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An Abstract of the Thesis of
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Title: Kinetics of the Ejection of a Polymer from a Capsid: a Molecular Dynamics
Approach

In this thesis we investigate the problem of a polymer chain ejecting from
a cylindrically symmetric capsid. We approach the problem through molecular
dynamics simulations using a bead spring model for the chain, and a strongly
repulsive potential for the walls of the capsid. We formulate two theories to
get predictions for the ejection times, one deterministic and one stochastic. We
also introduce a method to calculate local pressure distribution in cylindrical
coordinates. The simulation results show some deviations from the theory which
is an indication that we need to improve the theoretical model.
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Chapter 1

Introduction

We have witnessed in the past few decades a rapid advancement in applica-

tions of physical concepts in medical sciences and biology, driven by the better

understanding of soft matter. Soft matter is found in all living organisms, and

takes different forms: membranes, proteins, DNA strands etc... This makes the

concepts developed in soft matter physics readily applicable to biological systems

by making simple, yet effective, analogies between the system of interest and one

of the models thoroughly studied in soft matter.

The dynamics of confined polymers has gained a lot of importance in several

fields of science, especially since confined polymers appear in numerous places

(the nucleus of a cell, DNA in a viral capsid...). Recently a lot of effort has been

put in experimental, theoretical, and numerical methods to better understand

the mechanisms and scales of the storage and ejection of DNA from the capsids

of bacteriophages. What sparked the interest in the ejection of polymers from

capsids was the experiment done by Hershey and Chase in 1952 [3]. The experi-

ment is mostly known for the confirmation of DNA as the main genetic material.
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Figure 1.1: Structure of a Bacteriophage [1].

However, the experiment also showed that bacteriophages passively inject the

host cell with their DNA while leaving the capsid outside of the host, which left

scientists with various questions concerning the process of the ejection, the time

scales involved, along with the effects of different geometries on those time scales.

The structure of bacteriophages can be simply described by a head in which

the genetic material (DNA) is stored, a long tail, and a neck which connects the

tail to the head, as shown in Figure 1.1. Inside the head, which will henceforth

be referred to as the chamber, the DNA is so densely packed that pressures can

reach values up to 6 MPa [4]. It is widely believed that this high pressure is the

main driving force for the ejection process.

Experimental work on the ejection of DNA from phages generally shows that

the process is divided into multiple stages which are separated by dynamic pauses

[4, 5]. In addition, a study concerning the effect of temperature on the ejection

by de Frutos et al. [5] shows that at low temperatures the ejection is slowed down

dramatically. However, the curves describing the length of DNA ejected versus
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time look parallel in a log-lin plot, which suggests a law

L ∝ ln(t× f(T )) (1.1)

where L is the length ejected, t is time, and f(T ) is a function of temperature.

On the theoretical level, Inamdar et al. [6] were able to make analytical

progress and get an expression of the time needed for the ejection of a polymer

from a capsid by adopting the approach of diffusion in an external field. The

prediction is in the form of a formula for the mean first-passage time that follows

from the Fokker-Planck equation. We use a similar method described in section

2.6. Milchev et al. [7] studied the ejection of a polymer from a nanopore. The

ejection from a nanopore is similar to the final stage of the ejection of DNA from

a bacteriophage (when no part of the DNA is left in the chamber, part of it is

in the tail, and the rest is outside). They were able to get a scaling law for the

ejection time that can be evaluated directly to get prediction.

This topic has also been extensively studied numerically. Milchev et al. [7]

accompanied their analytical analysis with Monte Carlo (MC) simulations of a

polymer ejecting from a pore. Their results showed good agreement with the pre-

dicted behavior and scaling laws. Other numerical experiments were conducted

by Ali et al. [8, 9]. These experiments were Molecular Dynamics (MD) sim-

ulations of a polymer ejecting from a spherical capsid with a hole on its top.

Results have shown that if the data is not averaged over different simulations,

pauses similar to those observed experimentally [4, 5] appear, which were ex-

plained as pauses needed for the polymer to rearrange itself inside the capsid in
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order to be able to continue the ejection. Also, Brownian Dynamics simulations

of again a polymer being ejected from a spherical capsid were done by Kindt et

al. [10]. This work focused on the variation of the force resisting the loading of an

extra monomer into the capsid for polymers that interact through an attractive-

repulsive potential and through a purely repulsive potential.

Inspired by the work done on the subject, in this thesis we investigate the

problem of a polymer in a cylindrical capsid through molecular dynamics simu-

lations, studying the equilibrium properties and the ejection kinetics.
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Chapter 2

Theoretical Background

In nature, atoms bind together to form molecules, from simple molecules like

hydrogen H2 and oxygen O2, to more complicated molecules like the proteins in

our bodies. When molecules of the same nature start binding together they make

polymers. A polymer is a defined as a sequence of elementary repeating units

called monomers. The monomers themselves are individual molecules, and they

are linked together in a chain like fashion, so that we sometimes use the term

chain to refer to polymers. The different models and tools used to study poly-

mer physics are outlined below, starting from the basic definitions, up to more

involved dynamics.

This chapter relies mostly on the works authored by M. Rubinstein and R.

Colby [11] for the sections on the different types of chains and scaling laws (see

also the book by P. G. de Gennes [12]), an article by T. Nakamura et al. [13]

for microscopic pressure, an article by Milchev et al. [7] for the section on the

ejection from a nanopore, and C. W. Gardiner [14] for the section on stochastic

dynamics.
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2.1 Ideal Chains

If we label the positions of the monomers of a polymer by ri, where i goes from

1 → N and label the monomers from tip to end, an ideal chain is defined as

a chain where the interaction between monomers vanishes for |i − j| >> 1. In

other words, monomers that are far apart along the chain do no interact with

each other, which leads to the overlap of monomers in certain places. Interactions

in an ideal chain have to do with the flexibility of the chain, and several models

exist that we will not be going over here. For reference see [11].

Due to the nature of interactions in ideal chains, on large enough length scales

the chain conformations can be mapped onto random walks of N steps, step size

a, and end-to-end vector R. Using random walk statistics, we find that the

average end-to-end length of an ideal chain is 〈R0〉 = aN1/2. We can also find an

expression for the Helmholtz free energy F = E − TS of an ideal chain, where E

is the internal energy of the chain, T is the temperature, and S is the entropy. It

is useful to note here that due to the range of interactions in an ideal chain, the

internal energy of the chain does not depend on the end-to-end vector. To begin,

the probability distribution of end-to-end vectors for a 3 dimensional random

walk can be written as

P3d(N,R) = (
3

2πNa2
)3/2exp(− 3R2

2Na2
)

and in terms of the end-to-end distance R ≡ |R|

P3d(N,R)4πR2dR = 4π(
3

2πNa2
)3/2exp(− 3R2

2Na2
)R2dR

6



Using the above distribution we can evaluate the entropy S(N,R) = kln(Ω(N,R))

where Ω is the number of conformations of chain of N monomers and end-to-end

vector R. The distribution of end-to-end vectors is related to Ω through

P3d(N,R) =
Ω(N,R)∫

Ω(N,R)dR

From this relation the entropy can be found to be

S(N,R) = −3

2
k
R2

Na2
+ S(N, 0)

where the second term does not depend on R. Finally, the free energy is

F (N,R) =
3

2
kT

R2

Na2
+ F (N, 0)

where again the second term does not depend on R.

2.2 Real Chains

To make the model more realistic, we need to account for the possibility of inter-

action between any monomers. This is achieved through the introduction of the

excluded volume v, which is the volume that a monomer occupies such that two

monomers cannot overlap. Polymers however are typically dissolved in solvents,

and depending on the type of solvent the interaction between monomers will be

replaced by an effective interaction, resulting in an effective excluded volume.

The effective interactions can be modeled as a potential that is repulsive at small

distances and attractive at larger distance, the most common example being the

Lennard-Jones potential shown in figure 2.1. When the repulsive (attractive)
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Figure 2.1: Lennard-Jones Potential.

part dominates, the excluded volume will be positive (negative).

2.2.1 Types of Solvents

In a polymer solution, we can differentiate between two species, the polymer and

the solvent. Three types of interactions can be distinguished:

• Monomer-Monomer interactions characterized by the mean interaction en-

ergy uMM

• Solvent-Solvent interactions characterized by the mean interaction energy

uSS

• Monomer-Solvent interactions characterized by the mean interaction energy

uMS

A dimensionless quantity that characterizes the difference in interaction energies

in a solution is the Flory interaction parameter

χ =
z

2

(2uMS − uMM − uSS)

kT
(2.1)
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And using this the effective excluded volume can be defined

v = (1− 2χ)v0

where v0 is the excluded volume from hard-core repulsion. From this definition

we can distinguish between the following types of solvents:

• Athermal solvent: for high temperatures where χ → 0 the value of the

excluded volume approaches v0. At this limit the excluded volume is a very

slowly varying function of temperature, hence the name athermal solvent.

The effective interaction here can be modeled as purely repulsive.

• Good Solvent: for intermediate temperatures 0 < χ < 1/2 and 0 < v <

v0. In this regime the the monomers feel slight attraction, which reduces

the excluded volume to values below the hard-core volume. The effective

interaction here can be modeled as purely repulsive, but with less stiffness

than that of an athermal solvent.

• Theta solvent: for χ = 1/2 the excluded volume is exactly equal to zero,

which is the case for ideal chains, and the polymer will obey ideal chain

statistics. In this case there is no interaction between monomers far away

from each other along the chain.

• Poor solvent: this is the regime for low temperatures where χ > 1/2, result-

ing in a negative excluded volume and the collapse of the polymer into a

globule. Here the interaction needs to have both attraction and repulsion.
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2.2.2 Real Chain in a Good Solvent

In a good solvent a real chain tends to swell to a size R > Rideal due to the

repulsive interactions between the monomers. The equilibrium size of a real

chain depends on the interplay between entropy and interaction. A model that

captures this is the Flory theory for a polymer in a good solvent. Flory assumed

that the entropic contribution is the same as for an ideal chain

Fent ≈ kT
R2

Na2

up to numerical factors. For the interaction part, we imagine the monomers to

be uniformly distributed in a box of volume R3, which is equal to the pervaded

volume of the chain . The volume per monomer is R3/N , and if the excluded

volume is v, the probability of two monomers overlapping is v
R3/N

and the number

of overlapping monomers is vN2

R3 . The energy of excluded volume interactions is on

the order kT up to numerical factors of order unity, which results in an estimate

for the interaction free energy

Fint = kTv
N2

R3

and finally the total free energy of a real chain in a good solvent is

F = kT

(
R2

Na2
+ v

N2

R3

)
(2.2)

Minimizing this free energy with respect to R gives the equilibrium size of a

free chain

RF = v1/5a2/5N3/5 (2.3)
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Figure 2.2: A chain in a narrow tube. The blob size is set by the diameter of the
tube. On scales smaller than the blob size the chain behaves like a free chain.

2.3 Scaling Approaches

When dealing with confined chains it is possible to get an idea about free energies

using simple scaling arguments. For scaling, it is important to introduce the con-

cept of a blob. A blob defines a length scale below which the chain conformation

is unaffected by external effects. For a real chain, on scales below the blob size

the size of the chain obeys eq. 2.3, while on larger scales the size depends on

the type of confinement as described below. As a chain grows from sizes smaller

than the blob sizes to larger sizes and starts feeling the effect of confinement, the

difference in entropy starts to be significant. A significant change in entropy is on

the order ∆S/k ≈ 1, resulting in a change in free energy ∆F ≈ kT ; this makes

the free energy stored in each blob on the order of kT .

2.3.1 Real Chain in a Narrow Tube

We consider a real chain confined in an infinitely long rigid cylindrical tube of

diameter a << d << RF . The effect of confinement is felt on length scales

comparable to the diameter of the tube, which sets the blob size to d (see figure

2.2). We assume our chain has N monomers and monomer length a, and in a

11



good solvent v ≈ a3 so that using using eq. 2.3 RF = aN3/5. Let g be the number

of monomers in an individual blob and Nb = N/g be the number of blobs, on

scales smaller than d the chain behaves like a free chain and we have

d = ag3/5 ⇒ g =

(
d

a

)5/3

and the number of blobs is

Nb = N

(
a

d

)5/3

Since each blob carries energy on the order kT , the free energy and equilibrium

size of a real chain in a tube are respectively

F = AFNbkT = AFkTN

(
a

d

)5/3

(2.4)

R|| = Nbd = AeaN

(
a

d

)2/3

(2.5)

where AF and Ae are dimensionless model dependent prefactors. We can also

write the free energy as

F = BkT
R||
d

(2.6)

where B here is a dimensionless model independent prefactor. B depends however

on the geometry of the confinement, and was shown to have values close to 5 for

cylindrical geometries [15].
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2.3.2 Real Chain in a Large Chamber: Semi-Dilute Solu-

tion

The free energy of a polymer solution depends on the concentration/volume frac-

tion φ. The volume fraction of a single real chain in a good solvent is the ratio

of the volume of the monomers Na3 to the pervaded volume R3
F

φ∗ =
Na3

R3
F

(2.7)

φ∗ = N−4/5 (2.8)

where the last equally is obtained after replacing RF with eq. 2.3 and v = a3. φ∗

is called the overlap concentration. When the concentration of a polymer solution

is less than φ∗ the solution is said to be dilute and the polymers do not overlap.

For a dilute solution of polymers, the osmotic pressure follows the van’t Hoff law

Π =
kT

b3

φ

N

As the concentration approaches φ∗ the polymers start to overlap and the osmotic

pressure will become a stronger function of the concentration

Π =
kT

b3

φ

N
f

(
φ

φ∗

)

where f

(
φ
φ∗

)
≈ 1 for φ < φ∗. For semi-dilute solutions we have φ > φ∗ and we

assume that f is a power law in the concentration

f

(
φ

φ∗

)
≈
(
φ

φ∗

)z
13



which results in an expression for the osmotic pressure

Π ≈ kT

a3
φ1+zN4z/5−1 (2.9)

The osmotic pressure in semi-dilute solutions must not depend on the number

of monomers in each chain, so we can find the value of z by setting the power of

N in eq. 2.9 to zero, we find

z = 5/4

and replacing in eq. 2.9

Π ≈ kT

a3
φ9/4 (2.10)

Using this, we get the free energy per volume of a semi-dilute solution

F

V
≈ kT

a3
φ9/4 (2.11)

For our problem, we have a chain with N monomers confined in a cylindrical

chamber of volume V so that the concentration is φ = Na3

V
and the free energy

per volume is

F

V
= AµkT (a3)5/4

(
N

V

)9/4

(2.12)

where Aµ is again a dimensionless numerical prefactor that is model dependent.
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2.4 Microscopic Pressure

In order to characterize the equilibrated initial conditions of the polymer in the

capsid, we looked at pressure distribution on the microscopic level. For a system

of N particles with coordinates ri and momenta pi the microscopic definition of

pressure is

∂

∂t

[ N∑
i=1

piδ(x− ri)
]

= −∇.P (x) (2.13)

If the particles interact through a potential that has translational invariance,

such that
∑N

i=1∇iU(ri) = 0, we have

P (x) =
N∑
i=1

pi ⊗ pi
mi

δ(x− ri)−
N∑
i=1

∇iU(ri)⊗
∫
C0i

dlδ(x− l)

where C0i is a contour that connects ri to an arbitrary point r0, l is a length

element along C0i, and ⊗ denotes a dyadic product. The first term includes the

kinetic (ideal gas) contribution, while the second term includes the contribution

from interactions. In our work we only deal with two body interactions so that

the pressure can be written as

P (x) =
N∑
i=1

pi ⊗ pi
mi

δ(x− ri) +
N−1∑
i=1

∑
j>i

F (rij)⊗
∫
Cji

dlδ(x− l) (2.14)

where now Cji connects ri to rj, rij = rj − ri, and the intermolecular force

F (rij) is radial and directed along the line joining the particles; it is assumed to

have the form F (rij) = f(rij)rij , and is the force acting on particle i due to its

interaction with particle j. Henceforth, the individual particle contribution to the

interaction term in the pressure will be referred to as Pij(x), and its individual
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components are

Pαβ
ij (x) =

∫
Cji

(dl.eα)(F .eβ)δ(x− l)

where α/β = x, ρ, φ in cylindrical coordinates, and the force term was absorbed

into the integral since it does not depend on l. The unit vectors eα are

ex = x̂

eρ =
ρ

|ρ|

eφ = ex × eρ

In order to compute the pressure tensor in our simulations, we average equa-

tion 2.14 over finite volume elements

Pαβ
ij (V) =

1

|V|

∫
V
dxPαβ

ij (x)

where V refers to a specific slice and |V| is the volume of the slice. The full

expressions in cylindrical coordinates that we used in the calculations are listed

in appendix B. For the expressions in other coordinate systems and their relevant

applications see [13, 16, 17].

2.5 Deterministic Ejection Kinetics

Using some simple arguments, we can write equations of motion for the number

of particles remaining in a section of the capsid. The ejection from the full capsid

can be divided into two stages. The first stage consist of the emptying of the

chamber. The second stage is when the chamber is empty and we have ejection
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from the tube.

2.5.1 The Initial Conditions

Before the ejection starts, the chain is in an equilibrium state defined by the

equality of chemical potentials between the chamber and the tube. From eqs.

2.4 and 2.12 we can find the chemical potentials in the tube and the chamber

respectively

µtube = AFkT

(
a

d

)5/3

(2.15)

µch = AµkT (a3)5/4

(
N

V

)5/4

(2.16)

We can see that the chemical potential in the tube is fully determined by

the diameter of the tube. This means that the equilibrium chemical potential is

determined by the diameter of the tube, and this gives us the equilibrium number

of monomers in the chamber for fixed chamber volume V , or in other words, the

diameter of the tube determines the equilibrium density in the chamber. We

distinguish two cases: if the equilibrium number of monomers in the chamber

is larger than the total number of monomers, the chain will fully reside in the

chamber and we will have an empty tube. If the equilibrium number is less than

the total number of monomers, part of the chain will reside in the chamber and

part of it will be in the tube. The latter case is what we are interested in and is

illustrated in figure 2.3.
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Figure 2.3: Equilibrium configuration of a long chain in a capsid.

2.5.2 Emptying the Chamber

During the first stage we assume that the number of monomers in the tube is

constant, and the ejection is driven by the difference in chemical potential between

the chamber and the outside. In order to write an equation of motion, we equate

the work done by drag forces to the change in free energy, specifically the rate of

change of the free energy is equal to the power dissipated by friction

∂F

∂t
= Pdiss

The total free energy is a sum of three contributions from the chamber, the

tube, and the outside, and the same applies for the power dissipated

F = Fch + Ftube + Fout

Pdiss = −ζ(nchv
2
ch + ntubev

2
tube + noutv

2
out)

where ni and vi are the number of monomers and drift velocity in the correspond-
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ing region respectively, and ζ is the drag coefficient. Since the outside region is

infinitely large the free energy of the portion of the chain outside the chamber is

that of a free chain, and is taken as the reference for our free energies. Since the

number of monomers in the tube is constant we take Ftube = cst. In addition, we

assume that the drift velocities in the chamber and the outside region are very

small compared to the drift velocity in the tube; this means that the tube’s con-

tribution to the dissipated power dominates the contributions from the chamber

and the outside region, and the latter are neglected. Having all this we can write

∂Fch
∂t

= −ntubeζv2
tube

the drift velocity in the tube can be written vtube = λṅch, where λ is the length

per monomer in the tube and the dot denotes a time derivative. We can also use

the chain rule to write ∂F
∂t

= ṅch
∂F
∂nch

, where

∂F

∂nch
= µch(nch) = AµkT

(
ncha

3

V

)5/4

is the chemical potential in the chamber and is obtained from eq. 2.12. Finally,

combining all of the above, we have an evolution equation for the number of

monomers in the chamber

ṅch = −Aµ
kT

ntubeζλ2

(
ncha

3

V

)5/4

= − µch
ntubeζλ2

(2.17)

This equation can be integrated to give the time t1 needed to empty the

chamber (with kT = 1 and a3 = 1)

t1 = 4
ζλ2V 5/4ntube

Aµ

[
(nfch)

−1/4 − (nich)
−1/4

]
(2.18)

19



which results in infinite time for ejection if we choose the final number of monomers

in the chamber nfch to be zero. This is an indicator that the current approach is

not sufficient, and the role of diffusion needs to be considered, which is described

in section 2.6. Eq. 2.18 can be used however to get an overestimate of the time

needed to empty the chamber if we choose nfch 6= 0.

Looking at eq. 2.5, we can define λ as

λ = R||/N = Aea

(
a

d

)2/3

so that λ is fully determined by the diameter of the tube. This also allows us

to write ntube = l/λ where l is the length of the tube. And replacing these

expressions in eq. 2.18 we find t1 ∝ lV 5/4d−2/3

2.5.3 Ejection from the Tube

If we start with a chain long enough so that it has a tail outside the tube, it will

feel a force that is entropic in origin and independent of the size of the tail [18].

We have seen in section 2.3 that the free energy of a polymer confined in a

tube can be written as

F = B
kT

D
R||

For a chain in an infinite tube, the dimensionless prefactor B ≈ 5. It was show

however in [15] that for an open tube, the chain experiences some stretching which

results in the value B̃ ≈ 3.

During tube ejection, the chain occupies a length x inside the tube, and we

have
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F = B̃
kT

D
x (2.19)

and the average (entropic) force acting on the chain is

f = B̃
kT

D
. (2.20)

Since the chain is in the overdamped regime, we can balance the entropic

force with the drag force

n(t)ζ
dx

dt
= −f (2.21)

where vd = dx
dt

is the drift velocity in the tube, ζ is the drag coefficient, and n(t)

is the number of monomers in the tube. Taking λ as the length per monomer in

the tube, we have x = λn(t). Assuming λ is independent of time, we can change

the force balance equation to an equation for the number of monomers in the

tube

n(t)
dn

dt
= − B̃

ζλ

kT

D
(2.22)

Integrating this equation gives the time t2 needed for the polymer to leave

the tube completely (with kT = 1)

t2 =
ζλD

2B̃

[
n2
i − n2

f

]
(2.23)

2.6 Stochastic Ejection

As discussed above, the deterministic equations that were derived result in an

infinite time of ejection from the chamber. To overcome this the effects of diffusion
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need to be included in the analysis, which is done through the Fokker-Planck

Equation (FPE). Then using the FPE we can calculate a mean First Passage

Time which should give the mean time for ejection from the capsid.

2.6.1 The Fokker-Planck Equation

The FPE is an equation for the evolution of conditional probabilities P (x, t|x0, t0)

that a variable X has value x at time t, given that it had value x0 at time t0.

We can distinguish between the forward (eq. 2.24) and backward (eq. 2.25) FPE

which in one dimension are

∂P (x, t|x0, t0)

∂t
= − ∂

∂x
[A(x, t)P (x, t|x0, t0)] +

1

2

∂2

∂x2
[D(x, t)P (x, t|x0, t0)] (2.24)

∂P (x, t|x0, t0)

∂t0
= −A(x0, t0)

∂

∂x0

[P (x, t|x0, t0)]− 1

2
D(x0, t0)

∂2

∂x2
0

[P (x, t|x0, t0)]

(2.25)

Where A is the drift coefficient, and D is the diffusion coefficient. If the

drift and diffusion coefficients are independent of time the process is said to be

homogeneous. The forward equation gives the probability of X having value x

at time t given that we started at x0 at time t0. The backward equation gives the

probability of the value being x0 at time t0 given that the final value is at x at

time t. In order to solve the forward (backward) equation we need initial (final)

conditions in addition to boundary conditions. We can distinguish several type

of boundary conditions; however, for reasons that will be apparent later we will

only mention two types of boundary conditions for the backward equation (for a

comprehensive list of boundary conditions for both equations see [14]):
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• Reflecting boundary: if x = a is a reflecting boundary, so that it cannot be

crossed, it means that the flow of probability through the boundary must

vanish ∂P (x,t|x0,t0)
∂x0

∣∣∣∣
x0=a

= 0

• Absorbing boundary: if x = a is an absorbing boundary, the probability of

being there must vanish P (x, t|a, t0) = 0

Commonly x is the position of a certain particle; in our work however, we

look at the probability distribution for the number of monomers in a certain

region, so that for example the conditional probability P (nch, t|n0, 0) gives the

probability of having nch monomers in the chamber at a time t if we initially had

n0 monomers in it.

2.6.2 First Passage Time for a Homogeneous Process

We are interested in knowing the mean time needed for a particle that starts at

a position a < x < b to leave the region bounded by a and b. This time is called

the first passage time T (x). Using the definition of conditional probabilities and

the backward FPE, we can arrive at a differential equation for T (x) (see [14])

A(x)
∂T

∂x
+

1

2
D(x)

∂2T

∂x2
= −1

Subject to the boundary conditions at a and b. If we choose one boundary to

be absorbing and the other reflecting, the solution of the equation is
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a reflecting

T (x) = 2

∫ b

x

dy

ψ(y)

∫ y

a

ψ(z)

D(z)
dz b absorbing (2.26)

a < b

a absorbing

T (x) = 2

∫ x

a

dy

ψ(y)

∫ b

y

ψ(z)

D(z)
dz b reflecting (2.27)

a < b

ψ(x) = exp

(∫ x

a

2A(x′)

D(x′)
dx′
)

(2.28)

2.6.3 First Passage Time for our Problem

To get predictions for our problem make the analogy between the position x of

a particle diffusing in one dimension and the number of monomers in the capsid

N . Our stochastic variable N can have values between the initial number of

monomers inside the capsid N0 and 0 monomers inside the capsid. We choose an

absorbing at 0 and a reflecting boundary at N0.

We need to find the equivalents of drift and diffusion for our evolving variable

N . We again separate the ejection into two stages. When we still have monomers

in the chamber we see from looking at eq. 2.17 that the drift can be written as

Ach = − µch
ntubeλ2ζ
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where ntube and λ are assumed to be constant. The chemical potential can be

thought of as the equivalent of a force that drives the change in the number of

monomers. Now since drift is the force multiplied by mobility, the equivalent of

mobility is M = 1
ntubeλ2ζ

, and then the diffusion coefficient is

Dch =
kT

ntubeλ2ζ

When the chamber is empty and we only have monomers in the tube, eq. 2.17

is still valid but with µch replaced with µtube, or by looking at eq. 2.22 the drift

during this time is

Atube = − µtube
Nλ2ζ

= − B̃kT

Nλζd

where the last equality can be verified by replacing the expression for µtube and

after a little manipulation. Finally the diffusion coefficient is again

Dtube =
kT

Nλ2ζ

Using those expressions we can define the diffusion and drift coefficients for the

whole process
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D(N) =


kT
λ2ζ

1
N

for 0 ≤ N ≤ ntube

kT
λ2ζ

1
ntube

for ntube ≤ N ≤ N0

(2.29)

A(N) =


− B̃kT
λζD

1
N

for 0 ≤ N ≤ ntube

− AµkT

λ2ζntube

(
N−ntube

V

)5/4

for ntube < N ≤ N0

(2.30)

Now ψ(N) can be calculated

ψ(N) =


exp

(
− 2B̃λ

D
N

)
for 0 ≤ N ≤ ntube

exp

(
− 2B̃λ

D
ntube − 8

9

Aµ
V 5/4 (N − ntube)9/4

)
for ntube ≤ N ≤ N0

(2.31)

and finally we get the mean first passage time using eq. 2.28

T (N0) = 2

∫ ntube

0

G(y)

ψ(y)
dy + 2

∫ N0

ntube

F (y)

ψ(y)
dy (2.32)

G(y) =

∫ Nmax

y

ψ(z)

D(z)
dz for 0 ≤ y ≤ ntube (2.33)

F (y) =

∫ Nmax

y

ψ(z)

D(z)
dz for ntube ≤ y ≤ N0 (2.34)

After replacing the expressions for ψ(z) and D(z) in the equation for G the

integral splits into two integrals ,G1 for z < ntube and G2 for z > ntube. G2 is
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similar to the integral for F ; after making a change of variable t = 8
9

Aµ
V 5/4 (z−n9/4

tube),

and some manipulations, both can be evaluated in terms of the Gamma function

and the incomplete Gamma functions defined as

Γ(a) =

∫ ∞
0

ta−1e−tdt

Γl(a, x) =

∫ x

0

ta−1e−tdt is the lower incomplete Gamma function

Γu(a, x) =

∫ ∞
x

ta−1e−tdt is the upper incomplete Gamma function

The result is

G(y) =
ζD2

4B̃2kT

[(
2
Bλ

D
y + 1

)
e−2 B̃λ

D
y −

(
2
B̃λ

D
ntube + 1

)
e−2 B̃λ

D
ntube

]
(2.35)

+
4

9
ntube

λ2ζ

kT
e−2 B̃λ

D
ntube

(
9V 5/4

8Aµ

)4/9(
Γ

(
4

9

)
− Γu

(
4

9
, tmax

))

F (y) =
4

9
ntube

λ2ζ

kT
e−2 B̃λ

D
ntube

(
9V 5/4

8Aµ

)4/9(
Γ

(
4

9

)
− Γl

(
4

9
, tmin

)
− Γu

(
4

9
, tmax

))
(2.36)

tmin =
8

9

Aµ
V 5/4

(y − ntube)9/4 ; tmax =
8

9

Aµ
V 5/4

(N0 − ntube)9/4 (2.37)

And finally the mean first passage time is evaluated through numerical integration

of eq. 2.32.
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Chapter 3

Computational Approach

Our main approach to the problem was through molecular dynamics (MD) sim-

ulations. In order to run the simulations a model for the polymer as well as an

algorithm to solve the equations of motion.

3.1 Building a Model

A computational model for a polymer needs to account for several things, from

the scales involved to the types of interaction.

3.1.1 Coarse Graining

The first step is choosing the level of coarse graining. The level of coarse graining,

or the scale at which the polymer is being studied, depends on the specific topic

of study. When simulating a system related to DNA, several choices are available

starting from the smallest scales where the full structure of DNA is apparent, to

larger scales where it is modeled as a simple semi-flexible polymer. For a review

on the different types of coarse graining for DNA and chromatin see [19].
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3.1.2 The Solvent

In reality, polymers are studied in solutions where they are dissolved in solvents.

The quality of the solvent affects the equilibrium size of the polymer, where a

good solvent makes the polymer swell, while a poor solvent leads to the collapse

of the polymer. The different types of solvents are summarized is section 2.2.1.

Computationally, the solvent can be accounted for either explicitly or implicitly.

In explicit solvent models, along with the polymer, there are solvent particles

that interact with each other and the monomers, and the quality of the solvent

is specified by the affinity between the different particles, also as described in

section 2.2.1. The second way is that of implicit solvent, where the solvent is

simply accounted for through the type of non-bonded interactions. In the good

solvent regime the interaction is purely repulsive, while it has an attractive part

in the poor solvent regime.

3.1.3 The Langevin Thermostat

The sizes of most monomers in polymer solutions are small enough to be affected

by collisions with solvent particles. This results in Brownian diffusion and fric-

tion. The fluctuation-dissipation theorem relates those two effects through the

Einstein-Smoluchowski relation

D =
kT

ζ

where ζ is the drag coefficient and D is the diffusion coefficient. This relation can

be included in the equations of motion by accounting for a drag force Fd = −ζẋ

and a random force Fr =
√

2ζkTR(t) where R(t) is a stationary Gaussian process

satisfying

〈R(t)〉 = 0
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〈R(t)R(t′)〉 = δ(t− t′)

3.1.4 Interactions

In most models, interactions between particles in a coarse grained polymer are

divided into two-body, three-body, or four-body interactions. Two body interac-

tions are in turn divided into two types: bonded, and non-bonded interactions.

Bonded interactions arise between nearest neighbors, and the interaction po-

tential is chosen in such a way that the particles stay bonded to each other.

Non-bonded interactions arise between polymers that are far away from each

other along the chain, and this interaction reflects the quality of the solvent in

implicit solvent models. Three-body interactions are related to the bending of

the polymer chain. If the chain is not fully flexible, bending will be penalized by

a potential which depends on the relative positions of three successive particles

along the chain (cf. Figure 3.1). As for four-body interactions, they are specified

by a potential that depends on the torsion angle, which is specified by the relative

angles of the first and last particles in a sequence of four consecutive monomers

along the chain.

3.1.5 Confinement

The polymer is confined by rigid repulsive walls. The geometry and the interac-

tion of the polymer with the walls need to be specified and are detailed in section

3.2.1.
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Figure 3.1: Different Types of Interactions.

3.2 Our Model

In our simulations we used a bead-spring model for the polymer. The polymer

is modeled as a chain of beads connected by nonlinear springs, and we use the

implicit solvent approach in the good solvent regime. The polymer is fully flexible

such that we ignore three-body and four-body interactions (see section 3.1.4). The

chosen types of interaction are the following:

• Bonded interactions: a combination of the Finitely Extensible Nonlinear

Elastic (FENE) potential and the repulsive part of the Lennard-Jones (LJ)

potential, also known as the Weeks-Chandler-Andersen (WCA) potential.

U(rij) =



4ε

[(
σ
rij

)12

−
(

σ
rij

)6]
for rij < rWCA = 21/6σ

−1
2
kR2

0ln

[
1−

(
rij
R0

)2]
for rij ≤ R0

∞ for rij > R0

(3.1)
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Figure 3.2: Capsid Geometry.

• Non-bonded interactions: To run the simulations in the good solvent regime

we chose the WCA potential for non-bonded interactions

U(rij) =


4ε

[(
σ
rij

)12

−
(

σ
rij

)6]
+ ε for rij < rWCA = 21/6σ

0 for rij > rWCA

(3.2)

For our calculations we chose σ = 1, ε = kBT = 1, k = 30kBT/σ
2 = 30,

R0 = 1.5σ = 1.5, and for the capsid walls we chose σb = 0.1, and the mass of a

monomer is taken to be m = 1. To make the analogy with biological systems,

taking the monomer size to be on the order of the persistence length of single

stranded DNA, our length unit is about 30Å, which encapsulates about 10 bases,

making the mass of a monomer about 5× 10−23 Kg. Taking T = 300K, the time

unit in our simulation is equivalent to about 1ns.

3.2.1 Details of the Confining Capsid

The capsid geometry is illustrated in Figure 3.2. The corners are modeled as

quarter circles with radius equal to the range of the repulsive interaction rWCA =

21/6σ. The walls interact with the particles via the same repulsive potential used

for non-bonded interactions (eq. 3.2) but with σ = 0.1. The force Fwall(rm− rc)
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is thought of as originating from a point on the wall with position rc and acts

along the line connecting that point to the particle at position rm. The position

of the origin of the force for the different boundaries A-I is given in table 3.1 where

xm, ym, and zm are the monomer coordinates, xp, yp, and zp are the positions of

the centers of curvature for the corners, which are in turn summarized in table

3.2, rpm = |rp − rm| is the distance between the relevant center of curvature and

the monomer, D and L are the diameter and length of the chamber, d and l are

the diameter and length of the tube respectively.

Surface
Label

xc yc zc

A 0 ym zm

Corners
B, D,
F, H

rWCA(xm−xp)

rpm
+

xp

rWCA(ym−yp)

rpm
+

yp

rWCA(zm−zp)

rpm
+

zp

C xm
ym
zm
zc sgn(zm) D/2√

1+
y2m
z2m

E L ym ym

G xm
ym
zm
zc sgn(zm) d/2√

1+
y2m
z2m

I L+ l ym ym

Table 3.1: Coordinates of the force centers from the different surfaces as functions
of monomer coordinates xm, ym, and zm. xp, yp, and zp are the positions of
the centers of curvature for the corners. rpm = |rp − rm|. D and L are the
diameter and length of the chamber, d and l are the diameter and length of the
tube respectively. rWCA is the range for the WCA interaction for the boundary.
sgn(x) is the sign of x.

33



Surface
Label

xp yp zp

B rWCA
ym

(
D/2−rWCA

)
√
y2m+z2m

zm

(
D/2−rWCA

)
√
y2m+z2m

D L− rWCA
ym

(
D/2−rWCA

)
√
y2m+z2m

zm

(
D/2−rWCA

)
√
y2m+z2m

F L+ rWCA
ym

(
d/2+rWCA

)
√
y2m+z2m

zm

(
d/2+rWCA

)
√
y2m+z2m

H L+ l− rWCA
ym

(
d/2+rWCA

)
√
y2m+z2m

zm

(
d/2+rWCA

)
√
y2m+z2m

Table 3.2: Coordinates of the centers of curvature for the corners. xm, ym, and
zm are the monomer coordinates. xp, yp, and zp are the positions of the centers of
curvature for the corners. D and L are the diameter and length of the chamber,
d and l are the diameter and length of the tube respectively. rWCA is the range
for the WCA interaction for the boundary.

3.2.2 The Effective Confinement Size

When dealing with theoretical calculations, the walls of confinement are always

assumed to be rigid, while the confinement in the simulations is achieved through

a smooth potential (see figure 3.3)A. In order to be able to compare the simula-

tion results with the theory we introduce an effective diameter of confinement in

the following way.

For a rigid box of length L, where the potential is zero inside but infinite

outside, evaluating the partition function yields Z =
∫ +∞
−∞ e−

U(x)
kT

dx = L. Now

introducing a smooth repulsive potential to emulate the walls such that
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Figure 3.3

U(x) =


UW (x) for x < 0

0 for 0 ≤ x ≤ L

UW (L− x) for x > L

(3.3)

with the condition that U(x) is continuous at x = 0 and x − L. The partition

function becomes

Z =

∫ +∞

−∞
e−

U(x)
kT

=

∫ 0

−∞
e−

UW (x)

kT dx+

∫ L

0

dx+

∫ +∞

0

e−
UW (L−x)

kT dx

= L+ ∆

(3.4)

where ∆ =
∫ 0

−∞ e
−UW (x)

kT dx +
∫ +∞

0
e−

UW (L−x)
kT dx is the increase in the box size

due to the smoothening of the walls. Specifying the potential and evaluating ∆

allows us to get the effective dimensions after specifying all the parameters (see

figure 3.3). When it comes to the effective diameter of a cylindrical box, we need
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to find the effective area of confinement instead of the effective length, and then

from that find the effective diameter. Doing the calculation however showed that

the numerical values obtained this way are very close to what we get from the

previous way, and so we adopt the same correction for both the diameters and

the lengths.

In our simulations we define the box sizes by the position of the singularity

of the WCA potential as shown in figure 3.3B. This leads to confinement sizes

that are slightly less than the chosen diameters D and d and chamber length L

as defined in the simulations. Evaluating the partition function for the WCA

repulsive walls (eq. 3.2) leads to a correction (for kT = ε = 1)

∆ = 0.2139σ (3.5)

And finally the effective parameters are

Leff = L− 2.031σ (3.6)

Deff = D − 2.031σ (3.7)

3.3 The Algorithm

A very important thing to consider while setting up molecular dynamics sim-

ulations is the choice of algorithm to integrate the equations of motion. The

considerations that go into the choice are those of precision and computational

efficiency.
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3.3.1 The Verlet Algorithm

The aim is to solve differential equations of the form:

ẋ = v(t)

ẍ =
f(x, v, t)

2m

This is done by updating the current positions x(t) to their new values x(t+

∆t). Doing a Taylor expansion on the new and the old positions we get

x(t+ ∆t) = x(t) + ẋ(t)∆t+ ẍ(t)∆t2 +
...
x∆t3 +O(∆t4)

x(t−∆t) = x(t)− ẋ(t)∆t+ ẍ(t)∆t2 − ...
x∆t3 +O(∆t4)

adding the two above equations we get

x(t+ ∆t) ≈ 2x(t)− x(t−∆t) +
f(t)

m
∆t2 +O(∆t4)

It can be seen that given an initial condition and a subsequent position, and if

the forces depend only on position, all positions can be calculated without having

to calculate velocities. Calculating velocities is important in our simulations

however because of the presence of viscosity. Several methods can be derived

from the Verlet method to compute velocities. Most of the computational time is

spent calculating forces, which makes the choice of method for the calculation of
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velocities irrelevant for speed; however, the methods differ in accuracy. We use

the Velocity Verlet method outlined below

1. Define initial positions xi(t) and velocities vi(t)

2. Compute forces fi(t) = −dU(xi)
dxi

+ Fd(vi) + Fr where U(xi) is the particle

potential, Fd and Fr are defined in section 3.1.3

3. Update velocities by half a step using vi(t+ 1
2
∆t) = vi(t) + fi(t)

m
∆t
2

4. Update positions by a full time step using xi(t+ ∆t) = xi(t) + vi(t+ 1
2
∆t)

5. Compute new forces fi(t+ ∆t)

6. Update velocities to full time step vi(t+ ∆t) = vi(t+ 1
2
∆t) + fi(t+∆t)

m
∆t
2

7. Repeat steps 3-5 until satisfied

3.3.2 The Verlet List

In most MD simulations, the only type of interaction that is accounted for is pair-

wise interaction. This means that for each iteration we need to calculate the forces

for N(N − 1)/2 pair interactions. In our simulations interactions are truncated,

saving some time on force calculations, we however still need to calculate the

distances between N(N − 1)/2 pairs to check which particles interact with each

other, so that the simulation time scales like N2. A way to reduce the dependence

of the computational time on the number of particles is to use a Verlet List [20].

The first step in preparing the list consists of introducing a cutoff radius rv slightly

larger than the cutoff radius for the forces rWCA. For a particle i, the list will

include all particles within a distance rv from i. During each iteration, only the

distances of particles in the list will be calculated, which is a calculation of order
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Figure 3.4: The two radii for the Verlet list. Particles within rv are included in
the list for particle i, while particles within rWCA interact with i [2].

N , and the particle i will interact with particles within the interaction range

rWCA. From time to time the list needs to be updated; the update, an operation

of order N2, will be performed whenever the displacement of any particle in the

simulation exceeds rv − rWCA. The use of a Verlet list in the algorithm reduces

the dependence of the computational time from N2 to about N3/2 [2].

3.4 Calculating the Pressure Distribution

As mentioned in section 2.4 we wish to calculate the local pressure tensor elements

averaged over volume slices. We choose the Irving-Kirkwood contour (eq. B.2) for

the interaction part of the pressure (see appendix B), and average over cylindrical

slices (see figure C.1). We wish to calculate the interaction contribution for two

monomers i and j with positions ri and rj respectively. The contour going from

j to i is defined as
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l = rj + λrji = rj + λ(ri − rj)

with 0 < λ < 1. In cylindrical coordinates has components

lx = (xj + λxji)x̂

lρ = (yj + λyji)ŷ + (zj + λzji)ẑ

lφ = lx × lρ

We choose to calculate the pressure distribution for radii between 0 and D/2,

and axial positions between 0 and xmax. To use the formulas derived in appendix

B we need to find λ1 and λ2 which define the portion of the contour inside a

specific slice. The algorithm is detailed in appendix C.
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Chapter 4

Simulation Results

4.1 Infinite Tube

After setting up the simulations we wished to test their validity by comparing

with predictions from the scaling laws discussed in section 2.3. To do this we ran

simulations for a polymer in an infinite tube and studied the dependence of the

end-to-end distance on the diameter and the number of monomers. We varied

the number of monomers between 50 and 200, and the diameter between 1 and

50. The results are shown in figure 4.1.

As explained in section 2.3, the scaling regime is achieved for a << d << RF

where a ≈ 1 is the size of an individual monomer and RF is the end-to-end

distance for a free real chain. From figure 4.1a we can see that the end-to-end

distance changes following three regimes. The first regime is when deff ≈ a or

deff < 3; here the chain is forced to have almost straight conformations due to the

very strong confinement. The second regime is for intermediate diameters; here

we are in the scaling regime, where we expect the end-to-end distance to change

proportionally to d−2/3, to check this we plot the end-to-end distance versus the
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Figure 4.1: (a) Variation of the end-to-end distance for a polymer in a tube for
different diameters, we can distinguish 3 regimes, for deff < 3, 3 < deff . 10,
and deff & 10. (b) End-to-end distance for polymers of different lengths versus
the scaling variable aN(a/d)2/3 for diameters 3 < deff < 10 shows very good
agreement with the scaling theory result.

scaling variable aN(a/d)2/3 (figure 4.1b), which shows very good agreement with

the expected scaling law; the slope of the line is the numerical coefficient Ae that

appears in eq. 2.5

Ae = 1.06

Finally the third regime is achieved large diameters; here the chain is not

under strong confinement anymore and the size of the chain increases with the

diameter.
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Figure 4.2

4.2 Ejection

4.2.1 Preparing the Initial Conditions

We wish to start the ejection process with an equilibrated conformation of the

polymer in the capsid. To generate the initial condition we start with a fully

extended chain and fix the first monomer at the bottom of the capsid. We run

the simulation for 2× 107 (104 time units) steps, during which time the chamber

starts to fill up. Then the fixed monomer is released and the polymer is left

to equilibrate for an additional 6 × 107 (3 × 104 time units). If the polymer

is long enough we will end up with a configuration where we have some of the

monomers reside in the chamber and the rest are in the tube (see figure 4.2).
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Theoretical considerations support the idea that this conformation minimizes

the confinements free energy if the tube is long enough. Figure 4.3 shows the

time evolution of the number densities in the chamber and the tube.
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Figure 4.3: Time evolution of the number density n in the chamber and the tube
for (a) N = 200, D = 7, L = 10, d = 3, (b) N = 300, D = 7, L = 10, d = 3,
(c) N = 400, D = 7, L = 10, d = 3, (d) N = 200, D = 8, L = 10, d = 3.

Something to note here is the lack of dependence of the density in the cham-

ber on the length of the chain (comparing figures 4.3a, b, and c) and the diam-

eter of the chamber (comparing figures 4.3a and d). This confirms the what we

mentioned in section 2.5.1 about the equilibrium density in the chamber being

determined entirely by the diameter of the tube.
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Typical CPU times for the preparation of one initial configuration for N =

200 is about 1.5 hours, with a total CPU time of about 13 days for the 200

configurations prepared for each set of parameters. Running 10 simulations in

parallel reduced this to about 30 hours for 200 initial conditions. The CPU time

for N = 400 is about 7 hours for one initial configuration.

4.2.2 Density and Pressure Profiles of Equilibrated Chains

Using the method described in section 2.4 and appendices B and C, we calcu-

lated the pressure profile for an equilibrated chain. Results for a chain of length

N = 200 are shown in figure 4.4 which also shows the local density distribution,

and figures 4.5 and 4.6 show the variation in the axial direction and the radial di-

rection respectively. The density distribution shows that there is a larger density

in the tube, which fits the results shown in figure 4.3. Looking at the pressure

profiles raised certain questions concerning the consistency between the acquired

profiles and the established mechanical equilibrium. Looking at figure 4.5, we

notice that there are small nonzero pressure gradients as we move in the axial di-

rection at fixed radius, the large gradients near x = 15 being numerical artifacts.

Normally, gradients of pressure indicate the presence of forces in the direction of

negative gradients, and in the presence of external forces the gradients in pressure

are canceled by external forces to achieve mechanical equilibrium. However, this

is the case when dealing with simple liquids and gases. What we have in our

case is a chain that exhibits elastic properties, and is under the effect of various

stresses. The statement for mechanical equilibrium in this case is inferred from

equation 2.13 as ∇ · P (x) = 0. This equation involves off diagonal terms of the

pressure tensor and their derivatives. Checking this condition and obtaining the
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pressures in the non-equilibrium situation is left for future investigation.

A simulation with 200 monomers and 6× 107 steps (30000 time units) takes

about 2.3 hours of CPU time to finish. The size of the relevant data is about

13MB for a spacial resolution of 0.01 in the radial direction and 0.1 in the axial

direction for the capsid size we studied.

Figure 4.4: Top left: Density distribution. Top right: P xx(x, ρ). Bottom left:
P ρρ(x, ρ). Bottom right: P φφ(x, ρ). The parameters are N = 200, D = 10, L =
5, d = 6.
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Figure 4.5: Pressure tensor components versus axial position for different radii.
(a) P xx, (b) P ρρ, (c) P φφ, (d) tr(P ).

4.2.3 Determination of the Prefactor Aµ

In order to get the theoretical predictions described in sections 2.5.2 and 2.6,

we need to determine the coefficient Aµ. As stated above, at equilibrium the

chemical potential in the chamber and the tube are equal. The expressions for

the chemical potentials can be obtained from the free energies found in section

2.3. With our choices of kT = 1 and a = 1 we get

Aµ = BAed
−5/3

(
N

V

)−5/4

(4.1)

where d is the diameter of the tube, V = π
4
D2L is the volume of the chamber,

and N is the number of monomers in the chamber. Now we can use the number

47



0 1 2 3 4 5
-0.1

0

0.1

0.2

0.3

0.4

P
xx

(a)
x=0.8
x=2
x=8

0 1 2 3 4 5
0

0.05

0.1

0.15

P

(b) x=0.8
x=2
x=8

0 1 2 3 4 5
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

P

(c) x=0.8
x=2
x=8

0 1 2 3 4 5
-0.2

0

0.2

0.4

0.6

0.8

P
xx

+
P

+
P

(d) x=0.8
x=2
x=8

Figure 4.6: Pressure tensor components versus radial position for different axial
positions. (a) P xx, (b) P ρρ, (c) P φφ, (d) tr(P ).

densities obtained from the initial condition preparations to find Aµ. Using B =

5, Ae = 1.06, d = deff , and using the equilibrium values for the density in the

chamber we find

Aµ ≈ 5.8

4.2.4 Forced Pulling Simulations

In the derivation carried out in section 2.5.2 we made the assumption that the

drift velocity in the chamber is very small, so that the chamber contribution to

the dissipated power can be ignored. To validate this assumption we ran simula-
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Figure 4.7: Capsid cartoon showing our definitions of the inner, middle, and outer
wall.

tions with an infinitely long tube, and we applied a pulling force on the outermost

monomer in the tube that pulls in the direction going from the chamber to the

tube. This was done for polymers of different lengths (N = 200, 300, 400) and

for different pulling forces (fpull = 1, 2, 3). Figure 4.8 shows the values of the

speed in the axial direction in the chamber and the tube vdrift vs time. For both

strong and weak pulling forces, there is a trend in the drift velocity in the tube

to decrease then increase as a function of time. The reason for this is that as the

density in the chamber decreases, the axial positive force originating from the

inner wall goes down. However, the retarding force from the middle wall remains

significant, and slows down the ejection process. Once the chamber is almost

empty though, the only axial force remaining is the pulling force, and this leads

to an increase of the drift velocity again. This is confirmed by looking at the wall

forces and drift velocity in the tube as a function of the number of monomers in

the chamber shown in figure 4.9. In both 4.9a and 4.9b it can be seen that for

large Nch the contributions from both walls are comparable, then start deviating

as Nch decreases and the net force from the middle wall becomes larger than from

the inner wall. The drift velocity follows a trend that is compatible with what is
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found for the wall forces.

Regardless of the trend in the drift velocity, it can be seen that at for a strong

pulling force vdrift in the tube is much larger than in the chamber, which fits the

assumptions made in section 2.5.2. For small pulling force however, there are

times when the velocities in the chamber and the tube are comparable, which is

a sign that the equations may need to be modified.

CPU time needed for the last monomer leaves the chamber is about 0.12 hours

for f = 3 and N = 200, and 2 hours for f = 1 and N = 400.

4.2.5 Spontaneous Ejection Simulations

The main aim of this work is to investigate the spontaneous ejection of a chain

from a capsid driven by entropic forces. The initial configuration is the chain

equilibrated with an infinite tube. We take this configuration and cut the tube

short. If the tube opening is far away from the end of the chain, the chain will

be in a long lived metastable state. To make the system unstable, one needs to

form a tail extending outside the capsid. If the system is in the metastable state,

the ejection time will be dominated by the time needed to form a tail outside.

To start with an unstable configuration in the simulations, we cut the tube at a

length such that a part of the chain is already outside and a tail is formed (see

figure 4.10). We ran simulations for different parameters but fixed tube diameter

and the results are summarized is table 4.1.

As a first test, we checked whether the ejection times fit the expectations

from the deterministic equation. As mentioned in section 2.5.2, we expect the

chamber evacuation times to go as t1 ∝ lV 5/4d−2/3. Since the tube diameter
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Figure 4.8: Drift velocity summed over all monomers in the chamber and in the
tube for (a) N = 200, fpull = 1, (b) N = 400, fpull = 1, (c) N = 200, fpull = 3,
(d) N = 400, fpull = 3.

was not varied, we plotted the chamber evacuation times tch versus the variable

l(D2L)5/4 in figure 4.11 which shows good agreement with the prediction.

Next we looked at the distribution of ejection times. Figure 4.12 shows his-

tograms of total ejection times for capsids of the same size, but different chain

lengths. The distributions exhibit a certain width, which is an indications of the

stochastic nature of the ejection process, and gives better justification for the

Fokker-Planck Equation approach.

Now looking at the table and comparing different values, we can see the
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Figure 4.9: Above, wall forces against the number of monomers in the chamber
Nch for (a) N = 200, fpull = 1, (b) N = 400, fpull = 1. Below, tube drift velocity
against the number of monomers in the chamber Nch for (c) N = 200, fpull = 1,
(d) N = 400, fpull = 1.

following:

1. The deterministic expectation tdet always overestimates the ejection times,

which is something expected.

2. The theoretical first passage times overestimate the ejection times for tubes

longer than 20, but underestimate them for l = 20.

3. Comparing the simulation times for rows 1, 4, and 6, we see that the ejection
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Figure 4.10: Top: Geometry during equilibration with infinite tube. Bottom:
Geometry during the ejection simulation.

time for N = 200 is larger than for N = 300, 400, but is almost the same

for the latter.

4. Comparing rows 1, 2, and 3 we see that the ejection time increases with

both D and l.

5. Comparing rows 2, 5, and 7, we see that the ejection time changes signif-

icantly with the length of the tube (in theory the ejection time must not

depend on the total length of chain).

Point 2 can be explained by looking at the graphs in figure 4.13. In 4.13a and

b we can see that for a short tube (l = 20) the theoretical net force overestimates

the simulation forces most of the time and by significant amounts. While looking

at 4.13c we see that for a long tube (l = 100) the theoretical curves still overes-

timate the simulation points during the first part of chamber evacuation, but it
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Row N,D,L,l tch ttotal tdet tFPT

1 200,7,10,20 1617.2 1804.6 2190.7 1396.4

2 200,7,10,45 2703.5 3381.3 5130.1 3673.8

3 200,8,10,20 2445.3 2641.0 3158.5 1853.9

4 300,7,10,20 1355.1 1506.8 2190.7 1396.4

5 300,7,10,100 4875.0 7496.2 12509 10838

6 400,7,10,20 1333.9 1502.3 2190.7 1396.4

7 400,7,10,150 7345.5 12884 20479 19837

Table 4.1: Ejection times for different parameters we chose. The tube diameter
was fixed at d = 3 (deff = d− 0.2031). N, D, L, and l are respectively the total
number of monomers, the diameter of the chamber, the length of the chamber,
and the length of the tube (a correction of 0.2031 is to be understood for all size
parameters except l). tch is the chamber evacuation time from the simulations,
ttotal is the total ejection time from simulations, tdet is the theoretical total ejection
time as derived in sections 2.5.2 and 2.5.3 (nfch was chosen to be 1 in eq. 2.18),
and tFPT is the first passage time from eq. 2.32.

is largely underestimated for nch < 20, and this may be the cause that tFPT is

larger than the simulation time for long tubes. We can also see from figure 4.13d

during the final stages of the ejection (N¡50), the theoretical force overestimates

the simulation results. In addition we can see that the assumption that the force

is constant during tube ejection does not seem to be accurate. The discrepancy

may also be due to the fact that for shorter tubes the friction in the chamber is

comparable to the friction in the tube as can be seen from figure 4.14.
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Figure 4.11: tch versus the variable l(D2L)5/4 as derived from eq. 2.18 shows
good agreement (the line is a linear fit).

There is no obvious reason why the ejection time for row 1 is longer than for

rows 4 and 6. Looking at the forces for all three we see that they are almost the

same. Also the initial numbers of monomers in the chamber and the tube are the

same for all three.

The CPU time for the passive ejection simulations was between 0.1 hours for

short tubes and chains, and 2 hours for long chains and long tubes.
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Figure 4.12: Histograms of the total ejection times for D = 7, L = 10, d = 3,
and l = 20. The histograms for N = 300 and N = 400 are similar but they are
different from that of N = 200.
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Figure 4.13: Net force in the axial direction versus (a) the number of monomers
in the chamber for N = 300, l = 20; (b) the number of monomers in the tube for
N = 300, l = 20; (c) the number of monomers in the chamber for N = 300, l =
100; (d) the number of monomers in the tube for N = 300, l = 100.
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Figure 4.14: Net friction in the tube and in the chamber for N = 300, (a) l = 20,
(b) l = 100
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Chapter 5

Conclusion and Future Work

In this work, we investigated different aspects of a polymer chain in a cylindri-

cally symmetric capsid. In order to study the equilibrium properties of the chain,

we derived expressions for volume averaged local pressure in cylindrical coordi-

nates(section 2.4, appendix B), and developed an algorithm for the proper calcu-

lation of the pressure (section 3.4, appendix C). The acquired profiles show some

gradients which at first glance seems inconsistent with the established mechanical

equilibrium, but upon a closer look at the condition for mechanical equilibrium

this may not be the case. Future work will include testing whether the condition

for mechanical equilibrium ∇ ·P (x) = 0 is satisfied by the equilibrated chain, in

addition to the calculation of the pressure distribution of the out of equilibrium

chain as an additional way to characterize the ejection.

When it comes to the ejection from the capsid, we were able to derive a

deterministic formula for the time needed to evacuate the chamber using simple

energetic arguments and scaling formulas (section 2.5.2). Combined with the

analysis in [7] from which eq. 2.23 was derived, an overestimation of the total
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ejection time from the capsid can be obtained. To get better estimates for the

ejection time, it turns out we need to include the effects of diffusion into our

analysis. This was done through the use of the Fokker-Planck equation, and we

derived an equation for the ejection time (section 2.6). The final result is in

the form of an integral that is evaluated numerically. In the derivation of the

theoretical expressions we made certain assumptions that were tested in section

4.2.4. The results show that the theory needs some modification, and this was also

confirmed in the results from the passive ejection simulations, where it was found

that the expressions for the chemical potentials used in the theoretical derivations

both under and overestimate of the net forces (section 4.2.5). Finding a better

description of the ejection stages is necessary for a complete understanding of

the problem. Future work will involve separating the process into more accurate

stages described by accurate expression for the relevant chemical potentials.
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Appendix A

Abbreviations

MD Molecular Dynamics Simulations

MC Monte Carlo Simulations

FPE Fokker-Planck Equation

LJ Lennard-Jones

WCA Weeks-Chandler-Andersen (repulsive part of the Lennard-Jones potential)
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Appendix B

Averaged Pressure Tensor

Elements

Definitions:

• The intermolecular forces are radial and directed along the line joining the
particles. They are assumed to have the form

F (rij) = f(rij)rji

where
rji = ri − rj

and ri is expressed in cylindrical coordinates ri = (xi, ρi, φi)

• x, ρ, and φ subscripts refer to the different components in cylindrical coor-
dinates where the axial direction is along the x-axis, for example:

Fx(rij) = f(rij)(xi− xj)x̂
Fρ(rij) = f(rij)[(yi− yj)ŷ + (zi− zj)ẑ]

Fφ(rij) = Fx × Fρ
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and in the same way

xi = xix̂

ρi = yiŷ + ziẑ

φi = xi × ρi

• The basis vectors are
x̂

ρ̂ =
yŷ + zẑ√
y2 + z2

φ̂ = x̂× ρ̂

Here we write down the expressions for the interaction part of the pressure tensor.
All expression are averaged over volume elements (see section 2.4)

Pαβ
ij (V) =

1

|V|

∫
V
dx

∫
Cji

(dl · eα)(F · eβ)δ(x− l) (B.1)

For the integration contour we choose the Irving-Kirkwood contour [21] defined
by

l = rj + λrji (B.2)

dl = rjidλ (B.3)

where 0 ≤ λ ≤ 1. This way the integral becomes

Pαβ
ij (V) =

1

|V|

∫
V
dx

∫
dλ(rji · eα)(F · eβ)δ(x− l) (B.4)

If we evaluate the integral over the volume first, we can eliminate the δ(x − l)
by setting x = l, or replacing any relevant x component by the corresponding l
component, for example for P ρρ

ij

P ρρ
ij =

1

|V|

∫
V
dx

∫
dλ(rji · ρ̂)(F · ρ̂)δ(x− l)
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Using ρ̂ = yŷ+zẑ√
y2+z2

and F (rij) = f(rij)rji we get

P ρρ
ij =

1

|V|

∫
V
dx

∫
dλ

(
yjiy + zjiz√
y2 + z2

)(
fyjiy + fzjiz√

y2 + z2

)
δ(x− l)

=
f

|V|

∫
V
dx

∫ λ2

λ1

dλ

(
yjiy + zjiz

y2 + z2

)2

δ(x− l)

=
f

|V|

∫ λ2

λ1

dλ

(
yjily + zjilz
l2y + l2z

)2

(B.5)

where ly = yj +λyji, and similarly for z. The integration bounds λ1 and λ2 define
the segment of the contour that is inside the integration volume. The integrals
were evaluated using computer algebra and yielded the following expressions for
the different components:

P xx
ij =

f

|V|
(xi − xj)2

[
λ
]λ2
λ1

(B.6)

P xρ
ij = P ρx

ij =
f

|V|
(xi − xj)

[∣∣lρ(λ)
∣∣]λ2
λ1

(B.7)

P xφ
ij = P φx

ij =
1

|V|
Fx · (ρj × ρi)

|ρji|

[
ln(|ρji|λ+

∣∣lρ(λ)
∣∣+ ρj ·

ρji
|ρji|

)
]λ2
λ1

(B.8)

P ρρ
ij =

f

|V|

[
λ|ρji|2 − |ρj × ρi|arctan

(
ρji · lρ(λ)

|ρj × ρi|

)]λ2
λ1

(B.9)

P ρφ
ij = P φρ

ij =
f

|V|
|ρj × ρi|

[
ln(|lρ(λ)|2)

]λ2
λ1

(B.10)

P φφ
ij =

f

|V|
|ρj × ρi|

[
arctan

(
ρji · lρ(λ)

|ρj × ρi|

)]λ2
λ1

(B.11)

64



Appendix C

Details of Pressure Calculation
Algorithm

Here we detail the steps followed to calculate the interaction contribution to the
pressure. The aim is to find the bounds λ1 and λ2 that define the part of the
contour inside a particular slice.

1. Divide the capsid into slices of thickness dX axially and dR radially. The
number of radial slices is NR = D/2

dR
, the number of axial slices is Nx = xmax

dX
,

and the total number of slices is Ntotal = NR × Nx. The slices are labeled
from 1 to Ntotal moving radially first then in the axial direction. See for
example figure C.1a.

2. From figure C.1b we can see that it is possible for the contour to pass from
large radius to smaller and then back. To account for this we find the
position along the contour with the minimal distance ρ from the axis. This
is achieved by minimizing |lρ(λ)|2 with respect to λ.

|lρ|2 = y2
j + z2

j + 2λ(yiyj + zizj − y2
j − z2

j ) + λ2[(yj − yi)2 + (zj − zi)2]

d|lρ|2

dλ
= 2λ[(yj − yi)2 + (zj − zi)2] + 2(yiyj + zizj − y2

j − z2
j ) = 0

λmin =
(yiyj + zizj − y2

j − z2
j )

(yj − yi)2 + (zj − zi)2

if 0 < λmin < 1 then the shortest distance is between the two monomers and
we have double intersections. and we choose ρmin = |lρ|(λmin). Otherwise
we have only individual intersections and we take ρmin = min(ρi, ρj). We
also need ρmax = max(ρi, ρj).

3. For a position (ρ, x), the indices of the radial and axial slice where the point
belongs are:
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Figure C.1: Irving-Kirkwood contours used for the determination of the pressure.
Colors indicate the slice to which the segments contribute. (a) The red segment
contributes to slice 5, blue to slice 4, green to slice 2, and brown to slice 0. (b) It
can be seen that as we move along the contour, it is possible to move to different
slices then come back to the original one radially.

indρ = floor

(
ρ

D/2
×Nr

)

indx = floor

(
x

xmax
×Nx

)
To get the total number of intersections with the boundaries of the slices
we calculate indρmin , indρmax , indρi , indρj , indxi , and indxj . The number of
intersections in the axial direction is

NintX = |indxi − indxj |

and in the radial direction it is

NintR = |indρi − indρj |+ 2[min(indρi , indρj)− indρmin ]

4. To find the λ’s that correspond to intersections along the axial direction,
loop over the number of intersections NintX to find the intersection points

xint = (indxj − i+ 1)dX if xi < xj

xint = (indxj + i)dX if xi > xj
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where = 1→ NintX . Then find the corresponding λ using

λi =
xint − xj
xi − xj

5. To find the λ’s that correspond to intersections along the radial direction,
loop from indρmin indρmin to find the intersection points

ρint = (j + 1)dR

where j = indρmin → indρmax − 1. Then to find the corresponding λ we
need to solve the quadratic equation

ρ2
int = y2

j + z2
j + 2λ(yiyj + zizj − y2

j − z2
j ) + λ2[(yj − yi)2 + (zj − zi)2]

which is done easily using λi = −b±
√

∆
2a

. If the solution is between 0 and 1
it is stored, otherwise it is not.

6. Sort the λ’s found in steps 4 and 5 from smallest to largest.

7. Use the formulas in appendix B to calculate the value for the pressure, and

add the contribution to the slice where (ρmid, xmid) =

(
ρ(λi+λi+1

2
), x(λi+λi+1

2
)

)
is found whose index is

ind = indρmid + indxmidNR
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[4] S. Mangenot, M. Hochrein, J. Rädler, and L. Letellier, “Real-time imaging
of dna ejection from single phage particles,” Current Biology, vol. 15, no. 5,
pp. 430–435, 2005.

[5] M. De Frutos, L. Letellier, and E. Raspaud, “Dna ejection from bacte-
riophage t5: analysis of the kinetics and energetics,” Biophysical journal,
vol. 88, no. 2, pp. 1364–1370, 2005.

[6] M. M. Inamdar, W. M. Gelbart, and R. Phillips, “Dynamics of dna ejection
from bacteriophage,” Biophysical journal, vol. 91, no. 2, pp. 411–420, 2006.

[7] A. Milchev, L. Klushin, A. Skvortsov, and K. Binder, “Ejection of a polymer
chain from a nanopore: Theory and computer experiment,” Macromolecules,
vol. 43, no. 16, pp. 6877–6885, 2010.

[8] I. Ali, D. Marenduzzo, and J. Yeomans, “Polymer packaging and ejection
in viral capsids: shape matters,” Physical review letters, vol. 96, no. 20,
p. 208102, 2006.

[9] I. Ali, D. Marenduzzo, and J. Yeomans, “Ejection dynamics of polymeric
chains from viral capsids: effect of solvent quality,” Biophysical journal,
vol. 94, no. 11, pp. 4159–4164, 2008.

[10] J. Kindt, S. Tzlil, A. Ben-Shaul, and W. M. Gelbart, “Dna packaging and
ejection forces in bacteriophage,” Proceedings of the National Academy of
Sciences, vol. 98, no. 24, pp. 13671–13674, 2001.

68



[11] M. Rubinstein and R. H. Colby, Polymer physics, vol. 23. Oxford university
press New York, 2003.

[12] P.-G. De Gennes, Scaling concepts in polymer physics. Cornell university
press, 1979.

[13] T. Nakamura, W. Shinoda, and T. Ikeshoji, “Novel numerical method for
calculating the pressure tensor in spherical coordinates for molecular sys-
tems,” The Journal of chemical physics, vol. 135, no. 9, p. 094106, 2011.

[14] C. Gardiner, Stochastic methods, vol. 4. springer Berlin, 2009.

[15] L. H. Tannoury, Dynamic origins of entropic force: thermodynamic theory
vs. molecular dynamics simulations. PhD thesis, 2017.

[16] T. Nakamura, S. Kawamoto, and W. Shinoda, “Precise calculation of the lo-
cal pressure tensor in cartesian and spherical coordinates in lammps,” Com-
puter Physics Communications, vol. 190, pp. 120–128, 2015.

[17] A. Milchev, “Effects of polymer stiffness on surface tension and pressure in
confinement,” The Journal of Chemical Physics, vol. 143, no. 6, p. 064701,
2015.

[18] L. I. Klushin, A. M. Skvortsov, H.-P. Hsu, and K. Binder, “Dragging a
polymer chain into a nanotube and subsequent release,” Macromolecules,
vol. 41, no. 15, pp. 5890–5898, 2008.

[19] N. Korolev, L. Nordenskioeld, and A. P. Lyubartsev, “Multiscale coarse-
grained modelling of chromatin components: Dna and the nucleosome,” Ad-
vances in colloid and interface science, vol. 232, pp. 36–48, 2016.

[20] L. Verlet, “Computer” experiments” on classical fluids. i. thermodynamical
properties of lennard-jones molecules,” Physical review, vol. 159, no. 1, p. 98,
1967.

[21] J. Irving and J. G. Kirkwood, “The statistical mechanical theory of transport
processes. iv. the equations of hydrodynamics,” The Journal of chemical
physics, vol. 18, no. 6, pp. 817–829, 1950.

69


