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AN ABSTRACT OF THE THESIS OF

Heba Mansour Badawe for Master of Science
Major: Mathematics

Title: Central Limit Theorem on the General Linear Group

Our goal in this thesis is to understand the Central Limit Theorem (CLT) for linear groups proved
partially by Le Page in 1982 then fully by Benoist and Quint in 2016. Consider a probability measure
u on the general linear group GL(d,R), with d > 1, and (Y;); a sequence of independent and identically
distributed random variables on GL(d,R) of law p. We are interested in proving , under a natural
moment condition on p and geometric assumptions on the semi-group generated by its support, that
the sequence of random variables log ||Y7,...Y1]|, suitably normalized, converges to a Gaussian law. More
precisely, assume that the semi-group generated by the support of y is strongly irreducible and contains
a proximal element. Le Page proved in this context the CLT under an exponential moment of yp and
Benoist-Quint were able to weaken this assumption to the most natural one (in comparison to the
case d=1): that of a moment of order 2. Understanding this question requires the introduction of the

Lyapunov exponents and the notion of stationary measures on the projective space P(R%).
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Chapter 1

Introduction

In this thesis we focus on a specific type of linear groups that is the General Linear Group GL(d, R),
where we consider a Borel probability measure 1 on GL(d, R) and a sequence (Y, )nen+ of independent and
identically distributed random variables of law p. We define the left random walk as (S, = Y;, -+ - Y1 ) nen=.
Our goal is to understand the limit theorems of log ||.S,,|| under some geometric assumptions on I',,, the
semi-group generated by the support of . We are interested namely in the Law of Large Numbers (LLN)
and the Central Limit Theorem (CLT). The LLN justifies the existence of the Lyapunov exponent + in
R where

V= nlgngoilogllsnll
with p having a moment of order one. The convergence above has to be understood in the almost sure
sense. While the CLT states that, when g has moment of order two, the sequence of random variables
A EA
Vn

converges in law to a normal law N(0,0?), with 02 > 0. More precisely,

Theorem 1.0.1. [B6] Let p be a probability measure on the general linear group GL(d,R) such that
the semi-group T',, generated by p is strongly irreducible and contracting (see Definitions 2.1.2 and
2.1.4). Assume that p has a moment of order 2, i.e fGLd(R) N(g)?du(g) < +oo, where N(g) =
max{log ||g||,log||g~ ||} for g € GL(d,R) and || -|| is any norm on the vector space M(d,R) of d x d
matrices.

Consider a sequence (Y, )n>1 of random variables on GL(d,R) identically distributed and of same law f.

Then, there exists 02 > 0 such that

1 Yn Y| = aw
Og” 1|| ny l_) N(O,Uz).
\/'rz n—+00

Taking into account the natural action of GL(d,R) on the projective space P(R?) of R%, we will
show that this general setting differs from the classical case (d = 1) in probability theory in the following

points :

(i) The non-commutativity of the product operation in GL(d,R) where log||S,|| is no longer a sum
of independent and identically distributed random variables. To overcome this obstacle we write
log ||S,|| as the sum of cocycles, more specifically log ||S,|| = Y_i; 0(X;), where (X;);en- defines
some Markov chain on GL(d,R) x P(RY). However we lose the independency!



(i) The notion of u-invariant (or stationary) probability measures on P(R?) plays a crucial role

especially in the definition of v and ¢2.

Now we give a brief overview about the history of the Central Limit Theorem of log||S,||. The
non-commutative CLT was first introduced by Bellman [44,B54] in 1953 , whose aim was to construct
and initiate a general theory for the study of the limiting behavior of systems subjected to non com-
mutative effects. Noting that such frameworks appeared to be the right mathematical model for some
physical systems subjected to a number of random effects that are not additive and non-commutative.
Furstenberg and Kesten [F0] proved in 1960 the CLT for semi-groups of matrices with positive entries;
they strengthened Bellman’s results studying the asymptotic behavior of ||S,||. Using spectral analysis,
Le Page [L2] in 1982 extended the proof for the semi-group generated by the support of p and allowed
the law p to have a finite exponential moment. In 1980, Guivarc’h and Raugi [G5] gave a detailed proof
of Furstenberg’s theorem about the almost sure convergence of S}z while assuming that p is of order 1
and T, is strongly irreducible and contracting. Recently, in 2016, Benoist and Quint [B6] were able to
enhance the assumptions and prove the CLT when g has a moment of order 2. Such an assumption is

optimal. Note that they proved the Classical CLT using martingales.

In this thesis, we follow the spectral approach of Le Page in [L2] to prove Theorem 1.0.1 under an
exponential moment of u (see Definition 2.3.1), and ask whether one can still use this spectral approach
to to give another proof of the CLT in the optimal condition (moment of order two) proved by [B6] using

martingales.

The basic idea is to mimic the proof of the CLT in classical Probability Theory by showing that the
sequence of the Fourier transform of our probability measures (the law of W) converges pointwise
to the Fourier transform of a non degenerate Gaussian law. Once again, the norm being only submul-
tiplicative is an obstacle. The idea of Le Page consists of defining an analytic family {T'(£), € C}
of operators, called Fourier-Laplace operators, acting on a suitable subspace E of the Banach space
Co(P(R%)) of continuous functions on the projective space P(R?) containing the constant function 1.
When we look at the action of these operators on the function 1, then & — T(¢) will be nothing than
the usual Fourier transform of log||Y17y|[. When fixing £, T'(¢) is thought of as a perturbation of the
Markov operator T'(0) of the natural Markov Chain associated to z on GL(d,R) x P(R?). An important
lemma from perturbation theory sheds the lights on the importance of the existence of a spectral gap,
namely for some rank one operator N we have nh_}rrgo |[T™(0) — N||*/™ < 1. This would allow the decom-

position of the operator T'(£) in a special way for £ small enough.

Finally, we present the scheme of this thesis:

e In Chapter 2 we give general definitions and important tools for further use. More specifically,
we introduce the framework of Random Matrix Products, Lyapunov exponents and Stationary

measures.

e In Chapter 3 we assume that I',, is strongly irreducible and contracting with p having a moment

of order one. We see how S, has a contracting action on the directions in P(R%).

e In Chapter 4, we first recall some techniques of perturbation of operators. Then, we assume that

1 has a density with respect to the Haar measure on GL(d,R) and an exponential moment. We



prove the CLT (Theorem 1.0.1) in this particular case and notice that the whole space of contin-

uous functions on P(R?) is an ideal Banach space to work on.

e In Chapter 5 we suppose only that u has an exponential moment and we resort to some facts from
Ergodic theory . We show that one has to restrict to the subspace of Co(P(R?)) (with a suitable

exponent) in order to reach the desired result.



Chapter 2

Notation and Terminology

All our variables are defined on a probability space (2, A,P). We denote by E the expectation of
a random variable with respect to P. We shall refer to the set of d x d matrices with real entries by
M(d, R) with d > 1, and we let GL(d, R) be the set of d x d invertible matrices of M(d, R). We represent
the transpose matrix of g by ¢*. We denote by (-, -) the canonical dot product and by || - || the Euclidean

norm on RY, i.e. for every x € R%:

d
l|z]] = {< =, @ >}1/2 _ {leg}l/Q.
i=1

To simplify notation, the operator norm on M(d, R) induced by || - || will still be denoted by ||-|], i.e. for
every g € M(d,R),
llgll = sup{[|gz[; = € RY, ||z]| = 1}.

2.1 General Linear Group

Definition 2.1.1. The general linear group of degree d, denoted by GL(d,R), is the set of d x d invertible

matrices with entries in R. This is a group when endowed with the operation of matriz multiplication.
We recall the polar (or KAK) decomposition of an invertible matrix.

Proposition 2.1.1. Every matriz ¢ € GL(d,R) has a factorization of the form KAU with K and U
being d X d orthogonal matrices and A=diag(ay,...,aq) with ay > -+ > aq > 0 for every i. These a;’s

are called the singular values of g .

Remark 2.1.1. The a;’s are the square Toots of the eigenvalues of the positive definite symmetric matriz
99 -
Definition 2.1.2. Given a subsetT' of GL(d,R), we define the index of ' as the least integer p € {1,..,d},

such that there exists a sequence {gn,n > 0} in T for which ||gn||" gn converges to a rank p matriz.

We say I' is contracting when its indez is 1.

Remark 2.1.2. The choice of the norm is irrelevant in the definition above as all the norms are equiv-

alent to the finite dimensional vector space M(d,R).



Example 2.1.1. The following sequence of matrices in GL(d,R) defined by

1

In =

with n € N, is a contracting sequence.
A standard way to generate a contracting sequence is via proximal elements we define here below.

Definition 2.1.3. An element g in GL(d,R) is said to be proxzimal if and only if it has a unique

eigenvalue of maximum modulus.

Proposition 2.1.2. Let g in GL(d,R) be a prozimal element. Then the sequence (¢")nen is a contracting

sequence.

Proof. Let g in GL(d,R) be a proximal element. Then, g has a unique eigenvalue of maximum modulus,

say A. Using the Jordan Decomposition of g, we can write ¢ in a suitable basis of R? as

o 3)

with M having spectral radius less then A. By the spectral radius formula, it follows that {||gn|| ™ gn tn>1

converges to a rank one matrix. O

Definition 2.1.4. Given a subset I' of GL(d,R), we say that

(i) T is irreducible if there does not exist a proper linear subspace V of R?, such that gV =V for any
g inT.

(ii) T is strongly irreducible if there does not exist a finite family of proper linear subspaces Vi, Va, ..., Vi
of R% such that

k k
g (U %) =Jv
i=1 i=1
for any g in T.

Example 2.1.2. Consider the subgroup of GI(3,R) of upper triangular matrices:

a b c
S = 0 d el ;abcdegeR"
0 0 g¢g

Then S is not irreducible as it stabilizes the line generated by the vector (1,0,0).

We have proved in Proposition 2.1.2 then if I' contains a proximal element, then it is contracting.

The converse if true provided I is irreducible.

Proposition 2.1.3. If a subset T' of GL(d,R) has a proximal element then T is contracting. If T is

irreducible and contracting then it has a proximal element.



2.2 The real projective space

Propositon/Definition 2.2.1. Let V' be a real vector space. The binary relation ~ defined on V' \ {0}
by x ~y <= Rax = Ry is an equivalence relation on V \ {0}. We call projective space of V', and we
denote by P(V'), the quotient space (V' \{0})/ ~. Moreover, for every non zero vector x of V, we denote
by [x] € P(V) its equivalence class and by 7 : (V' \ {0}) — P(V) the projection map.

Remark 2.2.1. For every x € V, [z] is nothing than the one dimensional space generated by the non

zero vector x, hence P(V) is the set of one dimensional spaces of the vector space V.

Proposition 2.2.1. The projective space P(R?) of R? is a compact topological space when endowed with

quotient topology.



Proof. The projection map 7 is continuous, and a fortiori its restriction T ga to the unit sphere S9!

of R Since m,_, , is still surjective, then 7(S%1) = P(R?) is compact. O
lsd
To be able to see P(R?) as a metric space, we recall the definition of the angular metric on P(R%).

Propositon/Definition 2.2.2. For every [z], [y] € P(R?), let

_ (ay)’
|12 {|yl[*’

i.e. the sine of the angle between the lines Rx and Ry. It is easily seen that 0 is a well-defined map
from P(R?) x P(RY) to [0,+00). One can also check that it defines a metric on P(RY) and induces the
quotient topology on P(R?). We call § the angular metric, or the Fubini-Study metric on P(RY).

o([a], [y]) =1

Proposition 2.2.2. The general linear group acts naturally on P(RY) by the following map

Gl(d,R) x P(R%) — P(R?)

gx
[lg||

(9, [=]) — g [x] =
We recall the notion of an additive cocycle.

Definition 2.2.1. Let G be a topological semi-group acting on a topological X. A continuous map

0:Gx X — R s said to be an additive cocycle if
a(gh,z) = o(g,hz) + o(h,x)
Forall g,h € G and xz € X.
Example 2.2.1. The following map is well-defined and is an additive cocycle:

o: Gl(d,R) x P(R?) — R

Indeed, let g,h € GL(d,R) and [x] € P(R?). We have,

|lgha||
o(gh, |z]) =log
|lgha|| |h$H>
:log< .
[l [[ha]]

|lgha|| |||
= log + log

[|ha]] |||

= o(g, h[z]) + o(h, [z]).
We recall finally the definition of a proper measure (or also non-degenerate) on the projective space.

Definition 2.2.2. We say that a Borel probability measure v on the projective space P(V') of V is proper
if and only if for every hyperplane H of V we have v([H]) = 0, where [H| denotes the projective subspace
m(H) of P(V).



2.3 Random Matrix Product and Lyapunov Expo-

nents

The Lyapunov Exponent plays an important role in a number of different contexts. It’s a major
problem to find both an explicit clear expression for this identity, often referred to as -, and a useful

method of accurate approximation.

Definition 2.3.1. For every g € GL(d,R), let N(g) = max{log||g||,log||g~t||}. Consider a probability
measure p on GL(d,R). We say that p has

1. a moment of order p > 1, if fGL(d,R) N(g)?du(g) < +oo.

2. an exponential moment, if there exists T > 0 such that

fGL(d’R) e™N ) du(g) < +oc.

Propositon/Definition 2.3.1. Let {Y,,,n > 1} be a sequence of independent identically distributed
random variables on the general linear group GLg(R) with common distribution u. We suppose that p

has a moment of order one, i.e.

max{E(log |[Y1]]), E(log [[Y;™"[|)} < co.

Then the numerical sequence (£E (log||Y,,...Y1]|))

- converges in R. Its limit is called the upper Lya-

neN
punov exponent associated with p and will be denoted by v, i.e.

.1
v:= lim —E (log||Ys...Y1]])
n—o00 N
with v € R.

Remark 2.3.1. The upper Lyapunov exponent is independent of the norm chosen since all norms are

equivalent on M(d,R), the latter being finite dimensional real vector space.

To prove the existence of the limit in the Proposition/Definition 2.3.1, we recall the following classical

lemma in real analysis.

Lemma 2.3.1. (Fekete’s lemma) Let {an}tnen be a subadditive sequence of mon-negative terms, i.e.

. a : a
Ontm < aptapy, for every integers n and m. Then, the sequence (ﬁ) converges to inf {ﬁ, m € N}.

neN

Proof of Proposition/Definition 2.3.1: The operator norm || - || is a matrix norm (submultiplicative),
ie. ||AB]|| < ||A]l||B]| for every A,B € M(d,R). It follows readily that the {E (log||Sn||) tnen~ is a
subadditive sequence. Thus the upper Lyapunov exponent is well defined as a consequence of Fekete’s

Lemma. O

We are interested in a stronger mode of convergence in the definition of the upper Lyapunov ex-
ponent, namely an almost sure convergence. We are referring to a thereom of Furstenberg and Kesten
we state here below (Theorem 2.3.2). To motivate this result, we recall first the strong law of large
numbers in classical probability theory which says roughly that the probability that the average of the

observations converges to the expected value is equal to one.



Theorem 2.3.1. (Strong Law of Large numbers)
Let (Q, A, P) be a probability space. and {X;}ien+ an infinite sequence of independent identically dis-
tributed real random wvariables all having the same law. Assume that X1 has a moment of order 1, i.e.
E(|X1|) < +o00. Then for P-almost every w € Q :

X1+ X+ ...+ X)) L E (X ().

n n—00

Theorem 2.3.2. (The Theorem of Furstenburg and Kesten [F0])
Let {Y,,n > 1} be a sequence of independent identically distributed random matrices in GL(d,R) with

common distribution p. With the same assumptions as in Theorem 2.3.1, we have with probability one,

1
lim —log||Y,...Y1|| = 7.
n—oo M

Remark 2.3.2. For d =1, the previous theorem is a straight forward implication of the Strong Law of
Large numbers (Theorem 2.3.1).

Indeed, let Y1,Ys,... be independent identically distributed non-zero real numbers with common distri-
bution p such that E(log |Y1]) < 4o00. Let X;(w) = log|Y;(w)|. Since the Y;’s are independent and
identically distributed then the X;’s are as well. Moreover, i has a moment of order one. Hence, by the

Strong Law of large Numbers one gets :

(it X)) e

n n—o0o
for P-almost all w € €.

. RS 1
This means that nhﬁn;o - ;log |Y:(w)| = nlingo - log(|Yy,...Y1(w)]) = E(log |Y1 (w)]) = 7.

Definition 2.3.2. Let u be a probability measure on Gl(d,R). Let {Y;}ien« be a family of independent
identically distributed random variables in GL(d,R) with the same law . We define the following random
variables on GL(d,R):

Sp=X,..X1; M,=X1..X,

We call them respectively the left and right random walks. We also denote by (R, )nen the family of
random walks defined for every integer n by:
R, =X - X7,

which is nothing than the left random walk but for the probability measure p* on GL(d,R), pushforward
measure of u by the map g — g*.

Remark 2.3.3. For every n € N*, S, and M, have the same law (by independence of the X|s).

Similarly, R, and S} have the same.

2.4 Stationary Measures

Definition 2.4.1. Let G be a topological group acting on a topological space X. Let u be a Borel

probability measure on G and v a Borel probability measure on X.



1. We define ux v to be the probability measure on X given by
[ 1@ awenia = [ [ Hoa)autgavta),
X G X

for any continuous function f on X.

2. We say that v is p-invariant (or stationary) if p*v = v.

3. When X = G and G acts on itself by conjugation, then the u p is denoted by p? and is called
the second convolution power of p. More generally, one can define the nth convolution power of

w by itself for any integer n.

Remark 2.4.1. Let G acting on X, pu a probability measure on G and v a p-invariant probability measure
on X.

1. If g is a random wvariable of G with law p and Z is a random variable on X with law v and

independent of X, then the random variable Z' := g - Z on X has law v.

2. In particular, the nth step of the left and right random walks S, =Y, ---Yy and M,, =Y,---Y,

have law p™.

Proposition 2.4.1. If X is compact, then for any probability measure u on G, there exists at least one

w-invariant probability measure on X.

Example 2.4.1. Despite its simplicity, this ezample will be a guiding one for the next section. Consider
a prozimal element g € GL(2,R) (see Definition 2.1.3) as for instance the diagonal matriz diag(2, %) Let
U;‘,vg_l € P(R?) be the points in the projective line corresponding respectively to the eigenvectors of the
highest and least eigenvalue (in modulus). Let p = 4 be the Dirac delta measure on g. We claim that the
only p-invariant stationary measures on the projective line P(R?) are convex combination of vy := 5vg+
and vy 1= 5%_, the Dirac delta measures on v; and v, . Indeed, first notice that these probability measures
are indeed p-invariant as g stabilizes each eigenspace (each being a line in this case). Hence any convex
combination of these probability measures remains a stationary measure. Consider now a u-stationary
probability measure on P(R?) that gives zero mass to v, , i.e. v({vy}) = 0. It is enough to prove that
v= 51};. Indeed, since g is prozimal, we see by Proposition 2.1.2 that

V[z] € P(R?)\ vy, 9" [2] — vf.

n—-+oo

Since v is g-invariant, and since v({v, }) = 0, we deduce by the dominated convergence theorem that for

any continuous function on P(R?), one has:

/ £(le]) d([a]) = / F(g" ) du([a]) = / Fg ) dn(la]) — Fb).
P(R?) P(R2)\v,

P(R2)
Hence v({vg}) =1, ice. v =104,
We end by a result of Furstenberg.

Proposition 2.4.2. [33,F63] Let u be a probability measure on GL(d,R) such that T',, is strongly irre-
ducible. Then, any p-invariant probability measure on P(R?) is proper (see Definition 2.2.2).

10



2.5 Exterior Products

Given a vector space V', we define VAV, called the exterior product of two copies of V. This space
is a subspace of V ® V' consisting of all linear combinations of tensors of the form v; ® vy — vy ® v1, with
v1,v2 € V. The exterior product of k-copies of V is denoted by AFV, and it is the space spanned by

expressions of the form v; Avg A ... Avg with v; € V foralli=1,...,k.
Remark 2.5.1. ||[v1 A ... Avi|| is the k-dimensional volume of the parallelogram generated by vy, ..., V.

The expression of the angular metric § on the projective space of R? defined in Proposition/Definition

2.2.2 can be expressed using exterior products:

Definition 2.5.1. For every [z], [y] € P(R?), one has:

vy
ol ) =

Proposition 2.5.1. Let g € GL(d,R) and E be a d-dimensional vector space. Let uq,...,u, € E. Then,
(APG)(ur A ... Aup) = gug A ... A guy,.

Definition 2.5.2. We define || AP g|| = sup {||(APg) w,w € APR?, ||w|| = 1}.
Remark 2.5.2. Note that A\P(gh) = (APg)(APh) then , || AP (gh)|] < || AP g]||| AP h|.

Proposition 2.5.2. Let g be a matriz in Gl(d,R). Let a1 > as > ... > aq > 0 be the square roots of the
eigenvalues of g*g. Then, for any p such that 1 < p < d we have,

A2 gll = a1+ .-y

Proof. First, write g in polar decomposition as g = KAU with K and U € O(d) which is the set of

d x d orthogonal matrices and A is equal to diag(ay,...,aq). Since APK and APU are isometries, then

|| AP g|| = [| AP Al|. The set {e;,,...,es,, 1 <i1 < ... < i, < d} represents an orthonormal basis of APR?,
We have, A\PA(e;; A...Nejy,) = Qe N N Q€5 = Gy - e ai, (€, Ao Ney,), for 1 <ip <. <, < d.
Therefore, || AP Al| =sup{a;, - ...-a;,; 1 <id1 < ... <ip <df =ay-...-ap. O

Proposition 2.5.3. Let g be a matriz in GI(d,R). Let a1 > as > ... > aq > 0 be the square roots of the
eigenvalues of g*g. Then,
1
(glel,gls)) _ iyl
llg![ gyl

o=, [y~

Proof. This follows readily from the definition of the distance § and some simple computations:

d(gl=], glyl) _ llgz A gyll-lll [yl
6([=], [y]) gzl llgyl|-llz A yl|
< A2 gl Tyl
gzl [lgyl|
]| [y]|

192 77— 717 ¢
gzl llgyll
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Chapter 3

Random Matrix Products in the

strongly irreducible case

The results of this section are present in [G5], see also [B5, chapter 3]. We now present a main result
on the behavior of the random matrix product S,, without moment hypotheses on the measure pu. We
will always assume that I',, is strongly irreducible and contracting (See Definitions 2.1.2, 2.1.4). We will
see that for every [x] in P(RY), S, contracts almost surely the angular distance § and S} [x] converges
in probability to a random direction independent of [x]. This important result is due to Guivarc’h and
Raugi [G5]. And it is remarkable that it holds under a condition which depends solely on I',. In some

sense this result is the "random version of Proposition 2.1.2”

Theorem 3.0.1. Let (2, A,P) be a probability space. Let Y1,Ys, ... be independent identically distributed
random matrices in GL(d,R) with common distribution p. We suppose that T, is strongly irreducible.
let p be the index of T'), (See Definition 2.1.2)
Then, if g, = Yi1...Yy, then for almost all w € € there exists a p-dimensional subspace V(w) of R?
such that any limit point of {||gn(w)|| ™ gn(w);n > 1} is a rank p matriz with range V(w). Also, for any
non-zero vector x we have,

P{x is orthogonal toV(w)} = 0.

When T, is contracting there exists a unique p-invariant distribution v on P(R?), so that g,(w)v con-

verges weakly to 0wy, where z(w) is any non-zero vector.

Lemma 3.0.1. If p* denotes the distribution of Y7, and I',, is strongly irreducible then, I+ is strongly
irreducible as well.

Proof. Ty- ={g*,9g €.}

Suppose by contradiction that I',- is not strongly irreducible then, there exists a family of proper
subspaces Vi, ..., Vi, of R? such that

Note that if gV = V then ¢*V+ =V+ :
Let z € V4 and y € V then, < g*z,y >=< z,gy >= 0 because gy € V. Therefore, g*V+ = V+.
So, if W; is the subspace orthogonal to V; for all i then,

k k
9*(UW1):UW1 for g € T'p-
i=1 i=1

12



:>g*(U Wl)ZUVVl for g* €T,

This implies that I, is not strongly irreducible. A contradiction.

O

Proposition 3.0.4. Let (2, A, P) be a probability space. Let Y1,Y,... be independent identically dis-
tributed random matrices in GL(d,R) with common distribution u, and S, = Y,...Y1. Consider a polar
decomposition Sy, = K, A,U, with K,,, U, in O(d) (See Proposition 2.1.1), and A,, =diag(a1(n), ...,aq(n))
with a1(n) > ... > aq(n) > 0. IfT',, is strongly irreducible and contracting then,

a) The subspace spanned by {U*(w)e1} converges almost surely to a one-dimensional subspace V(w).

b) With probability one,

lim az(n) lim az(n)

= =0
n—oo ||.Sy| n—oo ay(n)

¢) For any sequence {,,,n > 1} in R? which converges to a non-zero vector,

sup M < 400 a.s
n>1 ||[Sn(w)zn||

Proof. T',, is strongly irreducible and contracting then so is I',«. Then, for almost all w € €2, each limit
point of the sequence {||S} (w)||~1S(w),n > 1} is a rank one matrix g(w) with range V(w). Knowing
that ||Sy|| = a1(n) we get,

S* — UFASK: —s " _ (/" ding (1, as(n) “d(”)> K.
|15l ai(n)’ " ai(n)

If we denote by U (w), Koo (W), az(w), ..., ag(w) the limit points of Uy, (w), K, (w), and

we get,

g(w) = Uk (w) diag(l, az(w), ..., ag(w)) K3 (w)

We know that, with probability one, the rank of g(w) = 1.
Then, az(w) = ... = ag(w) = 0 with a1 (w) = 1 # 0. Thus proving part (b).
Let y € R Then,

9(w)y = Us . Koy
0

If KX y € Rey then, g(w)y € UX Rey. So, Im(g(w)) = RUZ €.
Therefore [2](w) = [UZe1] ie UZ ey is the range of g(w).

For part (c), let {x,,} be a sequence in R¢ which converges to a non-zero vector z. Using Frobenius norm

d 2
HSnanQ HAnUnan 2 a;
= = - < Un ns i>
ENE 14,1l 2w o€

=1

we get,

ai

Snnll? as 2
”|sﬁ|2|2<> <2 Utes >.
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Let {yn(w)} be the sequence which converges to y(w), with y(w) being the orthogonal projection of
onto V(w). Then,

timn U5l () g (@)

n—oo || nH n>1
1
= - s.n_ = ||yn(w)||
lim sup TSl sup (%1)
n—o00 nen n>1 2
S, 1
= lim sup [15n ] < sup <a1>
n—oo  ||SnTnl| [y ()] n>1

But sup <Z1> = 400, and P(z is orthogonal to V(w)) = P (||y(w)|| = 0) = 0.
n>1 2
Thus almost-surely,

[|Sn (@)

li < .
msup ————~—— 1S (@)an]] 400

This implies that the sequence |! EL() )||| is bounded above. Therefore, its sup is finite a.s.
Tn

O

Corollary 3.0.1. Consider the sequence {Y,,n > 1} of independent identically distributed random
matrices in GL(d,R) with common distribution . We suppose E (log|[Y1]]) < 400 and Ty, is strongly

irreducible. Then, for any sequence {x,,n > 1} that converges to a non-zero vector we have,

lim —log [V Yiz,|| = a.s.

n—,oo N

In particular,

1
lim sup —E(log ||Yy..Y1iz,||) =~ (3.1)
1% aleP(RY) T

Proof. Let S, = Y,..Y1 and a1(n) > ... > aq(n) > 0 be the square roots of the eigenvalues of S}:.S,,.

. . Spx
Then, for any sequence {x,} which converges to a non-zero vector x, we get inf M

>0 a.s. Thus,
n21 HSnH

there exists a constant ¢ such that

0<ce< < =1 a.s
|1Sn| 1Sl
So,
flogc—|— logHS | < 710g||5 Tl < = logHSnH
Hence,
.1 o1 1
lim —log||Sy|| < lim —log||Shzn|l < lim —log||Sy||
n—oo N, n—,oo N n—oo N,
Therefore,

1
lim —log||Shzn|| =~ a.s
n—oo N

Using the LLN, one can easily prove for any sequence of vectors {z,, }, in R? of norm 1 that the sequence
of random variables {2 log||S,2y|[}, is uniformly integrable so that the previous convergence is also

true in L'. Thus proving 3.1. O
Theorem 3.0.2. Let S, =Y,,...Y1, where Y;’s are #id matrices in GL(d,R) with common distribution
. Suppose that I, is strongly irreducible and contracting. Then,

(i) For any [x],[y] in P(R?), lim &(S,.[z], Sn.[y]) =0 a.s

n— oo
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(i) There exists a random direction [z] such that S}.[x] converges in probability to [z], uniformly in
[z] € PRY).

(iii) There is a unique p-invariant distribution v on P(R?) and for any continuous function f on P(R?),

sup |E{f(Sn[x})}—/fdu’ -0 asn — oo.
[z]€ P(R)

Proof. Let a1, as be the square roots of the eigenvalues of S 5,.
Let [z], [y] € P(R?). Then,

0(Snlz], Suly)) _ [[A2 Snllllz Ayllll=]] [yl

(@) = Sl [1Sawlllle Ayl
_ aras lal] [yl
15wl T1Suyl]
az 1ISull 1ISa]

= Al
Snll [1Sn]] [[Snyll

From Proposition 3.0.4 we get that almost surely,

lim 6(Snlz], Snlyl)
n—oo 5([%], [y

~—

And since §([z], [y]) < 1, we get that nl;rgo 0(Sp-[z], Sn-ly]) =0 a.s

Thus proving (i).

The above can be done when taking any two sequences {z,} and {y,} of unit vectors that converge in
direction. So we get, lim §(S,.%, Sn.Un) = 0 almost surely. Let u* be the common distribution of the
random matrices X; QHYO;2 and let R, = X,,...X}.

7

We claim that sup E (6(R,[z], Rnly])) —— 0.
[=],[y] nree
Suppose not, then there exists an € > 0 and subsequences {x, }, {yn,} for which

E (6(Rn[t]n;; Rulyln,)) > € (%)

Without loss of generality, we can assume that {z,,} and {y,,} converge. Then,

isoo  8([x]n,, [Y]n;)

=0

It would imply that lim §(R,[2]n,, Rn[y]n,) = 0. This contradicts (x).
11— 00
Therefore,

sup E (0(R,[z], Rn]y])) —— 0.

(][9] nee

We know that if the probability measure m is the unique p*-invariant distribution on P(R?) then,
gnm — 0, weakly, with g, = X7...X,,.
n—oo
Then we have,
E (6(5,[2], [2])) < E(6(S,[x], S5[])) + E(6(S,1yl; [2]))

But S} and R,, have the same law so,
(353 a) (1)) < B (0(Rula), Raly)) + E(3(S3l0) )
— [E6(S; (). D) dm(o) < [ E @Rl Rl dm(l) + [ B (6(S; . 1) dm(()

—  swp EGSIl[)) < sup 1E(5(Rn[x],Rn[yD)+E(/ 5(52[y],[21)dm([y])>
[z]eP(R?) [z],[y]€P(R)
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But,

sup B (0(Rnlz], Raly])) — 0
[o]. [y €P(RY) nee

nd & ([ 8(gu1o 12D (D) ) = E [ 0(01 EDdgum (@) ) o> E 61 ) =0

n—oo
Therefore, S[z] converges in probability to [2], uniformly in [x] € P(R%).
Thus proving (ii).
Let f be a continuous function on P(RY). We have, S¥[z] converges in probability to [z], uniformly in
[z] € P(R?) then, f(S}[z]) converges in probability to f([z]), uniformly in [x] € P(R%). So,
sup  E[{f(S;.[]) = f([D[} — 0

[z]€P(R%) n—00

But sup |E(f(Rnl2]) - / pam| < swp E{[7(83 e - S0D]} 2 0

[z]€P(RT) €P(R4) n—00
where m is the unique p*-invariant distribution on P(R9).

Similarly, we can work with Y; instead of X; and v being the unique p-invariant distribution on P(R9)
to get,
sup ‘E{f(Sn[x})}—/de’ -0 as n — oo.

[z]€P(R?)

Thus proving (iii). O
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Chapter 4

Central Limit theorem of log||.S,||

when the measure has a density

The reference for this section is [L2] and Chapter 5 in [B5].
In this section we allow p to have an exponential moment and a density with respect to the Haar measure
on GL(d,R). We prove Theorem 1.0.1 in this setting and observe that he density assumption will simplify

our task. We get rid of this assumption in the next section.

4.1 Central Limit Theorem in R

From a certain population of interest one can pick random samples of the same size then calculate
the mean for each one of these samples. These samples are thought of as being independent from one
another. The Central Limit Theorem states that regardless of what the original population distribution
looked like, our sampling distribution will have a normal distribution. Of course for the theorem to hold

we do need a sample size that is large enough.

Theorem 4.1.1. Let X1, X5, ..., X,, be real independent identically distributed random variables in a
probability space (2, A,P), with common distribution p with moment of order 2 and finite variance

% > 0. "
Then, Z, = % has a limiting cumulative distribution function which approaches a Normal
no

Distribution. This means,

I A
P(Z, € [a,b]) — —/ e /2.

n— oo 2w

Proof. In R, the X/s are independent identically distributed real random variables of law p and variance

o2, Assume p is finite and of order 2 with 02 < oo.
n
Zj:l Xj —np
\/ﬁa '
Define the characteristic function of Z,, by

Let tin R and n in N. Let Z, =

Dy (t) = E(et?n).

17



Then,

Dz, (t) = E (evin im Xomm)
_ E (e 5 05)
:E He 1':0(X7_'u)
j=1
® H E (6 \/%c, (Xj*ll))

(%) Since the X;’s are independent and have the same law.

Oz, (%) =®2,(0) + ﬁ% (0) + (f) z,(0) + g e(%)

Then, the Taylor expansion of @z, around 0 gives:

With (%) — 0.

\/ﬁn—mo
So,
t it 2 2t
® — ) =1+ —E(Z —R(Z?%) 4+ Ze(—
o (Jz) =1+ JHE@) - BED + )
2 2t
=1t —e(—=)

Since E(Z;) =0 and E(Z}) =E <(X1_“)2> _1lg (X1 —E(X1))?) = Z—2 =1
Then, &z, <t> = exp (—t? + t2€()) , with e(—=) — 0.
Vn 2n  n /n n’ n—oo
Hence, nlggo Dy (1) = nh_)ngo (szl (%))n — ¢ t7/2,
Notice that @, (t) = E (e?") = i, (—t) , where fi(t) = /e_mdu(x).
Then, fin(t) = ®z,(~t) and lim 4y (t) = e 12 = ().
Levy’s continuity theorem states that if a sequence of functions f,, (¢) converges to a function f(t) for all ¢

in R? with f being a constant at 0 then, there exists a probability measure v on R? such that #(¢) = f(t)

and f, — v weakly. Let v be the fourier inverse of o. Then,

1
v(t) = 2,

Ver

Since p, — v weakly, then for every continuous and bounded function ¢ we have,

[e®an® = [ e,

Since v is absolutely continuous with respect to the Lebesgue measure, where it gives mass zero to the

boundary of [a,b] we have that,

1 [ e
E (Liy(Zn)) =P (Zn € (a,b) — —— —t7/24t.
(Lon(Z) =P (Zy e (@b) — —= [ ¢

n— oo
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4.2 A Lemma of Perturbation Theory

This section is only about perturbation theory of operators. We refer to [D].
We work on an abstract Banach space E over C. We consider an analytical family of bounded operators
{T(£),£ € C} on E. We suppose that there exists a rank-one operator N(0) such that 7"(0) converges
exponentially fast to N(0) in the following sense ie nl;ngo |T™(0) — N(0)]|*/™ < 1. our goal is to find a

suitable decomposition of T'(§) for £ small enough.

Definition 4.2.1. The spectrum of an operator T is the set of complex numbers \ such that the operator

M — T is not invertible.

Definition 4.2.2. The resolvent set of an operator T defied on a Banach space E, denoted by r(T), is
the set of complex numbers \ for which (A —T)~! exists as a bounded operator. It is the compliment of
the spectrum of T, denoted by o(T'). We define the resolvent function of T' by

R(2,T) = (21 - T)™*
Which is well-defined outside the spectrum of T'.
Remark 4.2.1. The resolvent set r(T') is open and R(z,T) is analytic in r(T).

Lemma 4.2.1. Let Uy and Uy be two open sets in C such that Uy NUy = (). Suppose that the spectrum
of the operator T given by o(T) is contained in Uy U Us. Define

1
oU,
No=— [ R(zT)d
> 7 o = -
oUy

Then, N1 and No are two projections such that NyT = TNy with N1 + No = I and N1Ny = NoNj.

Theorem 4.2.1. Let E be a complex Banach space and V' a neighborhood of 0 in C. Let {T'(£),£ € V'}
be an analytic family of bounded operators on E. Suppose there exists a rank-one operator N(0) such
that

p = lim ||T"(0) ~ N(O)||/" < 1.

Then, one can find an € > 0 such that for |£| < € we have,

T (&) = MEN(E) +Q(&)

where
(i) M) is the unique eigenvalue of T'(§) of mazimum modulus.
(i) N(&) is a rank-one projection such that N(£)Q(§) = Q(§)N (&) = 0.

(11i) The maps & — A(€), £ — N (&), and & — Q(&) are analytic.
2+4+p

(iv) |A(§)] > —5 and for some p € N, and there ezists ¢ > 0 such that for every n € N we have,
. 1+2p it
— < .
[z <-(5*)
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(v) Lett e R. We have,

efit\/ﬁ/\'(O)Tn(%) — e#(A”(O)fA""(O))N(O) (4.1)
And for a fized n € N, let £ € C so that we have,
711;; (e OTn(g)) — (X(0) = N2(0)) N(0). (4.2)
Proof. Since nh_)ngo T"(0) = N(0) then, N(0) = T"(0) + R,, with R, = 0.

So, N(0)T(0) = T(0)"™* + R, T(0)
and T(0)N(0) = T(0)"** + T(0)R,,.

Thus, N(0)T(0) — T(0)N(0) = R, T(0) — T (0)R,,.

As n — oo we get T(0)N(0) = N(0)T'(0). Notice that nlgréo N(0)T(0) = nll{go (T"1(0) + R, T(0)).
Therefore, N(0)T'(0) = N(0).

Then, the restriction of T(0) on ImN(0) is the identity and its restriction on KerN(0) is T'(0) — N(0).

The spectral radius of T(O){ImN(O) is 1.

Let p be the spectral radius of T' Then, lim ||T™(0) — N(0)||*/™ < 1. Thus,
n— oo

(O)|KerN(O)'
o (T(0) =0 (T(O)|KerN(O)> Uo (T(O)|ImN(O)> c B(0,p) U {1}.

Now, let v be a small enough circle around 1. Define P to be an operator on F given by

p—_- / R(=,T(0))dz

21

where R(z,T(0)) = (2I —T(0))~! is the Rezolvent function of T'(0), defined on the compliment of the
spectrum of T'(0), called the resolvent set of T'(0).
Now, for all z € E we have,

1
Pz = 27m[yR(z,T(O))xdz

Notice that Pz is well-defined since z ¢ o(7'(0)). We have two cases:

Case 1: = € KerN(0). Then, T(0) = T(0) — N(0) and 1 ¢ o(7T'(0)). So, R(z,T(0))z is analytic in the disc
of boundary . Thus, by Cauchy’s formula,

Pz = o /{ R(z,T(0))zdz = 0.
Case 2: z € ImN(0). Then, T(0) = I and R(z,7T(0)) = (2 — 1)~1. So, by Cauchy’s formula,
1 x

szi'
211 7z—l

dz==x

Hence, P = N(0) and it’s a rank-one projection on E.
Since R(z,T(0))T(0) =T(0)R(2,T(0)) = —I 4+ R(z,7(0)), we get T(0)N(0) = N(0)T(0) = N(0).
Let € > 0 and € € V such that || < e. The map £ — T'(€) is continuous , so for |£| < € we have,
17€) = TO)|| < ¢ = [|R(z, T(0))|| "
This ensures that Z[(T(&) —T(0)) R(z,T(0))]" defines a geometric series with inverse I — (T'(§) — T'(0)) R(z, T(0)).
But,
1 (T(€) - T(0)) R(= T(0)) = (I — T(0))R(=T(0)) — (T(€) — T(0))R(z, T(0)
= (21 =T(0) = T(&) + T(0)) R(2,T(0))
= (I = T(£))R(2,T(0))
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Then, R(z,T(¢)) = Y (T(§) = T(0))" R(z,T(0))"*".
This shows that whenever ||T'(¢) — T(0)|| < ||R(z,T(0))||~' we have, R(z,T(£)) is analytic and well-
defined with z ¢ o(T'(£)).

1- 142
Consider the 2 discs D; (1, 3”) and Dy <o, +3 p ) Let y1 = 8Dy and 72 = dDs. Let U = Uy U Us,
1+ 2p)

1—
where U, = B(1, Tp) and U, = B(0,

So that U = D; U Dy. We have o(T(0)) C U.

Now let M = sup{||R(z,T(0))||,z ¢ U}. For ||T'(§) — T(0)|| < % we have R(z,T(&)) is well-defined and
analytic with z ¢ o(T(£)). The continuity of the map £ —— T'(§) ensures the continuity of the map
& — A(§) where \(§) € o(T(€)). Since o(T(0)) C U, we have o(T'(¢)) C U, and for all € > 0 there exists
€ > 0 such that for |¢| < € we have [A(§) — A(0)| < €, where A\(0) is the spectral radius of T'(0) that is

equal to 1.

1-— 2
For ¢ = Tp >0 we get |A(&)] > % with A(§) being the unique eigenvalue of T'(¢) with maximum

modulus. We have U; and U, are open sets with U; N Uy = Dy N Dy = () such that o(T(£)) C U.

Then, by the previous lemma, we can define

N© = 5 [ BT
and

I—N(¢) = %/R(z,T(ﬁ))dz

Both being rank-one projections and T(§)N (&) = N(&)T(€).
Claim: N(&) is of rank one if ||[N(§) — N(0)|] < 1:
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N(0) is of rank one so there exists some « € E such that for all y € E, there exists some A\, € C, so that
N(0)y = A\yz. In particular, we take y € ImN(0) then, y = A\yx.
Let z,y € F and A € C such that N(§)x =z and N(§)y = y. Look at ||z — Ay|] :

llz = Myl| = [IN(E)(x = Ay)[| = || (N(£) = N (0)) (= = Ay)l|
< [IN(E) = NO)I[{|z = |
< [[(z = M)l

This is true if and only if z = Ay. Thus, N(§) is of rank one.

Now, let zp € ImN (&) . N(§) is of rank one then, for all y € E the exists A € C so that N(§)y = Azo. In

particular for y = T(&)zg € E. Then, T(§)N(§)zo = N(&)T(§)xo = Axo. So, T(§)xo = AM(§)xo. Thus,

) = T(EN(E) = AEN(E)-

(
A(€) is an eigenvalue of T'(€) and x is its corresponding eigen function. Hence, we get N (£)T'(¢
Now, define Q(£) = T(§)(I — N(£)) = T(£) — A§)N(). Then,

T(&) = MEN (&) + Q(S)-
Notice that N(£)Q(&) = Q(§)N(£) = 0. So, for all n > 1,

T7(&) = A" (EN(E) + Q"(6).
Claim: Q"(¢) = 2%” /z"R(z,T({“))dz:

We have,
T"(ER(2,T(E)) = (T"(§) — 2" I+ 2"I) R(2, T (£))
=2"R(z,T(§)) — (z"] = T"(§))R(z,T(E))
=2"R(2,T(€)) = (z"1 = T"(&))(z] = T(¢)) "
=2"R(2,T(€)) = (" '+ 2"2T(€) + ... + 2T 2(§) + T"1(€)) -
So,
1
QO =T = N©) = o [ THORGT(E):
1 n
b R(z,T(£))dz
— % 2T 4 2 TAT(E) o A 2T (E) T (€)d .

V2

Then !, since the map z — 2* is analytic, we get

Q" (&) = %/Z”R(Z,T(f))dz.

Now, for £ € V' and some p € N we have,

n _ 1 P
@ﬂ@%~f/ n L R, 1))

!To integrate a Banach space-valued function f over a contour C in C is the same as in Complex
b

Analysis where we parameterize C as z = z(t) with a <t < b and /fdz = /f(z(t))z'(t)dt. And we

can ”pull out” any constant outside the integral.
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Then,

_ n n _ T
|seo| <3 /"Z I
Denote b = —R(z, T .
ooy o= s ||z 7o)

&l<e

For any £ € V we get,
dr c
n <7 n
i@ ©| < = 1
Y2

1 + 2,0 n+1
=cC .
3

. 1+2P n+1
dgpQ (@H ( 3 )

it
Now, let t € R and £ = 2 For |€] < e we have,

Hence,

sup
l€l<e

©)) a1

Jn
w2 (it
T(\/ﬁ) A (\/ﬁ)N(\/ﬁ)vLQ(\/ﬁ)
Taylor expansion of A(.) near zero gives:
it it [ ﬁe t
)\(%)—)\(0)‘*‘%)\( ) — 2n>\ (0) + ” (\/ﬁ)
—A\0) + \%X(O) _ %)\”(0) + ;—n)\’g(o) _ %A’?(O) t—e(%)
it 2, 2 2, 2t
=1+ %A (0) — TR (0) + %/\2(0) - %/\2(0) ge(—n)
i 2 2 2
— exp <\/%X(0) — N(0) + 5 A(0) + tne(tn)>
where 6(%) =20

This is because

it _ﬁ 7 ﬁ 2 ie L
exp <\/ﬁ)\ (0) 2n)\ (0) + Qn)\ (0) + - ( ))

. 5 2
i 2 2 (%X(O) A(0) ;TLX?(O)) 2y
=1 AR R /4 o2 v
+ \/ﬁ/\(o) 2n/\ (0)+2n/\ (0) + 5 + ne( n)
it 2 2 2 2t
=1 AR I V4 o2 22 o
+\/ﬁA(0) 2n/\ (0)+2n/\ (0) 2nA (0) + ne(\/ﬁ)
Thus, A(~1) = exp (ity/mN(0) — SN (0) + Ea2(0) + Le(—o)
us, \/ﬁ =exp | 1tvn 5 5 € -~
Hence

T"(%) = exp (z’t\/ﬁ)\’(o) - %X’(o) + %)\’2(0) + tne(n)) N(T) + Q"(\f)

where e(—=) — 0.

77 i
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Therefore, .
e_it\/ﬁx(O)Tn(ﬂ) L (V- A O) N (0)

n’ n—oo

Let n € N. For every £ € C we have,

(&) = A"(ON () +Q™(¢)

Then,

d n =n n—1 / n d n
a1 ) = nATHON NG + A1) 3 N (E) + 5Q ©)

Knowing that A(0) =1 we get,

d

n / d
d—gT (g)|§:0 =nN(0)N(0) + —

Now consider e~ ()T (£). We have,

A (e @ pney) = Lopn(ey—neN ©) _ 37 (g)e—nEN ©)pn
3¢ (NOTQ)) = FTMO TN X 0)e N OT"g).
Then,
d72 ( —n&A’(O)Tn(f)) _ izTn(g) —né&X'(0)
aez \° e €
. ’ —nf)\’(O)i n
nA'(0)e d€T &)
+n?XN?(0)e N O AN () + Q™€)
, d
— N OO (T HONON(E) + N O VO + 160" ).
Evaluating at zero we get:
@ (N OT(©)) |y = (nA"(0) — N (2N (0) + n2X(0)Q"(0)
d€2 £=0
d2 n , d2
+d7£2Q )‘5 0 2n)\( )dE ‘5 0 df ‘5 0°

Hence,

1 d? ( 7n.5/\'(0)Tn( )

n dée2 — (A"(0) = X"?(0))N(0).

|5 0 n~>oo

4.3 The Fourier-Laplace Transform

We go back to our framework and we are concerned with the central limit behavior of log||.S,,||. Here

we give a specific form for our Banach space E and our family of operators {T'(£)}.

Definition 4.3.1. Let E = Co(P(R?)). Define formally the operator

T(€)f((x]) = E (55 5 f(g - [a]))

for g € GL(d,R), [z] € P(RY) and & € C with f being a comples-valued function on P(R).
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Proposition 4.3.1. Consider the following Markov chain on GL(d, R)x P(RY) defined by X1 = (Y1, [z]), Xo =

(Y2, Y1[z]), ..., Xnn = (Y, Sn—1[z]). The following defines an additive cocycle o(g, [x]) = log Hf’ﬂ, where
x

for ||z|| = 1 we have,

log||Snz|| = o (S, ZO’
i=1
Remark 4.3.1. Note that T(0) is the Markov operator of the Markov chain presented in the previous
Proposition 4.3.1, where for any complez-valued function f and any [z] € P(R?) we get

:/ﬂg[nww>

Proposition 4.3.2. Let Y1,Ys,... be independent identically distributed random matrices in GL(d,R)

with common distribution p.
Y3 el
Let T(&)f([z]) = E (eglog e f(yy- [m])) Then, for ||z|| =1 and n > 1 we get

() f([e) = E (€785l (5, - [a]) ).

Proof. We prove this by induction. It is true for the case n = 1.

Suppose it’s true for n — 1 that is

T (©)f (ja]) = E (e o8 1502wl f (5, - [a]))
We prove it for n:
T"(©)f([2]) = T"1(€) (T(€)f) ([=])

o Sn-v D) F(S,_y - [JUD)
eﬁa(Snfl7[$])650(K“S"71[w])f(5” ’ [x]))

[
Proposition 4.3.3. The family of operators {T(§)} for & in a neighborhood V' of 0 is bounded.
Proof. Let ¢ in in a neighborhood V of 0. Let f be a complex-valued function on P(R?). We have,
ITE)1] < 11]]oc supE (&% llomm )
< Hf”oosup]E (eme(ﬁ)loquH =] H)
Re(§)
§WMwﬂOMMﬂ
< Q.
Only when Re(§) < 7, where 7 > 0 and E(||g||”) < oo given that x has an exponential moment. O
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4.4 Density with respect to The Haar Measure

In what follows we assume that p has a density ® with respect to the Haar measure m, that is
_du
dm’

Definition 4.4.1. We say an operator T is compact if it is a linear operator from a Banach space X to
another Banach space Y, such that the image under T of any bounded subset of X is a relatively compact

subset of Y (has compact closure). Such an operator would necessarily be bounded and continuous.

Proposition 4.4.1. Let p be a probability measure on GL(d,R) that has density ® with respect to the
Haar measure m. Let T(0) be a bounded operator on Co(P(R?)) defined by

D:/ﬂgwmww

for every continuous function f on P(R?). Then, T(0) is a compact operator.

Proof. For simplicity we write T(0) = T. To prove that T is a compact operator we prove that the set
S = {Tf;|f| <1} is a relatively compact subset of Co(P(R?)) . Let f be a function in Co(P(R%)). Let
[z] and [y] in P(RY). The action of O(d) on P(R?) is transitive so there exists kq, ks in O(d) so that
[#] = k1[e1] and [y] = kaleq] .

Without loss of generality we have, 6([z], [y]) = ||k2 — k1|| = ||k3 ' — k;'||. Let C.(R) be the set of
continuous functions in R with compact support. Note that ® € L!(R) and C.(R) is dense in L'(R) then,
for € > 0 there exists ¥ in C.(R) such that ||¥ — ®||; < g

Let K = Supp(¥) and C = Ignea%{HgH} Since ¥ is uniformly continuous on GL(d, R) then for g and h in

GL(d,R), there exists some 3 > 0 such that ||g — h|| < § implies |¥(g) — ¥(h)| < %

So for ki, ko € O(d). For ||ky* — kY| < g and for all g € ki K NkoK we have, ||gks ' — gki || < B.

Hence /|\I'(gl<;2_1) — U(gk; H|dm(g) < gm(Kkjl N Kky) < oo. We have S is closed and bounded. By
Arzela-Ascoli , we only still need to show that this set is equicontiuous. Let kq, ko € O(d). For all € > 0,
there exists 0 < § = 2; for all f in Co(P(R?)) and [z], [y] in P(R?) we have,

74z ) = Tf s -] = | [ Flake fea) = Flohs - ea)n)]
= | [ staka - le)blg)im(s) - [ (g -] @(g)dmo)
= | [ 1ta- lex)Bloky amigks ) ~ [ Flg- ) Blghdmiohi )]
= | [ 1tg- lex)) (2lgky") - @(gki")) dim(g)
s/Wﬂg¢QDWMmgw—¢wmﬁﬂmmm

g/@@@%—mwfwmw>
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So,

T4k lex]) = TH - ea])] < [ [Blgks™) = Wlgks ) + Blgks ™) - D(ghi )
+W(gki ) — W(gkyh)| dm(g)
§/|‘1>(9k5 W(gky M) + [ (ghh) — @(gk )]
+ [ U(gkyt) — W(gkit)|dm(g)
/|<I> gk2 ng |dm /’\I/ gk gkl ’dm
/|x1/ gk3') — W(gky )|dm(g)
cELEL €
-3 3 3
=€
Therefore, T is a compact operator. O

Theorem 4.4.1 (CLT). Let p be a probability measure on GL(d,R) that has density ® with respect to
the Haar measure m. Let Y1,Ys, ... be independent identically distributed random matrices in GL(d,R)

with common distribution u. Suppose L'y, is strongly irreducible and contracting, and v is the unique
log || Sn || — ny

NG

p-invariant distribution on P(R?). If y represents the upper Lyapunov exponent then,

converges in distribution to N'(0,02), with a* > 0.
Proof. We choose Co(P(R?)) to be our Banach space and define on it
¢ log Y121l
T()f([o]) = E (5 T f(v3 - a])).
Then, by Proposition 4.3.2 and for ||z|| = 1, we get

()£ ([a]) = E (€157l (5, - a])).

Notice that T'(0 /f ) for g € GL(d,R).

Let N(0)f([x]) :/f( dv([y]) = v(f)L. Tt is immediate that N2(0) = N(0), and T(0)N(0) =
N(0)T(0) = N(0) since p* v = .

N(0) is a constant operator and ||T(0)f([])|lcc < ||fl|cc for all f continuous on P(R?), so T/(0) and
N(0) are bounded operators on C§°. By Theorem 3.0.2 we have that

sup [E(f(Su-[o])) ~ [ fav] — 0
[z]eP(R9)
Using operators we write

IT"(0) = N(0)[[oc — 0.

Let Q™(0) = T™(0)—N(0). So, we have |[|Q™(0)||cc — 0. This means that for every continuous function
n— oo
f and every [z] €P(R?) we have,
Q"(0)f([z]) — 0
Let A € 0(Q(0)) be the eigenvalue of Q(0) associated with f in Co(P(R?)).
Then, A" f([z]) — 0. This implies that |A| < 1 for all eigenvalues A in o(Q(0)).

Working on Co(P(R?)) having density with respect to the Haar measure ensure that T'(0) is a compact
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operator. Thus, Q(0) is also a compact operator; Hence, o(Q(0)) only contains eigenvalues.

Thus, p(Q(0)) := sup{|A|, A € 0(Q(0))} would be less that one as well. Then, by Gelfand’s formula, we
deduce that p(Q(0)) = Jim 1Qm(0)||X" < 1

So, by Theorem 4.2.1 and for € > 0 and £ € C satisfying |£| < € we have,

(&) = A"(N (&) +Q"(8)

But
M1 () = E (e 150<11)
— N (EON©L([e]) + Q" (©)1([e).
Then,
T O]y = B (log 1Syl
= N ONON (i) + VO] + 3Q 1Dy

Knowing that N(0)1([z]) = 1([z]) we get,

Jim B (log [S,a) = X(0) + lim 2 NE(el)| o, + Jim - 22Q (@1

= X(0)
1
But lim —E (log||S,z||) = v. Therefore \'(0) = 1.
n—,oo N

We also know that

0%2 (e T (€)1([2])) [,y = (nA"(0) = ny*)N(0)L([z]) + n*+*(0)Q" (0)L([z])
a2 a2
+ g QO o = 2073 Q O]y + 5z VO |y
But

d2
dez

d?
dg
E ((log [|Sna]| — n7)%).

(e*”EVT”(g)]l([a:])) |£:0 2]E( Elogllsnzllfnﬁ"/)

le=o

. 1 2\ _ 2
Then, nh_)ngo EE ((log [|Sn|| — ny)?) = X"(0) =~

Thus, there exists a 02 > 0 so that \’(0) — 4% = o2.

Hence, using Theorem 4.2.1, and for £ = we get,
\/ﬁ
E (e%(log\\snxﬂ—nﬁ/)) . e,zﬂ 2
n—oo ’
log ||Shz|| —
Therefore, w converges in distribution to N(0,0?), with 02 > 0.
n
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Note that by Corollary 3.0.1 we know that is bounded for every non-zero x. And since almost-

1

surely v = lim —log [|S,]||, then we can talk about a central limit theorem for log ||Sy|| only.
n—oo 1

log ||:Snl| — ny

Vn

o? is actually strictly positive (02 > 0). For this See [L2].

Therefore, converges in distribution to A'(0,02), with 02 > 0. One can further prove that

O

29



Chapter 5

Central Limit theorem of log||.S||
when the measure has an

exponential moment

In this section our measure u is not assumed to have density with respect to the Haar measure, only
an exponential moment is enough. The idea is to find a suitable Banach space so that the operators we
defined previously satisfy the properties of Theorem 4.2.1. But first we present some consequences of

the Ergodic theorem that would help establish the fact that the two upper lyapunov exponents satisfy
71> 72

5.1 Consequences of the Ergodic Theorem

Ergodic Theory is the study of the long term average behavior of systems evolving in time. The
collection of all states of the system form a space X and the evolution is represented by a transformation
T. Here, and in our case, the space is a probability space (X, F, 1), and the evolution is described by a

measurable transformation T : X —— X, where T is measure preserving.

Definition 5.1.1. Let (X, F,u) be a probability space and T : X — X measurable. We say that T is
measure preserving with respect to u if for all A € F we have, p(T~'A) = u(A). Same as saying p is

T-invariant.

Theorem 5.1.1 (The Ergodic Theorem). Let (X, F,u) be a probability space and let T : X — X be a

measure preserving transformation. Then, for any fin L'(u),

n—1
Jim S (T ) = £

i=0
exists almost surely. Moreover, it s T-invariant (md/ fdu = / frdu.
X X

Proposition 5.1.1. Let (E,F,m) be a probability space and 0 : E — E be a measure preserving

transformation.
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If f : E— R is such that /f+ dm < oo and lim Z f 0" = 400 almost everywhere then,
n—oo
i=1
fe L' (dm) and /fdm > 0.

Proof. By the Ergodic Theorem we have lim — Z (0 (x)) = f*.

n—oo N
=1
n

Since lim Z f 6" = +00 almost everywhere then, f* > 0 and f is integrable. We have/ fdu = / frdp.

i=1

Assume/ fd,u—O—/ f*dp. Then, f* =0 a.e. Thus lim fo 0%(x)) = 0 a.e. This means that

n—00 N

for m-almost all x in F and for all § > 0, there exists an ng € N such that for all n > ng we have,

|Sn(2)] < nd, where S, = Zf@l.
i=1
Set I.(t) = [t — e,t + €] and R;,(x) = A (U, I.(Si(z))), where A denotes the lebesgue measure on R.

Let n > ng. We have,

Ry (z) — Ry, (z) = A(Uisy 1e(Si(2))) — A (U2, 1e(Si(x)))
/\( i= nOI (SZ J?)))
A

(
( o [Si(x) — €, 8i(x) + e])

IN

But,

[Si(z) —€,S;(x) + €] C[—i0 —€,id + €]

— U, [Si(z) — €, Si(x) + €] C U, [—i0 — €,i6 + €]
= [-nd —€,nd + €
So, Ry, (z) — Ry, () < A([-nd — €,n0 + €]) = 2nd + 2¢. Then,
26

1 1
R < _R€ 25 + ==
Ry (@) S Ry () 420+

Thus,
lim sup — RE( ) <20

n—oo

For all § > 0. Therefore, lim R (z) =0 for m-almost all z in F.

n—oo N

1 1
Hence, we have that lim f/Rfldm =0, that is lim —E(R;,) =0

n—o00 N n—o00 N

Notice that S,,0 = S,+1 — S1. So,
Ri g — R0 = X (U L(Si)) = A (Ve Le(Sin — S1))
= A (U1 L(80) = A (U2 1e(Sh))
> 2elf15,-5,|>2¢,i=2,....n+1}

Then, E(R;, ) — E(R;,0) > 2em ({x, |Si(x) — S1(x)| > 2¢,i=2,...,n+1}).
But 6 is m-preserving so, E(R;, ) — E(R;,) > 2em ({z, |Si(x)| > 2¢,i = 1,...,n}). Hence,

E(RS) — E(RS) > 2em ({z, |S1(2)| > 2¢})
E(RS) — E(RS) > 2em ({z, |S1(z)] > 2¢ and |Sa(z)| > 2¢})

E(R;, 1) —E(R;) > 2em ({z, |S1(x)] > 2€ and , ..., |S,(x)| > 2¢})
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Now, let Ay = {z : |Si(z)| > 2¢, Vi = 1,...,k}. Then we have,

E(R;, 1) — E(R}) = 2em(Ay)
Notice that {A,,},>1 is decreasing where A, +1 C A4, for all n > 1. So,

m(Np>14,) = lim m(4,).

n— oo

For all n > 1 we have,
E(R;, 1) — E(R]) > 2nem(A,).

Thus,
]E € €
( n+1) _ E(Rl) > 2€m(An).
n n
Hence,
E(Rs
lim w > 2em (Np>145)
n— o0 n -
= 2em ({z,]S:(x)| > 2¢, Vi > 1}).
. E(Rg) :

But lim =0. So, m ({x, |S:(x)| > 2¢, Vi > 1}) = 0.

n—oo n
Therefore, for any integer p > 0 and € > 0, we have,
m ({z,[Si4p(z) — Sp(x)| > €, Vi=1}) =0

Let € >0,e € Q. Let A, ={z: 3i>1,Vpe N, |Sit,(z) — Sp(x)] <€}
Then, m(A) =1 for all € > 0,e € Q. Hence, m(NA,) = 1. This shows that for m-almost every z in F
and for all € > 0 with ¢ € Q, there exists i = i(e,w) > 1, so that for all p € N* we have,

Sip(@) = Si(a)| < e

This is equivalent to saying that {S), }»,>1 is Cauchy in R. So, {S,, }n>1 is convergent in R. A contradiction

with the fact that lim S, = 400 a.e.
n—oo

Therefore, / fdm > 0.
O

Corollary 5.1.1. Let G be a topological group acting on some space B. Let o be an additive cocycle on
G x B. Let {Y, }n>1 be a sequence of independent random elements of G with common distribution p.

Suppose that v is a p-invariant distribution on B such that

(i) //U*(g,x)du(g)dV(w) < +oo.
(ii) For P ® v-almost all (w,z) we have, nh%rr;o o(Yn(w)..Y1(w),z) = +oo.

Then,
ce L'(P®v) and //U(g,x)d,u(g)dy(m) > 0.
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Proof. Let Q = {w = {V,}u>1; Y € G} and A®Y be the Borel o-algebra of Q. Denote by P the
probability measure for which the Y;’s are independent of common distribution p. Let A’ be the Borel
o-algebra of B.

Define 6 : Q) x B — ) x B given by

0({Yntn>1,2) = ({Yoy1tnz1, Ya - 2)

Consider the following dynamical system (Q xB, AN x A P® u,9). We show that 6 is measure
preserving:
Let A() € A" and Al,AQ,... S A®N, and let A = (A1 X Ag X ) X Ao.
Then,
Pev)(0'A) = Pev)({(wr) € QxB; fw,x)c A})
=Pov){(w,z) € 2x B; {Yat1tn>1,Y1-2) € A1 x ... x Ap)}
= (P@ 1/) ({(w,x) €N x .B7 Y, € Al,...,Yn+1 S An, ...,Yl RS AQ})

But v is p-invariant so,

Pov) (0 'A) = Pov)({(w,r) €QxB; Y €Ay,..,.Y, €A, x€ Ay})
= (Pev)(4).

Thus 0 preserves P ® v.
Let p € N. Notice that since 0({Y,.}, ) = ({Vni1}, Y1 -2) . Then, 0?({V,.},2) = ({V 12}, Y2Y1 - ). So
we get,

ep_l({yn}vx) = ({Yatp-1}, Yp-1..Y1 - 7).

Define f : Q x B+ R given by f(w,z) = o(Y1,x), where o is an additive cocycle. We have,
U(Yn...Yl,I) = (Yn, Y;L_l...Yi . l’) + O'(Yn_l...Yl,I’)

= ZJ(Y}NYp,l...Yl )

n—1

Then, lim o(Y,(w)..Yi(w),z) = lim Z f(0P(w,x)) = +oo for P ® v-almost all (w,z) in Q x B.
n—oo

n— 00
p=0

Thus, by Proposition 5.1.1 we get that o € L'(P ® v) and //o(g,x)du(g)du(x) > 0.

5.2 Comparison of the Top Lyapunov Exponents

Definition 5.2.1. Let Y1,Y5,... be independent identically distributed random matrices in GL(d,R)
with E(log™ ||Y1]|) < +oco. Inductively, we define the lyapunov exponents 7i,...,vq associated with
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1

{Yo,n > 1} by v =71 and for p > 2, we write Z'yi = lim —E(log|| AP Y,...Y1||) which is equal to

1
lim —(log|| A?Y,...Y1]]) a.s.
n—oo M,
If for some p we have Z% = —oo then we put v, = Ypy1 = ... = —00.

i=1

Proposition 5.2.1. If ai(n) > ... > aq(n) > 0 are the square roots of the eigenvalues of S’S,,, then

almost-surely,
Proof. We distinguish two cases:
Case 1: If 41 + ... +v,—1 = —00. We have a;(n) - ...~ ap_1(n) > ab~'(n). Using Proposition 2.5.2 we get,

(p—1) lim llogap( ) < lim llog(al(n)~...~ap,1(n))

n—o00 N n—o0o N,

1
lim —log|| AP Y,...Y1||
n—,oo N

p—1
Z%‘
=1

o1 .1
Therefore, nh—>Holo - logay(n) = —co =7, = nhm —E(logay(n)) a.s.
Case 2: If y1 + ... + yp—1 # —o0. Write

1 o1 al() ap(n)
A, 7 torap(n) = linm log Ly aps

= lim 710g||/\pY Yifl = lim 710g||/\p LY,y

n—,oo M
= Z i — Z i
=1 =1
= Yp-

O

Lemma 5.2.1. Consider a sequence {Y,}n>1 of independent and identically distributed random matri-
ces in GL(d,R) with common distribution . We suppose that E(log™ ||Y1||) < oo and T',, is strongly

irreducible. If v is a p-invariant distribution on P(R?) then,

[ Jrosti

where v represents the Lyapunov exponent.

(g)dv([z]).

Proof. Let v be a p-invariant distribution on P(R?).

Let o(g, [x]) = log ||g ||| define an additive cocycle. Then, for ||z|| = 1 we get log ||Spz|| = log ||Ya...Y1z|| = o
1 1
and hm fa( ,[z]) = lim —log||Snz|| = v almost surely. Define
n—,oo N,

6 : Gl(d,R) x P(RY) — G1(d,R) x P(R?)
Where 6(w, [z]) = 0({Yn}n>1, [2]) = ({Yat1}tn>1, Y1 - [2]). As seen before this 6 preserves P ® v. Define

f: Gl(d,R) x P(RY) — R

34

Sy, [])



Where f({Yn}n>1,[2z]) = o(Y1,[z]). Then, by Corollary 5.1.1 we get,

n—1
1 1
_— o L p _
nhHH;O na(Sn, [x]) nhﬁrr;() . ZO fOP(w, [z]) = f*, forP® v almost all (w, [z]).
p:

By the Ergodic Theorem we get,

1
lim —E(log||S,z||) = v
n—,oo N
=E(f*)

—E(f)
_ / / o (g, [2])dpa(g) v ([2])

[ [ 'fgj}dmdv(m»

O

Theorem 5.2.1. Let u be a probability measure on GL(d,R). Suppose /10g+ ||Y1]|dp is finite. If T, is

strongly irreducible and contracting then v; > s .

Proof. Suppose that I',, is strongly irreducible and contracting. Consider the following dynamical system
(T'y x B, F,m, ) where,

oB = By x By =P(R?)xP(A2R?).

e F is the o-algebra of I';, x B.

e Take m = P® v, where v = 11 ® 15, with 11 being the unique p-invariant distribution on By such that

[ [ 19211 4, g)tvn (1) = 1.

|||

By Furstenberg and Kifer we know that there exists some vy, a py-invariant distribution on By such that

[ [ros A% gall 4y ava(lal) = 71 + 2.

|lal]

Note that 11 ® vg is a p-invariant probability measure on B.
e 0: Gl(d,R) x B+— Gl(d,R) x B, given by

Q(w, ([:U], [a])) =0 ({Yn}v ([x]a [QD) = ({YnJrl}v (Yl[‘r]v Yl[a])) .

Note that GL(d,R) acts on B via the following action g - ([z], [a]) = (g[z], A?g[a]).

Let o be an additive cocycle given by

g |I?
(g, ([z], [a])) = log ==
Mall
We have,
|Snan!I?
(S, ([, [a])) = 10gm
" Tall
ek

> log ————
= B A2 S,

. 2
= log 7”‘5’77,W|| —i—logiHSHH2 )
|1Snl| || A2 Syl|

35



S 1Sn rep !
From Corollary 3.0.1 we know that there exists a constant c such that [l > ¢ > 0. Then, log <|H > 2logec

1Sl |5l
as |12 Sl
We also know that lim —— = lim ———5— = 0 almost-surely.
n=o0 [ Sn I noo [1Snll?
Hence, lim |||l\2"5||| = +o00 almost-surely. Taking these into consideration we get,
n—oo

nh_EI;O U(Snv ([:E], [a])) = +o0.

Now define
f:Gl(d,R)x B—R

By f(w, ([z],]a])) = o(Y1, ([z], [a])). Notice that o(Sy Z [0 (w [a])). Thus,

lim o(S,,([2]. [a]) = lim 3" f6°(w, (2] a])) = +oo.

n—oo

Then, by Corollary 5.1.1, we get / / o(g, ([z], [a])du(g)dv([z], [a]) > 0.
G1(d,R)
Heuce, | [ o(g. ({a), [a)}du(g)dv((s] o)

//1og||g“ rlldn(a)don i )= [ [roglin%g o lldn(a)du(fa)

=271 — (M1 +72)
=7 — 72
>0

Therefore, v > 7o.

5.3 The Space of Holder Continuous Functions L(«a)

Now we can define the Banach space we work on. Le Page suggested it to be a space of Holder
Continuous Functions, and called it L(c). It requires finding the suitable o that would make the work

flow smoothly. This search highly depends on the moment of pu.

Lemma 5.3.1. Let g € GI(d,R) and w € APR? with p being an integer satisfying 1 < p < d. Then,

|10g|\/\pg||| <pN(g)
and  |log|| AP gw||| < pN(g) |[w]|.

Proposition 5.3.1. Suppose {Y,,n > 1} is a sequence of independent identically distributed random
matrices in GL(d,R) with common distribution p. If p has an exponential moment and T',, is strongly

irreducible and contracting then,

(S - [z], Sn - [y])

1
(i) For [z],[y] € P(R?), we have lim —log

n—o0o N 5([@]7 [y]) <0 a.s
i) lim su 1 o 6(Sn - [z], Sn - [y])
(0 [ZHI;] n " (l SEI(TR) ) <0
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Proof. (i) We have,
6(Sn - ], Sn - [y]) _ [[Snz A Snyll [lz]] [yl

ST ISaallSeyll Tz Ayl
lell iyl

<||A%S, . )

1A Sal-15 Tl TSy

Using Corollary 3.0.1 we get,

. 0(Sn - [x],Sn - [y]) _ . ||]] 1 [yl
lim —log < lim log A2 S| + hm —log + lim —log
BTG ) e 8IS [5al] o0 TS
< lim —logH/\z Spll — lim —logHS |\ 10g||S ||

<mt+re-m-—m a.s

=% — 71

But I',, is strongly irreducible and contracting then by Theorem 5.2.1 we get 2 — 71 < 0.
1
Therefore, lim —log M
n—oo n 6([], [y])

i1 e have, lim su l o) 0(Sn - [21, Sn - [y])
(i) We bave, o S (1os 500

<0 a.s.

— 1 a
< T sup B (log 07 Sl + o g o

=71 +7 —2n
< 0.

O

Lemma 5.3.2. Let T be a topological semi-group acting on a set X and o be an additive cocycle on T
x X. Consider a probability measure p on T such that for some g € T, x € X and positive integer p, one

has sup [ o(g,x)du’(g) < 0. Then for a > 0 small enough we get,
reX
li —1 020 (9,2) gm0 0.
Jim — og{sgp/ 1" (g)} <

Proposition 5.3.2. Let u be a probability measure on GL(d,R) such that T, is strongly irreducible and

contracting. If 1 has an exponential moment then there exists ag > 0 such that for each o € (0, ) one
. 5(g~[w],g-[y])}a 1/n
lim sup / { ap™(g) < 1.
nree [[wHy]eP(Rd) 3([z], [y]) ]
Proof. Let X={([z], [y]), [z], [y] € P(R?),[z] # [y]}. Define a cocycle s on Gl(d, R)xX given by

has

7(9, ([«], ) = log W

By Proposition 5.3.1 we know that  sup /a(g, x)dpP(g) < 0. This means that
(le][v])ex

su 0 (g -[2],9- )
([xMy]I;eX]E (l & 5[, [9]) ) <0.

Then, by the previous Lemma, we have a positive and small enough « such that

i L loe [ su (g -[),g- W) ya n
Jim 1 glm,wﬁex/ Sy W@l <0
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Definition 5.3.1. Let a > 0. Let f be a continuous function on P(R?). Set
[/ ([z]) = F([y])]
[fle = sup [f([z])] and ma(f) =  sup =i
[z]€ P(RY) ). weprsy  (6([z]; [y])~
We define the space of Holder continuous functions, denoted by L(«), where for any continuous function
f on P(RY) we have, ||f|la = |floo + ma(f) is finite.
Proposition 5.3.3. L(«) equipped with the ||.||o norm is a Banach Space.

Theorem 5.3.1. Let p be a probability measure on GL(d,R) such that T',, is strongly irreducible and
contracting. Let v be the p-invariant probability measure on P(R®). Suppose that i has an exponential
moment ie there exists some T > 0 such that /eﬁ(g) du(g) is finite for g € GL(d,R).

Then, there exists ag > 0 such that for all 0 < o < «v, the operators T and N defined on L(«) by

are bounded and satisfy
i [[T7(0) — N(O)||Y" <

Proof. We have |T(0)f|eo < |floo for every continuous function f on P(R?). Since P(R?) is compact

then f is bounded and attains its boundaries. So, |f|o < 0.

T - TO) (D)
Asomo(TO)= 2 5T W)

Notice that

TO)f () = TOF (D] _ [ 1o [a]) = (g - [y)
CiERry T R (Fa ) et
g [=].9-yD\"
—/< M@M>)’“m@@
<ma(f)/e40‘5(9)d’u(g)

This is because

log 6(9-[$]79~ [y]) < log <|| /\29|||||gl;cl||||£gy|||>

IE)
[lg||

lyl|
llgyl|

<log|| A? g|| + log + log

<4N(g) (%)
(*) Using Lemma 5.3.1.

Since p has an exponential moment then, there exists 7 > 0 such that /eTN(g)d,u(g) < 0o. Thus

mq(T(0)f) < oo for a € (0, %)
Hence, T'(0) is bounded on L(«).
We have N(0)f = v(f)1. So, N(0) is a constant thus it is bounded on L(«).

[(T"(0) = N(0) f([=])] = [T™(0) f([z]) = N(0)f

9 [ s+ lhaw ‘//f A (@)av ()

< j/ 179+ []) — £(g - [w])]| du(g)dv (o)

GI(d,R) x P(R)

< ma(f) /(5(9 [z], 9 [y])*du" (g)dv([y])
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(*) since p*x v = v.

Then,
[(T™(0) = N(0)f| = sup [(T™(0) — N(0))f([z])]
[z]€P(R4)
6(g-[z],g W) yo, &
< ma(f) [;c],[ys]lelg(]Rd)/{ AT }rdu™(g)dv([y]).-
rom Proposition we know tha su w “Au"(g) = p"
F Proposition 5.3.2 we k that [x]y[y]eg(Rd)/{ AT Fdu(g) = p" < 1.
Then,
[(T™(0) = N(0))f| . < malf)p"
Look at
|[(T7(0) = N(0))f([«]) — (T™(0) = NO) (W] _ [T™(0)f([=]) — T"(0)f ([y])]
(6([=], [w]))> (6([=], [y])~
o(g-lxl,g- WD\ | .
< [mein (M55 ) a0
<pnma(f)

Thus, for every continuous function f on P(R?) we have,

1(T™(0) = N(0))flla = ma (T"(0) = N(0)).f) + [(T"(0) = N(0))f]

< 2p"ma(f)
< 20" fla
Therefore,
lim [I77(0) = N(O)1/" < p < 1
n— oo
O
Therefore, Using the || - ||o norm, we obtained the important identity that is

lim [|77(0) ~ N(O)||/" < 1.

We define a family of operators T'(£) and prove in a similar way that it is bounded and analytical. This
would allow us to proceed as we did previously in Section 4 to prove that log ||S,z|| satisfies a central

limit theorem, where we get

n—oo

it 42
B (67%<log\\sna:|\—nv>) o

with 0% > 0. Again to show strict positivity of o refer to [L2].
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Chapter 6

Conclusion

In this thesis, we have proved the Central Limit Theorem on the general linear group under an
exponential moment and under the assumption of strong irreducibility and contraction of the semi-group
generated by the support of the probability measure p. For this goal we have followed the spectral
method used by Le Page [L2]. This theorem was then improved by Benoist-Quint in [B6] with the
natural moment condition (that of order two) using a different approach (that of Martingales). An
interesting question would be to try to mix both methods and give a spectral approach for the CLT with
a moment of order 2. Moreover, another natural question would be to treat the non-irreducible case in

the line with the recent work of Aoun-Guivarc’h [A].
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