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An Abstract of the Thesis of

Esmail Abdul Fattah for Master of Computational Science
Major: Computational Science

Title: Application of Higher-Order Approximations in Bayesian Inference

In Bayesian methods, one almost is required to calculate certain characteristics of posterior
and predictive distributions, including the mean, variance and density. When a conjugate
prior likelihood pair is used, calculations of these tasks are usually immediate. However,
in most useful applications, it is hard to find conjugate priors and so the posterior
calculations cannot be obtained in closed form. In such cases analytic or numerical
approximations are then needed. In these cases, it is often useful to have analytic
approximations that are more accurate than the usual first order normal approximation
but at the same time are not as computationally intensive as numerical integration,
especially in cases with high dimensional parameter space. For several particular case
studies including single and multi-parameter cases, we explored the use of higher order
Laplace approximation in getting such estimates and compared the estimates with those
obtained via Monte Carlo Methods. The methods will be illustrated by a genetic linkage
model and a censored regression model.

Vi
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Chapter 1

Introduction

In this report, different methods are used to approximate some characteristics of posterior
and predictive distributions, especially their densities and means. One of these methods is
the known first order approximation. However, it is useful in most applications to search
for other methods to get better approximation such as the higher order approximation
which is illustrated by the signed root log-likelihood or log-posterior density ratios.

In Bayesian inference, when the prior is not conjugate, it is hard to find the posterior
in closed form. That’s why analytical or numerical methods are needed. Tierney and
Kadane (1986) and Tierney (1989) use Laplace methods to derive approximations for

densities and expectations and have been shown to provide good approximations in many
cases.

Sweeting (1995, 1996) and Sweeting and Kharroubi (2003, 2010), approach the problem
of higher order approximations for various applications. They provide transformed signed
roots, proposed by Brandorff-Nielson (1988, 1991). Also, Ventura and Reid (2014)
discussed the approximate Bayesian computation based on the asymptotic theory of
modified likelihood ratios. They outlined the role of computational tools for approximations
in Bayesian inference, where high computational power allows the use of stochastic
simulation to obtain exact answers. Ruli, Sartori and Ventura (2012) showed the advantage

of MCMC methods where samples are drawn independently with lower computational
time.

In this thesis, conjugate priors are used to compare the first order approximations,
using Laplace methods, and the higher order approximations using the transformed
log-likelihood ratios in univariate case. The higher order methods in multivariate case
are compared to the estimates with those obtained via Monte Carlo Methods, such as

the Metropolis random walk. The used approaches are illustrated by a genetic linkage
model and a censored regression model.



Chapter 2

Preliminaries

2.1 Asymptotic Notations

Throughout the chapters, gc, for general k, denotes the proportionality to O(n%/2), 2
denotes the equality to O(n%/2), and = denotes the equality to fourth order respectively.

2.2 Bayes Theorem

In Bayesian approach, unlike the classical or frequentist approach, the parameters are
viewed as random variables. Thomas Bayes figured out that the more balls are thrown,
the better we should know the position of the first ball. Bayes theorem, the basis of

statistical inference, relates the conditional and marginal probabilities of stochastic events
A and B, see [17].

Bayes rule:
P(B|A)P(A)
P(B)

The proof of this theorem can be done by equating P(A N B) = PLA BYP[B) =
P(B|A)P(A)

P(AIB) =

For random variables X and Y with joint pdf f(z,v),

_ JWlz)f(z)  flylz)f(z)
fely) = flo) [ flz,y)dz

Law of total probability:
Given pairwise disjoint events B;, i = 1,2, ... whose union is the entire sample space ),
then for any event A , we have

P(A) = ZiP(AmBi) = ZiP(A|Bi)P(Bi)



2.3 The Posterior Distribution

Consider the problem of finding a point estimator of the parameter § = (61,62,....,69),
and X = (X, Xy, ...X,,) is a set of independent, and identically distributed observations
whose joint probability density function X ~ f(.|§). Denote A(f) the prior density of
the parameter 6, before the data is considered. The likelihood function of @ is defined by
L(81X) = J[i; f(X10).

By reinterpreting the events in Bayes formula, the distribution of 8, given X, which is
called the posterior distribution, is given by

7(0|X) = cINO)L(8]X)
where, ¢ =[5 A(6)L(|X)d# is the marginal distribution of X.
It is useful to work with log-likelihood function,
1(6) = log L(8]X) = 7, log £(X,|0)
and the score function is

OL(61X) _ \~ Olog f(Xil8)
g

5(9|X):—8——*§ >

and the second derivative

i PlOIX) = 0%log f(X;|6)
POIX) = — 5 = > BV TR

2.4 Newton-Raphson Method

Newton’s Method is used to solve the likelihood equation i.e I'(8/X) = 0. Parameters
from the same data are chosen in a way that maximizes the probability of the sample
that was actually observed. It is an iterative approach based on quadratic Taylor series
approximation of [(6/X)

When finding the root of I'(§]X) = 0 the Newton-Raphson algorithm take the form

initialization 6;, N, tolerance tol;
for i:1,2,...N do
2
9k+1 — O + { = L la(glzX)
if |0x11 — O141| < tol then
‘ return 61 ;

end
end
Print(‘No Convergence’);

Algorithm 1: Newtons-Raphson Algorithm

-1 81(6|X)
S {5

%
Ok

The choice of the initial guess is important and can lead to divergence, adapted from [2].

3



2.5 Simple Monte Carlo

When the prior A(¢) is a density function from which a sample {#*}?, can be directly
generated, then the simple Monte Carlo can be used to estimate

c= / A(6)L(8]X)df
by

I 2 ;
H;m 1 X).

In case, the prior is non-informative and corresponds to uniform distribution, the estimation
may be poor when the range is too narrow and an inefficient when the range is too wide.
That means the range should be carefully defined.

On the other hand, when it is not simple to sample from the prior, rejection sampling
can be used. Another distribution ¢(f) is defined from which a sample can be generated
under the restriction that A(6) < Mgq(6) where M is an appropriate bond for :\@ The

q(6)
rejection sampling algorithm can be summarized as follows,

initialization;

while While i < N do

0" ~ q(0);

u~ U(0,1);

if u < ﬂj’é‘zﬁ)*) then
accept 6 ;
t+—1+1;

else

| reject 6%
end

end
Algorithm 2: Rejection Sampling

See (4] for more computation methods.

2.6 Gibbs Sampling

Given a sequence of random variables 8;,6s,0s..., each variable is sampled from the

distribution Q(6***, 6*| X') where the next sample depends on the current state only. This
sequence is called Markov Chain.

Markov Chain Monte Carlo (MCMC) techniques are methods to construct sampled

chain from probability distributions using Markov chains. One of these techniques is
the Metropolis random walk.

One of the computational methods used to approximate the posterior distribution is Gibbs
sampling. The main idea of Gibbs is to use the prior information to construct an ergodic
Markov Chain whose limiting distribution is the posterior distribution. Samples from

4



posterior are generated by sweeping through each variable to sample from its conditional

distribution with the remaining variables fixed to their current values. See [8] for more
details.

2.7 Metropolis Random Walk

Metropolis is a random walk that uses an acceptance/rejection rule (Hasting ratio) to
converge to the target distribution, and as much as the sample becomes larger the better
approximation to the desired distribution we get, assuming convergence exists. When it
is hard to get conditional distributions for the variables, Metropolis sampling can be used
as an option to approximate posterior distribution. The Metropolis algorithm as stated
in [4] can be summarized as follows,
initialization of @
91 ~ @ the proposal density;
for i:1,2,...N do
t+1 t+1
et 1 — TEX)QE)
(1 X)Q(0Y)
0 ~ q(6);
u~ U(0,1);
if uw < min{l,r} then
| gt « g+l ,

end
end

Algorithm 3: Metropolis Sampling



Chapter 3

Exponential Family and the Choice
of Prior

3.1 Exponential Family

In Bayesian inference, there are family of distributions that depends on the number
and value of parameters that shapes them differently. As in [14], an exponential family
distribution has the following form,

p(zln) = h(z) exp{n"t(z) — a(n)}

where 7 is a natural parameter, t(z) is the sufficient statistic, h(z) is the underlying
measure and a(n) is the log normalizer where we integrate the unnormalized density over
the sample space. This ensures that the density integrates to one.

Example: The Gaussian distribution for one-parameter can be written as:

pla /%) = ———seap{ 51

After expanding the identity, we can see that n = (u/0?, —1/202), t(z) = (z, z2), alay) =
p?/20% + logo and h(z) = 1/v/27

In a similar way, binomial, Poisson, uniform, gamma and beta distributions are examples
of exponential family distributions.

Definition: We say P, class of prior distributions p(#) for 8, is conjugate to S, class of
sampling distributions s(X/0) for 8, if p(d/z) € PV s(./0) € S

Conjugate Families arises when the likelihood times the prior produces a recognizable
posterior kernel.

7(61X) < M) L8] X)

where the kernel is the characteristic part of the distribution function that depends on
the random variable(s), excluding the normalizing constant.

If the posterior distribution 7 (#]X) is in the same family as the prior probability distribution
A(#), the prior and posterior are then called conjugate distributions, and the prior is called

6



a conjugate prior for the likelihood function L(#|X). Now, we discuss a few common
conjugate family results with their first order approximations.

3.2 The Choice of Prior

3.2.1 Non Informative Prior

When we have no information about the prior, we call it non informative prior. In this
case, the posterior distribution is approximately equal to the standarized likelihood.

Jeffreys [16] introduced an approach for choosing the prior. Suppose that § = (6L,62,....8%)
the Fisher information matrix

7

100) = E[m]

00,00,
and the Jeffreys non-informative prior is
A(0) o< det(1())/?

Jeffreys justified it on the ground of its invariance under any transformation on the
parameter space. By considering 1-1 transformation of the parameter ¢ = t(f), if A(0) is
the prior of §, then the corresponding density of ¢ is

9(¢) = At ()] (9)|

where J is the Jacobian of the transformation. Jeffreys claimed that after transforming
& to ¢ the prior of ¢ should be as follows

A(¢) = g(), V¢
In one-dimensional case, we have,

A(B) { _ E{ﬂéﬁiﬂ} }1/2

and
dt™(¢)
) = \t"Y(¢ ‘ ‘
9(0) = Xt~ (0)| T
After the parameterization ¢ = ¢(6), the Fisher information is

AUt ()| X)
=]
and it can be written as
UM IX) (@)1 0 (B)\2 L8 ()| X)
_E[ ot~1(¢)? 0> }_‘( d )E[ t=1()?

which is proportional to g?(¢), and hence Jeffreys invariance property holds.

As a notice, Jeffreys mentioned himself that in multidimensional case the chosen prior
should be chosen with caution.



Example: The log-likelihood binomial function is

Up) =3 1 Xilogp+ (N =37 Xi)log(1 — p)
So,

== [425;5))} - ;p(lj\i )

So, Jeffreys non informative prior for p is proportional to [p(1 — p)]~'/2, and must be a
Beta(1/2,1/2) density.

3.2.2 Conjugate Priors

As mentioned previously, when the posterior distribution follow the same parametric
shape of the prior distribution, this leads to conjugate families. In this case, prior is
called informative. For example, Beta is conjugate with Bernoulli and Binomial. The
table below shows some common informative conjugate priors.

a s
=5 g
2y 3
_— 5 03 T ¥ ;
Likelihood ;r B E z Posterior Hyperparamters
B i
i 2
:
Binomial n n n
n
. L Beta o, o+ Ti, B+ Ny— &
[ - g 2Ny
i=1 ' _
Poisson n
ﬁ g Gamma a, G+Z$¢,ﬂ+n
x! i=1
=1
Geometric n
T
o Beta, a, a+n, [+ T; +n
[[p1-p)= P ’ Zl z
=1 — ;
1 Lo Z:; T; 1 ny
Normal (Known o?) Normal Ko, OF 1= (U_S 021 2T
O'n a
) i
Normal (Known ) Inverse gamma «, S o+ 3 B B (2 — p)?
i=1
Exponential -
, ' Gamma, o, 8 a+n, B+ x;
Atexp{—-A> "% z;} ;
IG (known o) n
= 8 Gamma ag, B ap + no B—#—Zi
HCL’;Q—I eXp (_Fm_) 0, ~0 0 » M0 - ;
i=1 : =




3.2.3 Prior for Normal Distribution

The prior of a population is normally distributed with known mean 4 and known variance

op. T 1s the mean of a random sample of size n from a normal population with known
variance o2,

The density function of our sample is

1 1 o= 7%;— 1y 2
L(z1, g, ... zp|p) = WEW{ ) Z ( ) }

a
i=1

for —oco < z; < o0 and i = 1,2,...n, the prior is

= e - ()

Then the posterior distribution of y is

e - 3| (4220)+ 3 (22}

s i=1

ve exp{ - % (e ;é“'o)2 i n(j;a_Q !L)E} }
x e:cp{ = %(M ;*‘u*)Q}
where
no +o = o

due to 70 (z; — p)® = 31 (w — 2)? + n(Z — 1)? and completing the square of .

When the likelihood function and prior are normal, we get normal posterior distribution.
The prior is a conjugate prior with the likelihood.



Chapter 4

First Order Approximation For
Univariate Case

4.1 Maximum Likelihood

The maximizer likelihood estimator of @ is é, the value of # that maximizes the likelihood
function, or equivalently the log-likelihood function.

If I'(8]X) is differentiable with respect to , @ is a solution of I'(8|X) = 0, and for a
maximum [ (6| X) < 0.

4.2 Normal Approximation

The log-likelihood function [(6) = log L(8) = 3.7, log f(X;|6) is asymptotically O(n)
since X = (X1, X5,..X,) are i.i.d. Similarly all the derivatives of [(8) are O(n).

Furthermore, 6 is considered as a consistent estimator, that means as the number of data

n increases, the resulting sequence of estimates converges to a true value o, a8 @ — 6y, n
— o0,

Using Bernstein-von Mises Theorem and under regularity conditions and some fixed value

0,0 is approximately normal with mean ¢ and variance /()= the Fisher’s Information.
I(B) is also O(n).

By definition, Standard normal distribution z is ©O(1).

z=/I(0)(6 — 6) ~ N(0,1) and (§ — 6) ~ N(0,1(6) 1)
then (0 — 6) is O(n"1/2), and (§ — 9)2 is O(n~1).
Using Taylor series to approximate posterior density

~ A ~2
WOIX) ~ 1(0) + (0 —0) (elX)|(3=é) + %(9 -0)1 (9|X)|(5=9“)

10



1(8) = constant, and R é)l’(ﬂ\X ) 6=4) = 0 because § is maximizer of the log-likelihood
function.
~2 y
(0| X) = constant + 5(0 — 6) [ (61X)] -4
Let J = —1"(6|X )(9=g)» J is called the observed information, and y =6 and 0=2 = J =
-1 (61X)

|(a=é)
The likelihood function becomes:

L(0]|X) =~ exp{constant — %(Q—H)—} x e:cp{—% (6= n) = emp{—%J(@ - 6%}

o2 o2

Let v(0) = logA(d). Expand v(6) about the fixed value , A(0) = () = /@+E-0) (O)+-...

A(9) & constant.

For O(n~Y/?) approximation,
m(61X) o X, (O)L{OIX) o< exp{w(0) + L(01X)} & L(0]X) & N(B, 7)) (1)

So, posterior density is approximated proportional to normal density of mean § and
variance J !, as shown in [1] and [2]

4.3 Some Common Conjugate Priors and their
First Order Approximations

Exponential - Gamma Prior

Model X; ~ Exponential(\)

Likelihood function L(«) ate iz X

Log-Likelihood function {(a) = logL(a) | nlog(e) — a 3", X;

V() = d(i())/da njo— S X,

") = d*(l(«))/da? —n/a?

Solution of I'(a) = 0 d=n/3" X;=1/X

Observed Information J nX?

Gamma, Prior Gamma(w, B)

Gamma Posterior Gamma(py, 07) = Gamma(a +n, 8+ 37| X;)
First Order Normal Approximation N3 ow, Xi/n,1/(nX?))

Table 4.1: Exponential - Gamma Prior

Fora =18 =2 and 2321 X; = 5745281918, we get the approximation in Figure
4.1 that shows the exact distribution and the first order approximation (Red line) of

11



6. The exact posterior probability P(§ < 6'/X) = 0.5401112973, P(§ < #2/X) =
1.644022402¢ %, and P(f < 6°/X) = 0.9935720566, where 6! = a/B, 6% = 0 — 3,/a/8,
and 6° = 0' + 3/a/f3. For the first order approximation, P(f < 61/X) = 0.5789509273,
P(6 < 6*/X) = 0.00224600844, and P(# < 63/X) = 0.9994019129. It is clear that there
is a noticeable discrepancy between the two distributions. Better approximation of theta
distribution will be shown in the following section.

Distribution
06 08 1.0
|

04

02

0.0

0.1 02 03 04 05

theta

Figure 4.1: Distributions of the exact and first order approximation in exponential -

gamma prior

Binomial - Beta Prior

Model

X; ~ Binomial(N;, p)

Likelihood function L(p)

[, p% (1 — p)Nim2e = pXica Xi(] — p)V-2i X

Log-Likelihood function I(p) = logL(p) | 3" | X;logp + (N — o Xi)log(1 — p)

U'(p) = d(l(p))/dp

Z?:l Xi/p— (N - Z?:l Xi)/(1-p)

"(p) = d(1(p)) /dp?

—i Xi/p* — (N = 30, X)/(1 - p)?

Solution of I'(p) = 0 p=>1 X;/N
Observed Information J 1 Xi/P*— (N - P ML — )
Beta Prior Beta(a, 8)

Beta Posterior

Beta{a+ 32, X;, B+ N =30 X))

First Order Normal Approximation N(pna, o3 4) = NS w, Xi/N,J™)

Table 4.2: Binomial - Beta Prior

For a=3,; B =2, N'=100 and 2321 X; =150, we get the approximation in Fig 4.2 that
shows the exact distribution and the first order approximation (red line) of 8. The exact

12



posterior probability P(f < 6'/X) = 0.5047619048, where ' = a/(a + 8), . For the first
order approximation, P(f < #'/X) = 0.5379371441.

Distribution

0.3 0.4 05 06 0.7

theta

Figure 4.2: Distributions of the exact and first order approximation in binomial - beta
prior

Poisson - Gamma Prior

Model X; ~ Poisson(\)

Likelihood function L()) (1/ TT, X)) A2iz=1 Xeg—nA
Log-Likelihood function I(X) = logL()) o1 Xilog A —nA —log [T, X!
F(A) = d(l(A))/dA A Xi—n

1) = P(I(N)/dx? (—/N) ST X,

Solution of I'(A) =0 A=" Xi/n

Observed Information J n?/ > X,

Gamma. Prior Gamma(a, 8)

Gamma Posterior Gamma(a+ 3 . | X;,B+n)

First Order Normal Approximation N(pna,ona) =N T Xi/n, J1)

Table 4.3: Poisson - Gamma Prior

Fora=2,8=4and ngl X; = 24.34864851, we get the following density approximation

13



Distribution

theta

Figure 4.3: Density plot of the exact and first order approximation (red line)in Poisson -
gamma prior

4.4 The Predictive Distribution

For a fixed value of 6, data X follows the distribution p(X|0). The uncertainty of 6 is
represented by the prior distribution p(f). For a new data y and before having data X,
we get the prior predictive distribution:

o) = [ .00 = [ piuio)@)as (42)
After taking data X, the posterior predictive distribution for a new data point Y is:

p(y|X) = /@ Py, X)p(8]X)d6 = f@ p(y16)m (6] X)db (43)

Expression 4.3 displays the distribution of Y as an average over the posterior distribution
of 6.

14



Chapter 5

Higher Order Approximation to the
Posterior Distribution for Univariate
Case

5.1 Introduction

Suppose the likelihood function L(6|X) is continuous and unimodal, and 6 is a scalar

parameter. Knowing that 1(8) = log(L(6|X)) and § = argmaz{L(#|X)}. Consider the
following transformation:

e O
wilf) = 2] gL(é) =2[(8) - 1(8)] >0

The likelihood ratio statistic w(#) has the asymptotic x* distribution with one degree of
freedom. It may be replaced by

r(0) = sign(6 — 6)+/2((0) - 1(9))
Then,

106
1(0) o &2 _ s/mte) _ -/

eld)

Since e~(1/27* ig the kernel of the standard normal density, it follows that the likelihood
function L(#) is standard normal in r.
That is,

L(8) o ¢(r(6))

It is shown in Barndorff-Nielsen and Cox (1989) that the quantity R = 7(f) is asymptotically
standard normally distributed and R is referred to as directed likelihood ratio. This
quantity is also referred to as Signed Root Log-Likelihood Ratio (SRLLR) statistic.
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9.2 Preliminary Results

Let [y, be a sequence of univariate distributions. We say that [ is an effective density
sequence of F), if

R = [ s

for all r. Let ¢, be a sequence of a real-valued functions on R. We shall say (Fy,) € ®[gn)
if it has an effective density sequence f, satistying

falr) o @(T)qn(r)(l + €n1) (5.1)

where ¢, denotes a sequence of O(n~%/?) independent of 7, and ¢x(r) is of the form:

(1) = 1+ apr + by 4 1 + dr (5.2)

where a, = O(n™1%),b, = O(n"2),¢, = O(n~3/2) and d, = O(n~?). It is shown in
Sweetings (1995) that this class ®[.] has a number of attractive properties. For example,
if F,, € ®[g,] then,

F.(r) = o] - o) (2214 )

where (1+by,) is the proportionality constant in 5.1 and b, is the second coefficient of Gn
in the expansion 5.2, see Sweeting (2003) and Kharroubi and Sweeting (2010).

5.3 Transformation to Signed Roots

5.3.1 Laplace’s Approximation for the Normalizing Constant

The basic idea of Laplace’s approximation is to find the maximum of the function to be

integrated and apply a second order Taylor series approximation for the logarithm of that
function.

Assume that an unnormalized probability density A(0)L(0].X), whose normalizing constant
is ¢! such that

¢ =[5 AO)L(6) X)do

where d is a maximizer of L(6]X). We Taylor-expand the logarithm of A(f)L(6|X) around
f:

log A(B)L(61X) ~ LogA)L(BIX) — (6 - 6" + .

where
82 " 82
k= —omlogA(d) — I'(01X)],_; = ~30
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Then we can approximate
log A(6) L(8]X) = logA(8) L(6] X) — —(9 6 +
We then approximate A()L(0|X) by an unnormalized Gaussian
Q) = MOLOIX)ezp{~ (0 - b))

and we approximate the normalizing constant ¢ by the normalizing constant of this

Gaussian,
» A 2
¢~ MO)L(O|1X)y /7'”

Posterior Approximation using Signed Roots Transformation

Using the above approximated normalizing constant and as shown in [1] and 2], the
posterior density w(8]X) = c‘l)\(F))L(H\X) becomes:

\/_ 2O L) \/_ ,\(e) 16

Then the posterior function for @ is then approximated to the same order by

(0] X) = A0 LO1X) 2 —

= AO) 5
(8| X)do / J|V2 2L = (1/2r9) gg
-/90 ( | ) o V ﬂ-l | )\(9)

where r(0) = sign(f — é)\/'w(é’) and w(6) = 2[I() — o).

The next step is to change the variable of integration from @ to r = 7(0). The quantity
e (9" is the kernel of the standard normal density. The Jacobian of the transformation is
dr(9)/d6 = —1'(8)/r(8) where I'(§) is the score function. Let b(r) = |J(6’)\1/2{A(G)/A(é)}{r(@)/l’(@)}
and 9 = r(fy), then the posterior function becomes

w2 L [ scunraraon,
Jy, T

The posterior density of r can be expressed by

1 2
(8|X o e(=(1/2)r(6)*+log b(r))
\/_

27

5.3.2 Standardized Signed Roots

Changing the variable  to 7 by the following transformation

r=7(0) =7 —rlogh(r)

17



so that —(7)% = —r2 4 2logb(r) — (r'logb(r))2. The Jacobian of the transformation

and the third term in —(r)? contribute to the error of the posterior approximation using
r. Using the following equalities:

1
;(r — 2logh(r)) = ﬁ2 r? — 2logb(r) + 7% log? b(r))
e i
e~ —0—27" log® b(r)
and
dr/dr = —r~log? b(r)

The posterior function becomes

fg:ow(HX \/_/ exp{— —7“ }exp{ ~1r7%1og b(r) }(—r~%1og? b(r)) 'dr

Since the transformed variable 7 has a normal distribution to O(n~3/2) then the posterior
function is approximated by

oo ;s 1 To 1o o
/;0 (8] X)dd = Wor /_m e:t:'p{—ir }dr = &(r) (5.3)

where &(.) is the standard normal distribution function, see [1] and [5].

5.4 Posterior Expectations

As is [7], to compute approximate posterior expectations of a general function v(f) in
the following fraction:

[ L(O)N(0)u(6) db
TL@)MN0)d0

Eu(0)|X] = (5.4)

The normalizing constant in equation 5.1 is s, = 1 + b, where b, is the coefficient of r2
in 5.2. That is

f¢ r)(1+e,r)dr =s

This can be transformed back to 6 in order to obtain an approximation to the normalizing
constant in 5.1 and we obtain,

g = f "]Il/2 )‘(9) L(H)
Var X)) L(6)

do

which can be written as,

N |J|l/2
T V) L(@)/ @)L



1/2
Where ¢, = @@ = 7&7’]!]\

A@)dr A U(0)

and in particular, that

f ANO)YL(8)do = s:{—ﬁ_;;)\(é)l/(é)

Similarly, the numerator of 5.4 can be written as,

2 A s
1/ —fs L(6)A(0)v(6)
v(f

where s* =14 b* = /qﬁ('r)q*(v")(l + €,7)dr, and ¢*(r) = %q(ﬂ, and b* is the second
v
coeflicient in the expansion ¢*(r).

Taking the ratio of the above two approximations, we get
v/ Zs* LION@)v(B)

NEDIONG

o (5-5)
= ()

s
1+ 06"
1+b

Elu(9)|1X] =

=v(h)

Expansions are not necessary for the calculations of s,. This is achieved by noting that

n =1 by = 5(an(=1) + (1)

Define now 6~ by 7,,(6~) = —1 and * by r,(6*) = +1. Suppressing n from now on, we
find that

S

Ll JVENGT)  —JM2 (e
B 2(5’(9-) \@6) T A(0) )
= ST1/2)(x(0)

A7) —A(61)
where 7 = (l,w_)) + ( TN )
Similarly,
s =1+0b"
= g (-1 + (D)

= SO

where 7 = (,\(i’_()gv()ﬁ)) + (A(ﬁ?@)f)(@ﬂ)
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Substituting in the approximation 5.5 for s and 5", we obtain

s 3T (AB)(87))
v(f = v(f))2 -
Blu(9)IX] = v(0)) A@)-1r

*

T
T

()\(9_)1)(9‘) —)\(0+)U(9+))
'(6-) 1'(6%)
_ (A(f?‘)il’(ﬁ‘))v(g‘) . (—A(e+)7/z’(9+))v(9+)

“v(07) + atu(dh)

A7) L (AOT) - 5 o g
- = 1 + o 1 = —_ + — 1/2
where o F (l'(f)‘))’a T (l’(9+)) 1 —a~. Note that ¢ 6+ J-12,
- =0-J"and o~ =a* = ! + O(n™"/?), for more details see [1] and [2].

2

5.5 Some Common Conjugate Priors and their
Higher Order Approximations

First order approximations in part 4.3 show a clear discrepancy between the exact
distributions and the approximated one. Here below, plotted are showed again to show
how the discrepancy decreases and approximations become better.

For Exponential - Gamma prior case,

1.0

08
|

Distribution

04

02

0.0

T T T T T
01 0.2 0.3 04 05

theta

Figure 5.1: Comparison of the exact (black line) distribution and its approximations in
exponential - gamma prior
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Figure 5.1 shows the exact distribution, the first order approximation (red line) of § and
the higher order approximation (green dotted points). The exact posterior probability
P(f < 0'/X) = 0.5401112973, P(0 < 6%/X) = 1.644022402¢ %8, and P < P X =
0.9935720566. For the higher order approximation, P(f < 6'/X) = 0.5395864305, Pl <
0%/ X) = 1.644022402¢~%, and P(f < 8°/X) = 0.9935586228. It is clear that discrepancy
has improved between the two distributions.

For Binomial - Beta prior case,

10

06 08
I

Distribution

04

02
I

0.0

T T T 1
03 0.4 0.5 0.6 07

theta

Figure 5.2: Comparison of the exact (black line) distribution and its approximations in
binomial - beta prior

In Figure 5.2 the higher order approximation (green line) is more accurate compared to

the first order approximation (red line), and the P(f < #'/X) = 0.4989557325 for the
case where a =3 and 8 = 2.

For Poisson - Gamma prior case

In Figure 5.3, for the same «, 3 and Z;il X; as in sec 4.3, higher order approximation of

the density in the green line is plotted (green line) and shows an accurate result compared
to the first order (red line).
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Figure 5.3: Comparison of the exact (black line) distribution and its approximations in
Poisson - gamma prior

9.6 Type I Censored Data Example

5.6.1 The Likelihood Function

Censoring is when we know an incomplete information about the observation. Type-1
censoring occurs when a failure time 77, which denotes the response for it object, exceeds
a constant ¢;, which denotes the censoring time for i** object. T,’s are assumed to be
i.i.d. with density f, cdf F and survivor function $ = 1 - F.

Define the observed response X; = min{T;, C;}, and let §; denotes the indicator,

P 1 if T; < C;, data is uncensored
"o if T; > (};, data is censored

When X; is uncensored, f(X;) contributes to the likelihood, and when X; is censored,
P(z > X;) contributes to the likelihood. The joint p.d.f of X; and &; is

F(X)%S(X;) %

Hence, the likelihood function is:

[T s (5.6)
where "u” and ”¢” denote the uncensored and censored observations respectively.
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5.6.2 Exponential Lifetimes and Gamma Prior

Given a random sample T} that follows an exponential distribution with p.d.f f(t) = Gt
and the survivor function is S(¢) = e %, ¢ > 0. Assume that 7} are ii.d. Let n, denote
the number of uncensored observations in the sample and s = > i, x; where z; is the
observed event time. Using equation 5.6, the likelihood function is

L(8|X) = gme?s

By using the standard form of the gamma density as a prior distribution which is denoted
by Gal(a,b)

b(l

M0 = g

prlg=te e

It follows that the posterior density is

_ B —(b+5)0
(8] X) = Tt 0 e

That is Ga(a + ny, b+ s)

For illustration we use rezp in R to generate a vector of 10 observations from an exponential
distribution, in which 8 observations are uncensored. With n — 10, n, = 9 and

8= 23‘121 z; = 10.02414223, we can the exact posterior probability that # is less than 1
under a flat prior Ga(1,0)

p(© < 1|X) = 0.5450870519

9.6.3 Predictive Density for Censored Data

Using equation 4.3, the predictive density for a new observation Y that follows an
exponential distribution with density p(y|f) = =%, y > 0 is:

(b+ s [
Pl =7 H(Q""nu) (b+3+yJ9d9
p(y]0) Tatm) J, e

= (b+ s)tna) (a+n)(b+s+y) et 4 5

3

Using the same simulated data used in section 9.6.2, the exact predictive density under
a uniform prior is

p(y = 1|X) = 0.6308424869
and a mean = 1.16412287.

5.6.4 Normal Distribution Approximation

The log-likelihood function in the censored data example is:
{01 X) =nylogh — 8s

and the score function can be expressed as:
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AOX) _mu

L(e1x) = 00 0

; F g . = .
from which we get the maximum likelihood estimator § = —%.

s
! 2 6 X U
The second derivative [ (0|X) = @8(92—) = —% is used to calculate the observed
information J = —I"(4|X) = % Therefore, using equation 4.1, the normalized likelihood
5 g2
can be approximated as a normal with mean 6 and variance —as
. 2
m(6X) ~ N(6, —)
Ty

To compare the first order approximation with the exact, we illustrate the previous result
using the same data used in section 5.6.2,n = 10, n, =9, and s = Zgl Ty = 10.02414223.

We get ) = 0.8978 and standard deviation = 0.2993. Based on the uniform prior of A i.e
A(#) o< 1. The approximate posterior probability is

p(0 < 1|X) = 0.6335915155

and a mean = 1.058293518.

9.6.5 Higher Order Approximation

Using equation 5.3, the posterior distribution can be approximated by

/Oo (01 X)df £ &(7)

o

The approximate posterior probability F(§) = p(@ < 1|X) based on the asymptotic
normal distribution of 7

p(© < 1|X) = 0.544578488

We get 67 = 1.392955314, = = 0.7236317233 and a mean = 1.16412287.

This compares well compared to the first order approximation, where there is clear
discrepancy, and this is shown in figure 5.4 where the exact distribution and the corresponding
asymptotic approximation yield virtually identical curves.
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Figure 5.4: Comparison of the exact (black line) distribution and their approximations

For Gamma prior as informative prior and for different values of o’s and B's we get the

following approximations as presented in the table

al|fB| n|n, s App. | p(© < 0'X) | p(© < 0*|X) | p(© < 63| X) | Mean
E 0.5421 0.9933 2.191e-10 | 0.8369
11210 9 | 99493 | FO 0.4111 0.9920 0.0021 0.9046
HO 0.5523 0.9939 2.303e-10 | 0.8289
E 0.5443 0.9929 0.0000 0.5213
11610 8 | 11.2640 | FO 0.2259 0.9072 0.0023 0.7102
HO 0.6102 0.9961 0.0000 0.5060
E 0.5356 0.9942 1.405e-06 1.0807
41211010 10.9548 | FO 0.7195 0.9999 0.0078 0.9128
HO 0.5139 0.9936 9.012e-07 1.0931

Table 5.1: First and Higher Order Approximation for different values of a and B -
Censored Data

App.: Approximation, FO: First Order, HO: Higher Order, 6 = o /8, B% = gt

and 63 = ' + 3./a/f
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Chapter 6

Higher Order Approximation to the
Posterior Distribution for
Multivariate Case

6.1 Posterior Approximation using Signed Root
log-likelihood ratios

The notation in Sweeting (1996) and Sweeting and Kharroubi (2003, 2010) is used. For
multivariate case. 6 is a vector of parameter value where § = (%,6%,....0%) € Q@ C RY,
d=>1. Let 6; = (0',6%,...,6%) be the first i components of § vector, and 4% — (A, B
the last d — ¢ + 1 components.

H

In addition to 6, = (82,62, ..., 02) = argmaz{L,(6)}, define 6:1(6;) to be the maximizer
of Ly, conditional on 6;. For j > 4, § denotes the jth component of (6, 6:¥1(8,)). For a
function g(f), when 1 < i < d we use g(6;) to denote g(8;,6:71(6,)) = g(64,62,....6%, i+t éﬁfz,
.,0%) and 6(6;_,) is the unique solution of the conditional likelihood equation ;(#) = 0,
where [(0) = logL(8) is the log-likelihood function and I;(§) = ol(8) /06"

Now define, l'(l?) = di(8)/df = (11(6), 15(8), ...L())T, J(0) = —d?1(0)/d6? and J = j(@),
the observed information. For ¢ = 1, ..., d the log-likelihood ratios

Wy = wi (6;) = 2{l,(6;_1) — 1n(0:)}
and the signed root transformation
Th = 15(0:) = sign{0 — 62 (6;_1)} {wi } /2

Note that w, = Y, w, = 2{1,(6) — 1,(6,)}, and r' is a function of the first i components
0; = (6", ..., 0") of 0

Writing W,, = w, () and R,, = (r}(6,), .,73(0,)). Suppressing n from now on, as in
Sweeting (2010) the density f(r) of R satisfies

d

firy o ¢(r) [T ' (r) (2 + €7r) (6.1)

1=1
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where now ¢(.) is the d-dimensional standard normal density, ¢ is an O(n=%?) sequence
independent of  and

¢'(rs) = {=r' /LG H IO 9)[2/155+1 (6)[2) (6.2)

where ;% is the submatrix of j corresponding to 8 (Setting |5 (9)| = 1). Asin
equation 6.2, ¢’ is of a function of 7 and is assumed to be in this form

¢'(ri) = 1+ @' (rea)rt + (i) () + i) ()
where @'(ri_1) = O(n™"/%), B(riny) = O(n™), ¢i(ry 1) = O(n=7?).

To O(n~?), the constant of proportionality in 6.1 is I1,_,s*, where s = 1+ b Asin
single parameter case, s* may be calculated without expansion by noting that:

= 20 (~e) + gi(=e) (63

where e; is the i-dimensional vector (0,...,0,1). Let 6" and 6~ be the solutions to
the equations *(;_1,6") = +1 and r*(6,_;,6") = —1, and write 0 = (6;_1,6") and
0; = (fi—1,0"). Then from 6.3 we have:

= ZJJOPR(@)

where 7" = (14(6;) /1;(6;)) + (—vi(6;)/1:(6;)), and 14(6) = A(6)|5%*+1|~1/2 Then we obtain
the following approximation,

d
/ LOMO)dO = 2m)2|J| 2 L@)MNE) [T 5
i=1
As in univariate case, formula 5.5 can be used to compute an approximation to the
posterior expectation of a general formula v(#). This leads to the formula

B(®)X) = v(0) ][

where v;” = v(6; ), v}t = v(f}), 0 = v(f). Since s*/s* = 1 + O(n1), we can deduce that
the alternative summation form

Ew(8)|X) =10+ i {a;v; + o vt — fo}

6.2 Example: Censored Regression

We consider the censored failure data given by Crawford (1970) presented below in table
6.1. These data arise from temperature accelerated life tests on electrical insulation in
n = 40 motorettes. Ten motorettes were tested at each of four temperatures in degrees

Centigrade, resulting in 1 = 17 failed (i.e uncensored) units and n-1 = 23 unfailed (i.e
censored) units.
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150°C | 170°C | 190°C | 220°C
8064 | 1764 408 408
8064 | 2772 408 408
8064~ | 3444 1344 o04
8064 | 3542 1344 a04
8064 | 3780 1440 004
8064 | 4860 1680* | 528*
8064* | 5196 1680 | 528*
8064" | 5448 | 1680* | 528"
8064* | 5448* | 1680* | 528*
8064* | 5448 | 1680* | 528*

(* denotes a censored time)

Table 6.1: Life test data on mottorettes - Insulation life in hours at various test
temperatures

As in Schmee and Hahn (1979), we fit a model of the form
= Bo + v + o€

where y; is log;q(failure time), with time in hours,u; = 1000/ (temperature + 273.2)
and ¢; are independent standard normal errors. Reordering the data so that the first
| observations are uncensored, with observed log-failure times y;, and the remaining nl
are censored at times ¢;. The log-likelihood function is

UO) = 1(Bo, Br,0) = —loga—%zi: (w)2+ i log{l—cb(ci — By — 51%)}

o . a
=41

where § parameter is a vector of three dimensions ' = , 2 = 8, and 62 = ¢ and ® is
the standard normal distribution function.

The score function I'(6) = dl(8)/d0 = (1,(0), 12(9), 15(6))T where

l

h(6) = au(6)/06' =y -—FL (lfﬁ_(f; o Z %+ﬁo+ﬁ1vz

i=I+1

1,(0) = D1(9) /06> = ZLE)B)) 3 Ul (ot )

= 01— i=l+1 o’

I n 5
1s(0) = 81(9)/56° = Z _52(fqi(i{fé)/g)) _ Z —Yit (fi]g-l- P1v;) +1/o

and e = (¢; — (fo + frws)) /o

i=l+1
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Using non-linear optimization function nim in R that carries Newton-type Method, we
find € = (B, 1,6) = (—6.0193,4.3112,0.2592) and the Hessian matrix

427.8675  931.9110 —251.3856
H= 9319110 2035.2276 —558.2911
—251.3856 —558.2911 614.8931

—6.9661 4.7498 0.2751 —5.0724 3.8784 0.2592
07 = | -6.0192 4.2892 0.2437| and 07 = | -6.0192 4.3336 0.2829
—6.0192 4.3112 0.2236 —6.0192 4.3112 0.3056

In case of non informative prior A(6) « 1/, the posterior expectation of the function
v(f) = Bo + 1 + o, obtained via methods used in Tanner and Wong (1987), is -1.4989,
while the first order approximation based on maximum likelihood estimation is -1.4488.
The values of o™ and o~ are (0.4555, 0.5742, 0.55434) and (0.5445, 0.4258, 0.4456)
respectively. The approximate posterior expectation of v(#) using 5.3 is -1.4625.

Assuming f,8; and o are independent with the following prior distributions NV (ﬁo, 1AL,
N(B1,1/J(2,2]7"/?), and X?(1), the approximate posterior expectation using metropolis
random walk with 10000 iterations and 5000 burn in is -1.4489.
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Chapter 7

Conclusion

This report starts with some elementary concepts in Bayesian inference that are developed
later to show a comparison between first and higher order approximations for different
characteristics including densities and expected values. The higher order approximations

that are represented by log-likelihood, or log-posterior density ratios show good results
up to O(n=3/?) .

Some good features of log-likelihood approximations are that they are easy to obtain, the
need only for the second order derivatives and not beyond, and for implementation for

6+ and 6~ only 8 and J are required. Generally, they can be considered as a good start
to reach exact computations.

Also, there are many stochastic simulation techniques can be used to obtain approximations
such as Metropolis and Gibbs sampling. The use of metropolis sampling in the censored
regression example for multivariate case shows sufficient accuracy, and for low computational
power it gives a similar result as the first order normal approximation.

‘The presented chapters here can be considered as a good start for further research and to
Investigate more computational tools in approximations such as the different methods in
computing an integrated likelihood and Bayesian computation presented in Zhenyu and
Severn (2017) and the hybrid methods presented in Kharoubi and Sweetings (2010)
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