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 Software-defined networking (SDN) is a newly emerging approach in computer 

networking which abstracts network control functionalities and enables its direct 

programmability at the management plane. The fundamental difference between 

software-defined networks and traditional networks is in the network architecture itself. 

In SDN, the data-plane is separated from the control-plane. The former is composed of 

SDN dummy switches that are directly programmable with flow-based rules by a 

logically centralized controller that resides at the control plane. SDN has evolved 

tremendously throughout the last few years. Although the two main approaches, 

proactive approach and reactive approach, were being widely addressed as a framework 

of communication between the control-plane and the data-plane, a new hybrid approach 

is emerging which combines the advantages of the proactive approach, in pre-installing 

the flow rules in the data-plane, and the advantages of the reactive approach, in its 

ability to dynamically react to network events. This hybrid approach utilizes the 

potential of the SDN switches to recognize and host state machines. While the trending 

success of SDN is set to continue, this evolving network paradigm requires a new set of 

tools and strategies to secure the network elements against intrusions and at the same 

time maintain its efficiency and reliability. In this text, we take advantage of the hybrid 

approach of network controllability and management to offload the processing of 

stateful applications from the control-plane to the data-plane and propose our 

framework, Stateful Distributed Firewall as a Service in SDN (SDFS), that optimizes a 

distributed stateful application in the data-plane to transform the SDN network into a 

one big firewall. While maintaining modularity of the framework, SDFS offers an 

optimized processing burden distribution of the stateful application in the data-plane 

among the switches in the network with inherent fault-tolerance mechanisms that 

eliminate the need for immediate controller intervention even in cases of failure or 

attacks on the network. 
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CHAPTER 1 

INTRODUCTION 

 

Software-defined networking (SDN) is a newly emerging approach in computer 

networking which abstracts network control functionalities and enables its direct 

programmability at the management plane. SDN has taken networking to a new level in 

only few years. In sharp contrast to the traditional networking practices, software-

defined networking created a wide spectrum of opportunities to engineer much more 

efficient networking frameworks. The fundamental difference between software-defined 

networks and traditional networks is in the network architecture itself.  

 

 

Figure 1: SDN architecture [27] 

As depicted in Figure 1, in the SDN architecture, the data-plane is separated 

from the control-plane. The former is composed of SDN dummy switches that are 

directly programmable with flow-based rules by a logically centralized controller that 

resides at the control plane. As such, decisions about how traffic should be forwarded in 
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the network is not taken on the data-plane anymore, like the case in traditional OSPF 

and BGP, but migrated to the controller. According to the SDN architecture, the 

controller is the intelligent unit that utilizes a global view of the network. All of the 

underlying infrastructure is abstracted and optimized at the controller level. This 

controller can be configured and managed using the Northbound APIs, where it exposes 

its abilities to programmable network applications. On the other hand, the controller 

utilizes the Southbound APIs to communicate and program the switches in the data-

plane. 

While SDN turned from a pure idea to a concrete framework [1, 2, 3], it has only 

gained recognition by vendors when OpenFlow [4] was first adopted as a standard 

southbound protocol for communication between the control plane and the data plane as 

well as remote programmability of the data-plane. Since then, hardware OpenFlow 

compliant switches were produced such as the Cisco 6500 series and Juniper T-640 

along with software OpenFlow compliant switches such as OpenVswitch [35].  

These switches employ OpenFlow Tables to forward traffic. A flow table 

comprises a list of flow table entries (flows). Each flow table entry comprises a Match 

representing a set of packet fields + other OpenFlow specific match fields (inport, 

metadata,..), an Action such as outport, drop, and modify-packet-fields, along with 

counters that hold statistics about the flows and packets. When a packet enters a switch, 

it is matched against the Match fields of the flows in the table. Whenever a match hits, 

the Action of that flow is executed upon the packet, and the counters of the flows are 

updated accordingly [35]. 
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Figure 2: Flow tables and group tables in OpenFlow 

With OpenFlow, these switches are presented with a neat abstraction of their 

flow tables at the control plane. As such, OpenFlow allows remote administration and 

programmability of the data-plane switches. And since it was first released, it has 

become a fundamental protocol in the SDN environment. 

With the continuous efforts being put into OpenFlow, new features and 

extensions arise with every release. These features address specific problems and needs. 

For example, in the older versions of OpenFlow, when a network link fails, the switch 

had to communicate this failure to the controller which would then intervene to update 

the flow tables of the switch. However, since many packets will have to be dropped in 

the process due to the slow switch-controller communication, this approach is 

disruptive. Consequently, a group table was introduced alongside the flow tables as 

shown in Figure 2. This group table comprises a set of groups. Each group incorporates 
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a set of buckets where each bucket is a set of OpenFlow actions. The actions in the 

buckets inside a group are executed according to the group type. Currently, four group 

types exist: Fast-Failover, Select, All, and Indirect. The fast-failover group addresses 

the slow switch-controller communication problem upon link failure as described 

above. This group incorporates multiple action buckets where each bucket watches the 

“liveness” of its corresponding port. Whenever a packet is submitted to this group, the 

first live bucket is executed. 

Select group, on the other hand, permits the execution of one bucket after 

hashing on packet fields. This provides support for load-balancing operations at the 

switch. For example, when a packet is submitted to this group, the packet fields are used 

to compute a hash value. According to this hash value, one bucket out of the group is 

chosen, and the packet is forwarded according to the outport corresponding to this 

bucket. The remaining two group types are All and Indirect where All executes all the 

buckets in the group and Indirect executes the one bucket in the group. 

Additionally, OpenFlow provides support for meters used in QoS and rate 

control, along with a learning functionality to locally install new rules upon packet 

events. One example where learning flows are employed is the MAC learning 

application where the switch installs new flows to automatically respond to ARP 

requests whenever it discovers a new MAC address in the network. Although OpenFlow 

offers clean solutions to specific problems, there are no strict specifications or 

standardizations as to how the rules should be pipelined and used. Accordingly, such 

specifications are decided upon design and implementation of applications [22]. 

Different approaches have been adopted to install flows onto the switches. The 

first one is the proactive mode. In this mode, the controller pre-installs all the flow rules 

onto the switches. However, this requires a priori knowledge about the network, and in 
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practice, this is often impossible. Consider, for example, the case where the controller 

installs flows to route packets to different servers. If a server is migrated or newly 

deployed elsewhere in the network, the controller will not be able to detect it and install 

the relevant flows. 

The second approach is the reactive mode. In this mode, a flow rule with least 

priority is inserted in every flow table. The match field of this rule does not have any 

constraints on the packet fields in such a way that all packets can match against this 

rule. Additionally, the action field of this rule mandates that the packet is tunneled from 

the switch to the controller. Thus, when a switch receives a packet that cannot be 

handled by its flow tables (i.e. the packet does not match on any flow rule in a flow 

table), it will eventually match against this rule. Accordingly, the switch notifies the 

controller about the packet it couldn’t handle. The controller then installs the 

appropriate flows onto the switch to handle this scenario in the future. In the example 

above, the controller is able to detect new ip-addresses and mac-addresses appearing in 

the network and consequently handle network updates. While this approach allows the 

controller to dynamically control the network, its performance is disadvantaged by 

controller-exhaustive interventions. 

In this regard, a new approach is emerging which takes the best of the two 

approaches. This approach entails offloading the stateful processing of the applications 

from the controller to the data-plane. This is only made possible by the ability of the 

OpenFlow switches to host state machines in their flow-tables. Thus, instead of driving 

the traffic to converge at the controller in order to be statefully processed, in this 

approach, the controller can proactively program the switches to statefully process the 

traffic on the data-plane at packet speed. 
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This approach has found its way in the literature in many firewall known 

applications such as connection filtering and tracking, DNS Tunnel Detection, port-

knocking and FTP monitoring. However, as discussed in the literature, the stateful 

firewall architectures proposed for data-plane processing restrict the stateful processing 

computation to the direct switch connected to the host/server. Since the stateful 

application hosted in a switch should fall on the data path of the traffic, handling of 

connection tracking for example at the direct switch of the protected host can be the safe 

choice to insure consistency and correctness. However, this design cannot scale if the 

number of connections through the direct switch exploded. In such scenarios, the direct 

switch becomes an inevitable network choke-point. Along with network performance 

degradation, memory issues can arise. Since there is no upper limit on the number of 

flows in OpenVswitch, these switches are only constrained by memory, where in cases 

of an attack, the excessive amount of tracking flows can eat up the memory of the 

system. In contrast, traditional IpTables enforce a limit on the number of connections 

that can be tracked. This limit is used to prevent DoS attacks that use all of the system’s 

memory. In that case, IpTables will respond by the hideous ip_conntrack: table full, 

dropping packet, after which the server will seem offline. 

In this text, we propose our framework, Stateful Distributed Firewall as a service 

in SDN (SDFS), that transforms the SDN network into a big firewall, in which the SDN 

switches collectively become one firewall. Processing of stateful applications can be 

off-loaded from the controller to the data-plane switches where these switches can 

distributively collaborate in the processing burden. Not only controller applications can 

be distributed in the data-plane, but also the framework drives a traffic engineering 

foundation that provisions burden distribution of traditional data-plane applications such 

as deep packet inspection (DPI) where packets can be mirrored to these special DPI 
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devices in an optimized fashion. This framework inherently incorporates a failover 

mechanism that provisions a highly available network to provide redundancy of the 

firewall application at the data-plane and eliminate single points of failure. With this 

framework, therefore, the network can seamlessly reconform into a new configuration 

upon the failure of certain devices (or a change in the network topology). Even in cases 

of an attack or device downtime, the framework maintains its security functions over 

the network. The ease of manageability in this framework is accomplished by an SDN 

controller that automatically re-configures and optimizes the network without 

extensively intervening in the processing procedure. In contrast to traditional distributed 

firewalls where rip/replace routines are required to update the network, the course of 

this framework is to augment the network with firewall as a service that is provided 

with high-availability, connectivity, and manageability and gives the network admin an 

easy way to configure the network security policies. Instead of investing in a large 

cluster of expensive dedicated hardware to handle high performance events, this 

framework leads off the utilization of lightweight low-cost devices to provide high-

availability, while maintaining a compatible and efficient usability of dedicated 

hardware at the core of the network if needed. 

In the next section (Section 2) we will present the background on this topic and 

its related work which includes the security challenges in the SDN paradigm and the 

security strategies employed to tackle these challenges according to the aforementioned 

two approaches. As we highlight the disadvantages of these approaches in terms of 

security, reliability, controllability and performance we present a newly emerging 

approach in SDN, stateful applications in the data-plane, that takes the best of both 

approaches by offloading the processing of stateful applications from the controller to 

the data-plane. Additionally, we highlight in section 2 the challenges that still exist in 
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this new framework with what regards to (i) the processing burden distribution in the 

data-plane, (ii) the correctness and fault tolerance mechanisms of the application, (iii) 

and the security of the network. In section 3 we present our proposed framework 

(SDFS) that builds on top of the stateful data-plane framework to address issues not 

only on the security level, but also on the correctness, reliability, and high-availability 

of SDN applications. Specifically, we present in this section SDFS’s potential to 

transform the network into a one big firewall as it offers an optimized processing 

burden distribution of the stateful application in the data-plane with inherent fault-

tolerance mechanisms that eliminate the need for immediate controller intervention 

even in cases of failure or attacks on the network. Evaluations of this framework are 

presented in Section 4. Finally, a conclusion and future work are presented in section 5. 
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CHAPTER 2 

BACKGROUND AND RELATED WORK 

 

2.1 Security in SDN 

The SDN paradigm has already proven its success in diverse deployment 

scenarios such as Google’s backbone network [5] and Microsoft’s public cloud [6]. 

While this trend is set to continue, the security area of SDN has gained minimal 

attention compared to other areas. 

There are obvious security advantages that are entitled to the SDN architecture. 

The centralized intelligence allows for a complete view to analyze all of the feedback 

from the network. Hence, the controller can virtually act as a global anomaly-detection 

system. Additionally, security policies to prevent an attack can be programmed and 

optimized on the controller then propagated to the whole network [7]. 

 

Figure 3: Examples of security challenges and strategies in the SDN architecture 
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On the other hand, as depicted in Figure 3, SDN opens the door to a broad 

variety of new security challenges. From the perspective of security in SDN, each layer 

(application, control, data) in the SDN architecture is subjected to different challenges 

along with challenges that arise in the inter-layer communications. Some of these 

challenges are specific to SDN, not only due to the particular technologies and protocols 

employed in the SDN frameworks, but also on a more structural and conceptual level 

such as the architectural centralization of the controller in the network, and the 

limitations imposed on the data-plane dummy switches to maintain a simple and 

programmable behavior. Other challenges are common across different network types. 

But also due to the SDN architecture, these common challenges can have an augmented 

impact on the SDN network and accordingly they require special considerations [27]. 

 

2.1.1 Challenges in the data-plane 

Although the structure and processing mechanism of the SDN switch is 

fundamentally different than that of a traditional switch, the SDN switches can still be 

susceptible to traditional attacks. Since the SDN switch does not impose a limit on the 

number of rules in its flow tables, it can be a subject to memory depletion attacks, 

especially when the switch employs learning flows such as the case of data-plane MAC 

learning application. Accordingly, packet forging attacks can be performed to overload 

the switch with flows corresponding to fake MAC addresses [27]. 

On the other hand, attackers can attempt to guess the installed flows in the 

switch and forge packets to forcefully increase the counters of the flow rules. 

Artificially altering flow statistics can compromise the optimality of load balancers, 

for example, or the integrity of billing systems, where a customer will be charged for 

more traffic [27]. 
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2.1.2 Challenges in data-plane to control-plane communication 

Along with the lack of SDN best practices, a network comprised of dummy 

programmable switches gives rise to an authenticity challenge between its network 

elements in the data-plane. The controller-switch communication can be jeopardized 

due to the lack of authentication mechanisms such as TLS adoption. This makes the 

network vulnerable to spoofing attacks.  

As such, an attacker could spoof the controller and tamper with the OpenFlow 

rules on the switches. It would only take the attacker a few seconds to install rules on all 

of the switches to serve their malicious purposes, an example of which is traffic cloning. 

These sort of attacks are very hard to detect unless flow rules on all switches are 

constantly being monitored by the controller [27] [28] [29]. 

 

2.1.3 Challenges in the control-plane 

The fact that the architecture of SDN networks is centralized, renders the entire 

network vulnerable if the controller is vulnerable. Controllers that are not logically and 

physically protected adequately could be exploited by adversaries, much like the lack of 

security elements such as firewalls and intrusion-detection systems makes other types of 

network devices exploitable. For example, a vulnerable administrative computer that is 

directly connected to the control network could grant the attacker the resources and 

proximity required to launch a wide variety of intrusion attacks and gain access to the 

controller node and, consequently, the entire network [27] [32] [33]. 
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2.1.4 Challenges in the application layer 

Similar to gaining access to the controller, an attacker that can manipulate a 

controller application can also manipulate the network on a global level. For example, 

applications can be manipulated to induce the installment of malicious flow rules on the 

switches to mirror traffic for information theft purposes. 

On the other hand, the attacker can exploit the vulnerability of the applications 

as they respond to the data-plane events; More specifically, the application’s 

vulnerability to Denial of Service attacks [7]. In such a setup, the application is a 

reactive application, where it executes a certain action when it receives a certain 

OpenFlow notification from the data-plane switches. Since this setup is predominantly 

used in the SDN environment, the attacker can perform a fingerprinting attack to 

discover such a vulnerability. For example, the attacker can investigate the latency of 

the first packet being sent to infer that the application hosted on the controller is 

reacting to a certain type of packets. Accordingly, the attacker can then launch a Denial 

of Service attack on a particular application and accordingly crash the whole controller 

[27] [28] [30] [31]. 

 

2.1.5 Challenges in the management plane 

Insecure northbound interfaces can provide easy access for adversaries to 

accomplish an escalation of privileges. Such privileges can range from controlling 

certain application configurations to quitting the controller process as a whole. On the 

other hand, upon controller failure, lack of monitoring resources can compromise the 

debugging process and accordingly impede the recovery process for bringing the 

network back into a healthy operational mode [27] [28]. 
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2.2 Security Strategies 

To tackle the security challenges mentioned above, the authors in [7] classified 

the potential security enhancements into six categories. Each of these categories tackles 

a specific type of challenges and in most cases it is tailored to protect a certain area in 

the SDN architecture as shown in Figure 3. 

The first category is Collect, Detect, Protect. In this approach, the controller 

extracts the statistics revealed by OpenFlow about the installed flow rules such as, but 

not limited to, the number and rate of packets matching each rule. This stage is labeled 

as the collection stage. The controller can then utilize an intrusion detection intelligence 

system to globally detect any suspicious interaction in the data-plane, and can protect 

the network elements by updating the flow rules accordingly [8]. Examples of the 

successful implementation of this strategy are the Learning-IDS in [9], NetFuse in [10], 

and OrchSec- an orchestration based architecture [11]. 

The second category is Attack Detection and Prevention. This approach is 

similar to the first one but is more attack-type specific. In this approach the controller 

installs specific flows to force the switches to send certain packets to the controller. An 

example of that would be the first packet of every new tcp connection. The controller, 

instead of extracting all of the statistics from the switch, could employ its intelligence to 

detect networking breaches exploiting a certain specific attack. The attack is prevented 

by adding flow rules to drop the detected malicious packets. This strategy has been 

employed in OpenWatch [12] and FleXam [13]. 

Protection against Dos/DDos attacks is presented as a separate category. In this 

approach, the controller regularly retrieves statistics about the average packet per flow 

for specific flows only. The controller turns to these flows to monitor traffic that is 
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being forwarded to a server hosted in the network. Whenever the rate exceeds a certain 

threshold, an attack is detected by the controller. 

The fourth category is characterized by introducing security middleboxes in the 

network. While this approach is extensively utilized in traditional networking, its 

integration in SDN networks has been a topic of extensive discussion. In [14], the 

authors proposed the Slick architecture which utilizes a controller that is responsible for 

migrating security functions into custom middle boxes.  In [15], the authors proposed 

the FlowTags architecture that modifies middleboxes to interact with an SDN 

controller. As simple as this solution might seem, it has major downsides. The authors 

in [16] pointed out three drawbacks of this approach. In the first place, hardware 

firewalls are very expensive. Secondly, it is very hard to achieve, in contrast with the 

spirit of SDN, interoperability between the vendor-specific firewalls. Third, failures of 

firewalls in this scenario will require replacement and reconfiguration of multiple 

firewall deployments which can inflict a major down-time and produce policy 

inconsistency in the network. 

The unauthorized access challenge was tackled by the Authentication, 

Authorization, and Accounting mechanism that comprises the fifth category. SDN-

driven AAA was integrated as part of the Application layer on controllers such as 

OpenDaylight and Floodlight [17]. 

Utilizing SDN’s potential to dynamically configure virtualized logical networks 

opened the way for the sixth security category: Secure, Scalable Multi-Tenancy. With 

this approach, the controller can maintain a logical traffic-isolation hierarchy in the 

data-plane through logical classification and tunneling which allows individual 

processing of traffic streams to control security vulnerabilities [7]. An implementation 

of this approach is presented in [18]. 
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In all the above strategies, any attempt to augment the SDN network with 

security enhancements cannot but extensively rely on the controller as it is the only 

intelligent unit in the architecture. Many of the above mentioned challenges are intrinsic 

to the aforementioned SDN architecture itself. With any security function that has to be 

applied on the network, traffic must converge to the controller and the controller must 

update the network reactively. In a small SDN network, this can seem fairly practical. It 

is detrimental, however, for a large SDN network, in which, the controller can be easily 

overwhelmed with the large influx of traffic to be scrutinized at the application layer. 

Consequently, a new approach emerged that embraces the idea of discarding the fully 

centralized architecture of SDN and migrating part of the intelligence to the SDN 

switches. 

 

2.3 StateFul OpenFlow Approach 

As mentioned earlier and to avoid burdening the controller, new approaches 

were suggested where the regular switches take part in the decision making. In [19], the 

authors observed that the dummy network switches have, in fact, the potential for 

locally hosting a state machine as an aggregate of flow rules. This brought into attention 

OpenVswitch’s Learn action which is able to install a new flow when a packet matches 

an old flow. Accordingly, a stateful OpenFlow paradigm was suggested as a new SDN 

switch primitive [19]. This new approach allows the controller to proactively install 

flow rules that can express a local state-machine. The state-machine can then 

dynamically react to local network events and report back to the controller. FAST [19] 

is an example of the implementation of this approach. 
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Figure 4: “Implementing TCP state machine in FAST data plane” [19] 

To track tcp connection states, FAST utilizes four flow tables as shown in 

Figure 4. To demonstrate the behavior of FAST’s stateful implementation, Figure 5 

below represents a network where switch:green employs the FAST framework to 

perform connection tracking for host:red. TCP connections from the cloud to host:red 

are only allowed if and only if host:red initiates the connection. 

 

 

Figure 5: Simple network example for connection tracking using FAST 
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- Initially, when the packet arrives at the switch, irrespective of its direction, it 

is matched against the filter table, in which only the tcp packets are re-

submitted to the state table. 

- The state table holds information about the mapping between every seen 

connection and its state. In the state table, FAST employs the OpenFlow 

Packet Metadata to tag the packet with the current state of the connection the 

packet happens to be in. Since the connection is defined by the tcp packet’s 

layer-3 and layer-4 fields, the packet is matched according to these fields to 

choose the connection, and accordingly the packet’s metadata is set to either 

“established, initialized, or closed.” As the tagged packet now holds the state 

of the connection it is in, the packet is then re-submitted to the state-

transition table.  

- In the state-transition table the packet is matched against its tcp flags and 

accordingly the state table is updated using the Learn action. For example, if 

the packet’s metadata states that the packet is in an “established connection” 

state, and the tcp flag is set to FIN, then the corresponding entry for the 

connection in the state table is updated to become closed, since a FIN 

packet would have been seen for this connection. On the other hand, the 

packet continues its way to the action table. 

- In the action table, the packet is matched against its inport to determine 

whether the packet is going inward (to host:red) or outward (to the cloud). If, 

for example, the packet is going inward and the connection is closed, this 

packet is directly dropped since no host is allowed to communicate with 

host:red. On the other hand, if, for example, the packet is going outward, the 

packet is forwarded accordingly. 
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In contrast to the Attack Detection and Prevention approach, packets are not 

required to be tunneled back to the controller in order to keep track of the tcp 

connection states. These states are tracked down locally at the switch level. It is quite 

legitimate to argue that maintenance and processing of the local states will pose a 

performance overhead on the switch. However, the security advantages are granted on 

several levels. In the first place, this overhead is substantially less than that required to 

involve the controller in maintaining the state of every tcp connection in the network. 

Secondly, this approach maintains the correctness and consistency of time-sensitive 

applications where the time required to communicate with the controller to update the 

states can be detrimental. Additionally, such a framework radically protects the 

controller from DoS attacks. Since switches do not have to notify the controller upon 

events of state updates, the controller is spared this responsibility and is protected 

against adversaries that attempt to forge packets to artificially exhaust the controller. 

In line with the ever-increasing demand for a faster high-performance data-

plane, research efforts continued to focus attention on augmenting the data-plane's 

capacity to handle more intelligent functionalities. More intelligence offloaded from the 

controller to the data plane means lower cost on performance due to less switch-

controller communication. 

This approach is at an advantage as long as it does not fundamentally sacrifice 

the security of the network. While it can be seen that this approach is not compliant with 

the spirit of SDN in general, i.e. Intelligent control-plane and dummy data-plane, 

offloading the state-management burden to the switches does not mean that the switches 

can now take decisions irrespective of the controller. The state-management structure is 

still programmed by the controller itself. On that account, the real decision maker is still 

the central controller, with its decisions formalized into data-plane processes [22]. 
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In [20], the authors pushed this approach a step further to include a basic 

firewall functionality as a policy table. Along with a state table, the policy table sets 

some extra rules for communication in the network. For instance, the controller can 

allow any communication between node A and node B if and only if node A initiates 

the communication. This is translated in the flow pipeline in the switch as follows: Each 

packet is matched against its inport, if the packet is coming from node A’s side, the 

state is updated to resemble an open connection. The metadata of each subsequent 

packet whether from node A or B is set to resemble an Allow state. When re-submitted 

to the policy table, this Allow state passes the policy test and is forwarded accordingly. 

However, if node A never sent a packet to node B, the state would have remained in a 

Deny state and any subsequent packet from node B would have been dropped by the 

policy table. 

In [21], the authors addressed the stateful OpenFlow approach for applications 

with requirements that extend beyond the local state-machines on the switches. They 

argued that a pure stateful firewall approach cannot make use of the controller potential 

which has a global view of the whole network, unless the controller regularly fetches all 

the OpenFlow statistics revealed by all the switches in the network - as described in the 

Collect, Detect, Protect security enhancement category. 

In an attempt to pursue a global connection tracking system, [21] proposed a 

state tracking framework, STATEMON, which comprises a global state table to keep 

records of all the active connections in the network and a state management table that 

controls the state transitions for every connection. Both tables, however, are hosted on 

the controller. Although the states are still operational locally on the switches, these 

states are only managed and updated by the controller. That is, whenever there is a 

state-changing packet, the packet is forwarded to the controller to keep track of this 
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event and update the local state on the switch. For that purpose, they augmented the 

OpenFlow protocol with OpenConnection protocol that helps the switch send the state-

changing packets to the controller accompanied with further signaling information. The 

OpenConnection table entries are only installed on the switches that are directly 

connected to the endpoints of the communication. Although this framework allows for a 

global stateful view of the network, the control-data layer interaction is still excessive 

and poses a variety of intrinsic risks on the network. Also, most of the processing 

burden is carried by specific switches in the network which creates a bottleneck in the 

data-plane. This type of frameworks attempts to avoid OpenFlow’s limitations through 

a two-tiered framework: A central intelligence that manages the states of the network, 

and a stateless data-plane for packet forwarding. It follows that such a framework is at 

an advantage for applications that are dependent on global network states and do not 

have real-time processing time restrictions. However, this will fold down into a 

dysfunctional framework for applications that require wire-speed forwarding of packets 

as it is intrinsically dependent on the remote decision maker, the controller. 

Additionally, the controller is at a high risk of DoS attacks especially that it is easy for 

an adversary to fingerprint the application in the data-plane to guess information about 

the flows and accordingly forge packets to exhaust the controller. 

Many more proposals proceeded in materializing the stateful data-plane 

framework on different levels, from on-switch state management to high-level 

controller APIs and compilers. In [25] for example, the authors proposed an abstract 

data-plane programing language, the P4 language and its corresponding compiler, that 

takes into account new header fields and in-switch registers which values persist, are 

matched against, and manipulated as packets traverse the OF-tables in the switch. As 

highlighted in [22], utilizing the in-switch registers and arrays for state-table generation 
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is being taken seriously by the Open Networking Foundation (ONF) to incorporate the 

stateful framework in the OpenFlow standard. [25]’s abstract model, however, is not 

restricted to OpenFlow switches but is data-plane independent. This means that P4 

programs can be mapped onto a various set of device types (OVS, FPGA, ...). 

Additionally, the P4 abstraction introduces a programmable packet parser [34] handy 

for analyzing and matching against new header fields. Moreover, as opposed to 

OpenFlow’s sequential processing of packets, While P4 allows for the programmability 

of parallel selection and processing of match/action rules, it does not address the issue 

of distributing this processing burden on switches other than the direct switches. 

Additionally, the extensive reliance on new headers in the network breaks the 

modularity of this framework and makes it extremely hard to integrate with other 

applications and modules. 

Another idea that addressed the programmability of stateful data-planes is found 

in [24]. In 2014, OpenState presented an extended FSM framework, a Mealy Machine, 

that comprises a four-tuple (S, I, O, T) programmability model. In this model, the S 

symbolizes the set of states, I is the set of inputs/events, O is the set of outputs/actions, 

and T stands for the state transition rules. Similar to the frameworks discussed before, 

these rules provide a mapping between pairs of [state,event] and pairs of [state,action]. 

The implementation of this framework consists of two tables. The first is the State Table 

which holds information about the current state of the application, and the second is the 

extended FSM (XFSM) table which describes the transitions. Whenever a packet is 

received, a lookup in the State Table is used to determine the state in which the packet 

is in. This state is appended in the OpenFlow Metadata of the packet. The XFSM table 

then uses the metadata to determine the specific rule it should match against and applies 
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the transition. The transition output includes updating the State Table with new states, 

and updating the packet fields before forwarding. 

Similar to OpenState and Fast, SDPA [23] is a stateful data-plane management 

scheme that uses state and state-transition tables. However, the actions are decoupled 

from the state-transition table and reside in a separate table. The significant difference is 

that this framework allows for the programmability of multiple stateful applications, 

with each application hosted in its own triplet of (state, state-management, action) 

tables. This is made possible by employing a “Forwarding Processor” (FP) that sends 

the first packet of a flow to the controller and receives table configuration information 

by which the FP initializes these tables for the specific application. This procedure 

underlines the controller’s thorough control and management of the applications being 

processed on the data-plane.  

While both OpenState and SDPA exhibit the drawbacks that exist in FAST in 

terms of being constrained to the direct switch, SDPA’s dependency on the controller to 

populate the states in the switches upon initial packet events leaves the controller easily 

permissible to DoS attacks through packet forgery. 

In [26], the authors proposed Stateful Network-Wide Abstractions for Packet 

Processing (SNAP), a programming language and a compiler that abstracts the data-

plane into one big switch. This abstraction treats local state variables as global variables 

in such a way that the programmer does not have to worry about where these variables 

actually reside in the data-plane while writing the network’s stateful program. SNAP’s 

compiler uses its optimization algorithms, based on Mixed Integer Linear Programming 

(MILP), to store these variables in specific switches in the data-plane ensuring that the 

packets will pass through these switches. This is a very powerful tool to avoid the 

constraints of only hosting the state variables on the direct switches to the hosts, as 
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appears in StateMon, OpenState, Fast, etc… Such a framework allows the utilization of 

more switches in the network to host the state variables. Not only this, but SNAP’s 

optimization algorithms can divide the state variables into several parts and distribute 

them across various switches provided that packets belonging to the same application 

instance can still traverse these switches in the required order to maintain a consistent 

update of the states of the application. In order to exchange state variables between 

switches along the path of the packet, SNAP utilizes special header fields. These header 

fields contain a dictionary of variables and their corresponding values which are used in 

the switches to match the states. 

One of the examples considered in [26] is the DNS-tunnel-detection. In this 

program, the compiler decides at first where the state variables will be placed in the 

network (decide which switch will host the variable) and then decides how packets 

should be routed to meet these variables. In this process, the compiler must ensure that 

the packets will pass through these switches in the correct order. This means that the 

compiler must have explicit information about the paths of packets in the network in 

order to correctly place the network variables in the switches. For example, the compiler 

must know that packets being initiated from an internal server will leave the network 

from a specific gateway following a specific path in the network. The compiler can then 

choose a switch on the path to host one of the network variables corresponding to this 

connection. For this reason, SNAP’s optimizer forces its own routing on the network. 

Accordingly, the firewall applications are directly coupled with the routing applications 

which violates the modularity of the proposed framework. This case becomes more 

complicated if load balancers are to be be employed in the network. If such path 

information is not clear to the controller, the compiler can only fold back to storing the 

global variables on the direct switches, ensuring route convergence onto the network 
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variables at the expense of giving away the ability to utilize the internal network 

switches for storing and processing the states. 

On the other hand, changes in network topology might necessitate a re-

compilation of the SNAP program to maintain the consistency of the state-variable 

placements in the network. Such cases will have detrimental implications on the state of 

the network whenever the route paths diverge from the switches carrying the state 

variables, which might happen when ports or switches are down. In such cases, all 

traffic in the network depending on variables in a particular switch will be dropped or 

misdiagnosed in the states of the network. This forces a major downtime on the network 

until the program is recompiled at the controller and rules are reinstalled in the network. 

Although SNAP does not implement fault-tolerance mechanisms, these problems are 

not inherent to SNAP but exist in other solutions that do not inherently employ state 

replication. Table 1 includes a summary of all the features exhibited by the stateful 

approaches (including ours). 

 



 
 

     25 

 

Table 1: Summary of Stateful SDN Data Plane Schemes 

Scheme Category State 

Storage 

State Updates data-

plane 

Utilization 

Cost aware 

distribution 

Modularity 

for path 

convergence 

Fault 

Tolerance 

mechanisms 

Fast [19] platform Hash 

table 

local Direct 

switch 

N//A N//A Exhibits 

single point 

of failure 

OpenState 

[24] 

platform Hash 

table + 

TCAM 

local Direct 

switch 

N//A N//A Exhibits 

single point 

of failure 

StateMon 

[21] 

framework CAM controller Direct 

switch 

N//A N//A Exhibits 

single point 

of failure 

SDPA [23] platform TCAM 

+ 

SRAM 

controller Direct 

switch 

N//A N//A Exhibits 

single point 

of failure 

P4 [25] Compiler and 

Programming 

Language 

RAM or 

TCAM 

According to 

implementation 

of application 

Direct 

switch 

N//A N//A Exhibits 

single  

point of 

failure 

SNAP [26] Framework Hash 

table or 

CAM 

local Distributed 

with 

limitations 

Optimization 

based on 

link costs 

Takes over 

the routing 

application 

 

Dictionaries 

in header 

fields 

Exhibits 

single point 

of failure 

 

Requires 

controller 

intervention. 

Involves 

recompilation 

SDFS (our 

approach) 

Framework CAM local distributed Optimization 

based on 

link costs 

and switch 

processing 

capacity 

Separate and 

pluggable 

Inherent 

maintenance 

of application 

correctness in 

the data-

plane 

 

As shown in Table 1, most of the frameworks in the literature rely on the direct 

switch to host the states in the data-plane (data-plane Utilization column). While some 

of them still depend on the controller to perform state-updates in the data-plane, others 

have localized these state-updates at the data-plane to minimize the time and 
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performance-exhaustive communication with the controller and accordingly secure the 

time-sensitive correctness of the application. Among the frameworks in the literature, 

only SNAP utilizes the indirect switches in the data-plane for a burden distribution of 

state updates at the expense of taking over the routing application in the network. 

However, due to the distribution of states in the data-plane based on the state variables, 

single points of failure still exist as switches are still strictly dependent on each other to 

consistently manage the state updates and failure of one switch, that hosts a state 

variable, to perform variable updates will result in the whole application behaving 

incorrectly. Upon such failure in the SNAP framework, a controller intervention is 

required to update the network involving recompilation and reoptimization at the 

controller which might not be convenient for time-sensitive applications and gives the 

attackers enough time to perform malicious jobs in the network. To address all the 

above issues, we propose SDFS, which has the following properties: (1) all state 

updates are done locally, (2) burden is distributed among switches in an optimal fashion 

based on mathematical formulations, (3) modularity is maintained, and (4) fault 

tolerance is achieved. In section 3, the details of SDFS are covered.  
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CHAPTER 3 

PROPOSED FRAMEWORK: A DISTRIBUTED SDN 

STATEFUL FIREWALL 

 

The literature behind stateful firewalls in SDN seems to have taken a long leap 

in the last few years. Although major progress in research has taken place, there is still 

much that must be done in order to perfect an efficient and reliable design. [26]’s SNAP 

took the SDN stateful firewall to a new level with a framework that abstracts the 

network into one big switch and offloads the processing burden of the network states 

from the controller to the switches. On the other hand, this framework still suffers from 

single points of failure and introduces constraints on the routing behavior of the network 

to satisfy the requirements of the stateful application in the data-plane. Additionally, it 

does not provide fault-tolerance mechanisms that are critical to maintain the behavior of 

the application in the data-plane in cases of failure in the network which gives an 

opportunity for the attackers to tamper with the network. 

In an attempt to create a complete scalable and reliable solution and to tackle 

issues such as the ones inherent in SNAP, we present SDFS, a new framework with the 

following properties: 

1. Abstracts the network into one big firewall at the management plane 

2. Uses an intelligent algorithm to distribute and balance the burden of stateful 

firewall processing over multiple switches in the network 

3. Accounts for weighted paths and network element capacities through a cost-

capacity-aware optimization. 

4. Relaxes the constraints on requiring path information in the network 
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5. Maintains modularity: independently plugged into the controller without 

disrupting other applications 

6. Inherently implements fault-tolerance mechanisms that bring forth an 

application with High Availability 

7. Yields a controllable stateful application in the data-plane with minimal 

controller intervention 

 

Approach: 

In order to accomplish the goals set for SDFS, many factors and constraints have 

to be considered. This section addresses the approach to each one of these 

considerations. Some of these considerations tackle the low level implementation of the 

states at the data-plane such as the storage (Section 3.1) and structure (Section 3.2) of 

the states. Section 3.3 addresses the traffic convergence constraints for the application 

in the network. These constraints are dependent on both the required application logic 

and the routing behavior in the network. Section 3.4 addresses the cost-capacity-aware 

optimization of the burden distribution in the data-plane. Section 3.5 addresses the 

framework designed to accomplish high availability of the application in the data-plane. 

Section 3.6 presents the mechanism employed to exchange tracking information 

between the network switches without the need to communicate with the controller. 

Section 3.7 presents an example implementation of a connection-tracking application 

that employs the discussed frameworks. Sections 3.8 and 3.9 address the modularity of 

the discussed frameworks and accordingly present relaxations on the constraints to 

attain modularity. 
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3.1 Storage of states at the data-plane 

State variables are data hosted on the data-plane switches that are persistent over 

multiple packets. These variables are fundamentally values that correspond to packet 

fields or constants. OpenFlow offers several efficient techniques to achieve such 

persistence of information. One approach is to represent the state variables by flow 

entries that are learnt reactively. This is because flow entries can hold persistent 

information in their match and action sections such as specific values of packet fields 

and packet metadata. An example of this is the OF-MAC learner where a flow is learnt 

whenever a new mac-address is found in the network which allows the switches to 

automatically respond to ARP requests without consulting the controller. In this case, 

the new flow holds the required information of the state in its match and action sections:  

match on ip-address, and respond with mac-address of the found host. 

Another mechanism is to employ the arrays of registers that are already 

supported in emerging software switches such as OpenVSwitch, where eight, 32-bit 

registers are provided. The values in these registers can be matched against once the 

packet is processed. Additionally, they are updatable using actions that fall neatly in the 

OF match-action framework [22]. In this technique, packet fields can still be 

represented in the registers as hash values. Then, whenever a switch needs to match a 

packet against a state that holds specific header values, say [SourcePort - 

DestinationPort] pair, it computes a hash value from the arriving packet’s fields and 

matches it against the corresponding register. 

Both of these techniques are fairly simple to implement. Although they can be 

extremely low level operations, many solutions, such as [25]’s P4 compiler and 

language, are already provided to abstract this procedure into clean APIs. 
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3.2 Structure of states at the data-plane 

State instances in the data-plane can be comprised of a single state variable- 

where the variable represents the whole state, or multiple variables where the 

combination of these variables represents the state. In the case of a multivariable state, 

the state is really an abstraction of multiple low level single-variable states that assumes 

atomic procedures with regards to these low level states. An example of multi-variable 

states is that provided by SNAP as DNS Tunnel Detection. The abstract high level state 

holds two pieces of information: (i) The resolved ip-addresses in the network by client-

x, and (ii) a counter that tracks the number of resolved ip-addresses that client-x does 

not use. Each one of these pieces is represented by an array on the data-plane. These 

arrays are updated consistently as packets traverse the network and together represent 

the global state of the network. 

As discussed in the literature, [26]’s state distribution framework attempts to 

distribute the state variables over the network switches. Accordingly, there arises the 

burden to maintain atomic consistency of the low level states that spans multiple 

switches. Although it is a great attempt to provide a margin for burden distribution over 

the network switches, it is rather deviant from the end result. This is because 

distributing the state variables over multiple switches introduces additional constraints 

over the network in terms of atomic consistency and packet path convergence, as 

elaborated upon in section 3.3, as well as additional communication costs where the 

packets have to carry dictionaries of information in their header fields to exchange state 

data [26]. 
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Figure 6: Unidirectional Variable Relationship Constraint 

Another constraint that is introduced by distributing the state into state variables 

instead of state-instances is a commitment to unidirectional conditional variable 

relationship. As shown in Figure 6 above, we employ the same network in two 

examples of the DNS Tunnel Detection application where the state is distributed into 

two variables according to the SNAP framework: contact and resolved. In these 

examples, we host the contact variable at switch:5 and the resolved variable at 

switch:4. 

Figure 6 (a) illustrates the network under the application as described by SNAP. 

In this example, as the DNS response for (google.com), for instance, arrives from the 

complicit DNS server (yellow path) to the hosts, say host:green, when the packet arrives 

at switch:5, contact[green][8.8.8.8] is incremented and forwarded to switch:4 where 

resolved[green][8.8.8.8] is assigned as True. Subsequently, as host:green contacts 

8.8.8.8 (blue path), when the packet arrives at switch:4, the resolved variable is 

appended in the header as a dictionary and then forwarded to switch:5 which then 
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checks the resolved variables in the dictionary and accordingly makes the decision 

whether to decrement contact. 

The problem however arises as described in Figure 6 (b) where the application is 

slightly modified to have a conditional on the resolved variable in the yellow path 

direction to change the value of contact that is hosted on switch:5. In this case, when 

the packet arrives at switch:5, the resolved variable is not yet available in the header of 

the packet to perform the conditional on. This is because the resolved variable is hosted 

on switch:4 which falls after switch:5 in the yellow path direction. Thus, for such 

applications, the engine fails to distribute the burden upon the switches and regresses 

back to hosting all the variables on the same switch. 

SDFS casts aside these unnecessarily introduced constraints by ensuring that 

atomic state variables be hosted on the same switch, and the burden distribution is a 

cost-capacity-aware optimization at the level of state instances as a whole rather than 

state variables. As such, in contrast to dividing the state, in the DNS Tunnel Detection 

example, into two variables hosted on different switches (array for resolved ip-

addresses by the clients and another array to keep track of the resolved ip-addresses that 

are not used by the clients), SDFS divides the state into state-instances hosted at 

different switches where each instance covers all the variables required for one client. 

 

3.3 Path Convergence Constraints 

The problem of path convergence onto the state instances arises as an inherent 

constraint to any distributed stateful data-plane solution. No such solution can be correct 

if it does not guarantee the correctness of states in the data-plane. To accomplish 

correctness of states in the data-plane, all state-updating packets must pass through the 

switch that hosts the corresponding state instance. Fundamentally, the convergence of 
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packets on their corresponding state-hosting switch is directly coupled with the routing 

application and procedures employed in the network. 

Assume for example we want to host states at the data-plane for a port-knocking 

application. For the sake of demonstration, assume the network in Figure 7 below where 

host:orange is required to knock a sequence of ports in the network to access 

server:blue. 

 

Figure 7: Port-knocking example for convergence constraints 

In this example, if the port knocking state instance hosted on one of the switches 

is to maintain its correctness, packets that are necessary for updating the state must 

converge on this switch. For this topology, it is easy to see that switch:1 and switch:4 

satisfy this requirement, since all packets originating from host:orange destined to 

server:blue will pass through switches 1&4. Accordingly, if the state instance is hosted 

on either switch:1 or switch:4, we can ensure that all packets carrying the port knocking 

sequence will converge on the state-hosting switch. 

Additionally, if we were provided with the routing information of the network, 

we can then realize which path the packet takes from host:orange to server:blue. If 
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packets take the upper path, then switch:3 can be a convergent switch. If packets take 

the lower path, then switch:2 can be a convergent switch. 

Some cases can arise where packets necessary for the port knocking application 

converge neither on switch:2 nor switch:3. If we introduce a Layer-4 load balancer at 

switch:1, then a proportion of the packets will take the upper path, while others will take 

the lower path. Since a layer-4 load balancer diverges the packets using packet fields up 

to layer-4, then we cannot be sure that all the packets carrying the port sequence will go 

through the same path, and thus we cannot consider that switch:2 or switch:3 can be 

convergent switches if such a routing behavior is employed in the network. 

Two main approaches can be pointed out to address this issue, each having its 

own advantages and disadvantages: 

 

Path Information Extraction 

In the first approach, the controller extracts network paths from the routing 

application or from a network monitoring application. The controller then projects these 

paths onto the data-plane state requirements in order to arrive at a set of switches that 

are qualified to be convergence points for each state instance. This approach maintains 

the modularity of the application with regards to routing since it does not override the 

behavior of the routing application at a fundamental level. However, the firewall 

application remains limited to what is offered by the routing application. In other words, 

the convergence points in the network might not be optimally established and 

distributed through the network. 
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Network Path Manipulation 

In the second approach, the firewall module actually overrides the routing 

module in the network where an optimizer is employed to draw the routing behavior of 

the network and arrives at an efficient distribution of convergence points for each state 

instance. Such an approach is adopted in SNAP using the MILP optimizer as discussed 

previously. While this approach gives full control over the network routing behavior, it 

fails to subscribe as a pluggable modular framework.  

In this section, we will study the convergence requirements of firewall 

applications with respect to the routing behavior in the network. Particularly, we will 

study two properties of the data-plane states. The first property corresponds to the 

state’s requisites on the packet direction, and the second property corresponds to the 

state’s requisites on the packet fields. Figure 8 summarizes the convergence constraints 

and accordingly presents the decision tree to arrive at the optimization framework that 

either meets or relaxes these constraints.  
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Figure 8: Summary on convergence requirements and optimization decisions 
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3.3.1 Requisites on packet direction: 

The literature covers a wide variety of firewall applications. In some of these 

applications the states are confined to a source-destination pair. Accordingly, these 

states can either require bidirectional packet information, such as connection-tracking 

and FTP-monitoring, while others only require unidirectional packet information, such 

as port-knocking. However, other types of applications might not be restricted to a pair 

of source-destination, but are multi-directional. An example of these applications is the 

DNS-Tunnel-Detection addressed in SNAP where three hosts are included in the plot: 

the original host initiating the DNS request, the DNS server that responds to the request, 

the host that the request was about and later to be contacted.  

States that requisite bidirectional packet information impose more constraints on 

the convergence points in the network. The reason behind this is that the choice of 

convergence points (the state-hosting switches) must ensure that the flow of packets in 

the other direction (response from destination to source) will pass through the 

convergence point.  
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Figure 9: Connection-tracking example for convergence constraints 

For demonstration purposes, consider the network in Figure 9 above where we 

employ a connection-tracking application between host:orange and host:blue. Even if 

we assume that all traffic from host:orange to host:blue converges on switch:3 by taking 

the upper path (switch:1 -> switch:3 -> switch:4), it is not granted that switch:3 is a 

viable convergent switch on which we can host the state of the connection tracking 

application between the two hosts. This is because the connection tracking state instance 

hosted at a switch must be able to monitor the traffic in the other direction and 

accordingly “allow” the traffic back to the protected host. Consequently, if the traffic 

from host:blue to host:orange takes the lower path (switch:4 -> switch:2 -> switch:1), 

switch:3 cannot be considered a convergent switch. Thus we will have to look for a 

different switch that satisfies these conditions, which in this case can be either switch:1 

or switch:4. 
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Symmetric Bidirectional Paths: 

This constraint, however, can be relaxed in networks that employ symmetric 

routing where the response packet takes the inverse path passing through the same 

switches back to the source. L3 symmetric routes, where routing decisions are based on 

[Src-Ip, Dst-Ip] pairs, are easy to implement in networks. On the other hand, 

introducing L4 load-balancing can disrupt route symmetry. Packets can take a different 

route back to the source. However, in a controlled routing environment, it is possible to 

maintain symmetric routes in the network while employing L4 Load balancers (or any 

kind of load balancers), by reactively populating the reverse paths in the network with a 

simple symmetric routing module that sits on top of the default routing module 

employing load balancing. This module configures the switches with one extra learning 

flow that behaves as the MAC-learner: Upon the initial arrival of a packet at the switch, 

a new flow is learnt to forward packets with the flipped L4 header to the inport. 

Subsequently, the response packet will match against this flow, given a higher priority, 

and will follow the inverse path of the request packet. 

As summarized in Figure 8, stateful applications that requisite unidirectional 

flow of packets directly pass the packet direction constraints. These constraints, 

however, are not directly met for applications that requisite bidirectional and multi-

directional flow of packets. If routing controllability is exposed to the stateful 

application, then this application can manipulate the paths in the network accordingly in 

order to meet the packet direction constraints. However, if path manipulation is not 

granted, then only if the network inherently employs symmetric routing the 

bidirectional information constraints are met. Otherwise, these constraints cannot be 

met and the application cannot be implemented. 
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3.3.2 Requisites on packet fields: 

These requisites cover the packet fields that are involved in the state variables. A 

connection-tracking state-instance, for example, stores information about the 

established connections in the network. As such, the corresponding source and 

destination addresses need to be extracted from the packet headers and persistently 

stored and matched against in the switches over multiple packets. 

The required packet field information in a state-instance fall into two categories. 

(i) those that are constant relative to the state-instance, and (ii) those that the state 

instance sweeps for. If we consider the port-knocking example mentioned above, this 

can be translated into: for each Source-Ip (host-ip) communicating with destination-ip 

(server-ip), track all destination-ports (knocking ports). In this case, each [source-ip, 

destination-ip] pair corresponds to a single state-instance (category i), while every 

particular state-instance tracks the different destination ports (category ii). For the state-

instance in the example, its category (i) fields comprise the ip-address of host:orange 

and the ip-address of server:blue, while its category (ii) fields comprise the set of 

destination ports that host:orange is sequencing. The importance of this classification 

arises as we discuss possibilities to relax the constraints for convergence of packets 

upon the state-hosting switches. 

 

All-Convergent Networks 

There are cases in which these constraints can be inherently met in the network, 

in such a way that the network switches are all-convergent with respect to the state-

instances. Such conditions can be formalized as follows: 

If category (i) required packet fields in a state-instance strictly include all the 

packet fields by which the routing decision is made, then all of the switches that fall 
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onto the path of a packet are convergent with respect to all the state-instances in the 

network, provided that the requisites on the path direction are met. 

Take for example a network where packets are routed based on their L3 header 

data, Source-Ip and Destination-Ip addresses. If we want to employ a stateful 

application at the data-plane that tracks all source-ports used for each combination of 

Source-Ip and Destination-Ip, then we do not have to worry about the convergence of 

the packets at the switches. This is because we can be sure that all packets with the 

same Source-Ip and Destination-Ip will follow the same path in the network. And thus, 

information about the Source-ports used for each particular combination will traverse 

the same set of switches on the path. Accordingly, any switch on this path can be a 

viable convergence point on which we can host the corresponding state-instance. In this 

example, [Source-Ip, Destination-Ip] packet field requirements in the state are category 

(i) requirements, and this set strictly includes the packet fields used in the routing 

decision in the network: [Source-Ip, Destination-Ip]. We should note here that although 

packets are not routed based on the Source-Ip, the starting point of the path can be 

directly mapped to the Source-Ip. Thus if we want to follow the path of the packet based 

on the routing decisions, we need to include the source-ip as the starting point. 

A network that employs L3 routing can also be all-convergent for the port-

knocking and layer-4 connection-tracking applications where category (i) fields are 

[Source-Ip, Destination-Ip] and [Source-Ip, Destination-Ip, Source-Port, Destination-

Port] respectively. The latter, however, necessitates that the requisites on packet 

direction are met, because connection-tracking states entail bidirectional flow of packet 

information. 

All convergent networks are not restricted to simple layer-3 routing. A network 

that employs layer-4 load balancing for example, provided routes are symmetric, can 
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also be all convergent on certain applications including layer-4 connection-tracking 

where the category (i) packet field requirements of the application strictly include all the 

packet fields involved in the network routing decision: [Source-Ip, Destination-Ip, 

Source-Port, Destination-Port]. 

Table 2 below provides more examples of applications on the topic of 

convergence with respect to the routing behavior employed in the network: 

 

Table 2: All-convergent application examples according to routing behavior 

 Application 

Routing Behavior Port-Knocking Conn-Track FTP Monitoring 

Symmetric L3 All-Convergent All-Convergent All-Convergent 

Non-Symmetric L3 All-Convergent   

Symmetric L4 Load-

Balancing 

 All-Convergent  

Non-Symmetric L4 Load 

Balancing 

   

 

In the next section, we will present a cost-capacity-aware distribution of the 

processing burden of states on the data-plane. The optimization involved in deciding on 

which devices to place the state-instances accounts for the path weights in the network 

along with the capacities of the devices. Additionally, the algorithms employed 

inherently implement fault tolerance mechanisms to sustain high availability of the 

distributed application. 

Knowing that this framework requires explicit information about packet paths in 

the network to feed the optimization framework, we will present, in the packet path 

oblivious section (Section 3.9), a relaxation of this constraint where we maintain a fair 



 
 

     43 

 

burden distribution in the network along with the inherent high availability of the 

application in the data-plane, provided knowledge about the network convergence 

points. 

 

3.4 Cost & capacity-aware distribution of the state processing burden 

The burden distribution of the state processing at the data-plane is scarcely 

addressed in the literature. Besides SNAP, the frameworks proposed on data-plane state 

processing all rely on the direct switch framework. Although such an approach offers 

state consistency in the network elements, it limits the scalability of applications, 

subjects critical switches in the network to memory-exhaustion attacks, and exposes the 

network to single points of failure scenarios. 

For that reason, state processing in the network should be distributed between 

SDN devices.  Primarily, the distributed processing of states should enhance the overall 

network performance in comparison to state processing restricted on the direct switch. 

On the other hand, such a framework should fairly distribute the processing burden. In 

other words, the framework should attend to the traffic costs in the network along with 

its device processing capacities. On this account, the distribution should be assessed by 

clear metrics and criteria. This section will address these issues through a connection-

tracking application example. 

 

Direct Switch Framework for Connection Tracking: 

The graph below represents a network topology in which the circles represent 

SDN switches and the PCs represent hosts. Connection tracking is applied for the 

host:red on its direct switch. That is, if and only if host:red initiated a connection with 
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host:green, host:green can communicate with host:red in the same connection session. 

Same thing applies for host:orange when host:red initiates a connection with it. 

 

 

Figure 10: Stateful connection tracking at the direct switch 

With the direct switch (switch:1) maintaining the connection tracking, it is the 

responsibility of switch:1 to allow/deny traffic coming to host:red. This configuration of 

the network is robust and reliable unless the number of connections initiated by host:red 

explodes, in which case, switch:1 will be overloaded with a massive amount of tracking 

computation upon every packet entering its flow tables and will result in a bottleneck in 

the network. 
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Distributed Firewall Framework for Connection Tracking: 

The bottleneck in the above scenario can be avoided by utilizing a distributed 

firewall framework to balance the connection tracking burden upon all the network 

switches. 

Here, we can recognize two paths in the topology originating from host:red. 

- Path:1 = host:red -> switch:1 -> switch:4 -> host:green 

- Path:2 = host:red -> switch:1 -> switch:2 -> switch:3 -> host:orange 

 

Figure 11: Stateful distributed connection tracking in the data-plane 

If we assume an equal number of connections to both host:green and 

host:orange, say 50 connections per host (100 in total), we can then deduce from this 

simplistic scenario that an optimal distribution of connection tracking between switches 

will result in each switch handling 25 connections. 
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Accordingly, switch:4 handles half of the connections destined to host:green (25 

connections) and switch:1 handles the other half (25 connections). While switch:1 and 

switch:4 do not handle any of the connections destined to host:orange, switch:2 and 

switch:3 will then equally share the responsibility of tracking the connections destined 

to host:orange (25 connections each). 

 

3.4.1 The Tracking Metric 

The tracking metric is a measurement of the state processing weight each switch 

is responsible for upon distributing the state processing burden among the switches. 

These weights on the switches are computed to provide a balanced burden of processing 

between the switches on the path of a certain connection. The processing in this 

example corresponds to the connection tracking state updates. 

Figure 12: Connection-tracking example with load-balancing for distributed states in the 

data-plane 
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In order to illustrate this problem, we will use Figure 12 above that represents a 

little more of a complicated scenario in which the network employs some symmetric 

load-balancing procedures. The load-balancer at switch:1 assigns a load-weight 1:2 for 

the upper and lower outports respectively. If the network assumes one big firewall to 

track connections initiated from host:red, the latter can take multiple paths to reach 

host:orange and host:green as described in Figure 12 where each path has its 

corresponding path weight (Pp) as a percentage out of all the processing weight 

employed in the network. 

Hence, whenever we refer to paths from now on, we mean convergence paths. If 

the application is not convergent on a specific switch, then this switch is simply not 

included in the convergence paths and is disregarded in the optimization. For 

connection-tracking in our case, we assume that the application is convergent on all 

switches. 

We denote by tpn,i the tracking weight per path assigned to switch:n pertaining 

to path:i. 

Since path:2 does not pass through switch:5, tp5,2 is zero. 

Note: The tracking weight is not an explicit measurement of the number of 

connections a switch is tracking per path, but a measurement of its ratio with respect to 

the path weight. For example, if we assign a path weight of 1000 to be equally divided 

between two switches, then each switch is assigned a weight of 500. Similarly, the path 

weight itself is not an explicit measurement of the number of connections that traverse 

a particular path, but a measurement of its ratio with respect to the total traffic tracking 

weight traversing the whole network. This total traffic tracking weight can be an 

arbitrary number such as 10000. Since the amount of connections that takes place in a 

network cannot be predicted, we can represent the total traffic tracking weight as an 
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amount of tracking burden in the network per a unit time irrespective of the magnitude 

this unit time. Since what we want to arrive at is a relational metric for every switch per 

every path representing the burden percentage taken by this switch out of the total 

tracking burden (weight) of the path, the actual magnitude of this time unit is as 

irrelevant as the actual number of total connections that will take place in the network. 

The total tracking weight carried by a switch, denoted by Tn is then the sum of 

the tracking weights per path for all paths on this particular switch. 

For example T1 = tp1,1 + tp1,2 + tp1,3 + tp1,4 

Put another way, the tracking burden on switch:1 is the sum of the burden 

assigned to switch:1 for each of the paths 1,2,3,4. 

Hence the definition: 

where n is the switch number, i is the path number, and I is 

the total number of paths. 

 

3.4.2 Optimization of the Tracking Values 

In order to achieve a distributed burden, we employ the least squares method 

subject to certain path constraints. 

3.4.2.1 Objective Function 

Our objective function in this optimization is as follows: 

where n is the switch number, N is the total 

number of switches, and Tn is the tracking burden for switch n. 

Note: 

 = TTW, where the left expression of the equation is the sum of the 

tracked connections at every switch and TTW is a constant representing the number of 

connections to be tracked in the whole network (total traffic tracking weight) 
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In order to demonstrate how this objective function produces a distributed 

burden of tracking for every switch, we use the Lagrange Multipliers procedure to show 

that the solution will lead to exactly equal tracking weight for every switch. 

, where X is the [T1 ...TN ] vector and Q=1: 1x1 positive definite matrix. 

 

 

Lagrange:  

 

Partial derivatives are zero at minimum:  

 

Conclusion: 

is a constant, then plugging in the equations gives: = Since the value of  

= … =  

Thus, prior to introducing the path constraints on the network, the objective 

function inherently drives the solution into a state of equal burden on all switches. 

 

A Change in Variables: 

It does not suffice, however, to find the overall tracking weight per switch as 

represented by Tn. For the program to work properly, it must calculate the required 

tracking weight resulting from each path on each switch. The decision whether to track 
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a connection is tightly dependent on which path the packet is taking through the 

network. And thus a single value that represents the sum of the tracking weights for all 

paths on a switch will yield an inconsistent optimization result in case there was a high 

variance in the probabilities of paths converging at a switch. 

In order to introduce the path constraints, the objective function can further be 

dissected as follows to accommodate for the path constraints on the variables: 

Thus, the objective function can be written as: 

 where n is the switch number, N is the 

total number of switches, i is the path number, and I is the total number of paths. 

In this representation, the solver will try to find the value of each tracking 

weight for every switch and for every path. This does not affect the result of the analysis 

above that showed that the objective function yields a distributed burden. The new 

objective function still drives the solution into an equal distribution of the sum of 

tracking weights for every path on every switch, which is essentially the goal of our 

optimization. However, it can now become consistent with the distribution of paths in 

the network, and optimized accordingly as we take the constraints in the next section 

into consideration. 
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3.4.2.2 Constraints 

This optimization is subject to the following set of constraints: 

 

3.4.2.3 Optimization Outcome 

Upon the termination of the optimization computation, the system will yield 

values for each tpn,i. As they represent the state processing weight for each switch, these 

values can then be used by the application to distribute the state variables among the 

network switches. 

 

Normalization 

The resulting values of tpn,i at each iteration are scaled according to the weights 

or probabilities of the paths that were chosen in the network, Ppi . In order to arrive at a 

common scale, these values are normalized according to the below formula: 

 

 

3.4.3 Non-Convex Quadratic optimization 

Although the new representation opened the way to introduce the path 

constraints on the objective function, it transformed the objective function into a non-

convex function. This is because the optimal outcome of the optimization can now be 

satisfied through many solutions, instead of a single solution: Different combinations of 
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the values of the tracking weights of each path tpn,i on a single switch can result in the 

same overall tracking weight on the switch Tn. Put differently, the overall tracking 

weights on the switches can be driven to an equal value with different combinations of 

the values of the tracking weight per path as can be seen in the definition: 

 

This means that this problem will have many solutions where the constraints on 

the objective function stated in section 3.4.2 cannot restrict the range of possibilities 

into a single solution, which might be the case for example when two paths converge in 

two switches, in which different combinations of the burden can be taken by the two 

switches together. In such cases, although all of the existing solutions are optimal and 

equally accepted, the existence of more than one solution means that the problem itself 

remains a non-convex problem, and convex optimization solvers that require a positive 

definite (invertible) matrix cannot be employed in this case. 

Then, what is required is a solver that can solve quadratic non-convex 

optimization problems without requiring an invertible hessian of the objective function. 

The following algorithm describes a constrained steepest descent that is adapted to this 

sort of problems. 
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Input: 

- path_weights: Array of size P 

Where path_weights[p] is the weight of path p in the network 

 
- network_nariables: NxP matrix 

Where network_variables[n,p] = TTW if path p passes through switch n, and 0 otherwise 

 
Constrained Steepest Descent (network_Variables, path_weights): 

- normalize network_variables 
- While loss > accepted_error # as long as we can descend 

- calculate gradient 

- old_obj_value = eval(network_variables) 
- s =1 (initial step_dividend) 

- Backtrack: while step_dividend<max_dividend 

- step = step - grad/s 
- update: network_variables = network_variables - step 

- if network_variables contains negative element, continue to backtrack (stay compliant with 

constraint-(2)) 

- project network_variables on constraint-(1) 

- rectify network_variables to comply with constraint-(3) and constraint-(4) 

- normalize network_variables to comply with constraint-(1) 
- new_obj_value = eval(network_variables) 

- loss = old_obj_value - new_obj_value 
- s = s*2 (update step_dividend) 

- If loss<0  # going up! 

                  - Continue backtracking 
- Else 

                  - break 

 

output: 

Network_variables optimized for distributed burden 

 

In each iteration, we descend on the gradient of objective function. The new 

values after each step are then projected onto the path constraints (constraint-1). But 

since the projection destroys the compliance with constraint-3 (network_variables[n,p] 

= 0) , the values are then rectified to maintain compliance with constraint-3 and 

constraint-4. Moreover, the rectification procedure introduces a small divergence from 

constraint-1, which is resolved by a normalization procedure that meets constraints 1, 3, 

and 4. Constraint-2 is constantly maintained through the backtracking procedure. 

 

Complexity Analysis 

To address the slow convergence of the steepest descent method, we present an 

analysis of the rate of convergence of the employed method at its worst case. This 

analysis comprises two components. The first component addresses the number of 
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iterations required to attain convergence. The second component addresses the 

computational complexity for each iteration in terms of the number of variables to 

optimize (number of switches X number of paths). 

For a minimization procedure, this computation process halts after iteration k 

when the loss ≤ accepted error (𝜺). 

Here loss = f(xk) - f(xk+1) where f(xk+1) is attained by the following descent 

formula: 

f(xk+1) = f(xk - s*gk) where gk = ∇xf(xk) for s ≥ 0. 

As presented in [36], for general non-convex optimization functions, the number 

of iterations required to attain an iterate xk for arbitrarily small 𝜺 is O(𝜺-2). 

On the other hand, the complexity of each of the utilized computations: 

calculating the value of the gradient, projecting on the constraints, rectifying and 

normalizing, inside each iteration is O(N*P) where N is the number of switches and P is 

the number of paths. However, calculating the value of the objective function at each 

iteration involves the multiplication XTX, where X is a matrix of size NxP, which adds 

up to O(P2N). 

Thus it follows that the overall complexity of the optimization algorithm is 

O(P2*N*𝜺-2). 

 

Burden Distribution Results for Connection-Tracking Example: 

Referring to Figure 12 where the load balancer at switch:1 outputs ⅓ of the 

traffic from host:red in the upper path and ⅔ of the traffic from host:red in the lower 

path, we will assume that the total traffic tracking weight in the network is 600. This 

number refers to the total amount of connections being initiated from the protected host 
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in the network (host:red) per a unit time. We will also assume that the connections 

initiated from host:red are divided equally to host:orange and host:green for simplicity. 

Accordingly, the load balancer will establish the path weights as: 

Path:1 = 100, path:2 = 200, path:3 = 100, path:4 = 200. Again, these path 

weights only represent the ratio of the connections in the network traversing a certain 

path with respect to the total weight of connections being initiated in the network. For 

example, connections traversing path:1 are ⅙ of the total connections in the network 

(initiated from the only protected host, host:red). 

Applying the burden distribution optimization framework on the load-balanced 

network provided previously, without capacity constraints, will produce the following 

results (rounded): 

 



 
 

     56 

 

Table 3: Optimal burden distribution results according to path explicit optimization 

method 

Processing Burden path:1 path:2 path:3 path:4 Total Processing/ switch 

Switch:1 5.2 18 23.2 28.5 75 

Switch:2 - 27.4 - 47.6 75 

Switch:3 - 27.4 - 47.6 75 

Switch:4 - 27.4 - 47.6 75 

Switch:5 21.5 - 53.5 - 75 

Switch:6 5.2 18 23.2 28.5 75 

Switch:7 34 41 - - 75 

Switch:8 34 41 - - 75 

Total path weight 100 200 100 200 600 

 

Looking at the results, it should not be surprising that the total processing 

burdens for all of the switches are equal since this is the outcome of an optimal 

distribution of burden among the switches. 

To demonstrate a scenario that involves capacity constraints on the switches, we 

will assume the network with the same path distribution and we introduce capacity 

constraints as below: 

- Max capacity at switch:1 = 40 

- Max capacity at switch:3 = 60 

- Max capacity at switch:8 = 70 

- Other switches are unconstrained in capacity. 
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Table 4: Optimal burden distribution results with capacity constraints according to path 

explicit optimization method 

Processing Burden path:1 path:2 path:3 path:4 Total Processing/ switch 

Switch:1 7.5 12.808 7.20 12.486 40 

Switch:2 - 28.826 - 57.168 86 

Switch:3 - 23.325 - 36.674 60 

Switch:4 - 28.826 - 57.168 86 

Switch:5 22.067 - 63.935 - 86 

Switch:6 2.011 18.62 28.862 36.502 86 

Switch:7 37.708 48.302 - - 86 

Switch:8 30.709 39.290 - - 70 

Total path weight 100 200 100 200 600 

 

3.5 High availability of the application at the data-plane 

The global view and manageability of the SDN controller allows it to detect 

violations in the network such as device downtime, inconsistent flows, and attack 

events. Consequently, the controller intervenes to restore the network into a stable state 

in accordance with the purpose of its applications. This intervention is constrained by 

the processing and communication time requirements and thus cannot be handled at 

wire speed. This might work well for applications that do not require immediate 

rectification. For applications that do, however, such approach is useless and can 

consequently cripple the availability of the whole service in the network. For example, 

inconsistent flows in the network can affect connections that are being established in the 

network. This gives a huge opportunity for adversaries to exploit the network with MiM 

attacks or gaining unauthorized access [21]. 
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At this point, one might want to consider an intelligent data-plane packet-speed 

rectification of such scenarios that does not rely on the controller. Such a consideration 

falls easily within its own restrictions: 

- The data-plane devices do not have a global view of the network. This limits 

their ability to detect such cases of inconsistency in the network. 

- Even when it is possible to detect these cases in the data-plane, it is a 

tremendously tedious task for the network elements to reprogram themselves 

in a globally consistent way to remedy these inconsistencies. 

For this reason, the best option for data-plane distributed firewall applications is 

to inherently employ high-availability techniques. In other words, in case of an attack or 

device downtime, the application should be able to automatically maintain the service in 

the network as a whole. If the network is to be viewed, fundamentally, as one big 

firewall, this should also manifest in the data-plane’s ability to assume this framework. 

As such, a device downtime must not affect the correctness of the distributed states in 

the network, or at least, have a minimal effect on the availability of the service. 

In contrast to SNAP, which provides an abstraction of the network as one big 

switch at the management-plane, the framework proposed here not only provides this 

abstraction, but also offers a high availability of the network at the data-plane as one big 

switch. In SNAP, if state distribution is to be employed, variables that correspond to 

state instances are distributed between several switches [26] and communicated on the 

path through special dictionaries on header fields. Hence, if one of the switches is 

attacked, the state variables that are hosted on this switch will be lost, which will have a 

detrimental effect on the correctness of all state instances in the network, even those at 

the switches that were not attacked, leaving the whole application dysfunctional.  
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Figure 13: SNAP vs SDFS: Distribution of states and availability of the stateful 

application under healthy network conditions and after attack conditions 

In order to demonstrate this behavior in comparison to our proposal, we will 

consider the scenarios in Figure 13. All the networks in Figure 13 (a, b, c, d) correspond 

to the same network. Scenarios (a) and (b) represent the healthy network scenario for 

SNAP and our proposed framework (SDFS) respectively while (c) and (d) represent the 

network directly after an attack on switch:2 for SNAP and SDFS respectively. 

The first difference to be highlighted, between SNAP and SDFS, is the structure 

of the distributed state itself. As mentioned in section 5.2 (Structure of States in the 
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Data-plane), SNAP state distribution relies on distributing the state variables between 

the switches in contrast to distributing state instances in SDFS. As shown in Figure 13, 

SNAP hosts the red variables of the state in switch:1, the green variables of the state in 

switch:2, and the blue variables of the state in switch:3. Whereas SDFS distributes 

consistent state instances with their required variables on a single switch making each 

state-instance both atomic and self-sufficient. As such, state-instance:1 is hosted on 

switch:1, state-instance:2 is hosted on switch:2, and state-instance:3 is hosted on 

switch:3. It is very important to note here that a state requires all its variables to be 

accessed and updated consistently in the network for the application to behave correctly. 

The second difference to be highlighted here is the cumulative structure of the state 

instances in SDFS, where state-instance:2 subsumes state-instance:1, and similarly 

state-instance:3 subsumes both state-instance:1 and state-instance:2. 

In the healthy network environment, the burden on computation is distributed 

equally in the network between the three switches. If we assume for SNAP that the 

computation required for variable updates is equal between the red,green, and blue 

variables, then each switch is taking ⅓ of the burden to process packets in the network. 

Also, in SDFS, each switch handles its assigned state instance which is also ⅓ of the 

burden to process packets in the network. 

Upon the failure of a switch to handle state updates, resulting from a successful 

attack, for example, this story changes drastically between the two approaches. In the 

SNAP scenario after the attack- scenario (c)- the switch hosting the green variables is 

down. A fast-failover mechanism on switch:1 will reroute the traffic through the 

redundant switch- switch:4- destined to host:orange. When the traffic arrives at switch:3 

from switch:4, it falls inconsistently with the state updates since the green variables are 
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missing. Accordingly, all traffic from host:blue to host:orange will not be consistent 

with the application’s intended behavior. 

On the other hand, upon a successful attack on switch:2 in the SDFS framework- 

scenario (d)- traffic that was initially being process through state-instance:1 and state-

instance:3 is not affected since these state-instances are still intact and consistent at 

switch:1 and switch:3. Not only the already established (through state-instances 1&3) 

connections remain intact, but also future traffic that falls in these state-instances remain 

intact too. Regarding traffic (or connections) that were being tracked at switch:2, these 

connections will be lost. However, future connections that fall within state-instance:2 

will now be taken by switch:3. Since state-instance:3 subsumes state-instance:2, traffic 

“intended” for state-instance:2 that arrives at switch:3 unprocessed, will be inherently 

processed by state-instance:3. In this scenario, switch:3 will be processing ⅔ of the 

traffic in the network. Although the burden is skewed, however the point is to maintain 

the correctness of the application, for all future connections at least, and give time for 

the controller to respond and reconfigure the network by distributing the burden through 

switches 1,4, and 3. 

This said, in contrast to SNAP, instead of arriving at a scenario where the whole 

network is down, we arrive at a scenario where only those connections that were already 

being processed at the switch:2 are lost, but all remaining connections (already 

established and future connections) maintain their correct behavior. 

What we promise is the network’s ability to seamlessly conform to network 

changes. Upon network disruptions, the degradation effect on the application’s 

performance should be relative to the amount of the processing power lost, for example: 

the number of dead switches. In that sense, no states in the network will be sacrificed, 

other than those that were hosted at the dead switch itself. This loss will have no effect 
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on the correctness of the service behavior with what regards subsequent connections in 

the network. That is, the network inherently re-conforms to distributing the load of 

burden the dead switch was responsible for, consequently, transforming the application 

from strict-time dependent into loose-time dependent. This then, resuscitates the 

techniques that can be used for loose-time dependent applications, i.e. a controller 

intervention through global detection and prevention techniques. 

As discussed previously, the state instances are handled atomically at the 

switches. In other words, the variables of any state instance are all stored on the same 

switch and the optimization distributes the state instances among the switches instead of 

distributing the state variables. The tracking weights, as the outcome of the optimization 

procedure, discussed in section 3.4, are used at every switch to determine whether to 

accept the tracking of a connection (processing a state instance) or leave it for the next 

switch on the path to do so. This decision is taken independently at each switch, but 

nevertheless, each switch is programmed to take into consideration the tracking weights 

of the previous switches in order to arrive at a consistent tracking acceptance probability 

that reflects the switch’s position on the path of the packet as discussed below. 

 

3.5.1 Cumulative Chunking for High Availability 

If a switch decides to process a state locally, this switch will mark the packet as 

tracked. Otherwise, this decision is left to subsequent switches on the path, where each 

switch makes the decision according to its assigned acceptance probability which 

reflects the correct tracking weight as assigned by the optimization algorithm. The 

power of this rises in that every switch’s tracking decision subsumes the previous 

switches. In the healthy network scenario, each switch carries the responsibility of its 

assigned burden. However, in case of a faulty behavior, say a defective switch on the 
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path that did not perform its tracking responsibility, the subsequent switches will 

inherently carry the tracking responsibility. 

 

Figure 14: Network example to demonstrate cumulative chunking approach 

A simple way to establish this behavior is to make this decision based on 

chunking the packet fields according to the accept/deny probabilities and accordingly 

matching against these fields. For example, let the first switch on the path have an 

accept probability = ¼ (meaning deny weight = ¾), the second switch have an accept 

probability = ¼, and let the third switch have an accept probability = ½. If we apply 

the chunking procedure based on Source_IP with ‘x’ as mask bits, then we let: 

- If packet at switch:1 matches on Source_IP = [00xx….xxxx] then it decides 

to track, else it leaves it to switch:2 

- If packet at switch:2 matches on Source_IP = [0xxx….xxxx] then it decides 

to track, else it leaves it to switch:3 

- If packet at switch:3 matches on Source_IP = [xxxx….xxxx] then it decides 

to track 

As demonstrated in this example, switch:1 will match on ¼ of the cases (cases 

where Source_IP starts with two 0 bits). Switch:2 will also match on ¼ of the cases 

which are really those that start with 01, that is since if Source_IP starts with 00, it will 

be taken by switch:1. Now since the 1 bit is not explicit in the chunk at switch:2, then if 

switch:1 fails to track a packet with Source_IP starting with 00 for some reason, it will 
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be taken by switch:2. Same thing goes for switch:3, where in the healthy network 

scenario, it will match against packets with Source_IP starting with 1, and will take 

responsibility if switches 1&2 fail to track. 

The above example exposes the essence of the chunking procedure. However, 

such chunking is completely rigid and biased. It does not have the flexibility to assign 

weights independent of the packet fields. For example, the configuration of the mask 

bits, above, inherently assumes an equal the amount of traffic emerging from each 

source. And if we want to integrate the assumption that different sources have different 

amount of processing participation in the network, we will have to combine the 

source_ip mask bits with another field, say source_port, where each switch has different 

combinations of the masking bits for each field which becomes very tedious to 

configure. Additionally, it is dependent on bit masks to cover the probabilities which 

cannot be accurate enough to represent combinations of accept/deny probabilities. To 

establish this behavior on a more probabilistic level, we employ the cumulative 

accept/deny probabilities, as discussed below, in a group:select action on the switches. 

For every path, we assign two buckets for this group where one of them represents 

accept and the other represents deny, each with its corresponding weight. Then, when a 

packet is matched on its path, it is submitted to its corresponding group, where the 

select action uses a hash function that takes fields from the packet as input and produces 

a value which falls in one of the buckets respecting their weight distribution. The 

decision is then made according to the action in each bucket, where the accept bucket 

will initiate the state tracking, and the deny bucket will leave it for the next switch. In 

the next section, we will discuss how we can compute the Accept/Deny bucket weights 

in order to arrive at the proposed high availability framework. 
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3.5.2 Cumulative Probabilities in Accept/Deny Group:Select Buckets 

Each ntpn,i value, produced from the optimization procedure, represents switch 

n’s tracking participation in path i. In other words, it represents the probability that a 

certain connection will be tracked by switch n and not any other switch on the path of 

this connection. However, in this crude format, these probabilities do not take into 

consideration the series of decision events that take place on previous switches on the 

path. For example, a path comprised of three switches where each switch should 

participate in a third of the tracking burden for this path, will result in ntp=⅓ for each 

switch. This value, if used as a probability to hit the Accept bucket, will be correct only 

for the first switch on the path. When a packet arrives at the first switch on the path, this 

switch will give a ⅓ chance of tracking this connection and ⅔ chance of leaving the 

decision of tracking for subsequent switches on the path, that is, hitting a Deny bucket. 

Now when the packet arrives at the second switch, a ⅓ chance value falls inconsistently 

with the required behavior since arriving at the second switch, untracked, already 

subsumes the probability of the event of not being tracked in the first switch. 

As described below, arriving at a consistent tracking probability must take into 

consideration the series of unsuccessful tracking events occurring on the path to the 

switch arising according to the basis on which the tracking decision is performed. This 

basis must, above all, include the packet fields in its decision in such a way that the 

decision remains consistent for connections in the network. That is, packets belonging 

to the same “connection”, for example, must be processed at the same switch. And a 

switch rejecting to locally process a “connection” must remain consistent in this 

decision for subsequent packets. 
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3.5.2.1 Independent Events 

For a packet traversing the switches, if at each switch, the decision is made 

based on an independent input, then the tracking events at the switches are considered 

stochastically independent. Such independent input is only independent in relation to 

the decision being made at the previous switches on the path. For example, if the switch 

generates a hash value out of the packet fields in addition to a switch-unique 

variable:hash(packet_fields + unique_id), then the decision inputs at the switches can 

be considered independent provided that the hash function is uniformly distributed. 

In that case, we can calculate the probability of tracking at switch:2 using the 

joint probability formula as below: 

 

In general, for independent decision events, these probabilities can be calculated 

iteratively according to the below formula: 

        ,where u is the position index of the current switch along 

path i. Ap is the probability of processing packets belonging to path:i at switch:u 

(Accept probability), and Dp is the probability of not processing packets belonging to 

path:i at switch:u (Deny probability)  

Accordingly,  

 

3.5.2.2 Dependent Events 

On the other hand, if the decision whether to process the packet is made based 

on a shared value among the switches, then the decision events are not independent as 

above. If we consider the case where all the switches use the same variable value added 
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to the packet fields to produce a hash value as an input to the decision 

process:hash(packet_fields + global_id), then the produced hash value is identical at 

all of the switches. In this case, if we want to assign a ⅓ processing probability for 

switch:2, it should possess a ⅓ probability increase over that of switch:1. As such, the 

correct acceptance probability for switch:2 is ⅔. Same goes for the third switch taking a 

⅓ probability increase over switch:2, thus 1. 

In general, for such a case of dependent events, these probabilities can be 

accumulated iteratively as below:  

        , where u is the position index of the current switch along 

path i. Ap is the probability of processing packets belonging to path:i at switch:u 

(Accept probability). 

Accordingly,  , where Dp is the probability of not processing 

packets belonging to path:1 at switch:u (Deny probability)  

Note: When cumulative weights are computed as above (i.e. as a summation of 

all the previous weights on the path up to the current weight), which is made possible by 

choosing a consistent global_id in the network, these weights will build 

“accumulatively” over each other along a certain path. Since the decision events are 

dependent, decisions taken at a particular switch will fully subsume the corresponding 

decision taken at a previous switch. For example, with this configuration, if the decision 

made at the switch was to accept the processing of a packet, then definitely the 

next_switch on the path will make the same decision. On the other hand, this 

“accumulative” feature is not ingrained in the independent variables case. This is 

because the input to the decision process at each switch is dependent on a variable that 

is unique to each switch, and thus, a decision at a switch to process a packet gives no 

information whether the next_switch on the path will also make the same decision. 
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For later references in the text, when cumulative weights possess the 

aforementioned “accumulative” feature, we will refer to them as cumulative weights 

with additive behavior. 

 

3.5.3 Cumulative Probabilities Results for Connection-Tracking Example 

Table 5 and Table 6 below present the results of the cumulative probabilities for 

each of the approaches. As presented below, both approaches converge to a “full” 

probability at the last switch to the destination (100/100 for path:1, 200/200 for path:2, 

etc..). Also, both approaches yield the correctness intended for the optimal burden 

distribution (75 for each switch). However, each approach computes the processing 

decision differently and accordingly has the corresponding configuration of the numbers 

to arrive at the optimal results. 

 

3.5.3.1 Variable Independent Accept Probabilities Results 

Applying the variable independent approach on the load-balanced network in 

Figure 12 and its results in Table 3 will produce the following results (rounded) for the 

accept cumulative weights calculated based on the variable independent framework: 
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Table 5 Variable Independent Accept Cumulative Probability Results 

Accept cumulative 

weight per path weights 

Path:1  

/100 

Path:2  

/200 

Path:3  

/100 

Path:4  

/200 

Total 

Processing/ 

switch 

Switch:1 5.2 18 23.2 28.5 75 

Switch:2 NA 30 NA 55.55 75 

Switch:3 NA 35.4 NA 77 75 

Switch:4 NA 43 NA 125 75 

Switch:5 22.6 NA 69.7 NA 75 

Switch:6 7 36 100 200 75 

Switch:7 50 100 - - 75 

Switch:8 100 200 - - 75 

Total path weight 100 200 100 200 600 

 

3.5.3.2 Variable Dependent Accept Probabilities Results 

Applying the variable dependent approach on the load-balanced network in 

Figure 12 and its results in Table 3 will produce the following results (rounded) for the 

accept cumulative weights calculated based on the variable dependent framework: 
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Table 6: Variable Dependent Accept Cumulative Probability Results 

Accept cumulative 

weight per path weights 

Path:1  

/100 

Path:2  

/200 

Path:3  

/100 

Path:4  

/200 

Total 

Processing/ 

switch 

Switch:1 5.2 18 23.2 28.5 75 

Switch:2 - 45.4 - 76.1 75 

Switch:3 - 72.76 - 123.8 75 

Switch:4 - 100.1 - 171.43 75 

Switch:5 26.65 - 76.76 - 75 

Switch:6 31.85 118.14 100 200 75 

Switch:7 66 159 - - 75 

Switch:8 100 200 - - 75 

Total path weight 100 200 100 200 600 

 

3.5.4 Converting Probabilities into Bucket Weights 

As counter-intuitive as it may seem, plugging accept/deny ratios as accept/deny 

bucket weights will result in an incorrect behavior of the distribution. This is because 

bucket weights in the group:select do not directly represent the allocation distribution. 

For example, if we employ the group:select approach in a load balancing procedure to 

arrive at 1:2 ratio load distribution on two ports by plugging these weights in the 

corresponding buckets of the ports, we will not arrive at the expected distribution. 

Although the documentation of OpenVswitch [37] states that balancing across 

buckets is in compliance with the bucket weights, the formula that is used in making the 

decision suggests otherwise. According to the documentation, to select a bucket out of 

the group, OpenVswitch hashes the specified packet fields with the bucket_id and 

multiplies it by the weight of the bucket to arrive at a “score”, then selects the bucket 

with the highest score: 
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Scorebucket = hash( packet_fields + bucket_id ) * bucket_weight 

For simplicity, we will consider the case where we have only two buckets. This 

can be applied either to load balancing on two ports or employing the buckets in our 

application to choose whether to accept the processing of a packet or deny it. 

We now consider the scenario where we want bucket:1 to be executed ¼ of the 

time, and bucket:2 executed ¾ of the time. If the probability distribution is to be 

assigned directly to bucket weights, bucket weights will be assigned as weight1 =1 and 

weight2 =3. 

However, what we really aim for is the following: Probability for score of 

bucket:1 to be larger than that of bucket:2 is ¼: P(score1>score2) = ¼  

This can be translated into: 

P(hash( packet_fields + id1 ) * weight1 > hash( packet_fields + id2 ) * weight2 )  

= ¼ 

The important observation to be made here is that the hash functions for 

different buckets use different bucket_ids (each bucket has a unique ID among the 

buckets in the group), and thus the resulting hash values can be considered independent 

variables.  

Note: Keep in mind that this falls into the context of multiple buckets in a single 

group. Since buckets cannot have the same id in the same group, the variables will 

always be independent. And thus executing a bucket from the group is always based on 

independent variables. This is different from the previous cumulative tracking weights 

computation, where in the context of multiple switches, we can assign same bucket_id 

correspondence between the switches to arrive at dependent events between the 

switches. 

If we replace the independent variables by x and y, we can write the formula as: 
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P(  x * weight1 > y * weight2 )  = ¼ 

Which can be written as: 

P(  x* weight1 /weight2 > y )  = ¼ 

The question here is the following: what should be the values of weight1 and 

weight2 such that the above equation is satisfied. 

For simplicity, we will assume these x and y independent variables range from 0 

to 1, and we draw the line: y= x* weight1 /weight2 in Figure 15 below where the red 

area covers ¼ of the full area. In this case, the red are(r1) is less than the green area (r2). 

Figure 15: Bucket weight assignment according to probability distribution: case r1<r2 

Accordingly, we can formulate the red area in terms of the weights we are 

looking for as: 

Red_area = ½ * weight1 /weight2 = ¼. Thus weight1 /weight2 = ½. Accordingly, 

the correct assignment of weights is then 1:2 to arrive at a 1:3 proportions, in contrast to 

a direct assignment of  1:3. 
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If on the other hand, r1>r2, or in other words, the red area is larger than the 

green area, say 3:2 proportions, the results will appear as follows: 

 

 

 

 

 

Figure 16: Bucket weight assignment according to probability distribution: case r1>r2 

Red_area = ½ * (c+1) = ⅗  , where c = 1-(1/ weight1 /weight2) 

Thus weight1 /weight2 = ⅘. Accordingly, the correct assignment of weights is 

then 4:5 to arrive at a 3:2 proportions, in contrast to a direct assignment of  3:2. 

In general if we want to arrive at ratio r1:r2: 

If r1<r2: 

 Weight1 = 2*r1 

 Weight2 = r1+r2 

Else: 

 Weight1 = r1+r2 

 Weight2 = 2*r2 



 
 

     74 

 

Applying Bucket Weights to Arrive at Cumulative Probabilities 

The calculations in the previous section can be applied for both cases of the 

decision making process to arrive at the correct cumulative processing weights. 

If switches use consistent bucket_ids for both the accept bucket and the deny 

bucket, say all accept buckets in the switches have bucket_id = 1, and all deny buckets 

in the switches have bucket_id = 2, then we can use the dependent events case to 

compute the cumulative probabilities. Then we can transform these probabilities to 

bucket weights accordingly. 

If bucket_ids corresponding to the accept/deny buckets in the network are 

inconsistent between the switches, we can resort to the independent events case to 

compute the cumulative probabilities. However, the same transformation is applied in 

order to convert the probabilities into bucket weights. This is because, as mentioned 

earlier, in all cases, the bucket selection process is always based on independent 

variables due to the restriction of having same bucket_ids for both Accept and Deny 

buckets in the same group. 

For demonstration purposes, we will assume consistent bucket_ids for accept 

and deny buckets among the switches. If we apply this approach on the three-switch 

example above, we will arrive at the following bucket weights that represent the 

cumulative processing distribution: 

- At Switch:1 (cumulative ratio: 1:3) => (burden contribution ¼)  

=> [AcceptBucket = 1, DenyBucket = 2]  

- At Switch:2 (cumulative ratio: 2:2) => (burden contribution ¼) 

=> [AcceptBucket = 1, DenyBucket = 1]     

-  Switch:3 (cumulative ratio: 4:0) => (burden contribution ½) 

=> [AcceptBucket = 1, DenyBucket = 0] 
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3.6 The Announcement Bit 

In section 3.5, we demonstrated how a switch makes the decision whether to 

process the state-instance locally or to leave it to be processed by the next switch. 

However, since the state's decision probabilities are constructed cumulatively, then if a 

switch handles a state-instance and proceeds to forward the processed packet on the 

path, then the packet will also hit an accept decision on all subsequent switches on the 

path. Clearly, processing the same state-instance at every subsequent switch is 

redundant and fundamentally defies the purpose of state processing burden distribution 

in the network. This is not a substantial problem however, since all that is required is a 

tag on the packet that marks it as already processed. For example, an unused VLAN 

tag in the network can serve this purpose. Whenever a packet received a tagged packet 

as already processed, it does not subject the packet to the state-processing procedure. 

 

3.7 A Path-Aware OpenFlow Implementation Example for Connection-Tracking 

We will present in this section a simple OpenFlow implementation for 

connection-tracking in a path-aware network in which we employ the above described 

burden distribution along with cumulative chunking of states. 

 

3.7.1 Provisioning 

For this implementation, we will assume the following: 

- The network employs a symmetric layer-4 load balancing procedure 

ensuring the bidirectional convergence of packets on the state-instances in 

the network.  
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- The network management reserves a VLAN tag value, say 100, for this 

application to mark the packets as already processed. 

- The controller has access to packet path information in the network which is 

used at the switches to identify the path that each packet belongs to. 

Figure 17 below describes the tracking decision tree of the connection-tracking 

application at the data-plane. The decision tree is followed by a walkthrough that 

describes the whole procedure. 
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3.7.2 Tracking Decision Tree 

Figure 17: Switch-level decisions for connection-tracking application 
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3.7.3 The Tracking Decision Procedure 

Upon packet entry: is the connection already tracked? 

When a packet reaches a switch, it is subjected to the OpenFlow pipeline where 

the packet is matched against the flow rules. Openflow pipelines can be designed in 

different ways to serve the same function. The design can have drastic effects on the 

performance. In other words, it is very important to establish a pipeline that minimizes 

the number of rules a packet is matched against before it is forwarded on an outport. For 

this purpose, many optimizers have been proposed such as P4’s abstract language and 

compiler [25]. 

Packets are initially classified as to whether they are already tracked 

(table=10). This classification is based on a tag that is given to the packet when it is 

tracked by a previous switch on the path. This procedure helps switches recognize 

packets that fall in an already tracked connection. Without further re-computations, the 

packets recognized as already tracked can then bypass the connection tracking pipeline 

on the current switch since they are already handled by a previous switch on the path. 

 

Is the connection tracked at the current switch? 

Packets arriving at the switch that are not tagged as already tracked are then 

checked against all connections that are currently being tracked by the switch 

(table=20). If the switch is already tracking this connection, the packet can be 

resubmitted directly to the connection tracking table in which connection states are 

updated/learned. Otherwise, the packet is resubmitted as below, to be checked if it is a 

connection initiating packet. 
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Is the packet a connection initiating packet? 

Packets that are neither tagged as already tracked nor tracked at the current 

switch are classified at every switch to decide whether these packets should be 

subjected to the connection tracking procedure (table=30). This stage is ruled by 

policies inserted by the network manager to determine which hosts require connection 

tracking to communicate with and which do not. For easier reference, hosts that require 

the connection tracking procedure to communicate with are labeled as locked hosts. 

Inversely, those which do not require connection tracking are unlocked hosts. If the 

packet appears to be a connection initiating packet originating from a locked host, the 

packet is then resubmitted to check if the destination host is also locked. On the other 

hand, if the sender was an unlocked host, the packet is resubmitted to be checked if it is 

on the last switch destined to a locked host. 

 

Is Connection Initiating Packet to a locked Destination? 

At this stage, the packet has been classified as a connection initiating packet 

originating from a locked host. However, if it appears that the packet is destined to a 

locked host also, the packet will be dropped (table=50). This is because no connection 

can automatically be established between two locked hosts unless the network manager 

specifically allows it according to a specific rule. Otherwise, the packet is resubmitted 

to be checked if it should be tracked here, at the current switch. 

 

Is last switch to origin? 

If the packet is not being tracked on this switch (and of course not on a previous 

switch on the path because it is not tagged as already tracked), a check is made to 
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determine if this switch is the last switch to the locked host (table=70). In the example 

in Figure 12, host:red is a locked host, that is only host:red can initiate a connection. 

The check in this context will determine whether a packet- that according to the 

policy table should be subjected to connection tracking- should be dropped because it 

was not tracked on a previous switch on the path and the current switch- being the last 

switch to the locked host- is not tracking this connection. 

 

This is the scenario that will take place if host:orange tries to initiate a 

connection with host:red. Since host:orange is not allowed to initiate a connection to 

host:red, according to the connection-tracking protocol, the switches in the network will 

not allow such communication and consequently drop the packets before they arrive at 

host:red.  

Thus, after the packet from host:orange passes switch:3 and switch:2, switch:1- 

which is the last switch to host:red- will make the decision to drop the packet because 

no previous switch on the path had already tracked the packet and the connection is not 

being tracked on switch:1 either. 

 

Should track at current switch? 

This decision is made by assigning an accept-weight and deny-weight for each 

path that passes through the current switch. As described before, after the packet is 

matched to the path (table=90), it is submitted to the corresponding group:select where 

if the packet hits an accept, the packet is resubmitted to the tracking table. Additionally, 

a tracked here flow is learnt for future packets in the connection to match against 

(table=91). If the packet hits a deny, the packet is not tracked and forwarded to the next 

switch (table=92). 
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Note: The mechanism of how a packet matches on the path is application 

specific. As discussed previously, this requires explicit information about the path of the 

packet to be available at the switch. In a load-balanced network for example, the switch 

can be distributing the load based on L3 fields. In that sense, matching on the paths can 

be as simple as matching on the destination-ip. On the other hand, in our load-balancing 

network example, the switch can be distributing the load based on L4 fields. In this 

case, matching on the path will require matching on explicit combinations of L4 fields 

to determine the path. Another way to match on the path in L4 load-balanced network is 

by extracting the bucket distribution weights from the switch and mirroring the same 

exact weights to match on the path. In the latter case, matching on the path can be as 

simple as matching on the destination-ip plus the corresponding bucket, provided that 

packet fields are not altered directly before being routed. 

It is very important at this point to note that if the current switch handling the 

decision whether to track is the last switch on the path to the locked host, the decision 

will always hit an accept. As discussed previously, the cumulative probabilities of the 

accept weight converge to one as the packet gets nearer to the last switch on the path. 

 

The tracking table 

When a switch makes the decision to track a connection, it adds a new flow in 

its connection tracking table that handles the connection state (table=110). When a 

switch receives another packet of the same connection, it directly resubmits this packet 

to the connection tracking table and the state updates are handled accordingly.  
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If the connection established belonged to a connectionless protocol such as 

UDP, the state of the connection is updated to CLOSED when the hard_timeout of the 

learnt tracking flow expires. 

However, if the connection was TCP, the switch keeps accepting packets of the 

tracked connection until it receives a tcp:fin packet, in which case the state is updated to 

CLOSED and the connection is torn down. 

 

3.8 Dismissing the Announcement Bit 

As previously discussed, one mechanism for announcing that a state-instance 

has been processed by a previous switch on the path of a packet is by tagging the packet 

with a special header that signifies this information. However, special tags flowing 

through the network might not fall consistently with other applications employed in the 

network. As a result, the behavior of these applications can be disrupted unless adjusted 

to handle the tagged traffic. In an attempt to maintain the modularity of the proposed 

framework, we will present another mechanism that replaces the announcement bit. 

This mechanism utilizes the capacity of the cumulative chunking framework in 

revealing such information to subsequent switches on the path without actually 

forwarding the information in header fields. 

Two pieces of information must be provided locally to the switch in order to 

determine whether a packet has been processed. 

The switch must be able to identify the path that this packet belongs to. 

The switch must host, locally, the pre-programmed cumulative chunk weight of 

the direct previous switch corresponding to this path, provided that the cumulative 

weights possess the additive behavior where each cumulative weight at any switch 

subsumes the corresponding cumulative weight on its previous switch. 
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When chunks are built additively, a switch can try to project the packet against 

the chunk of the previous switch, and if it matches, then the switch discovers that the 

packet has been processed by the previous switch. If it does not match, then the switch 

will know that the packet has not been processed yet, and accordingly, it subjects the 

packet to its own cumulative chunk to decide whether to process the packet locally or 

leave it to the next switch on the path. 

 

As noted in the “dependent events” case, for cumulative chunks to build 

additively, bucket_ids corresponding to accept/deny buckets must be consistent in the 

whole network. If groups have consistent bucket_ids, then the processing decision 

events are dependent and the probabilities are built additively. This is very important as 

it preserves information about the past decisions that were taken previously on the path 

for a particular packet. On the other hand, if bucket_ids are inconsistent in the network, 

then the decision events are independent and cumulative probabilities do not build 

additively, and thus, the cumulative chunk of the previous switch if used at the current 

switch to test whether a packet has been processed does not provide a complete 

measurement. In the latter case, a complete measurement can only be attained if the 

current switch is provided with the cumulative probabilities of all the previous switches 

on the path to test, and not only the direct previous switch, which is both memory and 

performance exhaustive process. 

It is important to note here that this approach will fail to maintain correctness if 

the packet fields upon which the hash is computed change along the path. And thus 

utilizing cumulative chunking to dismiss the announcement bit can only be used 

between consecutive switches that do not manipulate the packet fields corresponding to 

the chunk. 
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The trade-off put forward here gives away the trouble of dealing with special 

headers in the network at the expense of more information being hosted at the switches 

(in openflow-rule format). In this framework, the switch not only has to possess its own 

path-to-cumulative-weight information, but also has to possess that of all the adjacent 

switches for each path. 

 

To illustrate this behavior, we will use the same three-switch example as before 

in Figure 14. 

In the network in Figure 18 below, let switches 1, 2, and 3 be convergent 

switches on the path from host:red to host:green where the distribution burden is 

divided equally among the switches. 

Figure 18: Simple network example to demonstrate the approach for dismissing the 

announcement bit 

Then, the accept probabilities for switches 1, 2, and 3 are ⅓, ⅔, and 1 

respectively. These probabilities are then mapped to a select group bucket weights such 

as the following: 

- At Switch:1 (cumulative ratio: 1:2) => (burden contribution ⅓) => 

[AcceptBucket = 2, DenyBucket = 3]  

- At Switch:2 (cumulative ratio: 2:1) => (burden contribution ⅔) => 

[AcceptBucket = 3, DenyBucket = 2]  

- At Switch:3 (cumulative ratio: 3:0) => (burden contribution 1) => 

[AcceptBucket = 1, DenyBucket = 0] 
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To host the auxiliary cumulative information at the switches, the switches must 

include the extra information about the corresponding previous switch as below: 

- At switch:1 => no previous switch 

- At switch:2 => previous_switch : [AcceptBucket = 2, DenyBucket = 3] 

- At switch:3 => previous_switch : [AcceptBucket = 3, DenyBucket = 2] 

Now, let's assume a scenario where the state-instance is processed at switch:2. 

In this scenario, switch:1 will subject the packet into the buckets that correspond 

to its previous switch. But since it is the first switch on the path, no such information 

exists, and thus a match will fail. As a result, switch:1 will subject the packet to its own 

buckets [AcceptBucket = 2, DenyBucket = 3] to try to process the state-instance locally. 

The match will fail and switch:1 forwards the packet unprocessed to switch:2. 

At switch:2, the packet is subjected to the corresponding buckets of its previous 

switch (switch:1), in this case [AcceptBucket = 2, DenyBucket = 3], which will also fail 

as it already failed on switch:1. Switch:2 then subjects the packet to its own buckets 

[AcceptBucket = 3, DenyBucket = 2] which in this case hits an accept bucket and 

succeeds in processing the state. The packet is then forwarded on the path to host:green 

to reach switch:3. 

Switch:3 however, when subjecting the packet to the buckets corresponding to 

its previous switch [AcceptBucket = 3, DenyBucket = 2], hits an accept bucket. With 

this, switch:3 discovers that the packet is being processed at some previous switch on 

the path and accordingly the packet is directly forwarded to host:green bypassing the 

state-processing decision pipeline at switch:3.  
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3.9 Packet Path Oblivious Approach 

In the previous sections, we presented a framework for burden distribution that 

accounts for the path costs in the network. This framework provides a precise 

distribution provided that the switches are aware of the path the packet is taking. The 

path of the packet referred to here not only includes the future switches the packet will 

pass through, but also the sequence of switches the packet already passed through in 

order to arrive at the current switch. Since the cumulative weights are tightly coupled 

with the packet path information, the switch needs this information in order to choose 

which cumulative weight it should subject the packet to. 

This information can be easily accessible in networks that employ simple L2-

forwarding/L3-routing. Although it can also be available in networks that employ load-

balancing measures, the amount of paths in the network explodes combinatorially. In 

that sense, exhausting the switches with path information to match against might be 

very impractical in cases where there is a large number of paths, and impossible in cases 

of unavailable path information. 

Below, we will present two approaches that fundamentally relax the network 

from the explicit path information constraints, provided that the convergence 

requirements in the network are still satisfied. In other words, it is enough to ensure the 

convergence of the traffic on the switches and provide the controller with metadata 

about the amount of traffic traversing the network, without requiring explicit 

information about the path of every packet according to its combination of header field 

values. While both approaches often do not yield optimal burden distribution results as 

that of the path explicit approach, the first approach, additive cumulative average 

approach, maintains the ability in the network to dismiss the extra header field for 

announcing the processing decisions of a switch to subsequent switches. This comes at 
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an expense of a less accurate burden distribution. The second approach, path 

aggregation approach, abandons the ability to dismiss the announcement bit (i.e. 

requires extra header fields) however yields a better accuracy in the burden distribution. 

 

3.9.1 Additive Cumulative Average Approach 

What is behind the relaxation on the path constraints is the lack of enough 

identifiers at the switches to differentiate between the paths and consequently map 

every packet to its corresponding path. But since mapping the packet to its 

corresponding path- and accordingly its corresponding cumulative weight to be 

projected upon- is an essential part in the decision making process (i.e. whether the 

switch decides to process the packet or leave to the next switch), this approach tries to 

“approximate” the path of the packet without needing to arrive at the actual path that the 

packet is taking. 

However, if each switch makes an unsupervised approximation to the path of the 

packet, then the packet might find itself being subjected to a cumulative weight at a 

certain switch which is less than that from the previous switch. In this case, the 

cumulative variables will lose their additive behavior, which is a necessary condition for 

dismissing the announcement bit. Granted that the cumulative weights in each path are 

still calculated based on the “dependent events” case (i.e. with consistent bucket_ids), 

but since the packet is being subjected to cumulative weights from different paths that 

do not positively accumulate over each other (cumulative weight at any switch is not 

larger than that at the previous switch), information about “whether some previous 

switch on the path of the packet has made the decision to process the packet” cannot be 

inherently found in the direct previous switch. 
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In an attempt to maintain the positive accumulation of the cumulative weights 

along the paths without conceding to every path separately, this approach tackles the 

burden distribution on the basis of averaging out the cumulative weights of multiple 

paths, at each switch, while asserting the addictive behavior of these average cumulative 

weights among the switches. 

Simply put, the cumulative average at switch:n can be calculated as below for 

each source-destination: 

, where CAn is the cumulative average weight at 

switch:n, p is the set of paths passing through switch:n for the corresponding source-

destination pair, CWn,p is the cumulative weight of path:p at switch:n, and PWp is the 

path weight of path:p. 

 

Figure 19: Network example for path oblivious approaches 

Taking the network in Figure 19 above where load-balancing is employed at 

switch:1, to calculate the additive average cumulative weights, we propagate backwards 

from destination to source starting at the last switch tp destination, which will definitely 

host a full cumulative weight to cover all relevant traffic processing. Then, whenever 
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we calculate the cumulative average at a previous switch, we make sure that it is less 

than that at the current switch. For example, the average cumulative calculated at 

switch:6 must be less than that at switch:7. Similarly switch:4 and switch:5 must, each, 

host a cumulative average less than that of switch:6. This assertion ensures that the 

cumulative weights hosted in the switches will always possess the additive behavior 

regardless of which path the packet takes in the network. 

Under adequate conditions, averaging out the cumulative weights into a single 

cumulative weight should not affect the actual burden responsibility taken by a switch. 

This is because the average inherently takes into account the path weights. However, a 

change in the average cumulative weight- due to assertions- at a previous switch, might 

result in a suboptimal actual distribution of burden in the network. 

In the explicit path information case, the optimization function at the controller 

will yield the following values for state-processing burdens for some chosen path 

weights, say 100 for path:1 and 100 for path:2. 
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Table 7: Optimal burden distribution cumulative probability results according to path 

explicit optimization method  

Processing 

Burden 

path:1 Path:1 

cumulative 

path:2 Path:2 

cumulative 

Total Processing/ 

switch 

Switch:1 18.75  18.75 6.25 6.25 25 

Switch:2 0 NA 25 31.25 25 

Switch:3 0 NA 25 56.25 25 

Switch:4 0 NA 25 81.25  25 

Switch:5 25 43.75  0 NA 25 

Switch:6 18.75 62.5  6.25 87.5 25 

Switch:7 18.75  81.25 6.25 93.75 25 

Switch:8 18.75 100 6.25 100 25 

Total path 

weight 

100 FULL 100 FULL 200 

 

Based on the optimal results, we can then calculate the cumulative average 

weights corresponding to path:1 and path:2 as the following: 

CA7 = 81.25*50% + 93.75*50% = 87.5 

CA6 = 62.5*50% + 87.5*50% = 75 

CA5 = 43.75*100% = 43.75 

CA4 = 81.25*100% = 81.25 

As can be seen in these results, CA4>CA6. In this case, CA4 must be adjusted to 

be less than CA6. 

 

Considerations for Bidirectional Processing 

In applications such as connection tracking, although only the traffic initiated 

from the protected hosts can initiate a processing state-instance, the traffic in the reverse 
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direction also participates in the corresponding state-instance. For example, traffic 

destined to a protected host (reverse direction) is only allowed when the connection is 

already initiated from the protected host. Since we are not using the announcement bit, 

we cannot leave the packet until it arrives at the last switch to the protected host, as 

mentioned in section 3.7.4, to decide whether to forward the packet to the protected host 

or drop it depending on the announcement header. Hence, the decision whether to 

forward or drop the packet must be made independently at each switch. 

In the framework where the announcement bit is dismissed, depending on the 

packet’s header field values, the corresponding switch which is responsible to make this 

decision (forward vs drop) is already predetermined on its path. This switch is the one 

that holds the cumulative weight value that is enough for the packet to fall into. For 

example, in the reverse direction, if the packet’s hash value produces say 82, then it is 

the responsibility of switch:7 to process this packet, since switch:7 holds hosts the 

cumulative weight of 87.5, which is the least cumulative weight higher than that 

produced by the hash value of the packet header fields (or the whole connection in 

general). Once it passes switch:7, switch:6 cannot make the decision on this particular 

packet. This is because this packet falls in a connection that should be processed at 

switch:7. Thus, only switch:7 can know whether this connection is established or 

closed, and accordingly, only switch:7 makes the decision to allow this packet in the 

network or drop it. 

A problem arises at points of path divergence in the reverse path, that is at 

switch:6 in our example above, particularly because switch:6 does not have information 

about the future direction of the packet. To demonstrate this problem, we will assume at 

first that CA4 is chosen to be 60 to assert the additive behavior in the forward direction. 

Then, if a packet falls in a connection with a corresponding hash value of 50, then if the 
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packet takes reverse path:1, switch:6 must process this packet, however, if the packet 

takes reverse path:2, switch:6 must leave it to switch:4 to make this decision- since CA4 

(60) is still larger than that produced for the connection (50). But since switch:6 does 

not know the future reverse path of the packet, then switch:6 cannot make this decision 

- that is whether to process it or leave it for the next switch. Switch:6 cannot also resort 

to making a safe decision and process the packet anyway, since if it was the case that 

the packet takes reverse path:2, then switch:6 might decide to drop the packet (because 

the connection is not detected as established on switch:6) although it is being processed 

at switch:4. 

To resolve this issue for applications with bidirectional processing requirements, 

we add a second assertion. The second assertion ensures that switches after a point of 

divergence in the reverse path must possess the same cumulative value. In this case, 

CA4=CA5. As such, the confusion at switch:6 can be resolved without the need to 

determine the future path of packets at switch:6. This problem does not appear in the 

forward path simply because the additive behavior in the forward path ensures that the 

previous switch always possesses a less average cumulative weight. 

In general, the average cumulative weight assignment can be computed as 

below: 

- For each source-destination pair in the network, extract the directed acyclic graph (DAG) from destination to source 

- In this DAG, group switches that have common predecessor into same_level_switches groups. For example, if switch:4 

and switch:5 are preceded by switch:6, then switch:4 and switch:5 fall in the same same_level_switches group. If also switch:5 and 

switch:9 are preceded by switch:10, then all switches 4,5, and 9 fall in the same same_level_switches group. These groups can 

contain a single switch if they don’t have siblings. 

- Traverse the DAG from destination to source while calculating the additive cumulative average weights (ACAs) as 

below: 

- parent_limit_assertion = ALL_TRAFFIC_WEIGHT (sum of all paths) 

- Get same_level_switches of the current node 

- Initialize ACA = 0 
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- Initialize sum_of_path_weights = 0 

- For each switch:n in same_level_switches: 

- For each path:p for the corresponding source-destination pair: 

- ACA = ACA + CWn,p*PWp  

// where CWn,p is the cumulative weight of path:p at switch:n and PWp is // the path 

weight of path:p 

- Sum_of_path_weights = sum_of_path_weights + PWp 

- ACA = ACA/Sum_of_path_weights 

- If ACA>parent_limit_assertion: 

                  - ACA = parent_limit_assertion 

- Assign ACA to all switches in same_level_switches 

- Update: Parent_limit_assertion = ACA 

 

Such a distribution maintains the positive accumulation of the cumulative 

weights on any path the packet is taking. That is, whatever path the next switch will 

choose to approximate with, its accept cumulative weight is always higher than that of 

the current switch. For this reason, we can use the approach discussed previously to 

replace the announcement bit where the two required pieces of information that should 

be available locally at the switch are satisfied by (1) augmenting the local switch 

cumulative processing weights with that of the previous switch, and (2) aggregating the 

paths of the packet into a single path based on the average cumulatives instead of the 

exact path cumulatives whenever exact path information is not available. 

Table 8 below shows the burden distribution for the switches in the network 

under additive cumulative average approach. 
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Table 8: Burden distribution cumulative probability results according to additive 

cumulative average approach 

Processing 

Burden 

Additive Cumulative Average 

Percentage 

Total Processing/ 

switch 

Switch:1 12.5  25 

Switch:2 31.25 18.76 

Switch:3 56.28 25 

Switch:4 62.5 6.23 

Switch:5 62.5 50 

Switch:6 75 25 

Switch:7 87.5 25 

Switch:8 100 25 

Total processing 100% 200 

 

Since paths are now approximated by the additive cumulative average approach, 

the burden of state processing in the network loses its optimal distribution. The optimal 

processing weight of switch:5 is 25% of the total weight of path:1. But since the 

cumulative weight of switch:1 pertaining to path:1 is now 12.5 instead of 18.75, and 

since the cumulative weight of switch:5 increased from 43.75 to 62.5, the burden at 

switch:5 now becomes (62.5%-12.5%)*100 = 50. Here, 100 is the path weight of 

path:1. Similarly, the burden at switch:4 decreases from its optimal value of 25 to 6.23. 

 

3.9.2 Path Aggregation Approach 

This approach deals with the burden distribution problem by aggregating the 

optimal weights that are computed for every path into a single weight. This weight is 

nothing but the sum of the assigned weights for each path corresponding to each 

particular switch. By virtue of using an aggregated weight as the processing weight and 
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applying this weight consistently on all packets irrespective of their paths, the paths are 

then assumed aggregated on the switches. What we aim for here is that the processing 

contribution of every switch stays the same as that when we had a specific processing 

weight for each path, or at least, as close to it as possible. Heuristically, the switch will 

average out its processing burden on all paths to maintain approximately the same 

contribution. Accordingly, the network can arrive at a burden distribution as accurate as 

that of the path information explicit cases. Thus, it is an extremely powerful tool for 

burden distribution that relieves the data-plane from the exhaustive path information 

requirements and at the same time maintains the modularity of the application in not 

requiring explicit information about the paths in the network, and above all, any 

manipulation of other applications. 

Computing the aggregated weights is not enough to feed the network with the 

right bucket weights. As in all the cases above, we need to arrive at the cumulative 

weights in the network to use the cumulative chunking technique essential for 

maintaining the high availability of the application at the data-plane. In this case, we 

need to compute the cumulative aggregate weights based on the aggregate weights. 

However, building the cumulative aggregate weights on the basis of the 

aggregate weights does not necessarily yield the additive behavior of the cumulative 

weights as before. In other words, cumulative aggregate weights along the path of a 

packet do not have to be steadily increasing. A packet can visit a switch with a certain 

accept cumulative aggregate weight, and later visit a subsequent switch on the path 

with an accept cumulative aggregate weight of lesser value. Thus, the approach used in 

the additive cumulative weights for detecting whether a packet has been processed does 

not hold anymore, and the application at the data-plane has to regress back to using the 

announcement bit. 
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We will present below a greedy computation of the cumulative aggregate 

weights by incrementally feeding the values into the switches as we traverse the paths 

from source to destination. As stated, this approach might not yield the same results as 

that provided by the path explicit approach. Thus, whenever the result is not as accurate, 

we will arrive at a certain discrepancy in the contribution of some of the switches. 

Although the greedy algorithm ensures correctness of the application, it does not 

optimally redistribute this discrepancy among the switches. While we see that this 

discrepancy is very minimal compared to the actual outcome, we will present the 

optimization approach which can deal with such discrepancies for the path aggregation 

approach. 

 

3.9.2.1 Greedy Computation of Cumulative Aggregate Weight 

The first step in this calculation is to compute the optimal aggregated weight we 

are targeting for each switch based on the outcome of the optimization. 

 

where n is the switch number, p is the path number, P is the number of all paths, 

wn,p is the processing weight for switch:n corresponding to path:p, and AWn is the 

aggregate processing weight at this switch. 

- Denote by CAWn the cumulative aggregate weight at switch:n 

- Denote by TTW the sum of all path weights in the network (total tracking 

weight in the whole network) 

- Denote by HCWn,p the highest previous cumulative weight seen on path:p 

from switch:n. 

- Denote by PWp the path weight of path:p 
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- For each source-destination pair in the network, extract the directed acyclic graph (DAG) from source to destination 

- Starting at the direct switch to the source, add the switches of the DAG in a queue, where a switch is appended to the 

queue if and only if all of its previous switches in the DAG are already in the queue. 

- For each switch in queue: 

                          - Solve for CAWswitch: 

 

 

- Update HCW for each path 

 

The equation provided above solves for CAWswitch in such a way to enforce the 

required AWswitch taking into consideration the CAW of previous switches on the path. 

However, since we are building the cumulative aggregate weights for switches over 

each other, the only one that will matter is the one of the highest value corresponding to 

each path, hence the HCW. This is because, with regards to packets arriving at the 

switch unprocessed, when the CAW of the switch is less than the HCW seen by it on 

the path, the CAW of the switch will not be sufficient to accept the state processing of 

the packet. And thus the possibility of processing only arises when the CAW of the 

switch is higher than the HCW seen by it. 

 

Note: These values can be directly translated into probabilities to feed the 

bucket weights through dividing by the TTW, which is the amount of tracking in the 

whole network. 

 

Considerations: 

Whenever we arrive at a CAWswitch smaller than the HCW of a considered path 

p in the summation, this path is ignored and we reiterate the equation while disregarding 

this path. This is because a cumulative aggregate weight that takes into consideration a 
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path in which it is lesser than its HCW, will have no effect on the contribution towards 

packets arriving on this path, and thus this path will not have been considered. The 

equation is reiterated until the cumulative aggregate weight is consistent with the paths 

under consideration. 

Whenever we arrive at a CAWswitch larger than TTW, the CAWswitch is 

considered exactly equal to TTW. This is because it does not make sense to assign the 

switch more responsibility to process state-instances than the total responsibility 

required in the whole network, which translates to processing probability 

CAWswitch/TTW > 1. This impossible extra effort required by the switches to assume 

their optimal responsibilities is the reason behind the distribution inconsistencies 

mentioned earlier. 

Previously, the cumulative processing probability of the last switch to 

destination used to be always 100%, where it allows no packet to pass through the 

network unprocessed. If inconsistencies arise in the distribution, it will propagate to the 

last switch where its cumulative processing probability will not hit 100%. To maintain 

the correctness of this approach, the last switch must extend its assigned cumulative 

probability to 100%. As mentioned earlier, the question of how to redistribute the 

inconsistencies can be answered through an optimization approach to path aggregation. 

If we apply this approach to the previous network example in Figure 19, we will 

arrive at the following results: 
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Table 9: optimal burden distribution cumulative probability results according to path 

aggregation approach 

Processing Burden Aggregate 

weights 

Cumulative Aggregate 

Weights 

Actual Processing 

Weights 

Switch:1 25 25 25 

Switch:2 25 75 25 

Switch:3 25 125 25 

Switch:4 25 175 25 

Switch:5 25 75 25 

Switch:6 25 125 25 

Switch:7 25 175 25 

Switch:8 25 200 25 

Total processing weight 

in network 

200 FULL 200 

 

As per these results, the actual processing of each switch appears to be the same 

as the optimal aggregate processing weight. Without any explicit path considerations, 

the network converges to the optimal distribution conditions on all paths from host:red 

to host:orange. We also point out that the CAW of switch:6 is less than that of switch:4, 

but higher than that of switch:5. This means that switch:6 will only be processing 

packets arriving from path:1, since if it arrives from path:2, the CAW at switch:6 is not 

enough to cover HCW6,2= 175. 

To illustrate a scenario where inconsistencies appear, we skew the path weights 

to the side of higher number of switches such that: path:1 = 100, path:2 = 800. The 

results appear as follows: 
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Table 10: Non-optimal burden distribution cumulative probability results according to 

path aggregation approach 

Processing Burden Aggregate 

weights 

Cumulative Aggregate 

Weights 

Actual Processing 

Weights 

Switch:1 114.28 114.28 114.28 

Switch:2 114.28 242.85 114.28 

Switch:3 114.28 371.42 114.28 

Switch:4 114.28 500 114.28 

Switch:5 100  900 87.3 

Switch:6 114.28  628.57 114.28 

Switch:7 114.28 757.14 114.28 

Switch:8 114.28  886 114.28 

Total processing weight 

in network 

900 Deficit 886 

 

Here, switch:8 did not arrive at a CAW = TTW (900), but 14.3 less. This is 

because switch:5 reached its maximum applicable responsibility at 87.3 where it should 

have taken 100. Thus, the 12.7 deficit in switch:5 propagated along the path to appear 

on the converged path as 14.3 according to: 

 

It is important to note here that the inconsistency appeared has nothing to do 

with the fact that the aggregate paths did not show up to be equal on all the switches, 

but because originally the explicit path information is lost and switch:1 cannot allocate a 

single value of processing that can make the network converge to its optimal conditions 

of distribution. Subsequently, this inconsistency propagates from the allocation taken at 

switch:1. Any attempt to recalibrate the cumulative processing at switch:1 to trick the 

network to reach its optimal conditions will, in itself, break the optimal conditions. This 
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is because, the optimal conditions are based on the fact that switch:1’s processing 

weight is exactly 114.28 out of 900.  

 

3.9.2.2 Optimized Computation of Aggregate Cumulative Weight 

Similar to the least squares method used before, an optimized approach to the 

aggregate cumulative weights computation can be done by minimizing the square of the 

difference between the actual weight on the switches and the optimal aggregate weight. 

, where n is the switch number, TWn and 

AWn is the actual weight and computed optimal aggregate weight of switch n 

respectively 

The CAW is included in the actual weights on the switches as following: 

, where n is the switch number, p is the path 

number, CAWn is the cumulative aggregate weight of switch n, HCWn,p is the highest 

cumulative weight seen on switch n corresponding to path p, pwp is the path weight of 

path p, AWn is the computed optimal aggregate weight of switch n, and TTW is the sum 

of all processing weights in the network. 

Accordingly, the objective function can be written as: 

 

Subject To: 
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HCW cannot be accessed directly in the objective function since it is not 

precomputed like PW, TTW, and AW. To overcome this, we will further dissect the 

term that involves HCW into several terms with additional constraints that will satisfy 

its meaning. The CAW - HCW of a switch on the path is nothing but choosing the 

highest CAW of one of the previous switches on the path. Also, a prerequisite for 

accounting for the path in the objective function is that this difference between the 

CAW of the switch and the highest previous CAW on the path is positive, otherwise, 

the path is disregarded (i.e. is fully accounted for by previous switches). 

Thus      Can be written as: 

, this summation is used to consider the term for each 

previous switch i. However, it will eventually fold down to a single term since only one 

 will be non-zero. That is, a single will be chosen as the HCWn,p. To 

satisfy these conditions, we subject our objective function to the following extra 

constraints: 

 

The first additional constraint ensures that the CAW of the current switch 

(switch:n) is higher than that of previous switch (switch:i) that we are considering it 

possesses HCW. 

The second additional constraint ensures that the CAW of the previous switch 

under consideration is higher than the CAW of all the switches that fall after it on the 

path to the current switch. 
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The third additional constraint ensures that the CAW of the previous switch 

under consideration is higher that the CAW of all the switches that fall before it on the 

path. 

If any of these constraints is not met, then the switch is not taken as the one 

possessing HCW. As it appears in the additional constraints 1,2,3, all the terms are 

multiplied by . If the terms appear to be negative, then in order to satisfy the 

positivity of the constraint  must be zero or negative. And the fourth constraint then 

ensures that  will be zero if these terms are negative. Choosing which previous 

switch has the highest CAW and discarding all the others is asserted by , where if it is 

equal to zero, the term is discarded, and if it is equal to one, the term is taken. 
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CHAPTER 4 

FRAMEWORK EVALUATION 

 

4.1 Testing Environment and Setup 

On an Ubuntu Linux machine with kernel version 4.4.0, the network 

environment is simulated using mininet [38] (version 2.2.1) which takes as input a 

topology file and accordingly creates the corresponding network comprised of 

openVswitch bridges (OpenFlow programmable switches, version 2.8.90), links, and 

hosts (namespaces). The proposed SDFS engine is implemented in python as a proof of 

concept uploaded to github [39]. The engine’s input is a configuration file, and a 

topology to provision secured with a distributed connection tracking application. The 

configuration file comprises parameters including the routing behavior in the network 

(Layer-3 vs Layer-4 load balancing), the path weights in the network, the distribution 

strategy (path-explicit vs path-oblivious), the decision-processing technique (using vs 

dismissing the announcement bit), the hosts to protect, and fast-failover adoption. 

Upon execution, the engine monitors the topology and determines the set of 

paths in the network where the convergence switches are discovered. The optimization 

procedure discussed in section 5.4.3 is then applied to determine the optimal tracking 

weights for each switch corresponding to each path. Then, depending on the distribution 

strategy (path-explicit approach, additive cumulative average approach, path 

aggregation approach), the cumulative weights are computed for each switch and then 

transformed into Accept/Deny bucket weights. Subsequently, the engine installs the 

corresponding flows on the switches upon which the distributed application becomes 

alive in the data-plane to process the packets. 
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The primary topology structure used in testing is depicted in Figure 20, which 

corresponds to the campus networks used in SNAP, which also depicts the same 

structure of tiered data-centers: access layer, aggregation layer, Core layer, and edge 

routers. 

Figure 20: Tiered topology, primary structure 

Figure 20 illustrates this topology for a connection tracking application where 

hosts red, green, orange, and blue are the protected hosts in the network. In other words, 
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the other hosts in the network (black hosts) cannot communicate with the protected 

hosts unless the protected hosts initiate the connection. In this topology, each protected 

host has multiple route paths to the edge routers. However, whether L3 or L4-load-

balancing was employed, all the switches on the path of any connection are convergent 

switches on the connection tracking application. Thus, the whole network can be 

transformed into one big firewall for the connection tracking application. The existence 

of multiple routes to the destinations qualifies the distributed firewall application for the 

high available features, where the network can redeem itself to maintain its correctness 

by handing over the connection processing to other switches upon switch failure. 
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4.2 Experiments 

4.2.1 The direct switch framework experiment 

Figure 21: Tiered topology, L3 routing 

In this experiment, we study the correctness of the direct switch framework, in 

particular, the distribution of the processing burden upon the direct switches only (e.g. 

switch:1 for host:red, switch:2 for host:green). As displayed in the Figure 21, we use the 

same topology structure with L3 routes as colored in correspondence with the protected 

hosts. Accordingly, we give each one of the four paths a weight of 1000. Thus in total, 

we have 4000 connections being established in the network (1000 for each host). We 



 
 

     108 

 

take a snapshot of the amount of connections being processed at each switch after each 

100 fired connections from each host (increments of 400 new connections in the 

network). 

Figure 22: Processing distribution in the direct switch framework 

Figure 22 shows the result of the burden distribution. Since we are using the 

direct switch framework, each direct switch (s1, s2, s3, s4) processes every new 100 

connections fired from its corresponding direct host. 

 

4.2.2 The path explicit case experiment  

In this experiment, we use the same network and routes as that in Figure 21 to 

test the path-explicit scenario. However, instead of tracking at the direct switch, we 

employ all the switches to partake in the processing burden and use an announcement 
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header to disseminated the decision processing information. The cumulative weights are 

computed as discussed in section 3.5.2.2. 

Figure 23: Processing distribution in the Path Explicit framework 

Figure 23 shows the amount of processed connections per switch at each 

snapshot. Since we have 12 switches, optimally, each switch should be sharing 1/12 of 

the processing burden in the network at any particular snapshot. As can be seen in the 

results, each switch roughly processes 33 connections when the number of fired 

connections in the network is 400. Since the packet fields are chosen at random, where 

each combination resembles a connection, the processing decision taken at each switch 

is probabilistic. This is why we see a slight divergence in the distribution as we arrive at 

4000 established connections. While the optimal processing burden at 4000 established 

connections is 333 for each switch, switch:10 processes 295 connections while switch:4 
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processes 379 connections. Hence, fair distribution is achieved even with these slight 

differences. 

 

4.2.3 The path explicit case with capacity constraints experiment 

In this experiment, we use the same properties for provisioning the network as 

that of Experiment 2 (section 4.2.2), however we add a capacity constraint of 200 on 

switch 9 as discussed in section 3.4.2.2 as the fourth constraint. This capacity constraint 

will limit switch 9’s relative processing capacity to 200 per the total traffic processing 

weight (4000 connections). 

Figure 24: Processing distribution for capacity constrained scenario 

As can be seen in Figure 24, at each snapshot taken, switch 9’s relative 

processing burden was 200/4000*number of established connections. For example, 
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when the amount of established connections in the network was 2000, switch 9’s 

processing burden was constrained to 100. Also, when the amount of established 

connections was 4000, switch 9’s participation was limited to 200. However, the 

remaining 3800 connections in the network are distributed equally among the other 

switches. While the optimal processing burden for the switches was 333 in the 

unconstrained scenario, this burden increases to 345 in this scenario where the 

remaining switches collaborate to cover switch 9’s shortage. 

 

4.2.4 The path explicit case with announcement bit dismissed experiment 

In this experiment, we investigate the correctness of the application while 

dismissing the announcement bit. Network is provisioned as that of experiment 2 

(section 4.2.2), however checking whether a packet belongs to a connection that is 

being tracked at the current switch does not entail using a VLAN header but through 

preprogramming the switches to possess the tracking distribution of the corresponding 

previous switches as discussed in section 3.8. In this technique, each subsequent packet 

in a connection is subjected to the select groups to determine whether the packet should 

be expected to be tracked here and consequently whether to track the packet, forward it, 

or drop it. 
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Figure 25: Processing distribution for dismissing announcement bit scenario 

The results of this experiment are shown in Figure 25. Similar to experiment 2, 

the switches share a fairly equal burden through all the snapshots. 
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4.2.5 The path explicit case with fast failover experiment  

 

Figure 26: Tiered topology, failover routes 

To investigate the high-availability of the application as discussed in section 3.5, 

we simulate the same provisioned topology as that of experiment 2 (section 4.2.2), 

however, switch 5 fails midway. Accordingly, a fast-failover mechanism takes place at 

switch 1 where instead of forwarding traffic to switch 5, switch 1 detects the failure of 

switch 5 and forwards the traffic to switch 6. As can be seen in Figure 26, switch 6 is a 

failover switch on the path. And while switch 6 can take part in the burden processing, 
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it does not have to, and accordingly it can effortlessly leave the burden onto switch 9, 

precisely because the announcement bit keeps track of such decisions. Here we show 

how the processing burden can be handed-over to switch 9 when switch 5 fails. 

Figure 27: Processing distribution for fast-failover scenario 

As can be seen in the results in Figure 27, when switch 5 fails, it stops accepting 

new connections, while this burden is carried over to switch 9. We note here that switch 

5 does not drop back to zero because we are measuring the number of processed 

connections per switch (which entails the initial packets of the connection), in contrast 

to the number of the connections that are open simultaneously. In other words, when 

switch 5 fails, all the connections that were being processed by it are lost. However, 

subsequent connections that are expected to be processed by switch 5, by default, are 

now handed over to switch 9. 
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4.2.6 The path explicit case with fast fail-over and announcement bit dismissed 

experiment 

We provision the same scenario as that of experiment 5 (section 6.2.5), however 

we dismiss the announcement bit in this experiment. This is to show the correctness of 

dismissing the announcement bit in the application in a failover scenario. As discussed 

previously, dismissing the announcement bit necessitates that the switches that diverge 

in the reverse path have the same cumulative processing weight. In this case, these 

switches are switch 5 and switch 6. Precisely because switch 9 does not have access to 

which direction the packet will take in the reverse direction to host:red, it is not able to 

predict whether it should track or leave for the next switch to track it in the reverse 

direction as mentioned in section 3.9.1. In this case, we force both switch 5 and switch 6 

to have the same cumulative tracking weight. In other words, switch 6 must take part in 

the burden distribution using the same cumulative weight as that of switch 5. 
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Figure 28: Processing distribution for fast-failover scenario with dismissing 

announcement bit 



 
 

     117 

 

The results for this case are shown in Figure 28. Similar to experiment 5 (section 

6.2.5), when switch 5 fails, it stops accepting new connections. However, this burden is 

carried over to switch 6 in this scenario. 

Figure 29: Tiered topology, L4-load-balanced routes 
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4.2.7 Additive cumulative average approach experiment 

To investigate the correctness of the application in a load-balanced scenario, we 

employ the additive cumulative approach discussed in section 3.9.1 to distribute the 

burden. As shown in figure:29, switch 1 load-balances the traffic coming from host:red 

into both switch 5 and switch 6. We assume that the traffic from each protected host still 

has a weight of 1000. However, the traffic coming from host:red is now divided equally 

between the two viable paths. 

Figure 30: Tiered topology, L4-load-balanced routes 

Figure 30 above shows the resulting processing behavior of the switches. Each 

switch fairly shares its assigned optimal burden. Even when switch 5 is only subjected 

to 500 connections coming from host:red, and switch 6 is subjected to 1500 (500 from 

host:red and 1000 from host: green), the approach redistributes the assigned cumulative 
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weights so that the burden distribution arrives at its optimal behavior without 

necessitating that switch 1 has explicit information about the path of the packet 

(whether going to switch 5 or switch 6). 

 

4.2.8 Path aggregation approach experiment 

To investigate the correctness of the application using the path aggregation 

approach discussed in section 5.9.2, we employ this approach using the same load-

balanced scenario depicted in experiment 6.2.7. 

Figure 31: Processing distribution using path-aggregation approach 

Figure 31 above shows the resulting processing behavior of the switches. 

Similar to the results of experiment 6.2.7, each switch fairly shares its assigned optimal 

burden. 
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4.2.9 Scaling with topology size experiment 

Figure 32: Extended tiered topology 

In this experiment, we study the compilation time required to optimize the 

burden distribution upon the switches given the path weights in the network. For this 

reason, we incrementally extend the network by blocks of six switches, as displayed in 

Figure 32, and include the corresponding paths between the protected hosts and the 

edge routers. At every snapshot of a topology, we run the optimization once using a 

single route between a protected host and a black host (eg: H1->s1,s5,s9,s11->B1), once 

using 2 load balanced routes (eg: H1->s1,s5,s9,s11->B1 and H1->s1,s6,s9,s11->B1), 

and once using 4 load balanced routes (eg: H1->s1,s5,s9,s11->B1 ; H1->s1,s6,s9,s11-

>B1 ; H1->s1,s6,s9,s12->B2 ; H1->s1,s5,s9,s12->B2). 
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Figure 33: Results for the optimization time required for different topologies and 

network configurations 

As can be seen in Figure 33, the time required to produce the optimization 

results fairly curves exponentially as the number of paths in the network increases. 

While essentially this is due to the complexity of the problem itself, it does not posit a 

restriction for large networks. This is because the network is not timewise critically 

dependent on obtaining a new distribution of the burden in the network. As mentioned 

before, the network inherently employs high-availability strategies such that the 

application in the data-plane can still function correctly even upon topology changes. 

This leaves the controller a fair amount of time to recompute the distribution. 
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Additionally, the distribution problem can tolerate semi-accurate results. 

Accordingly, approximation algorithms can be used to determine the distribution 

instead of utilizing accurate but slow line-search methods and steepest descent. 

The same exponential behavior is also depicted in SNAP at a cold start of the 

network and upon policy changes. However, SNAP provides an incremental update 

(partial recompilation) of state-variable redistribution in the network upon topology 

changes where the time required for this update is critically reduced. 

4.2.10 Packet Delay experiment  

Figure 34: Trailing topology 

In this experiment, we measure the effect of the decision announcement 

techniques on the connection bandwidth. 

For the approaches that use the announcement bit technique, only the first packet 

in the connection initiated from the protected host (TCP:SYN) is subjected to the group 

select to determine whether to track the packet or leave it for the next switch while the 

subsequent packets in the connection are tagged with the announcement header (VLAN 

header) at packet speed. 

However, as mentioned previously, for the approaches in which we dismiss the 

announcement bit, checking whether a packet is expected to be tracked at the current 

switch necessitates projecting every packet onto the select groups after hashing the L3-

L4 fields. 
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To detect the impact of these processes on the connection bandwidth, we employ 

the trailing topology structure as shown in Figure 34 where we extend the number of 

switches as we measure the bandwidth for the three scenarios: direct switch, using the 

announcement bit, dismissing the announcement bit. 

To test the connection bandwidth, we use the iperf tool to establish a connection 

and burst out packets in the connection from source to destination and back. 

Figure 35: Results for connection bandwidth versus topology length for each decision 

announcement technique 

As shown in Figure 35, no significant impact is recorded between the scenarios 

with what regards to the packet delay. We can then conclude that the time the packet 

spends being projected on the select groups or tagged by VLAN headers is overcome by 
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other processes that occur per packet, such as packet-parsing, table resubmissions, or 

packet input/output. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

 

This section summarizes the SDFS framework as it highlights the advantages 

introduced by its features along with the gaps that still exist in the framework. 

Additionally, it reiterates how SDFS relates to SNAP, and puts forward possible courses 

for extending SDFS in the future. 

As discussed in this text, SDFS builds on top of the stateful data-plane 

framework to address issues pertaining to the security, correctness, reliability, and high-

availability of SDN applications. We present SDFS’s potential to transform the network 

into a one big firewall which offers an optimized processing burden distribution of the 

stateful application in the data-plane with inherent fault-tolerance mechanisms that 

eliminate the need for immediate controller intervention even in cases of failure or 

attacks on the network. This, in turn, maintains the correctness of the application in the 

data-plane, relieves the controller from DoS attacks, and revives the security techniques 

that can be used for loose-time dependent applications. 
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5.1 Feature Comparison between SDFS and SNAP 

Table 11: Feature Comparison: SDFS VS SNAP 

Feature SDFS SNAP 

State distribution 

method 

State-Instances: atomic, 

handle bidirectional 

relationship of variables 

State-Variables: global arrays of 

the state hosted in the data-plane 

Optimization Cost-aware. Distributes 

burden upon the switches. 

Capacity-aware: Switches 

can be relatively 

constrained in the 

processing capacity 

Cost-aware. Distributes burden 

upon the switches. 

Capacity-aware: Optimizes the 

distribution while considering link 

capacities 

Compilation time Exponential with respect to 

the number of policies in 

the network in a cold start. 

 

Does not implement an 

incremental mechanism for 

state-placement. 

Exponential with respect to the 

number of policies in the network 

in a cold start or upon policy 

change 

 

For cases of fixed state placement 

in the network, provides an 

incremental mechanism to 

recompute the distribution 

Fault-tolerance Inherent maintenance of the 

application correctness upon 

switch/port failure 

Does not implement any particular 

fault-tolerance mechanism 

Header fields for 

information 

dissemination 

Uses announcement bits to 

broadcast processing 

decisions 

Provides a mechanism to 

dismiss the announcement 

bit 

Uses dictionaries in packet Header 

fields to forward state-variable 

information between the switches 

Modularity Relaxes the constraints on 

manipulating the routing 

behavior in the network 

Manipulates the routing behavior 

in the network to ensure traffic 

convergence 

High level 

programming 

language 

Does not implement a high 

level abstract language 

Provides a high level programming 

language and its corresponding 

compiler 

 

In reference to Table 11, SDFS has its advantages over SNAP through several 

features: State distribution method, fault-tolerance mechanisms, and modularity in terms 
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of absence of header fields and preservation of the routing behavior in the network. On 

the other hand, SNAP beats SDFS in terms of an intelligent optimizer that reduces the 

compilation time on subsequent updates in the network by providing an incremental 

computation of the state-variable placement in the network. Additionally, SNAP 

provides a high level programming language exposed to the user in order to write SNAP 

programs. SDFS on the other hand does not implement such a language and its 

corresponding compiler, however provides the understructure of an optimized 

distribution as a framework. 

 

5.2 Extending SDFS 

We present in this section possible extensions to the SDFS framework to fulfill 

the gaps that have been highlighted through the text. 

Traffic Convergence Discovery: It is not always the case in SDN that the 

controller has access to path information in the network. As explained previously in this 

text, load-balancers might be employed in the network in which case the controller is 

oblivious, at least on a high level, to the particular paths of distinct traffic. For this 

reason, we studied the path convergence constraints, in section 3.3, in order to point out 

the scenarios in which the switches in the network can be all-convergent with respect to 

the requirements of the stateful application and the imposed routing behavior in the 

network. We also pointed out that in other cases, all-convergence might not be granted, 

in which case, the controller must be able to construct the convergence in the network. 

Accordingly, SDFS can be extended to incrementally discover traffic convergence in 

the network by employing traffic analysis applications that monitor the traffic at the 

data-plane and accordingly reconstruct the particular paths traversing the network. It is 

very important for such an application, however, not to burden the controller with a 
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large influx of traffic being tunneled to the controller for analysis purposes. Specialized 

applications that can be employed here include sFlow, short for “sampled flow”, and 

Time Series Data Repository (TSDR) for flow data collection and statistical analysis. 

Burden Distribution Maintenance in Attack Scenarios: As discussed in 

section 3.5, the application in the data-plane maintains its correctness even upon 

switch/port failure which gives enough time to fix the network problem or reoptimize 

and redistribute the burden upon the remaining switches. However, upon such failure, 

the burden the dead switch was responsible for migrates to a single switch in the 

network. This however can have its detrimental effect in the network if the next switch 

could not handle the newly assigned responsibility and shuts down accordingly, in 

which case the switches may start choking up in series until the application breaks down 

in the data-plane. To address such scenarios, SDFS can be upgraded to inherently 

redistribute the burden in an optimized fashion. Similar to the proactive installation of 

the cumulative weights in the network for burden distribution, the switches can also be 

proactively supplied with the corresponding burden distribution to act over, upon a fast-

failover mechanism. 

Multiple Stateful Applications in the Data-Plane: As noted in section 3.7 

under the heading “Should track at current switch”, matching on the path to determine 

which group:select the packet should be submitted to, necessitates that packet fields 

used in the group:select- which is employed to compute the hash value that accordingly 

either hits the Accept or Deny buckets in the group- are not altered before being routed. 

If multiple stateful applications are to be employed in the network where at least one of 

these applications alters the packet fields that are correspondingly used by any of the 

other applications, it is necessary for the SDFS engine to be able to detect such 
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scenarios that might violate the correctness of the applications in the data-plane and 

consequently prohibit such violations in the distribution process. 

High Level Programming Language: Writing low-level stateful programs can 

be a tedious and error-prone job especially when it involves distributing the global 

states upon multiple state-instances. While the current implementation of SDFS 

provides the framework for an optimized distribution of the states where the user does 

not have to worry about how to distribute the state-instances, the state transitions 

through OpenFlow learn action must still be implemented. SDFS can be extended to 

provide a high level programming language that translates the high level stateful 

application into OpenFlow rules. As such, the language should be agnostic to how the 

state is distributed into state-instances. Instead of burdening the user in this task, the 

language compiler should be able to automatically separate the global state into atomic 

and self-sufficient state-instances. 

Incremental Computation of Burden Distribution: The time required to 

recompile and redistribute the state-instances upon the switches is exponential with 

respect to the number of policies employed in the network. Although SDFS avoids the 

urgency of this procedure by employing fault-tolerance mechanisms that maintain the 

correctness of the application upon changes in the network and provide more time for 

the controller to recompute the distribution, SDFS can also be augmented with 

incremental computation of the distribution similar to that employed in SNAP. Here, the 

compilation and distribution time on a cold start of the network remains exponential. 

However, this time can be critically reduced upon topology changes.  
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