicted relying on temperature profile predicted using WRF is quite accurate. 
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CHAPTER 7 

RESULTS 

 

 7.1. WRF Simulations  

WRF simulations were conducted from November 2016 till August 2017 in 

order to extract temperature profiles. A large number of data were collected 

intermittently within the mentioned period, and below are some samples from different 

seasons. Moreover, Parcel Method was applied on the resulting temperature profiles to 

estimate the mixing height during this period. The dry adiabatic lapse rate line is shown 

in the figure below. As stated before the mixing height is the intersection between the 

dry adiabatic lapse rate line, and the temperature profile curve. Two samples from each 

month are shown in the below Figures (18-25). 

 

 

 
Fig. 18. Sample of WRF Simulations from November 
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Fig. 19. Sample of WRF Simulations from December 

 

 

 
Fig. 20. Sample of WRF Simulations from March 
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Fig. 21. Sample of WRF Simulations from April 

 

 

 
Fig. 22. Sample of WRF Simulations from May 
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Fig. 23. Sample of WRF Simulations from June 

 

 

 
Fig. 24. Sample of WRF Simulations from July 
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Fig. 25. Sample of WRF Simulations from August 

 

 

 7.1.1. Temporal Variation of the Mixing Height 

Since we don’t know when each season begins and ends, the monthly average 

of the mixing height was calculated in order to plot its monthly variation. The monthly 

variation of the mixing height is shown in Figure 26. The Mixing height has its 

maximum value during the month of December and its minimum value during July. The 

maximum value of the mixing height was witnessed in the winter and the minimum one 

in the summer. 



49 

 
Fig. 26. Monthly Variation of the Mixing Height 

 

 

 7.2. PM Measurements 

Similarly measured PM data was provided by the Chemistry Department at the 

American University of Beirut. 45 samples of different days from November to August 

were obtained, and below are a few examples that correspond to the same timings of the 

WRF simulations (Figure 27). 

 

 7.2.1. Temporal variation of Aerosols  

Similarly, the monthly average of the PM concentrations (PM1, PM2.5, PM4, 

and PM10) were calculated in order to plot its monthly variation. The monthly variation 

of the PM1, PM2.5, PM4, and PM10 are shown in Figures 28, 29, 30, and 31 

respectively. These plots are based on monthly averages 
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(a)  

(b)  

(c)  

(d)  

Fig. 27. Samples of PM data from different months 
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Fig. 28. Monthly Variation of PM1 Concentrations 

 

 

 

Fig. 29. Monthly Variation of PM2.5 Concentrations 
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Fig. 30. Monthly Variation of PM4 Concentrations 

 

 

 
Fig. 31. Monthly Variation of PM10 Concentrations 

 

 

 7.2.2. Temporal Variation of PM Concentrations 

As shown in Figures 28 to 31, the Lowest PM concentrations were witnessed 

during December and the highest in November. 
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 7.3.  Results of Statistical Analysis of the Relation the Mixing Height-PM 

Concentration 

 

In order to figure out the relation between the mixing height and the measured 

PM data, statistical analysis was investigated. We applied Pearson correlation methods 

for this sake which are shown in Table 8. 

 

 

Table 8. Analysis Using Pearson Correlation Method 

 PM 1 PM 2.5 PM4 PM10 

R -0.116 -0.592 -0.51 -0.359 

PVAL 0.2696 4.2563e-05 0.0145 4.9474e-04 

 

 

The correlation coefficients between PM concentrations and the Mixing Height 

are shown in Table 8 above. These coefficients show a quantitative measure of the 

statistical relationship between these variables. The greater the value of correlation 

coefficient the stronger is the correlation.  Table 8, values in bold demonstrate the 

highest correlation which is between PM2.5 concentration and the Mixing Height. It is 

clear that there is a strong correlation between PM4 and the Mixing Height with 

Pearson correlation coefficients of 0.51. The correlation between PM10 and the mixing 

height is moderate with Pearson correlation coefficient of 0.359. The correlation 

between PM2.5 and the Mixing Height is clearly shown in the scatter plot in Figure 32. 

The suggested hypothesis is that there is correlation between the mixing height, 

and PM concentrations. In order to investigate this hypothesis, coefficients (r) and P 

Values (PVAL) were calculated using the two mentioned methods. From the above 

table we note that the highest association exists between PM2.5 and mixing height. 

Since the correlation coefficient has a negative sign then there is a negative correlation 
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between the mixing height and PM concentrations. Taking into consideration a 

significance level of 0.5 % (0.005), PM1 would be considered not statistically 

significant since its P Values are greater than the significance level. Whereas the P-

values of PM2.5, PM4, and PM10 are less than the significance level which proves the 

suggested hypothesis since the smaller the P-values are, the more confident we are 

regarding the suggested hypothesis. According to Cohen’s convention the correlation 

between the mixing height, PM2.5, and PM4 would be considered strong since the 

correlation coefficient is greater than 0.5, but the correlation between PM2.5 and the 

mixing height would be stronger than that of PM4 since we have greater correlation 

coefficient. 

 

 

 
Fig. 32. Scatter Plot of PM2.5 concentrations with the Mixing Height over Beirut 

 

 

The coefficient of determination, 𝑅2 and regression equation were calculated 

for this case.  

The regression equation is expressed as:  

𝑃𝑀 2.5 = 𝑃1 + 𝑃2 ∗ 𝑀𝐻 

Table 9 presents the regression results and coefficients for the examined case. 
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N represents the sample size used in the regression analysis. The other values in the 

table are the coefficients of the regression equations: 

 

 

Table 9. Regression Coefficients of the relation PM2.5-MH 

N 𝐑 𝑹𝟐 P1 P2 

45 0.592 0.35 -0.02 47.662 

 

 

Table 9 proves that there is a good correlation between PM2.5 and the Mixing 

Height. 

The correlation between PM4 and the Mixing Height is clearly shown in the 

scatter plot in Figure 33. 

 

 

 
Fig. 33. Scatter Plot of PM4 concentrations with the Mixing Height over Beirut 

 

 

The coefficient of determination, 𝑅2 and regression equation were calculated 

for this case.  

The regression equation is expressed as:  
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𝑃𝑀 4 = 𝑃1 + 𝑃2 ∗ 𝑀𝐻 

Table 10 presents the regression results and coefficients for the examined case. 

N represents the sample size used in the regression analysis. The other values in the 

table are the coefficients of the regression equations: 

 

 

Table 10. Regression Coefficients of the relation PM4-MH 

N R 𝑅2 P1 P2 

45 0.51 0.26 -0.023 58.37 

 

 

Table 10 proves that there is a good correlation between PM4 and the Mixing 

Height 

The correlation between PM10 and the Mixing Height is clearly shown in the 

scatter plot in Figure 34. 

 

 

 
Fig. 34. Scatter Plot of PM10 concentrations with the Mixing Height over Beirut 
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The coefficient of determination, 𝑅2 and regression equation were calculated 

for this case.  

The regression equation is expressed as:  

𝑃𝑀 10 = 𝑃1 + 𝑃2 ∗ 𝑀𝐻 

Table 11 presents the regression results and coefficients for the examined case. 

N represents the sample size used in the regression analysis. The other values in the 

table are the coefficients of the regression equations: 

 

 

Table 11. Regression Coefficients of the relation PM10-MH 

N 𝐑 𝑹𝟐 P1 P2 

45 0.359 0.129 -0.029 87.758 

 

 

 7.4.  Results of Statistical Analysis of the Relation the Wind Speed/Relative 

Humidity-PM Concentrations 

 

In order to figure out the relation between the wind speed, relative humidity 

and the measured PM data, statistical analysis was investigated. We applied Pearson 

correlation methods for this sake which is shown in Table 12 for the relation between 

PM concentrations and the mixing height. The same methods were applied also to 

investigate the relation between the PM concentrations and the wind speed and are 

shown in Tables 13. 

 

 

Table 12. Analysis of the Relation PM Concentration- Wind Speed Using Pearson 

Correlation Method 

 

 PM 1 PM 2.5 PM4 PM10 

r 0.134 0.243 0.162 0.036 

PVAL 0.379 0.108 0.286 0.817 
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Table 13. Analysis of the Relation PM Concentration- Relative Humidity Using Pearson 

Correlation Method 

 

 PM 1 PM 2.5 PM4 PM10 

R 0.107 0.269 0.35 0.312 

PVAL 0.486 0.074 0.019 0.037 

 

 

The correlation coefficients between PM concentrations and the Wind Speed 

are shown in Table 12 above. It is clear that there is a weak anti-correlation between PM 

concentrations and the Wind Speed with Pearson correlation coefficients less than 0.3 

for all PMs.  

The suggested hypothesis is that there is correlation between the Wind Speed, 

and PM concentrations. Since the correlation coefficient has a negative sign then there 

is a negative correlation between the Wind Speed and PM concentrations. Taking into 

consideration a significance level of 0.5 % (0.005), the relation between PM 

concentrations and Wind Speed would be considered not statistically significant since 

their P Values are greater than the significance level.  

Moreover, the correlation coefficients between PM concentrations and the 

Relative Humidity are shown in Table 13 above. It is clear that there is a moderate 

correlation between PM4, PM10, and the relative humidity with Pearson correlation 

coefficients of 0.35 and 0.312 respectively .The correlation between PM1, PM2.5, and 

the relative humidity is weak with Pearson correlation coefficients of 0.107 and 0.269 

respectively.  

The suggested hypothesis is that there is correlation between the Relative 

Humidity, and PM concentrations. From the above tables we note that the highest 

association exists between PM4 and the Relative Humidity. Since the correlation 

coefficient has a positive sign then there is a positive correlation between the Wind 
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Speed and PM concentrations. Taking into consideration a significance level of 0.5 % 

(0.005), the relation between PM1, PM2.5, and Relative Humidity would be considered 

not statistically significant since their P Values are greater than the significance level. 

 

 7.5.  Results of Multi Variable Regression Analysis Depending on Two 

Independent Variables 

 

In order to figure out if there is a relation between the mixing height, wind 

speed, relative humidity and the measured PM data, multivariable regression models 

were developed. We developed three models for the prediction of PM concentrations 

based on relative humidity, the mixing height, and wind speed depending on two of 

these variables for each case. Table 14 presents the multi variable regression 

coefficients calculated for the sake of the determination of PM concentrations based on 

the relative humidity and the mixing height. The results presented in Table 14 shows 

that PM2.5 and PM4 concentrations can be predicted relying on the mixing height and 

relative humidity since the correlation coefficients (R), R-squared values, and p-values 

were good for these two cases. 

 

 

Table 14. Prediction of PM Concentrations Based on the Mixing Height and Relative 

Humidity 

 

RH/MH PM1 PM2.5 PM4 PM10 

R 0.166 0.678 0.65 0.502 

R2 0.028 0.46 0.423 0.252 

Pvalue (95% confidence 

interval) 

0.555 0 0 0.002 

b0 8.44 21.821 18.143 25.403 

b1 -0.002 -0.022 -0.025 -0.032 

b2 0.064 0.393 0.623 0.967 

PM=b0+b1*MH+b2*RH     
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Similarly, Table 15 presents the results of regression analysis of the relation 

between PM concentrations, the mixing height, and the wind speed. The results 

presented in Table 15 shows that PM 2.5 concentrations can be predicted relying on the 

mixing height and wind speed since it gave good results for the regression analysis 

performed where the correlation coefficient, R-squared and P-value were good for this 

case. 

 

 

Table 15. Prediction of PM Concentrations Based on the Mixing Height and Wind 

Speed 

 

WS/MH PM1  PM2.5 PM4 PM10 

R 0.148 0.593 0.516 0.389 

R2 0.022 0.352 0.267 0.151 

Pvalue 0.63 0 0.001 0.032 

b0 13.061 46.7 56.936 83.365 

b1 -0.001 -0.021 -0.025 -0.035 

b2 -0.134 0.119 0.358 1.31 

PM=b0+b1*MH+b2*WS         

 

 

Table 16 presents the results of regression analysis performed for the sake of 

determination of PM concentrations based on the wind speed and relative humidity. The 

resulting regression coefficients revealed the fact that PM concentrations can’t be 

predicted relying on the wind speed and relative humidity since it gave weak results all 

calculated regression coefficients. 
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Table 16. Prediction of PM Concentrations Based on the Relative Humidity and Wind 

Speed 

 

WS/RH PM1  PM2.5 PM4 PM10 

R 0.174 0.367 0.389 0.315 

R2 0.03 0.135 0.152 0.099 

Pvalue 0.526 0.048 0.032 0.111 

b0 8.819 17.623 12.085 13.97 

b1 0.058 0.325 0.543 0.859 

b2 -0.179 -0.726 -0.646 -0.292 

PM=b0+b1*RHp+b2*WS         

 

 

 7.6.  Results of Multi Variable Regression Analysis Depending on Three 

Independent Variables 

 

In order to compare between multi variable regression models, multi variable 

regression models were developed to test the relation between PM concentrations and 

the three meteorological parameters (wind speed, relative humidity, and the mixing 

height). These models used three independent variables to predict PM concentrations. 

The results shown in Table 17 shows that the developed multi variable regression 

models gave the best results among all regression models presented in sections 6.3 to 

6.5 giving better values for correlation coefficients, R-squared, and P-values. The 

developed regression models can be used to predict PM2.5, PM4, and PM10 

concentrations relying on the mixing height, wind speed, and relative humidity. 
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Table 17. Prediction of PM Concentrations Based on the Mixing Height, Wind Speed, 

and Relative Humidity 

 

WS/RH/MH PM1  PM2.5 PM4 PM10 

R 0.188 0.68 0.657 0.526 

R2 0.035 0.462 0.432 0.277 

Pvalue 0.683 0 0 0.004 

b0 9.021 21.163 16.338 20.023 

b1 -0.001 -0.022 -0.027 -0.038 

b2 0.062 0.394 0.627 0.978 

b3 -0.13 0.147 0.403 1.2 

PM =b0+b1*MH+b2*RHp+b3*WS         
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CHAPTER 8 

CONCLUSION 

 

In this thesis, I developed a model for predicting ground level particulate 

matter concentrations based on the mixing height, wind speed, and relative humidity. 

Many simulations were conducted using WRF to extract temperature profiles for the 

period November 2016-August 2017. Parcel Method was applied on these profiles in 

order to determine the mixing height. This height was correlated with the particulate 

matter concentration near ground level. It was observed that there is strong negative 

correlation between the mixing height and the near ground level PM2.5, PM4, and 

PM10 concentrations, moderate positive correlation between the relative humidity and 

near ground level PM concentrations, and weak negative correlation between the wind 

speed and near ground level PM concentrations. The strongest correlation was observed 

between PM2.5 and the mixing height among other used meteorological parameters. 

Simple linear regression model was built to predict PM concentrations relying on the 

mixing height as the main predictor based on the results of correlation analysis 

performed between PM concentrations and the three meteorological parameters (the 

mixing height, wind speed, and relative humidity). The study concluded that the mixing 

height is the most dominant meteorological parameter that can be used for the 

estimation of near ground PM concentrations.  PM2.5 and PM4 gave good results for 

regression analysis with determination coefficients of 0.3504 and 0.2596 respectively. 

However, PM10 gave week results for regression analysis even though the calculated 

correlation coefficient was good. Multi variable regression models were developed to 

predict PM concentrations based on two or three independent parameters. PM2.5, PM4, 
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and PM10 gave better results than simple linear regression model with determination 

coefficients of 0.462, 0.433, and 0.277 respectively. The best regression coefficients 

were observed for the regression models developed for the sake of the prediction of PM 

concentrations based on three independent variables which are: the mixing height, 

relative humidity, and wind speed. The three regression equations were calculated to 

predict PM2.5, PM4, and PM10 concentrations. UAV was used to validate WRF 

software, where a set of thirteen flights were conducted. The results of flights revealed 

that temperature measurements differs from temperatures predicted using WRF by 1.7℃ 

and 0.8℃ using the 503ET and SHT75 temperature sensors respectively. The coefficient 

of determination between the resulting temperature profiles and temperatures profiles 

predicted using WRF was 0.8661. This means that the mixing height estimated relying 

on WRF is quite accurate. In the future, the developed model will rely on WRF to 

predict near ground pollution levels based on atmospheric conditions. These predictions 

can help in improving people’s life and would be of a great benefit on the whole 

country and the region as well.  
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