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An Abstract of the Dissertation of

Hadi Akram Sarieddeen for Doctor of Philosophy

Major: Electrical and Computer Engineering

Title: Large Multiuser MIMO Detection: Algorithms and Architectures

After decades of research on multiple-input multiple-output (MIMO) tech-

nology, including paradigm shifts from point-to-point to multiuser MIMO (MU-

MIMO), an ample literature exists on techniques to exploit the spatial dimension

to increase link throughput and network capacity of wireless communication sys-

tems. Massive MIMO, which supports hundreds of antennas at the base station

(BS), is celebrated as the key enabling technology of the upcoming �fth gener-

ation (5G) wireless communication standard. However, the use of large MIMO

systems in the future is also indispensable, especially for high-speed wireless back-

haul connectivity. Large MIMO systems use tens of antennas in communication

terminals, and can a�ord a large number of antennas on both the transmitter and

the receiver sides. While favorable propagation in massive MIMO ensures that

reliable performance can be achieved by simple linear processing, the inherent

symmetry in large MIMO renders the computational complexity of near-optimal

signal processing schemes exponential in the number of antennas.

In this thesis, we investigate the problem of e�cient data detection in large

MIMO and high order MU-MIMO systems. First, near-optimal low-complexity

3



detection algorithms are proposed for regular MIMO systems. Then, a fam-

ily of low-complexity hard-output and soft-output detection schemes based on

channel matrix puncturing targeted for large MIMO systems is proposed. The

performance of these schemes is characterized and analyzed mathematically, and

bounds on capacity, diversity gain, and probability of bit error are derived. Af-

ter that, e�cient high order MU-MIMO detectors are proposed, based on joint

modulation classi�cation and subspace detection, where the modulation type of

the interferer is estimated, while multiple decoupled streams are individually de-

tected. Hardware architectures are designed for the proposed algorithms, and the

promised gains are veri�ed via simulations. Finally, we map the studied search-

based detection schemes to low-resolution precoding at the transmitter side in

massive MIMO and report the performance-complexity tradeo�s.
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AIR achievable information rate
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ALRT average likelihood ratio test

BER bit error rate

BPSK binary phase shift keying

BRF breadth-�rst
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Symbols and Notation

Bold upper case, bold lower case, and lower case letters correspond to matrices,

vectors, and scalars, respectively. Unless otherwise stated, all variables are com-

plex. In what follows we list key symbols in this thesis and detail the notation.

Latin Alphabet

A upper-triangular sub-matrix of R

Å upper-triangular sub-matrix of R̊

B̄ matrix used in AIR computations

B number of BS antennas in massive MIMO

b �rst N − 1 elements of the last column of R

b̊ �rst N − 1 elements of the last column of R̊

bn coded bit-representation of a symbol xn

bn,k kth element of bn

b̄i j element of B̄ at the ith row and jth column

Cr receive antenna correlation matrix

Ct transmit antenna correlation matrix

CH capacity of regular channel

CR̊ achievable rate under channel puncturing

CR̊,Opt capacity under channel puncturing

c equivalent to rN,N

c̊ equivalent to r̊N,N
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d di�erence between transmitted and erroneously detected symbol vector

dML Euclidean distance metric of hard-output ML solution

dML
n,k counter-ML Euclidean distance metric corresponding to bn,k

Gr modi�ed Gram matrix for AIR computations

H channel matrix under rich scattering

H̄ augmented channel matrix in massive MIMO

H1 �rst N − 1 columns of H

Hc correlated channel matrix

Hr modi�ed channel matrix for AIR computations

hn nth column of H

IAIR achievable information rate

J number of frames retaining the modulation classi�cation output

J̄ number of iterations in Iter-LC-LORD algorithm

L number of OFDM symbols in modulation classi�cation

L̄ number of possible quantization labels

LH lower bound on capacity of regular channel

LR̊ lower bound on achievable rate under channel puncturing

L set of possible quantization labels

L̄ set of possible quantization symbols

M number of receive antennas

M speci�c modulation constellation

N number of transmit antennas

Nuser number of user antennas

Ninter number of interfering antennas

n noise vector

P precoding matrix

P̄ permutation matrix

P† orthogonal projection onto the column space of H
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P⊥ orthogonal projection onto the left nullspace of H

P maximum allocated power

p̄n nth column of P̄

PDetector BER of a speci�c Detector

ṔDetector BER of a speci�c channel-punctured Detector

PA probability of error value used in BER analysis

PB probability of error value used in BER analysis

PC probability of error value used in BER analysis

PD probability of error value used in BER analysis

ṔB probability of error value used in BER analysis

ṔC probability of error value used in BER analysis

ṔD probability of error value used in BER analysis

Pn BER at layer n of a N/C detector

Ṕn BER at layer n of a PN/C detector

P list of candidate symbol vectors in PCD

P(1)n,k subset of P where the bit bn,k is 1

P(0)n,k subset of P where the bit bn,k is 0

Q unitary matrix generated by the QRD of H

qn nth column of Q

q number of bits per symbol

R UTM generated by the QRD of H

R̃ scaled R in massive MIMO

R̊ punctured UTM generated by the WRD of H

R1 �rst N − 1 columns of R

R̊1 �rst N − 1 columns of R̊

rn nth column of R

r̊n nth column of R̊

ri j element of R at the ith row and jth column
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r̊i j element of R̊ at the ith row and jth column

S number of possible modulation types

S list of candidate symbol vectors in CD

S(1)n,k subset of S where the bit bn,k is 1

S(0)n,k subset of S where the bit bn,k is 0

SNR SNR value

s symbol vector before quantization

s̄ augmented symbol vector in massive MIMO

s̃ modi�ed s̄ after QRD

T number of observations (tones) in modulation classi�cation

T̄ number of detection/decoding iterations

U matrix used in AIR computations

U number of users in massive MIMO

Uj modulation type of interferer j

ui j element of U at the ith row and jth column

W normalized matrix generated by the WRD of H

wn nth column of W

X �nite N-dimensional lattice

Xn normalized constellation at layer n

X̄j N-dimensional lattice corresponding to hypothesis j of modulation types

X(0)n,k subset of X where the bit bn,k is 0

X(1)n,k subset of X where the bit bn,k is 1

X(0)n,n,k subset of Xn where the bit bn,k is 0

X(1)n,n,k subset of Xn where the bit bn,k is 1

x transmitted symbol vector

x1 �rst N − 1 elements of x

x(1) true transmitted symbol vector

x(2) erroneously detected symbol vector
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x̂Detector hard-output vector solution of a speci�c Detector

xn nth element of x

x̂Detector
n nth element of x̂Detector

y received vector

ỹ modi�ed received vector after QRD

ȳ modi�ed received vector after WRD

ỹ1 �rst N − 1 elements of ỹ

ȳ1 �rst N − 1 elements of ȳ

ŷDetector equalized output vector of a speci�c Detector

ŷDetector
n nth element of ŷDetector

Greek Alphabet

α transmit correlation factor

ᾱ receive correlation factor

β precoding factor

γ branch SNR

∆ used in diversity analysis for regular channels

∆̊ used in diversity analysis for punctured channels

Θ modulation constellation of reduced size

θ1 complex multiplications saved under puncturing

θ2 number of FLOPS required for QRD

θ3 number of FLOPS required for puncturing

Λ̄ modulation type of the user of interest

Λ j modulation type j of interferer

λDetector
n,k the LLR of bit bn,k of a speci�c Detector

µ variable used in BER analysis

ξ j a priori LLRs for bits corresponding to x j
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% minimum error distance on a constellation

%̄ variable used in BER analysis

σ2 noise variance

Υ2
j scaled chi-squared distributed random variable with j degrees of freedom

Φ empty constellation

ϕDetector cost function of a speci�c Detector

χ2
j chi-squared distributed random variable with j degrees of freedom

Notation

0 column vector of zeroes

|·| scalar norm or cardinality of a set

‖·‖ vector L2 norm

‖·‖F matrix Frobenius norm

b·e slicing operation

C set of complex numbers

CN(mu, var) complex Gaussian distribution with mean mu and variance var

d(x) Euclidean distance metric as a function of x

d̄(x) Euclidean distance metric under puncturing

E[·] expected value

(·)H conjugate transpose

IN identity matrix of size N

=(·) imaginary part

log(·) natural logarithm

N(·) normal distribution

Pr(·) probability density function

P∇(·) precoding function

Q(·) Q-function
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Q(·) quantizer-mapping function

R set of real numbers

<(·) real part

(·)T transpose function

Tr(·) trace function
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Chapter 1

Introduction

1.1 MIMO Wireless Technology

Wireless data usage continues to increase with the enhancements in smartphones

and broadband-enabled portables, leading to an exponential growth in mobile

data tra�c. Such increasing demands are met by optimized network architec-

tures, and one of the most important optimizations is taking advantage of the

spatial dimension to improve reliability, spectral e�ciency, and spatial separation

of users. Towards that end, multiple-input multiple-output (MIMO) technology

has been successfully used in several wireless communications standards [1�4].

MIMO technology [5] is a technique by which more antennas are added to in-

crease link throughput and network capacity. However, conventional MIMO con-

�gurations fall short of providing the required spatial diversity in the upcoming

�fth generation (5G) mobile communication standard, which promises to connect

billions of devices and achieve several gigabit-per-second data rates.

After decades of research on MIMO technology [5�9], including a paradigm

shift from point-to-point to multiuser MIMO (MU-MIMO) [10],massive MIMO [11�

15] is currently being celebrated as a key enabling technology for 5G. With

massive MIMO, a base station (BS) can simultaneously accommodate a large
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number (100 or more) of co-channel users. This allows for �ne-grained beam-

forming to serve hundreds of user equipments (UEs) in the same time-frequency

resources, resulting in an order-of-magnitude increase in capacity [16�20]. How-

ever, many challenges have to be addressed in order to achieve the promised

theoretical advantages. For example, pilot contamination is a fundamental lim-

itation in a multi-cell system [21, 22], and non-ideal hardware is an inevitable

constraint [23,24].

Despite the extensive work on massive MIMO, large MIMO will also play an

important role in the future. Large MIMO systems [25] use tens of antennas in

communication terminals, and can a�ord a large number of antennas on both the

transmitter and the receiver sides, such as for example 8 × 8, 16 × 16, 32 × 32,

and 64 × 64 con�gurations. Large point-to-point MIMO wireless links are of

speci�c interest in 5G for high-speed wireless backhaul connectivity between BSs.

Also, multipoint-to-point large MU-MIMO can be used in 5G in the uplink when

the number of served transmitting users is less than, but comparable to, the

number of BS antennas. Nevertheless, large MIMO can also be considered for

point-to-multipoint downlink MU-MIMO [26], whether in enhanced versions of

current wireless communications standards, or in 5G, where users sharing the

same physical resource blocks are chosen based on the degree of orthogonality of

their cascaded precoder and channel.

Furthermore, the order of modulation types (MTs) is rising to increase ca-

pacity. For example, quadrature amplitude modulations (QAMs) of size 1024

(1024-QAM) and beyond are currently being accommodated. Such modulations

have previously found use in low-noise high-performance infrastructures, and they

are now paving their way into future wireless communication standards. At the

receiver side, the main disadvantage of employing such MTs is the scalability of

existing data detection schemes.
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1.1.1 Detection in Single-User MIMO

After being traditionally driven by diversity-multiplexing tradeo�s, recent wire-

less communication system designs have been driven by two factors; system per-

formance in terms of throughput and bit error rate (BER), and system complexity

in terms of processing latency and computational complexity.

The performance of MIMO systems is largely determined by the detection

scheme at the receiver side; various schemes provide di�erent performance and

complexity tradeo�s [27]. Linear detectors, such as zero forcing (ZF) and min-

imum mean square error (MMSE), are the least-complex, but the least-optimal

as well. On the other hand, maximum likelihood (ML) detectors are optimal

but most computationally intensive, with a complexity that grows exponentially

with the number of antennas. Several sub-optimal detectors �ll the spectrum in

between, including sphere decoders (SDs) and their variants [28�35]. Moreover,

in addition to conventional hard-output (HO) detectors, soft-output (SO) de-

tectors play an important role in near-capacity achieving systems, but are more

complex because they require processing signi�cantly more signal combinations

to generate reliability information.

In massive MIMO systems, linear detectors achieve near-optimal performance

by exploiting the channel hardening e�ect [16], and approximate matrix inversions

via Neumann series approximations [36] are often used for practical implementa-

tions. However, large MIMO systems do not have very large receive-to-transmit

antenna ratios. Hence, they cannot achieve the performance gains of asymmetric

massive MIMO systems, and they do not allow for similar practical implemen-

tations, where Neumann series expansions fail to converge. For large MIMO

systems, the detection schemes in the literature are grouped into several areas:

detection based on local search [37,38]; detection based on meta-heuristics [39,40];

detection via message passing on graphical models [41,42]; lattice reduction (LR)

aided detection [43,44]; and detection using Monte Carlo sampling [45]. However,
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for these schemes to achieve a near-ML performance with high orders of antennas

and modulation constellations, the entailed complexity would be prohibitive.

A popular family of MIMO detectors that achieves good performance and

complexity tradeo�s employs nonlinear subset-stream detection. The nulling-

and-cancellation (N/C) detector [46] is a low-complexity member of this family;

it consists of linear nulling followed by successive interference cancellation (SIC).

The chase detector (CD) [47,48] is a more complex member of this family; it �rst

creates a list of candidate decision vectors, and then chooses the best candidate

from this list as a �nal decision. Chase detection is considered a special case of list

detection. However, it di�ers from list sphere decoding (LSD) [8], for example,

in the way the list is generated and administered; in LSD, list admission is based

on proximity to an initial solution, while in CD, list generation is deterministic,

and is done by spanning all possible sub-tree symbols emanating from the root

symbol in a speci�c layer of interest. Furthermore, other popular subset-stream

detectors exist (e.g., [49�51]), that decompose the channel matrix into lower order

sub-channels to reduce the number of jointly detected streams.

All aforementioned subset-stream detectors make use of QR decomposition

(QRD). However, the SO subspace detector (SSD) [52], transforms the channel

matrix via a punctured QRD, which we refer to in this thesis as WR decom-

position (WRD). In [53�55], WRD-based SSD is generalized to allow for joint

detection of arbitrary-sized subsets of decoupled streams, and e�cient imple-

mentation methods are presented. The QRD-based version of this detector is

called the layered orthogonal lattice detector (LORD) [56,57], and both are spe-

cial cases of the CD. To the best of our knowledge, the use of punctured QRD

in MIMO detectors has not been studied analytically in the literature, and its

applicability to large MIMO systems has not been addressed.
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1.1.2 Detection in Multiuser MIMO

MU-MIMO technology [5,26] allows simultaneous transmissions to multiple users

over the same time-frequency resource elements, by using multiple antennas at

the transmitter and the receiver. The main issue in the multi-user scenario is in-

terference. Intra-cell interference occurs when a BS sends information to multiple

users within a cell, over spatially almost-orthogonal channels. At the receiving

side, the desired user knows its channel and tries to estimate the interference

without knowing the MT of the interfering signal.

Di�erent interference mitigation proposals have led to di�erent receiver de-

signs. Conventional linear processing techniques only use the channel estimate of

the co-scheduled user, without requiring the knowledge of its MT. Such techniques

include [58] interference-ignoring (II), interference rejection combining (IRC), and

single-layer MMSE (SL-MMSE), with the latter two having the exact coded per-

formance [59]. However, if the detectors explicitly take into account the mod-

ulation formats of the desired and interference signals, remarkable performance

gains can be achieved. Such interference-aware (IA) detectors, ML and minimum

distance detectors [58] for example, are noise limited, rather than interference

limited, and are not prone to error �oors like conventional detectors.

Since current communication standards do not provide information about the

interfering MT in the downlink, several techniques emerged, that decide on a

speci�c interfering MT. In [60, 61], the constellation of the interfering user's sig-

nal is presumed to be 16-QAM, regardless of its actual size, and without making

any attempt to estimate it. A better approach, however, is to add an interference

modulation classi�cation (MC) routine, followed by a regular IA detector [62,63].

MC is the task of recognizing the MT employed at the transmitter of a detected

signal, which is required for various military and civilian applications. In par-

ticular, cognitive radio with adaptive MTs [64] is a promising future application

of MC. In such scenario, the transmitter dynamically adjusts the data rate by
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switching the modulation order depending on channel conditions. By employ-

ing automatic (blind) MC at the receiver, the communication overhead can be

signi�cantly reduced.

MC techniques can be classi�ed into two categories [65]: feature-based and

likelihood-based. With feature-based classi�cation, inherent characteristics of the

received waveform are exploited, such as higher order correlations, hierarchical

cumulants, zero-crossing rates, and power estimations. Such characteristics are

regarded as discriminant features and decisions are made based on their observed

values. With likelihood-based classi�cation, on the other hand, the decision is

made on the modulation format that has the highest probability within multiple

hypotheses. This is achieved by computing complex likelihood functions. In this

thesis, we consider a combination of both.

The two main likelihood-based MC approaches [66�68] are the average likeli-

hood ratio test (ALRT) and the generalized likelihood ratio test (GLRT). While

ALRT treats the signal and channel parameters as unknown random variables

with known distributions, GLRT treats them as deterministic but unknown. The

hybrid likelihood ratio test (HLRT) is a combination of the previous two. These

approaches were extended to multiuser and MIMO scenarios [69�72].

The most popular feature-based approach exploits the higher-order cyclic cu-

mulants (CCs) of the baseband intercepted signal as powerful features for lin-

ear digital MC [73�75]. Calculating the higher-order cumulants of the sum of

independent processes is mathematically convenient, and the intrinsic cyclosta-

tionarity of communication signals makes the CCs robust to interference and

stationary noise. Moreover, without perfect channel state information (CSI), in-

dependent component analysis has been used [76] to blindly estimate the channel

in conjunction with either likelihood-based or feature-based MC.
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1.1.3 Low-Resolution Precoding in Massive MIMO

As the number of antennas increases, and if each antenna element has its own

radio frequency (RF) chain at the BS, the hardware complexity and system costs

will signi�cantly increase, as well as the circuit power consumption, especially in

the context of mmWave systems [77,78] with high sampling rates. The dominant

sources of power consumption at a BS with massive antenna arrays are analog-to-

digital converters (ADCs) in the uplink and digital-to-analog converters (DACs)

in the downlink. For instance, the dissipated power in ADCs scales exponentially

in the number of resolution bits and linearly in the sampling rate [79]. Moreover, a

massive number of antennas puts extreme capacity requirements on the fronthaul

interconnect link between the baseband processing unit and the radio unit (RF

components), especially when these two units are separated by a large distance,

such as in a cloud radio access network architecture [80], where the baseband

processing is migrated from the BSs to a centralized unit.

The challenge is to jointly reduce system costs, power consumption, and in-

terconnect bandwidth with minimal performance degradation. Recent research

trends aim at either reducing the number of converters, by partitioning the signal

processing operations between analog and digital domains using hybrid beam-

forming [81], or reducing their bit resolutions [82]. The latter employs coarse

quantization, which has the extra bene�t of lowering the linearity and noise re-

quirements, because quantization noise may dominate the noise introduced by

mixers, oscillators, �lters, and low-noise ampli�ers, which further reduces the RF

circuit power. It was argued in [83] that the energy e�ciency is maximized at in-

termediate ADC resolutions, typically in the range of 4 to 8 bits. In the extreme

case of 1-bit quantization [84, 85], only simple low-complexity comparators are

required [86], and there is no need for automatic gain control circuitry to match

the dynamic range of the ADCs. It is known that quadrature phase shift keying

(QPSK) is capacity achieving over complex-valued Gaussian channels in the 1-bit

22



case [87], as well as with Rayleigh-fading assuming perfect CSI [88].

With low-resolution ADCs in the uplink [89,90], a special design of signaling

schemes and receiver algorithms is required at the BS to combat the resultant

nonlinearity. Note that by exploiting the time division duplex reciprocity, only

uplink channels need to be estimated. However, channel estimation on the basis

of quantized observations is challenging [91], especially with fast fading channels.

In such scenarios, QPSK is optimal only when the signal-to-noise ratio (SNR)

exceeds a coherence-time-dependant threshold [92]. In [93], a system employing

1-bit ADCs with QPSK is shown to achieve large sum-rate throughputs when

the BS employs a least squares channel estimator, followed by a linear maximal

ratio combining (MRC) or ZF detector. This study is extended to high-order

modulations in [94]. Bussgang's decomposition [95] is used for channel estima-

tion in other studies [96,97], and a joint channel- and data-estimation algorithm

is presented in [98], which outperforms separate channel estimation and data

detection at the expense of high complexity. Furthermore, since implementing

ZF or MMSE requires the computation of matrix inversions, computationally

e�cient approximations based on truncated polynomial expansions [99, 100] or

conjugate-gradient techniques [101] have been proposed. Nevertheless, e�cient

nonlinear detection schemes are viable alternatives that can boost performance if

the BS can a�ord a marginal increase in complexity. In [102] 1-bit massive MIMO

detection based on variational approximate message passing was proposed.

With low-resolution DACs in the downlink, conventional low-complexity lin-

ear quantized precoders (LQPs), such as ZF or MMSE, followed by quantization,

can achieve good performance, but only at high transmit-to-receive antenna ra-

tios and low-to-moderate SNRs [103, 104]. To compensate the performance loss

in 1-bit massive MIMO systems with linear processing, 2.5 times more antennas

need to be deployed at the BS [105]. However, reliable data transmission can

be retained under quantization if sophisticated precoding algorithms that can

mitigate both multi-user interference and quantization artifacts are employed.
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In [106], two nonlinear quantized precoders (NLQPs) are proposed; the �rst is

based on semi-de�nite relaxation and squared-in�nity norm Douglas-Rachford

splitting (SQUID), while the second adapts the SD to a quantized sphere precoder

(SP). In [107,108], two low-complexity nonlinear 1-bit precoding algorithms based

on biconvex relaxation are presented. They achieve better error-rate performance

compared to linear precoding followed by quantization. Heuristic nonlinear pre-

coding schemes can also provide a good performance-complexity tradeo�, such as

subset-codebook precoding [109]. Furthermore, two-stage spatio-temporal pre-

coding structures [110] can be used to suppress interuser interference.

There are several other notable studies in the literature on massive MIMO

with coarse quantization. Mixed resolution architectures [111�114] and non-

uniform resolutions [115] are considered to increase system performance. So-

lutions in the context of frequency-selective wideband channels that use orthog-

onal frequency division multiplexing (OFDM) have also been studied, such as

in [116, 117] for the downlink, and in [118, 119] for the uplink. Moreover, while

most studies assume Nyquist-rate sampling at the receiver, which is not opti-

mal in the presence of quantization [120], it is shown in [121] that high-order

constellations such as 16-QAM can be supported with 1-bit quantization when

oversampling is applied at the receiver.

To sum up, most of the reference studies consider linear precoding and de-

tection at the BS in massive MIMO systems. The performance of these linear

solutions has been bounded analytically, including the case of coarse quantiza-

tion, and e�cient architectures have been proposed. Moreover, nonlinear pre-

coding and detection solutions promise signi�cant performance enhancements,

especially in the presence of 1-bit ADCs and DACs. However, these solutions

are not adequately addressed in the literature. There are mainly three gaps in

recently proposed nonlinear solutions: they usually entail high complexity, their

performance is not characterized analytically, and they are often studied disjointly

as either precoding or detection schemes.
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1.2 Contributions and Outline

The purpose of this thesis is to design e�cient algorithms and architectures for

MIMO, large MIMO, and MU-MIMO detection, as well as massive MIMO pre-

coding. Using theoretical analysis and empirical simulations, the proposed al-

gorithms are proven to be high-performance and low-complexity solutions. The

structure of this thesis is as follows:

Chapter 2 introduces the detection problem in spatial multiplexing and

presents reference linear and nonlinear receivers.

Chapter 3 presents early results on dual-layer MIMO systems as a starter.

Several approaches are proposed to reduce the complexity of iterative detec-

tion and decoding when high order MTs are employed. It is argued that low-

complexity LORD (LC-LORD) introduces signi�cant performance degradation,

especially with high channel correlation. We propose improving the location of

a reduced region of search within a 1024-QAM constellation, as well as enhanc-

ing the bit log-likelihood ratio (LLR) approximation. The proposed schemes are

studied in the context of non-iterative and iterative detection and decoding, and

signi�cant gains are achieved in both cases.

Chapter 4 presents a permutation-robust QRD (PR-QRD) technique, using

the modi�ed Gram-Schmidt (GS) orthogonalization procedure and elementary

matrix operations. This technique is then used to reduce the complexity of two

popular detectors in the literature. First, computationally e�cient subspace de-

tection schemes based on special layer ordering, followed by PR-QRD are pro-

posed. A hardware architecture is designed, which allows building an 8-layer

detector from 4-layer and 2-layer constituent detector blocks. Second, PR-QRD

is used in low-complexity SD, where an optimized layer-ordering scheme based

on the minimum cumulative residual (MR) criterion is considered.

Chapter 5 presents a family of low-complexity detection schemes based on

channel matrix puncturing targeted for large MIMO systems. It is well-known
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that the computational cost of MIMO detection based on QRD is directly pro-

portional to the number of non-zero entries involved in back-substitution and

slicing operations in the triangularized channel matrix, which can be too high

for low-latency applications involving large MIMO dimensions. By systemati-

cally puncturing the channel to have a speci�c structure, it is demonstrated that

the detection process can be accelerated by employing standard schemes such as

CD, LSD, N/C detection, and SSD on the transformed matrix. The di�erence

between optimal channel shortening and e�cient channel puncturing is also high-

lighted in this chapter. Simulations of coded and uncoded scenarios certify that

the proposed schemes scale up e�ciently, both in the number of antennas and

constellation size, as well as in the presence of correlated channels.

Chapter 6 introduces a theoretical analysis. The performance of the pro-

posed channel-punctured detectors is characterized and analyzed mathematically,

and bounds on the capacity, diversity gain, and probability of bit error are de-

rived. Surprisingly, it is shown that puncturing does not negatively impact the

receive diversity gain in HO detectors. The analysis is extended to SO detection

when computing per-layer bit LLRs; it is shown that signi�cant performance gains

are attainable by ordering the layer of interest to be at the root when puncturing

the channel.

Chapter 7 presents near-optimal data detection schemes for dual-layer MU-

MIMO systems. Joint likelihood-based MC of the co-scheduled user and data

detection receivers are developed. By expanding the Max-Log- maximum-a-

posteriori (MAP) MC approach to include distances of counter ML hypothesis

symbols, the decision metric for MC is shown to be an accumulation over a set

of tones of Euclidean distance computations, that are also used by the detec-

tors for bit LLR soft decision generation. With a small complexity overhead,

the proposed approaches achieve near-optimal performance. E�cient hardware

architectures are presented for the proposed approaches.
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Chapter 8 extends the work on MU-MIMO to higher antenna orders. A de-

tector that employs joint MC and low-complexity subspace detection is proposed,

by which the MT of the interferer is estimated, while multiple decoupled streams

are individually detected. A hierarchical MC scheme is proposed, comprising

feature-based and near-optimal likelihood-based classi�ers, as well as a classi�er

that always assumes the interfering MT to be a �xed high order QAM. An ef-

�cient hardware architecture that realizes the proposed algorithms is presented.

Simulations demonstrate that depending on the channel condition, one of the

proposed schemes can achieve near IA performance with a minimum complexity

overhead.

Chapter 9 presents a novel near-optimal low-complexity likelihood-based

MC scheme for MIMO systems with adaptive MTs. First, the channel matrix is

decomposed employing subspace decomposition, and then the MT on the partially

decoupled stream of interest gets detected using a modi�ed likelihood metric. A

joint MC and subspace detection receiver is also presented.

Chapter 10 extends the study to address the problem of e�cient precoding

in the downlink of massive MIMO systems that use 1-bit DACs. By adapting

the procedures of popular search-based detection algorithms to 1-bit quantized

precoding, two families of nonlinear precoders are proposed. The �rst employs

QRD combined with tree-based search techniques, and the second uses Gibbs

sampling for search enumerations without decomposing the channel. Simulations

demonstrate that some of the proposed schemes outperform reference nonlinear

precoders, both in performance and complexity with low order MIMO, and in

performance with a graceful increase in computations in the context of massive

MIMO with high order modulation types.

Chapter 11 concludes the presented work and speci�es future directions.
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Chapter 2

System Model and Reference

Detectors

2.1 System Model

We consider spatial multiplexing in a MIMO system with N transmit antennas

and M = N receive antennas. The equivalent complex baseband input-output

system relation is given by

y = Hx + n, (2.1)

where y ∈ CM×1 is the received complex vector, H = [h1 · · · hn · · · hN ] ∈ CM×N is

the channel matrix with entries that are assumed to be CN(0, 1) i.i.d. random

variables, x = [x1 · · · xn · · · xN ]T ∈ CN×1 is the transmitted symbol vector, and

n ∈ CM×1 is the noise vector with CN(0, σ2) entries
(
E[nnH] = σ2IM

)
.

Each symbol xn, n ∈ {1, · · · , N}, belongs to a normalized complex constellation

(E[xHn xn] = 1), and we have x ∈ X , X1 × · · · × Xn × · · · × XN ⊂ CN×1, where X

is the �nite set of points on a N-dimensional lattice generated by all possible

symbol vectors. For simplicity, we assume a uniform modulation constellationM

on all layers, and hence X = MN . The coded bit-representation of a symbol xn

is denoted by bn = (bn,1, · · · , bn,k, · · · , bn,q), where q= dlog(|M|)e and bn,k ∈ {0, 1}
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for k = 1, · · · , q. The SNR is de�ned in terms of the noise variance as

SNR =
N
σ2

. (2.2)

At the receiver side, and assuming perfect knowledge of the channel, QRD

decomposes H as H = QR, where Q = [q1 · · · qn · · · qN ] ∈ CM×N has orthonormal

columns qn ∈ CM×1 (QHQ=IN), and R= [ri j] ∈CN×N is a square upper-triangular

matrix (UTM) with real and positive diagonal entries. The transformed receive

symbol vector can then be equivalently expressed as

ỹ = QHy = Rx +QHn, (2.3)

where QHn and n are statistically identical since Q is orthonormal.

2.2 ML Detector

An �exhaustive� log-max ML detector searches the complete lattice X, computing

|M|N Euclidean distance metrics, to solve for

x̂ML = arg min
x∈X

‖y −Hx‖2 = arg min
x∈X

‖ỹ −Rx‖2 , (2.4)

where equality holds since Q is unitary. The LLR of bit bn,k , is generated as

λML
n,k =

1

σ2

(
min

x∈X(0)
n,k

‖y −Hx‖2 − min
x∈X(1)

n,k

‖y −Hx‖2
)
, (2.5)

where the sets X(0)n,k , {x ∈ X : bn,k = 0} and X(1)n,k , {x ∈ X : bn,k = 1} correspond

to subsets of symbol vectors in X, having in the corresponding kth bit of the nth

symbol a value of 0 and 1, respectively.
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2.3 MMSE and ZF Detectors

The MMSE detector generates an equalized output

ŷMMSE = [ŷMMSE
1 · · · ŷMMSE

n · · · ŷMMSE
N ]T =

(
HHH+(1/SNR)IN

)−1
HHy, (2.6)

and the LLRs can then be calculated as

λMMSE
n,k =

1

σ2
MMSE,n

(
min

xn∈X(0)n,n,k

���ŷMMSE
n − xn

���2 − min
xn∈X(1)n,n,k

���ŷMMSE
n − xn

���2) , (2.7)

where the sets X(0)n,n,k , {xn ∈ Xn : bn,k = 0} and X(1)n,n,k , {xn ∈ Xn : bn,k = 1}

correspond to subsets of symbols in Xn, having in the corresponding kth bit a

value of 0 and 1, respectively, and σ2
MMSE,n = σ

2τn is a scaled variance with τn

being the nth diagonal element of the matrix
(
HHH+(1/SNR)IN

)−1
.

Note that unbiased SO MMSE detection [122] slightly outperforms this con-

ventional detector. However, the performance gap is negligible, and thus this

detector serves as a good reference. Similarly, ZF solves for an equalized output

ŷZF =
(
HHH

)−1
HHy, and the rest of the derivation remains intact.

2.4 Sphere Decoder

The SD achieves exact log-max ML performance with less computations, by exe-

cuting a tree-based search on a subset of X, skipping vectors in the space whose

partial distance already exceeds the current best distance. Note that for each bit,

one of the two minima in (2.5) corresponds to the distance dML of the hard ML

solution

dML = min
x∈X
‖ỹ −Rx‖2 , (2.8)

having the bit representations bML
n s associated with the ML solution xML. The

other minima corresponds to the distance dML
n,k of the counter ML (ML) hypoth-
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esis, having in the same bit position the complement of bML
n,k , bML

n,k , where:

dML
n,k = min

x∈X
(bML
n,k
)

n,k

‖ỹ −Rx‖2 . (2.9)

Therefore, the LLRs can be expressed as

λML
n,k =


dML − dML

n,k if bML
n,k = 0

dML
n,k − dML if bML

n,k = 1

. (2.10)

By exploiting the upper triangular structure of R, the distance metric d(x) =

‖ỹ −Rx‖2 can be written as

d(x) =
M∑

m=1

������ỹn −
N∑

j=n

rn, j x j

������
2

, (2.11)

which in turn can be expressed recursively as

dn(xn |xn+1 · · · xN ) = dn+1(xn+1 |xn+2 · · · xN ) + en(xn |xn+1 · · · xN ) (2.12)

en(xn |xn+1 · · · xN ) =

������ỹn −
N∑

j=n+1

rn, j x j − rn,nxn

������
2

, (2.13)

for n = N, N−1, · · · , 1, where dn is the partial Euclidean distance (PED) of the

partial symbol vector (PSV) [xnxn+1 · · · xN ]T , and en is the distance increment (DI)

when appending xn at level n to the PSV [xn+1 · · · xN ]T
(
dN+1 = 0 and d1 = d(x)

)
.

Note that accumulated PEDs are reused when exploring lower tree levels.

The recursion in (2.12) can be mapped to an N-level tree, with a root node

at level N +1, leaves at level 1, and nodes at levels n = N, N −1, · · · , 1 having

2q children. A parent node has a weight dn, and branches to its children have

associated weights en. A path traversed form the root to a leaf corresponds to a
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lattice point. The �rst leaf node reached is called the Babai point [123], and it

gets updated every time a new leaf with a smaller weight is reached. Finding the

ML solution corresponds to �nding the leaf with the smallest weight.

The counter-ML solution for bn,k can be found by searching for the leaf with

the smallest weight that can be reached through paths in the tree whose kth bit

of the nth symbol is the binary complement of that in the ML solution. This is in

e�ect a traversal of a pruned tree, which gets repeated N×2q times. Consequently,

a SO detector requires a total of N×2q+1 tree traversals. However, an alternate

solution exists [124], where a single tree traversal is su�cient.

The search space can be limited within a sphere centered at ỹ, whose (squared)

radius is the minimum distance of any leaf that has already been reached during

the current search. In a depth-�rst (DF) traversal, the children of a node are

visited before its siblings, and whenever the PED of an internal node exceeds

the radius, that node and its subtree get pruned. However, such pruning is more

complicated in a SO detector, where an internal node can only be pruned if it is

unable to update any of the ML distances, not only the ML distance. Moreover,

�xed-point implementations require putting constraints on the magnitude of the

LLR values, and towards that end, �xed or adaptive radius scaling can be applied,

which further reduces the region of search, and hence the node count.

The order in which symbols are enumerated at each level is directly related

to the complexity of the detector. The optimal Schnorr-Euchner (SE) [125] or-

dering enumerates symbols in the ascending order of their DIs at each tree level.

Moreover, with breadth-�rst (BRF) traversal, the siblings of a node are visited

before its children (the K-best algorithm [126] for example). As for best-�rst

(BSF) traversal [127], it combines both DF and BRF to reach the shortest path

with a reduced search space, however, it is memory-constrained.

34



2.5 Nulling-and-Cancellation Detector

The N/C detector [46] is used in the widely known vertical Bell Labs layered space

time (V-BLAST) architecture [128]. When combined with QRD, N/C becomes

a computationally-e�cient procedure which is highly sensitive to layer ordering.

Nulling is performed by linearly pre-multiplying the received vector with QH,

which suppresses the interference from xl , l > n, at the nth layer. This is followed

by SIC (back-substitution and slicing) to suppress co-antenna interference; hence,

x̂N/C = [x̂N/C
1 · · · x̂N/C

n · · · x̂N/C
N ] is computed as

x̂N/C
n =

⌊(
ỹn −

N∑
l=n+1

rnl x̂
N/C
l

)
/rnn

⌉
M

, (2.14)

for n = N, N − 1, · · · , 1, where bαeM , arg minx∈M |α − x | is the slicing operator

on the constellation M.

2.6 Chase Detector

The CD [48] mitigates error propagation in SIC by populating a list S(ỹ,R) of

candidate symbol vectors for �nal decision. It �rst partitions ỹ, R, and x as

ỹ =


ỹ1

ỹN

 , R =


A b

0 c

 , x =


x1

xN

 , (2.15)

where ỹ1 ∈ C(N−1)×1, ỹN ∈ C1×1, A ∈ C(N−1)×(N−1), b ∈ C(N−1)×1, c ∈ R1×1,

x1 ∈ MN−1, 0 is a 1 × (N − 1) vector of zero-valued entries, and xN ∈ M. Then,

for each xN at the root layer, a candidate vector is calculated as in (2.14) and

added to S. The maximum number of candidate vectors in S is |M|, and the

�nal HO decision vector is chosen from S to be

x̂CD = arg min
x∈S

‖ỹ−Rx‖2 . (2.16)
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Note that CD di�ers from LSD [8]. LSD list admission depends on run-time

channel conditions, which makes it nondeterministic and more complex. In a SO

setting, LSD does not guarantee computing all the required distance metrics.

2.7 Layered Orthogonal Lattice Detector

Instead of executing the CD routine once, LORD repeats chase detection with

di�erent layer orderings, each time with a di�erent layer as root, by cyclically

shifting the columns of H. The best output from these trials is the �nal solution.

Each permuted H at step t, t = 1,· · ·, N, is QR-decomposed into Q(t) and R(t)

according to (2.15). Let x̂CD
(t) denote the output CD solution from step t. Then,

the �nal solution x̂LORD is x̂CD
(tmin), where

tmin = arg min
t∈{1,··· ,N}

ỹ −Rx̂CD
(t)

2
. (2.17)

Since distances are preserved under di�erent layer orderings with QRD, the ac-

cumulated candidate vectors across di�erent partitions form an �extended� can-

didate list, despite the potential overlap of lists from each partition. Therefore,

the added gain with LORD compared to CD is signi�cant. Note that optimized

layer ordering, using some form of sorted QRD (SQRD), for example, can further

enhance the performance.

For dual-layer MIMO systems (N = 2) LORD achieves exact optimal log-max

ML performance, and it only requires 2×2q instead of 2q2 distance computations.

By analogy with (2.15), the corresponding 2 × 2 modi�ed system model can be

represented as:

y −Hx→

ỹ1

ỹ2

 −

a b

0 c

 .

x1

x2

 , (2.18)
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where a1, c1 ∈ R+, and b1 ∈ C. We have, minx∈X ‖ỹ−Rx‖2 = minx2∈X2 d2(x2):

min
x2∈X2

d2(x2) = min
x2∈X2
x1∈X1

(| ỹ2−cx2 |2+ | ỹ1−ax1−bx2 |2) (2.19)

= min
x2∈X2
(| ỹ2−cx2 |2+ | ỹ1−ax̂1−bx2 |2),

where x̂1 is obtained by slicing (ỹ1 − bx2)/a ∈ C over the constellation X1:

x̂1 = b(ỹ1 − bx2)/aeX1 ∈ X1. (2.20)

Note that this implementation requires only |X2 | = 2q distance computations.

In a SO setting, the LLRs of the bits in the symbol x2 can be obtained as:

λML
2,k = min

x2∈X(0)2,2,k

d2(x2) − min
x2∈X(1)2,2,k

d2(x2), k = 1, . . . , q. (2.21)

To obtain the LLRs λML
1,k for the bits in x1, the same operation is repeated in a

reversed order, where the x1 symbols are exhaustively searched, while the inter-

ference over layer 2 is subtracted, followed by simple slicing over X2. Note that

to �nd the hard-decision ML solution only, a 1-sided decomposition is needed on

either layer 1 or 2.

2.8 Subspace Detector

The aforementioned optimal LORD implementation for 2×2 MIMO cannot scale

up for N ≥ 3 without loosing optimality. This is because R would include o�-

diagonal terms, the red-marked entries in Fig. 2.1(f), that prevent computing

the ML solution by enumerating symbols on one layer and �nding the minima

through slicing individually on all other layers in parallel. In fact, the ML solution

requires enumerating symbols on N − 1 layers and slicing on the last layer, which

results in O(2qN ) complexity.
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Figure 2.1: Channel matrix structures for 4x4 MIMO.

However, the channel matrix can be punctured to zero-out undesirable entries,

as shown in Fig. 2.1(g) for a 4-layer MIMO system [54]. This con�guration allows

us to enumerate symbols on layer 4, while �nding the minimum distances on layers

3 to 1 in parallel, through slicing only on the corresponding layers. Moreover,

to compute the LLRs for bits associated with layers 3 to 1, a similar process is

repeated on each layer, after cyclical column shifting followed by channel matrix

decomposition. The e�ective punctured channels are shown in Fig. 2.1(h)-(j),

respectively. When adopting the complementary QL decomposition (QLD), the

corresponding desirable structures are shown in Fig. 2.1(b)-(e). In this case, by

enumerating symbols on layer 1, the minimum on layers 2 to 4 can be found in

parallel through slicing, and a similar process is repeated on other layers.

2.8.1 Conventional WR Decomposition

The �rst step in SSD is channel matrix decomposition. While LORD only requires

QRD, a more powerful WRD scheme is required to puncture the red-marked

entries above the diagonal in Fig. 2.1(f). WRD transforms H into a punctured

UTM R̊ = [̊ri j] ∈ CN×N with r̊ii ∈ R+, by puncturing entries between the diagonal

and the last column through a matrix W = [w1 · · ·wn · · ·wN ] ∈ CM×N , such that
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WHH = R̊. The transformed received symbol vector can be expressed as

ȳ =WHy = R̊x +WHn. (2.22)

We assume H to have a full column rank. Setting W = (HHH)−1HH to be the

left Moore-Penrose pseudo-inverse of H results in R̊ = IN , and choosing W to be

an orthonormal basis of the column space of H transforms it into an unpunctured

UTM, with W being unitary (QRD). In general, if R̊ is punctured, then W is

non-unitary. We impose the condition on the column vectors of W to have unit

length, i.e., wHn wn=1 for n=1, . . . , N.

Let P†=H(HHH)−1HH be the orthogonal projection onto the column space of

H, and P⊥=I−H(HHH)−1HH be the orthogonal projection onto the left nullspace

of H. Let HI be the submatrix formed by the columns of H whose index n ∈ I

(if I = 1, 3, then HI = [h1h3]). Denote by In the column index set of the entries

in the nth row of H to be zeroed out, and de�ne w̃n = P⊥Inhn, where

P⊥In = IN −HIn(HHInHIn)
−1HHIn, (2.23)

and HIn = {hm | m ∈ In}. The normalized vector is derived as w = w̃n/‖w̃n‖ with

‖w̃n‖ =
√

hHn P⊥Inhn. Let D = [dn] ∈ R+ be a diagonal matrix whose entries are

given by dn = 1/
√

hHn P⊥Inhn, n= 1, . . . , N. The matrix that zeroes out the entries

in the rows of H at column positions given in In is

WH = D



hH1 P⊥I1

hH2 P⊥I2
...

hHN P⊥IN


. (2.24)

For example, in a 4×4 MIMO system, we choose the puncturing sets as I1=2, 3,

I2=1, 3, I3=1, 2, and I4=1, 2, 3.
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2.8.2 Detection Routine

To generate SO LLRs for all layers, the N streams are decoupled, one at a time

in N steps, by cyclically shifting the columns of H and generating the punctured

UTMs, as shown in Fig. 2.1(g-j). Each permuted H at step t is WR-decomposed

into W(t) and R̊(t). We �rst partition ȳ(t), R̊(t), and x as in (2.15)

ȳ(t) =


ȳ(t)1

ȳ
(t)
N

 , R̊ =


Å(t) b̊(t)

0 c̊(t)

 , x =


x1

xN

 , (2.25)

where in this case Å(t) ∈ R(N−1)×(N−1) is a diagonal matrix. Then, the vector with

minimum distance corresponding to a structure t is

xWR
(t) =arg min

x∈X

ȳ(t)−R̊(t)x
2

(2.26)

=arg min
xN∈M

(ȳ(t)N −c̊(t)xN

2
+

ȳ(t)1 −Å(t)x̂1−b̊(t)xN

2
)
, (2.27)

where x̂1 = b(ȳ(t)1 − b̊(t)xN )/Å(t)eMN−1 is the sliced output. Since Å(t) is diagonal,

slicing is applied to individual elements of ȳ(t)1 overM. To generate soft outputs,

we compute two distance metrics de�ned as

uWR
n,k,t = arg min

xn∈X(0)n,n,k

ȳ(t) − R̊(t)x
2

(2.28)

vWR
n,k,t = arg min

xn∈X(1)n,n,k

ȳ(t) − R̊(t)x
2
, (2.29)

which can be expanded as in (2.26). The LLRs are then calculated as

λSSD
n,k =

1

σ2

[
min

t

(ȳ(t) − R̊(t)uWR
n,k,t

2
)
−min

t

(ȳ(t) − R̊(t)vWR
n,k,t

2
)]
, (2.30)

for n=1, . . . , N, k=1, . . . , log |M|, and t=N−n+1. Note global minimum distances

are tracked here, rather than just minimizing over the per stream LLRs.
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Chapter 3

Iterative MIMO Detection with

Large Constellations

In this chapter, we build on the LC-LORD [57], and propose four e�cient SO

detection schemes. In the �rst three approaches, we enhance the location of the

reduced region of search within a constellation, based on layer ordering, iterative

updates of the center of region of search, and HO MMSE detection. In the

fourth approach, we propose an enhanced saturation criteria for bit LLRs. The

corresponding results are published in [129].

We limit the discussion to dual-layer MIMO (N =M = 2) and assume a high

order MT. Hence, the received signal can be written as y = h1x1+h2x2+n, where

x1 and x2 are drawn from the same Gray-mapped 1024-QAM.

3.1 Turbo-LORD

Turbo-LORD (T-LORD) [130] [131] is a generalization of LORD, that builds on

the MAP detector instead of the ML detector, and that is used in the context of

iterative detection and decoding. The MAP detector accepts from the decoder,

along with the received vector y, a priori LLRs ξ1 and ξ2, for bits corresponding
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to x1 and x2, respectively. The resultant modi�ed distance metric is

ϕT−LORD(x) = − 1

σ2
‖ỹ −Rx‖2 + b1ξ1 + b2ξ2, (3.1)

and the a-posteriori LLRs after the tth detection/decoding iteration can be cal-

culated as

λT−LORD
n,k,t = max

x∈S(1)
n,k,t

ϕT−LORD(x) − max
x∈S(0)

n,k,t

ϕT−LORD(x), (3.2)

where S(0)n,k,t , {x ∈ St : bn,k = 0} and S(1)n,k,t , {x ∈ St : bn,k = 1}. Note that St is

de�ned at the tth detection/decoding iteration as S in Sec. 2.6.

3.1.1 Low-Complexity LORD

Searching |M| = 1024 lattice points is computationally demanding. LC-LORD

[57] aims at reducing the number of visited candidate points, by only exploring a

subset of the constellation at the root layer, a reduced QAM Θ. For convenience,

Θ is a square subset of M, centered at the equalized output ỹ2/r2,2.

LC-LORD does not guarantee the computability of (3.2), since one of the two

terms will not exist if all points in Θ have a unique bit value at a speci�c bit

location. This is known as LLR saturation. Note that with Gray coded symbol

mapping, the LLRs for low order bits are less likely to get saturated, but this

gets more probable as |Θ| decreases. Moreover, LC-LORD need not be applied

to all carriers, in fact, and based on the implementation constraints, the authors

in [57] proposed a mechanism in which they isolate the worst carriers and apply

full complexity LORD to them. The criteria to identify the worst carriers is to

select the smallest of

min
l=1,2

r l
(2,2), (3.3)

where l denotes the antenna index at the root layer.
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3.2 Proposed Approaches

3.2.1 Enhancing Search Region Location

The performance of LC-LORD is constrained by the probability of the actual

transmitted symbol to lie outside the reduced QAM, causing its failure. The sit-

uation is worse with correlated channels, where H tends to be ill-conditioned, and

consequently r2,2 tends to zero. Towards increasing the likelihood of the actual

transmitted symbol to lie inside the reduced QAM, we propose three approaches.

The �rst approach is based on layer ordering [132] followed by N/C, which

is also known as ZF with decision-feedback (ZFDF). We �rst �nd the equalized

output on layer-2 and project its value on layer-1 to obtain x̄1= [x̄1
1, x̄1

2], following

the procedure in (2.14). Then we permute the columns of the channel matrix,

�nd the equalized output on layer-1, and project its value on layer-2 to obtain

x̄2= [x̄2
1, x̄2

2]. Finally, the centers of search on both layers would be the components

of either x̄1 or x̄2, with the choice being made on the vector that better minimizes

the distance metric ‖y −Hx‖2. We call the corresponding detector layer-ordered

LC-LORD (LO-LC-LORD).

The second approach adds an iterative behavior to the detector, as shown

in Fig. 3.1. It starts by feeding the equalized symbol on the root layer (layer-2

here) to a center generator (CG). The CG accepts a center of reduced search on

one layer, and outputs enhanced centers on both layers. The CG functionality

is based on HO LC-LORD. This means that CG applies LC-LORD from one

direction only, and the components of the hard sub-ML output vector will serve

as centers for reduced QAMs in the next iteration. This can iterate as long as the

output di�ers from the input, and in every iteration we get closer to the true ML

HO. However, there is no guarantee that the algorithm will reach the true ML

value at convergence, since it might get stuck in a local minimum. The algorithm

halts after a maximum number of J̄ iterations. Once the center is obtained, the
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Figure 3.1: Iter-LC-LORD algorithm �owchart.

algorithm proceeds with LC-LORD as described in Sec. 3.1.1, working in both

directions, on reduced constellations Θ1 and Θ2 in layers 1 and 2, respectively.

We call the corresponding detector iterative LC-LORD (Iter-LC-LORD).

Moreover, as a third approach, the components of the HO vector of an MMSE

detector are used as centers for reduced search regions. We call the latter ap-

proach MMSE-LC-LORD. Note that in these approaches the centers are gener-

ated on both layers simultaneously, and not independently on each layer, which

prevents processing the layers in a fully parallel mode.
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In the case of T-LORD, the overhead of these approaches can be reduced

by only applying them in the �rst detection/decoding iteration. If the HO of

LC-LORD is passed over T̄ detection/decoding iterations, the center of reduced

search would be updated on every iteration, the same way the CG updates it in

Iter-LC-LORD. Note that center updates from one detection/decoding iteration

to another can also be driven by the a priori information [57].

3.2.2 Enhancing LLR Saturation

The authors in [57] suggested either saturating the LLR to a maximum thresh-

old value, or substituting the missing term in (3.2) by the maximum Euclidean

norm within Θ. These approaches are easy to implement, but might remarkably

degrade performance when |Θ| is small.
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Our proposed approach, region-thresholding LC-LORD (RegTh-LC-LORD),

�lls the empty component in (3.2) by an approximate distance metric. We �rst

locate the closest point to the center of |Θ|, having an opposite bit value at the

bit location of interest (green point in Fig. 3.2). Then, we project this point on

the other layer (slicing), and �nd the distance from the resultant vector to the

received symbol vector. This mechanism depends on the regions of speci�c bit

values. We augment all our proposed approaches with this thresholding method.

3.3 Complexity Study

The computational complexity can be split into two components, complexity of

preprocessing stage and complexity of search routine. The preprocessing stage

is mainly composed of QRD and equalizations. All LORD-based approaches re-

quire two QRDs. However, a solution [133] exists, in which the equalized outputs

on both layers are e�ciently computed without QRD, and in [134], an optimized

scheme for QRD-based distance computations was proposed. All LC-LORD ver-

sions have an extra burden of handling the search region boundaries.

On the other hand, the complexity of the search routine is dominated by

Euclidian distance computations, that are quanti�ed by the number of visited

lattice points. LORD is the most complex with 2× |M| computations. After

that comes Iter-LC-LORD, which has a variable complexity with a worst case

scenario of (J̄+2)× |Θ| computations. Note that it has a lower complexity on

average because the reduced QAMs in subsequent iterations will largely overlap,

and hence redundant distance computations can be avoided. Finally, the least

complex are LC-LORD and LO-LC-LORD, with each requiring 2×|Θ| distance

computations. The search cost of SO MMSE is half that of LORD because the

computed distances are between points on a single layer. Table 3.1 summarizes

the approaches and their worst case complexity when applied to a single tone, in

terms of distance computations.
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Table 3.1: Detector Complexities in Terms of Distance Computations

Approach Description Complexity

ML Full Complexity LORD 2 × |M|
LC-LORD Low Complexity LORD 2 × |Θ|

LO-LC-LORD Layer Ordered LC-LORD + Thresholding 2 × |Θ|
Iter-LC-LORD Iterative LC-LORD + Thresholding (J̄ + 2) × |Θ|

MMSE-LC-LORD MMSE-based LC-LORD + Thresholding 2 × |Θ|
RegTh-LC-LORD LC-LORD + Thresholding 2 × |Θ|

MMSE SO MMSE |M|
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MMSE−LC−LORD−450
RegTh−LC−LORD−450
LC−LORD−722
MMSE−1024

Figure 3.3: FER performance - uncorrelated channels - 15% full complexity car-
riers - T̄ = 1 (solid) and T̄ = 4 (dotted).

3.4 Simulation Results

The implementation followed the system model of Sec. 2.1. Turbo coding and

decoding was used with a code rate of 1/2. In addition to the zero-mean i.i.d.

CN(0, 1) channel (rich scattering), we considered highly correlated channels using

the long term evolution (LTE) [4] model, with transmit and receive correlation

coe�cients of 0.9. We assumed |Θ| = 225, J̄ = 8 and T̄ = 4.
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Figures 3.3 to 3.5 show the frame error rate (FER) performance. The num-

bers in the legend correspond to the average complexity in terms of the number

of visited points. For Iter-LC-LORD, we avoided redundant computations across

iterations, and noted that with |Θ| = 225, only 1.8 out of the J̄ = 8 iterations

are required on average to converge. Figure 3.3 corresponds to the case when the

worst 15% of carriers were treated with full complexity LORD, and the channels

are uncorrelated. All proposed approaches achieved near-optimal performance,

restoring the error �oors in LC-LORD plots at high SNR. Figure 3.4 then shows

the respective performance under high channel correlation, where all sub-ML

approaches su�er. Compared to LC-LORD, our approaches added a remark-

able gain, with the best being LO-LC-LORD, followed by Iter-LC-LORD, then

MMSE-LC-LORD, and �nally RegTh-LC-LORD. Note that the higher complex-

ity version of LC-LORD (|Θ| = 361) could not beat the less complex Iter-LC-

LORD. Finally, despite high channel correlation, the near-optimality of our pro-

posed approaches was restored when the worst 30% of carriers were treated with

full complexity, as shown in Fig. 3.5.

Conclusion

In this chapter, e�cient low-complexity detection in 2 × 2 MIMO systems

that use the very high order 1024-QAM has been studied. Several enhancements

were proposed to LC-LORD, namely, LO-LC-LORD, Iter-LC-LORD, MMSE-

LC-LORD, and RegTh-LC-LORD. The proposed algorithms have been shown to

remarkably enhance the performance at a low complexity overhead, both in the

context of non-iterative and iterative detection and decoding.
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Chapter 4

Reduced-Complexity QRD-Based

Detection

In this chapter, we propose computationally e�cient detection algorithms, that

consist of layer ordering followed by PR-QRD, based on the modi�ed GS (MGS)

orthogonalization.

First, the preprocessing complexity of SSD is reduced by using special layer

orderings and PR-QRD. A hardware architecture is designed that allows build-

ing an 8-layer detector from 4-layer and 2-layer constituent detector blocks. The

corresponding results appeared, in parts, in [135] and [55], and in a more com-

prehensive manner in [136].

Second, the computational complexity of the SD is reduced by employing

an optimized layer-ordering scheme based on the MR criterion. An optimized

data�ow architecture employing PR-QRD is proposed, alongside two e�cient

schedules for channel matrix permutations that optimize its use. A schedule-

speci�c triangular systolic array (TSA) implementation of PR-QRD is also pro-

posed. The corresponding results appeared in [137].
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4.1 Permutation-Robust QRD

QRD can be computed using Givens rotation (GR), GS orthogonalization, or

Householder transformation (HT) [138]. While the hardware implementation of

HT is very complex, GR reduces the hardware area, but at the expense of longer

clock latency. The classical GS algorithm allows a memory e�cient implemen-

tation due to its inherent parallelism, resulting in better regularity in data �ow

and a potential for better hardware-e�ciency. However, due to �xed-precision

computation and round o� errors, it can not guarantee the orthogonality of Q.

This limitation was overcome by the numerically superior MGS algorithm.

The MGS-based QRD of H is illustrated in Fig. 1. The algorithm consists of

two main parts. In the �rst part, the diagonal elements of R and the columns of Q

are computed. In the second part, the non-diagonal elements of R are computed

and the columns of H are updated. Considering a 4×4 complex matrix, in the �rst

part of the �rst iteration, the norm of h1 is assigned to r11, and q1 is calculated

as q1 = h1/r11. Then, in the second part r12 , r13 , and r14 are calculated using

q1, h2, h3, and h4 as

r1 j = qT
1h j 2 ≤ j ≤ 4, (4.1)

and H gets updated by setting its �rst column to zero and subtracting from the

other columns the length of the projection of q1 on them, i-e

h j = h j − q1r1 j 2 ≤ j ≤ 4. (4.2)

This procedure is repeated with one less column every new iteration.

When computing the QRD of a matrix, which is derived from another matrix,

of known decomposition, by some column permutations, computational savings

can be made. Part of the decomposition result remains unaltered under speci�c

permutations. For example, assume as shown in Fig. 4.1, columns 3 and 4 in H

(in blue) were permuted. The �rst two columns of Q and R (in red) depend only
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Algorithm 1 MGS QRD algorithm.

1: procedure MGS-QRD(H)
2: k ← 1;
3: for k = 1 : N do

4: rkk ←
√

hHk hk

5: qk ← hk/rkk
6: j ← k + 1
7: for j = 1 : N do

8: rk j ← qT
k h j

9: h j ← h j − qkrk j
10: end for

11: end for

12: end procedure
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Figure 4.1: QRD savings under column permutations.

on the �rst two columns of H, and hence there is no need to recompute them.

We propose a PR-QRD that saves these redundant computations.

Furthermore, note that for detection the product WHy must also be formed.

This can be e�ciently computed by �rst right-augmenting y to H, and then

performing QRD on the augmented matrix to form Q̃R̃ = [H|y]. When carrying

out the orthogonalization procedure, the same operations applied to the columns

of H are applied to the augmented column. This results in Q̃ = [Q|0N×1], with

R̃ = [R|ỹ], where H = QR and ỹ = QHy. Consequently, ỹ is generated as a

by-product. Then, carrying out the operations to puncture a given entry, these

operations are also applied on the rightmost column of R̃.

52



4.2 Application to Subspace Detector

Denote by the reference SSD algorithm of Sec. 2.8.2 the cyclic SSD (CYSD),

that cyclically shifts the columns of H before each decomposition t. Since the

H(t) matrices di�er by one swap operation, simpli�cations can be introduced.

4.2.1 Single-Permutation Subspace Detector

When cyclically shifting the columns of H, the number of WRD operations re-

quired is equal to the number of layers to be processed, which is a signi�cant

computational burden that forms a bottleneck in high order MIMO. An alterna-

tive minimal swapping operation can reduce this computational overhead. For

example, in the case of 4 × 4 MIMO, if we want to compute the LLRs of the

bits on layer 2, we can swap h2 with h4, and use the matrix decomposition of

Fig. 2.1(g). We represent this swapping operation by a permutation:

π(t)(i) =


N if i = t

t if i = N

i otherwise

(4.3)

for t=1, . . . , N and i=1, . . . , N. The remainder of the SSD derivation, up to (2.30),

remains intact. We call this algorithm single-permutation SSD (SPSD).

4.2.2 Pairwise Subspace Detector

Another approach, which we will later argue to be of a practical interest, is what

we call pairwise SSD (PWSD). This approach consists of lumping the channel

columns in pairs (assuming N even), and handling each pair of layers at a time.

First, the pair of interest is swapped with the rightmost two columns. Then,

the columns of the pair get swapped so that each can be at position i = N. For

example, in the case of 4×4 MIMO, the 4 permuted channel matrices can be
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Figure 4.2: A 2-stage 4 × 4 MIMO PWSD architecture.

H1 = [h3h4h1h2], H2 = [h3h4h2h1], H3 = [h1h2h3h4], and H4 = [h1h2h4h3]. After

each of the N permutations, the permuted channel matrix is decomposed, and

the LLRs for the corresponding layer are computed as in (2.30).

4.2.3 2-Stage Subspace Detector

The reference CYSD with cyclic permutations does not allow further savings be-

cause all column positions are altered from one permutation to another. However,

parallelism is an inherent feature in it, where the process on each layer can run

on a separate core. If we discard this parallelism, and use a pipelined architec-

ture, the decomposition output from one layer can be fed to the subsequent layer,

allowing computational savings.

A 2-stage architecture for PWSD is shown in Figs. 4.2 and 4.3, for 4 × 4 and

8×8 MIMO, respectively. The odd channel permutations can execute in parallel,

but with no redundant computations to save. The LLRs of their corresponding

layers are sent to a bu�er, and the WRD output is passed to the next stage, to

assist the WRD of even permutations. A PR-WRD is thus applied in the second

stage, making use of previous decompositions. Finally, the collected LLRs are

processed as previously described. To implement SPSD in 8 × 8 MIMO, for
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Figure 4.3: A 2-stage 8 × 8 MIMO PWSD architecture.
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example, an 8-stage architecture is required, in which the decompositions are

carried out serially, and each stage can make use of computations in all previous

stages. Such an architecture, if used with PWSD, results in more savings than a

2-stage architecture. However, adding more stages complicates the architecture,

and increases its size and latency.

We analyze the complexity in terms of �oating-point operations (FLOPs)

based on real multiplication (RML) and addition (RAD). Real division and

square-root operations are equivalent to a RML. Also, complex multiplication

requires 4 RMLs and 2 RADs, while complex addition requires 2 RADs.

Table 4.1 summarizes the redundant QRD computations that can be saved

in the e�cient implementations, depending on the permutations and their order,

for 4×4 and 8×8 MIMO systems (the setup of permutations is not unique). The

complete QRD in 4 × 4 MIMO requires a total of 304 RML and 176 RAD, and

the savings are 88 RML and 40 RAD. The complete QRD in 8 × 8 MIMO re-

quires a total of 2240 RML and 1472 RAD, and the savings in the PR-QRD reach

1296 RML and 816 RAD. This means that the overhead is reduced by around

30% with a 2-stage PWSD. The impact of the proposed approaches is more pro-

nounced in higher order systems, 32×32 MIMO for example, but worse with lower

order systems such as 4×4 MIMO, where the rightmost two columns constitute

the majority of required computations. When the PR-WRD does not include

matrix puncturing, CYSD, SPSD, and PWSD reduce to cyclic LORD (CYLD),

single-permutation LORD (SPLD), and pairwise LORD (PWLD), respectively.

The savings are more visible with LORD detectors where preprocessing is solely

constituted of QRDs.

Figure 4.4 shows the BER performance of the proposed MIMO approaches,

compared to that of CYSD/CYLD, and the linear ZF detector, for 8×8 MIMO

with 16-QAM. The PWSD and SPSD curves coincided with the CYSD curve,

and so did PWLD and SPLD with CYLD. This means that the savings came at

no performance degradation cost.
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Table 4.1: Computational Savings in Permutation-Robust SSDs

Permutations Saved Computations

SPSD
4 × 4 MIMO

1: h1h2h3h4 none
2: h1h2h4h3 88 RML+40 RAD

3: h1h4h3h2 28 RML+8 RAD

4: h4h2h3h1 none

PWSD
4 × 4 MIMO

1: h3h4h1h2 none

2: h3h4h2h1 88 RML+40 RAD

3: h1h2h3h4 none

4: h1h2h4h3 88 RML+40 RAD

SPSD
8 × 8 MIMO

1: h1h2h3h4h5h6h7h8 none

2: h1h2h3h4h5h6h8h7 1296 RML+816 RAD

3: h1h2h3h4h5h8h7h6 920 RML+560 RAD

4: h1h2h3h4h8h6h7h5 608 RML+352 RAD

5: h1h2h3h8h5h6h7h4 360 RML+192 RAD

6: h1h2h8h4h5h6h7h3 176 RML+80 RAD

7: h1h8h3h4h5h6h7h2 56 RML+16 RAD

8: h8h2h3h4h5h6h7h1 none

8-Stage PWSD
8 × 8 MIMO

1: h1h2h3h4h5h6h8h7 none

2: h1h2h3h4h5h6h7h8 1296 RML+816 RAD

3: h1h2h3h4h7h8h6h5 608 RML+352 RAD

4: h1h2h3h4h7h8h6h6 1296 RML+816 RAD

5: h1h2h7h8h5h6h4h3 176 RML+80 RAD

6: h1h2h7h8h5h6h3h4 1296 RML+816 RAD

7: h7h8h3h4h5h6h2h1 none

8: h7h8h3h4h5h6h1h2 1296 RML+816 RAD

2-Stage PWSD
8 × 8 MIMO

1: h1h2h3h4h5h6h8h7 none

2: h1h2h3h4h5h6h7h8 1296 RML+816 RAD

3: h1h2h3h4h7h8h6h5 none

4: h1h2h3h4h7h8h6h6 1296 RML+816 RAD

5: h1h2h7h8h5h6h4h3 none

6: h1h2h7h8h5h6h3h4 1296 RML+816 RAD

7: h7h8h3h4h5h6h2h1 none

8: h7h8h3h4h5h6h1h2 1296 RML+816 RAD
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Figure 4.4: BER performance - 8 × 8 MIMO - 16-QAM - uncorrelated channels.

Note that in these simulations only per-layer LLRs where computed, hence

the SSD and LORD schemes were symbol-based, which explains why the SSD

schemes performed better (more on that in Sec 5.6).

4.3 Application to Sphere Decoder

The number of tree nodes that get visited in a SD is highly nondeterministic,

and depends on several factors such as the SNR and the degree of orthogonality

of H. In particular, the order of the columns of H can be adjusted to reduce

the tree search complexity without compromising performance. Adjusting the

detection order of the spatial streams according to the channel realization is

achieved by performing QRD on a permuted channel matrix HP̄, rather than H,

where P̄ = [p̄1p̄2 · · · p̄N ] is a permutation matrix, and p̄i is a unit vector having a

value of 1 in the ith position. The modi�ed system model is thus represented as
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y = Hz + n = (HP̄)(P̄−1z) + n = QRx + n (4.4)

QHy = ỹ = Rx +QHn. (4.5)

Studies [48, 139�141] show that more e�cient pruning of the search tree is

obtained when streams with higher e�ective SNR are mapped to tree levels closer

to the root, which translates into the main diagonal entries of R in HP̄ = QR

being sorted in an ascending order. While solving the precise solution to this

problem has a prohibitive complexity, SQRD [140, 141] is a popular heuristic

algorithm, that achieves a good complexity/performance trade-o�. The SQRD is

an extension of the MGS orthogonalization algorithm [138] for QRD computation,

that orders the columns of H in each orthogonalization step. Although this

scheme is e�ective for HO detection at high SNR, its performance degrades when

applied to SO detection at low SNR. Nevertheless, other schemes that are more

e�ective at low SNR are substantially more complex, such as the one in [142],

which is based on orthogonal projections.

4.3.1 Improved Layer Ordering Using MRQRD

A more e�ective layer ordering scheme was proposed in [31], in which layers are

ordered such that the corresponding Babai solution has MR among all possible or-

derings. The resulting ordered QRD is thus called minimum cumulative residual

QRD (MRQRD). Starting with the LS solution of the unconstrained system [138]

zLS = arg min
z∈CN

‖y −Hz‖2 (4.6)

= P̄ · arg min
x∈CN

‖ỹ −Rx‖2 = P̄ · xLS, (4.7)

and assuming that H has a full column rank, the LS solution is found to be

unique, with a residual de�ned as
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ResLS =
y −HzLS

2
=

ỹ −RxLS
2
, (4.8)

that is minimal and independent of the column order. Moreover, the smaller the

residual is, the better we can predict y with the columns of H [138].

However, for a given subset of H, {hp1, · · · , hpk } (pi, composed of k permuted

columns, is the location of 1 in p̄i), the partial LS solution has a corresponding

residual that is not unique, which is expressed as

ResLS[hp1, · · · , hpk ] = min
z∈Ck

y − [hp1, · · · , hpk ]z
2

(4.9)

, ResLS[h1, · · · , hk]. (4.10)

Casting this in the context of the tree-search scheme, the Babai solution and

its residual both depend on the permutation P̄. We choose P̄, from all possible

permutations Π, such that the cumulative residual of the corresponding partial

Babai solutions, when derived from layer N back to layer 1, is minimal:

CResBab[hp1, · · · , hpN ] = min
all Π

N∑
k=1

ResBab[hpk, · · · , hpN ]. (4.11)

The Babai solution and its residual are de�ned as

xBabk = arg min
x∈M

������ỹk −
N∑

j=k+1

rk, j x j − rk,k x

������
2

(4.12)

ResBab[rpk, · · · , rpN ] =
[rpk, · · · , rpN ]xBabk − ỹ

2
, (4.13)

for k=N, N−1, · · · , 1, where xBabk = [xBabk , · · · , xBabN ]T .

Reordering according to the MR criterion of (4.11) is a pre-detection stage

that is capable of reducing the node count. The price to pay is a moderate

increase in the number of computations and memory locations to determine the
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Figure 4.5: Optimized data�ow graph for 4×4 MRQRD.

MR. We propose optimized architectures based on PR-QRD to decrease this

computational overhead.

4.3.2 MRQRD Data�ow Architecture

For a relatively small number of layers, the desired permutation can be e�ciently

determined. In what follows, we consider a 4×4 MIMO system. An e�cient

data�ow architecture that simultaneously performs QRD and �nds the Babai

solution and its residual is shown in Fig. 4.5. First, the elements of R are derived

row-wise from top to bottom. Then, the Babai solution and the residuals are

computed simultaneously from bottom to top and right to left, respectively. In
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Figure 4.6: Permutation schedule 1.
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Figure 4.7: Permutation schedule 2.

order to compute the residuals for all 4!=24 possible permutations and identify

the minimum, the block should repeat the computations according to a speci�c

schedule. In what follows, we propose two e�cient schedules.

The �rst schedule is shown in Fig. 4.6. Note that the square numbers corre-

spond to the indices of the channel matrix columns, where the highlighted indices

correspond to locations of QRD redundant computations. In a straightforward

implementation that does not require additional memory, and that only considers

savings when the leftmost columns get permuted, only blue-highlighted positions

are saved. This is an intuitive design, since it saves computations in �nding the

Babai solution as well as QRD. For example, if the �rst two layers are swapped,

the block only recomputes the �rst two rows of R, and then �nds the remaining

two Babai components and computes the residuals.

Assuming a more advanced circuitry, that allows the storage of several decom-

position outputs in memory and supports savings when column permutations take

place at either side of H, enhanced schedules can be designed. This is feasible

since the MRQRD computations are parallelizable, and are not on the critical

path. In an extreme case where all 24 decompositions are stored in memory,

additional computational savings occur at yellow locations in Fig. 4.6. The sec-
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Figure 4.8: Modi�ed TSA-QRD for a 4×4 Matrix.

ond proposed schedule allows a good tradeo� between space and computational

complexity, as shown in Fig. 4.7. Here, the hardware implementation is assumed

to store the outputs of only four consecutive decomposition stages in memory.

4.3.3 TSA Architecture

A computationally e�cient and numerically stable TSA QRD architecture for a

4×4 matrix using MGS was presented in [143]. The �rst stage of QRD is ex-

ecuted by a diagonal-process (DP) unit, which computes the diagonal elements

of R and the columns of Q. In the second stage, a triangular-process (TP) unit

computes the non-diagonal elements of R, and updates the remaining columns

of H. The TSA QRD architecture can thus be formed by repetitive DP and TP

operations. Figure 4.8 shows a TSA architecture modi�ed to cope with PR-QRD.

Because savings are not always possible, condition signals depending on spe-

ci�c permutations are added, that decide whether a block should execute or not.

Note that the colored DPs and TPs are active low on these signals, and that a

multiplexer exists at their output, that either selects a newly computed value or
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Table 4.2: Computational Savings in PR-QRD

Permutations Redundant Saved

Type-0 none none

Type-1 q1, q2, r11, r12, r22 88 RML+40 RAD

Type-2 q3, q4, r33, r34, r44 88 RML+40 RAD

Type-3 q4, r44 28 RML+8 RAD

Type-4 q1, r11 28 RML+8 RAD

Type-5 Type1
⋃

Type2 176 RML+80 RAD

a value stored in a bu�er. The operation requires seven time slots, with DPs

executing on odd time slots and TPs on even ones. For example, in time slot 1,

h1 is fed to DP and r11 and q1 are obtained. The remaining columns of H are

delayed in a bu�er, waiting for q1 to be available at all TPs of time slot 2 in

parallel. The TPs then pass their output to the subsequent stages, and so on.

There exist �ve types of permutations. Some do not make use of any re-

dundant computations, and others make full use of them. We refer to these

permutations as Type-0 and Type-5, respectively. Type-1 corresponds to the

case when the last two columns are swapped, and Type-2 to the case when the

�rst two columns are swapped instead. Note that Type-1 does not allow for

savings in residual computations. Finally, Type-3 and Type-4 correspond to the

cases when only the last and �rst columns remain intact, respectively.

Table 4.2 summarizes the permutation types, assuming [h1h2h3h4] is initially

decomposed, and shows the redundant computations in QRD, as well as the com-

putational savings that can be achieved using a PR-QRD. Note that one complete

QRD requires a total of 304 RMLs and 176 RADs, and the savings in the PR-

QRD reach 176 RMLs and 80 RADs. In total, the schedule of Fig. 4.6 allows for

savings in QRD equal to 1280 RMLs and 544 RADs, while the schedule of Fig. 4.7

allows for savings equal to 2112 RMLs and 960 RADs. Noting that the total 24

QRDs require 7296 RMLs and 4224 RADs, the schedule of Fig. 4.7 reduces the

QRD overhead by more than 25%. The savings in residual computations are less
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signi�cant, since the Babai solution of (4.12) can be found by a simple slicing

operation, and (4.13) needs to be recomputed.

Moreover, in addition to computational savings, time savings are also achiev-

able. Figure 4.8 highlights the time slots that can be saved with di�erent permu-

tation types. Two from the seven time slots are saved with Type-1 permutations,

three with Type-2, and �ve with Type-4 (Fig. 4.8 corresponds to schedule 2, and

hence Type-3 and Type-4 are not highlighted). Thus, 60 time slots from the total

168 time slots that are required by all 24 permutations are saved in the second

proposed schedule, which accounts for a time saving percentage of 36% in QRD

computations.

Figure 4.9 from [31] shows the cumulative distribution function (CDF) of the

node count for various QRD schemes, with HO and SO detection, when DF tree-

search was employed. Six di�erent ordering schemes were studied, including the

best ordering among all possible permutations (Best). The MRQRDns is the

same as MRQRD, but with no symbol slicing when propagating values in the

recursion. MxRQRD, on the other hand, orders the layers based on maximum

forward residuals (orders layers in ascending order of residuals). The gap in the

median node count between hard and soft ML detection ranged between 2 to 3

orders of magnitude. Moreover, SO ML detection is found to be more sensitive to

the ordering scheme than HO detection, where the gap between the best ordering

scheme and the case when no ordering is applied is one order of magnitude. The

�gure illustrates the advantage of the proposed ordering schemes based on MRs

in reducing the node count compared to SQRD, both with or without slicing in

the recursion.
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Conclusion

Enhanced layer-ordering schemes have been proposed for SO SSDs and SDs,

and low-complexity hardware architectures have been proposed, with correspond-

ing execution schedules. The implementations employed a PR-QRD, based on

the MGS orthogonalization algorithm. It has been shown through simulations

that using the proposed scheme with SSD, the QRD overhead can be reduced

by 30% for 8×8 MIMO with no performance degradation cost, and it has been

argued that the savings are more profound with higher order MIMO. With SD,

the QRD overhead has been reduced by 25% in computations and 36% in time,

when reducing the node count by one order of magnitude, for 4×4 MIMO.
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Chapter 5

Large MIMO Detection via

Channel Puncturing

In this chapter we present a family of WRD-based detectors that build on popu-

lar QRD-based detectors (Table 5.1). In particular, we propose a punctured ML

(PML) detector, a punctured N/C (PN/C) detector, a punctured CD (PCD), as

well as a HO SSD. We then propose e�cient architectures and analyze the compu-

tational complexity of the proposed detectors. We show that the computational

savings are much more pronounced with large MIMO dimensions. Finally, we

study the performance of the proposed detectors in the context of large MIMO

with high order MTs, and in the presence of spatial channel correlation. We show

that the performance of these schemes scales up e�ciently with high orders, and

that they are superior to their QRD-based counterparts in the presence of channel

correlation. The results of this section appeared, in parts, in [144] and [145].

5.1 Punctured QR Decomposition (WRD)

A brute force approach for computing W [52] (Sec. 2.8.1) involves matrix in-

versions, which is complex and prone to roundo� error. However, an alternative
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Table 5.1: Summary of Proposed and Studied Detectors

WRD-Based Detectors QRD-Based Detectors

ML PML = PCD
N/C PN/C
CD PCD

LORD SSD
SLORD SSSD

approach exists that employs QRD followed by elementary matrix operations [54].

Let H be QR-decomposed such that QHH = R. Obviously, qHN qN = 1 and

qHN hn = 0 for all n = 1, . . . , N−1, hence, wN = qN . Now assume the nth entry

rmn in row m of R is to be nulled, for m = 1, · · · , N−2 and n = m+1, · · · , N−1.

We have qHm hn = rmn ∈ C and qHn hn = rnn ∈ R+, from which it follows that(
qHm − qHn

rmn

rnn

)
hn = 0. Hence, with ρmn,

rmn

rnn
∈ C, the equations

qm = qm − qnρ
H
mn, (5.1)

rmn = rmn − rnnρmn, and (5.2)

rmN = rmN − rnN ρmn, (5.3)

when repeated for n = N − 1, N − 2, · · · ,m + 1, would puncture the required nth

entry and update the Nth entry in row m of R, as well as update the mth column

of Q accordingly, while

rmm = rmm/‖qm‖ , (5.4)

rmN = rmN/‖qm‖ , and (5.5)

qm = qm/‖qm‖ , (5.6)

would normalize qm in Q and update the non-zero entries in row m of R accord-

ingly. All these operations are to be carried for m=N−2, N−3, · · · , 1. The resultant

Q is W, and the resultant R is R̊.
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In matrix form, we can write (5.1)-(5.4) using elementary matrices Em =

[enj], 1 ≤ m ≤ N, which di�er from IN by a single elementary row operation,

de�ned as follows:

enj =


1 if j = n

−rnm/rmm if j=m, j ∈ In
0 otherwise

(5.7)

The product of these matrices forms the unscaled matrices R2= (En . . .E1)R and

QH2 = (E
H
n . . .EH1 )Q

H. The scaling operations can be written using the diagonal

matrix D̄= [dn] ∈ R+, where dn=1/
√
[QH1 Q2]nn and [·]nn denotes the nth diagonal

element. The desired (scaled) matrices are given by WH = D̄QH2 and R̊ =

D̄R2. Note That unlike QRD, there is no permutation-robust implementation

for puncturing. The punctured elements are in the upper rows, a�ecting the

leftmost columns of Q. Furthermore, if the system had more receive antennas

(M >N), the �thin� form of the QRD for tall matrices would have been used, and

other modi�cations would have immediately followed.

The transformed received symbol vector after applying WH can then be ex-

pressed as

ȳ =WHy = R̊x +WHn, (5.8)

where by analogy with 2.15 we have

ȳ =


ȳ1

ȳN

 , R̊ =


Å b̊

0 c̊

 , x =


x1

xN

 , (5.9)

and in this case Å ∈ R(N−1)×(N−1) is a diagonal matrix. For example, in the special

case of 4×4 MIMO, R̊ is obtained from R by puncturing entries r23, r12, and r13,

respectively:

R =

[ r11 r12 r13 r14
0 r22 r23 r24
0 0 r33 r34
0 0 0 r44

]
, R̊ =

[
r̊11 0 0 r̊14
0 r̊22 0 r̊24
0 0 r̊33 r̊34
0 0 0 r̊44

]
. (5.10)
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5.2 Punctured ML Detector (PML)

Similar to the ML detector, an �exhaustive� PML detector searches X to �nd

x̂PML = min
x∈X

WH(y −Hx)
2
. (5.11)

Pre-multiplying by W, unlike Q, modi�es Euclidean distances, hence we have

d(x) = ‖y −Hx‖2 =
QH(y −Hx)

2
(5.12)

,
WH(y −Hx)

2
=

ȳ−R̊x
2
= d̄(x). (5.13)

Due to colored noise, this minimum distance detector is not optimal.

5.3 Punctured N/C Detector (PN/C)

With PN/C, we null by pre-multiplying by WH instead of QH, and perform SIC

as

x̂PN/C
n =

⌊(
ȳn − r̊nN x̂PN/C

N

)
/̊rnn

⌉
M
, (5.14)

for n = N − 1, · · · , 1, where x̂PN/C = [x̂PN/C
1 · · ·x̂PN/C

n · · · x̂PN/C
N ], and x̂PN/C

N =

b ȳN /̊rNNeM . Note that slicing on layers n = N −1, · · · , 1 can be done in paral-

lel since Å is diagonal.

5.4 Punctured Chase Detector (PCD)

The PCD builds on the partition in (5.9), and performs the operations of a CD

(Sec. 2.6). A modi�ed list of candidate symbol vectors P(ȳ, R̊) is thus created.

The distance of a vector x = [x1, xN ]T is given by

d̄(x)=
ȳ−R̊x

2
=
��ȳN−c̊xN

��2+ȳ1−Åx1−b̊xN

2
. (5.15)
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For a given xN ∈ M, the distance in (5.15) is minimized as

min
x1∈MN−1

d̄(x) =
��ȳN−c̊xN

��2+ min
x1∈MN−1

ȳ1−Åx1−b̊xN

2
(5.16)

=
��ȳN−c̊xN

��2 + ȳ1−Åx̂1(xN )−b̊xN

2
(5.17)

, d̄H (x(xN )) , (5.18)

where x̂1(xN ) = b(ȳ1−b̊xN )/ÅeMN−1 , which is a vectorized slicing operation, and

x(xN ) = [x̂1(xN ), xN ]T . The symbol vector x(xN ) is then added to P, together with

its distance d̄H (x(xN )). The �nal HO symbol vector x̂PCD is found from P as the

one with smallest distance.

While the PCD computes distances only to
���P(ỹ, R̊)��� = |M| candidate symbol

vectors, for a given layer ordering and channel partition, it is clear from (5.16)

that it achieves the exact performance as that of the PML detector. In other

words, there is no vector in the lattice X, outside the set P(ỹ,R), that can have a

smaller distance metric than that of the PCD solution. The proof goes as follows:

min
x∈X

d̄(x) = min
xN∈M,x1∈MN−1

{��ȳN− c̊xN

��2+ȳ1−Åx1−b̊xN

2
}

(5.19)

= min
xN∈M

{��ȳN−c̊xN

��2+ min
x1∈MN−1

ȳ1−Åx1−b̊xN

2
}

(5.20)

= min
xN∈M

{��ȳN−c̊xN

��2 + ȳ1−Åx̂1(xN )−b̊xN

2
}

(5.21)

= min
x(xN )∈P

d̄H (x(xN )) . (5.22)

5.5 Vector-Based Subspace Detector (VSSD)

The VSSD is an extension to PCD, the same way LORD is an extension to CD.

The columns of H are cyclically shifted, and punctured UTMs are generated.

Each permuted H at step t, t = 1, · · · , N, is WR-decomposed into W(t) and R̊(t)

according to (5.9). Let x̂PCD
(t) denote the PCD solution from step t. The �nal
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solution x̂VSSD is x̂PCD
(tmin), where tmin is de�ned as:

tmin = arg min
t∈{1,··· ,N}

y −Hx̂PCD
(t)

2
. (5.23)

Note that we revert back to the original space of H to compute the true Euclidean

distance metrics in (5.23). The gain achieved by VSSD compared to PCD is

limited, since each R̊(t) generates an independent space, and hence we end up

taking the best output from N independent trials. The VSSD is in e�ect the HO

version of the reference SO SSD [53] (Sec. 2.8.2), and we refer to it by simply

SSD in the remainder of this chapter.

5.6 Symbol-Based Subspace Detector (SSSD)

As a variation of SSD, the SSSD selects at each step t, only the root symbol of

the output vector as a component of the �nal output vector. Thus, the output

vector x̂SSSD = [x̂SSSD
1 · · · x̂SSSD

n · · · x̂SSSD
N ] gets assembled one symbol at a time

over N executions of PCD, where

x̂SSSD
n = x̂PCD

N−n+1(t=n). (5.24)

For example, in a 4×4 MIMO system, we have x̂SSSD
1 = x̂PCD

4(t=1), where x̂PCD
(t=1)

is the HO solution of a PCD following the partition in Fig. 2.1(g). Similarly

x̂SSSD
2 = x̂PCD

3(t=2), x̂SSSD
3 = x̂PCD

2(t=3), and x̂SSSD
4 = x̂PCD

2(t=4), are obtained following the

partitions (h), (i), and (j), respectively. Note that we can de�ne symbol-based

LORD (SLORD) in a similar manner:

x̂SLORD = [x̂SLORD
1 · · ·x̂SLORD

n · · · x̂SLORD
N ] (5.25)

x̂SLORD
n = x̂CD

N−n+1(t=n). (5.26)
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5.7 Soft-Output Detection

To generate the LLRs with SSSD, the N streams should be decoupled in N steps,

where in each step t ∈ {1, · · · , N} the LLRs for the bits corresponding to symbol

xn (n = t) are calculated. Hence, for each bit, we compute

λSSSD
n,k,t =

1

σ2

(
min

x∈P(0)
n,k,t

ȳ(t)−R̊(t)x
2
− min

x∈P(1)
n,k,t

ȳ(t)−R̊(t)x
2

)
(5.27)

for t = 1,· · ·, N and k = 1,· · ·, log(|M|), where the sets P(0)n,k,t , {x ∈ P(ȳ(t), R̊
(t)) :

bn,k = 0} and P(1)n,k,t , {x ∈ P(ȳ(t), R̊
(t)) : bn,k = 1} correspond to subsets of symbol

vectors in P(ȳ(t), R̊(t)), having in the corresponding kth bit of the nth symbol a

value of 0 and 1, respectively. Note that these distance metrics can be expanded

as in (5.15). Similarly, we can de�ne the LLRs for SLORD as

λSLORD
n,k,t =

1

σ2

(
min

x∈S(0)
n,k,t

ỹ(t)−R(t)x
2
− min

x∈S(1)
n,k,t

ỹ(t)−R(t)x
2

)
, (5.28)

where S(0)n,k,t , {x ∈ S(ỹ(t),R
(t)) : bn,k =0} and S(1)n,k,t , {x ∈ S(ỹ(t),R

(t)) : bn,k =1}.

With SO SSD and LORD, tighter LLRs can be computed with an extra

processing overhead by tracking global distances rather than per stream distances:

λSSD
n,k =

1

σ2

[
min

t

(
min

x∈P(0)
n,k,t

ȳ(t) − R̊(t)x
2

)
−min

t

(
min

x∈P(1)
n,k,t

ȳ(t) − R̊(t)x
2

)]
(5.29)

λLORD
n,k =

1

σ2

[
min

t

(
min

x∈S(0)
n,k,t

ỹ(t) −R(t)x
2

)
−min

t

(
min

x∈S(1)
n,k,t

ỹ(t) −R(t)x
2

)]
. (5.30)

5.8 Architectures and Complexity Analysis

The main motive behind channel puncturing is reducing complexity. To sup-

port this fact, a cost e�cient architecture that implements the SSSD algorithm
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Figure 5.1: Hierarchical architectural design for SO SSSD.

is shown in Fig. 5.1, together with a counterpart architecture that implements

LORD in Fig. 5.2. The designs are hierarchical, showing SSSD using PCD build-

ing blocks, that themselves use PN/C, while LORD uses CD and N/C blocks.

With SSSD, the distances computed in PCD and their symbol vectors are
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Figure 5.2: Hierarchical architectural design for SO LORD.

directly forwarded to an LLR processing unit at the corresponding layer of inter-

est. The PCD processes on all other layers can run in parallel, and the complete

LLR vector will be available at the output after the processing delay of one layer.

However, the LORD architecture is not fully parallelizable. Moreover, the PCD
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Table 5.2: Preprocessing Cost of Studied Detectors

Detection Scheme QRD Cost Puncturing Cost

ML → PML = PCD θ2/J θ3/J
N/C → PN/C θ2/J θ3/J
CD → PCD θ2/J θ3/J

LORD → SSD N × θ2/J N × θ3/J
SLORD → SSSD N × θ2/J N × θ3/J

Table 5.3: Savings in Studied HO Detectors

Detection Scheme Savings in Computations (FLOPs)

ML → PML = PCD
(
|M|N − |M|

)
× θ1

N/C → PN/C θ1

CD → PCD |M| × θ1

LORD → SSD N×(|M|×θ1−(4N2+4N−2)RAD−(4N2+4N)RML)
SLORD → SSSD N × |M| × θ1

routine itself is much less complex than the CD routine because it performs fewer

computations due to punctured entries.

Every time the product R̊x is computed instead of Rx, (N − 2)(N − 1)/2

complex multiplications are saved, which amounts to θ1 = (N2 − 3N + 2)RAD +

(2N2 − 6N + 4)RML FLOPs. For example, in a 16×16 MIMO system, 77% of

the multiplications required in N/C are saved with puncturing, and the savings

increase to 94% in a 64×64 MIMO system. Therefore, the SO SSD and SSSD can

save N × |M| × θ1 FLOPs compared to the SO LORD and SLORD, respectively.

The only computational drawback in subspace schemes is in channel decom-

position. As shown in [53,54], regular QRD requires θ2 = (4N3 − N2 − N)RAD +

(4N3+3N2)RML FLOPs, and puncturing alone requires θ3 =
2
3 (8N3−15N2+4N−

12)RAD+ (16
3 N3−7N2+ 8

3 N −20)RML FLOPs (this overhead was reduced in [55]

for SSD). However, channel matrix decompositions are only performed in the pre-

processing stage of detection, and with slow fading channels, the decomposition

outputs can be retained for a very large number of frames J.
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For HO computations, PN/C saves θ1 FLOPs compared to N/C, PCD saves

|M| × θ1 FLOPs compared to CD, SSSD saves N × |M| × θ1 FLOPs compared to

SLORD, and SSD saves N × (|M| × θ1 − (4N2 + 4N − 2)RAD − (4N2 + 4N)RML)

FLOPs compared to LORD, where the subtracted terms in the latter account for

distance computations in (5.23). These results are summarized in Tables 5.2 and

5.3. Note that the substantial savings with PML are based on the fact that PML

and PCD are identical. PML has no practical signi�cance, and it is only included

as a reference. Furthermore, extra memory is needed with LORD to compute

the global minimum distance for every bit after layer processing [134], where it is

required to store not only distances, but also their corresponding symbol vectors.

The WRD-based approaches are thus computationally e�cient, especially with

slow fading channels and high order modulation constellations.

5.9 Channel Shortening vs Channel Puncturing

Channel puncturing can be conceived as an alternative e�cient implementation

of channel shortening. However, e�cient implementation does not imply best

performance. By maximizing the mutual information that the transceiver system

can achieve with a mismatched channel model, a framework for constructing

optimal channel shortening for subspace detection was proposed in [146], building

on an original framework in [147]. The achievable information rate (AIR) metric

was employed, which is a generalized mutual information that the transceiver

system can achieve with a mismatched channel model at the receiver.

Building on the work in [146], a SO MIMO detector was proposed in [148] by

utilizing AIR-based partial marginalization (AIR-PM). Partial marginalization

(PM) [149,150] is a method of calculating LLRs without spanning entire lattices.

The AIR-PM detector exploits a tree-based representation, where parent layers

are exhaustively searched, and least-square estimates are used for marginalization

on child layers. As in the case of SSD, since connections among all child layers
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are broken, PMs can be executed independently and in parallel. For AIR-based

detection, the distance metric can be expressed as

d(y|x) = 1

σ2

(
2<{xHHHy} − xHHHHx − yHy

)
. (5.31)

Neglecting the last term and absorbing the noise variance into Hr and Gr , the

probability function of the resultant detection model would be

P̃r(y|x) = exp
(
2<{xHHHr y} − xHGrx

)
. (5.32)

Note that all lattice processing is contained in Gr . The AIR is de�ned as

IAIR(y; x) = Ex,y[ln P̃r(y|x)] − Ey[ln P̃r(y)], (5.33)

where P̃r(y) =∑
x∈X P̃r(y|x)Pr(x). Assuming complex Gaussian inputs, a closed

form IAIR expression was reached by optimizing (5.33) over a pre�lter matrix Hr :

IAIR(y; x) = N + ln det(IN +Gr) − Tr(B̄(IN +Gr)) (5.34)

Hr = W̄H(IN +Gr) (5.35)

W̄ = HH
(
HHH + σ2IN

)
(5.36)

B̄ = IN − W̄H (5.37)

Gr = UUH − IN, (5.38)

The matrix Gr , and hence U, is then chosen to maximize (5.34) under the de-

composition constraints. The resultant U matrix is shown in equations (26) and

(27) in [148], and the resultant IAIR reads:

IAIR(y; x) = 2
N∑

n=1

ln un,n. (5.39)
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The matrix U has the same structure as the matrix R in WRD, and its punc-

tured shape is responsible for decreasing the complexity of lattice processing. It

can be noted that computing U with multiple parent layers is computationally

intensive due to matrix inversions. However, for a single parent layer this over-

head is graceful, where we have the nth diagonal element of U computed from

the elements of B̄ as follows:

un,n =

√√√√(
b̄n,n −

��b̄n,N
��2

b̄N,N

)−1

. (5.40)

Despite the fact that WRD in SSD is not optimal in the sense of maximizing

the AIR, it can be shown to have a much lower complexity compared to AIR-PM

when more than one layer is a parent layer, as well as a near-optimal performance.

AIR-based detectors need to compute Hr and Gr . Computing Hr requires a ma-

trix inversion, which is a di�cult task in the context of large MIMO. Moreover,

computing Gr (equation (26) and in [148]) also requires multiple matrix inversions

when the number of parent layers is large. On the contrary, QRD/WRD-based

schemes only require executing a QRD (followed by elementary matrix opera-

tions in case of WRD), which is a much simpler task, especially if a dedicated

decomposition engine is used.

The AIRs of WRD-based and AIR-based schemes were obtained empirically

via a Monte Carlo simulation by computing (5.33) for di�erent MTs. These

rates were compared to the theoretical AIR of the AIR-based detectors assuming

Gaussian inputs (equation (5.39)). As shown in Fig. 5.3, AIRs with 16-QAM are

much closer to the theoretical bound than those with QPSK. Furthermore, the

gap in the AIR between WRD-based and AIR-based detectors is shown to be

small at low SNR and negligible at high SNR.
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Figure 5.3: Achievable information rates - 4 × 4 MIMO.

5.10 Simulation Results

The proposed detectors were simulated following the system model of Sec. 2.1.

Both HO and SO scenarios were considered, where in the latter turbo coding

was used, with a code rate of 1/2 and 8 decoding iterations. In addition to H,

we considered Hc = C1/2
r HC1/2

t that accounts for antenna correlation, where Ct

and Cr are the transmit and receive antenna correlation matrices, respectively,

with correlation factors α = ᾱ = 0.9. We assume, for convenience, the generic

exponential model [151]. Hence, in the case of 4×4 MIMO, we have

Ct =



1 α α2 α3

α 1 α α2

α2 α 1 α

α3 α2 α 1


, Cr =



1 ᾱ ᾱ2 ᾱ3

ᾱ 1 ᾱ ᾱ2

ᾱ2 ᾱ 1 ᾱ

ᾱ3 ᾱ2 ᾱ 1


. (5.41)

Figures 5.4 to 5.7 show the HO FER performance with various MIMO con�g-

80



15 20 25 30 35 40 45 50 55 60

SNR-dB

10-4

10-3

10-2

10-1

100

F
E

R

ML
N/C
PN/C
CD
PCD
LORD
SSD
SLORD
SSSD

16-QAM

1024-QAM

Figure 5.4: HO FER performance - 4 × 4 MIMO.
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Figure 5.5: HO FER performance - 8 × 8 MIMO.
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Figure 5.6: HO FER performance - 16 × 16 MIMO.
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Figure 5.7: HO FER performance - 64 × 64 MIMO.
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Figure 5.8: SO FER performance - 8 × 8 MIMO.

urations, whenM is 16-QAM and 1024-QAM [129]. In the context of 4×4 MIMO

(Fig. 5.4), the performance degradation in PN/C compared to N/C is negligible,

the chase detectors cut the gap between N/C and ML in half, and the PCD in-

troduces a 2 dB loss compared to the CD. Moreover, while LORD achieves exact

ML performance, SSD lags behind by also 2 dB. The relative performances of the

detectors are maintained with very large constellations. Figures 5.5, 5.6, and 5.7

then show the performance of the proposed schemes in the context of 8×8 MIMO,

16×16 MIMO, and 64×64 MIMO, respectively. The relative performances are

maintained, but the gap between WRD and QRD-based schemes increases from

2 dB, to 4 dB, 5 dB, and 7 dB, respectively. The SSSD was the only WRD-based

detector to achieve a performance gain, compared to SLORD. Note that large

MIMO systems do not achieve the gains of massive MIMO systems with very

large receive-to-transmit antenna ratios, which, in addition to our de�nition of

SNR, explain the high SNR range.
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Figure 5.9: SO FER performance - 16 × 16 MIMO.
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Figure 5.10: SO FER performance - 64 × 64 MIMO.
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Figure 5.11: SO FER performance - 128 × 128 MIMO.

Figures 5.8 to 5.11 show the BER performance of the studied SO detec-

tors, compared to a reference low-complexity MMSE detector [122], with various

MIMO con�gurations, when M is 16-QAM and 256-QAM. With relatively low

MIMO orders, the SSSD (or SO PCD) outperforms LORD, and so does the SSD

with high order MTs, while SLORD and MMSE lag behind. For example, the

SO PCD achieves a 2.5 dB gain compared to LORD, at a BER of 10−4 in 16×16

MIMO with 256-QAM. However, with high order MIMO, SSSD can not beat

LORD (5 dB and 7 dB gaps are noticed with 16-QAM). Nevertheless, at very

high MIMO orders, the reduction in complexity with WRD-based detectors is

particularly large, and the gap in performance can be as low as 1 dB or 2 dB with

256-QAM, where the e�ect of interference is reduced with larger MTs.

Figures 5.12 to 5.15 show the SO BER performance of the detectors under

high channel correlation. Subspace detectors, SSD and SSSD, outperform the

much more complex LORD. It is only at very high MIMO orders with low order
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Figure 5.12: SO FER performance - 4 × 4 MIMO - correlated channels.
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Figure 5.13: SO FER performance - 8 × 8 MIMO - correlated channels.
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Figure 5.14: SO FER performance - 16 × 16 MIMO - correlated channels.
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Figure 5.15: SO FER performance - 64 × 64 MIMO - correlated channels.
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MTs that LORD slightly outperforms SSSD. This declares the SSSD the winning

detector in the presence of channel correlation.

Conclusion

A family of low-complexity MIMO detectors that employ punctured QRD in

lieu of regular QRD has been proposed. The proposed detectors have been shown

to achieve signi�cant computational savings in the context of large MIMO sys-

tems. Furthermore, signi�cant performance gains have been observed with highly

correlated channels. An architectural design has been proposed, by using the de-

tectors of lower complexity as building blocks in their more complex extensions,

and it has been established that the proposed schemes scale up e�ciently both

in the number of antennas and the constellation size. In particular, SO per-layer

subspace detection has been shown to achieve a 2.5 dB SNR gain in 256-QAM

16×16 MIMO, while saving 77% of N/C computations.
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Chapter 6

Capacity, Diversity, and BER

Analysis

We analyze mathematically the capacity and BER performance of the proposed

HO detectors. First, capacity bounds under puncturing are derived. Second, the

diversity gain is characterized and used to show that channel matrix puncturing

does not negatively a�ect the diversity gain in HO detection. Third, the per-

formance of these detectors is studied via a probabilistic BER characterization.

We extend the study for several variations of SO detection schemes, and show

that signi�cant performance gains can be achieved with channel puncturing. The

results of this section appeared, in parts, in [144], [152], and [145].

6.1 Statistical Properties of Punctured Channels

Note that after puncturing, the column at the root layer in W (layer N here), re-

mains orthogonal to all other columns. Hence, taking the expectation of WHnnHW

over n, we have:

En[WHnnHW] =

σ2 e12 e13 0
eH12 σ2 e23 0

eH13 eH23 σ2 0

0 0 0 σ2

 . (6.1)
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Figure 6.1: Empirical vs theoretical CDFs of the diagonal elements of R.
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Figure 6.2: Empirical vs theoretical CDFs of the diagonal elements of R̊.

Therefore, although the resultant noise is colored, WRD preserves the noise vari-

ance at the layer of interest. However, the statistical properties of the elements

of R̊ get distorted under puncturing. The non-zero elements of R (given i.i.d.

Rayleigh fading) are known to be independent random variables with the follow-

ing distributions [46,153]:
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• The o�-diagonal elements are circular symmetric complex Gaussian with

unit variance.

• The square of the nth diagonal element is chi-squared distributed with

2(N − n + 1) degrees of freedom, with a probability density function

f (g = r2
nn) =

1

(N − n)!g
N−ne−g, g ≥ 0, (6.2)

where chi-squared comes from the sum of squares of Rayleigh distributed random

variables. This can be veri�ed by analyzing the Householder matrix construction,

as shown in Appendix B of [14].

While the distributions of non-zero o�-diagonal elements remain intact, the

distributions of diagonal elements at upper layers n=1, · · · , N−3, lose degrees of

freedom from 2(N−n+1) down to 4, as depicted in Figs. 6.1 and 6.2 for a 4 × 4

channel matrix, where empirical CDFs of the diagonal elements are compared

to theoretical chi-squared CDFs in solid lines. This is caused by the fact that

each puncturing operation at layer n renders the nth column of W dependent on

one of the remaining columns, thus eliminating two degrees of freedom from the

corresponding distribution of r̊2
nn.

6.2 Analysis of Capacity

In this section, we analyse the impact of channel puncturing on the capacity of

MIMO systems. Recall from [6,7] that the capacity of a channel from our system

model (E[nnH] = σ2IM and E[xxH] = IN), expressed in bits per seconds per Herts

(bps/Hz) is

CH = log det

(
IM +

1

σ2
HHH

)
, (6.3)
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which can be achieved when the transmitter uses Gaussian codebooks. Further-

more, a more generic equation for capacity is

C = log
det

(
Z +HΣHH

)
det Z

, (6.4)

where Z is the covariance matrix of the altered noise and Σ = E[xxH] is the

transmit covariance matrix. This equation can be used to account for colored

noise [154] resulting from any source of interference. Since n is circular symmetric

complex Gaussian, then the colored noise WHn is also circular symmetric complex

Gaussian, with a covariance matrix En[WHnnHW]. Therefore, the capacity of

the modi�ed system model, with puncturing as a source of interference, can be

expressed as

CR̊,Opt = log
det

(
En[WHnnHW] + R̊R̊H

)
detEn[WHnnHW]

. (6.5)

Under perfect knowledge of colored noise, CH and CR̊,Opt are identical. Hence,

in principle, if an optimal wightening �lter is used in the proposed detectors to

account for colored noise, there should be no loss in performance. However, the

computational complexity of such a �lter is arguably larger than the computa-

tional savings that are caused by puncturing, which is why we neglected the e�ect

of colored noise in our proposed algorithms. The resultant achievable rate is thus

expressed as

CR̊ = log det

(
IM +

1

σ2
R̊R̊H

)
. (6.6)

In what follows, we seek a lower bound on the achievable rates, assuming

symmetric N × N MIMO, for simplicity. As described in [6] for regular MIMO,

using results on random matrices [153] and the notion of unitarily equivalent

rectangular matrices, we say that H is unitarily equivalent to the bidiagonal

matrix
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χ2N

χ2(N−1) χ2(N−1)
. . .

. . .

χ2 χ2


, (6.7)

where χ2
j is a chi-squared distributed random variable with j degrees of freedom.

Note that this can be proved by performing the HT on H. Building on the

distributions of the punctured matrix, and applying the HT once on the full

column of R̊, we can infer by analogy that R̊ is unitarily equivalent to the matrix



χ4

χ2(N−1) χ4

. . .

χ2


, (6.8)

with the diagonal entries being all χ4 except for the last entry, and where all

the entries that are not shown are understood to be zeros. We next use the

representation in (6.8) to derive a lower bound on (6.6). De�ne Υj =
1
σ χj , the

matrix IM +
1
σ2 R̊R̊H has the form



1 + Υ2
4 Υ4Υ2(N−1)

Υ4Υ2(N−1) 1 + Υ2
4 + Υ

2
2(N−1)

1 + Υ2
4

. . .

1 + Υ2
4

1 + Υ2
2


. (6.9)

In evaluating det
(
IM +

1
σ2 R̊R̊H

)
we get, from the product of the N main diagonal
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terms in (6.9), a contribution of the form LR̊ +$ where

LR̊ =
(
1 + Υ2

4

)N−1
(1 + Υ2

2), (6.10)

and $ is a positive number. It can be easily noted that every negative term

in the remainder of determinant computations is cancelled by a distinct positive

contribution to $, and that $ contains more terms than needed. Therefore

CR̊ > LR̊ with probability one, and we have our lower bound. Comparing this

bound with the lower bound on CH [6]

LH =

N∏
j=1

(
1 + Υ2

2 j

)
, (6.11)

we note that despite the loss in degrees of freedom, both bounds are dominated

by the term (1+Υ2
2), and hence the gap in achievable rates will appear as a shift

that grows wider with larger number of antennas, and not a change in the slope.

Figures 6.3, 6.4, and 6.5 show the capacity plots alongside the bounds for

4× 4, 16× 16, and 64× 64 MIMO, respectively. The plots verify the analysis: CH

and CR̊,Opt are identical, the lower bounds are tight, and the gap is a shift that

grows with MIMO order. Note that the studied capacities correspond to making

use of the entire channel under a speci�c decomposition. It can be argued that

with special layer ordering and layer-of-interest selection, such as with SSSD, or

with optimized power allocation schemes, these gaps can be signi�cantly reduced.

6.3 Analysis of Achievable Diversity Gain

It is known that ML detection achieves full receive diversity M, and it can be

shown that the N/C and PN/C detectors, being special cases of ZF with decision

feedback, can only achieve a receive diversity gain of 1. Moreover, it can be
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Figure 6.3: Achievable rates (bps/Hz) with 4 × 4 MIMO.
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Figure 6.4: Achievable rates (bps/Hz) with 16 × 16 MIMO.

95



0 5 10 15 20 25 30

SNR-dB

0

50

100

150

200

250

300

350

400

450
A

ch
ie

va
bl

e 
R

at
es

CH
C ˚R
C ˚R,Opt

LH
C ˚R

Figure 6.5: Achievable rates (bps/Hz) with 64 × 64 MIMO.

argued that both SSD (VSSD) and LORD also achieve full diversity, since they

exploit the full channel matrix H to compute distance metrics. In what follows,

we study the achievable diversity gains of PML (PCD), SSSD, and SLORD.

6.3.1 Punctured ML Detector / Punctured Chase Detector

To capture the diversity order of PML, we derive the pairwise error probability

(PEP). Suppose that x(1) is transmitted, while x(2) is erroneously detected, the

PEP can be expressed as

Pr(x(1) → x(2)) = Pr

(WH(y −Hx(2))
2
≤

WH(y −Hx(1))
2

)
(6.12)

= Pr

(WHH(x(1) − x(2)) +WHn
2
≤

WHn
2

)
(6.13)

= Pr

(
<(nHWR̊d) ≥ 1

2

R̊d
2

)
, (6.14)
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where d , x(1) − x(2). Since n consists of circular symmetric complex Gaussian

random variables, then so is nHWR̊d. It is easy to show that

E

[
nHWR̊d

]
= 0 (6.15)

E

[
(nHWR̊d)(nHWR̊d)H

]
= E

[
Tr(R̊HWHnnHWR̊ddH)

]
(6.16)

= σ2Tr
(
(WR̊)H(WR̊)ddH

)
, (6.17)

where Tr(·) is introduced since (nHWR̊d)(nHWR̊d)H is a scalar. Hence, we have

<(nHWR̊d) ∼ N
(
0,
σ2

2
Tr

(
(WR̊)H(WR̊)ddH

))
(6.18)

= N
(
0,
σ2

2

WR̊d
2

)
, (6.19)

and therefore,

Pr(x(1) → x(2)) = Q
©«

R̊d
2

√
2σ2

WR̊d
ª®®¬ (6.20)

≤ Q
©«
√√√√√ R̊d

2

2σ2 ‖W‖2F

ª®®®®¬
, (6.21)

where the inequality holds since
WR̊d

≤ ‖W‖F R̊d
 (Sec. 5.2 in [155]). More-

over, using union bound, we have

Pr(x(1)→x(2)) ≤ Q
©«
√√√√√ R̊dmin

2

2σ2 ‖W‖2F

ª®®®®¬
(6.22)
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≤
∑

d∈Ω,d,0

Q
©«
√√√√√ R̊d

2

2σ2‖W‖2F

ª®®®®¬
, (6.23)

where Ω , {d= x− x́ | x, x́ ∈ X}, and dmin = arg mind∈Ω,d,0

R̊d
2
. Finally, using

the Cherno� bound, the average PEP is upper bounded as

E

[
Pr(x(1) → x(2))

]
≤

∑
d∈Ω,d,0

E

exp
©«−

R̊d
2

4σ2 ‖W‖2F

ª®®¬
 (6.24)

=
∑

d∈Ω,d,0

E

exp
©«−

R̊d
2

4Nσ2

ª®®¬
 , (6.25)

where ‖W‖2F = N since the columns of W were normalized in (5.4).

For regular ML detection [27,156,157], we have

E

[
Pr(x(1) → x(2))

]
≤

∑
d∈Ω,d,0

E

[
exp

(
−‖Hd‖2

4σ2

)]
(6.26)

≤
∑

d∈Ω,d,0

det

(
IN +

ddH

4σ2

)−M

, (6.27)

where the expected value over the elements of H results in full receive diversity M,

because each column of H contains M independent Rayleigh distributed random

variables, whose square is exponentially distributed. However, with R̊ instead of

H in PML detection, the �rst N−1 columns have single diagonal elements, whose

squares are chi-squared distributed with 4 degrees of freedom, which corresponds

to two exponentially distributed complex random variables, and hence a receive

diversity order equal to 2. Only column N of R̊ provides a diversity equal to M.
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Therefore, by analogy with (6.26), the average PEP for the PML detector is

E

[
Pr(x(1) → x(2))

]
≤

∑
d∈Ω,d,0

det

(
IN +

ddH

4Nσ2

)−2

, (6.28)

and hence PML detection can not achieve a receive diversity gain of order greater

than 2. However, noting that PML and PCD are identical (Sec. 5.4), and knowing

that the regular CD achieves a receive diversity order of 2 (more on that in

Sec. 6.4.2), we conclude that channel puncturing does not reduce the diversity

gain of the CD.

6.3.2 Symbol-Based Subspace Detector

To capture the diversity order of SSSD, we derive a modi�ed PEP. Without loss

of generality, we assume that layer N is the root layer of interest. Hence, an error

occurs when x(1)N is transmitted and x(2)N is erroneously detected, with probability

Pr(x(1)N → x(2)N )=Pr

(WH
(
y−H1x(2)1 −hN x(2)N

)2
≤

WH
(
y−H1x(1)1 −hN x(1)N

)2
)

(6.29)

=Pr

(WHH1

(
x(1)1 −x(2)1

)
+WHhN

(
x(1)N −x(2)N

)
+WHn

2
≤

WHn
2
)

(6.30)

=Pr

(R̊1

(
x(1)1 −x(2)1

)
+̊rN

(
x(1)N −x(2)N

)
+WHn

2
≤

WHn
2

)
,

(6.31)

where y = H1x(1)1 + hN x(1)N + n, x(2)1 = x̂1(x(2)N ) is computed as in Sec. 5.4, hN and

r̊N are the N th column of H and R̊, and H1 ∈ CM×(N−1) and R̊1 ∈ CM×(N−1) are

the �rst N − 1 columns of H and R̊, respectively. Let ∆̊ = R̊1

(
x(1)1 − x(2)1

)
, and
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let d = x(1)N − x(2)N ; we have

Pr
(
x(1)N → x(2)N

)
= Pr

(̊rN d +
(
WHn + ∆̊

)2
≤

WHn
2

)
=Pr

(
‖̊rN d‖2≤−2<

((
WHn+∆̊

)H
r̊N d

)
−
WHn+∆̊

2
+

WHn
2
)

≤ Pr

(
−2<

((
WHn + ∆̊

)H
r̊N d

)
≥ ‖̊rN d‖2 −

WHn
2

)
. (6.32)

Since n and the columns of H are circular symmetric complex Gaussian, then so

is nHWr̊N d + ∆̊H r̊N d. Thus, it can be shown that

E

[
(WHn + ∆̊)H r̊N d

]
= 0 (6.33)

E

[((
WHn + ∆̊

)H
r̊N d

) ((
WHn + ∆̊

)H
r̊N d

)H]
= σ2 ‖Wr̊N d‖2 +

∆̊H r̊N d
2

(6.34)

<
((

WHn + ∆̊
)H

r̊N d
)
∼ N

(
0,
σ2

2
‖Wr̊N d‖2 + 1

2

∆̊H r̊N d
2

)
. (6.35)

Hence, continuing from (6.32), we have

Pr
(
x(1)N → x(2)N

)
≤ Q

©«
‖̊rN d‖2 −

WHn
2√

2σ2 ‖Wr̊N d‖2 + 2
∆̊H r̊N d

2

ª®®®®¬
(6.36)

= Q
©«
√√√√√ ‖̊rN d‖4 − 2 ‖̊rN d‖2

WHn
2
+

WHn
4

2σ2 ‖Wr̊N d‖2 + 2
∆̊H r̊N d

2

ª®®¬ (6.37)

≤ Q
©«
√√√√√√√ ‖̊rN d‖4 − 2 ‖̊rN d‖2

WHn
2

‖̊rN d‖2
(
2σ2 ‖W‖2F + 2

∆̊2
) ª®®®®¬

(6.38)

= Q
©«
√√√√√ ‖̊rN d‖2 − 2

WHn
2

2σ2 ‖W‖2F + 2
∆̊2

ª®®¬ (6.39)
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= Q
©«
√√√√d2 ‖̊rN ‖2 − 2Nσ2

2Nσ2 + 2
∆̊2

ª®®¬ . (6.40)

Then, using union and Cherno� bounds, with Φ , {d = x− x́ | x, x́ ∈M} (|d |2 =

ddH), the average PEP can be upper bounded as

E

[
Pr

(
x(1)N → x(2)N

)]
≤

∑
d∈Φ,d,0

E

exp
©«−
|d |2 ‖̊rN ‖2 − 2Nσ2

4Nσ2 + 4
∆̊2

ª®®¬
 (6.41)

=
∑

d∈Φ,d,0

E

exp
©«−

|d |2 ‖̊rN ‖2

4Nσ2 + 4
∆̊2

ª®®¬ exp
©«

2Nσ2

4Nσ2 + 4
∆̊2

ª®®¬


(6.42)

≈
∑

d∈Φ,d,0

E

exp
©«−

|d |2 ‖̊rN ‖2

4Nσ2 + 4
∆̊2

ª®®¬
 , (6.43)

where the last approximation holds since the second exponential term is less that

exp(1), with equality at high SNR (σ2=0). Finally, taking the expectation over

all squared elements of r̊N , which are exponentially distributed, we obtain

E

[
Pr

(
x(1)N → x(2)N

)]
≤

∑
d∈Φ,d,0

M∏
l=1

©«
|d |2

4Nσ2 + 4
∆̊2

+ 1
ª®®¬
−1

(6.44)

≤
∑

d∈Φ,d,0

©«
|d |2

4Nσ2 + 4
∆̊2

ª®®¬
−M

. (6.45)

The denominator 4Nσ2+4
∆̊2

represents noise plus interference, hence, SSSD

appears to achieve a full receive diversity gain at the layer of interest when BERs

are plotted in terms of signal-to-interference-plus-noise ratio (SINR). In the case

of SLORD, following a similar derivation, the average PEP can be expressed as
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E

[
Pr

(
x(1)N → x(2)N

)]
≤

∑
d∈Φ,d,0

(
|d |2

4Nσ2 + 4 ‖∆‖2

)−M

, (6.46)

where ∆ = R1

(
x(1)1 − x(2)1

)
, and R1 ∈ CM×(N−1) consists of the �rst N − 1 columns

of R. Note that ∆̊ can be expressed as

∆̊ =
[̊
r11

(
x(1)1 − x(2)1

)
, . . . , r̊(N−1)(N−1)

(
x(1)N−1 − x(2)N−1

)
, 0

]T
, (6.47)

and consequently,
∆̊2

is upper bounded by

∆̊2

max
= r̊2

11%
2 + · · · + r̊2

(N−1)(N−1)%
2, (6.48)

when a one-bit slicing error (assuming Gray mapping) occurs on all upper layers,

with % = 2/log(2q) for a 2q-QAM constellation. Since the expected values of the

chi-squared-distributed square of diagonal elements in R are greater than those

in R̊ (expected value equals degrees of freedom), we have ‖∆‖2 >
∆̊2

, and

hence SSSD outperforms SLORD. Furthermore, with higher order constellations,∆̊2

max
is signi�cantly reduced, boosting the performance of SSSD.

6.4 Characterization and Analysis of BER

6.4.1 Punctured N/C Detector

Let Pn(rnn) and Ṕn(̊rnn) be the probabilities of bit error conditioned on rnn and

r̊nn, when detecting xn (1 ≤ n ≤ N), for N/C and PN/C, respectively. Consider

the PN/C detector, and assume as in [46] normalized binary phase shift keying

(BPSK), where M = {−1, 1}, we have

ṔN (̊rNN ) = Q ©«
√

2̊r2
NN

σ2

ª®¬ (6.49)
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at layer N. At the remaining layers, if the cancellation at layer N is correct, we

get Ṕn(̊rnn) = Q
(√

2̊r2nn
σ2

)
. Otherwise, we have

ȳn−r̊nN x̂PN/C
N = r̊nnxn + r̊nN (xN − x̂PN/C

N ) + wn. (6.50)

Noting that xN − x̂PN/C
N = ±2, the variance of interference plus noise is σ2+4,

and hence the BER becomes Ṕn(̊rnn) = Q
(√

2̊r2nn
σ2+4

)
. Thus, the resultant BER for

detecting xn can be written as

Ṕn(̊rnn)=Q ©«
√

2̊r2
nn

σ2

ª®¬
(
1−ṔN (̊rNN )

)
+Q ©«

√
2̊r2

nn

σ2+4

ª®¬ ṔN (̊rNN ). (6.51)

The BER for N/C with regular QRD at layer n (n=N−1, · · · , 1) is [46]

Pn(rnn) =
∑

ψn+1∈Dn+1

Pn(err|rnn, ψn+1)Pn+1(ψn+1) (6.52)

Pn(err|rnn, ψn+1) = Q

(√
2r2

nn

σ2 + 4ψn+1ψ
T
n+1

)
, (6.53)

where Pn+1(ψn+1) can be computed recursively, and ψn is an instance of Dn, the set

of all possible error patterns leading to layer n, which are represented as binary

vectors with 1 in the place of incorrect layer detection:

Dn = {[00 · · · 0︸  ︷︷  ︸
N−n+1

], [00 · · · 1︸  ︷︷  ︸
N−n+1

], · · · [11 · · · 1︸  ︷︷  ︸
N−n+1

]}. (6.54)

Note that with WRD, we have a smaller set D́n = {[00 · · · 0], [00 · · · 1]} ⊂ Dn,

where
��D́n

�� = 2 < |Dn | = 2N−n+1. Therefore, error propagation is largely reduced.

However, having fewer terms in the BER formula does not mean a better BER

performance. The average BER at layer n is obtained by taking the expectation

over r2
nn and r̊2

nn. Since r̊2
nn has smaller values than r2

nn at layers 1≤ n≤N−2, and
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since Q(·) is a monotonically decreasing function, PN/C will result in performance

degradation. But layer N has the worst performance, despite not being a�ected

by noise coloring, since more errors occur at this layer due to low array gain,

and they get propagated to higher layers. Therefore, the performance of both

N/C and PN/C detectors will be dominated by ṔN (̊rNN ) = PN (rNN ), and all

computational savings in the proposed PN/C detector come at a negligible cost.

In equation form, the function G(d, γ) provides the average BER over a d-fold

diversity Rayleigh fading channel with mean branch SNR γ:

G (d, γ) =
[
1

2
(1 − µ)

]d d−1∑
k=0

©«
d − 1 + k

k

ª®¬
[
1

2
(1 + µ)

] k

, (6.55)

where µ =
√
γ/(1 + γ). The average BER with PN/C at layers 1≤n≤N−1 is thus

expressed as

Ṕn = G
(
2,

1

σ2

)
(1 − ṔN ) + G

(
2,

1

σ2 + 4

)
ṔN, (6.56)

where layers 1 ≤ n ≤ N −1 only provide a 2-fold diversity due to puncturing.

Similarly, the average BERs at layer n < N for N/C can be obtained by replacing

Pn(err|rnn, ψn+1) in (6.52) by its average over rnn, Pn(err|ψn+1), where

Pn(err|ψn+1) = E[Pn(err|rnn, ψn+1)] (6.57)

= G

(
N − n + 1,

1

σ2 + 4ψn+1ψ
T
n+1

)
, (6.58)

with the numerator in γ being 1 because we assume normalization. We have

ṔN (̊rNN ) = PN (rNN ) = G(1, 1/σ2) (6.59)

=
1

2

©«1 −

√
1/σ2

1 + 1/σ2

ª®¬ . (6.60)

Note that these equations can be extended to an arbitrary constellation size by

104



expressing the function G(d, γ) as G(d, γ, |M|). The function G(d, γ, 2q) provides

the average BER of 2q-QAM over a d-fold diversity Rayleigh fading channel with

mean branch SNR γ [158,159]:

G(d, γ, 2q) =
√

2q − 1

2q

[(√
2q − 1

)
+ 4I1 −

(√
2q − 1

)
I2

]
(6.61)

I1 =
[
1

2
(1 − µ)

]d d−1∑
k=0

©«
d − 1 + k

k

ª®¬
[
1

2
(1 + µ)

] k

(6.62)

I2 =



4

π
µ tan−1 µ for d = 1

4

π

d−1∑
k=0

(2k)!
22k(k!)2

[ (
1

1 + %̄γ

) k

µ tan−1 µ

]
+

2

π

d−1∑
k=1

(2k)!
22k(k!)2

[ k∑
v=1

22vv!

(2v)!

(
1

1 + %̄γ

) k−v+1

×
(

%̄γ

1 + 2 %̄γ

)
(v − 1)!

(
1

1 + 2 %̄γ

)v−1 ]
for d ≥ 2

(6.63)

µ =

√
%̄γ

1 + %̄γ
, %̄ =

3 log(2q)
2(2q − 1) (6.64)

When using G(d, γ, 2q) in (6.52) and (6.51), the constant term 4, which represents

the variance of the error caused by wrong decisions on lower layers, should be

modi�ed. With 2q-QAM, and assuming normalized constellations, an error at a

lower layer will more likely incur a noise of variance %2 = (2/log(2q))2 at upper

layers.

6.4.2 Punctured Chase Detector

To capture the performance of the PCD, we follow a probabilistic approach similar

to that in [160]. Denote by x̂ML, x̂CD, and x̂PCD, the vector outputs, and by PML,

PCD, and PPCD, the vector error rates, of the ML detector, the CD, and the PCD,

respectively (vector error rates and BERs are related by a scaling factor). We
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start by the case of a regular CD; we have

PCD = ER,x

[
Pr

(
x̂CD , x | R, x

) ]
. (6.65)

For clarity of presentation, we drop the expectation operator in what follows.

Clearly, PML < PCD is a lower bound; we seek a tight upper bound. We further

have

PCD = Pr(x̂CD , x | R, x)

= Pr(x̂CD , x | R, x, x̂ML , x)Pr(x̂ML , x | R, x)

+ Pr(x̂CD , x | R, x, x̂ML = x)Pr(x̂ML = x | R, x). (6.66)

The �rst term in (6.66) is upper bounded by PML = Pr(x̂ML , x | R, x). To

simplify the second term, we expand

Pr(x̂CD , x | R, x, x̂ML = x) (6.67)

= Pr( x̂CD , x | R, x, x̂ML = x, x ∈ S(ỹ,R) ) × Pr(x ∈ S(ỹ,R) | R, x, x̂ML = x)

(6.68)

+ Pr( x̂CD , x | R, x, x̂ML = x, x < S(ỹ,R) ) × Pr(x < S(ỹ,R) | R, x, x̂ML = x).

(6.69)

We can note that

Pr( x̂CD , x | R, x, x̂ML = x, x ∈ S(ỹ,R) ) , PA = 0, and (6.70)

Pr( x̂CD , x | R, x, x̂ML = x, x < S(ỹ,R) ) = 1. (6.71)

Hence, substituting back in (6.67), we get

Pr(x̂CD,x| R, x, x̂ML=x) = Pr(x<S(ỹ,R)| R, x, x̂ML=x),PB. (6.72)
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Figure 6.6: Empirical error probabilities with CD - 4 × 4 MIMO - 16-QAM.

Substituting back in (6.66), the second term is upper bounded by PB, which

e�ectively is equivalent to the probability that the generated list does not contain

the true vector. But since we exhaustively search over all possible values of x̂N

in M, this probability will in e�ect be the probability of error in SIC on upper

layers. Therefore, we have

PML < PCD < PML + PB. (6.73)

Similarly, we can derive the bounds for PPCD by expanding Pr(x̂PCD , x | R̊, x)

and substituting S(ỹ,R) with P(ȳ, R̊). However, the modi�ed PA and PB, ṔA

and ṔB, will evaluate di�erently:

ṔA , Pr( x̂PCD,x | R̊, x, x̂ML=x, x∈P(ȳ, R̊) ) , 0 (6.74)

ṔB , Pr(x < P(ȳ, R̊) | R̊, x, x̂ML = x) > PB. (6.75)

Note that ṔA is not zero, because even if x̂ML is within the generated list, the
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modi�ed distance metric might not select it as the HO vector. Therefore, the

bounds for the PCD are

PML < PPCD < PML + ṔB + ξ, (6.76)

where ξ = ṔA(1 − ṔB)(1 − PML). As shown in Fig. 6.6, the dominant factors

that a�ect the performances of PCD and PPCD at high SNR are PB and ṔB,

respectively. Thus, ṔA, and hence ξ, can be safely neglected. Nevertheless, since

SIC over a punctured channel matrix is more prone to errors, we have ṔB > PB,

and accordingly PPCD > PCD. But layers with smallest degrees of freedom (equal

to 4) dominate the BER performance, and they exist in both the CD and the

PCD. Therefore, the performance gap will be in the form of a shift, and there is

no loss in diversity gain.

An alternative approximate approach to study the BER performance of the

CD starting from N/C exists [48], where the gain of generating a list by consid-

ering more candidate symbols at layer N can be seen as an e�ective SNR gain at

that layer. The gain factor is given by

Γ =
δLs

δN
, (6.77)

where δN is the distance between the transmitted symbol and the nearest decision

boundary in M, and δLs is the distance to the nearest decision boundary of the

list (an error occurs when xN is not in the list). Since in our case the list is the

entirety of M, the SNR gain is Γ = ∞. In other words, no error is propagated

from layer N, which was the limiting layer in N/C. Therefore, the BER of CD

and PCD can be obtained by summing the combinations of BERs on all layers

n < N, which are computed using (6.52) and (6.51), respectively, while setting
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Figure 6.7: Theoretical (solid lines) vs simulated BERs - 4×4 MIMO - 16-QAM.
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ṔN (̊rNN ) = PN (rNN ) = 0 in these equations. Hence, we have

PPCD = (N − 1)
[
G

(
2,

1

σ2

)]
. (6.78)
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Note here that PPCD stands for BER instead of vector error rate.

Figures 6.7 and 6.8 show the theoretical and simulated BERs with 16-QAM,

for 4 × 4 and 16 × 16 MIMO systems. Note that the CD and PCD theoretical

curves are not true upper bounds on error performance, but rather close approx-

imations [48]. The gap between punctured and unpunctured schemes increases

with the number of antennas. However, this gap can be reduced by employing

partial puncturing, at the expense of less computational savings. For example,

the partially-punctured N/C (PPN/C) detector and the partially-punctured CD

(PPCD) correspond to the case where the entries above the diagonal in the third

column are not zeroed-out during puncturing. In the remainder of this thesis, we

always consider full puncturing that results in maximal complexity reduction.

6.4.3 Symbol-Based Subspace Detector

Denote by PSLORD and PSSSD the vector error rates, of SSSD and SLORD, re-

spectively. We start by the case of SLORD. Noting that the performance can be

captured from one partition, say t=1, we investigate:

Pr(x̂SLORD
N , xN | R, x) (6.79)

= Pr(x̂SLORD
N , xN | R, x, x̂ML , x)Pr(x̂ML , x | R, x) (6.80)

+ Pr(x̂SLORD
N , xN | R, x, x̂ML = x)Pr(x̂ML = x | R, x) (6.81)

Pr(x̂SLORD
N , xN | R, x, x̂ML = x) (6.82)

= Pr( x̂SLORD
N , xN | R, x, x̂ML = x, x ∈ S(ỹ,R) ) (6.83)

× Pr(x ∈ S(ỹ,R) | R, x, x̂ML = x) (6.84)

+ Pr( x̂SLORD
N , xN | R, x, x̂ML = x, x < S(ỹ,R) ) (6.85)

× Pr(x < S(ỹ,R) | R, x, x̂ML = x). (6.86)
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We de�ne:

Pr( x̂SLORD
N , xN | R, x, x̂ML = x, x ∈ S(ỹ,R) ) , PD = 0 (6.87)

Pr( x̂SLORD
N , xN | R, x, x̂ML = x, x < S(ỹ,R) ) , PC , 1 (6.88)

Pr(x < S(ỹ,R) | R, x, x̂ML = x) = PB, (6.89)

and substitute back in (6.82) to get

Pr(x̂SLORD
N , xN | R, x, x̂ML = x) = PCPB. (6.90)

Following the same argument as in Sec.6.4.2 we have.

PML < PSLORD < PML + PCPB(1 − PML) (6.91)

PML < PSLORD < PML + PCPB (6.92)

Similarly, we can derive the bounds for PSSSD by expanding Pr(x̂SSSD
N , xN | R̊, x).

We de�ne

Pr( x̂SSSD
N , xN | R̊, x, x̂ML = x, x∈ P(ȳ, R̊) ) = ṔD , 0 (6.93)

Pr( x̂SSSD
N , xN | R̊, x, x̂ML = x, x < P(ȳ, R̊) ) = ṔC , 1 (6.94)

Pr(x < P(ȳ, R̊) | R̊, x, x̂ML = x) = ṔB, (6.95)

where following the same procedure we get

PML < PSSSD < PML + ( ṔCṔB + ṔD(1 − ṔB) )(1 − PML) (6.96)

PML < PSSSD < PML + ṔCṔB + ṔD. (6.97)

Therefore, the dominant factor that a�ects PSLORD at high SNR is PCPB, and the

factors that a�ect PSSSD are ṔCṔB and ṔD (we can show that ṔD is identical to
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Ṕ
C
Ṕ
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Figure 6.9: Empirical error probabilities with SSD - 4 × 4 MIMO - 16-QAM.

ṔA from (6.74)). Note that PC can be expressed as the probability that an error

occurs at layer N in the CD, given that an error occurred at the upper layers,

and ṔC is similarly de�ned in the case of a PCD (recall also that noise remains

uncolored at layer N under puncturing). Since the PCD does not propagate errors

at upper layers, the distance metric (5.15) is not severely distorted, and x̂N can

still be recovered. We thus have ṔC � PC. Moreover, as Fig. 6.9 shows, ṔD is

the limiting term for PSSSD at high SNR because ṔCṔB � ṔD. Hence, although

PB < ṔB, we still have PSSSD < PSLORD, which is a gain caused by puncturing.

This is in accordance with the conclusion in Sec. 6.3.2.

6.5 Comments on Soft-Output Detection

Using the results of Sec. 6.4.3, we deduce that SO SSSD outperforms SO SLORD.

Moreover, note that with CD and PCD, only the layer of interest is exhaustively

searched, which provides the required distance metrics to compute the LLRs on
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this layer only. Repeating the same process on all layers, the resultant detectors

would be SO SLORD and SO SSSD, respectively:

λPCD
n,k,t = λ

SSSD
n,k,t (6.98)

λCD
n,k,t = λ

SLORD
n,k,t . (6.99)

But since distance metrics from di�erent channel decompositions in SSD are

independent, SO SSD will not achieve a better performance than SO SSSD.

Finally, the performance of SO detectors is sensitive to factors that are not

captured in the HO analysis. For example, computing distances via WRD asWH(y −Hx)
2
, instead of

QH(y −Hx)
2
, is subject to downscaling, as Fig. 6.10

shows. The scaling e�ect is higher with smaller distances, that will end up as ML

or counter-ML distances to be used in LLR computations. Hence, the LLRs get

scaled accordingly. This results in less con�dence in LLR outputs, which is ben-
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e�cial since LORD schemes produce overcon�dent LLRs. Furthermore, Fig. 6.10

shows a comparison of QRD-based and WRD-based distance metrics versus sym-

bols from the constellation at the root layer. A noiseless 4 × 4 MIMO system

with 64-QAM is assumed. The symbols on the x-axis are sorted in increasing

order of distance metrics (constellation point 1 with a zero distance corresponds

to the true transmitted symbol vector). Both absolute distances as well as dis-

tance ratios are shown. On average, the order of distance metrics is retained

under puncturing. However, at speci�c instances, the order gets distorted with a

probability greater than ṔA.

Conclusion

In this chapter, the performance of the proposed detectors has been char-

acterized and analyzed mathematically, by deriving bounds on the achievable

rates, diversity gains, and error probability. It has been shown that puncturing

results in a graceful loss in system capacity, and it does not negatively impact

the receive diversity gain in HO detectors. The analysis has been extended to

SO detection, and it has been shown that signi�cant performance gains are at-

tainable by ordering the layer of interest to be at the root when puncturing the

channel.
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Chapter 7

Dual-Layer Multiuser MIMO

Detection

In this chapter, we consider near optimal detection methods for 2× 2 MU-MIMO

systems by treating the interfering signal as a constrained unknown to be esti-

mated. We propose joint likelihood-based MC of the co-scheduled user and data

detection of the user of interest. By adjusting the Max-Log-MAP MC approach

to the structure of the ML detector or LC-LORD, and expanding it to include

distances of counter maximum likelihood hypothesis symbols, the decision metric

for MC is shown to be an accumulation over a set of tones of Euclidean distance

computations also used by the detectors for bit LLR generation. Hence, we show

that an enhanced near IA MU-MIMO detector can be e�ciently implemented

with a slight modi�cation to the SO versions of the detectors. An e�cient hard-

ware implementation scheme is presented. The results of this section appeared,

in parts, in [161], [162], and [163].
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7.1 System Model

We follow the system model of Sec. 2.1, but limit the discussion to the special

case of dual-layer MIMO (N = M = 2). We also de�ne a new notation for the

MTs. We assume x1 to be drawn from the arbitrary, but known, constellation

Λ̄ (MT of the user of interest), that could be QPSK, 16-QAM or 64-QAM, and

x2 to be drawn from an unknown constellation Λ j , j ∈ {0, 1, 2, 3}, where Λ0, Λ1,

Λ2 and Λ3 correspond to the constellations Φ, QPSK, 16-QAM and 64-QAM,

respectively, with Φ representing a constellation having one entry of zero power,

corresponding to the case when there is no interferer.

7.2 Interference Rejection Combining

Linear IRC detection is employed when estimates of both the desired and co-

scheduled users' channels are available at the receiver, but knowledge of the MT

of the co-scheduled user is not. IRC works as a linear MMSE receiver [59], per-

forming whitening followed by MRC:
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hH1 L−1y = hH1 L−1h1x1 + hH1 L−1(h2x2 + n), (7.1)

with L = h2hH2 +σ
2I2 being the covariance matrix of the sum of interference and

noise components. The resultant distance metric to be used in LLR computation

is generated as

ϕIRC(x1) =
1

σ2
n,IRC

���hH1 L−1y − hH1 L−1h1x1

���2 , (7.2)

where unlike in [63], we have accounted for the variability of the variance from

tone to tone by the scaling factor 1
σ2

n,IRC

, with σ2
n,IRC = hH1 L−1h1. Then the LLRs

are computed as

λIRC
i = min

x1∈Λ̄(1)i

ϕIRC(x1) − min
x1∈Λ̄(0)i

ϕIRC(x1), (7.3)

where Λ̄(1)i and Λ̄(0)i correspond to points in Λ̄ having in the bit position i of

the symbol of interest the values of 1 and 0, respectively. Note that since the

interference is discrete and not Gaussian, IRC is not optimal.

7.3 ML MC for 2 × 2 MU-MIMO Systems

The optimal likelihood-based MC scheme decides on the modulation format that

has the maximum likelihood within multiple hypotheses. Following the Bayesian

formulation, hypothesis testing is performed on the possible modulation formats

to estimate the constellation of the interferer. We consider four hypotheses:

y ∼ Pr(y; x1 ∈ Λ̄, x2 ∈ Λ j), j ∈ {0, 1, 2, 3}, with likelihoods

Pr(y;Λ j) =
∑

x1∈Λ̃, x2∈Λj

Pr(y|x1, x2)Pr(x1, x2). (7.4)
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Under statistical independence between x1 and x2, and assuming uniform priors,

Pr(x1) = 1/
��Λ̄�� and Pr(x2) = 1/

��Λ j
��, where |·| denotes the cardinality of the

constellation (Pr(x1) is �xed over hypotheses and thus can be dropped), the ML

MC decision metric can be derived as

ĵ = arg max
j∈{0,1,2,3}

∑
x1∈Λ̄, x2∈Λj

Pr(y|x1, x2)
1��Λ j

�� . (7.5)

Noting that Pr(y|x1, x2) = 1
(πσ2)Nr exp(− 1

σ2 ‖y −Hx‖2), and neglecting the term

1
(πσ2)Nr =

1
(πσ2)2 which is assumed �xed over hypotheses, the resultant Log-MAP

decision metric is

ĵLog−MAP = arg max
j∈{0,1,2,3}

©«log
1��Λ j

�� + log
∑

x1∈Λ̄, x2∈Λj

exp

(
− 1

σ2
‖y −Hx‖2

)ª®¬ , (7.6)

which is the optimal ALRT solution. Note that neglecting the correction term

log(1/
��Λ j

��) results in the GLRT solution [164].

Solving (7.6) is computationally intensive, because for each j we have to

calculate
��Λ̄�� × ��Λ j

�� exponential terms. However, one of these terms is dominant

and corresponds to the ML distance

dML
j = min

x1∈Λ̃, x2∈Λj

ϕML(x) (7.7)

ϕML(x) = 1

σ2
‖y −Hx‖2 . (7.8)

Hence, following the approximation (log
∑

r exp(ar) ≈ maxr ar), we obtain

ĵMax−Log−MAP = arg max
j∈{0,1,2,3}

(
log

1��Λ j
�� − dML

j

)
, (7.9)

which is the sub-optimal Max-Log-MAP classi�er [62] [63].
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7.4 Proposed MU-MIMO Receivers

Since the more distance metrics that get accumulated in (7.6), the better the

approximation is, we can enhance the classi�er by considering the most in�uential

N distances that best minimize ϕML(x). We call this approach the Closest-

N classi�er, and we will use it as a reference to compare our second proposed

approach to.

We next consider a special subset of distances, that consists of the counter

ML distances corresponding to bits of the symbol of interest in addition to the

ML distance. We call the corresponding scheme counter-ML-distance-based MC

(CMLD). Note that with CMLD, the distances considered are not the smallest,

and hence not the most in�uential. The counter ML distance corresponding to a

speci�c bit is de�ned as

dcML, j,i =


min

x1∈Λ̄, x2∈Λj |bi=0
ϕML(x) b(ML)

i = 1

min
x1∈Λ̄, x2∈Λj |bi=1

ϕML(x) b(ML)
i = 0

(7.10)

with b(ML)
i being the value of the ith bit in the bit vector of the ML solution.

119



The lattice points (symbol vectors) to which the distances are taken in each

approach are shown in Fig. 7.2. For Log-MAP, Max-Log-MAP and Closest-N, the

points are drawn directly from the 2-D MIMO lattice structure. However, only

the component of interest is shown for the CMLD approaches, which is drawn

from its corresponding constellation,

After the classi�er decides on ĵ, an ML SO detector generates the bit LLRs

as follows:

λML
i = min

x1∈Λ̄(1)i , x2∈Λ ĵ

ϕML(x) − min
x1∈Λ̄(0)i , x2∈Λ ĵ

ϕML(x). (7.11)

Hence, the main component of the decision metric for MC is found to be an

accumulation over a set of tones of Euclidean distance computations, which are

also used by the ML detector for bit LLR soft decision generation. Combining

MC and detection routines is thus computationally e�cient.

Furthermore, if we consider LC-LORD instead of ML detection, the proposed

MC schemes should be modi�ed. First, (7.6) does not hold with LORD, since only

layer-1 is exhaustively searched. Moreover, while (7.9) still holds with LORD,

dML
j is not guaranteed to be within the reduced QAM Θ, and thus it does not

hold with LC-LORD. Consequently, we introduce the Quasi-Log-MAP and Quasi-

Max-Log-MAP MC schemes, that best approximate the original schemes. With

Quasi-Log-MAP, the summation in (7.6) is over the |Θ| lattice points searched

by LC-LORD, with corresponding distance metrics d1(x1), while with Quasi-

Max-Log-MAP, the modi�ed ML distance metric considered is minx1∈Θ d1(x1).

Similarly, we can de�ne the Closest-N and CMLD classi�ers starting from the

LC-LORD solution.

Equation (7.12) generalizes the likelihood function assuming T observations

(tones) are accumulated under a constant interfering MT before deciding on a

winning hypothesis, where S̄ corresponds to the subset of lattice points to consider
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in each approach:

ĵ = arg max
j∈{0,1,2,3}

T∑
t=1

(
log

1

|Λ j |
+ log

∑
x∈S̄

exp
(
−ϕML(x)

))
. (7.12)

The joint MC and detection setup is described as follows. After observing

T vectors, and for each of the four possible hypotheses, the detection routine is

called T times and the outputs are stored in memory. Concurrently, the likeli-

hood for each hypothesis gets computed. Eventually, the hypothesis that gets

the maximum likelihood is declared a winner and the corresponding output is

retrieved. The price to pay is an increase in space complexity.
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Table 7.1: Computational Complexity of MC Schemes with ML Detec-

tion

Approach Exponentials Distance Computations

Log-MAP
��Λ̄�� (|Λ0 |+ |Λ1 |+ |Λ2 |+ |Λ3 |)

��Λ̄�� (|Λ0 |+ |Λ1 |+ |Λ2 |+ |Λ3 |)
Closest-N 4N

��Λ̄�� (|Λ0 |+ |Λ1 |+ |Λ2 |+ |Λ3 |)
CMLD 4(2q+1)

��Λ̄�� (|Λ0 |+ |Λ1 |+ |Λ2 |+ |Λ3 |)
Max-Log-MAP 4

��Λ̄�� (|Λ0 |+ |Λ1 |+ |Λ2 |+ |Λ3 |)
Joint Log-MAP

��Λ̄�� (|Λ0 |+ |Λ1 |+ |Λ2 |+ |Λ3 |) 0

Joint Closest-N 4N 0

Joint CMLD 4(2q+1) 0

Joint Max-Log-MAP 4 0

7.5 Joint MC and Detection Architecture

An optimized architecture for a 2×2 MU-MIMO detector following the CMLD

approach is shown in Fig. 7.3. At the core of this architecture is a ML MIMO

detector (or LC-LORD), that detects x assuming all possible choices of the in-

terferer's MT, and generates the corresponding lists of dcMLs and dMLs for all T

vectors. These distances and symbols are stored in bu�ers of size T × (2q + 1).

The sum of the logarithm of the exponential of the distance metrics are passed to

an adder that accumulates them over a span of T tones, during which the inter-

ferer modulation is assumed to be static. The resulting accumulated distances for

each interferer hypothesis are stored in a bu�er, and after deciding on a winning

hypothesis, the corresponding stored distances are forwarded for LLR processing.

This algorithm can be used in 802.11ac (WiFi) [1], which supports 80MHz

of bandwidth with 242 usable tones, 8 of which are reserved for pilots and 234

data tones (worst case is 20MHz, 4 pilots, and 52 data tones). The length of

the data �eld in a WiFi frame can be a very large number of OFDM symbols

(L). Since the interferer's modulation constellation remains static over T tones

and L symbols, the particular choice of T = 234 results in substantial savings

in computations. The detector only needs to run in this mode to identify the
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Table 7.2: Computational Complexity of MC Schemes with LC-LORD

Approach Exponentials Distance Computations

Log-MAP
��Λ̄�� ��Λ̄��

Quasi-Log-MAP
��Θ̄�� ��Θ̄��

Closest-N 4N
��Λ̄��

CMLD 4(2q+1)
��Λ̄��

Max-Log-MAP 4
��Λ̄��

Quasi-Max-Log-MAP 4
��Θ̄��

Joint Log-MAP
��Λ̄�� 0

Joint Quasi-Log-MAP
��Θ̄�� 0

Joint Closest-N 4N 0

Joint CMLD 4(2q+1) 0

Joint Max-Log-MAP 4 0

Joint Quasi-Max-Log-MAP 4 0

interferer's constellation for one OFDM symbol in the frame. It can then switch

back to normal ML detection mode (without MC) to generate the LLRs for the

remaining ODFM symbols. Moreover, the algorithm can be used in LTE [4]

transmission modes 7, 8, and 9, where estimates of desired and co-scheduled

users channels are available at the receiver.

The total number of distance computations needed to generate the LLRs from

the 234×L data tones is 234×L×
��Λ̄��× ��Λ j

��, and the average overhead of MC is

234×3×
��Λ̄��×��Λ j

��. This corresponds to an increase of only 3/L%, compared to dis-

tances computed by an ML detector with perfect knowledge of the interferer. The

size L of the data �eld can take a range of values from 8 to more than 1024, hence,

the increase in distance computations ranges between 37.5% and less than 0.3%.

However, an additional burden of MC is the number of exponential and logarith-

mic operations it requires (blue box in Fig. 7.3). Tables 7.1 and 7.2 compare the

complexity of di�erent MC routines, per tone, when applied solely or in a joint

setup, in terms of Euclidean distance computations and number of exponential

operations, in the context of ML detection and LC-LORD, respectively.
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Figure 7.4: CCR performance - Λ̄ is 16-QAM - T = 12 - 0.9 correlation.

7.6 Simulation Results

The joint MC and detection schemes were simulated. The decision on the win-

ning hypothesis was made after receiving T = 52 or T = 12 tones, with the �rst

corresponding to WiFi's worst case, and the second to an LTE scenario. Turbo

coding was used, with a code rate of 1/3 and number of decoding iterations equal

to 4. We considered the scenario where the user of interest uses 16-QAM with ML

detection and 64-QAM with LC-LORD (since LC-LORD is of less interest with

smaller constellations), while the interferer hops over the four hypotheses with

equal probability on every new frame. Furthermore, we considered both rich scat-

tering and correlated channels, with transmit and receive correlation coe�cients

of 0.9 and 0.6 as de�ned for LTE.

For ML detection, we simulated four receivers that are assisted by the studied

MC schemes: Log-MAP, Max-Log-Map, Closest-5 (Closest-N with N = 5) and

CMLD. In addition, we included the receiver that always assumes the interferer
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to be 16-QAM, as well as the ideal IA receiver. Figure 7.4 shows, for highly

correlated channels, the correct classi�cation ratio (CCR) for the MC approaches

with T =12. The CCR gaps are signi�cant, but all approaches converge to unity

at high SNR. Figures 7.5 and 7.6 show the coded frame error rate (CFER) plots

with high channel correlation, for T = 52 and T = 12, respectively. The choice

T = 52 made the Log-MAP MC-based receiver approach the performance of the

IA receiver. On average, compared to Max-Log-MAP, CMLD resulted in a CFER

SNR gain of 0.6 dB, Closest-5 a gain of 1.1 dB, and Log-MAP a gain of 2.2 dB.

Moreover, the IRC receiver and the receiver that assumes the interferer to be

16-QAM performed badly under high channel correlation.

With ideal channel conditions, the total gap between the Log-MAP and Max-

Log-MAP MC-based receivers does not exceed 0.7 dB, as shown in Fig. 7.7 for

T = 12. Compared to Max-Log-MAP, CMLD resulted in a CFER SNR gain

of 0.15 dB and Closest-5 a gain of 0.3 dB. Note that the Log-Map MC-based
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Figure 7.6: CFER performance - ML Detection - Λ̄ is 16-QAM - T = 12 - 0.9
correlation.
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Figure 7.7: CFER performance - ML Detection - Λ̄ is 16-QAM - T = 12 - uncor-
related channels.
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Figure 7.8: CCR Performance - LC-LORD - Λ̄ is 64-QAM - |Θ|=49 - 0.6 corre-
lation.
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Figure 7.9: BER Performance - LC-LORD - Λ̄ is 64-QAM - |Θ|=49 - 0.6 corre-
lation.
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Figure 7.10: BER Performance - LC-LORD - Λ̄ is 64-QAM - |Θ|=49 - ucorrelated
channels.
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Figure 7.11: BER Performance - LC-LORD - Λ̄ is 64-QAM - |Θ|=25 - uncorre-
lated channels.
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Figure 7.12: BER Performance - LC-LORD - Λ̄ is 64-QAM - Θ= Λ̄ - uncorrelated
channels.

detector did not approach the optimal ML IA receiver here, because the CCR

values are far from unity over low SNR range.

For LC-LORD, we simulated the receivers that are assisted by the MC schemes

studied in Sec. 7.4: Quasi-Log-MAP, Quasi-Max-Log-Map, Closest-5 (Closest-N

with N =5) and CMLD (note that with LC-LORD, counter ML distances in case

of CMLD might get saturated). In addition, we included the receiver that always

assumes the interferer to be 64-QAM, as well as the ideal IA receiver.

We considered two scenarios of reduced search in LC-LORD, one with a worst

case search region of |Θ|=49 and another with a worst case of |Θ| = 25. However,

even the �rst case results in remarkable complexity savings when
��Λ̄��=64, because

most of times the center of Θ is close to the boundaries of Λ̄, and thus Θ gets

truncated, which further reduces its size. Moreover, we applied LC-LORD to

70% of the streams, keeping the less reliable 30% in full complexity mode.

Figure 7.8 shows, for high correlation and |Θ| = 49, the CCR plots for the
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MC approaches. All approaches reach unity CCR at high SNR. The gap be-

tween Quasi-Log-MAP and Quasi-Max-Log-MAP classi�ers is around 1.2 dB, and

Closest-5 and CMLD cut this gap in half, with Closest-5 being slightly superior.

The coded BER performance of the proposed approaches, compared to the

reference detectors, is shown in Fig. 7.9. Assuming the interferer to always be

64-QAM performs badly with high channel correlation, and so does IRC to a less

extent. The gap between IRC and the IA receiver is 4 dB, and the MC-based

approaches cut this gap in half. Quasi-Log-MAP and Quasi-Max-Log-MAP are

1 dB apart, and Closest-5 and CMLD beat Quasi-Max-Log-MAP by 0.5 dB.

The rest of the plots show the BER performance with uncorrelated channels.

For |Θ|=49 (Fig. 7.10), the gap between IRC and IA reduces to 2 dB, and assum-

ing the interferer 64-QAM is only 0.8 dB away from IRC. Moreover, MC-based

detectors almost coincide, both being less than 1 dB away form IA. However, if

the search region is further reduced to |Θ| = 25, IRC will beat the MC-based

detectors at high SNR, even when the channels are uncorrelated, as shown in

Fig. 7.11. Finally, Fig. 7.12 shows the BER performance, when Θ= Λ̄, which is in

e�ect the optimal joint MC and LORD detection case. Comparing its plots with

those of Fig. 7.10, we conclude that setting |Θ| = 49 and running full complexity

LORD at the worst 30% of carriers is near optimal.

From these results, we can see that both Closet-5 and CMLD o�er enhanced

low complexity realizations for MC-based MU-MIMO receivers. From a practical

perspective, CMLD has the advantage as shown in Sec. 7.5, where the proposed

joint MC and detection setup does not apply to Closest-5 (extra processing is

required to sort the closest 5 distances as well as extra space).

The bene�ts of CMLD become clearer in the context of joint MC and SO SD.

A SD reduces the number of visited lattice points, however, points leading to

counter ML distances are never omitted and e�cient joint CMLD MC and detec-

tion is maintained. On the other hand, the Closest-N classi�er is more useful if

applied jointly with LSD, which keeps track of distances to closest neighbouring
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symbols, or with sphere decoding with adaptive radius pruning, both of which do

not guarantee the inclusion of counter ML symbols. Moreover, this work can be

combined with [165, 166], using constant and linear Max-Log-MAP to enhance

the approximation performance. Finally, we could have considered the distances

to counter ML hypothesis symbols that correspond to the bits of the interfering

symbol x2 as well, but soft detectors do not keep track of the LLRs of the inter-

ferer, and hence less savings can be made with the joint MC and detection setup.

Conclusion

In this chapter, low-complexity receivers have been proposed for 2 × 2 MU-

MIMO systems, based on joint MC and ML detection or LC-LORD, where the

ML MC scheme has been adapted to cope with both detectors. These receivers

have been compared to other state-of-the-art receivers. The performance of the

proposed schemes has been shown to lie between the MC-based schemes that use

Log-MAP and Max-Log-MAP classi�ers, remarkably beating the latter, especially

with high channel correlation. An e�cient implementation has been proposed by

making use of a hardware architecture that enables joint MC and detection.

Finally, it has been shown that the proposed approaches can be used in various

communication standards, where in the special case of WiFi they result in a

negligible complexity overhead.
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Chapter 8

High-Order Multiuser MIMO

Detection

In this chapter, we extend the work on 2 × 2 MU-MIMO and propose an e�-

cient SSSD for larger antenna con�gurations, in which the MT of the interferer

is estimated, while multiple decoupled streams are being individually detected.

We propose low-complexity versions of the optimal log-MAP and Max-Log-MAP

modulation classi�ers, that adapt to the limitations of the proposed SSSD scheme,

and employ them in a hierarchical fashion with feature-based classi�ers. We

show that the proposed algorithms can be e�ciently implemented, by proposing

a corresponding low-complexity architecture and studying its complexity in the

context of 802.11ac. The corresponding results appeared in [136].

8.1 System Model

We modify the system model of Sec. 2.1 by considering a scenario in which Nuser≤

N antennas transmit useful data to the user of interest, while the remaining

Ninter=N−Nuser antennas send interfering data (Fig. 8.1). Note that the entries

of H are still considered i.i.d CN(0, 1), and no weighting is applied.
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Figure 8.1: MU-MIMO system model.

We assume that the Nuser symbols of the user of interest that form xuser =

[x1 · · · xNuser]T are drawn from the arbitrary, but known, constellationM. We also

assume, without loss of generality, that the Ninter symbols of the interferer that

form xinter= [xNuser+1 · · · xN ]T are drawn from the same unknown constellation Uj ,

j ∈ {0, 1, 2, 3, 4}, where U0, U1, U2, U3 and U4 correspond to the constellations

Φ, QPSK, 16-QAM, 64-QAM and 256-QAM, respectively.

8.2 Reference MU-MIMO MC Schemes

8.2.1 Likelihood-Based MC

In a derivation similar to that of Sec. 7.3, we consider �ve hypotheses: y ∼

Pr(y; xuser ∈ MNuser, xinter ∈ UNinter
j ), j ∈ {0, 1, 2, 3, 4}, with likelihoods

Pr(y;Uj) =
∑

xuser∈MNuser, xinter∈UN inter
j

Pr(y|x)Pr(x). (8.1)

Under statistical independence between the components of x, and assuming uni-

form priors, Pr(x1)= · · ·=Pr(Nuser)=1/|M| and Pr(Nuser+1)= · · ·=Pr(xN )=1/
��Uj

��
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(the probabilities of user symbols are independent of the interferer and thus can

be dropped), the ML MC decision metric can be expressed as

ĵ = arg max
j∈{0,1,2,3,4}

∑
xuser∈MNuser, xinter∈UN inter

j

Pr(y|x) 1��Uj
��Ninter

. (8.2)

Noting that Pr(y|x)= 1
(πσ2)M exp(− 1

σ2 ‖y −Hx‖2), and neglecting 1
(πσ2)M which is

�xed over hypotheses, the resultant Log-MAP metric (ALRT solution) is

ĵLog-MAP = arg max
j∈{0,1,2,3,4}

©«
Ninter log

1��Uj
�� + log

∑
xuser∈MNuser

xinter∈UN inter
j

exp

(
− 1

σ2
‖y −Hx‖2

)ª®®®®®¬
.

(8.3)

Solving equation (8.3) is computationally intensive, because for each j we have

to calculate |M|Nuser×
��Uj

��Ninter exponential terms. However, one of these terms

is dominant and corresponds to the scaled ML distance

dML
j = min

xuser∈MNuser, xinter∈UN inter
j

1

σ2
‖y −Hx‖2 . (8.4)

Hence, following the Jacobian-logarithm approximation we obtain

ĵMax-Log-MAP = arg max
j∈{0,1,2,3,4}

(
Ninter log

1��Uj
�� − dML

j

)
, (8.5)

which is the sub-optimal Max-Log-MAP classi�er [62] [63].

Therefore, as in the case of 2× 2 MIMO, the main component of the decision

metric for MC is found to be an accumulation over a set of tones of Euclidean

distance computations, which are also used by the ML detector for bit LLR gen-

eration. Combining MC and detection routines is thus computationally e�cient.
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8.2.2 MC Using Higher-Order Cumulants

For feature-based classi�cation, feature vectors containing higher-order CCs are

used. These features cannot be directly extracted from the components of y,

since they consist of linear mixtures of the components of the transmitted signal

vector and additive noise. First, the channel is compensated, using ZF for exam-

ple, where the received vector is multiplied by the pseudo-inverse of the channel

matrix. Then, the MT-speci�c features are estimated from the noisy recovered

symbol streams, the components of the vector ŷZF.

The general expression of a cumulant of order u, v-times conjugated, for a

complex random variable s is given as [167]:

κu,v
s =

∑
iu

[
k(p)

p∏
j=1

E{su j−vj s∗vj }
]

(8.6)

where iu is the set of the partitions of the elements {1, 2, · · · , u}. A partition

ρ consists of p sets ν j : ρ = {ν j}pj=1, where u j is the size of the set νi, v j is the

number of conjugated terms, and k(p)= (−1)p−1(p − 1)!.

Assume that we require estimating the MT from which the ith symbol ŷZF,i of

ŷZF was drawn, we replace s by ŷZF,i, and compute (8.6) with the required u and

v. Equation (8.6) can be simpli�ed for speci�c values of u and v. For example,

we have:

κ2,0
s = E{s2} (8.7)

κ2,1
s = E{|s |2} (8.8)

κ4,0
s = E{s4} − 3E{s2}2 (8.9)

κ4,2
s = E{s2s∗2} −

��E{s2}
��2 − 2E{ssH}2. (8.10)

Due to symmetry in constellations, only cumulants of even order are non-
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Table 8.1: Theoretical Cumulants for Di�erent Constellations

Cumulant Φ QPSK 16-QAM 64-QAM 256-QAM

κ2,0
s 0 1 1 1 1

κ2,1
s 0 1 1 1 1

κ4,0
s 0 1 -0.68 -0.619 -0.6047

κ4,1
s 0 0 0 0 0

κ4,2
s 0 -1 -0.68 -0.619 -0.6047

κ6,0
s 0 0 0 0 0

κ6,1
s 0 -4 2.08 1.7972 1.7345

κ6,2
s 0 0 0 0 0

κ6,3
s 0 4 2.08 1.7972 1.7345

zero for linearly modulated signals, and hence are useful for MC. The theoretical

values for various cumulants for QAM modulations are shown in table 8.1. Note

that when only discriminating between QAMs, κ4,1
s , κ6,0

s , and κ6,2
s are also all

zeros, and hence can not be used. Moreover, κ2,0
s and κ2,1

s can only be used to

know whether interference exists or not.

Eventually, the decision on a speci�c modulation scheme is made by choos-

ing the MT that minimizes the Euclidean distance between the feature vector

estimate and the theoretical feature vector. When multiple branches transmit

symbols from the same MT, selection combining can be applied to select the fea-

ture estimate from the branch that has the highest SNR, or a more sophisticated

MRC mechanism.

8.3 Proposed MU-MIMO MC Schemes

8.3.1 Modi�ed Likelihood-Based MC

Since in this study we use SSSD instead of ML detection, major modi�cations

should be made to likelihood-based MC. Equation (8.3) does not hold with sub-

space decomposition, since the entire lattice is not exhaustively searched, neither
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does (8.5), since dML
j is not guaranteed to be within the search region. Moreover,

aiming at e�ciently combining MC and SSSD, and since SSSD only makes use of

the layers of interest, we propose carrying the summation over the desired signal

constellations while MC is for the interfering user.

We thus introduce the Quasi-Log-MAP and Quasi-Max-Log-MAPMC schemes,

that best approximate the original schemes. With Quasi-Log-MAP, the summa-

tion in 8.3 is over the |M| lattice points searched by SSSD, on one of the detected

streams, say l, and hence the modi�ed likelihood function can be represented as

ĵQuasi-Log-MAP = arg max
j∈{0,1,2,3,4}

©«log
1��Uj

�� + log
∑

xl∈|M|
exp

(
− 1

σ2

ȳ(t)−R̊(t)x
2

)ª®¬ ,
(8.11)

where the Euclidean distance is expanded as in (2.26).

With Quasi-Max-Log-MAP, the modi�ed ML distance metric (dML
′
) is con-

sidered to be the minimum of the spanned scaled distances in Quasi-Log-MAP.

Moreover, better (average) performance can be achieved when accumulating the

minimum distances from all layers of interest. Equation (8.12) generalizes the

proposed likelihood function assuming T observations (tones) are accumulated

under a constant interfering MT before deciding on a winning hypothesis.

ĵQuasi-Max-Log-MAP = arg max
j∈{0,1,2,3,4}

T∑
t=1

(
log

1

|Uj |
−

Nuser∑
l=1

dML
′

j,l,t

)
(8.12)

Since distances from di�erent layers of interest that undergo di�erent decomposi-

tions are independent, combining them is equivalent to repeating the observation

and taking the average, as opposed to having a more powerful observation. Hence,

dropping the inner summation over Nuser layers in (8.12) is e�cient.
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8.3.2 Hierarchical MC

While likelihood-base MC applies subspace decomposition a number of times

equal to the number of hypotheses, feature-based MC requires only one subspace

decomposition routine following MC. However, we can have a combination of

both, that reduces the entailed complexity with minimum e�ect on performance.

Note that the theoretical CC values for higher order QAM constellations are

very close. Also, despite the fact that higher order cumulants have more distant

theoretical values, their corresponding variance is high. Thus, higher order cu-

mulants do not necessarily result in better performance. Nevertheless, at least

second order cumulants can be used to eliminate the hypothesis of no interferer,

before proceeding with likelihood based MC to estimate other hypotheses.

We propose hierarchical MC as follows: First, the ZF solution is computed,

and κ2,0
s is calculated. If the result is closer to 0, we assume no interference,

and the entire likelihood-based MC routine is skipped. Otherwise, if the result is

closer to 1, likelihood-based MC follows, but with one less hypothesis to check.

8.3.3 Assuming High-Order Interfering Modulation Types

Instead of adding a MC routine, an attractive solution is to assume the interfering

MT to be a high order QAM, without attempting to estimate it. A similar

solution was presented in [60, 61], where the interfering MT was assumed to be

16-QAM, and an ML detector followed. In our case, assuming very high order

constellations is feasible, because the number of distances computed in SSSD is

not a�ected by the size of the interfering constellation. The only increase in

complexity by assuming higher order interfering constellations is in the slicing

operation they undergo, which is negligible. Therefore, we propose to assume the

interfering MT to be 64-QAM, 256-QAM, or 1024-QAM, where the latter is not

even one of the possible hypotheses.
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Figure 8.2: Architecture for joint hierarchical MC and SSSD.

8.4 Joint MC and Detection Architecture

After the classi�er decides on ĵ, SO SSSD generates the bit LLRs. These two

tasks can be realized jointly as previously described. The optimized architecture

for the proposed MU-MIMO detector with hierarchical likelihood and feature-

based MC is shown in Fig. 8.2. At the core of this architecture is a SSSD, that in

the �rst stage detects the �rst received symbol assuming all possible choices of the

interferer's MT (except the one corresponding to no interference), and generates

the corresponding list of Euclidian distance metrics for all T vectors. These

distances and symbols are stored in bu�ers (increased space complexity). The

sum of the logarithm of the exponential of the distance metrics (no logarithms

and exponentials with Max-Log-MAP and Quasi-Max-Log-MAP) are passed to

an adder that accumulates them over a span of T tones, during which the interferer
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Figure 8.3: CCR performance - 4 × 4 MU-MIMO - Nuser = 2 - M is 64-QAM -
uncorrelated.

modulation is assumed to be static. The resulting accumulated distances for each

interference hypothesis are saved, and after deciding on a winning hypothesis,

the corresponding distances are forwarded for LLR processing. This block is

only activated when the feature-based classi�er decides that an interferer exists.

Otherwise, SSSD is applied once, assuming the interfering MT is Φ, and the

distances are forwarded for LLR processing.

As described in Sec.7.5, the proposed algorithms can be used in many commu-

nication standards. Since the interferer's modulation constellation remains static

over T tones and L symbols, the particular choice of T =234 results in substantial

computational savings in the context of 802.11ac. The detector only needs to

run in the above mode to identify the interferer's constellation for one OFDM

symbol in the frame. It can then switch back to normal SSSD. The total number

of distance computations needed to generate the LLRs from the 234×L data tones

is 234×L×|M|×Nuser. With likelihood-based MC, the average overhead of MC
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Figure 8.4: FER performance - 4 × 4 MU-MIMO - Nuser = 2 - M is 64-QAM -
uncorrelated.

is 234×4× |M|×Nuser. This corresponds to a maximum increase of only 4/L%,

compared to the distances computed by a SSSD with perfect knowledge about

the interferer. The size L of the data �eld can take values between 8 and 1024,

hence, the increase in distance computations ranges between 50% and less than

0.4%. With hierarchical MC, the overhead in distance computations is 3/L%,

which only occurs 80% of times, and it thus ranges between 30% and 0.23%.

However, we have to add the complexity of ZF and computing second order CCs.

8.5 Simulation Results

Joint MC and SSSD was implemented following the studied system model. The

decision on the hypothesis is done after receiving T = 234 tones. Turbo coding

is used, with a code rate of 1/2 and 8 decoding iterations. The interferer was

assumed to hop over the �ve hypotheses with equal probability on every new
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Figure 8.5: FER performance - 8 × 8 MU-MIMO - Nuser = 2 - M is 64-QAM -
uncorrelated.

frame. Moreover, in addition to the regular channel H, we considered another

channel Hc, that accounts for antenna correlation as de�ned for LTE.

The CCR of the MC schemes is shown in Fig. 8.3. Classi�ers based on CC

did not perform well since all hypotheses are QAMs, and the Quasi-Log-MAP

and Quasi-Max-Log-MAP classi�ers had a very similar performance. Hierarchical

versions of the classi�ers had exact likelihood-based classi�cation performance,

which means that the reduction in complexity came at no performance cost.

In the remaining �gures, we illustrate the FER performance of �ve SSSD

schemes: the IA SSSD, the MC-based SSSD with a hierarchical classi�er, and

the SSSD schemes that assume the interfering MT to be 64-QAM, 256-QAM,

and 1024-QAM. For a 4×4 MU-MIMO system with Nuser = 2, Fig. 8.4 shows

the corresponding FER performance with 64-QAM and uncorrelated channels.

Adding a MC routine and assuming the 64-QAM hypothesis are found to achieve

near-IA performance. Moreover, less than 0.5 dB apart are the schemes that
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Figure 8.6: FER performance - 4 × 4 MU-MIMO - Nuser = 2 - M is 64-QAM -
0.3 correlation.
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Figure 8.7: FER performance - 4 × 4 MU-MIMO - Nuser = 2 - M is 64-QAM -
0.9 correlation.
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assume 256-QAM and 1024-QAM, respectively. Similar performance is noted for

8×8 MU-MIMO, with Nuser=2 and six interfering layers, as shown in Fig. 8.5.

Upon adding channel correlation, some of the SSSD schemes that assume the

interferer without MC will exhibit an error �oor. Figure 8.6 shows the case when

medium correlation is added (transmit and receive correlation factors of 0.3). The

SSSD that assumes the interferer to be 16-QAM saturated, while the remaining

schemes maintained near-IA performance. Pushing this further, Fig. 8.7 shows

the case when the channel is highly correlated (transmit correlation factor of 0.6

and receive correlation factor of 0.9). Here, all interference-assuming detectors

saturated, each at a di�erent FER level, with the best of them being the SSSD

that assumes the 1024-QAM hypothesis.

To better understand these results we note the following: SSSD is less sensi-

tive to interference than other detection schemes, which explains why assuming

an interfering MT without estimation works �ne. Moreover, 64-QAM is closer

to the median of the hypotheses, and hence slicing over it is more likely to re-

sult in a similar output to slicing over the correct hypothesis. However, with high

channel correlation, the slicing operation will cause larger errors. Thus, assuming

the interfering MT to be of high order reduces this error while maintaining the

structure of a QAM. Finally, correlation shifts the plots to a higher SNR range,

where the CCR of MC is near 1, and therefore near-IA performance is maintained

with MC-based SSSD.

Conclusion

Several low-complexity SSSDs for MU-MIMO systems have been proposed,

alongside an architectural implementation. It has been concluded that while

assuming the MT of the interferer without estimation is su�cient with good

channel conditions, MC is required at high SNR with correlated channels. The

MC complexity overhead has been shown to reduce to only 0.23% in WiFi.
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Chapter 9

Per-Layer MC for Adaptive MIMO

Systems

In this chapter, the problem of e�cient MC in regular single-user MIMO systems

is considered. Per-layer likelihood-based MC is proposed by employing subspace

decomposition to partially decouple the transmitted streams. When detecting the

MT of the stream of interest, a dense constellation is assumed on all remaining

streams. The proposed classi�er outperforms existing MC schemes at a lower

complexity cost, and can be e�ciently implemented in the context of joint MC

and subspace data detection. The corresponding results appeared in [168].

We follow the system model of Sec. 2.1. In a MIMO system that supports

non-uniform MTs, each of the N transmitted symbols is assumed to be drawn

from one of S possible MTs, with equal probability. We develop MC schemes to

estimate the MT per-layer, using the received signal y and assuming perfect CSI.

9.1 Likelihood-Based MIMO MC

With regular single-user MIMO, Bayesian hypothesis testing is performed on all

the SN possible hypotheses, corresponding to X̄j =Xj,1 × . . . × Xj,N �nite lattices
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( j ∈ {1, . . . , SN }), with likelihoods

Pr(y; X̄j) =
∑
x∈X̄j

Pr(y|x)Pr(x). (9.1)

Under statistical independence between the components of x, and assuming uni-

form priors, Pr(xn)=1/|Xn |, the decision metric can be expressed as

η = arg max
j∈{1,...,SN }

∑
x∈X̄j

Pr(y|x) 1��Xj,1
�� × · · · × 1��Xj,N

�� . (9.2)

Consequently, the Log-MAP decision metric (ALRT solution) is

ηL = arg max
j∈{1,...,SN }

©«log
1��Xj,1

�� + · · · + log
1��Xj,N

�� + log
∑
x∈X̄j

exp

(
− 1

σ2
‖y −Hx‖2

)ª®¬ .
(9.3)

Solving (9.3) is computationally intensive, because for each j we have to calculate��Xj,1
�� × · · · × ��Xj,N

�� exponential terms. The Max-Log-MAP solution is:

ηM = arg max
j∈{1,...,SN }

(
log

1��Xj,1
�� + · · · + log

1��Xj,N
�� − dML

j

)
(9.4)

dML
j = min

x∈X̄j

1

σ2
‖y −Hx‖2 . (9.5)

While Max-Log-MAP eliminates exponential operations, the number of Euclidean

distance computations per hypothesis remains exponential, and computing the

likelihood functions SN times is exhaustive. An alternative approach is required,

that separates the transmitted signals for individual treatment, which results

in only
��Xj,n

�� distance computations per layer n and hypothesis j ∈ {1, . . . , S}.

This is achieved by the per-layer sub-optimal ALRT solution. With perfect CSI

at the receiver, the sub-optimal ALRT classi�er �nds the ZF equalized output

ŷZF, computes the scaled noise variance σ2
ZF = (h

H
n hn)−1σ2, and generates the
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likelihood function per layer n as follows:

ηS = arg max
j∈{1,...,S}

©«log
1��Xj,n

�� + log
∑

xn∈Xj,n

exp

(
− 1

σ2
ZF

��ŷZF
n − xn

��2)ª®¬ . (9.6)

We seek a classi�er that decouples the layers while maintaining distance metrics

that are close to that of Log-MAP.

9.2 Proposed MIMO MC

We build on the WRD decomposition of Sec. 2.25. To generate the likelihood

functions on all layers, the N streams are decoupled, one at a time, by cyclically

shifting the columns of H and generating the punctured UTMs. Alternatively,

a minimal swapping operation can put the layer of interest n at the rightmost

column location as described in Sec. 4.2.1. Each permuted H(n) is then WR-

decomposed into W(n) and R̊(n). By accumulating T observations before deciding

on a winning hypothesis, the proposed likelihood functions at layer n can be

expressed as:

η̂L = arg max
j∈{1,...,S}

T∑
t=1

©«log
1��Xj,n

�� + log
∑

x̃2∈Xj,n

exp

(
− 1

σ2

ỹ(n) − R̊(n)x
2

)ª®¬ (9.7)

η̂M = arg max
j∈{1,...,S}

T∑
t=1

(
log

1��Xj,n
�� − d̂ML

j

)
(9.8)

d̂ML
j = min

x̃2∈Xj,n

1

σ2

ȳ(n)−R̊(n)x
2
. (9.9)

Note that the knowledge of MTs on all remaining layers is required, which is

infeasible in an independent per-layer scheme. Therefore, we propose to do slicing

assuming dense constellations, 1024-QAM for example. The idea of slicing over

a dense constellation comes from the work on MU-MIMO in Sec.8.3.3, where we
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Table 9.1: Computational Complexity of MIMO MC Schemes

Approach Euc. Dist. Exp. Log.

Log-MAP (ALRT) SN × |Xmax |N SN × |Xmax |N SN

Max-Log-MAP SN × |Xmax |N 0 0

Sub-optimal ALRT N × S × |Xmax | N × S × |Xmax | S
Subspace-Log-MAP N × S × |Xmax | N × S × |Xmax | S

Subspace-Max-Log-MAP N × S × |Xmax | 0 0

have shown that near-optimal data detection can be achieved while assuming

interferers to have high order MTs, which captures the geometry of constellations

while minimizing errors. Dense constellations are not an issue in our case, since

subspace decomposition only employs these constellations in slicing operations.

Table 9.1 compares the upper bounds on computational complexity of studied

classi�ers, in terms of the number of Euclidean distance computations, as well as

exponential and logarithmic operations, where Xmax is the largest possible MT.

Note that the table does not account for the less signi�cant preprocessing com-

putations (ZF equalization, QRD/WRD) that can be computed once for a large

number of observations when the channel variation is slow. While computations

in optimal ALRT are exponential in the number of transmit antennas, they are

linear in the proposed subspace-decomposition-based classi�ers and sub-optimal

ALRT solution (the latter is less complex since its distance computations are one

dimensional).

Note that had we used QRD instead of WLD, the distance metrics in (9.7) and

(9.8) would have been executed via SIC as done in LORD, resulting in LORD-

Log-MAP and LORD-Max-Log-MAP classi�ers, respectively.

9.3 Joint MC and Detection Architecture

Be it SSSD or MC, while independently processing a layer of interest, the MTs

on the remaining layers are unknown, and parallel slicing or SIC is conducted
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Algorithm 2 Proposed per-layer joint MC and detection
1: Swap the column of interest n with column N in H
2: Decompose the channel matrix
3: Calculate the distance metrics for all hypotheses while assuming the MTs on

the remaining layers to be 1024-QAM
4: Calculate the classi�er likelihood function
5: Repeat steps 3 and 4 for T observations, accumulate likelihoods, and decide

on the winning hypothesis
6: Forward the distance metrics that correspond to the winning hypothesis for

bit LLR generation

assuming 1024-QAM. This means that the distance metrics computed for data

detection are identical to those computed in (9.7) and (9.8), and thus combining

MC and detection results in a minimal MC overhead.

The joint MC and detection setup is summarized in algorithm 2 and archi-

tecturally illustrated in Fig. 9.1. For T observations, the detection routine is

executed T times for all hypotheses, and the resulting distance metrics are stored

in memory. Concurrently, the likelihood of each hypothesis is computed. Eventu-

ally, the metrics corresponding to the winning hypothesis are retrieved for LLR

processing. The receiver can run in this joint mode for a su�cient number of

observations and then switch back to regular data detection. Moreover, since the

operations on di�erent layers are independent, the proposed algorithm can be

parallelized on multiple processing units.

9.4 Simulation Results

Several MC and detection schemes were simulated in the context of 4×4 MIMO.

We considered �ve hypotheses of MTs per layer, varying with equal probability on

every new frame, which are Φ, QPSK, 16-QAM, 64-QAM and 256-QAM, with Φ

here corresponding to the case when the transmitting antenna is silent, as opposed

to no interference in MU-MIMO. Note that an all-QAM set of hypotheses that

only di�ers by modulation order is hard to classify, but is more likely to occur
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Figure 9.1: Joint MC and subspace detection architecture.

in future standards. The winning hypothesis was decided after accumulating T =

1000 observations. Turbo coding was used, with a code rate of 1/2 and 8 decoding

iterations. Moreover, in addition to the regular channel H, we considered a

correlated channel with a correlation factor of 0.3 as de�ned for LTE.

Figure 9.2 shows that for uncorrelated channels, the best performance is

achieved by Subspace-Log-MAP and LORD-Log-MAP classi�ers, when the MTs

on the remaining layers are assumed to be 1024-QAM. The Subspace-Max-Log-

MAP and sub-optimal ALRT classi�ers lag behind, but are also capable of achiev-

ing unity CCR at high SNR. However, assuming 64-QAMs instead of 1024-QAMs
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Figure 9.2: CCR performance - uncorrelated channels.
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Figure 9.3: CCR performance - correlated channels.
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resulted in bad classi�cation performance for both subspace-decomposition and

LORD-based classi�ers. The exhaustive Log-MAP classi�er with T = 10 ob-

servations only was added as a reference, and the much less complex proposed

approaches outperformed it. Also, the reference feature based (4th order CCs)

classi�er performed very bad with an all-QAM set of hypotheses. Figure 9.3 then

shows that for highly correlated channels, only Subspace-Log-MAP performs well

at high SNR, approaching the upper Log-MAP bound.

The corresponding coded FER performance of the proposed detectors with

high channel correlation is shown in Fig. 9.4. The detectors were simulated as-

suming the layer of interest to use 64-QAM (following successful per-layer MC),

while the MTs at the remaining layers were unknown, and randomly hopping

over possible hypotheses. Both SLORD and SSSD were tested, assuming the

remaining MTs to be 1024-QAM or 64-QAM. These detectors were compared to

the regular MT-aware SLORD and SSSD that have perfect knowledge of MTs on

152



all layers. While regular SSSD beats SLORD by more than 10 dB, only assuming

1024-QAM in conjunction with SSSD was able to achieve near MT-aware per-

formance. This declares the subspace-based classi�ers winners in the context of

joint MC and detection.

Conclusion

Low-complexity per-layer MC schemes have been proposed for MIMO sys-

tems, based on subspace decomposition. It has been shown that assuming the

MT on all layers except the layer of interest to be a dense constellation results

in good classi�cation performance. This assumption has been proved to have a

negligible performance degradation cost in SSSD, which made fully parallelizable

e�cient joint MC and data detection feasible.
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Chapter 10

Massive MIMO 1-Bit Precoding

In this chapter, the problem of e�cient precoding in the downlink of massive

multiple-input multiple-output systems is considered. We investigate the per-

formance and complexity tradeo�s of search-based precoders in the context of

1-bit digital-to-analog converters. By adapting the procedures of popular search-

based detection algorithms to 1-bit quantized precoding, two families of non-

linear precoders are proposed. The �rst employs QR-decomposition combined

with tree-based search techniques, and the second uses Gibbs sampling for search

enumerations without decomposing the channel. Simulations demonstrate that

some of the proposed schemes outperform reference nonlinear precoders, both

in performance and complexity with low order MIMO, and in performance with

a graceful increase in computations in the context of massive MIMO with high

order modulation types.

10.1 System Model

We consider, as shown in Fig.10.1, a downlink multiuser MIMO scenario in which

a BS with B antennas serves U single-antenna UEs at the same time and fre-

quency. While the RF chains are assumed ideal, the DACs at the BSs are subject
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Figure 10.1: Massive MIMO downlink system model

to 1-bit quantization. The equivalent complex baseband input-output system re-

lation is y = Hx + n, where y = [y1 · · · yu · · · yU]T ∈ CU×1 is the received vector,

H∈CU×B is the downlink circularly-symmetric channel matrix with CN(0, 1) en-

tries, x = [x1 · · · xb · · · xB]T ∈ L̄B×1 is the precoded transmitted symbol vector, and

n∈CU×1 is the noise vector with CN(0, σ2) entries. With �nite-precision, the bth

symbol of x, xb= lR+ jlI ∈ L̄, has quantized in-phase and quadrature components,

i.e., lR, lI ∈L where L = {l0, l1, · · · , lL−1} is the set of possible quantization labels

and L̄ = L × L. For 1-bit quantization, we have L̄ = |L| = 2.

Precoding is used to increase the array gain and reduce multi-user interference.

Prior to precoding, the symbol vector s = [s1· · ·s2· · ·sU]T ∈ MU is obtained by

mapping the information bits to a QAM constellation M. The BS then uses

the knowledge of H to precode s into x = P∇(s,H), through a mapping function

P∇(·, ·) = MU × CU×B → L̄B. The precoded vector satis�es the average power

constraint E
[
‖x‖2 ≤ P

]
for some maximum transmit power P, and the SNR is

consequently de�ned as SNR = P/σ2. We thus have L̄ = {
√

P/2B(±1 ± j)}. At

the receiver, we assume that the uth UE is capable of accounting for array gain,

by scaling the received symbol yu by a precoding factor β∈R, that depends on a

perfectly known H, to obtain an estimate ŝu = βyu, which gets sliced over M.
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10.2 Reference Precoders

A popular approach for formulating the precoding optimization problem is min-

imizing the mean square error between the received signal and the transmitted

symbols under the power constraint [106,169]. With coarse quantization, an ad-

ditional distortion due to �nite precoder outputs exists. Since optimal precoding

is exhaustive due to the cardinality of L̄B, only LQPs and low-complexity NLQPs

are feasible.

10.2.1 Linear Quantized Precoders

With LQPs, a precoding matrix P ∈ CB×U is designed based solely on H. The

transmit vector is generated as a quantized version of Ps, i.e., x = Q (Ps), where

Q(·) :CB→L̄B is the quantizer-mapping function

Q(z) =
√

P/2B (sgn(<{z}) + jsgn(={z})) . (10.1)

The MMSE precoding problem is expressed as

min
P∈CB×U, β∈R

Es[‖s − βHx‖2] + β2Uσ2 (10.2)

subject to Es[‖x‖2] ≤ P, and β > 0. (10.3)

Solving (10.2) in closed form is challenging due to quantization. An alternative

solution [106] is to design linear precoders that assume in�nite-resolution DACs

at the BS, and then quantize the resulting precoded vector. For example, for the

ZF precoder, we have

PZF =
1

βZF
HH(HHH)−1 (10.4)

βZF =
1
√

P

√
tr((HHH)−1). (10.5)
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The resulting precoded vector is xZF = Q(PZFs).

10.2.2 Nonlinear Quantized Precoders

With NLQPs, x is obtained as a function of both H and the instantaneous s. The

1-bit NLQP problem is de�ned as

min
x∈L̄B, β∈R

‖s − βHx‖2 + β2Uσ2 (10.6)

subject to β > 0. (10.7)

Note that this resembles an L2-norm regularized closest-vector problem (CVP),

and solving it exhaustively requires
��L̄B

�� = 4B Euclidean distance computations.

The SD can solve the CVP exactly with less computations. To map the SD

procedure to the SP at the transmitter side, it is noted in [106] that

‖s − βHx‖2 + β2Uσ2 = ‖s − βHx‖2 + β2 Uσ2

P
‖x‖2 (10.8)

=
s̄ − βH̄x

2
, (10.9)

since ‖x‖2 = P in the case of 1-bit quantization, and where s̄ = [sT 0T
B]T and

H̄ = [HT
√

Uσ2/PIB]T . The problem formulation in (10.6) can thus be rewritten

as

min
x∈L̄B

s̄ − βH̄x
2
, (10.10)

which can be transformed into a tree-search problem via QRD, where branches

that exceed a speci�c radius constraint are pruned. However, the SP is still

considered a brute-force solution in the context of massive MIMO. Hence, the

most popular approximations to solve (10.6) are via semi-de�nite relaxation [107],

namely the SQUID precoder and its variants.
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10.3 Proposed QRD-Based Precoders

Building on the construction in (10.8) and applying QRD, we have H̄ = QR,

where Q ∈ C(B+U)×B has orthonormal columns, and R ∈ CB×B is a square UTM.

Let s̃= [s̃1 · · · s̃b · · · s̃B]=QH s̄ ∈ CB×1 and R̃= βR= [rbl] ∈ C
B×B with rbb ∈ R+, the

problem in (10.10) can be expressed as

min
x∈L̄B

s̃ − R̃x
2
. (10.11)

We next present low-complexity solutions to (10.11). The �rst solution follows

from the NC detector. We propose the NC precoder (NCP) in which succes-

sive back-substitution and slicing are applied to suppress co-antenna interference.

Hence, xNCP = [xNCP
1 · · · xNCP

n · · · xNCP
N ] is computed as

xNCP
b = Q

((
s̃b −

B∑
l=b+1

rbl xNCP
l

)
/rbb

)
, (10.12)

for b = B, B − 1, · · · , 1.

In the second solution, we map the search routine in the CD to a chase

precoder (CP) at the transmitter. The CP proceeds by populating a list S(s̃, R̃)

of candidate symbol vectors for �nal decision. It �rst partitions s̃, R̃, and x as

s̃ =


s̃1

s̃B

 , R̃ =


A b

0 c

 , x =


x1

xB

 , (10.13)

where s̃1 ∈C(B−1)×1, s̃N ∈C1×1, A∈C(B−1)×(B−1), b∈C(B−1)×1, c∈R1×1, x1 ∈ L̄B−1, 0

is a 1× (B− 1) vector of zero-valued entries, and xB ∈ L̄. Then, for each xB at the

root layer, a candidate vector is accumulated via SIC on upper layers using (10.12)

and added to S. The number of candidate vectors in S is
��L̄��= 2L̄ = 4, and the
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transmit vector is chosen from S to be

xCP = arg min
x∈S

s̃−R̃x
2
. (10.14)

Furthermore, we propose a third precoder that is based on LORD, which we

call the layered orthogonal lattice precoder (LORP). Instead of executing the

CP routine once, LORP repeats chase precoding with di�erent layer orderings,

each time with a di�erent layer as a root, by cyclically shifting the columns of

H̄. The best output from these trials is the �nal solution. Each permuted H̄ at

step t, t = 1,· · ·, B, is QR-decomposed into Q(t) and R(t) and then partitioned as

in (10.13). Let xCP
(t) denote the CP solution at step t. Then, the �nal solution

xLORP is xCP
(tmin), where

tmin = arg min
t∈{1,··· ,B}

s̃ − R̃xCP
(t)

2
. (10.15)

Since distances are preserved under di�erent layer orderings with QRD, the accu-

mulated candidate vectors across di�erent partitions form an �extended� candi-

date list, which results in an added gain with LORP compared to CP. Note that

the decomposition steps are independent, and can hence be computed in parallel.

All these proposed precoders depend on the value of the parameter β. How-

ever, the optimal β is unknown in practice. Since the objective function in (10.6)

is quadratic in β, we have

β̂(x) = <{sHHx}
‖Hx‖2 +Uσ2

(10.16)

=
<{sHHx}

xH(HHH + Uσ2

P IB)x
. (10.17)

Hence, knowing x su�ces to compute β. The proposed precoders can then be

implemented iteratively. At the �rst iteration τ = 1, the precoder, say NCP,

is initialized with βZF. Then, after obtaining the precoding vector xNCP
(τ) at an
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iteration τ > 1, we can compute βNCP
τ+1 = β̂(xNCP

(τ) ) using (10.16). This continues

until convergence, or for a maximum of 10 iterations.

Moreover, since β depends on the instantaneous vector s with NLQP, it cannot

be estimated at the receiver. As a solution, it is shown in [170] that it is su�cient

to modify the precoding problem in (10.6) such that a common β is chosen

for a block of transmit symbols. This allows the UEs to estimate β through

pilot transmissions or blind estimation techniques. However, in the speci�c case

of the constant envelope QPSK modulation, which is capacity-achieving with

1-bit quantization, there is no need for scaling. Hence, computing β at the

receiver is redundant in this case, but including it as an extra degree of freedom

in the iterative precoding problem at the transmitter will still lead to performance

enhancement.

10.4 Proposed Non-QRD-Based Precoders

Taking into consideration the fact that the QRD of a large matrix is computa-

tionally demanding, we propose alternative search-based precoders that exploit

(10.6) directly, without decompositions. The resultant schemes are similar to

precoding designs with �nite candidates in the literature. We hereby study their

applicability to 1-bit massive MIMO. The �rst precoder mimics the behaviour of

Gibbs-sampling-based detectors for large MIMO, and it is hence called the Gibbs

precoder (GP).

Starting from the ZF solution at τ=1, we have xGP
(τ=1)=xZF and βGP

(τ=1)= β
ZF.

At each iteration τ >1, the GP routine begins by varying the symbol x́b, 1< b<B,

in the vector x́= [x́1 · · · x́b · · · x́B]T = xGP
(τ−1), while keeping the remaining elements

of x́ intact. For each possible value of x́b, the metric d(x́) =
s − βGP

(τ−1)Hx́
2

2
+

βGP
(τ−1)

2Uσ2 gets computed and stored in memory, alongside its corresponding

symbol �ip. This repeats for all remaining symbols in x́, where every time a

speci�c symbol is being explored, the remaining symbols retain their values from
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Algorithm 3 Gibbs precoder algorithm

1: xGP
(τ=1)=xZF, βGP

(τ=1)= β
ZF

2: for τ = 2 : 10 do
3: x́=xGP

(τ−1)
4: for b = 1 : B do

5: xGP
b (τ)=arg minx́b∈X

s − βGP
(τ−1)Hx́

2

2
+βGP
(τ−1)

2Uσ2

6: end for

7: βGP
(τ) = <{s

HHxGP
(τ) }/

(HxGP
(τ)

2

2
+Uσ2

)
8: if xGP

(τ) == xGP
(τ−1) then

9: Break
10: end if

11: end for

the initial solution xGP
(τ−1). After accumulating B × (2L̄ − 1) + 1 metric values, the

symbol �ip that best minimizes d is applied to the initial solution to obtain xGP
(τ) .

The corresponding procedure is summarized in Algorithm 3. Let G be the set of

B × (2L̄ − 1) + 1 tested candidate vectors, GP e�ectively solves

xGP
(τ) = arg min

x́∈G

s − βGP
(τ−1)Hx́

2

2
+ βGP
(τ−1)

2
Uσ2. (10.18)

This di�ers from conventional Gibbs sampling, where exploring a new symbol

starts after updating the solution with the best value of the previous symbol. In

the proposed GP all symbols can be explored in parallel. Furthermore, metric

computations can be signi�cantly reduced when only one symbol is modi�ed

compared to the initial solution. Computing βGP
(τ) using (10.16) completes one

iteration, and this gets repeated until convergence, or for a maximum of T = 10

iterations.

The GP can be seen as the non-QRD version of LORP. We similarly propose

the single-layer GP (SGP) as a non-QRD version of CP. With SGP, only one

arbitrary symbol is varied in the search routine. Furthermore, we add as a refer-

ence the exhaustive ML precoder, that in each iteration τ exhaustively searches

all possible values of x́∈ L̄B, to �nd the vector that best minimizes the distance
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Figure 10.2: Modular architecture design for QRD-based precoders.

metric d(x́). Since QRD does not modify distances, SP and ML precoding are

identical.

10.5 Complexity Analysis

A modular cost-e�cient architecture that implements the QRD-based precoders

is shown in Fig. 10.2, and its non-QRD-based counterpart is shown in Fig. 10.3.

The designs are hierarchical, showing LORD using CP building blocks, that them-
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Figure 10.3: Modular architecture design for non-QRD-based precoders.

selves use NCP, while GP uses SGP blocks. With CP, the distances computed

and their symbol vectors are directly forwarded for a processing unit at the cor-

responding layer of interest. Since the CP processes can run in parallel on all

layers, the LORP precoding vector can be computed after a CP processing delay

of one layer. The LORP architecture is thus partially parallelizable. A similar

behavior can be noted with SGP and GP, where SGP is fully parallelizable but

GP is not.

We analyze the complexity in terms of �oating-point operations (FLOPs)

based on real multiplications and additions. Real division and square-root oper-

ations are assumed equivalent to a real multiplication, while complex multipli-

cation requires 4 real multiplications and 2 real additions, and complex addition

requires 2 real additions. The complexity plots are generated via simulations to

take into account the fact that some of the proposed schemes converge faster

than others. Note that since the search is for the best combination of quantiza-
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Figure 10.4: Complexity in number of FLOPs - 16×128 MIMO.

tion vectors, it can be argued that the complexity is almost independent of the

true MT prior to quantization.

Figure 10.4 compares the average number of FLOPs per transmitted frame

for the studied precoders versus SNR, in the context of massive 16× 128 MIMO.

Except for SP, the entailed complexity of the precoders is almost independent of

SNR. While SGP is the least complex (near-ZF complexity), LORP is shown to

be relatively exhaustive and impractical. In between, CP, NCP, GP, and SQUID

are all feasible solutions. Compared to SQUID, GP is twice as complex, while CP

and NCP result in a linear increase in complexity. Figure 10.5 then compares the

complexity of the studied precoders in the case of 2 × 8 multiuser MIMO. Here

again LORP is relatively complex, but it is much less complex than ML precod-

ing, and even less complex than SP at high SNR. The remaining precoders, CP,

NCP, GP, and SGP are all less complex than the reference SQUID.
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Nevertheless, these complexity numbers can be signi�cantly reduced, if real

representations of the complex matrices were employed with 1-bit precoding. In

this case, all multiplications with candidate precoding vectors can be conducted

by simple sign �ips. Finally, it can be argued that the complexity of the proposed

precoders will only scale up marginally with higher order coarse quantizations.

10.6 Simulation Results and Discussions

The studied precoding schemes are simulated following the system model of

Sec. 10.1. The simulation chain that includes reference precoding schemes is

regenerated from [106]. Quantized ZF and ZF with in�nity resolution (ZFi) are

simulated for reference, alongside SQUID and SP. Figure 10.6 shows the uncoded

bit error rate (BER) performance with 16 × 128 massive MIMO, when M is
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QPSK. All proposed precoders achieve the same performance as SQUID, lagging

behind ZFi by 3 dB, except for SGP, which is as bad as ZF. Note that the average

number of required FLOPs is added to the legends.

Figure 10.7 then shows the results for the massive MIMO scenario with 16-

QAM. The �rst thing to notice here is that SQUID is numerically unstable at

high SNR with high order MTs. The best performing search-based precoder with

high order constellations is LORP, which lags behind ZFi by 4 dB, followed by

CP, NCP, and GP, respectively.

As for the case of lower order 2× 8 MIMO systems, Fig. 10.8 shows that even

with QPSK, SQUID fails to converge at high SNR. The best performing precoders

in this scenario are LORP and GP, which achieve near ML/SP performance.

SGP introduced a slight improvement compared to ZF, but both are signi�cantly

outperformed by CP and NCP.

Taking both performance and complexity into consideration, it can be argued
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that CP, NCP, and GP are e�cient candidates for massive MIMO precoding with

coarse quantization. They outmatch reference nonlinear precoders in the litera-

ture, in performance, complexity, or both, depending on the scenario. Table 10.1

summarizes the results, and illustrates the corresponding scenario-dependent rec-

ommendations. The classi�cation metrics are Ine�cient, Feasible and E�cient.

Despite its low complexity, SGP does not perform well and is thus ine�cient.

On the other hand, despite good performance, LORP and SP are only applicable

with low MIMO orders. SQUID is clearly the winner in the context of massive

MIMO with QPSK. However, NCP, CP, and GP are scalable and e�cient so-

lutions for most scenarios. CP is the best solution at high SNR with massive

MIMO and large MTs, while GP is the best solution with low-order MIMO, and

a very e�cient solution with massive MIMO as well.

Therefore, contrary to popular belief, the use of search-based precoding in

massive MIMO systems is valid and e�cient. This observation is emphasized
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in an adaptive setting (adaptive modulators and precoders), where the proposed

modular architectures would result in signi�cant simpli�cations. Since the pro-

posed less complex precoders constitute their more complex extensions, an opti-

mized hardware with simple switching circuitry can insure seamless hopping over

di�erent precoders depending on runtime channel conditions.

Conclusion

Two families of e�cient nonlinear search-based precoders have been proposed,

in the context of massive MIMO with 1-bit DACs, which are QRD-based and non-

QRD-based. It has been shown through empirical simulations that the proposed

precoders can achieve signi�cant performance and complexity gains compared to

reference nonlinear precoders with low order MIMO systems, as well as perfor-

mance gains at the expense of graceful complexity costs with massive MIMO.
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Chapter 11

Conclusions and Future Work

Conclusions

In the �rst part of this thesis, single-user MIMO systems have been addressed.

Heuristic techniques have been �rst proposed to increase the e�ciency of low order

MIMO systems, by enhancing iterative detection/decoding receivers with high

order MTs, as well as reducing the preprocessing channel matrix QRD overhead

in popular detectors. Then, a family of low-complexity MIMO detectors that

employ punctured QRD in lieu of regular QRD has been proposed and studied,

both analytically, by deriving bounds on the capacity, diversity gains, and error

probability, and empirically through simulations. The proposed HO detectors

have been shown to achieve signi�cant computational savings in the context of

large MIMO systems, while at the same time achieving the same diversity gains as

their QRD-based counterparts. Furthermore, signi�cant performance gains have

been observed with the proposed SO detectors, especially with highly correlated

channels. An architectural design has been proposed, by using the detectors

of lower complexity as building blocks in their more complex extensions, and

it has been established that the proposed schemes scale up e�ciently, both in

the number of antennas and the constellation size. In particular, SO per-layer
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subspace detection has been shown to achieve a 2.5 dB SNR gain in 256-QAM

16×16 MIMO, while saving 77% of N/C computations.

In the second part of the thesis, several low-complexity MU-MIMO detectors

have been proposed, that are based on joint detection and MC. The discussion

was �rst motivated by studying dual-layer systems, and then extended to higher

order systems. In particular, the MC complexity overhead in the context of joint

MC and SSSD has been shown to reduce to 0.23%. It has been concluded that

while assuming the MT of the interferer without estimation is su�cient with

good channel conditions, MC is required at high SNR with correlated channels.

An extension to this work was to consider MC in a single-user scenario with

adaptive MTs. Per-layer MC has been achieved via subspace decomposition, and

signi�cant performance and complexity reduction gains have been noted.

It can be argued that the proposed schemes in this thesis are better candi-

dates for large MIMO detection than reference detectors in the literature when

complexity is taken into consideration. For example, detection based on local

search [37,38] does not achieve near-ML diversity, nor does it scale up e�ciently

with high order modulation constellations. Similarly, heuristic tabu search algo-

rithms [39, 40] do not perform well with high order MTs, and their performance

is hard to track analytically. Detectors based on message passing on graphical

models [41,42] have been recently extended to support high order MTs; however,

they are better suited for joint iterative detection and decoding schemes. Fur-

thermore, with LR [43,44], processing large channel matrices using conventional

reduction schemes is costly, and low complexity schemes such as element-based

LR incur performance degradation. Nevertheless, LR can be implemented in

combination with our proposed approaches, despite the fact that the resultant

LLR computations are not straightforward. Finally, detection using Monte Carlo

sampling [45] is clearly outperformed by the proposed schemes.

In the last part of this thesis, preliminary results on the scalability of nonlinear

search-based precoding in the context of massive MIMO have been discussed.

171



Future Work

As a future work, we will mainly aim at investigating low-complexity nonlinear

precoding and detection algorithms for massive MIMO, which can outperform

conventional state-of-the-art linear solutions with graceful computational costs.

Our focus would be on the case where neither the transmitter nor the receiver

have any a priori CSI. This implies that the fading realizations have to be learned

through pilot transmission followed by channel estimation at the receiver, based

on coarsely quantized observations. For simplicity, we will assume single-cell

operation at early stages of the work. We will try to exploit the extra degrees

of freedom to combat quantization e�ects. The investigated algorithms are to be

supported by theoretical performance analysis and practical architectural designs,

in order to present well de�ned feasible end-to-end solutions for future 5G wireless

systems. In particular, we can proceed as follows:

• Investigate search-based NLQP algorithms for the downlink. Explore space

for performance and complexity tradeo�s. Extend the investigation to in-

clude the complexity of the UE into account, and explore space for tradeo�s

between precoding at the BS and detection at the UEs.

• Analyse the performance of the proposed NLQPs theoretically, using diver-

sity studies, bit error rate (BER) computations, and capacity analyses.

• Design practical architectures that realise the proposed NLQPs. Implement

and test the proposed designs in hardware to obtain exact measures of the

occupied area and achievable throughput.

• Investigate quantized detectors for the uplink and explore performance-

complexity tradeo�s. Analyse the performance of the proposed detectors

theoretically.
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• Design practical architectures that can realise the proposed detectors. Im-

plement and test the proposed designs in hardware.

• Investigate channel estimation schemes and analyse the impact on the over-

all system theoretically.

• Design practical architectures that can realise the proposed channel esti-

mators, jointly with the detectors, or as separate entities.

• Investigate alternative uses of the degrees of freedom that are provided by

the large number of BS antennas. One approach is to design smart coding

schemes across the extra dimensions. For instance, a group of antennas

with 1-bit data converters can be jointly encoded to support a single data

stream, as if they were a single antenna element with higher resolution.

This can be thought of as layered quantization.

Moreover, the work in several sections in this thesis can be further extended. In

what follows we highlight some examples in a random order of importance.

• Implement the proposed e�cient architectures in hardware.

• Further analyse the AIR-based detectors and compare them to our proposed

WRD detectors, both in performance and complexity.

• Extend the capacity analysis to propose optimized resource allocation schemes

that make best use of the proposed detectors.

• Derive the capacity bounds of the proposed shemes for very large MIMO.

• Conduct a theoretical study to identify at what precoding conditions is MC

bene�cial to mitigate intra-cell interference.

• Investigate the performance-complexity tradeo�s of solutions that trade

precoding at the BS with MC followed by IA detection at the receiver.
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