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An Abstract of the Thesis of

Ahmad Lalti for Master of Science

Major: Physics

Title: Breaking of symmetry in shallow rotating flows

We show theoretically and experimentally that the breaking of symmetry of
shallow rotating axisymmetric flow is spontancous and does not require forcing
under certain flow parameters. To do this we build a novel experiment, in which
a cylindrical container of radius R is placed in a set of electromagnets generating
a uniform magnetic field in the z-direction. KOH solution is poured into the
cylinder with a depth h, and a current is passed in it. The Lorentz force Jx B
drives the rotation of the flow. Three flow regimes are explored. At shallow
depth, or large aspect ratio I' = R/h, and low Reynold’s number Re = hVj /v,
the flow is laminar. At lower I's and higher Re the flow is subject to a primary
axisymmetric instability due to the boundary layer near the outer edge of the flow.
Finally, above a Reynolds number Re = 241, the symmetry of the primary flow is
broken and non-axisymmetric vortices are formed. The source of the secondary
structures is a shear layer in the (r — z) plane. These results are also confirmed

using theoretical analysis, where we modeled the primary flow by two counter

vi



rotating vortices. We perform linear stability analysis on this base flow, and we
find that the conditions for the instability are close to those of the experiment.
We conclude that the symmetry of shallow rotating flows is naturally broken, due

to the primary flow dynamics, if the Reynold’s number is high enough.
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Chapter 1

Introduction

1.1 Motivation

A realistic description of any dynamical system usually includes rotational degrees
of freedom. They add to the complexity of the problem and cause the emergence
of new behavior that is unknown without rotation. This also applies to fluid
dynamics, where new instabilities and behavior emerge just by making the fluid
rotate. Although intrinsically complicated, studying rotating flows is inevitable
when tackling a real world fluid dynamics problem due to their abundance [4].
Understanding their stability is essential for the understanding of many physical
phenomena, from planetary atmospheres to accretion disks around black holes.
Also essential for the development and optimization of many engineering systems
that interacts with rotating fluids, from accounting for the pressure variation in
curved pipes, to accounting for the energy dissipation due to fluid rotation in
pumps and jet engines.

While tackling such complex problems, one seeks to employ as many simpli-

fying assumptions and exploit any symmetry in the system to make the problem

1



easier to solve. One symmetry that is of great importance to many fluid flows
is axisymmetry, where the fluid rotates around a common fixed axis of symme-
try. The properties of these flows are invariant under the rotation around that
axis. Axisymmetric flows have been extensively studied both theoretically and
experimentally. One example is the Taylor-Couette flow, in which an axisym-
metric fluid rotates between two concentric cylinders [5]. We will review this
flow in chapter 4. Another example to that is accretion disks around black holes,
where a gas rotates in a disk of thickness much less than the radius of the disk,
around a central heavy object. Assuming a Keplerian velocity profile for the
disk seems intuitive, but it does not match the observed turbulent profile in the
disks. Keplerian profiles always satisfied Rayleigh stability criterion [6], namely
that @ > 0 where 7 is the radius from the center at a fixed z, and 2 is the
angular velocity of the fluid at a certain radial position(more on the criterion in
chapter 4). This was resolved by Steven A. Balbus who showed the importance
of the magnetic field perturbation in destabilizing the flow [7, 8, 9]. Namely, any

magnetic field even with small magnitude, renders the disk unstable to what is

called Magneto-Rotational Instability (MRI), an axisymmetric instability, under

the condition: ’%2 < 0.
Research is still on going to answer the question: what is driving the breaking
of axisymmetry in rotating flows. The purpose of this thesis is to investigate

experimentally and theoretically a new mechanism for symmetry breaking.

1.2 Literature review

Driven by different applications, many experiments were developed to simulate

and study non-axisymmetric structures. In general, we could divide these ex-
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periments into two general categories: experiments with barotropic flow, and
experiments with baroclinic flow. Barotropic flow is a fluid generally with con-
stant density, or a density that depends only on pressure. The velocity profile
in barotropic flows are generally similar to those of a shear layer as defined in
[3], mainly “a flow in which the velocity varies principally in a direction at right
angles to the flow direction”. On the other hand, baroclinic flows are generally
fluids with density that vary with both pressure and temperature. The velocity

profile in such flows usually vary with the depth of the axial direction.

For experiments involving barotropic flows, one could refer to the following
review articles [10, 11, 12]. The experimental setup usually is a variation of the
following: a cylindrical closed tank with a fluid, usually water, rotating on a
spinning table, so that the fluid achieve rigid rotation, Fig. 1.1 (a) shows an
example of a barotropic experiment used by [1]. A shear layer is imposed on
the fluid by different techniques usually involving differential rotation of a part
of the top and bottom boundaries of the tank to create a shear layer see Refs.
[13, 14, 15] to name a few, or to create a jet in the bulk of the fluid, see Refs.
[16, 1]. Each of these experiments characterize the dimensionless numbers that
are best suited to describe the flow. For example Ref. [13], used a Reynold’s
number defined as Re = AQRA/v to characterize the breaking of axisymmetry,
and found a critical value Re, = 85 — 110 depending on the aspect ratio of the
flow %. Here R is the radius of the container, h is the depth of the fluid AQ is the
discontinuity in the angular velocity around the shear layer, and v the kinematic
viscosity of the fluid. Also, the authors in this reference studied the evolution
of the number of vortices of the non-axisymmetric flow with the variation of the
flow parameters, and what they found is that the mode number m is inversely

proportional to h, and Re. On the other hand, Ref. [1] found that a better
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Reynold’s number would be Re = VL/v with V = wa/2, L = (E/4)1/4H with
a the radial location of the shear layer, F = v/(wH?) the Ekman number and
H the depth of the flow. The results are in good agreement with linear stability

model of the flow, including Ekman friction.

Figure 1.1: (a) Schematics of the experimental setup used in [1], (b) Schematics
of the flow studied in Ref. [2]

For baroclinic experiments the setup used include variation of one of the flow
parameters with depth. For example, Ref. [2] uses a flow where there is a density
variation with height, a tank full of a fluid of density p rotates rigidly, with a
bottomless cylinder in the middle containing a fluid of density p + Ap, when the
cylinder is removed the interaction between the two fluids creates a shear layer.
A schematic of the baroclinic flow is shown in Fig. 1.1 (b). On the other hand,
Ref. [17] varies temperature with height. Two concentric cylinders are filled with
a fluid, then the temperature of the walls of the cylinder are varied with height.
The authors of Ref. [18] use a cylindrical container in which the top and bottom
lids have separate angular velocities, creating a shear layer in the z direction.

All of the above experiments are designed in such a way to artificially force a
shear layer in the flow. Ref. [19, 20] uses an electrolyte between two cylindrical
electrode sheets and an axial magnetic field of a certain configuration to drive
the flow. In this way, there is no shear layer of the azimuthal velocity in the

radial direction created forcefully, but nevertheless it develops naturally near the
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electrode cheats.

In this thesis we present a novel experiment in which an electrolyte is used with
an axial magnetic field to drive the motion, but no apparent shear layer in the (r-
6) planc is formed, yet we achieve symmetry breaking. We show, experimentally
and theoretically that a shear layer in the (r-z) plane causes the transition, on top
of that we calculate an experimental estimate of the critical Reynold’s number,
above which the flow becomes unstable, which turns out to be of the same order
of magnitude as that gotten from the theoretical analysis. Furthermore, we find a
trend between the mode number m, or the number of vortices resulting from the
secondary instability, and the aspect ratio I' = AR/h, which is also reproduced
theoretically. In Chapter 2, we describe in details the experimental setup and
the diagnostics used to fully characterize the flow. In chapter 3, we present the
experimental results at different heights and different Reynold’s number, from
them we characterize the flow stability, and propose a mechanism for symmetry
breaking. In chapter 4 we model the axisymmetric base flow and then apply linear
theory analysis to probe its stability, we then reproduce the conclusions gotten
from the experimental results. In chapter 5, we present the possible developments
to the experiment that can increase the accuracy of the results and the possible
future work that can be done. A paper under development to be submitted to

Journal of Fluid dynamics is attached in Appendix A.



Chapter 2

Experimental setup, diagnostics

and data processing



2.1 Introduction

Figure 2.1: This figure shows the experimental setup used. (1) indicates the
electromagnets, (2), the cylinder with the inner and outer electrodes, (3), the UV
lights, (4) the camera and (5) the power supply used to pass the current in the
fluid.

The previous chapter shows that most of the experiments that study non-

axisymmetric structures in rotating flows force a shearing layer to develop. Our
experiment is novel in the sense that the shearing layer, that causes the secondary
vortices, is not forced.
The Rayleigh criterion is a criterion for the stability of cylindrically rotating flows
[21], if met an axisymmetric instability will kick in the flow. In our experiment,
this criterion is met due to the no slip boundary condition, which causes a radial
gradient in the Vj velocity. An axisymmetric vortex is established in the flow.

Consequently the flow is divided into two parts: an outer axisymmetric vortex

in the (r — z) plane rotating counter-clockwise, interacting with an inner vortex
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rotating clockwise. This interaction creates a shear layer between those two
vortices and causes the symmetry to be broken with suitable parameters. We use
the experimental setup shown in Fig. 2.1. It consists of a Plexiglas cylindrical
container of radius r=9.65 cm. With an inner stainless-steel rod shaped electrode,
and a sheet electrode covering the inner face of the edge of the cylinder.

The cylinder is then filled with a Potassium Hydroxide solution at 26% mass
concentration, the concentration at which the solution has maximum conductivity
of about 55 S/m. A potential difference is applied between the electrodes, which
causes a current to be driven in the solution.

The cylinder is placed at the center of a stack of electromagnets generating
an axial magnetic field of the order of 45 mT.

The Lorentz force coming from the interaction of the magnetic field with the
current in the solution, Jx B , drives the rotation of the flow.

Two main parameters are to be varied in this experiment. The aspect ratio
of the experiment, I' = AR/h, which is the ratio of the difference in the radius
between the outer and the inner electrodes to the depth of the fluid. The strength
of the forcing varied by varying the potential difference between the outer and in-
ner electrode, leading to different currents passing in the solution, hence different

rotational velocities.

2.2 The KOH solution

The solution used for this experiment is Potassium Hydroxide at 26% mass con-
centration. This concentration was shown to have maximum electrical conductiv-
ity at room temperature. The KOH solution has a density of 1246.85 Kg/m? [22]

and a dynamic viscosity p of 1.57 mPa.s [23], it has a conductivity of o = 56.95
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S/m at a temperature of 7' = 20° C and a concentration of 26%wt [22]. One liter
of the solution is prepared by mixing 260 g of KOH pellets with 1 L of water,
then waiting for a while until the solution cools down since dissolving KOH in

water is exothermic.

2.3 The magnetic field

Figure 2.2: Dynamics of the electrodes

The magnetic field is generated by a stack of four electromagnets connected in
parallel to a DC power supply. The dimensions of the electromagnets are shown
in Fig. 2.2. The magnetic field produced is almost uniform. In the z-direction it
varies linearly from 40 to 45 mT, while its variation in the radial direction from

the center of the electromagnets to the edge is shown in figure 2.3.

The near uniformity of the magnetic field allows us to assume its constancy

in any theoretical modeling of the system.
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B [mT] vs r [cm]

42 - * 3

r[cm]

Figure 2.3: plot of the variation of the magnetic field as a function of the radius
at a fixed z position in the cylinder.

2.4 The electrical current flowing in the KOH

solution

The distribution of ions in an electrolytic solution can be assumed to be uniform in
the bulk of the solution. On the other hand, at the electrode-electrolyte interface
there is always an exchange of electrons, so this concentration must vary near
that interface, and from that exchange of electrons a current is created in the

solution.

Three processes control the transport of the electrolyte and the products of
electrolysis from the interface to the bulk. These processes are: (1) ionic migra-
tion, (2) diffusion, and (3) convection. Each of these processes form a boundary
layer with a certain width. The width of the boundary layer has been studied in
depth throughout the literature for various assumptions and geometries [24, 25].

It is found that for the case of forced convection, where the bulk solution is being
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stirred, over a flat plate, the thickness of the boundary layer is given by [25]:

=3(3)" (2) =

With v, D, U and z being the dynamic viscosity p divided by the density p,
named the kinematic viscosity, diffusion coefficient, bulk velocity of the fluid,
and distance along the electrode from leading edge respectively. In our case z

can be taken to be the depth of the fluid A.

Plugging the relevant numbers in our solution, we get a § of the order of
1 mm. Based on the analysis above, the current density profile can be assumed

to have an exponentially decaying form
J = Joexp(—(r —a)/N)

with A = 0 and a being the radius of the inner rod.

This current profile restricts the effect of the driving force to the center of the
flow, to a region of radius of around a millimeter. While the bulk motion is due

to viscously transporting that momentum outwards.

2.5 Quantitative and Qualitative Diagnostics

To study the dynamics and properly characterize the flow, we use a high-resolution
camera to film the motion of the fluid. From the resultant video we infer quan-

titatively and qualitatively the characterization of the flow.
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2.5.1 Qualitative measurements

Qualitative data is obtained using fluorescent material of density compared to
that of water. This material emits in the green when exposed to ultraviolet(UV)
light and allows us to visualize streamlines and different dynamical structures
of the flow. Using analyses codes, we can better visualize the flow properties in

space and time.

2.5.2 Quantitative measurements

Quantitative data is achieved by the virtue of fluorescent beads made of polyethy-
lene, and of radius 200 pm, which reacts with UV light of wavelength around
365 nm and emits in the green. Videos are taken with the beads moving on the
surface of the fluid. The analysis of the videos allows us to measure surface ve-
locity profiles, hence infer on the dynamics in a quantitative fashion. The camera
resolution is 2048 x 1536 and the field of view (FOV) is about 24 cm. Hence the
camera can resolve around 0.012 c¢m/pixel and the videos are taken at a frame
rate of 10 frames per second, which gives a time resolution of 0.1 seconds per
frame. Knowing that on average one bead is around three pixels in diameter,
and if we set the minimum distance for the bead to move to be its diameter, the

lowest velocity that we can resolve would be 0.3 cm/s.

2.6 Numerical Codes for Velocity Measurements

Two separate codes were developed to analyze quantitatively the movies con-
taining the fluorescent beads. One to calculate the flow velocity throughout the
domain, in other words, it gives and Eulerian velocity field. The other code tracks

each bead separately and saves its position and velocity throughout the video, in
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other words, it gives a Lagragian velocity field.

Figure 2.4: (a) raw image taken from the video. (b) image after application of
the mask. (c) image after subtracting the average image and applying the high
pass filter. (d) image after zeroing low intensity noise

The video is loaded into MATLAB and analyzed frame by frame. The image
is initially transformed from uint8 to double format which allows us to arithmeti-
cally manipulate it as shown in Fig. 2.4(a). We remove unnecessary parts of the
image, where no dynamics happens, by multiplying it by a mask, which is a ma-
trix of the same size as the image with zeros in the undesired regions and ones in
the remaining entries Fig. 2.4(b). Then, an average image is calculated, obtained
by adding all the frames in the video and then divide the result by the number of
frames in the movie. We subtract from each frame the average image. This will

remove most of the static noise in the image. To eliminate low frequency noise
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we apply a high pass filter to the image Fig. 2.4(c). Then a threshold intensity
is calculated, under which all intensities are zeroed to keep the signature of the
beads only. This intensity is calculated by getting the standard deviation of the
intensities distributed in the pixels of the image, then multiplying it by 4. The
final result contains the intensity peaks of the beads only and this is shown in

Fig. 2.4(d).

2.6.1 Eulerian code for velocity measurements

t3

Figure 2.5: Schematics of continuity condition employed in Both Lagrangian and
FEulerian codes

To determine the velocity of each bead as it moves in time, an intensity
contour is taken, and a circle is fitted to the intensity peaks. The centers of the
circles are taken to be the coordinates of the beads themselves. The error on the
position of the beads is of the order of the radius of the beads, that is 0.2[mm].

After we get the positions of all the beads throughout the whole video, we
go about calculating the velocities. First, we need to set a restriction on the

maximum and minimum distance a bead could have traveled. We calculate the
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distance between a chosen bead and all other beads in the next frame, and we
get the bead from the next frame with the minimum distance. We do the same
for all beads in the frame under study. Then we average this minimum distance,
and we set it as half our maximum limit that any bead in this frame could travel.
As for the minimum distance it is the diameter of a bead, so we set the minimum
limit that any bead in this frame could travel to be the average diameter of all
beads in the frame under study. Now in this frame we choose a bead, and we
get its closest neighbor in both the previous frame and the next frame. If the
distance between them falls in the range of minimum and maximum distances,
then this bead is highly likely to be the same bead under study but at different
instances in time. As a final check we apply a continuity condition, where we
assume that under the time resolution, set by the frame rate of our experiment,
both the magnitude and the direction of the velocity of the bead could not change
drastically. So we calculate the velocity vector between the frames ¢ and 7 + 1,
and between frames ¢ + 1 and ¢ 4+ 2 leading to two velocities V; ;11 and Vi1 40
respectively. The angle between these two vectors could not be larger than a 6y
which is of the order of 10°. So, if the calculated angle between these two vectors
is larger than 6y then the bead is counted as lost and its position and velocity
is discarded, otherwise the velocity of the bead in frame i + 1 is calculated by

central differencing with the following formula:

- X - X

Vipr = IAL (2.2)

Where V;l is the velocity vector of the bead at frame 7 + 1, Xz and X;_g are the
position vector of the bead in frames i and i+2 respectively, and At is the time

between two successive frames, Fig. 2.5. We do this for all beads in a frame, and
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for all frames in the video.

2.6.2 Lagrangian code for particle tracking

10 T T T P T —T T T
ol s
8 - T
.-""d“ ..........
6 ' . T
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5 e e~
% T 7
8 - \\‘x /
10 | | == i | — — I i
10 8 -6 -4 -2 0 2 4 6

Figure 2.6: Getting an average V, velocity from the tracking of one bead.

The radial velocity of the flow is much smaller than the azimuthal velocity,
especially near the shear layer. To measure V., we developed a Lagrangian code
that allows us to calculate the radial velocity profile. The code starts off the same
as the Eulerian code up until we get the positions of each bead in the first frame.

In the first frame, we choose one bead. In the next frame we look for all beads
in a box of sides 20 pixels by 20 pixels, centered around the position of the initial

bead in the first frame. If the box contains more than one bead, then the same

16



continuity condition in the Eulerian code is employed. If the box is empty, we
interpolate from previous positions of the same bead, if the bead is not found
after 5 interpolations the bead is marked as lost.

From the tracking of each bead, we can calculate how much outwards did the
bead travel after a full revolution figure 2.6. Knowing the time, it takes the bead

to do a full revolution we can calculate an average V, velocity.
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Chapter 3

Experimental results

3.1 Preliminaries

Before presenting the experimental results, it is essential to define the nondimen-
sional parameters that control the flow. First, we need to specify a scale length
for our experiment. As will be discussed below, both the radius of the channel,
and the depth of the fluid can be varied in such a way to produce dynamically
similar flows. To get our results We fixed the radius and varied the depth of the
fluid, hence the chosen scale length of our experiment is h, the depth of the fluid.
It is worth noting that a lot of the experiments studying baroclinic instabilities
also use h as their scale length, see Refs. [13, 16, 26] as an example. On top of
that we choose the scale velocity of the fluid to be the azimuthal velocity of the
fluid at the shear layer between the primary axisymmetric vortex and the bulk
flow at a radius r = R — h with R being the outer radius of the cylinder, and h
the depth of the fluid.

With these reference scales, we could define the non-dimensional numbers that

characterize our flow. We characterize the axial variation of the flow with the
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h [cm] | Ips [mA] | Vo(r = (R —h)) [em/s] | Re Ey d [mm]
0.3 60 0.48 11 2.6 4.9
0.3 90 0.72 18 1.7 3.9
0.3 120 1.01 24 1.2 3.3
1.5 60 1.36 162 [ 33 x 10732 2.7
1.5 90 1.73 206 | 26 x 107° | 24
1.5 120 2.02 241 | 22 x 1073 2.2
2.5 60 1.23 244 | 12 x 1073 2.7
2.5 90 1.6 318 | 9x 1073 2.3
2.5 120 1.9 377 | 7x 1077 2.2

Table 3.1:

Ekman number,E/ = v/Qh?, defined as the ratio between the viscous forces and
the Coriolis force in the flow. From this number we can infer on the effect of the
boundary layer between the bulk rotation and the bottom of the container. For
F << 1, this boundary layer does not have major effect on the flow and it can
be neglected in the analysis. The thickness of that boundary layer is § = \/V/_Q
Table 3.1, Shows the values of the relevant dimensional and non-dimensional
numbers characterizing our flow, at all the depth and current variations taken in
our experiment. For the depth of 1.5 and 2.5 ¢m, the Ekman number is much
smaller than unity, and the Ekman layer thickness is much smaller than the depth
of the fluid, so away from that boundary layer viscous effects from the bottom
can be neglected and the flow can be considered as barotropic. The case where
h = 3 mm has high Ekman number and the Ekman layer thickness is appreciable

compared to the depth of the fluid, this case will be discussed in the next section.

The parameter that describe the transition from the primary to the secondary
instability is the Reynold’s number defined as Re = Vph/v, where Vj is the

characteristic velocity of the flow as defined above.
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We need a quantitative way to tell when the instability kicks in. To do that,

we use the standard deviation of Vj, dVy = \/ < (ug — ‘/}9)2 >. where <> denotes
averaged quantities over time and azimuthal angle. In the axisymmetric flow
the dynamics are uniform, so the level of fluctuation of Vj is dominated by ex-
perimental noise. When the symmetry is broken, and non-axisymmetric vortices
develops, V, fluctuates even more, since there will be an exchange of momentum

between the azimuthal direction and the radial direction, hence dVj increases.

3.2 Laminar flow at high aspect ratio

We want to check whether our experimental measurement actually describes the
flow dynamics. So we use a flow with depth h = 3 mm, or an aspect ratio of
I' = 32. Asis clear in Table 3.1, the size of the Ekman layer is comparable to the
depth of the fluid, and the Ekman number is larger than 1, hence viscous effects
are appreciable especially at the values of the Reynold’s number that we used.
This allow us to make some simplifying assumptions, for the flow at the surface
of the fluid, which opens up the possibility to model the flow dynamics and get
an analytical solution, this analysis will be presented in full in Chap. 4, we get

the following analytical velocity profile

A JoB N3

JoB. A2
Vo="+Cr+ °

exp (—=r/A\) + exp (—r/\) (3.1)

gotten by solving the NS equations for a 2-D incompressible viscous axisym-
metric flow, subject to a Lorentz force. We compare the theoretical profile, with
the experimental measurement. Fig. 3.1 shows a plot of experimental Vj/Vy vs

r at Re = 11, 18 and 24 overlaid with the theoretical profile, where Vg is the
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azimuthal velocity at r = 9 cm. We see that far from the boundary, we have ex-
cellent agreement between theory and experiment, indicating that at this aspect
ratio, the flow can be assumed to be two dimensional, and that the measurements

arc representative of the flow dynamics.

vtheta normalized vs r

B0mA

S0mA

120mA

averaged experimental profile
theoretical profile

V, at3(cm) [crmis]  current (mA)
4 i 048 60
075 90
1.01

Figure 3.1: Vy/Vy vs r with Vo = Vy(r = 9em), for Re = 11, 18 and 24 overlaid
with an average experimental profile in black dots, and a theoretical profile in
red dots

3.3 The Primary axially symmetric flow

At a relatively low Reynold’s number the flow is unstable to axially symmetric
perturbations. An axisymmetric vortex ring of radius equals to the depth of the

fluid A is formed at the outer edge of the cylinder. This vortex ring forms a shear
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Figure 3.2: At h = 1.5 cm this figure shows the stable primary axisymmetric
vortex confined to the region [R — h, R] at Re = 206.

layer with the bulk flow. We can show the existence of this vortex ring and that
its width is h both qualitatively and quantitatively. Fig. 3.2 (a) shows a fluid of
depth 1.5 cm with Re = 206. We insert dye at the boundary of the container and
wait for it to spread throughout the fluid following the streamlines of the flow.
The dye does not penetrate the flow but is confined to an outer axisymmetric ring
of width equals to h. Fig. 3.3 is a plot of 0, (rVg)2 vs 7, the Rayleigh criterion
states that if this quantity is anywhere negative in the flow, then this region is
unstable to axisymmetric perturbations. We see that the only region where this
criterion is satisfied is between R — h and R. The above, complemented with the
results of the next section, shows that there is an axisymmetric fluid ring near

the edge of the container, with a width equals to the depth of the fluid.
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Figure 3.3: 8, (rV;)? vs r for Re = 162 and 241
3.4 Stability of the axially symmetric flow at
different Reynold’s number

At the Reynold’s number of 241, we see that another instability develops on top
of the primary axisymmetric instability, with a growth time equals to around 100
(s) as shown qualitatively in Fig. 3.4. In this figure we insert the dye at the edge
of the cylinder when the flow is with only the primary instability without the
secondary instability at a Re = 206, then we increase the current and observe

the transient behavior of the flow.

100 (s)

Figure 3.4: At h = 1.5 cm this figure shows the evolution with time from the
stable primary flow shown in (a) taken to be at ¢ = 0 and Re = 206, (b) an inter-
mediate step after we increase Re to 241, and (c) the fully developed secondary
instability
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As shown in Chapter 1, most of the previous literature have a shear layer
in the r — 0 plane that is at the heart of the symmetry breaking. But that is
not the case in our experiment. Fig. 3.5 is a plot of the azimuthal and radial
velocities, and the fluctuations in the azimuthal velocity vs the radius. To get to
the data of this image, we run the experiment at a depth of h = 1.5 cm giving
an aspect ratio I' = 6.4. We take several recordings of the flow each at different
current after the flow had reached steady state, hence different Re, then we use
the analysis code described in Chapter 2 to get to the required quantities. If
we look at the Vp vs r profile for our flow shown in Fig. 3.5 (a) we see that
there is no big gradients in Vj around the location of the shear layer between the
vortex and the bulk flow. The only gradient is that due to the boundary layer
which causes the axisymmetric instability in the first place. Fig. 3.5 (b) shows
that at Re =241 0V} increases significantly around R — h indicating that the flow
is unstable to secondary perturbations. We have a secondary instability that
developed without any apparent shear layers in the (r-6) plane. We measure the
radial velocity profile vs r in Fig. 3.5 (¢). It shows that around R —h = 8 cm V.
changes sign, so there is a maximum in the gradient of its profile at this location,
due to the shear layer between the axisymmetric vortex and the bulk flow. From
this we could infer that a secondary instability develops due to a shear layer, but
contrary to previous literature, this shear layer is not in the (r — é) plane but
coming from the gradients that are naturally occurring in the axisymmetric flow,

mainly in the (r — z)-plane.
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Figure 3.5: (a) Vy vs r and (b) 0Vp vs r at Re = 162 and 241 while (c¢) shows V.
vs r at Re = 206.

3.4.1 Ciritical Reynold’s number

It is informative to get an estimate of the critical Re, above which the symmetry
of the flow is broken.

Fig. 3.6 (a) and (b)shows a plot of V4 and §V} vs time respectively, while Fig. 3.6
(c) shows 0V} vs V. The movie analyzed is taken with the fluid already in steady
state axisymmetric flow at a current of 60 mA, then the current is increased to
90 mA, we wait till it reaches steady state, and finally increase the current to 120
mA. Qualitatively the flow at 60 and 90 mA is still an axisymmetric flow, while
at 120 mA we have secondary instability.

This figure shows that at 60 and 90 mA 0V} is small and does not vary much,
but when the current is increased to 120 mA, it starts increasing until it reaches
a steady state value. Fig. 3.6 (a) shows that after around 120 seconds the value

of Vy starts fluctuating around a mean value, concurrently with the development
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of the secondary instability, this adds to the validity of using §Vj as an indicator
of the secondary instability. The main purpose of this figure was to calculate the
critical Re from Fig. 3.6 (c), which we thought it would be the Re at which 0V}
starts to increase, and it turned out to be Re. = 260. Looking at Fig. 3.5 (b),
we see that we have an instability at Re = 241. To solve this, we calculated from
Fig. 3.6 (b) the growth rate of the instability to be 25 seconds. But when we
increase the current, the time it takes for the Re to reach its steady state value
is less than the growth rate of the instability. Hence this method failed to serve
its initial purpose but turned out to be informative as a check for the dVy as an
indicator of the presence of non-axisymmetric vortices.

So to get to the critical Re, we use information in Fig. 3.6 (c), namely that
at Re = 216 the flow is still stable. And we use Fig. 3.5 (a) and (b), which shows
that at Re = 241 the instability is present. From this we could set a range for

the critical Reynold’s number to be between 216 and 241.

h=1.5cm
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Figure 3.6: (a) Vy at r = R — h =8 vs time and (b) §Vy at r= R —h =8 cm vs
time overlayed with the growth rate of the instability v at Re = 262 and (c) 0V}
vs Re as we increase the Reynold’s number from 166 to 216 to 262
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3.5 Stability of the Taylor Couette flow at dif-

ferent aspect ratio

In this section, we vary the depth of the fluid to better understand the flow
dynamics. From this we prove the importance of the depth h as the definition
for the scale length of the flow. On top of that we show that the instability is

generated from a shear layer located at r = R — h.

To understand the importance of h as the scale length of the flow, we use
the same currents at h = 1.5 cm for h = 2.5 c¢m, namely 60, 90 and 120 mA.
It turns out, as is shown in Table 3.1, that the values of V4 do not vary much
between the two depth. If we define the Reynold’s number with the radius of
the container as the scale length, we would have two cases where the Reynold’s
number is comparable, but one is stable and the other is unstable. For example
at 60 mA for h = 1.5 cm, if we use R = 9.65 cm as the scale length, we would
get Re’ = VyR/v = 1042, and the system is stable. At 60 mA but for h = 2.5
cm, for the same definition of Re’, we get Re’ = 943, and the system is unstable.
This clearly shows that using the radius of the container as the scale length of
the flow is not a good choice. On the other hand, if we take the depth of the
fluid to be the scale length, we see that at 60 mA and A = 1.5 cm, Re = 162,
less than the critical Reynold’s number determined above. While at 60 mA and
h = 2.5 cm, Re = 244 larger than the critical Reynolds number. So, this shows
that the depth of the fluid is the suitable choice for the scale length of the flow.

Fig. 3.7 shows the evolution of the fluid motion from rest till steady state
secondary flow. To get to this image we insert fluorescent dye on the surface of
the fluid while at rest, then we turn on the current to 90 mA, and record a movie

of the flow. We see that the dye in Fig. 3.7 (a) was distributed in the flow, then
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Figure 3.7: At h = 2.5 cm this figure shows the evolution with time of the flow
starting from rest, (a) is taken at ¢ = 16 (s) after we increase the current from 0
to 120 mA, (b) through (d) shows the evolution of the secondary instability with
time

in (b) the dye started to gather at a distance r = R — h = 7 cm away from the
boundary, indicating the formation of an axisymmetric vortex of diameter equals
to h = 2.5 cm. Because the Re is larger than the critical Re, the flow is prone
to secondary instability and Figs. 3.7 (c) and (d) shows the evolution of that
instability. Qualitatively, from the fact that the initial axisymmetric vortex in
Fig. 3.7 (b) had a width equals to h, and that the non-axisymmetric vortices in
(d) have a diameter of h, we deduce that the shear layer is located at a radius

r=R—h.

Fig.3.8 shows quantitatively the velocities of the flow at a depth of h = 2.5

cm, and with currents ranging from 60 to 120 mA. (a) is a plot of Vy vs r, in
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which we see that the region in which we have a gradient in the azimuthal profile
now starts at a radius of r = R — h = 7.15 cm. While (b) is a plot of 6Vp vs
r, it shows that the increase in dVp, hence the location of the vortices, is also
shifted to a radius of r = R — h = 7.15 cm. Finally, (c) is a plot of V, vs r at
Re = 318, it shows a change of sign in V,. at » = 7.15 cm, indicating the location
of the interface between the outer vortex and the bulk flow, and showing a high
gradient in V,. at that location. This figure restates that the instability is not due
to a shear layer in the r — 6 plane, but a shear layer between different directions
of the flow. And it also stresses on the fact that the location of the shear is not

fixed, but it depends on the depth of the fluid, rspeqr = R — h.
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Figure 3.8: This figure shows (a) Vp vs r and (b) 6Vj vs r at Re = 244 and 377
while (¢) shows V, vs r at Re = 318

On the other hand, for a height of h = 0.3 cm we notice that for the currents
used, the Reynold’s number is always very low compared to the critical Re, and

if we increase the Re above its critical value we will observe non-axisymmetric
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vortices. This is clearly shown in Fig. 3.9 (c¢) showing the vortices at A = 0.3 cm.

One more thing to add to this is the dependence of the mode number on the
depth of the fluid. Fig. 3.9 compares between the mode number gotten at three
different aspect ratios I' = 3.86, 6.4 and 32. It shows that as we increase the
aspect ratio the mode number m also increases from around 6, to around 10,
to around 19 respectively. It is worth noting that the mode number have small
dependence on the Re, where at a fixed Re, m varies slightly. This trend is also

reproduced in Chap. 4.

Figure 3.9: (a) m=6 instability at I' = 3.86, (b) m=10 instability at ' = 6.4, (¢)
m=19 instability at I' = 32

3.6 Variation of the experimental setup

We explore the effect of varying the current profile by varying the geometry of the
outer electrode in the cylinder. Also, we explore the dynamical similarity in the
flow with the aspect ratio, and the minute effect of the magnetic field variations

on the flow.

3.6.1 Effect of current profile variations

First we varied the geometry of the outer electrode, as shown in Fig. 3.11. This

variation serves to test the effect of the 8 dependence of the current density
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Figure 3.10: Two cylindrical containers, of respective radii of 4.5 and 9.65 cm
from left to right.

Figure 3.11: (a) container with outer one continuous sheet electrode. (b) con-
tainer with 16 outer electrodes. (c) container with 8 outer electrodes. All with a
radius of 4.6 cm.

profile on the dynamics of the flow. Where the configuration of the electrode
gives J(r,0) while the sheet electrode will have azimuthal symmetry and J(r)
will be only radially dependent.

Fig. 3.12 shows that the dynamics of the secondary instability, for a flow
with constant aspect ratio of I' = 3 and a constant current of 85 mA, changed
significantly between the setup with outer rod electrodes, where J depends on
0, and the setup with outer sheet electrode, where J independent on 6 . We
notice that for the axisymmetric J(r), the mode number m is equal to 6 and

the vortices are more regularly distributed in the cylinder. On the other hand

31



Figure 3.12: (a) shows an m=6 non-axisymmetric instability in the sheet setup.
(b) shows an m=4 non-axisymmetric instability in the rod setup, both at a current
of 8 mA, and I' = 3.

for J(r,0), m = 4 and the vortices are less regular. Although we can achieve
axisymmetric flow in both setups before the secondary instability kicks in, the
large effect of the rod electrodes on the secondary flow is not desirable since we
are seeking to study the intrinsic causes of symmetry breaking and we do not
want any external factor to enter into play. Hence, we chose to use the electrode

sheet as the standard experimental setup of the experiment.

3.6.2 Dynamical similarity of the flow

We varied the radius of the cylinder, two radii were used, 9.65 cm and 4.5 cm
shown in Fig. 3.10. Fig. 3.13 shows the secondary vortices gotten with the use of
fluorescent dye, for two different radii of the cylinder, but varying the depth of
the fluid in order to keep I' constant. The magnetic field used for the big radius
is generated by electromagnets and is plotted in Fig. 2.3, while B used for the
small radius is generated by permanent magnets and is plotted in Fig. 3.14. In

both cases we get the same mode number of the instability m = 5. From this
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Figure 3.13: m=5 instability for at a current of 80 mA, in a fluid with I' = 3.86
in the cylinder with radius (a) R = 4.6 cm and (b) R = 9.65 cm

we could conclude two things. First that we have dynamical similarity between
the two cylinders. So, we choose to use the larger radius since it will allow us
to explore larger variations in the aspect ratio. Second that the variation in the
magnetic field has minor effects on the dynamics of the fluid and taking it to be

constant in our theoretical model is justified.

| . I
(i} 0.5 ) 1.5 2 25 3 il 4 45 5
r{cm)

Figure 3.14: plot of the variation of the magnetic field as a function of the radius
at a fixed z position using a permanent magnet.
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3.7 Conclusion

In this section we showed experimentally that the transition to non-axisymmetry
occurs naturally on top of any axisymmetric vortex, above a critical Reynold’s
number. We also showed that the cause of this instability is a shear layer in a
plane different than the radial-azimuthal plane. On top of that we showed that
depth of the fluid has a big effect on the number of secondary vortices generated

in the flow.
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Chapter 4

Stability Theory of Thin

Rotating Flows
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4.1 Introduction

After exploring the experimental results, we analyze the flow theoretically, with
the purpose of better exploring the correct parameters that mostly affect the
development of the secondary instability. We first review basic concepts in fluid
mechanics, then we study the two-dimensional flow in order to make sure that
the experimental results are a good measure of the actual flow. We then review
the physics of the Taylor-Couette instability, and finally we model the steady

state axisymmetric flow and study its first order stability.

4.1.1 A review of basic Fluid concepts

To analyze theoretically the flow dynamics at hand we employ the machinery of
fluid mechanics. In this section, we develop a quick overview of the basic concepts

underlying conservation equations used to understand the onset of instabilities.

The continuum hypothesis

A fluid system is a dynamical system that is formed of a huge number of degrees
of freedom, a number so big that attempting a particle dynamics analysis, or even
a kinetic theory analysis is impossible. Assumptions must be made to progress in
studying the macroscopic behavior of such systems. These assumptions should
take us from a discrete particle or distribution of particles to a continuous field
perspective. It allows us to introduce the concept of a fluid /volume element, over
which the fields under study vary smoothly and continuously. This assumption
is called the continuum hypothesis.

For continuum hypothesis to be valid, the length scale of the fluid element,

denoted by [, should be big enough to contain enough particles, that any random
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Figure 4.1: Variation of average temperature inside a fluid element with variation
of its scale. [3]

variation of the number of particles would be insignificant on any averaged quan-
tity inside the fluid element, so [ should be much bigger than the length scale of
a single molecule L. Moreover, the mean free path of the molecules A\, which
is the average distance of collision between the molecules, can be much bigger
than the size of the molecules, hence the size of the fluid element should also
be much larger than the mean free path. On the other hand, [ should be much
smaller than the length scale under which any significant macroscopic variations
would be felt. This is summarized in Fig. 4.1. In our experiment, if we take the
depth of the fluid to be the characteristic length of the flow, so of the order of
one centimeter. If we take the fluid element to have a scale length of 107 cm,
so a volume of 10~%cm?, the average number of molecules of water, for example,

in such a volume is of the order of 10" molecules. So a fluid element of that size
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would satisfy the conditions for the continuum hypothesis.

The continuity equation

Having discussed the concept of a fluid element, we are able now to apply basic
conservation laws on it. We start by applying the conservation of mass. In
the absence of sources, the change of the amount of the fluid inside the volume
element should be equal to the total flux of elements through the surface of that
volume. Put in mathematical form, and accounting for the sign convention in

the expression of the flux, the conservation of mass reads:

d

= pav = — | pi.dS 4.1
i)’ /Spu S (4.1)

V' is the volume of the fluid element, S is the surface enclosing that volume, o
is the velocity of the fluid at the position of the element, p is the density of the
fluid and the negative sign is to have a decrease in the total density corresponds
to a positive outward flux of matter from the volume element.

Employing Leibniz integral rule on the left-hand side of the equation, and

Gauss’s law on the right hand side and rearranging we get:

9 L5 (piydv — 0 (4.2)
L ol

and having the volume to be arbitrary, the integrand should be zero, and we

get what is called the continuity equation in differential form:

dp L .
En +V.(pu) =0 (4.3)

The fluid that we are dealing with in our experiment is incompressible, so its
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density is constant and the continuity equation reduces to:
V-i=0 (4.4)

Conservation of momentum:

We apply the conservation of energy /momentum to the fluid element, or in other
words, second law of motion. To do that let us introduce the concept of a material
derivative, which is an operator that considers the changes coming not only from
local time variation of a certain quantity, but also from the spatial variation at a

set time of the same quantity. Mathematically this operator reads:
0 -

—=—+4u-V. 4.5
5 T O (4.5)

The first term on the left-hand side account for the time variation at a specific
region of space, while the second term account for the spatial variation at a fixed
moment in time.

By applying the material derivative to the momentum, and taking the density
to be constant and not varying with time, we have the acceleration field, and
hence the left-hand side of Newton’s equations, which reads per unit volume:

D(pu) — Du
Dt "Dt

(4.6)

The change in the momentum, according to Newton, is equated to the sum of
forces applied on the elementary volume. These forces can be divided into body
forces and surface forces. The former are forces that act on the bulk of the fluid
element like gravity or electric forces in the case of charged fluids, we refer to

body forces in our equations as the vector F'. The latter are forces that acts on
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the surface of the fluid element, they can be divided into forces that are parallel

or perpendicular to the normal of the surface.

(a) (b)
X x + 6x x x + 6x
Pl PO+ pau(x) I ud,u(x + 8)

Figure 4.2: (a) pressure forces, (b) viscous forces

The total force exerted by the surrounding fluid on the fluid element is the
vector sum of the force on each face of the surface of the element. As shown in
Fig. 4.2 (a) the total force in the x direction parallel to the normal of the surface
can be written as:

P(x)dydz — P(x + dz)dydz (4.7)

Where P is the force per unit area, or pressure on the surface. Expanding the first
term:
oP

opP
P(x)dyoz — (P(x) + %51") 0ydz = —%53:5@2 (4.8)

Generalizing in all direction the force per unit volume parallel to the surface
of the element becomes:

—VP. (4.9)

We account for the shearing between fluid layers. Empirically it was shown
that at any location the force per unit area is proportional to the velocity gradient
at that location, with a proportionality constant g, what is called the dynamic

viscosity of the fluid . Using the same analysis as the pressure forces, we get a
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total shear force per unit volume on the fluid element to be:

pV2i. (4.10)

Putting it all together we get Newton’s second law per unit volume written

for the fluid element:
Du

P = ~VP+uV%i+F (4.11)

dividing everywhere by p we get:

Dy

T (4.12)

> | =

1-
= —~VP+ vV +
p

Along with the continuity equation, we get the Navier-Stokes equations fully

describing a fluid flow.

Written in a coordinate system that is mostly suitable for the geometry of
the problem, the equations are non-linear and do not have an explicit solution
yet, to solve them one has to constraint them with simplifying assumptions. Our
experimental setup is cylindrical, so the natural coordinate system to be use is
cylindrical coordinates. In that coordinate system the fully developed equations

read:
r-direction:

oV, v, E@VT_V_HZ oV, 10P

E—Frﬁr—i—r@e r+zé)z_ p Or
V[l@(@%) 1 0%, 0*V, V. 209V,

ror\ar ) T e T a2 T2 2 ae
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f-direction:

Ve Ve  VedVe ViV, IV 10P

R T R S T
10 Vy 10%, 0*Vy Vy 20V,
”{FE(TE>+ﬁ892 T T gyt

z-direction:

OV VedV | V. 10P

o Var T Ve T s
po 10 (0 1OV OV g
r or ! or r2 062 022 ?
Continuity:
LorV, 10V 0V,
v e e O (4.13)

In our experiment F' is the sum of the force of gravity and the lorentz force. The
force of gravity is simply ¢ = (0, 0, g), while the lorentz force is as mentioned above
F, = J x B, where J = Jyexp (—r/A)7 is the current density and B = (0,0, B.)

is the magnetic field which is taken as constant.

Boundary conditions

Being a set of second order differential equations in space, and first order in time,
integrating the incompressible Navier-Stokes will result in three arbitrary inte-
gration constants for each velocity component, that will be fixed by the boundary
and initial conditions of the system.

There exist various types of boundary conditions, but we will discuss only
those that are relevant to our experiment, namely a rigid impermeable wall.

First the fluid cannot penetrate through the wall, so at the boundary the fluid
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velocity ¥ must be the same as the velocity of the wall U. Or in other words:
U-n=0-h (4.14)

Second the fluid velocity just next to the wall must be the same tangentially as

that of the wall, so:

Sl
X
3>
Il
<y
X
3>

(4.15)

4.2 Laminar flows at Large Aspect Ratio

We investigate in this section the simplified case of large aspect ratio I, since it

allows us to do some simplifying assumptions.

At large ', as is shown in Chapter 3, the effects of the Ekman layer cannot be
ignored. So, the assumptions of the Ekman layer analysis are required. We will
not go in depth with the analysis but will state the following. For an Ekman layer
one starts off with the assumption that the velocity profiles are only z—dependent
[27], from this we use the continuity equation and the no slip boundary condition
to prove that V, = 0. For our flow, we cannot assume that we only have z-
dependence, but we can assume that the velocity profiles are only 7 and z depen-
dent with no # dependence due to axisymmetry. Furthermore, since the depth
of the fluid is much smaller than the radius of the cylinder, or in other words,
the allowed domain of motion in the z-direction is much smaller than that in the
r-direction, we can assume that V, << (V;, Vp), hence we take V, = 0. We plug

this in the continuity equation written in cylindrical coordinates:

orv,
or

0 (4.16)
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Integrating with respect to r, we get rV, = constant. Since we have the no slip
boundary condition, so V,.(r = R,z) = 0, hence V;, = 0. In addition, we are
interested in the steady state behavior, so we can assume that all quantities are
time independent.

So the assumptions can be summarized in:
o V.=V, >0
[ ] 89 — 8,5 ~ 0

plugging these assumptions in the Navier-Stokes in cylindrical coordinates men-

tioned above, with F as discussed we get:

r:

V2 10P
0:

1 , v, 1
0=v ;ﬁr (ro.Vg) + 02Vp — 2|~ ;JO exp (—r/\)B. (4.18)

z:

opP

5, = 9P (4.19)

And the continuity is automatically satisfied.

We still have to deal with the z-dependence of Vj in the 0 equation. We assume
that the variable separates and the velocity can be written as Vg = Vi (1) Va2 (2).
Since we are measuring the velocity at the surface of the fluid, and we are as-
suming that there is no deformation of the surface, we could assume a constant
z for our analysis. So Vya(2) can be taken to be a constant multiplying Vy;. Now
for the term with the second derivative of Vjyy, we know from Table 3.1 that the
thickness of the Ekman layer is comparable in magnitude to that of the depth of

the fluid, and that this thickness is defined as the location at which the velocity is
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equal to 0.99 the bulk velocity. From this we could assume that, for all practical
purposes, the gradients in the z- direction are leveling out, and that term can
be ignored. What remains is a second order non-homogeneous differential equa-
tion that can be solved analytically, its solution can be obtained by first solving
the homogeneous equation, and then looking for a particular solution using the
Wronskian method. Now the z equation gives the hydrostatic pressure profile as
function of z, the r equation gives the r dependence of the pressure through the
Vi profile. So, the only task left is to solve the 6 equation for the Vj profile as a

function of r.

The solution is found to be:

JoB. A3 JoB.\?

Vo = é +Cr+ exp (—r/\) + exp (—r/)\) (4.20)

The parameters that needs to be fixed in this equation are A and C, which are the
integration constants set by the boundary conditions, and Jy, the constant in the
current density profile, and getting it is a bit trickier. First, we have to relate Jy
to the current that we measure experimentally. We know that [ = [ J-da with da
is unit area perpendicular to the flow of the current. Since the current is purley
radial da = rdfdz in cylindrical coordinates. So I = Jy [ rexp(—(r—a)/\)d0dz =
Jo2mhr exp(—r/A). Now to relate this current profile to the one we measure in
the experiment, I, we assume that I is proportional to the average [ over the

Ro

~ Idr
. . R, . . .
radial domain, so we have: [ = a7t—-, with R; and R, being the inner and
o Ll

outer radii of the container, and « a proportionality constant that we will use as

a fitting parameter. Taking all of that into consideration, J, become:

1
g,orexp(—r/)\)dr
e
Ro—R;

Jo =

(4.21)
2mho
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V” (cm/s)

With r € [a, R], a being the radius of the inner rod, and R being the radius of

the cylinder.

¥ theoretical results with experimental boundary conditions na siip boundary conditions.

: #  theoretical results with
velocity . i velodily

(®)

R (cm)

Figure 4.3: Experimental profile for Vj as a function of r overlaid with the the-
oretical profile taken the outer boundary condition as (a) experimental value of
Va, (b) no slip boundary condition

It is worth noting that changing the chosen profile of the current density
affects the solution drastically. If one assumes that the electrolyte is a perfect
conductor and uses a profile that is proportional to 1/r, the agreement between
theory and experiment is lost as is shown in Fig. 4.4. This was the drive to
look deeper into the theory of electrolysis, which tells us that the electric current
is restricted to a boundary layer near the electrodes with a thickness 0, this is
explained in Chapter 2. Now to get A and B, the natural boundary conditions
to take are the no slip boundary conditions. Where Vy(R;) = Vy(R,) = 0 with
R; and R, being the inner and outer radius of the cylinder. But comparing this
result with the experimental data showed that the two profile does not match
as shown in Fig. 4.3 (b). This discrepancy is due to the effect of the boundary
layer in the experiment. Our theoretical model does not take into consideration

any boundary layer effect on the flow, and to account for it, a boundary layer
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Figure 4.4: Vj vs 1 for a current density that is proportional to exp(—(r—a)/\) in
dashed blue line overlaid with the same plot but for a current density proportional

to 1/r
analysis has to be made near the outer edge of the cylinder and the resultant
velocity profile should be matched with the bulk profile at a point § away from

the boundary, with § as before the boundary layer thickness.
The analysis of the boundary layer in cylindrical coordinates turned out to be
hairy, so we settled for an experimental value of the velocity at R — 4, to fix our

integration constants, resulting in a matching profile between the laminar theory

and experiment as shown in Fig. 4.3 (b).

4.3 The Taylor-Couette instability

The problem of rotating flows between two concentric cylinders was extensively

studied. The first to analyze such systems was none other than Newton himself

47



[5]. Then, many greats followed. The most notable contributions were from two
scientists: M. Maurice Couette and Geoffrey Ingram Taylor [5]. The former made
use of experiments with a flow between two concentric cylinders to invent one
of the earliest viscometers. The latter developed linear stability models for the
system taking into consideration the viscosity of the fluid, along with experimen-
tal verification of his theory. To develop his viscous theory, G.I. Taylor used the
work of Lord Rayleigh, who developed the criterion for linear stability without
taking into consideration viscosity, and whose work we are going to elaborate
on in this section. For their great contributions, all experiments with concentric

cylinders with fluid rotating between them are now called Taylor-Couette flows.

A general experimental setup of the Taylor-Couette (T'C) type consists of two
rotating concentric cylinders, between which a fluid is immersed. Lord Rayleigh
developed the following criterion for the stability of the system disregarding vis-

cous effects:
d (r2Q)°

>0, (4.22)

In physical terms, the square of the angular momentum of a fluid element must

be a monotonically increasing function of the radius.

In this section, we will recover this criterion, following Lord Rayleigh’s analysis

[28], and following the proof given by S. Chandrasekhar [21].

First we write the Navier-Stokes equations for an inviscid, incompressible,

axisymmetric system with no external forces:

I.
v, v, V2 oV,  19P
a Ve T TV T (4.23)
f:
IVy oV VyV, OVy
-6 e, rerr i 4.24
g PV T Ve =0 (4.24)
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oV, oV, oV, 10P

Vi—+V,— = —— 4.25
ot " or * 0z p 0z (4.25)
Continuity:
ov, V. 9V,
-r =0 4.26
or i r i 0z (4.26)
The 6 equation can be rewritten as:
D (rVy)
= 4.2
Sal—, (427)

which states that the angular momentum L = rVj, in the direction of the axis of
the cylinder, of a fluid element is conserved.

Let us take two fluid rings of the same height and having the same mass, at
the radii vy and 7y such that ro > r{ cach with a width of dr; and dry. The
equality of their masses requires that pVj = pVs with p being the density of the
fluid. This leads to: 27ridr; = 2wredry = dS. On top of that the average kinetic
energy of each ring is T' ~ V2rdr = L?/r*rdr Now if we interchange the fluid in
the rings, since the angular momentum is conserved with the motion of the fluid,
each fluid element after the interchange, will retain its angular momentum before
the interchange. In other words, the fluid element initially at r; and angular
momentum [; will have angular momentum /I,y when it transits to radius 7o, and
the same thing applies to the second fluid element. Now if calculate the change

in the total kinetic energy after the interchange we get

Ly Li 212 T (11
[(T_%+T_§ RCGART ds = | (L; = L) R ds. (4.28)

From this it is clear that when the square of the angular momentum increases

outwards, in other words Ly > [, the system needs an energy input to inter-

49



change the fluid rings, an indication of stability. On the other hand, when the
square of the angular momentum decreases with the radius the system liberates
energy with the interchange of the fluid elements, hence the system is unstable.

We derive now the stability criterion using a perturbative approach. Starting
with the laminar velocity profile, we perturb the NS equations by assuming that
the profiles are V= \76 =+ V;L with % the laminar profile, and ‘71 is a perturbed
velocity with amplitude much smaller than the laminar profile. After plugging
this in NS equations, and eliminating all terms of order V;? and above, while

analyzing an inviscid perturbed system, we get the following equations

r:
OVer 2V Vo 1P
_ S 4.2
ot r p Or (4.29)
0:
Vo1 19 (rVaor) B
Vo, <;—8T Vo= 0 (4:30)
z:
oV 10P1
= —— 4.31
ot p 0z (431)
continuity:
100Vi) OV _ (4.32)

r  Or 0z

To solve these equations, we could assume Fourier modes solutions in the time
and z domains, due to their translational symmetry. In the r direction we need
to solve in real space instead of Fourier space. So, if f represents any velocity
component or pressure in our equations, the general solution would be of the

form:

f _ f(r)e—iwt+ikzz (433)

Plugging this solution into the above equations we get
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~ 2Vio =~

_7udV,‘]_ — —‘/9]_ = —/—)Pl, (434)
0:
~ 10 (rVg
—iwVy + ( M) Vi =0, (4.35)
r Or
Z:
k ~
—Zw‘/;l = —Z—Pl, (436)
P
continuity:
1 0 (Y’Vrl) ~
-2 ik, V., = 0. (4.37)
r or

Now eliminating ]51 between the r and the z equations, ‘721 using the continuity
equation and \791 using the 6 equation, we get one differential equation in ‘21.

Dropping the tildes, we get:

2
a4 <1d(ﬂ/r1)) — K2V, + k_ (%d(r%@) Vii=0 (4.38)

dr \r dr 72 dr

multiplying the above equation by rV,; and integrating the first term by parts
while assuming that the radial velocity at the boundaries of the cylinder vanishes,

we get:

1/d(rV,)\’ oe /K2 2o d (rVio) 5
_ [ = K2V 270 I — :
/r< pe ) dr /r WVidrt | = (=5 ) rViadr =0 (4.39)

rearranging we get:

) f(w d(r\/gg)) V?ldr

w . r2
— = (4.40)
K2

ot (%) +rK2VAdr
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The ratio I“;—z is positive only if the integrand of the numerator is positive

2 must be nega-

and negative only if it is negative. And for it to be negative, w
tive, which means that it is a complex number, giving a solution with a positive
exponent growing with time, hence the system is unstable. Looking into the in-

tegrand of the numerator on the right-hand side we have the following condition

for stability:
2V d (Vi)

2 >0 (4.41)

putting it in terms of the angular momentum L:

1 d(L?)

5y >0 (4.42)

This is the Rayleigh criterion initially stated.

Any inviscid, incompressible fluid rotating between two concentric cylinders,

admits the above criterion for stability.

4.4 Secondary Instability and the Breaking of

Axisymmetry

After the primary instability kicks in, an axisymmetric vortex develops in the
flow. As mentioned before, the aim of this thesis is to study the transition
between this primary axisymmetric state, to the non-axisymmetric state. To do
that, we are going to propose a velocity profile that resembles the steady state
profile of the axisymmetric flow, and then we are going to apply perturbation
theory to explore its stability, with the hope to explore the different destabilizing

parameters of the flow.
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Modelling the primary axisymmetric vortices

To get the Rayleigh condition, we perturbed a base flow, and looked for the
condition under which that perturbation grows exponentially.

Now to study the stability of the steady state primary flow, we need to get a
base flow that describes it, and then perturb it and look for the conditions under
which non-axisymmetric perturbations grow. But solving for the steady state
primary flow, especially for the full cylinder, while taking into consideration the
Lorentz forcing, is difficult. So, we simplify the system in a way that captures
the necessary physics. We suspect that the key factor for the breaking of the
symmetry in the axisymmetric flow is the shearing layer between the primary
vortex, and the bulk flow in the cylinder, on top of that, with the current density
profile that we are using there are no significant body forces near the primary
vortex that might affect the dynamics. We have to take this into consideration
when trying to model the flow in our experiment. So we devise a model that
describes two counter rotating vortices constrained in a cylindrical channel of

width 2h, with h being the depth of the fluid in the channel as shown in Fig. 4.5.

Figure 4.5: Schematics of the modeled cylindrical channel flow

We need a solution that satisfies the steady state, inviscid, incompressible
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axisymmetric Navier-Stokes equations.

Starting for a suggestion for the V,. profile,

V, = (3/7; sin (K, (r — h)) cos (K 2) (4.43)

This proile is motivated by the solution of Eq. 4.38. This equation is of the
Sturm-Liouville type, its solution defers depending on the profile of V4. The
Vgo profile shown in equation 4.20 is of the form of Ar + £ 4 g(r). Solving Eq.
4.38 with this profile for Vjyg is extremely difficult. But if we disregard g(r) it is
shown that the solution for V;; is a linear combination of Bessel functions [21].
Hence, while not capturing the whole dynamics, this solution can be considered
as an approximate solution of our system. Furthermore, we are working at the
edge of the cylinder having a large aspect ratio, we could assume that we are
working in the regime where r — oo. In that regime the Bessel functions can
be approximated by J,(r) ~ \/%7 cos (r — vy — %) 29], which verifies the radial
part of the suggested V, profile. As for the z-dependence, it is justified by the
e'f=* dependence in the initial proposed solution in Eq. 4.33. The phases of
the sines and cosines are fixed by boundary conditions, and all multiplicative
factors are absorbed into 0V, hence the suggested V,. profile in equation 4.43 is

mathematically justified.

The V, profile is obtained by solving the continuity equation of the inviscid,

incompressible, axisymmetric, steady state NS equations.

I D)
V, = _r/ 5 dz + C, (4.44)

With C, being the integration constant fixed by the boundary conditions.

The only thing that is left to do is to get the Vy profile. One could eliminate the
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pressure term between the r and z equations and solve for V2. But the resulting
profile admits negative values in the domain under study, hence Vj is complex
at those regions. Experimentally, Vj profile is almost constant as a function of
r as is be shown in Chapter 3, hence one could try a solution for the perturbed
equation with Vj = c¢st and check whether this solution satisfies Eq. 4.23 to 4.26

with the transient term equated to zero.

With Vy = cst these equations reduces to:

r:
ov, V7 ov,  10P
K i (445)
f:
Yovo (4.46)
”
z:
IV, aV, 10P
TACAEINIS AL L 4.47
or + 0z p 0z (447)
Continuity:
ov, V. V.
ar T T 70 (4.48)

First the continuity equation is obviously satisfied. As for the momentum
balance, the 6 equations seems not to be satisfied. As for the other two equations,

eliminating the pressure between the r and 2z equations we get:
0 oV, 0 oV, 0 oV, 0 oV,
a_ rTa a_ za_ | T F_ rTao a0 2 | — 4.4
82<V0r>+az<v&z) 8r<V0r>+0r<V&z> 0 (449)

If we plug our profiles for V, and V, it is not satisfied also. A way out of
this is by noting that both the 6 equation and equation 4.49 have an r~* with «

being a positive constant. Since we are considering a regime where r — oo, we
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can assume that the proposed velocity profiles satisfy the Navier-Stokes.

Since for r — oo any circle can be approximated by a straight line, we could
verify our assumption above by solving the same problem but for a straight chan-

nel, in cartesian coordinates instead of cylindrical. Fig. 4.6 shows a schematic

2h Y

Figure 4.6: Schematics of the modeled cartesian channel flow

of the channel flow geometry with cylindrical coordinates. Now we write the
inviscid incompressible steady state NS equations in cartesian coordinates, with

all derivatives in the z direction, equal to zero:

X:
%%+%%:_%‘?}_§ (4.50)

y:

Z:
vx% + 1@% =0 (4.52)
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Continuity:
oV, o,
oz oy

0 (4.53)

For the initial V,, profile we expand the \/L; in the V, profile at » — oo and keep
only the first term. We get V,, = 0V, sin (K, (x — h)) cos (K,y) Then we integrate
the continuity to get V,, and we assume that V. is constant. This profile satisfies
Eqs. 4.50 to 4.53 exactly, hence the above approximation is valid. And as shown

in Fig. 4.7, the proposed velocity profile reproduces the shear layer observed in

a TC flow.

Figure 4.7: Streamlines of the zeroth order profile in normalized units



Instabilities in the straight open channel flow

Rewriting the zeroth order profile:

¢

Voo = 0V sin (K, (x — h)) cos (Kyy)

Vo = %5\/; sin (Ky,y) cos (K (x — h)) + cst (4.54)
V.o = cst
\

After proving that our profile satisfy Navier-Stokes and simulates the axisym-
metric structures formed after the primary instability had set in, it is only logical
that we perturb this profile and study its stability with the variation of different
parameters.

Although the most insightful thing to do is to perturb the cylindrical base flow,
it is also useful to perturb the cartesian base flow and prove that the perturbed
equations admit unstable solutions. After that we’ll come back to the cylindrical
case from which we can explore the effect of different parameters on the stability
of the system.

Starting off with the full Navier-Stokes equations in cartesian coordinates,
and assuming that the velocity and the pressure are of the form:

—

V= V;)(xvy) + ‘71(1:73/72716) (455>
P:P0($7y>+P1($vyazvt) (456)

With V; << Vj and P, << Fp are the perturbation. We plug this in the NS equa-
tions in cartesian coordinates, while keeping only first order terms. Zeroth order
terms already satisfy the equations, and second order terms can be neglected.

We get the following set of equations:
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1
O Va1 + V310 Vo + Vo0 0 Var + V1 0y Vo + Vo Oy Vit + V200,V = —;51:P1+VV2V$17
(4.57)

y:

1
O Vi1 + V10, Vyo + Voo 02 Vi + Vi1 0y Vo + Vo Oy Vi1 + V200, Vi1 = _;ayP1+Vv2‘/;;1a

(4.58)
Z:
1
OV + Vo0, Var + VioOy Vaa + V00, V1 = —;82131 + V2V, (4.59)
Continuity:
&rvxl + 8@/‘/1;1 + 3sz1 =0, (460)

with 0, = % and V? = 852 + 352 + 332.

Now before proceeding, it is always insightfull to work with nondimensional-
ized equations. We normalize our velocity with V,q the zeroth order velocity in
the z direction, and our position with A the depth of the fluid, all other parame-
ters will be nondimensionalized by combinations of these two parameters. Hence,

we get the following non-dimensional variables:

X =hX’
V =V,V'
(4.61)
__ _h
= mt'
P =pVir

With X'V’ #' and P’ the non-dimensional space, velocity, time and pressure
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respectively.

Plugging these variables into the above equations and rearranging we get:

at‘/ml+‘/zlax‘/;70+‘/zoax‘/;jl+‘/y1ayvx0+‘/.tyoay‘/ml+‘/zoaz‘/xl — _axP1+R671v2‘/;:17
(4.62)

O Vi1 + V2102 Vo +Via0 02 Vi1 V10, Vo + Vo Oy Vi1 +V200. V1 = —8yP1+R€_1V2Vyl,

(4.63)
Z:
OVar + Va0, Var + Vio0y Vaa + Vo00.Vyy = —0. P + Re™'V?V,4, (4.64)
Continuity:
az‘/:cl + ay‘/yl + az‘/zl — 07 (465)

with Re = h‘—;zo the Reynold’s number of our system. Along with the non-

dimensionalized zeroth order velocity profile:

Veo = 0V sin (K, (z — 1)) cos (Kyy)

Viyo = %(5\/33 sin (Kyy) cos (K (z — 1)) + cst (4.66)

Vao=1

All quantities in the above equations are non-dimensional, and the primes had

been dropped for convenience.
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To proceed, we assume a plane wave solution for all variables of the form:

f — fei(—wt+kzx+kyy+kzz) (467)

If we replace this solution in the above equations we get a system of linear

equations of the form Af = 0, where:

—iw+ ik Vo+ 0xVao — Re | K |2 9, Vio 0 ik
0.V, —iw+ ik - Vo+8,Vyo— Re | K |2 0 ik,
0 0 —iw+ik-Vo—Re V| K| ik,
ke k, k. 0
and

x

s Yy

=1 .

z

P

With & = (k, ky. k,) and Vo = (Vao, Vo, 1).

For Eq. 4.67 to be a solution, we have to have det(A) = 0. This gives a
quadratic equation in w, which admits two complex roots, w; 2 = wy1 2 +1712. To
study the stability of the system we have to concern ourselves with the imaginary
part of the roots, v. Whenever + is negative the solution is exponentially decaying
with time, hence the system is stable. On the other hand, whenever it is positive
the solution is exponentially growing with time, with a growth rate ~, which
means that the system is unstable. We are left now with the task of varying

—

the parameters of v with which it becomes positive. Those parameters are k,
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Re, 0V,, x and y, all in normalized units. First Re and ¢V, are set from the
experiment, for a height of A = 2.5 ¢cm and Vo = 1.73 em/s, the Reynold’s
number is Re = 343 and §V, = 0.025/1.73 = 0.014. As for E, we assume that
the perturbation in the z-direction has a wavelength of the same order as the
width of the channel, so A, ~ 2h, and the perturbation in the y direction has a
wavelength of the same order as the depth of the channel, so A\, >~ h. In addition,
there is no restriction on the perturbation in the z-direction, so we are going to

assume it has a wavelength of A, = 10h. So the normalized wavenumbers are:

2 2T 2 2 . T
K= <m’h_/h7_10h/h) = (m2m3).

With the above set of parameters, we obtain that the system is always unstable,
with maximum growth rate at the region of shear between the two vortexes as

shown in Fig. 4.8.
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Figure 4.8: v; and ~, plotted as a function of x and y

We have just shown that the system admits an unstable configuration, with a
maximum growth rate of the instability at the shear layer. Now we go to the
cylindrical channel case, where we could explore more the dependence of the
instability on the different parameters, with the addition of the mode number of
the 0 direction.
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Instabilities in the toroidal open channel flow

Now we repeat the same analysis in the cartesian case to the cylindrical channel

case. We start off by normalizing the zeroth order profile by Vj:

¢

Vig = 5\‘//7@ sin (K,.(r — 1)) cos (K,2)

Vo = m [0V, sin (K,z) (sin(K,(r — 1))) + 2K,rcos (K,(r — 1))] + cst

Voo =1
\
(4.68)

As before we start off with the normalized NS equations in cylindrical coor-
dinates, then we assume a solution of the same form as in Eqs. 4.56 and 4.55.
We keep the terms of the first order, then we assume Fourier mode solutions for

the equations of the form:
f _ fei(—wt+krr+m9+kzz). (469)

With that we get a system of linear equations of the form Af = 0, with

—iw ik Vi + 0, Vyo — Re (%7 | P 71/r2> —2/r + (2i(Re)m) /r* 0.V ik,
1/r — (2i(Re)m) [1? —iw+ ik Vo + V,/r — Re™! (ik,»/r— | k2 —1/7'2) 0 im/r
Vi 0 it ik Vit 8,Vig — Ret (rk,‘/r— | i \2) ik
1/r + ik, m/r k., 0
and;
r
f: [
z
P
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With & = (k,,m, k.) and Vo = (V0. 1. V).

The procedure continues in the same as in the Cartesian channel case. The
determinant of A is equated to zero, which will lead to a polynomial in w with
two complex roots. The sign of the imaginary part of the roots, v determines the
stability of the system, when they are positive the perturbation grows exponen-
tially with time and system is unstable otherwise the perturbation is damped,

and the system is stable.

-0.015

-0.025

Figure 4.9: ~ plotted as a function of r and z for A, = 6h, A, = 60h, m = 2,
Re =205 and 0V, /Vy = 0.0145.

The system admits unstable solutions as shown in Fig. 4.9. Tt is clear that
the shear layer between the two vortexes is an unstable region, but the maximum
growth rate of the instability is at z/h = 1 and r/h = 7. This could be explained

by noting the following: our velocity profile is periodic in 7 and z, which means
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at every half a period there is a shear layer between two vortices as shown in
Fig. 4.10 (a). On top of that the zeroth order profile decreases radially outwards
proportional to y/r. Which means that the growth rate decreases radially out-
wards. A quick comparison between Fig. 4.10 (a) and (b) shows that the regions
of instability are not only at the shear layer between two vortexes, but at the
point where the fluid of the vortexes diverges from each others. This point will

be elaborated on in the conclusion.

Figure 4.10: (a) periodic zeroth order velocity profile (b) the instability over four
vortexes

What we can do now, is to explore the parametric dependence of the «vs. The
relevant parameters are: IZ, Re, V., r and z, all in normalized units.

r and z are the domain of the channel set in such a way to get two counter
rotating vortices for the zeroth order profile. The only mathematical constraint
that we have on the remaining parameters is that m must be an integer so the
solution would be single valued in the cylinder, otherwise the parameters are free,
making our parameter space infinite. But experimental results put additional
constraints that gives us a starting point to probe from. First, we note that
we are working in a cylinder of finite radius, hence the perturbation in the r

direction has to have a wavelength less than the radius of the experiment. On
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top of that we see experimentally that the vortices of the secondary instability
do not come in radial pairs, in other words we don’t sce two radially adjacent
vortices in the r — @ plane. From this we could take the width of the channel
that we are modeling to be half the wavelength of the perturbation in the radial
direction. So A, = 4h for a channel of width 2h, which gives k, = 27 /(4h), or in
normalized unites we get k:; = hk, = 2w /4. As for the azimuthal mode number,
experimentally it ranged from 2 to 11 depending on the aspect ratio I'. So, in
our model we will take m varying around that range, from 1 to 15.

From experiment we have 0V, = 0.025 cm/s, Vy = 1.72 cm/s for h = 1.5 cm.
Normalizing 6V, by Vi we get 6V, = 6V, /Vy = 0.014.

;
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Figure 4.11: ~ vs m for A, between 8h and 500h with a logarithmic scale between
the A;s. Curves with A\, = 15h and 100h are highlighted to stres on the fact that
they are the curves between which the maximum v point, or the point of highest
instability growth rate, varies between m = 2 and m = 12

Obtaining the range of K, turned out to be a bit tricky. Fig. 4.11 shows the
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variation of the v vs m for different A\, = 27 /k,. Values of A\, that are smaller
or equal to 15h gives a v that is always negative. On the other hand, values of
A, that are larger or equal to around 100h have a positive v at small m values,
and as we increase A, no large variation of v with m emerges. Based on this
analysis and noting that the negative s could become positive as we increase
the Reynold’s number as will be shown below, we could safely limit our range of
A, to a value between 15k and 100h. It is worth noting that the chosen range
shows a variation of maximum ~ for m between 2 and 12 which conforms to the

experimental values.

Now we are left with the exploration of the dependence of the vs on the

Reynold’s number Re = Z;Lh, and on 0V,.

It is tempting to fix one of the two parameters and vary the other indepen-
dently, but this is not totally insightful. As mentioned before, the flow starts in a
laminar state. Under the aforementioned conditions, this base flow becomes un-
stable to TC instabilities, and a new axisymmetric vortex forms throughout the
flow with a periodic radial velocity of the form Eq. 4.43, with amplitude 6V,.. The
amplitude of the perturbation is correlated to the base flow velocities. We are not
going to explore this relation in details, and going to settle for an experimental
relation between Vj and §V,.. Experimentally at three currents 60,90,and 120 mA,
and for a fluid of depth h = 1.5 c¢m, or aspect ratio I' = 6.4, the azimuthal veloc-
ity near where the axisymmetric vortex is formed is Vp = 1.36, 1.734, 2.025 cm/s
respectively. And the amplitude of the radial profile is §V, = 0.012, 0.02, 0.025
cm/s respectively. From these three pair of values, we assume a linear relation

and interpolate different combinations of Vj and dV;.

Fig. 4.12 shows the variation of the v vs m curve at different Reynold’s

numbers and at different aspect ratios I'. From this figure we can note two
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Figure 4.12: v (1/s) vs m for different Reynold’s numbers taken at h = 1.5 cm
with K, = /25 K, = pi/(2 x width of the channel) in normalized units, (a)
for aspect ratio I' = 1 and with a maximum 7 at m,,,, = 2 for all Reynold’s
numbers, (b) for aspect ratio I' = 2 and with a maximum 7 at my,,,; between 4
and 5, (c) for aspect ratio I' = 4 and with a maximum = at m,,,, between 5 and

7

things: The first is that for a constant I' an increase in the Reynold’s number
would make the system more and more unstable, but without largely affecting
the mode number at which the instability has a maximum growth rate m,qs.
Second as we increase I' we can also see that m,,., also increases. Both of those
findings are confirmed by the experimental results that are presented in Chapter

3.
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4.5 Conclusion

In this section we have proven that an axisymmetric flow can naturally transit
into nonaxisymmetric with the virtue of a secondary instability, mediated by a
shear layer between the two vortices of the flow, and under specific values of the
flow parameters. We have also found a relation between the Reynold’s number
and the stability of the flow, and that when the flow is unstable, the number
of non-axisymmetric vortices is related to I', the aspect ratio of the flow. The
analysis of this section is of course linear in nature, so it does not replicate totally
the experimental findings, but it gives insight on the controlling parameters and

replicate key features of the instability.
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Chapter 5

Conclusions and Future works

In this thesis we presented a novel experiment, in which a non-axisymmetric
instability emerged on top of a primary axisymmetric instability. Novel in the
sense that the development of the secondary instability was natural and without
the forcing of a shear layer in the r — 6 plane. We showed both experimentally
and theoretically that the source of the instability was indeed a shear layer, but
counter to the previous literature it was in the » — z plane and not in the r — 6
plane. We characterized the relevant non-dimensional parameters controlling the
dynamics of the flow and showed the effects of both the Reynold’s number and

the aspect ratio I on the properties of the flow.

More work can be done to develop both the experiment and the theory. First
in terms of the experimental setup one can use a higher resolution camera with
a higher frame rate, which would increase the accuracy of the experiment, and
guarantee that 6V measured is coming solely from the intrinsic fluctuations of
Vy. The analysis code can be developed more to filter out erroneous vectors
with a post processing scheme. In terms of the experimental results one could

probe for the variation of the mode number with the aspect ratio, along with
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the characterization of the growth rate of the instability at different Reynold’s
numbers. Finally, theoretically one could probe the parameter space gotten in a
more in depth way, to better understand the nature of the perturbation and its

effect on the flow.
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Abstract

Using experimental, theoretical and numerical techniques, we show that the axial symmetry
of shallow rotating flow is naturally broken in the absence of externally forced gradient. We
present evidence that this is caused by a secondary instability, which comes as a consequence
of the gradients generated by the primary instability. The experiment consists of an electrolyte
poured into a cylindrical container with radius R and height h. It is subject to electromagnetic
forcing caused by an axial magnetic field and a radial current (J). At large aspect ratio (R/h) and
low Reynolds number (Re), the flow is laminar. At moderate aspect ratio, the flow is subject to
the Taylor-Couette (T'C) instability in the boundary layer generating an axisymmetric vortex in
agreement with the theory. When Re is increased by changing h or J, the flow becomes unstable,
at a critical Reynolds number about 260, leading to a secondary instability excited at the radial
position where gradients exist due to the primary vortices. The experimental work is confirmed
using theoretical calculation as we perform non-axisymmetric perturbation of two counter-rotating
vortices moving in a toroidal channel. It is shown that a non-axisymmetric instability is expected
to grow at the location between the two vortices under conditions close to our experiment. Direct
numerical simulation is conducted and the results confirm the onset the axisymmetric vortex near
the wall as well as the non-axisymmetric structures generated at the shear of the primary vortices.
It is concluded that the breaking of the symmetry in shallow rotating flows take place at relatively

low Reynolds numbers caused by the dynamics of the primary instability.

PACS numbers: 47.20.Lz,47.20.Qr,47.32.E£,97.10.G2,96.30.Mh

Keywords: Shallow rotating flow, Taylor-Couette instability, secondary instability, accretion disk



I. INTRODUCTION

Rotating flows are found in nature and in man-made devices, they are thus ubiquitous
to different fields of Physics and Engineering [1]. The domains of application span over a
wide range of scales, from simple household equipment like vacuum cleaners to jet engines
and magnetized thermonuclear plasmas (tokamaks) [2]. They also occur at scales of natural
geophysical flows like hurricanes and polar structures [3], reaching protoplanetary disks
around newly formed suns up to accretion disks around black holes [4]. The common feature
to all of these themes is the rotation of a neutral or ionized fluid around an axis with a
height much smaller than the radius. The understanding of these flows, their stability and
turbulence remains up-to-date an active field of research with major consequences to improve
our techniques and enhance our understanding of the universe.

Rotating flows were studied theoretically and experimentally by many authors where the
fluid motion is produced by rotating walls leading to the so-called Taylor-Couette (TC)
flows [5]. Their stability with respect to axisymmetric disturbances is determined by the
Rayleigh criterion, indicating that it is unstable whenever 9,(72Q)? < 0, where Q being
the angular velocity of the fluid [5-7]. The instability leads to Taylor vortices, which are
axisymmetric occurring in the radial-height plane. The Rayleigh criterion was later on
extended to three-dimensional perturbations and it was shown that it is generic regardless
of the distortion from circular motion [8]. Its generalization to include centrifugal non-
axisymmetric instabilities was done in Refs. [9, 10].

On the other hand, the study of accretion disks around black holes posed a contradic-
tion. On one hand, the theory of Lord Rayleigh [11] indicates that Kepler-like profiles are
stable whereas observations hint towards turbulent dynamics. This problem was under-
stood by considering the magnetohydrodynamic equations applied to a compressible fluid
subject to magnetic field perturbations. Accordingly, while astrophysical accretion disks
with a Keplerian-like velocity profile are hydrodynamically stable, they are unstable to the
magneto-rotational instability (MRI) [12-14]. The criterion of instability is J,£2 < 0 and
like the TC instability, MRI leads to the onset of axisymmetric vortices in the radial-height
plane.

There is a consensus that we have a rather good understanding of axisymmetric perturba-
tions and instabilities in rotating flows. Among the questions that persist are the symmetry
breaking and the road to three-dimensional turbulence. Understanding how the axisym-

metry is broken is crucial because the momentum is mainly in the azimuthal direction,



consequently, its perturbation should strongly affect the flow rotation as well as its mixing
properties. Driven by the various applications, several experimental setups were designed
to study the onset of non-axisymmetric instabilities in rotating flows. We divide them into
two large groups, barotropic where the flow is essentially two-dimensional without gradients
in the axial direction, baroclinic flow where gradient in the axial direction are important.
The onset of non-axisymmetric perturbations in barotropic flows was investigated by
many groups, we recommend the following review articles and the references therein [15—
17]. The experiments consist of a closed container that is filled with a fluid and set in
motion by rotating top and bottom walls moving at the same speeds. A shear zone is
achieved in the radial direction by dividing the top and bottom plates into two differentially
rotating disks leading to an inflexion in the velocity profile at the so-called Stewartson
layer [18, 19]. Using soap films with aspect ratio I' = R/h = 20, where h is the height and
R is the outer radius of the fluid, non-axisymmetric structures were excited at the radial
position of the azimuthal velocity shear layer [20] at a critical Reynolds number, defined as
Re. = |AQ|Rh/v, about 85-110; AQ is the differential rotation of the two disks and v is the
kinematic viscosity. The azimuthal mode number, m, is found to be inversely proportional
to h and the Reynolds number. Chomaz et al. [21] performed a comparison between the
experiment and numerical simulations using a similar setup with aspect ratios between 8 and
13.3 and found excellent agreement between the two techniques. The work in Ref. [22] with
I' = 2.5 showed that the Reynolds number, with the characteristic length that includes the
Ekman number and the depth of the fluid, is the appropriate dimensionless quantity that
best describes the onset of non-axisymmetric instabilities. Good agreement was obtained
between the linear theory and the experiment especially concerning the critical Reynolds
number for the onset of the non-axisymmetric instability. Furthermore, m is also found to
decrease with increasing Reynolds number. The apparatus used in Refs. [23, 24] is larger
than those used previously with I' = 1.5. Their study provided evidence that the nature of
the transition is a supercritical instability through a Hopf bifurcation and suggested further
evidence in support of the validity of the quasi-geostrophic approximation made in Ref. [22].
The hexagonal structure found in the north pole of Saturn motivated further work using
similar setups. With I' = 20, the authors in Ref. [25] studied the onset of non-axisymmetric
vortices as a function of the Ekman and the Rossby numbers in a closed toroidal channel
with differentially moving top and bottom walls. Non-axisymmetric vortices are reported to

be caused by the unstable zonal jets and thus provided one possible explanation to the North



Pole structure on Saturn. On this topic, one can add the work on vortices and Rossby waves
in Ref. [26] where the interaction between vortices generated by small jets and rotation were
studied in great detail.

Baroclinic experiments are performed in closed annuli with the top or/and bottom walls
rotating at different angular velocities leading to a velocity gradient in the axial direction.
Other ways to produce axial dependence could be the use of temperature or density gra-
dients in rotating flows [27-29]. Hydrodynamic instabilities in closed channels using forced
differential rotation in the axial direction were done to help understanding motion in planet’s
atmosphere where the motion generated by the temperature gradient between the poles and
the equator is coupled to the planet rotation [30-32]. In Ref. [33], the authors use both
numerical and experimental technique to investigate the instability in differentially driven
rotating cylinder with an aspect ratio of 2. The three-dimensional structures were visualized
showing non-axisymmetric structures different from the barotropic case as they include a
gradient in the axial direction. Similar results were obtained in Ref. [34] with I' = 2 — 20
where it was shown that the shear layer instability is the main responsible for the patterns
formation whereas the boundary layer remained stable. The results could be explained by
classical Kelvin-Helmholtz instability with a negligible role of the curvature. The critical
Reynolds number, with scale based on the shear layer thickness, is found to be about 110
in agreement with previous work and confirming that the transition originates from a shear
layer instability.

The work on rotor-stator cavity [32, 35, 36] combines axial and radial gradients as one disk
inside a closed cylinder rotates. The studies are performed at large Reynolds numbers and
showed the onset of elongated non-axisymmetric structures using experiment and numerical
simulation. Unlike the experiments discussed above, the onset of three-dimensional motion
occurs with elongated structures in the azimuthal direction and restricted in the radial
direction.

Free surface shallow rotating flows with electromagnetic forcing applied to electrolytes
were studied in annular channels [37-39]. The direction of the magnetic field was chosen to
change in the middle of the flow leading to a radial gradient in the azimuthal velocity as the
fluid is the subject to the Lorentz force. At the shear layer, the onset of non-axisymmetric
vortices was reported and the results are quite similar to those achieved by in barotropic
experiments with rotating walls. The theory of electromagnetically driven flow of electrolyte

in a thin annulus layer was lately revisited in Ref. [40].



The main issue addressed in this article, which complements the above research on shallow
rotating flows, is the possibility to break the axial symmetry in the absence of externally
imposed gradient. Our experimental setup possesses the following characteristics: The walls
of the setup are all steady and only the fluid is rotating caused by the Lorentz force. Our
flow is an open toroidal channel flow with an inner radius that is 50 times smaller than the
outer radius. No gradient in the temperature, the density or the velocity are enforced on
the system. The only velocity gradient is that generated at the walls in the boundary layer.
The magnetic field is along the same direction, consequently, the flow rotates in the same
direction at all radii. The aspect ratio can be varied easily, it will have values here between
4 and 33. We confirm that non-axisymmetric vortices are excited by a secondary instability
at the radial position where gradients exist caused by the primary instability. The fact that
primary instabilities occur in most of rotating flows makes our study relevant to most of the
themes discussed above and in particular to rotating flows occurring in Nature.

This paper continues with the description of the experimental apparatus and the diag-
nostics used in section II. In section I, we discuss the laminar motion at high aspect ratio.
We show that the flow is laminar and good agreement is obtained with the theory consider-
ing the fluid used is an electrolyte. In section IV, the primary instability at the boundary
layer is discussed with the onset of axisymmetric Taylor vortices in the radial-height plane.
Also, good agreement is found with the theory of linear stability reflected in the Rayleigh
criterion. The breaking of the axisymmetry is done in two ways: First, we increase the
Reynolds number and keep the aspect ratio unchanged, this is done in section V. Second,
we decrease the aspect ratio of the flow and this is discussed in section VI. It is shown that
the number of vortices in the azimuthal plane decreases with decreasing aspect ratio. With
increasing Reynolds number, the growth rate increases, so the onset of secondary vortices
occurs faster. In section VII, we use the perturbation method to investigate the linear sta-
bility of two counter-rotating vortices rotating azimuthally in a toroidal channel. We find
that the flow is expected to be unstable with a mode number and a Reynolds number that
are close to those found in the experiment. In section VIII, we present results from direct
numerical simulation as it is performed using the finite volume discretization method. The
results are in excellent agreement with the experiment showing that indeed the flow symme-
try is broken at the velocity shear layer generated by the primary instability. We conclude
by affirming the excellent agreement among the three methods used in this paper, that are,

experimental, theoretical and numerical and by discussing the possible consequences in three



different fields of our study as a prelude to future work.

II. THE EXPERIMENTAL SETUP

The experimental setup used to investigate instabilities in shallow rotating flows is illus-
trated in Fig. 1. It consists of a Plexiglas non-conducting cylinder with a thin stainless-steel
sheet fixed on its inner wall making its radius R = 9.65 cm. At its center, we install a
stainless-steel rod of radius a = 0.125 cm. We pour a potassium hydroxide (KOH) solution
with heights chosen in this paper to be h = 0.3, 1.5 and 2.5 cm leading to aspect ratios
I'= R/h = 33, 7 and 4 respectively. The concentration of KOH is about 25% of the weight,
which leads to the electrical conductivity to be ¢ = 55 S/m, the density equals to 1.24 kg/m3
and the kinematic viscosity about 1.25x 10 %m?s*.

The inner rod is biased with respect to the outer cylindrical sheet drawing a total current
Iy, which we vary here between 60 and 120 mA. With these currents, one can verify that
the electrolyte remains at room temperature during the experiment, which lasts about a
minute. Around the cylinder, a set of electromagnets generates an axial magnetic field at
the edge of B = 90 mT, which decreases towards the center to 50 mT. The Lorentz force,
J x é, where .J is the current density, leads to the motion in the azimuthal direction.

We obtain qualitative information about the flow motion by injecting a minute quantity
of premixed fluorescent dye with the KOH solution at chosen positions and follow the spread
of the dye as it is entrained by the fluid motion.

Quantitative data is obtained by using 200 um beads with a density smaller than water
that are scattered on the surface of the electrolyte and let to move with the fluid. They
thus float on the surface absorbing in the ultraviolet (UV) and emitting in the green. Two
UV lamps installed above the container provide the necessary light intensity. We image the
flow with a 12-bit 2600 x 1290 pixels camera installed vertically at about 50 ¢m from the
container and recording at a rate of f, = 1/At = 15 frames/second. The spatial resolution
is dominated by the beads size since in one direction one pixel covers 77 um and in the other
150 pwm. The azimuthal velocity is obtained by following all the beads over three consecutive
frames in an FEulerian fashion. It is calculated using a central difference scheme leading to
Vi = (0;(t +2At) — 6,(t)) /2At) where 6; is the azimuthal position of the bead ¢ determined
at two frames separated by 2At¢. The minimum velocity that we can resolve is 1.5 mm/s. To
minimize the account of false neighbors, we impose a maximum angle of 6,,,, = 15° between

the motion occurring in the frames (i,7 + 1) and the one in (i + 1,7 + 2). This can be

6



interpreted as putting a condition on the vorticity over the velocity shear rate to be smaller
than cot 26,,4,. The radial velocity order of magnitude is is about 1/100 times that of the
azimuthal velocity, consequently, we are unable to resolve it using the Eulerian method. We
thus developed a Lagrangean method according to which we follow one bead motion in time.
If we are able to track it for more than one full turn, then, we determine the radial velocity
by determining the change in the radial position according to V,.(t) = (r;i(to +t) — r;(to))/t.
The radial position of the bead i is r;, #g is the time when we start following the bead and ¢
is the time if the first full rotation is complete. For the radial velocity calculation, and since
it requires tracking over a long period of time dedicated experiments were performed where
a limited number of fluorescent beads are puffed on the fluid before starting tracking them.

In Table I, we insert the experimental parameters of the flow as well as dimensionless pa-
rameters that are relevant to our study. We use the so called external Reynolds number 23]
defined as Re = Vj(r = 8)h/v to characterize the fluid dynamics. Since the secondary
instability that leads to the onset of non-axisymmetric structures occurs at around R — h,
the Vjy used in the determination of the Reynolds number is at r = 8 cm. The relative
importance of the shear layer caused by rotation to the presence of friction with the bottom
and the sides, is assessed using the Ekman number Ej = v/Qh% With Q = Vj(r)/r taken
at 7 = 8 cm, F), varies from 1.2 to 8 x 1072 indicating that the vertical friction plays minor
role for when studying the onset of the instabilities at low aspec ratios. The thickness of
the Ekman layer § = \/V/_Q is about 2-3 mm. It reflects the region where the flow velocity
changes from the maximum at the surface of the fluid to 0 at the bottom and side walls.
As no gradient is imposed in the axial direction, the flow far from the walls is considered
barotropic for moderate to low aspect ratio. Actually, this is supported by the shape of
our non-axisymmetry vortices, which appears to be similar to those generated in barotropic

flows [21, 22] and far from those generated in baroclinic flows [33].

IIT. LAMINAR FLOW DYNAMICS AT LARGE ASPECT RATIO

We study the dynamics of shallow rotating flow by filling the container with the electrolyte
solution to h = hy = 0.3 cm. This leads to a large aspect ratio I' ~ 33 and a small
Reynolds number ranging about 46. The main goal of this section is to study the laminar
motion of the flow. We show that the best fit of the experimental data corresponds to an
exponentially decreasing current with increasing radius in agreement with the studies of the

Debye shielding in electrolytes in the presence of convection.
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h [em]| Ty [mA]|Vy(r = 8) [cm/s]| Re Ey 0 [mm]
0.3 60 0.9 22 1.2 3.3
0.3 90 1.4 321 08 2.7
0.3 120 1.9 46| 0.6 2.3
1.5 60 1.3 156(34 x 1073| 2.8
1.5 90 1.6 192(28 x 1073| 2.5
1.5 120 1.9 22823 x 1073| 2.3
2.5 60 1.2 240(13 x 1073 2.9
2.5 90 1.6 3500 9 x 1072 | 2.4
2.5 120 1.9 380| 8 x 1073 | 2.3

TABLE I: Table presenting the main parameters of the experiment.

Using the data taken of the fluorescent beads as they move around the container, the
profile of the instantaneous azimuthal velocity, vg, for Re = 46 is plotted in Fig. 2(a) in dots
along with the average azimuthal velocity normalized by the average value at r = 4 cm, that
is, Vy(r = 4). The average velocity profile is obtained by averaging first over the azimuthal
angle, then over time.

At this aspect ratio, I' = 33, the value of V(r = 4) increases linearly with the total
current, it varies from 0.9 to 1.9 cm/s when [y is increased from 60 to 120 mA. An image
of the container taken 30 seconds after the dye was injected close to the center is shown
in Fig. 2(b). The dye moved towards the outer edge as a result of the centripetal force
and maintained a circular edge between parts of the flow with and without dye reflecting
the absence of non-axisymmetric vortices. The laminar motion can also be deduced from
the beads motion over time. This is shown in Fig. 2(b) where we overlaid the light signals
coming from three beads as a function of time. Their motion at the three radii is circular
indicating the absence of non-axisymmetric structures. From Fig. 2(a), we infer that Vj
decreases exponentially as a function of r. Consequently, the radial velocity, caused by the
centripetal acceleration, decreases even faster. The decrease of the radial velocity with r is
detected in Fig. 2(b) showing that the bead closest to the center has strong radial velocity,
which decreases with increasing r and becomes almost zero for the farthest bead. The ratio
V,./Vj in the bulk is found to be about 1/100.

To simulate the profile of Vy, we consider a rather simple two-dimensional model with



the axial velocity, V;, and 0, are equal to 0. Moreover, the radial velocity is assumed to
be negligible when compared to Vj. Since, we are interested in the laminar axisymmetric
motion, we take no dependence on the azimuthal angle, therefore dy = 0. Applying the
above assumptions to the incompressible Navier-Stokes equations, we obtain the following

equation

9%V EE_E__;)J(T)B (1)
o2 ror  r2 v

where p is the density of the electrolyte, J is the current density and B is the magnetic

field. The equation of Vj is solved with the two boundary conditions, Vp(r = a) = 0 and
0, Vp(r = R) = 0. The condition at R reflects the fact that the boundary layer physics at the
outer wall is not included. We take the magnetic field to be uniform. By using permanent
ring magnets instead of electromagnets, it is verified that its radial dependence does not
change at all the experimental results.

The current density in electrolytes takes the form J(r) = Jyexp —(r —a)/\ with A =
1 mm.

Excellent agreement is obtained between the solution of the above equation and the
experiment as one can deduce from Fig. 2(a). Concerning the decay length A, it is known
that for motionless electrolytes that A is of the order of a nanometer reflecting the Debye
scale of an electric double layer [41]. When the electrolyte is in motion, A takes values of
the order of a millimeter reflecting in this case the diffusion layer thickness [42—44]. The
quantity Jy is determined from the condition faR J(r)h2wdr = Iy, where [y is the total
current measured in our experiment. Consequently, the Lorentz force drive is concentrated
near the center of the container and the rest of the flow rotates due to viscosity in the
absence of a radial velocity.

We deduce that excellent agreement is obtained between the theory of two dimensional
motion and the experiment for the laminar case with an exponentially decreasing current
density that has a decay length scale consistent with the thickness of a diffusion layer in

electrolytes.

IV. PRIMARY INSTABILITY AT MODERATE ASPECT RATIO

We increase the height of the fluid to h;y = 1.5 cm (I' = 6.7) to examine its role in

affecting the two-dimensional laminar rotational motion detected at hg. We show that at



small Reynolds numbers there exist a boundary layer instability caused by the azimuthal
velocity at the outer edge leading to the onset of a TC vortex. As we increase the current,
and thus the Reynolds number, non-axisymmetric vortices appear at the shear layer caused
by the velocity gradients of the axisymmetric structures.

In Fig. 4(a), we plot the instantaneous (vy) and the time averaged azimuthal velocity
(Vi) obtained one minute after the current is switched on. The average rotation properties
at hy are different from those at hy. The rotation speed, represented by Vy(r = 4) increases
from 1.3 to 1.9 em/s, that is by only 50%, as the current is doubled 60 — 120 mA, whereas,
it doubled for hg for the same current increase. The shape of Vj changes drastically from an
exponential decay vs 7 at hg to rather flat in the region 1.5 < 7 < 8 cm at hy.

At the outer edge, the azimuthal velocity deceases to 0 starting from r =r; = R — hy ~
8 c¢m reflecting an important increase in the boundary layer thickness from 2 mm the value
for hg. This large boundary layer is caused by the onset of an axisymmetric vortex with
diameter equals to h;. Because of the flat Vj profile, the gradient at the boundary layer near
the outer wall increases. The flow thus becomes unstable to the Taylor-Couette instability.
In fact, the investigation of the Rayleigh criterion, presented in Fig. 4(b), confirms that
indeed 9, (rV,)? is negative for » > r;. Consequently, the flow is TC unstable at the outer
boundary leading to the formation of an axisymmetric Taylor vortex as expected from the
theory.

The onset of this instability naturally increases the fluctuations of vy. This is quantified
using the standard deviation, defined as 0Vp = /((vg — Vp)?) where () denotes the average
over the azimuthal angle and time. The result is plotted in Fig. 4(c) where the maximum
of §Vy takes place at r ~ 9 cm where V, gradient is the highest indicating that this increase
is caused by the TC instability.

We confirm the existence of the axisymmetric vortex using dye injected close to the
container outer edge at r ~ 9.5 cm and ¢ ~ 90°. Fig. 3(a) shows a picture of the flow
where the dye causes a brighter region in the form of a ring between R — hy and R. This
shape indicates that the dye is transported not only azimuthally around the container but
also radially inward from r ~ R to r ~ R — h;. This inward motion towards the center is
opposite to the outward one caused by the centripetal force detected in Fig. 2(b). Trapped
by the TC vortex, the fluorescent dye remains confined in the region between R — h to R
leading to a strong light intensity gradient as a function of r reflecting the complete absence

of dye for r < R — h.
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The existence of a radially inward motion caused by the axisymmetric TC vortex is
verified by determining the radial velocity v, radial dependence. As explained above, this
quantity is obtained as beads are followed as a function of time. For Re = 156, the result
is shown in Fig. 4(d) where v, is plotted in dots and the average value, V,, is illustrated in
a thick solid line. In the central region we have V,./Vp ~ 1/40 and the sign of V, is positive
reflecting an outward motion in agreement with the centrifugal acceleration induced motion.
Towards the edge, the radial velocity decreases while the azimuthal one remains roughly
unchanged leading to V,./Vy ~ 1/100. Around r ~ ry, V, decreases sharply going through
zero and then taking negative values indicating radial motion towards the center of the
setup. This negative V, confirms and quantifies the observations made using the fluorescent
dye.

We deduce that at Re = 156, we have an azimuthal rotation caused by the Lorentz force
on top of which comes adding motion caused by TC vortex at the outer edge which is an
axi-symmetric rotational motion in the (7, z)-plane. The size of the TC vortex near the wall
is about the height of the electrolyte layer. The primary instability, which generated motion
in the (r,z)-plane, is unstable and leads to a natural breaking of the axial symmetry of
the flow. By ‘natural’, we describe the fact that no velocity gradient is externally imposed
on the system in any direction. Consequently, the transition occurs spontaneously at suf-
ficiently large Reynolds number by increasing the current flowing in the electrolyte or/and

by increasing the thickness of the fluid layer.

V. NON-AXISYMMETRIC VORTICES BY INCREASING THE REYNOLDS
NUMBER

At Re = 156, the coexistence of azimuthal rotation with the axisymmetric motion in the
(r, z)-plane is steady as the state of the flow is unchanged even after for several minutes. We
cannot judge for longer periods to avoid ohmic heating which could cause its own instabilities.

The stability of this three-dimensional flow is tested by increasing the total current leading
to Re increasing from 156 to 228 while keeping the aspect ratio unchanged. As a result,
the ring shape of the fluorescent dye, seen in Fig. 5(a), changes in (b) to form a polygonal
structure. This behavior points towards the onset of a secondary instability leading to
vortices in the azimuthal plane, thus breaking the axisymmetry of the flow. The deformation

around r ~ R — hy continues to increase with time until the flow reaches a steady state,
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depicted in (c), with the formation of m = 10 vortices.

Since the onset of the non-axisymmetric structures takes place at r = ry, which is the
diameter of the TC vortex, it is thus natural to assume that this secondary instability is
caused by the primary TC vortex dynamics and the consequent modifications to the average
velocity profile. In fact, one can no longer neglect the motion in the (r, z)-plane and the
consequent gradients. The onset of a secondary instability leads to an important increase of
the fluctuations level of vy around R — hy depicted in Fig. 4(c). The radial profile of §Vj at
Re = 156 has one maximum at 71, which corresponds to the maximum of the 9, (rVy)%. At
Re = 228, §Vj not only increases by a factor of 2.7, but also we record a shoulder at r ~ r;
caused by the non-axisymmetric vortices.

We deduce that the dynamics related to the onset of the primary axisymmetric vortex ap-
pear to be the cause of a secondary instability, which leads to the onset of non-axisymmetric
structures as the Reynolds number is increased. More evidence supporting this conclusion

is supplied hereafter.

VI. NON-AXISYMMETRIC VORTICES BY DECREASING THE ASPECT RA-
TIO

The idea that the onset of the secondary non-axisymmetric instability takes place at the
radial velocity shear layer, R — h, caused by the primary vortices is tested by increasing the
height of the flow from h; to h = hy = 2.5 cm. This leads to the increase of the aspect ratio
as well as the Reynolds number since the latter is linearly proportional to h. We divide this
section into two parts: we first expose qualitative results using the fluorescent dye, followed

by quantitative results using beads tracking and velocity measurement.

A. Imaging the Onset of the Non-axisymmetric Instability

In order to image the onset of the secondary instability, and before we turn on the
current, we diffuse the fluorescent dye throughout the fluid so that we have a uniform light
emission. To do so, we inject the dye at different locations, we stir manually and then wait
until the flow is motionless. We turn on the biasing power supply driving current into the
electrolyte solution and record the evolution of the flow. The time the current is switched

on is considered to be the origin ¢ = 0.
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Fig. 5 shows four images in false colors taken at different times of evolution of the flow
using the same color axis. The subplot (a) is taken at ¢ = 16 s where the centrifugal force
pushes the dye initially present near the center towards the edge generating a void recognized
by its low level of light intensity.

At t = 40 s, the dye becomes radially concentrated around ry as illustrated in Fig. 5(b).
This is produced by two effects acting in opposite radial directions: (1), the centrifugal force
that moves the dye towards the outer edge, and (2) the TC vortex at the edge, which gives
rise to a radial velocity pushing the dye towards the center. The former increases the void
at the center of the flow, the latter causes a ring-shape void that one can see all around the
container in the range R — hy <1 < R.

At t = 63 s, and without changing the conditions of the experiment, Fig. 5(c) shows that
the dye intrudes into regions away from ry at the two azimuthal angles 6 ~ 45 and 225 °.
This behavior is the consequence of the onset of the non-axisymmetric instability leading
to motion in the azimuthal plane. As we follow in time these structures, they develop to
become a set of 6 rotating vortices in the azimuthal plane. As a function of time, the number
of azimuthal vortices increases from 2, as seen in (c) until it reaches m = 6 at t = 115 s as
shown in (d).

For a better image of the secondary vortices, we perform a similar experiment, under the
same conditions, but the fluorescent dye is inserted at ¢ ~ 60 s at the shear location 7.

Fig 12(a) is taken 30 seconds later and clearly shows five vortices in the azimuthal plane.

B. Radial Velocity Profiles

We turn into quantifying the results of the previous section by inserting fluorescent beads
and following them as a function of time. We recall that the azimuthal velocity is determined
from three consecutive frames, whereas, the radial velocity is determined for beads that
undergo more than a full rotation. We use two Reynolds numbers Re = 240 and 380.
Consequently, we have the case of two aspect ratios, I' = 6.7 and 4 but with the same
Reynolds number about 230.

In Fig. 6(a), we plot the radial profiles of Vj at the two Re where one can note that neither
the amplitude nor the flat profile shape in the central region changed when compared to the
case of where the flow has h = h;. Consequently, the flow is still TC unstable near the outer
wall leading to a primary vortex with diameter equals to hs, and this is reflected in different

ways:
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1. The circulation in the (r, z)-plane, caused by the TC vortex, naturally leads to an
increase in the boundary layer thickness deduced from the radial position where Vj
starts to decrease towards 0. This position is deduced from Fig. 6(a) to be about
r9 =~ ho = 2.5 cm. Consequently, it increased from ry for hy to ry for hs in agreement
with the existence of a TC vortex at the edge with size about the height of the flow.
Moreover, from Fig. 6(a), one can also note that the boundary layer thickness does
not depend on the Reynolds number. It appears that the main parameter dictating

its dimension is the aspect ratio.

2. For hy, we witnessed an increase in the level of fluctuations when the flow becomes
unstable due to the TC instability. Furthermore, when we increased the Reynolds
number, this level increased even more, by a factor of 2.7, and we recorded a shoulder
around R — hy. The comparison of 6Vj for hy with respect to hy is done in Fig. 6(b).
The effect of the non-axisymmetric vortices on the fluctuation level is clearer as it

leads to another peak in the fluctuation intensity at R — ho.

3. The radial velocity profile presented a gradient at » = ry for h = h;. Now this gradient
clearly moved to r = 79 ~ 7 = R — hy cm as shown in Fig. 6(c). Consequently, the

gradient region moved from 7y to r9, which are the positions of the TC vortex edge.

We conclude this section by highlighting the fact that we were able to generate
non-axisymmetric structures in the absence of external gradients. They result from the
natural onset of a secondary instability with a source that is the gradients generated by
the axisymmetric vortex, which results from the Taylor-Couette instability. Moreover, the
poloidal mode number increases from m =~ 6 to 10 as the aspect ratio is decreased from 6.7
to 4. This is confirmed by changing the aspect ratio while keeping the Reynolds number ap-
proximately the same. By performing several experiments, we noted that the most unstable
azimuthal mode number dependence on Re is weak changing in the range 5 to 7 before the
flow becomes turbulent at high values of the Reynolds number. This is in agreement with

the theoretical analysis developed in the next section.

VII. THE THEORY OF THE SECONDARY INSTABILITY

It is rather well-known that axisymmetric perturbations of a rotating flow leads to the

onset, of the Taylor-Couette instability caused by the velocity gradient, which in our case
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takes place at the boundary layer. The onset of the instability modifies the velocity profile
with vortices in the (7, z)-plane. In this section, we study, for the first time, the onset of

non-axisymmetric structures, caused by the TC vortices, using perturbation theory.

A. Toroidal Channel Flow with Two Counter-Rotating Vortices

The experiment showed the existence of one TC vortex at the edge for R — h < r < R.
However, one can assume that there is a second one rotating in the opposite direction
occurring in the range a < r < R — h by conservation of momentum. The evidence of the
second vortex will be presented using direct numerical simulation discussed hereafter. We
consider a flow that is formed of two counter-rotating vortices, as illustrated in Fig. 7(a),
which are also rotating at a constant azimuthal velocity in the toroidal channel. The fluid
has a height h with an outer radius of R, = R and an inner radius of R; = R — 2h.

Because of the cylindrical symmetry, the solutions of the Taylor-Couette instability are
Bessel functions in terms of . They are approximated by sine waves for the case of shallow

rotating flows considering » — oo. The equations for the velocities can take the form:

Voo = % sin(K,(r — h)) cos(K,z) (2)
Vo = % cos(K,(r — h))sin(K,2) (3)

Voo = O (4)

where Cjy is a constant and 6V reflects the amplitude of the two counter-rotating vortices
in the (r, z)-plane. One can verify that these velocities obey to the Navier-Stokes equations
in the limit r — oo. We assume no-slip boundary conditions for V,. and V. leading to
K, = K, = w/h. For Vp, we assume a slip boundary condition at the walls in order not to
have gradients in r and z directions. Consequently, the only gradients are those caused by

the two vortices that simulate the TC vortices.

B. The Perturbation Method

The four conservation equations, reflecting the continuity and momentum, are normalized

according to + — x/h, v — v/Cy and time t — tCy/h. Then, they are linearized to the first
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order after letting v, = Vio+v,1(7, 60, 2), vg = Voo +vg1 (1,0, 2),v, = Vg +v.1(7, 0, 2) and p =
po + p1(r, 0, 2); The index ‘1’ denotes the perturbed quantities. We search for plane-wave
solutions of the form ~ exp —i(wt + k.r + mb + k,z) with w € C whereas k,, m and k, € R.
The result is put in a matrix form M.V = 0, where non-trivial solutions are obtained

by setting the determinant of the matrix M equals to 0. This leads to a second order

equation with two solutions w; and ws. The real part of the solutions reflects the oscillation
frequency of the modes. The imaginary part, denoted by =, acts on the initial amplitude of
the velocities and pressure. If 71 or 75 is greater than 0, the amplitude of the perturbation
grows over time reflecting an instability. On the other hand, v < 0 leads to an exponential
perturbation decay with time. If different growth rates exist, the most positive one will

dominate the dynamics since this mode will grow the fastest.

C. Parameters of the Non-axisymmetric Instability

Five parameters exist that dictates the values of the growth rate and mainly their sign
as we search for positive 7’s that indicate the onset of an instability. They are the Reynolds
number Re, the ratio of the counter-rotating vortices amplitude with respect to the azimuthal
rotation §V/Cy, the radial wavenumber k., the axial wavenumber k, and azimuthal mode
number m. In this study, we set h = 2.5 cm and fix hk, = 7/2, as we look at the formation
of one vortex in the radial direction similar to what was shown in Fig. 5(d). This leaves us
with three parameters as the poloidal mode number is chosen to be the variable with respect
to which ~ is plotted.

The plot of v as a function of r and z is shown in Fig. 7(b). The layer in-between the
vortices possesses a positive -y, hence predicting the onset of the non-axisymmetric instability
in this region. Positive 7’s are detected where the gradient is maximum. Now that we found
that positive growth rate exists, we turn towards the dependencies on the three parameters
hk., Re and 0V /Cy with ~y plotted as a function of the poloidal mode number m.

Based on our experimental results, we set the azimuthal rotation to be Cy = 2 cm/s and
the ratio of the TC vortices velocity when compared to the azimuthal one to be §V/Vj, = 0.01.
In Fig. 8(a), we plot the growth rate as a function of m for different values of hk,. The axial
wavenumber appears to play a role in two ways. First, it changes the values of v making the
flow stable for hk, > 7/20. In terms of axial wavelengths, stability is reached for A, < 40h.
Accordingly, the wavelength in the z-direction has to be much larger than the height of the

fluid indicating that barotropic vortices, in the sense that the gradient along the z-direction
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is very small, are unstable to non-axisymmetric perturbations. The second role of hk, is
the modification of the most unstable azimuthal mode number as it decreases from 6 to 4
with increasing A, (decreasing hk.). We deduce that in order for this calculation to be in
agreement with the experiment, the axial wavelength could be of the order of 40h.

In the dependence on the Reynolds number, which is set by Cy as we keep the height of the
fluid and other parameters unchanged, we choose hk, = 97/200 in addition to hk, = 7/2.
Fig. 8(b) shows the growth rate as a function of m for different values of the Reynolds
number, which chosen to be in the range of the experimental values. For Reynolds numbers
smaller than 350, the flow is stable as v is negative for all m’s. Moreover, the Reynolds
number affects not only the amplitude but also the most unstable mode number similar
to the effect of k,. With increasing Re from 333 to 583, the most unstable mode number
changes from 5 to 6. One can verify that the growth rate increases with increasing h, from
the behavior of the Reynolds number, in agreement with the experiment.

The last parameter is 0V/Cy. For its dependence, we set hk, = 97/200, hk, = /2
and Re = 417 corresponding to a rotation velocity of 1.7 cm/s. Although theoretically this
parameter is modified independently of Cy, in practice however, §V varies linearly with Cp.
The result of the calculation is plotted in Fig. 8(c) where one notes a strong dependence
on this parameter with the flow becoming unstable for 6V /Cy > 0.008. Experimentally the
ratio of the two velocities is between 1/50 and 1/100, which in the range of the theoretical
values where 7 is positive. We emphasize that the increase of §V/Cy does not lead to a

modification of the azimuthal mode number corresponding to maximum growth rate.

D. Conclusions from the Theory

To summarize the various dependencies, we plot in Fig. 8(d) the maximum growth rate
as a function of the three parameters discussed above. The x-axis thus represents 0V//Cl,
hk./10 or Re/2 x 10* depending on the graph. The theoretical analyses indicates that the
flow composed of two vortices in the (r, z)-plane and rotating azimuthally in a toroidal chan-
nel is unstable to non-axisymmetric perturbations. The fact that we set Vy to be a constant
indicates that its gradients are not a necessary condition for the secondary instability. It
is found that the conditions for the instability are close to our experiment mainly when it
comes to (1) the most unstable azimuthal mode m found to be about 6, (2) the critical
Reynolds number with Re. ~ 350, and (3) the velocity of the counter rotating vortices

when compared to the azimuthal rotation with (6V/Cy)eriticar =~ 1/100. Also in agreement
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with the experiment, the azimuthal mode number is not found to critically depend on the

Reynolds number.

VIII. NUMERICAL SIMULATION OF AZIMUTHALLY ROTATING FLOWS

In this section, we present direct numerical simulation (DNS) results of the rotating flow
presenting excellent agreement with the experiment supporting the idea that the axial sym-
metry is broken by the onset of a secondary instability caused by the shear layer developed
from the primary instability. The goal of this section is to reproduce the experimental
results and to gain more insights into the physical phenomena behind the symmetry break-
ing. Moreover, numerical simulations give access to the flow structure in the (r, z)-plan,
which was not possible in the experimental study. We continue by discussing the numerical

procedure followed by the results.

A. Numerical Procedure

The code solves the incompressible Navier-Stokes equations for conducting or non-

conducting fluid subject to a Lorentz force F.

V.v=0, (5)
ov ~Vp 9 F
8t+(v-V)V— p+qu+p (6)
V2 = V- (vxB). (7)

In the above equations, p is the static pressure, v is the kinematic viscosity and & is
the electrostatic potential. Ohm’s law, which states that j = o (—=V® + u x B), is used to
reconstruct the current density j during the numerical simulations. The numerical value of
the vacuum permeability is y1o = 1.1 x 107% H/m and the electric conductivity of the working
fluid is o = 55 S/m.

The numerical method used in this paper is based on that proposed by [45] and [46] to
study three-dimensional conducting flows with electromagnetic forcing. It was discussed in
detail and validated in a previous study in Refs. [47, 48] where excellent agreement was

obtained with the literature data of a forced toroidal channel flow as well as with a confined
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vortex-pair. The solver was also validated with respect to experimental data for a quasi-
two-dimensional turbulent flow in the presence of non-uniform magnetic field [49].

The numerical simulations of the governing equations are performed using the open source
C-++ library OpenFOAM 5.0, which is based on the finite volume approach [50, 51]. For each
time step, the code first initializes the Lorentz force (F = j x B). Then, Egs. (5) and (6) are
solved using the PISO algorithm [52] to obtain the velocity and pressure. Poisson’s equation
is then solved to obtain ®. Finally, the current density at each cell center is reconstructed [45,
46] and the new Lorentz force is obtained to be used in Eq. (6). The above steps are then
iterated about five times for each time step to ensure accurate coupling between the velocity
and electric current. These iterations are sufficient to reach a convergence criterion of 1076,

Non-uniform hexahedral mesh is used in the present study to cover the 10 cm radius
and the 2.5 cm height of fluid. The total number of cells was around 13 million cells. On
all the solid boundaries including the electrodes and bottom surface, a no-slip boundary
condition is used for the velocity field (v = 0) and for the pressure dp/dn = 0, where n
is the outwards facing normal of the domain. The upper surface is modeled as free shear
surface with atmospheric pressure. Constant electric potential is fixed on the electrodes.

The pressure and electric potential equations are solved by using a pre-conditioned con-
jugate gradient (PCGQG) iterative solver with a diagonal incomplete Cholesky (DIC) pre-
conditioner used for symmetric matrices. The velocity-pressure coupling equation uses the
asymmetric pre-conditioned bi-conjugate gradient solver (PBiCG) with a diagonal incom-
plete LU decomposition (DILU) pre-conditioner for asymmetric matrices. The same conver-
gence criterion of 107 is used for velocity, pressure and electric potential. For more details
about the numerical solver the reader is referred to Ref. [47].

The temporal discretization is performed using a second order implicit scheme. The
time step is automatically adapted during the simulations by using the Courant number
Comar = ALAV/Axz = 1 determined for each cell; the magnitude of the flow velocity at
the given cell is AV, Az is the cell size in the velocity direction and At is the time step.
Therefore, by fixing Co,,4.:; = 1, the time step is computed from the minimum value of

At = Az /AV taken over all fluid cells.

B. Results using DNS on the Onset of Primary and Secondary Instability

From the experiment and the theory developed above, we learned that the growth rate of

the instability increases with height. Consequently, and in order to save computational time,
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we select A = 2.5 ecm and study the onset of primary and secondary instabilities occurring
respectively in time. The goal of this section is to present the simulation results and as we
compare them with the experiment we deduce that we have excellent agreement between

the two methods.

1. The Laminar State

Fig. 9(a) and (b) show respectively the radial and azmiuthal velocities of the top fluid
layer taken at t = 5 s. They are determined before the onset of the primary or the secondary
instabilities as one can deduce from the lack of vortical structures in the radial as well as
the azimuthal directions. In Fig. 9(c), the radial profiles of V, and V. are plotted. For Vj,
we record an exponential decay with r. The radial velocity also decreases strongly with r
after reaching a maximum around 1 cm from the center. One can verify that at this stage
V,. is mainly driven by Vj caused by the centrifugal force. The sign of V, is positive for all
r’s indicating an outward motion and it becomes negligible for r > 6 cm. All the results are

in agreement with the experiment with A = 0.3 cm where the flow is laminar.

2. The Primary Taylor-Couette Instability at the Outer Boundary Layer

In Fig. 10, we illustrate the state of the flow at ¢ = 40 s while keeping the forcing and
all other parameters constant. The azimuthal and radial velocities of the top fluid layer are
shown in (a) and (b) respectively. They both present major differences with respect to the
laminar state taken at ¢ = 5 s. For Vp, one can see a net decrease in the color gradient
in the bulk of the flow reflecting a decrease in the radial gradient far from the boundaries.
One also note that the flow remains axisymmetric reflected by the lack of structures in the
azimuthal plane. The gradient in Vj is detected mainly at the edge with a boundary layer
thickness changing from a couple of millimeters, before the onset of the primary instability,
to about 2 cm after its onset caused by the primary TC vortex. The change of the Vj profile
from exponentially decaying to rather flat fat from the edges is in excellent agreement with
the experiment.

For V,, the difference with the laminar case is even more dramatic where we note the
existence of a ring, which reflects the TC axisymmetric vortex. This is in striking agreement
with Fig. 5(a) where we inserted dye at the edge the container and pictured the flow after

the onset of the primary instability. In both figures, the TC vortex leads to a ring-shaped
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structure at R — h < r < R. Using the DNS, the onset of the primary instability caused by
the velocity gradient at the wall is best seen with a cut in the (7, z)-plane shown in Fig. 10(c)
for V,.. The circulation caused by the onset of the primary Taylor-Couette instability is clear
leading to the co-existence of two counter-rotating vortices, one for r > R—h with a counter-
clockwise rotation and the other elongated in the radial direction between a and R—h in the
clockwise direction. The latter enhances the radial transport from the center to the outer
wall contributing to the flatenning of the azimuthal velocity profile far from the boundaries.
The co-existence of two counter-rotating vortices is hard to obtain experimentally and is
a direct consequence of the conservation of momentum. It justifies a posteriori the use of
two counter-rotating vortices in our theoretical analysis. The effect of the TC vortex on V,,
shown in (e), leads to a negative radial velocity in the range R — h < r < R. These results

are in excellent agreement with the experiment.

3. The Secondary Instability and the Breaking of the Axial Symmetry

The profiles of Vi and V,. after the onset of the secondary instability are shown in Fig. 11(a)
and (b) respectively. The breaking of the axisymmetry of the flow is clear in the absence
of any externally driven gradient at r = R — h. We verified that by changing h, not only
the growth rate changes, but also the radial position where the secondary instability takes
place as it is the case in the experiment. We note the onset of four vortices in the azimuthal
plane enhancing the mixing in the radial direction with negative radial velocities reaching
areas from from the shear region. The secondary instability changes the radial profile of Vj
in the boundary layer without drastically modifying the boundary layer thickness, which is
still dominated by the TC vortex.

The onset of the secondary instability modifies the profiles of V4 and V, mainly near R—h.
For the radial velocity, before the onset of the primary instability, it was determined by the
centrifugal force, that is set by V. Its sign is only positive throughout the domain reflecting
outward motion only. The primary instability leads to a rotation in the opposite direction
detected in the simulation by a negative radial velocity, which occurs for r > R—h. After the
secondary instability, the radial velocity amplitude grows slightly but its main characteristics

remain.
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C. Conclusion of the Numerical Simulation

In conclusion, performing direct numerical simulation of the rotating flow with conditions
similar to the experiment confirmed that the axisymmetry of shallow rotating flow is broken
by the onset of a secondary instability at the shear layer generated by the T'C vortices, which
results from the primary instability. The comparison between the DNS and the experiment
shows excellent agreement before the primary instability, before and after the secondary

instability.

IX. CONCLUSION AND FUTURE WORK

Our experiment demonstrated the onset of non-axisymmetric structures in shallow ro-
tating flows occurs ‘naturally in the absence of external forcing of a velocity gradient. We
use a thin layer of an electrolyte freely and azimuthally rotating in response to the Lorentz
force generated by an axial magnetic field and a radially decaying current. We found that
the azimuthal velocity gradient near the outer wall excites the Taylor-Couette instability,
in agreement with the theory. This leads to radial gradients in the velocity field, which are
at the origin of the secondary instability occurring at the distance (R — h) from the center.
The non-axisymmetric instability is thus a natural evolution after the onset of the primary
instability. Consequently, we claim that our findings apply to a wide range of rotating
and shallow flows where primary instabilities lead the onset of vortices in the radial-height
plane. We complement our experimental results by a theoretical model, which consists of
two counter-rotating vortices in the (r, z)-plane in addition to the azimuthal rotation. The
stability analysis of this flow indicates the onset of non-axisymmetric instability leading to
an azimuthal mode number around five for parameters that are close to the experiment.
Excellent agreement between the theory and the experiment is thus obtained. Furthermore,
direct numerical simulation is also conducted using a finite volume numerical method repli-
cating the experimental flow. The results are also in agreement with the experiment with a
primary instability kicking in at the outer boundary layer followed by a secondary instability
generating four non-axisymmetric structures.

This study shows a new route towards 3D complex motion in an unexplored shallow
flow configuration. The 3D vortical motion takes place at relatively low Reynolds numbers
(Re ~ 300) with large-scale structures. Hence, we expect it to have strong impact on the

angular momentum transport and on the resulting turbulent mixing. Increasing the aspect
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ratio leads to a lower azimuthal mode number and thus to larger primary vortex size.

Future work will be dedicated to the understanding of turbulence in theses flows and the
interaction among the vortices. Fig. 12(a) illustrates the flow with » = 2.5 cm after the
onset of the secondary instability and gives a clearer image of the secondary vortices in the
azimuthal plane, which is in agreement with Fig. 5. As we increase the Reynolds number
by increasing the current, the interaction among the vortices leads to a state represented in
(b) where the dynamics are complex and require dedicated investigation. It is worth also
pursuing in parallel the work using DNS. The agreement with the experiment apparently
extends to higher Reynolds numbers as one can see from (c), which shows the same type of
structures as in (b) when the flow is in the turbulent state.

Hereafter, we briefly discuss three areas for future work where the onset of a secondary
instability could play a major role in understanding the underlying dynamics.

In planetary geophysical flows, the above results have important implications as they
emphasize the strong interaction between motions parallel and perpendicular to the planet
surface in the formation of non-axisymmetric structures. The case of the hexagonal structure
observed on Saturn north pole [53-56] or more recently the set of vortices observed near the
north pole of Jupiter [? | is of particular interest and is worth revisiting in the lights of the
present experimental findings. Our results suggest that the origin of this structure could lie
in the coupling between the atmospheric rotational motion near the pole with the vertical
motion caused, for example, by convection cells. The vertical motion on Saturn and Jupiter
are known to be enhanced by its thick gaseous atmosphere [57], which appears to be an
important parameter according to our study. It is worth noting that, like other experiments
but in the absence of a radial shear in the azimuthal velocity, we have reproduced the Saturn
hexagonal structure in a laboratory experiment.

Future investigations of the secondary instability role at low Reynolds numbers could help
us understand planets formation around protostar [58-61]. After the formation of a disk of
dust around it, a primary instability of hydrodynamic or magnetohydrodynmic nature could
be excited. The interaction of the resultant axisymmetric vortex with the rotational motion
is expected to excite the secondary instability leading to the formation of non-axisymmetric
structures [62-64]. Our results suggest that planets could emerge early on after the disk
formation since vortices in the azimuthal plane tend to agglomerate matter around their
centers quite rapidly. The inward rotational motion towards the vortices centers added to

the gravitational attractive field lead to a strong acceleration of the rate at which planets
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are formed.

Several observations have documented the active dynamics of accretion disks around
black holes with indications of non-axisymmetric structures [65-68]. On the other hand,
it was suggested that strong turbulence is needed to explain the temperatures detected in
accretion disks [14, 69-74]. These flows are expected to be subject to a MR instability where
the magnetic field fluctuations lead to the formation of axisymmetric vortices similar to our
primary vortex. Based on our results, future work could investigate the role of a secondary
instability in the onset of the non-axisymmetric structures in accretion disks. Moreover,
because the vortical structures are in the azimuthal plane and they have large scales, the
resultant 3D motion could give rise to strong turbulence. Consequently, we hypothesize that
the non-axisymmetry and the strong turbulence in accretion disks around black holes could

have the same origin, that is, the onset of a secondary instability in the flow.
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Camera

FIG. 1: The experimental setup is illustrated where the magnetic field Bis generated by a set
of electromagnets illustrated in a dotted cylinder. A solution of potassium hydroxide is poured
into the Plexiglas cylinder (the colored cylinder) up to a chosen height h. The current density 5
is driven in the fluid by two electrodes biased by AV using a power supply. The electrodes are
made of stainless steel, one is a rod with radius 0.125 c¢m installed at the center of the container
and the other is a sheet fixed on the inner wall of the Plexiglas cylinder. A high-resolution camera

is installed at a distance about 50 cm from the container to image the fluid motion.
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FIG. 2: In (a), we plot the profile of vg/vg(r = 4) for Re = 46 in dots. The average radial profile
is plotted in crosses (+) and the one from the two-dimensional theory in thick solid line; Good
agreement is reached in the bulk of the flow far from the boundaries. In (b), a picture of the
container in false colors where the bright area reflects the presence of the fluorescent dye. The
motion of three beads as a function of time, deduced from the light intensity they generate, is
overlaid. The bead near the center has a large radial displacement, the bead near the middle has

a moderate radial displacement and the one at the edge having almost no radial displacement.
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Re=156

FIG. 3: The pictures in (a) and (c) are taken as the Reynolds number is increased from Re = 156
to 228 due to the increase in the current from 90 to 120 mA. In (a), the effect of the TC vortex is
visible as the dye, which was injected at the edge, remains confined to a ring with radius . (b)
shows the formation of a polygonal structure that appears during the evolution of the flow from

(a) to (c¢) where we have m = 10 vortices in the azimuthal plane.
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FIG. 4: In (a) we plot Vj ws r for two Reynolds numbers Re = 156 and 228 at h = 1.5 cm in
dash-dotted and solid lines respectively. In (b), 9.(rV4)? vs r is shown to emphasize that the
region r > r1 is TC unstable since it is negative. (c) dVy vs r peaking at maximum 9, Vj for the
two Reynolds numbers. In (d), the profile of V. as measured by the beads location over time at

Re = 156. The two vertical dashed lines illustrate the positions of the maximum of 8,V and 8, V.
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FIG. 5: At h = 2.5 cm, the pictures in (a)-(d) show pictures of the flow in false colors at different
times after the dye was distributed uniformly throughout the flow. The light intensity is propor-
tional to the presence of the fluorescent dye. The Reynolds number is 240. Note the dye motion
towards ro in (a) and then (b), the onset of the non-axisymmetric instability at two azimuthal

locations in (c¢) and the presence of m = 6 vortices in (d).

35



.f: =2.5 cm

()
in

__002 1 1 1 1 1 L 3 1
rfcm]

FIG. 6: In (a) and (b), we plot respectively the radial profiles of Vy and 0Vy(r) taken at h = 2.5 cm.
For Re = 240 and 380 we use respectively the ‘0’ and ‘+’ markers. The solid curve in (b) is for
0Vy(r) taken at h = 1.5 cm for comparison. In (c), V;. is determined at Re = 240 showing a gradient
at R —hg = 7 cm. The two vertical dashed andgotted lines illustrate respectively the positions of

maximum 0,.Vy and 9,V
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FIG. 7: In (a), we illustrate the geometry of the toroidal channel with two counter-rotating vortices
in (r, z)-plane. In (b), we plot the growth rate v(r, z) as a function of r and z showing where the

flow is unstable at the top in-between the two vortices.
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FIG. 8: The dependence of the maximum of the growth rates (vy; = maz(y(r, 2))) for three
parameters after fixing hk, = 7/2. In (a), we plot vy as a function of the poloidal mode number
m for different hk, showing that the flow becomes stable with decreasing hk,. This is shown in
(d) where the maxima of vy; are plotted as a function of hk, using ‘0’ marker. In (b), the effect of
the Reynolds number is investigated by changing Cy. The flow is unstable with increasing Re as
expected but the growth rate saturates at high Re as shown in (d) using the ‘4+’ marker. In (c), we
illustrate the dependence of vys on 6V/Cy, which reflects the relative importance of the velocity of
the two counter-rotating vorices. 7ys increases steeply with 6V/Cy, and this is highlighted in (d)
using the ‘e’ marker. the figure in (d) summarizes the various dependencies where the z-axis is at
the same time 6V, /vy, Re/2 x 10* and hk,/10 where the normalization is chosen so that all of the

plots fit on the same figure.
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FIG. 9: In (a) and (b), we show respectively the radial and azimuthal velocity of the top fluid layer
before the onset of the primary instability at A = 2.5 cm. In (c), we plot the radial profile of Vj

and V,. vs. r. Note that V,. is multiplied by 100 so that the two dependencies are visible.
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FIG. 10: In (a), we show Vj of the top fluid layer where the onset of the primary instability led to
modifications near the outer edge. This is better seen in (b), which illustrates the dependence of
V. on space. The onset of the primary instability leads to the formation of a ring structure which
reflects high radial velocities for » > R — h. In (c), we plot V, as a function of r and z clearly
showing the structure of the TC vortex. In (d) and (e), the radial profiles of Vy and V. respectively
at times before the onset of the primary instability (dashed line), after the primary but before the

secondary instability (dash-dotted) and after the secondary instability (solid).
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FIG. 11: In (a) and (b) we illustrate the spatial dependence of Vj and V, respectively after the

onset of the secondary instability. We note the existence of four vortices in the azimuthal plane in

agreement with the experiment.
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FIG. 12: In (a), we show the flow at Re = 240 with m = 5 vortices, in (b) we shown a case where

the flow is turbulent at Re = 380 and in (c) the result of the DNS.
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