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An Abstract of the Thesis of

Hana Jamil Baroudi for Master of Science

Major: Physics

Title:Measurement and Analysis of Low-Temperatures Thermal Properties

of Low-Dimensional Materials

In this work, we report calorimetric measurements of the speci�c heat of Zinc

Oxide nanowires and graphene. We also determine the thermal conductance of

the interface between the vertically aligned Zinc Oxide nanowires and Silicon

substrate. Heat-pulse calorimetric technique was applied to free-surface Zinc Ox-

ide nanowires and clamped graphene samples. The temperature response of the

heat-pulse calorimeter was analyzed by a model that takes into account the ef-

fect of the thermal conductance between the nanowires and the substrate. The

speci�c heat of the samples and the thermal conductance of the interface were

determined from 1.8 to 300 K using a linear least squares method. It is found

that the low temperatures behavior (below 4 K) of the Zinc Oxide nanowires'

speci�c heat admits a two-dimensional crystal contribution in addition to the

bulk T 3 dependence. Above 25 K, The speci�c heat of the nanowires is enhanced

compared to that of the bulk Zinc Oxide and this enhancement increases as the
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temperature increases and the nanowires diameter decreases. As for the ther-

mal conductance of the interface between the Silicon substrate and Zinc Oxide

nanowires, it is found to be orders of magnitude lower than that between bulk

ZnO and Si substrate, suggesting the formation of thin layer of low crystallinity

between the nanowires and Silicon substrate. Furthermore, the recorded data

demonstrated transition from specular to di�usive elastic transmission, and then

from di�usive elastic to di�usive inelastic transmission as temperature increases.

Also, the speci�c heat of clamped graphene at low-temperatures was found to fol-

low a two-dimensional behavior con�rming the T 2 dependence theories reported

in the theoretical models. This speci�c heat of graphene shows an increase in its

values at higher temperatures in comparison with graphite.
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Chapter 1

Introduction

The everlasting dream of man to miniaturize his everyday devices is still an on-

going one. Although many achievements have been made in the synthesis of

promising low-dimensional materials, the challenges that come with reducing the

size and volume of structures are still many. One of the most signi�cant issues

that arise is heat dissipation control at low dimensions. Indeed, appropriate ther-

mal management is essential for the success of low-dimensional devices. Indeed,

the design and optimization of these devices requires a thorough knowledge of

the laws that govern the thermal properties and heat transport mechanisms in

low- dimensional materials. A great deal of e�ort, therefore, has been put into

the study of the thermal properties of low-dimensional devices to obtain reliable

data on these structures. Although signi�cant work has been achieved in this

�eld, some important issues still need to be addressed. In this work we look into

the thermal properties of nanowires and graphene samples, the most recognized

structures as candidates for next-generation electronic materials, that could over-

come the critical bottleneck of heat dissipation of current high-tech devices [6].
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While most research focuses on the electrical transport properties of nanowires,

the thermal properties of these structures are attracting more and more inter-

est.This can be understood by the unique properties they exhibit that makes them

suitable candidate in technological applications [7]. The properties of nanowires

rise mainly from two characteristics: First, the high length to diameter ratio

which makes a nanowire a one-dimensional material with a large surface area

compared to its volume. Second, quantum con�nement e�ects which have ob-

servable consequences on the properties of nanowires when the phonon wave-

lengths become comparable to the physical dimensions of the nano-structures.

This happens below a few degrees Kelvin and only in nanowires of diameters not

exceeding 6 nm [8�10]. Nevertheless, the presence of free surfaces nanowires gives

rise to distinct e�ects on their thermal properties even in the absence of phonon

quantum e�ects [9, 11]. These features allow for the application of nanowires in

many technological areas ranging from chemical and biological sensors, lasers,

solar cells, and thermoelectric energy conversion devices [12�15].

Perhaps the most important thermal properties of a material is its speci�c heat,

which closely relates to the electron and phonon behavior of the material [16].

Many experimental investigations have been conducted for the determination of

the behavior of the speci�c heat of nanotubes and nanowires. The speci�c heat

of single-walled carbon nanotubes grouped to form a rope is found to be larger

than that of multi-walled nanotubes and graphite below 50 K with strong tem-

perature dependence [17]. Multi-walled carbon nanotubes of few tens of nm in

diameter were found to exhibit a linear speci�c heat at low temperatures, indi-

cating a weak inter-wall coupling compared to graphite and a constant phonon

density of states [18]. Also, it was shown that the multi-walled boron nitride

nanotubes follow the same behavior as the multi-walled carbon nanotubes [19].
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Further calorimetric studies have been carried out on titanium dioxide nanotubes

to study their speci�c heat and phonon density of states [20]. It was shown that

the anatase nanotubes' speci�c heat always exceeds that of bulk anatase. At

low temperatures below 3 K, the speci�c heat curve is nearly constant, exceeding

the bulk speci�c heat values by factors of 25 to 50 at about 1.5 K. This experi-

mental observation was attributed to a transition from three-dimensional density

of states to a lower-dimensional one as the average phonon wavelength becomes

comparable to the nanotubes' wall thickness. From 5 K to 50 K the nanotubes

speci�c heat follows a T 2.6 behavior instead of the T 3 dependence. At higher

temperatures, from 60 K to 95 K, the speci�c heat of the anatase nanotubes is

almost 20-30% higher than that of its bulk counterpart.

The speci�c heat of nanotubes was observed to be dependent on the mor-

phology of the nanomaterials.This is attributed to the size and shape dependent

phonon and surface density of states that determines the fundamental thermal

properties of the measured nanoparticles [21]. Mizel et al. [17] have shown that

multi-walled carbon nanotubes have a speci�c heat similar to that of graphite due

to structural similarities between the two. The speci�c heat of multi-walled Boron

nitride nanotubes was revealed to be approaching that of a two-dimensional sheet

as the diameter of the nanotubes increases. [22]

As for nanowires, which are �lled nanotubes, the di�erent experimental tech-

niques used to determine their speci�c heat can be categorized in two groups:

one for the determination of single nanowires or nanowires embedded in a ma-

trix [23, 24] and the other related to free-surface nanowires array measurement

[25].However, no strong conclusions can be drawn out of the experimental data

because measurements were either performed at very high or very low temper-

atures limits [25], or on nanowires embedded in a matrix, which clamps their
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Figure 1.1: a) nanowire array embedded in a matrix. b) free-surface nanowire
array [1].

surface and masks the looked-for contribution from the surface [8](see �gure 1.1).

Therefore, in this work we address this issue and o�er a thorough experimental

study of the speci�c heat of free-surface Zinc Oxide nanowires from 1.8 K to 300

K. We prove that the low temperatures speci�c heat behavior of the free-surface

nanowires includes a two-dimensional contribution in addition to the bulk T 3 be-

havior. We also present an analytical model of the low-temperature speci�c heat

of nanowires using continuum mechanics to con�rm our results.

As for the sudy of thermal transport in low dimensional materials, numerous

experiments have been conducted for the determination of the thermal conduc-

tivity of low-dimensional materials [26�33]. Many theories have been developed

to explain these experimental results [34�38]. Single-wall and multi-wall carbon

nanotubes have attracted a lot of attention due to the extraordinary thermal

transport in one dimension.Ballistic and di�usive thermal transport modes and

the breakdown of Fourier's law have been observed in carbon nanotubes giving

rise to their unique properties [39, 40]. In particular, semi-conductor nanowires

have stood out as a potential candidate for applications in thermoelectric devices
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due to their low thermal conductivity values compared to their bulk counter-

parts [28, 29]. The reason for this dramatic reduction in thermal conductivity

of the nanowires is due to the enhanced phonon-boundary scattering with a re-

duction in sample size and possible phonon spectrum modi�cation as a result

of phonon con�nement e�ects [27, 41]. Further theoretical investigations have

been conducted for the purpose of studying the factors a�ecting the reduction

of the thermal conductivity in order to reach a desirable thermoelectric �gure

of merit. These factors were found to be shape, size, ,length, purity, and sur-

face asperities [41�48].Moreover, it was found that vertically aligned nanowires

grown on substrates have thermal conductivity values lower than that of in-

dividual nanowires [24, 49, 50], and consequently higher thermoelectric �gure of

merit [51,52]. Also, the intermixing of the nanowires' atoms and silicon substrate

atoms resulted in the amorphization of the surface underneath the wires which

reduces the thermal conductivity of the wires [53]. However, the thermal resis-

tance of the interface between the nanowires and the underlying substrate has

never been measured. In this work, we address this issue and report calorimetric

measurements of the thermal conductance of the interface between Silicon and

Zinc Oxide nanowires from 1.8 to 300 K. we show that the thermal conductance

between Si/ZnO nanowires is orders of magnitude lower than that of the interface

between Si/ bulk-ZnO due to the formation of a thin layer of low crystallinity

between the nanowires and the substrate. We also demonstrate the existence of

di�erent phonon transport regimes across the Si/ZnO nanowires interface as the

excited phonon wavelengths change.

The other low dimensional material that has captivated the world's interest

is graphene. This single layer of carbon atoms, is a two-dimensional material

with exceptional optical [54, 55], electrical [56, 57] ,mechanical [58] and thermal
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properties [59,60]. The uniqueness of graphene arises from its strong anisotropic

sp2 carbon bonds and the light weight of carbon atoms. Due to the quasi two-

dimensional phonon transport and its ultra-high thermal conductivity, graphene

is considered as the building block for many thermal management applications

as heat spreaders in light emitting diodes, �eld-e�ect transistors, interconnects

and �llers in thermal interface materials [61�66].

The phonon energy spectra are essential for the understanding of the phonon

transport processes in graphene. Much theoretical [5, 63, 67�99]and experimen-

tal work [100�106] have been put into the description of phonons in single layer

graphene, few-layers graphene and graphene nanoribbons .The theoretical models

can be divided intro three categories: (1) Lattice dynamics models [5,63,67�82],

(2) elastic continuum mechanics models [83�89] and (3) ab-initio density func-

tional theory computations [90�99]. As for the experimental investigations, they

were carried out using inelastic x-ray scattering [100], inelastic electron tunneling

spectroscopy [101] and Raman spectroscopy [102�106].

Though the work on graphene is abundant, it is still far from being su�cient. On

one hand, the analytical and experimental data predicts di�erent values for the

thermal conductivity of graphene ranging from 600W.(m.K)−1 to 5000W.(m.K)−1

[107], and opposing dependence of the thermal conductivity on the thickness of

graphene [108]. On the other hand, theoretical analysis of the speci�c heat of

graphene at low temperatures, showed time dependence of Tn with n ranging

from 1 to 1.1 [5, 75, 87].However, up to this day no experimental measurements

con�rmed these results. It was also found that the speci�c heat of graphene is de-

pendent on the supporting substrate [109], atomic rotation [5] and nanoribbon's

width [110].

In this work, we report the experimental measurement of the low-temperatures
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speci�c heat of single-layer clamped graphene sample by means of calorimetric

measurement. The response of the graphene sample was measured directly with

no supporting substrate and it was demonstrated that the low-temperatures be-

havior of the speci�c heat follows a two-dimensional behavior of T 2 as expected

in theory.
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Chapter 2

Theoretical study

In this chapter we present the theoretical aspects related to the speci�c heat of

materials at low-temperatures. We review the basic models for the determination

of the speci�c heat of bulk-materials and develop a theory for the calculation of

the speci�c heat of nanowires at low-temperatures.

2.1 Basic concepts and de�nitions

The speci�c heat is a measure of the energy E needed to increase the temperature

T of a body by one degree K, it is de�ned as:

cx = lim
dT−→0

(
dE

dT

)
x

(2.1)

where x represents the quantity that is �xed during measurement such as pressure

or volume. The speci�c heat of a material depends on the temperature of the

system and the way heat is transferred to the system. It is generally expressed in

units of J/kg.K or J/mol.K. The most commonly used speci�c heats are deter-

mined at constant volume cv and constant pressure cp. The di�erence between
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cv and cp referred to as the dilation contribution to the speci�c heat is expressed

as:

cp − cv =
V β2

κT
T (2.2)

where β = 1
V

(
∂V
∂T

)
P

is the volume expansion coe�cient and κT = −1
V

(
∂V
∂P

)
T

is

the isothermal compressibility, V the volume of the sample, T its temperature and

P is the pressure acting on the sample. Since the latter is a positive quantity, cp

is always greater than cv. However, when temperature goes to zero, the di�erence

between the two speci�c heats tends to zero. This is seen by considering the third

law of thermodynamics which states that as the temperature tends to zero the

magnitude of the entropy ,S, approaches a constant limiting value so that

(
∂S
∂P

)
T

vanishes. Therefore, by the following Maxwell's relation −
(
∂V
∂T

)
P

=

(
∂S
∂P

)
T

, β

goes to zero as the temperature tends to zero and hence cp tends to cv in the

limit.

When conducting an experiment, we usually determine the speci�c heat at con-

stant pressure since maintaining the volume of a solid constant requires very large

pressures, which is a di�cult task experimentally. However,at room temperature

the di�erence between cp and cv rarely exceeds 4% and at low-temperatures (be-

low 30 K) when the thermal expansion of solids is very small, the di�erence

between the two speci�c heats is negligible [111]. For instance the ratio cp−cv
cp

is

found to be equal to 0.03% at T=30K for Pd [112], and no di�erence between

cp and cv is found for Al and Cu [113]. Therefore, we conclude that at low-

temperatures cp and cv can be used interchangeably.

The heat carriers in any material are the electrons and phonons. The electrons

contribute to the conduction process since they have non zero density of states
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at the fermi energy. This adds a term to the the speci�c heat that is linear in

temperature. However, the electronic states are only excited up to a few kelvins

since transport by phonons dominates at higher temperatures. Therefore, the

contribution of the electrons to the speci�c heat is neglected even at low temper-

atues. In this work, our focus will be on the analysis of the vibrational speci�c

heat only at low temperatures.

2.2 Lattice Speci�c heat Models

In the following, di�erent assumptions have been made for the determination

of the energy of the phononic system in order to derive the speci�c heat of a

material. We elaborate on the methods employed to determine the energy.

2.2.1 The Dulong and Petit Law

The transport of heat in a solid was envisaged by Boltzmann in 1896 [114]as a

set of atoms vibrating around their lattice positions. Each atom interacts with

its neighbors via a harmonic potential. So the atoms in a solid can be described

as a set of masses connected by elastic springs in a simple harmonic motion.

According to the principle of equipartition of energy, a linear harmonic oscillator

has a mean internal energy of kBT. The kinetic and potential energy contributing

equally with a 1
2
kBT . Hence the internal energy of a three-dimensional oscillator

is equal to 3kBT. The average internal energy is thus:

E = 3NkBT = 3RT (2.3)
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where N is the number of atoms, kB the boltzmann constant and R the ideal gas

constant. The speci�c heat can thus be written as:

cv =
∂E

∂T
= 3R (2.4)

In the limit of this classical statistical mechanics picture, the speci�c heat of any

material is a constant equal to 3R= 24.94 J/mol.K. This is the Dulong-Petit

law predicted in 1819. After the discovery of cryogenic liquids, measurements

were carried out and it was shown that the speci�c heat of all materials decreases

rapidly with decreasing temperatures. For instance the speci�c heat of Cu is 24.43

J/mol.K at room temperature but it falls to a mere 0.0058J/mol.K at 4K [115].

This drop in speci�c heat cannot be explained by classical theories, it had to wait

for the development of quantum statistics.

2.2.2 The Einstein Model

To explain the dependence of the speci�c heat on temperature, Einstein [116]as-

sumed that the atoms are simple harmonic oscillators that vibrate independently

at the same frequency ωE. The frequency distribution would thus be a delta func-

tion, for N oscillators D(ω) = 3Nδ(ω − ωE). The average energy of a harmonic

oscillator in each polarized direction is de�ned quantumly as (< n > +1
2
)~ω with

<n> being the Bose-Einstein distribution 1
(exp( ~ω

kBT
)−1) . Thus the average internal
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energy of the sample under thermal equilibrium is :

E =
∑
ω

(< n > +
1

2
)~ω

= 3N

∫
dω(< n > +

1

2
)~ωδ(ω − ωE)

= 3RT

(
1

2
xE +

xE
exE − 1

)
(2.5)

where xE = ~ωE
kBT

. The Einstein model speci�c heat will hence be:

cv = 3R
x2Eexp(xE)

(exp(xE)− 1)2
(2.6)

We de�ne θE = ~ωE
kB

as a scaling factor for the temperature known as the Einstein

Temperature. In terms of θE the speci�c heat becomes:

cv = 3R

(
θE
T

)2
exp(θE/T )

(exp(θE/T )− 1)2
(2.7)

When the low-temperature limit is reached (T�θE), cv reduces to :

cv = 3R

(
θE
T

)2

exp(
θE
/T

) + .. (2.8)

and in the limiting case of very high temperatures (T�θE):

cv = 3R

(
1− 1

12

(
θE
T

)2

+ ...

)
(2.9)

which correctly reaches the classical value given by the Dulong and Petit law.

When the low-temperatures limit was �nally tested, it was found that the expo-

nential decay does not agree with the experimental results. This was expected

since in a strongly coupled system the atoms cannot all vibrate with the same fre-
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quency. Recognizing this fact, many more realistic models have been developed

�rst by Debye and later by Born-Von Karman and others.

2.2.3 The Debye Model

In this model the lattice vibrations are considered to be quantized and at low

temperatures only vibrational modes of low frequencies are excited. These modes

are characterized by phonons with long wavelengths in comparison to the thick-

ness of the material. In this limit, the system must then behave like a continuum.

Consequently, the use of continuum mechanics instead of atomistic description to

determine the thermal properties of a low dimensional material at low tempera-

tures is valid. Debye considered the system to be an elastic, isotropic continuum

with a distribution function D(ω) of allowed frequencies. the average total vi-

brational thermal energy is:

E = 3

∫ wD

0

dωD(ω)(< n > +
1

2
)~ω (2.10)

with D(ω) =
dn(k)

dω
(2.11)

To determine the energy of the system, we need to solve for n(k), the number

of allowed states and wD the Debye cuto� frequency . Since the result is shape

independent [117], we take a cube of side length L for convenience only. We begin

with the the plane wave equation propagating in an isotropic medium.

∇2U =
1

v2
∂2U

∂t2
(2.12)
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Where U is the displacement vector and v is the wave's velocity. The solutions

that satisfy the boundary conditions are standing waves of the following form:

U(r, t) = sin(
nxπx

L
) sin(

nyπy

L
) sin(

nzπz

L
) sin(ωt) (2.13)

Where nx,ny ,nz are positive integers related to the wave vectors of the wave

vectors by kr = nrπ
L

with r= x, y,z.The number of available states in the volume

element ∆n = ∆nx∆ny∆nz of the n-space is:

∆n =
L3

π3
∆Vk =

V

π3
∆Vk (2.14)

Since nr 's are con�ned to the �rst octant of n-space, ∆Vk = ∆kx∆ky∆kz is the

volume of the �rst octant of the k-space. Taking this as the volume of the shell

lying between k and k+dk we obtain:

∆Vk =
1

8
(4πk2)dk =

1

2
πk2dk (2.15)

Substituting this into equation 2.14, gives the allowed number of states:

dn(k) =
V

π3
∆Vk =

V

2π2
k2dk (2.16)

In the Debye model, the relation between the angular frequency ω and the wave

vector k is linear:

ω = vk (2.17)
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By replacing k by ω
v
in the last equation, we arrive to the density of phonon

modes for each polarization direction:

D(ω) =
dn(k)

dω
=

V

2π2

ω2

v3
(2.18)

The cuto� frequency wD is obtained by assuming that the total number of modes

in a solid should be equal to the number to atoms in it

3N =
V

2π2

ω3
D

v3
=⇒ wD = v

(
6π2N

V

)(1/3)

(2.19)

The characteristic Debye temperature is thus de�ned as :

θD =
~ωD
kB

(2.20)

This represents the separation between the low temperature regime where the

atoms vibrate collectively as a solid from the classical regime in which atoms

vibrate separately from each other. By introducing D(ω) and wDThe average

thermal energy becomes:

E = E0 +
3V (kBT )4

2π2c3~3

∫ xD

0

x3

(ex − 1)
dx (2.21)

Where E0 = 9N~ωD
8

is the zero point contribution and xD = ~ωD
kBT

= θD
T
. Replacing

with θD we obtain:

E = E0 + 9NkBT

(
T

θD

)3 ∫ xD

0

x3

(ex − 1)
dx (2.22)
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By taking the derivative of the energy with respect to the temperature we obtain

the speci�c heat:

cv = 9R

(
T

θD

)3 ∫ xD

0

x4ex

(ex − 1)2
dx (2.23)

When the low-temperature limit is reached (T�θD), cv reduces to :

cv =
12π4

5
(R/θ3D)T 3 = βT 3 (2.24)

where β = (1943.7/θ3D)J/mol.K4. This is the universal Debye T 3 law which is

well observed and tested for bulk materials at low-temperatures. In the limiting

case of very high temperatures (T�θD):

cv = 3R

(
1− 1

20

(
θD
T

)2

+ ...

)
(2.25)

As the temperature increases cv correctly reaches the Dulong and Petit limit

of 3R. Thus the Debye law gives a more accurate description of the thermal

properties of materials at low temperatures than the Einstein's model.

2.3 Speci�c Heat Measurement Techniques at Low-

temperatures

When an isothermal sample of speci�c heat c(T) is subjected to a power P(t)

in adiabatic conditions during a time interval t-t0, the sample heating would be

described by: ∫ t

t0

P (t)dt = Q =

∫ T

T0

c(T )dT (2.26)
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Figure 2.1: Scheme of the main elements of a calorimeter for measurements of
heat capacity [2]

where Q is the total heat supplied to the sample during the time interval and T0

the starting temperature of the system. We are interested in the evaluation of

c(T) when Q and T are determined. The apparatus which measures c(T) at dif-

ferent temperatures is called a calorimeter. To determine the speci�c heat at low

temperatures, �rst, the sample's temperature should be decreased to a starting

low temperature of T0. Second, the sample should be isolated thermally from its

environment. And �nally an amount of heat Q should be supplied to it to reach

a temperature T. In general, a low temperature calorimeter is designed according

to �gure 2.1 The calorimeter usually contains a platform on which the sample

of speci�c heat c, a thermometer TsH and a heater H are thermally connected

by grease. The platform is linked to the thermal bath by a thermal resistance

RTb, while the sample and the sample holder are joined by a thermal resistance

RSH .molecules (generally in the gas phase) adsorbed on a surface. Calorimeters

can be categorized into isothermal, isoperibol, and adiabatic types depending on

the heat transfer conditions between the sample holder and the thermal bath.

In isothermal calorimeters, the calorimeter and the thermal bath are held at a
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constant temperature TTb. If the bath only is isothermal then the mode of opera-

tion is called isoperibol as in AC calorimetry, relaxation calorimetry or dual slope

calorimetry. Whereas in an adiabatic calorimeter as in heat pulse calorimetry,

the exchange of heat between the calorimeter and the shield is kept negligible.

However, these methods exhibit some de�ciencies; the adiabatic method only ap-

plies to large samples ( around 10g) and while the AC calorimetry solves this

issue it still gives low accuracy measurements [118].

Another calorimetry used for small samples is the relaxation method developed

by Bachmann et al. [119]. It consists of applying a heat pulse to the sample, and

then analyzing the corresponding temperature response by solving the heat �ow

equations. The relaxation technique utilized by our work, is an extension to the

method just mentioned, and takes into account the heat �ow between the sample

and the platform, which is de�ned as the Two-Tau e�ect.

2.4 Nanowires speci�c heat Model

The speci�c heat of nanowires di�er from their bulk counterparts due to the

contribution of the surface atoms in the heat transport process at low-dimensions

[120]. Therefore, we will derive an expression for the speci�c heat of nanowires

at low-temperatures following the Debye approximations. Within the theory of

continuum mechanics the equation of an elastic wave can be expressed as:

∇2U =
1

v2
∂2U

∂t2
(2.27)

Where U is the displacement vector and v is the wave's velocity. In the case where

the nanowires are �xed at z=0 and free at z=L, no axial stress is involved at z=L
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i.e. σzz = 0 and ∂Uz
∂z
|z=L = 0 and Uz = 0 at z=0. Also as boundary conditions,

we consider azimuthal symmetry and we assume that the displacement is �nite

at r=0 and vanishes at r=R, R being the radius of the nanowire. Applying these

boundary conditions and the separation of variables method we solve the equation

of motion using cylindrical coordinates. we obtain the following displacement

vector:

U(r, z, t) =
∞∑
m=0

∞∑
n=1

Jm(
zmn.r

R
). sin(

(2n+ 1)πz

2L
)e(−iωt) (2.28)

where zmn are the zeros of the �rst kind Bessel's function Jm with n = 1, 2, 3...

and n is a quantized integer. The total wavevector of the wave obtained from

this derivation is:

k2 = k2r + k2z = (
zmn.r

R
)2 + (

(2n+ 1)π

2L
)2 (2.29)

2.4.1 Dispersion Relation

To obtain the dispersion relation of each mode we follow the analysis of Landau

and Lifshitz in the theory of elasticity [121]. For nanowires three modes of vi-

bration exist; longitudinal, torsional and bending each with a linear dispersion

relation w = vk as dictated by continuum mechanics.

Longitudinal mode: The equation of motion of a wire for simple extension or

compression is the following :

∂2Uz
∂z2

− ρ

E

∂2Uz
∂t2

= 0 (2.30)

19



where ρ is the material's mass density and E is the Young's modulus for the

nanowires. The wave's velocity is hence:

vL =

√
E

ρ
(2.31)

Torsional mode: The equation of motion of a wire under torsional vibration is:

∂2φ

∂z2
− ρI

C

∂2φ

∂t2
= 0 (2.32)

where φ is the angle of rotation of the cross section of the wire, I the moment

of inertia of the area about its center of mass and C the torsional rigidity. The

wave's velocity is

vT =

√
C

ρI
(2.33)

Bending mode: The equation of motion of a slightly bent wires in each of the

x and y coordinate is the following:

∂2X

∂t2
− EIy

ρS

∂4X

∂z4
= 0 (2.34)

∂2Y

∂t2
− EIx

ρS

∂4Y

∂z4
= 0 (2.35)

where ρS is the mass per unit length of the wire with S being its cross-sectional

area, and EI the �exural rigidity with Ix(y) as the second moment of area. The

velocity of the bending mode is :

vB1(2) = 2k

√
EIx(y)
ρS

(2.36)
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By replacing each velocity and the total wavevector we obtain the following dis-

persion relations:

ω2
L =

E

ρ
π2

((
zm
πR

)2

+

(
2n+ 1

2L

)2)
(2.37)

ω2
T =

C

ρI
π2

((
zm
πR

)2

+

(
2n+ 1

2L

)2)
(2.38)

ω2
B1 =

4EIx
ρS

π2

((
zm
πR

)2

+

(
2n+ 1

2L

)2)2

(2.39)

ω2
B2 =

4EIy
ρS

π2

((
zm
πR

)2

+

(
2n+ 1

2L

)2)2

(2.40)

2.4.2 Density of states

Let's consider now Eq.2.37 which describes the dispersion relation of the longi-

tudinal modes. According to Eq.2.37, the number of longitudinal modes with

frequencies less than ω is equal to the number of lattice points (zmn and 2n+ 1)

which obey:

E

ρ
π2

((
zm
πR

)2

+

(
2n+ 1

2L

)2)
≤ ω2 (2.41)

that is, the number of points lying within an octant of the ellipse given by :

x2

π2R2
+

y2

4L2
=
ρω2

Eπ2
(2.42)

The nanowires investigated in this work are large enough to consider this number

equal to the actual area of the �rst octant of the ellipse. Therefore, the number
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of longitudinal modes of frequencies less than ω in the nanowires is given by:

NL(w) =
RLρω2

2E
(2.43)

Following the same derivation, the number of torsional modes with frequencies

less than ω in the nanowires is found to be:

NT (w) =
RLρIω2

2c
(2.44)

and the number of bending modes with frequencies less than ω is equal to twice

(because of the isotropic nature of the x=y plane and the degeneracy of the

bending modes) the volume of the �rst octant of the ellipsoid speci�ed by:

x2(
ω2R4ρS
4EI

) +
y2(

4ω2L4ρS
π4EI

) +
z2(

ω2L2R2ρS
2π2EI

) = 1 (2.45)

that is:

NB(w) =
(ωRL

√
ρS)3

3
√

2π2(EI)
3
2

(2.46)

The total number of modes in the nanowires is thus:

NTotal = 3pNc =
RLρ

2

(
I

C
+

1

E

)
ω2
D1 +

(RL
√
ρS)3

3
√

2π2(EI)
3
2

ω3
D2 (2.47)

where p is the number of atoms per unit cell, Nc is the total number of unit

cells, and ωD1(2) are the cut-o�s frequencies for linear (quadratic) dispersions.

It is common practice to relate the cut-o� frequency to the Debye temperature

according to θD = ~ωD
kB

where kB is the Boltzmann constant. This allows us to

establish two Debye temperatures for the nanowires: a Debye temperature for
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the modes of linear dispersions given by:

θ2D,L =
3pNc~2

RLρ
(
I
C

+ 1
E

)
k2B

(2.48)

and a Debye temperature for the modes of quadratic dispersions given by:

θ3D,Q =
9pNc~3π2(EI)

3
2

√
2
(
RL(ρS)

1
2kB
)3 (2.49)

The phonon density of states g(ω) is given by:

g(ω)dω = (N(ω + dω)−N(ω)) = N ′(ω)dω (2.50)

In the limit where dω tends to zero,

g(ω) = RLρ

(
I

C
+

1

E

)
ωD1 +

(RL
√
ρS)3

√
2π2(EI)

3
2

ω2
D2 (2.51)

It can be clearly noticed from Eq.2.51 that the density of states in the nanowires

is the sum of densities of surface-like states(�rst term in Eq.2.51) and volume-

like states (second term in Eq.2.51).
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2.4.3 Speci�c Heat

At this point, it is possible to calculate the nanowire's speci�c heat in terms of

its length and radius from:

c =

∫ ωD1

0

~2ω2

kBT 2

e
~ω
kBT(

e
~ω
kBT − 1

)2 g1(ω)dω +

∫ ωD2

0

~2ω2

kBT 2

e
~ω
kBT(

e
~ω
kBT − 1

)2 g2(ω)dω (2.52)

where g1(ω) and g2(ω) are the �rst and second terms in Eq.2.51. Upon introducing

the dimensionless variable x = ~ω
kBT

and the expressions of the Debye temperature

(Eq.2.48 and Eq.2.49), we can write the expression of the nanowires speci�c heat

as follows:

c = 3pNckB

(
T

θD,L

)2 ∫ θD,L
T

0

x3ex(
ex − 1

)2dx+
9

2
pNckB

(
T

θD,Q

)3 ∫ θD,Q
T

0

x4ex(
ex − 1

)2dx
(2.53)

The �rst and second term in Eq.2.53 describe contributions to the speci�c heat

from modes of linear and quadratic dispersions respectively. In the limit of low

temperatures, the upper bound of the integral tends to in�nity and the expression

of the nanowire's speci�c heat reduces to:

c = 3pNckB × 7.212×
(

T

θD,L

)2

+
9

2
pNckB × 25.980×

(
T

θD,Q

)3

(2.54)

which explains the deviation of the nanowire's speci�c heat from the Debye T 3

law.
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2.5 Clamped Graphene speci�c heat Model

Many theoretical models have been developed for the determination of the ther-

mal properties of graphene [5, 75, 83, 87, 122]. In our work we will adopt the

semi-continuum model from [84] for graphite and modify it to account for the

clamped e�ect of the graphene sample. We assume that graphite is formed of

N two-dimensional elastic sheets with negligible inter-layer friction. Within the

theory of continuum mechanics, the equation of vibration of a graphite sample is

expressed as:

D∇2ω + ρh
∂2ωi
∂t2

= qi i = 1, 2...N (2.55)

Where D is the bending sti�ness of each sheet, ωi is the de�ection of the ith

sheet,ρ the mass density of the sheet, h its thickness and qi the pressure applied

to an atomic sheet due to the interlayer Van der Waals interaction (vdW). For

in�nitesimal vibration, the net pressure due to the vdW interaction is assumed

to be proportional to the de�ection between two layers, in other words:

qi =
N∑
j=1

cij(ωi − ωj) = ωi

N∑
j=1

cij −
N∑
j=1

ωjcij (2.56)

where cij are the vdW interaction coe�cients and N the total number of layers

in graphite. Supposing a is the length of a graphene sheet and b its width, the

de�ection of all the layers can be approximated by a periodic solution as follows:

ωk(x, y, t) = Ak sin(
mπx

a
) sin(

nπy

b
)eiωt (2.57)
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with Ak being N unknowns coe�cients, m and n positive integers and ω the

angular frequency. Replacing Eq. 2.56 and Eq. 2.57 into Eq.2.55, we obtain

{
D

[(
mπ

a

)2

+

(
nπ

b

)2]2
−

N∑
j=1

ckj − ρhω2

}
Ak +

N∑
j=1

ckjAj = 0 (k = 1, 2, ..., N)

(2.58)

2.5.1 Dispersion Relation

The lattice vibrations of graphite can be separated into three polarizations; in-

plane transverse, in-plane longitudinal, and out-of-plane mode. The dispersion

relations corresponding to these modes are obtained by Nihira and Iwata [83] by

employing the semi-continuum model described above from :

ω2
l = v2l (k

2
x + k2y) + (

4ζ

c2
sin2(

ckz
2

)) (2.59)

ω2
t = v2t (k

2
x + k2y) + (

4ζ

c2
sin2(

ckz
2

)) (2.60)

ω2
z = κ2(k2x + k2y)

2 + 4µ2 sin2(
ckz
2

) + ζ(k2x + k2y) (2.61)

where ω is the angular frequency, kx and ky are the wave vectors, and the sub-

scripts l, t, and z refer to the in-plane longitudinal and transverse mode, and the

out-of-plane mode, respectively. vl and vt are the wave velocities, c the inter-

layer spacing, and ζ and µ are two constants related to elastic constants cij. For

a single layer of graphene, kz = 0 and the dispersion relations become:

ωl = vl

√
(k2x + k2y) = vlk (2.62)

ωt = vt

√
(k2x + k2y) = vtk (2.63)

ωz =
√
κ2(k2x + k2y)

2 + ζ(k2x + k2y) (2.64)
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The in-plane transverse and longitudinal phonon polarizations admit a linear

expressions (ω = vgK, vg being the group velocity of the wave) whereas the out-

of-plane dispersion relation is approximately quadratic (ω = αk2). But, since our

gaphene sample is clamped to its holder, the out-of-plane mode is assumed to

be suppressed and we no longer take into account its contribution to the density

of states and hence the speci�c heat. The wavevector k of this two-dimensional

material deduced from 2.57 would be:

k2 = k2x + k2y =

(
mπx

a

)2

+

(
nπy

b

)2

(2.65)

2.5.2 Density of states

Let's consider now Eq.2.62 which describes the dispersion relation of the longi-

tudinal modes. According to Eq.2.62, the number of longitudinal modes with

frequencies less than ω is equal to the number of lattice points (n and m) which

obey:

π2v2l

((
m

a

)2

+

(
n

b

)2)
≤ ω2 (2.66)

that is, the number of points lying within an octant of the ellipse given by :

m2

a2
+
n2

b2
=

ω2

v2l π
2

(2.67)

The graphene samples investigated in this work are large enough to consider this

number equal to the actual area of the �rst octant of the ellipse. Therefore, the

number of longitudinal modes of frequencies less than ω in graphene is given by:

NL(w) =
A

4π

(
ω

vl

)2

(2.68)
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With A being the area of the graphene sample. Following the same derivation,

the number of transverse modes with frequencies less than ω in graphene is found

to be:

Nt(w) =
A

4π

(
ω

vt

)2

(2.69)

It is common practice to relate the cut-o� frequency to the Debye temperature

according to θD = ~ωD
kB

where kB is the Boltzmann constant. This allows us to

establish a Debye temperature for the clamped graphene: a Debye temperature

for the modes of linear dispersions is given by:

θ2D,L =
24Nπ~2v2

Ak2B
(2.70)

v2 being the e�ective sum of the longitudinal and transverse velocities. The

phonon density of states g(ω) is given by:

g(ω)dω = (N(ω + dω)−N(ω)) = N ′(ω)dω (2.71)

In the limit where dω tends to zero,

g(ω)L =
Aω

2πv2
(2.72)

It can be clearly noticed that the density of states of the in-plane modes is linear

in the frequency.
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2.5.3 Speci�c Heat

At this point, it is possible to calculate the clamped graphene's speci�c heat:

c =

∫ ωD1

0

~2ω2

kBT 2

e
~ω
kBT(

e
~ω
kBT − 1

)2 gL(ω)dω (2.73)

Upon introducing the dimensionless variable x = ~ω
kBT

and the expression of the

Debye temperature, we can write the expression of the clamped graphene's spe-

ci�c heat as follows:

c = 12NkB

(
T

θD,L

)2 ∫ θD,L
T

0

x3ex(
ex − 1

)2dx (2.74)

This describes the contribution to the speci�c heat from modes of linear disper-

sions only. In the limit of low temperatures, the upper bound of the integral tends

to in�nity and the expression of the clamped graphene's speci�c heat reduces to:

c = 12NkB × 7.212×
(

T

θD,L

)2

(2.75)

Therefore, a clamped graphene sample's low-temperature speci�c heat is essen-

tially that of a two-dimensional material.
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Chapter 3

Experimental Study

The thermal properties of the materials have been evaluated by means of heat

calorimetry.The apparatus used was The Physical Property Measurement Sys-

tem (PPMS) Dynacool developed by Quantum Design. The instrument o�ers a

large variety of options for the calculation of di�erent physical properties such as

thermal conductivity, seebeck coe�cient and speci�c heat among others.In our

work, the study is solely focused on the determination of the heat capacity and

thermal conductance of the samples. The measurement of heat capacity provides

important knowledge about the electronic, magnetic and lattice properties of the

materials. it is especially useful when it comes to the implementation of the

characterized materials in thermal devices.

The PPMS system is equipped with diverse measurement techniques that are

optimized for di�erent sample sizes and high accuracy requirements. The ro-

bust analytical skills of the system uses relaxation time techniques to deter-

mine the speci�c heat and thermal conductance of the sample. A simple one-tau

model [123] is employed when there's strong thermal coupling between the sam-

ple and the sample platform, whereas a two-tau model developed by Hwang, Lin,

30



and Tien [124] is used when we have poor thermal transport and the e�ect of the

interface should be taken into account. In our work, we develop a "Three-tau

model" to determine of the speci�c heat of the free surface ZnO nanowires and

the thermal conductance of the interface separating the ZnO nanowires and the

Silicon substrate.

3.1 Analysis Methods

In the following, the di�erent computational models employed by the PPMS for

the determination of the speci�c heat and thermal conductance of bulk materials

are elaborated. We also present the new model for the calculation of the thermal

properties of nanowires.

3.1.1 One-Tau Model

This mode is utilized when no sample is mounted on the platform or when perfect

thermal coupling exists between the sample and the platform. These cases are

illustrated in Figure 3.1 Due to conservation of energy the di�erence in the power

entering and exiting the sample should be equal to the thermal response of the

sample.

Pin(t)− Pout(t) =
dQ

dt
(3.1)

Knowing that the heat capacity is de�ned as:

cp =
dQ

dT
|p (3.2)
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Figure 3.1: Heat �ow diagram for the one tau simple model cases.

And that by Fourier's Law of heat conduction:

Pout(t) = λ1(T1 − T0) (3.3)

We obtain the heat balance equation:

P (t) = c1
dT1
dt

+ λ1(T1 − T0) (3.4)

where: c1 is the total heat capacity of the sample and sample platform, λ1 the

thermal conductance of the wires (W.K−1), T0 the temperature of the thermal

bath (puck frame), T1 the temperature of the platform at time t, and P (t) the

input power in the sample platform.

During the experiment, constant power is applied in a pulse which causes a rise
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Figure 3.2: Heat pulse calorimetry principle. Heat is applied till t = t0, after
which the temperature starts to relax exponentially

in the temperature of the sample in measurement. Then the power is turned o�,

and at this point the temperature starts to decrease exponentially ( �gure 3.2).

The solution to the di�erential equation with heater on and heater o� portions

is:

Ton(t) =
P0

c
τ(1− e

−t
τ ) + T0 for (0 ≤ t ≤ t0)

Toff (t) =
P0

c
τ(1− e

−t0
τ )e

−(t−t0)
τ + T0 for (t > t0)

(3.5)

where τ = c1
λ1
. The unknowns c1, λ1 and T0 are determined by nonlinear least

square �tting of the temperature curve with the data [125].
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3.1.2 Two-Tau Model

This more sophisticated model is applied when the thermal contact between the

sample and the platform is weak. In other words, the Heat Capacity software of

the system takes into account a temperature di�erence between the sample and

its holder and introduces the thermal conductance λ2 between them as shown in

�gure 3.3 .

Figure 3.3: Heat �ow diagram for the two-tau model.

The heat balance equations become:


P (t) = c1

dT1(t)

dt
+ λ1(T1(t)− T0) + λ2(T1(t)− T2(t)) (3.6)

0 = c2
dT2(t)

dt
+ λ2(T2(t)− T1(t)) (3.7)

where c1 is the speci�c heat of the addenda (platform + applied grease), c2 the

speci�c heat of the sample, λ2 the thermal conductance of the Apiezon N grease,

and T2(t) is the temperature of the sample at instant t. In the case of graphene

sample, c2 would be its speci�c heat and λ2 the thermal conductance of the

interface between graphene and the platform (no grease).
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Equation 3.6 depicts the �ow of heat from the heat sink to the platform and from

the platform to the sample. Whereas equation 3.7 represents the heat �ow to the

sample.

It is di�cult to directly solve these equations as in the one-tau model so instead

we refer to �tting methods. Hwang, Lin, and Tien [124] have showed that we can

transform the two di�erential equations into a set of three equations with c2, λ2,

λ1 unknowns and c1 determined from the simple model measurement. By �tting

the raw data to the temperature di�erence Γ(t) = T1(t) − T0 one can solve the

three coupled equations to obtain the value of the heat capacity of the sample.

3.1.3 Three-Tau Model

In order to determine the heat capacity of the nanowires, we assume a temper-

ature di�erence between the wires and the substrate in addition to the two-tau

interaction between the substrate and the platform as shown in �gure 3.4. The

heat balance equations become the following:


P (t) = c1

dT1(t

dt
+ λ1(T1(t)− T0) + λ2(T1(t)− T2(t)) (3.8)

0 = c2
dT2(t)

dt
+ λ2(T2(t)− T1(t)) + λ3(T2(t)− T3(t)) (3.9)

0 = c3
dT3(t)

dt
+ λ3(T3(t)− T2(t)) (3.10)

where where c3 is the speci�c heat of the nanowires, c2 the speci�c heat of the

substrate, λ3 the thermal conductance of the interface between the silicon sub-

strate and ZnO nanowires, and T3(t) is the temperature of the ZnO nanowires at

instant t. Equation 3.10 represents the �ow of heat to and from the nanowires

when the power is on and o�. Following the two-tau model we transform the

three equations into one of third di�erential and integrate over the measurement
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Figure 3.4: Heat �ow diagram for the three-tau model

period. Then by �tting the resulting equation for T1(t) to the thermal response

of the calorimeter using least squares method, we obtain the values of c3 and λ3.

A detailed derivation of the model is found in appendix A.

3.2 Experimental Setup

The experiment was conducted on samples of Zinc Oxide nanowires on Silicon

substrates that were synthesized in the Laboratory of Nanotechnology, Instru-

mentation and Optics (LNIO), at the University of Technology of Troyes (UTT),

and on commercial graphene samples. The PPMS calorimetric measurements

were performed at the Central Research Science Laboratory (CRSL), at the Amer-

ican University of Beirut (AUB).
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3.2.1 Nanowires Sample Synthesis

The synthesis of well-aligned Zinc Oxide nanowires with controlled diameter size

is conducted in two steps; the formation of a seed layer of ZnO and then the

growth of the nanowires on it.

The ZnO seed layer of 15-20 nm thick is formed by ZnO nanoparticles that

act as a nucleation agent for the growth of the ZnO nanowires on the layer. it is

obtained by �rst dissolving 2.197 g of zinc acetate (Zn(CH3COO2)2, 2H2O) in 20

ml of ethanol with constant stirring for 24 hours. Second the solution obtained is

spin-coated onto a clean Silicon substrate. Finally, the formed layer is annealed

at 400oC on a hot plate for a duration of 10 minutes. The spin-coating process

is again repeated twice followed by annealing of the sample after each step.

The growth of ZnO nanowires on the seed layer is conducted by chemical bath

deposition technique. 0.025 M of Zinc Acetate is dissolved in 250 ml of deionized

water with stirring for a few minutes.Then 0.3 ml of ammonium hydroxide with

a concentration of 28% is added to the solution under constant stirring. This

solution is then heated up to 870C in a three-neck �ask as shown in �gure 3.5.

After attaining this temperature, for a period of 15 minutes the Si substrate with

the ZnO seed layer is introduced into the solution in order to grow the nanowires.

In the end, the sample is thoroughly cleansed with deionized water.

The morphology and size of the nanowires can be controlled by varying the

concentration of zinc acetate in the solution [126], or the dipping time in the

synthesis process. In our work three samples referred as WP1(d=101 nm), WP2

(d=85 nm) and WP3 (d=50 nm) were selected for the calorimetric measurements.
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Figure 3.5: ZnO nanowires synthesis setup

3.2.2 Nanowires Sample Characterization

Scanning electron microscopy was conducted to demonstrate the di�erent diam-

eters of the selected samples. Top view electron micrographs are shown in �gure

3.6

Figure 3.6: Scanning electron microscopy image of the samples investigated

X-ray di�raction was also performed on the synthesized samples to con�rm their

composition and determine their crystallinity. Figure 3.7 shows X-ray di�raction

patterns for the di�erent samples. The pattern indicates mono-crystallinity of
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the ZnO nanostructres with the absence of other compounds. It also shows that

the nanowires are grown with a preferential orientation along the [002] crystal-

lographic direction.The peaks obtained in the X-ray di�raction patterns can be

indexed to the hexagonal ZnO wurtzite structure.

Figure 3.7: X-ray di�raction pattern of the samples investigated
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3.2.3 Calorimetric Measurement

Setup Description

The Dynacool Physical Properties Measuring System is described schematically

in �gure 3.8. One of its main features is the double stage pulse tube coolers

Figure 3.8: Dynacool simpli�ed schematic drawing. [3]

that operate without the need of transfer of liquid cryogens. Instead, they make

use of a small amount of liquid helium at the bottom of the bucket to cool the

superconducting magnet to 4k.

The temperature of the system can be varied from 1.8k to 400k. This is controlled

by �rst inserting liquid Nitrogen to cool down the system to a point where liquid

helium won't evaporate, then combining liquid and gaseous helium and transport-

ing them from the bucket to a cooling annulus surrounding the sample chamber.

To ensure maximum e�ciency in thermal properties measurement mode, the

sample is placed in a thermally isolated chamber under high vacuum conditions

40



(< 10−6Torr). Hence, the heat exchange between the sample and the environ-

ment is limited and the sample is protected from exterior heating from warmer

surfaces. The vacuum pump of the PPMS is a cryogenic pump that operates

in two stages; the �rst operates at 70k and the second at 4k. When the system

reaches 4k the cryogenic pump equipped with charcoal absorbs any remaining gas

in the sample chamber. Once speci�c heat measurement mode is established, the

sample chamber pressure drops automatically to 5 Torr and then high vacuum is

reached within a few seconds by sealing the chamber and opening the valves to

expose it to the cryostat.

The PPMS also employs a puck which is a sample platform that provides ther-

mal and electrical contact once placed in the sample chamber.Embedded in the

puckframe is a thin sapphire (Al2O3) platform of 3x3 mm2 on which the sample

is placed. A heater and a thermometer are mounted on the backside of the plat-

form. The platform is connected to the puckframe with eight Au-Pd wires. Four

wires are for the heater and four wires for the thermometer. The puck is shown

is �gure 3.9.

Figure 3.9: The puck 1792 (left) and the platform (right). 1: The sapphire
platform 2: Au-Pd wires 3: Gold contacts 4: Thermometer 5: Heater. [4]
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Table 3.1: The structural characteristics of the ZnO nanowires in the measured
samples.

Sample Average diameter (nm) Average length (µm)
WP1 101 1.265
WP2 85 1.397
WP3 50 0.621

Measurement Procedure

Using a Talentool diamond cutter, these samples have been cut into small cubes

that have a size of 3x3 mm2 approximately, with the nanowires masses rang-

ing from 5 to 25 mg and the graphene's mass equals to 6.8ng on average. The

structural characteristics of the zinc oxide nanowires are listed in table 3.1. To

ensure stabilization of the sample on the platform, the puck is placed in a sample

mounting station connected to a small vacuum pump and �xed in position with

an interlock arm. Few milligrams of Apiezon N Grease is applied on the platform

and the sample is placed on top of it.

For the nanowires, a �rst speci�c heat measurement is performed for the ad-

denda (platform +grease) in order to separate the contribution of the sample from

the total speci�c heat of the system. Then we measure the thermal properties of

the Si substrate by itself after which we run the zinc oxide nanowires samples.

As for the graphene, the calibration measurement is made for the platform by

itself (no grease) and then the speci�c heat of the graphene sample is determined.

A measurement cycle begins by applying a heat pulse to the sample till a set

temperature is reached at time t0. Then the heater is turned o� and the sample

is left to cool down.The temperature response curve is shown in Figure 3.2. The
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temperature response curves are then �tted to the thermal calculation models

developed in section 3.1. The addenda curves are �tted to the one-tau model

and the speci�c heat of the addenda c1 and the thermal conductance of the wires

λ1 are thus determined. While the curves for the graphene and Si substrate are

�tted to the two-tau model to determine the speci�c heat c2 and in the case of

Si Substrate, the thermal conductance λ2 between the substrate and the grease.

The three-tau model is employed to �t the temperature curves of the zinc oxide

nanowires, from which their speci�c heat c3 and the thermal conductance λ3

between the wires and the substrate are found.
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Chapter 4

Results and Discussion

4.1 Speci�c heat Measurement

The speci�c heat measured in the experiment is that at constant pressure because

measurements of constant volume speci�c heat are di�cult to reproduce exper-

imentally. But since the speci�c heat at constant volume is easier to describe

in quanti�able models we employ it in our analysis instead of heat capacity at

constant pressure. The interchange between the two is justi�able at room tem-

perature and below since the di�erence between them is smaller as explained in

section 2.1.

4.1.1 Addenda Measurement

As mentioned before, measuring the speci�c heat of the platform and the grease

is important to determine the contribution of the sample separated from the

addenda. Therefore a measurement of the empty puck and that of the puck

with a known mass of grease are performed. We obtain the speci�c heat of the

grease by subtracting the results of the addenda from those of the empty puck.
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Four di�erent combinations of measurements were made to obtain an average

result for the speci�c heat of Apiezon N Grease(Addenda#1-empty Puck#1,

Addenda#2-empty Puck#1, etc...) as shown in Figure 4.1. The solid line in

Figure 4.2 represents the average speci�c heat and the shaded area around it is

the uncertainty in the mean. [4]

Figure 4.1: Heat capacity of the addenda and the empty puck; puck + 1mg
of grease is shown in 'blue circles', puck+ 0.3mg of grease is shown in 'yellow
square', empty puck is shown twice in 'red diamonds and green triangles'. [4]

4.1.2 Substrate Measurement

The Silicon substrate's speci�c heat has been measured for the purpose of com-

parison with the total speci�c heat of the substrate in the presence of nanowires.

This is to prove that the existence of the Zinc Oxide nanowires on the Silicon

substrate alters the thermal response of the calorimeter. The temperature curves
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Figure 4.2: Average speci�c heat of the Apiezon N grease (solid blue line) with
its uncertainty (shaded area). The inset shows the low temperature behavior. [4]

of the samples under investigation were �tted using the two-tau model developed

in section 3.1. The measurement uncertainties are estimated to be of a value of

2% maximum due to the scatter in the data points.

Figure 4.3 shows a signi�cant di�erence between the speci�c heat of the Si

Substrate alone and that of the samples WP1, WP2 and WP3.Thus we conclude

that the thermal properties of the nanowires are measurable with the means of

this calorimetric technique.

4.1.3 ZnO nanowires measurements

The results of the speci�c heat of the zinc oxide nanowires for the three di�erent

synthesized samples WP1, WP2 and WP3 are shown in �gure 4.4. The uncer-

tainties in the measurements' data are estimated to be 10%; they arise from the

scatter in the data points in each calculation and the error on the evaluation of

the weight of the zinc oxide nanowires in each investigated sample.
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Figure 4.3: Speci�c heat of the Silicon substrate alone (open symbols) and of the
substrate with nanowires(colored symbols)

The curves reveal a remarkable di�erence between the speci�c heat of the zinc

oxide nanowires and that of the bulk Zinc Oxide beyond 25 K. This indicates an

improvement of the speci�c heat at the nanometric scale compared to its bulk

counterpart. Also this enhancement intensi�es along the whole measured tem-

perature range as the diameter of the Zinc Oxide nanowires increases.

As for the low temperature behavior, a bulk material's speci�c heat is usually

governed by the following expression:

c = γT + βT 3 (4.1)
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Figure 4.4: Speci�c heat of bulk ZnO obtained from �rst principles calculation
(open symbols) and of the ZnO nanowires obtained from calorimetric measure-
ments(colored symbols)

where the �rst term represents the contribution of the electron gas and the sec-

ond term the contribution of the phonon harmonic dynamics to the total low-

temperature speci�c heat. The common practice to separate out these two con-

tributions is to �rst, divide the expression of c by T, then plot c
T
versus T 2 and

�nally �nd γ by extrapolating the curve to the ordinate axis and noting where it

intersects.

To determine whether the Zinc Oxide nanowires' low temperature speci�c heat

follows the typical three-dimensional T 3 behavior, we treat the nanowires speci�c

heat curves in the same manner. Figure 4.5 shows the c/T curves for the Zinc

Oxide nanowires and bulk ZnO.

48



Figure 4.5: c/T versus T 2 for the Zinc Oxide bulk and nanowires. Open symbols
correspond to data obtained from calorimetric measurements. Closed symbols
correspond to data �tted with the model detailed in section 2.4

The curves indicate that the speci�c heat at low temperature is not a straight

line proving that it deviates from the three-dimensional behavior. They also show

that the deviation from the three-dimensional behavior increases as the diameter

of the nanowires decreases.

A theoretical model has been developed for the purpose of explaining this devia-

tion of the speci�c heat of nanowires from the T 3 behavior at low temperature.The

model utilizes continuum mechanics with the proper boundary conditions to solve

the equation of motion of a solid. The details of the model are developed in sec-

tion 2.4. The theory results in the following form of the speci�c heat at low
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temperatures;

c = γT + 3pNckB × 7.212×
(

T

θD,L

)2

+
9

2
pNckB × 25.980×

(
T

θD,Q

)3

(4.2)

where θD,L is the Debye temperature related to the phonons' mode of linear

dispersion that gives rise to the contribution of the two-dimensional crystal, and

θD,Q is the Debye temperature corresponding to the phonons' mode of quadratic

dispersion that gives rise to contribution from three-dimensional crystal. De�ning

c/T we obtain:

c/T = γ + AT +BT 2 (4.3)

with A being 3pNckB × 7.212 × 1
θ2D,L

and B equals to 9
2
pNckB × 25.980 × 1

θ3D,Q
.

the c/T behavior clearly di�ers from that of a bulk material at low temperature

by the contribution of T 2. The speci�c heat of any solid at low temperature is

characterized only by its Debye temperature. Equation 4.2 indicates that the low

temperatures speci�c heat of any nanowire depends on the Debye temperatures of

the two and three dimensional behavior. The model developped in section 2.4 for

the speci�c heat gives theoretical expressions for θD,L and θD,Q and shows their

dependence on the diameter and length of the nanowires. The theoretical curves

for c/T are shown in �gure 4.5 in solid lines. The best �t for the curves was

obtained by neglecting the contribution from the electron gas and adjusting the

values for θD,L and θD,Q. The values that gave the best agreement are shown in

table 4.1: The good agreement between the theoretical and experimental c/T val-

ues versus T 2 demonstrates that beside a contribution from a three-dimensional

crystal, the nanowires' speci�c heat exhibits an appreciable contribution from a

two-dimensional crystal.
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Table 4.1: Debye temperatures of the ZnO nanowires in the measured samples.
Sample θD,L (K) θD,Q (K)
WP1(d=101 nm) 2200 330
WP2 (d=85 nm) 945 630
WP3 (d=50 nm) 1550 180

4.1.4 Graphene Measurement

The temperature response of clamped graphene was analyzed using the two-tau

model.The results of the speci�c heat of the graphene measurements from 2.8 to

300 K are reported in �gure 4.6. A comparison with experimental measurements

of graphite obtained from ref. [5] is reported in �gure 4.7.

Figure 4.6: Speci�c heat of graphene reported from calorimetric measurements
from 2.8 to 300 K
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Figure 4.7: Speci�c heat of graphene reported from calorimetric measurements
and experimental values of graphite adopted from [5]

The curves clearly indicate an enhancement in the experimental values of

the speci�c heat of graphene in comparison to that of graphite. This fact is

numerously mentioned in literature [5, 127�129].Also, the enhancement factor

of the speci�c heat of graphene compared to that of graphite increases as the

temperature increases.

The low-temperatures behavior of clamped graphene is reported in �gure 4.8. It

shows that the c/T versus T curve corresponding to graphene is a straight line,

indicating that the speci�c heat at low temperatures con�rms the well reported

theoretical T 2 dependence model for clamped graphene. The good agreement

between the measured c/T versus T and the linear �t curve demonstrates that the
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Figure 4.8: C/T vs T plot corresponding to the investigated graphene sample.
closed symbols: Data obtained from calorimetric measurements. Solid Lines:
Data obtained from linear �tting.

speci�c heat of graphene exhibits a contribution from a two-dimensional material

as follows;

c/T = aT ⇒ c = aT 2 (4.4)

Since the graphene sample is directly attached to the platform it is considered

to be clamped. Therefore, the carbon atoms will not be able to move in the

out of plane direction. This leads to the suppression of the out of plane mode.

We speculate that the speci�c heat of graphene at low temperatures follows a

two-dimensional behavior(T2)as shown in �gure 4.8 instead of linear T behavior

reported in the theoretical models [5, 75,87,129] due to this suppression.
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Also, a change in the slopes of the speci�c heat graph is noticed as the tem-

perature increases. This indicates a probable "stairway" leap in the graphene's

density of states with the change in frequency, which is con�rmed by �rst principle

calculations reported in ref. [101].

4.2 Thermal Conductance between Si substrate

and ZnO nanowires

The data obtained from calorimetric measurements for the thermal conductance

of the interface between Silicon and Zinc Oxide nanowires is plotted in �gure

4.9. For comparison purposes, a theoretical study of the thermal conductance

of the interface between Silicon and bulk Zinc Oxide was conducted using �rst

principle calculations within the di�use mismatch models [130]. The results are

also plotted in �gure 4.9. The �gure shows that the thermal conductance of the

Si/ZnO-nanowiress interface is independent of the average size of the nanowires.

Furthermore, the results indicate a noticeable di�erence in the thermal conduc-

tance of Si/ZnO-nanowires and the Si/bulk-ZnO, both in magnitude and temper-

ature dependence. The thermal conductance of Si/ZnO-nanowires is lower than

that of Si/bulk-ZnO by approximately �ve orders of magnitude. The reason why

the thermal conductance value of Si/ZnO-nanowires is low in comparison to that

of Si/bulk-ZnO may be attributed to the formation of a thin layer of low crys-

tallinity at the interface between the ZnO nanowires and the Silicon substrate

leading to a high rate phonon scattering. [131]. This result is supported by re-

cent transmission electron microscopy, [132] which demonstrated that the thermal

conductivity of phononic metamaterials is reduced mainly by phonon scattering

in an intermixing region formed at the interface between the nanostructures and
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Figure 4.9: Thermal conductance of the interface between the Silicon substrate
and the bulk ZnO obtained from �rst principles calculation (�lled symbols) and
of that between the substrate and ZnO nanowires obtained from calorimetric
measurements(open symbols)

the underlying substrate.

Figure 4.9 also shows that the behavior of the thermal conductance of Si/ZnO-

nanowires is highly temperature dependent; between 1.8 and 3 K, the thermal

conductance drops rapidly, then it follows the behavior of the Si/bulk-ZnO curve

from 3 to 70 K, and �nally grows almost linearly at high temperatures. The

rapid decrease between 1.8 and 3 K can be explained with the transition of

phonon modes from specular to di�usive transmission as the temperature in-

creases, or alternatively as the excited wavelength change. This is supported by
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measurements of re�ection of heat pulses from free surface solids, which showed

that the phonon transmission changes from specular to di�usive when phonons

of frequencies greater than 100 GHz are excited at a few degrees kelvin. [133].

As for the near linear growth of the thermal conductance of Si/ZnO-nanowires

above 70 K, it can be attributed to the signi�cant contribution of anharmonic

phonon processes (which is not taken into account the di�use mismatch model)

that allows transfer of energy across the interface between the Silicon substrate

and the Zinc Oxide nanowires. This contribution of anharmonic processes to

the interface thermal conductance and its near linear growth have been previ-

ously observed in cases of interfaces between materials with highly dissimilar

phonon spectra. [134]. Therefore, the contribution of the anharmonic processes

to the thermal conductance between the Silicon substrate and the Zinc Oxide

nanowires can be related to the strong mismatch between the phonon spectrum

of the Zinc oxide nanowires and that of the Silicon substrate. As the temperature

increases, the phonon anharmonic processes are enhanced, leading to an excess

conductance at the interface between Si/ZnO-nanowires, which is revealed in the

linear temperature dependence of the interface thermal conductance above 70 K.
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Chapter 5

Conclusion

Heat pulse calorimetry was performed on Zinc Oxide nanowires and graphene

samples from 1.8 to 300 K. The temperature response was analyzed using linear

least square �tting methods to determine the speci�c heat of the nanowires and

graphene and the thermal conductance of the interface between the nanowires

and the underlying Silicon substrate. It is found that above 25 K, The speci�c

heat of the nanowires is enhanced compared to that of the bulk Zinc Oxide and

this enhancement increases as the temperature increases and the nanowires di-

ameter decreases. As for the low temperatures behavior (below 4 K), the Zinc

Oxide nanowires' speci�c heat was demonstrated to be essentially that of a two-

dimensional crystal. The thermal conductance of the interface between the Sili-

con substrate and Zinc Oxide nanowires was found to be �ve orders of magnitude

lower than that between bulk Zinc Oxide and Silicon substrate determined theo-

retically. This can be explained by the formation of thin layer of low crystallinity

between the nanowires and Silicon substrate that increases the phonon scattering.

A sharp drop in the thermal conductance between 1.8 and 3 K was attributed

to the transition from specular to elastic di�usive transmission mode. The linear
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increase above 70 k was interpreted also as a transition from di�usive elastic to

di�usive inelastic transmission. The graphene's low temperature speci�c heat was

found to follow a two-dimensional behavior. The two-dimensional trend of the

speci�c heat of graphene at low-temperatures hence demonstrated an agreement

with the T 2 dependence theory of the clamped graphene. At higher temperatures,

this speci�c heat of graphene also showed an increase in its values in comparison

with those of graphite.

As for the future of this work, an important exercise would be the investigation

of the thermal properties of very thin nanowires at low-temperature to determine

the discrepancy from the T 2+T 3 behavior. We speculate that very thin nanowires

would admit a T + T 2 behavior due to the contribution of the one dimensionality

of the wires.
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Appendix A

Three-tau model derivation

The Balance Equations of the three-tau model are:

P (t) = c1
dT1
dt

+ λ1(T1 − T0) + λ2(T1 − T2) (A.1)

0 = c2
dT2
dt

+ λ2(T2 − T1) + λ3(T2 − T3) (A.2)

0 = c3
dT3
dt

+ λ3(T3 − T2) (A.3)

Re-arranging the terms as function of Temperature;

P (t) = c1
dT1
dt

+ λ1T1 − λ1T0 + λ2T1 − λ2T2 (A.4)

0 = c2
dT2
dt

+ λ2T2 − λ2T1 + λ3T2 − λ3T3 (A.5)

0 = c3
dT3
dt

+ λ3T3 − λ3T2 (A.6)

P (t) = c1
dT1
dt

+ λ1T1 − λ1T0 + λ2T1 − λ2T2 (A.7)

0 = c2
dT2
dt

+ T2(λ2 + λ3)− λ2T1 + λ3T2 (A.8)

0 = c3
dT3
dt

+ λ3T3 − λ3T2 (A.9)

59



Re-arranging the terms in equation A.1 as function of T2 and deriving with respect

to time we obtain:

λ2T2 = c1
dT1
dt

+ λ1T1 − λ1T0 + λ2T1 − P (t) (A.10)

=⇒ T2 =
1

λ2
[c1
dT1
dt

+ λ1T1 − λ1T0 + λ2T1 − P (t)] (A.11)

=⇒ dT2
dt

=
c1
λ2

d2T1
dt2

+
λ1
λ2

dT1
dt

+
dT1
dt
− 1

λ2

dP (t)

dt
(A.12)

=⇒ λ2T2 − λ2T1 = c1
dT1
dt

+ λ1(T1 − T0) + λ2T1 − P (t) (A.13)

=⇒ λ2(T2 − T1) = c1
dT1
dt

+ λ1(T1 − T0)− P (t) (A.14)

We now replace equations A.14 and A.16 in A.2 to eliminate T2:

0 = c2[
c1
λ2

d2T1
dt2

+
λ1
λ2

dT1
dt

+
dT1
dt
− 1

λ2

dP (t)

dt
]

+ [c1
dT1
dt

+ λ1(T1 − T0)− P (t)] + λ3(T2 − T3) (A.15)

0 =
c1c2
λ2

d2T1
dt2

+
λ1c2
λ2

dT1
dt

+
c2dT1
dt
− c2
λ2

dP (t)

dt

+ c1
dT1
dt

+ λ1(T1 − T0)− P (t) + λ3(T2 − T3) (A.16)

Re-arranging the equation as function of T3 and deriving with respect to time we

obtain:

=⇒ 0 =
c1c2
λ2

d2T1
dt2

+
λ1c2
λ2

dT1
dt

+
c2dT1
dt

− c2
λ2

dP (t)

dt
+ c1

dT1
dt

+ λ1(T1 − T0)− P (t) + λ3T2 − λ3T3 (A.17)
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=⇒ λ3T3 =
c1c2
λ2

d2T1
dt2

+
λ1c2
λ2

dT1
dt

+
c2dT1
dt

− c2
λ2

dP (t)

dt
+ c1

dT1
dt

+ λ1(T1 − T0)− P (t) + λ3T2 (A.18)

T3 =
1

λ3
[
c1c2
λ2

d2T1
dt2

+
λ1c2
λ2

dT1
dt

+
c2dT1
dt

− c2
λ2

dP (t)

dt
+ c1

dT1
dt

+ λ1(T1 − T0)− P (t) + λ3T2] (A.19)

T3 =
1

λ3
[
c1c2
λ2

d2T1
dt2

+ (
λ1c2
λ2

+ c2 + c1)
dT1
dt

+ λ1(T1 − T0)−
c2
λ2

dP (t)

dt
− P (t) + λ3T2] (A.20)

=⇒ T3 =
c1c2
λ2λ3

d2T1
dt2

+
1

λ3
(
λ1c2
λ2

+ c2 + c1)
dT1
dt

+
λ1
λ3

(T1 − T0)−
c2
λ3λ2

dP (t)

dt
− 1

λ3
P (t) + T2 (A.21)

=⇒ dT3
dt

=
c1c2
λ2λ3

d3T1
dt3

+ (
λ1c2
λ2λ3

+
c2
λ3

+
c1
λ3

)
d2T1
dt2

+
λ1
λ3

dT1
dt
− c2
λ3λ2

d2P (t)

dt2
− 1

λ3

dP (t)

dt
+
dT2
dt

(A.22)

We now replace A.14 in A.25

=⇒ dT3
dt

=
c1c2
λ2λ3

d3T1
dt3

+(
λ1c2
λ2λ3

+
c2
λ3

+
c1
λ3

)
d2T1
dt2

+
λ1
λ3

dT1
dt
− c2
λ3λ2

d2P (t)

dt2
− 1

λ3

dP (t)

dt

+ [
c1
λ2

d2T1
dt2

+
λ1
λ2

dT1
dt

+
dT1
dt
− 1

λ2

dP (t)

dt
]

(A.23)
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(T3 − T2) =
c1c2
λ2λ3

d2T1
dt2

+
1

λ3
(
λ1c2
λ2

+ c2 + c1)
dT1
dt

+
λ1
λ3

(T1 − T0)−
c2
λ3λ2

dP (t)

dt
− 1

λ3
P (t)

(A.24)

λ3(T3 − T2) =
c1c2
λ2

d2T1
dt2

+ (
λ1c2
λ2

+ c2 + c1)
dT1
dt

+ λ1(T1 − T0)−
c2
λ2

dP (t)

dt
− P (t)

(A.25)

We now replace equations A.27 and A.24 in A.3 to eliminate T3:

0 = c3[
c1c2
λ2λ3

d3T1
dt3

+ (
λ1c2
λ2λ3

+
c2
λ3

+
c1
λ3

)
d2T1
dt2

+
λ1
λ3

dT1
dt
− c2
λ3λ2

d2P (t)

dt2
− 1

λ3

dP (t)

dt

+ [
c1
λ2

d2T1
dt2

+
λ1
λ2

dT1
dt

+
dT1
dt
− 1

λ2

dP (t)

dt
]

+
c1c2
λ2

d2T1
dt2

+ (
λ1c2
λ2

+ c2 + c1)
dT1
dt

+ λ1(T1 − T0)−
c2
λ2

dP (t)

dt
− P (t)

(A.26)

0 =
c1c2c3
λ2λ3

d3T1
dt3

+(
λ1c2c3
λ2λ3

+
c2c3
λ3

+
c1c3
λ3

)
d2T1
dt2

+
c3λ1
λ3

dT1
dt
− c2c3
λ3λ2

d2P (t)

dt2
− c3
λ3

dP (t)

dt

+
c1c3
λ2

d2T1
dt2

+
λ1c3
λ2

dT1
dt

+ c3
dT1
dt
− c3
λ2

dP (t)

dt

+
c1c2
λ2

d2T1
dt2

+ (
λ1c2
λ2

+ c2 + c1)
dT1
dt

+ λ1(T1 − T0)−
c2
λ2

dP (t)

dt
− P (t)

(A.27)

0 = (
c1c2c3
λ2λ3

)
d3T1
dt3

+
d2T1
dt2

(
λ1c2c3
λ2λ3

+
c2c3
λ3

+
c1c3
λ3

+
c1c3
λ2

+
c1c2
λ2

)

+
dT1
dt

(
c3λ1
λ2

+ c3 +
c2λ1
λ2

+ c2 + c1) + λ1T1

− c2c3
λ3λ2

d2P (t)

dt2
+
dP (t)

dt
(− c2
λ2
− c3
λ2
− c3
λ3

)− λ1T0 − P (t) (A.28)
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We omit the constant Temperature for its negligible contribution and we integrate

with respect to time

c1c2c3
λ2λ3

d2T1
dt2
|t0 + (

λ1c2c3
λ2λ3

+
c2c3
λ3

+
c1c3
λ3

+
c1c3
λ2

+
c1c2
λ2

)
dT1
dt
|t0

+ (
c3λ1
λ2

+ c3 +
c2λ1
λ2

+ c2 + c1)T1|t0 + λ1

∫ t

0

T1dt

=
c2c3
λ3λ2

dP (t)

dt
|t0 + (

c2
λ2

+
c3
λ2

+
c3
λ3

)P (t)|t0 +

∫ t

0

P (t)dt (A.29)

we consider d2T1
dt2
|t0 = 0 due to the negligible contribution of the second derivative.

We de�ne the following variables;

V (t) =
dT1
dt
|t0 (A.30)

H(t) =
dP (t)

dt
|t0 (A.31)

Q(t) =

∫ t

0

P (t)dt (A.32)

S(t) =

∫ t

0

T1dt (A.33)

Γ(t) = T1|t0 (A.34)

Replacing them in A.31 we obtain:

(
λ1c2c3
λ2λ3

+
c2c3
λ3

+
c1c3
λ3

+
c1c3
λ2

+
c1c2
λ2

)V (t) + (
c3λ1
λ2

+ c3 +
c2λ1
λ2

+ c2 + c1)Γ(t)

+ λ1S(t) =
c2c3
λ3λ2

H(t) + (
c2
λ2

+
c3
λ2

+
c3
λ3

)P (t) +Q(t) (A.35)
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We de�ne the coe�cients of each variable:

v =
λ1c2c3
λ2λ3

+
c2c3
λ3

+
c1c3
λ3

+
c1c3
λ2

+
c1c2
λ2

(A.36)

=
c3
λ3

λ1c2
λ2

+
c3
λ3
c2 +

c3
λ3
c1 +

c1
λ2

(c3 + c2)

g =
c3λ1
λ2

+ c3 +
c2λ1
λ2

+ c2 + c1 (A.37)

=
λ1
λ2

(c3 + c2) + (c2 + c1 + c3)

h =
c2c3
λ3λ2

=
c3
λ3

c2
λ2

(A.38)

p =
c2
λ2

+
c3
λ2

+
c3
λ3

=
c3
λ3

+
1

λ2
(c2 + c3) (A.39)

letX =
c3
λ3

v = X
λ1c2
λ2

+Xc2 +Xc1 +
c1
λ2

(c3 + c2) (A.40)

= X(
c2λ1
λ2

+ c2 + c1) +
c1
λ2

(c3 + c2)

g =
λ1
λ2

(c3 + c2) + (c2 + c1 + c3)independent of X (A.41)

h = X
c2
λ2

(A.42)

p = X +
1

λ2
(c2 + c3) (A.43)

vV (t) + gΓ(t) + λ1S(t) = hH(t) + pP (t) +Q(t) (A.44)

=⇒ Γ(t) =
1

g
[hH(t) + pP (t) +Q(t)− vV (t)− λ1S(t)]

(A.45)
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