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AN ABSTRACT OF THE THESIS OF

Zeinab Hasan Shmeiss for Master of Science
Major: Computer Science

Title: Component and Transformation Based Frameworks for Building and Op-
timizing Spark Programs

Spark is the leading platform for distributed large-scale data processing. It is de-
signed with two main features: (1) an in-memory data engine that makes it uniquely
faster than other systems (e.g., Hadoop MapReduce), and (2) a distributed program-
ming model with an extensible, easy-to-use API supported by Scala, Java, R, and
Python. Despite these features, writing efficient and complex Spark applications is
still error-prone, time-consuming, and requires a clear and deep understanding of
the inner-workings of Spark. For instance, (1) Spark does not support composition
of distributively developed Spark applications; (2) it lacks automatic persisting/-
caching of distributed data sets for reuse across several operations; and (3) the
same task can be implemented in several different ways, with significantly different
execution times. The contribution of the thesis is twofold. First, we propose a
component-based framework for composing independently developed Spark appli-
cations. The framework takes as input a set of sub-Spark applications embedded
with input/output interfaces for exchanging datasets, and a configuration file defin-
ing the dependencies between these interfaces. Then, it automatically merges them
into a single monolithic Spark application. We support our framework with several
automatic persisting strategies to optimize the execution of the produced Spark ap-
plication. Second, we present TaBOS, a transformation-based optimizer for Spark
programs. TaBOS takes a Spark program and generates a state-space of semanti-
cally equivalent programs by applying a set of rewrite rules. A single rewrite rule
replaces a fragment in the program with a new one aiming at performance opti-
mization while preserving its semantics. From the generated state-space, TaBOS
selects one optimal program based on a predefined strategy. We introduce several
selection strategies (e.g., applying maximum number of transformations, a program
with minimum number of heavy operations, prune-search techniques) for identifying
an optimal program from the generated state-space. We evaluate the effectiveness,
robustness and speedup gain of our solutions on several case studies.

vi



Contents

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 APACHE SPARK FRAMEWORK . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Spark Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Resilient Distributed Datasets . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Spark Execution Engine . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 RDD Persisting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 COMPONENT BASED SPARK . . . . . . . . . . . . . . . . . . . . . . . 12
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Spark Composition Model . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Place Holder Instructions . . . . . . . . . . . . . . . . . . . . 13
3.2.2 Sub-Spark Application . . . . . . . . . . . . . . . . . . . . . . 13
3.2.3 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Spark Composition Design . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.1 Sub-Spark Program Structure . . . . . . . . . . . . . . . . . . 15
3.3.2 DSL for the Configuration File . . . . . . . . . . . . . . . . . 16
3.3.3 Semantics and Code Generation . . . . . . . . . . . . . . . . . 17

3.4 Automatic Persisting of Output RDDs . . . . . . . . . . . . . . . . . 18
3.4.1 Persisting Strategy . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.2 Persisting Task . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.3 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

vii



4 TRANSFORMATION BASED OPTIMIZER FOR SPARK . . . . . . . . . 26
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Modeling Spark Jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Rewriting System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.2 Rewrite Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.2.1 Transformation Fusion . . . . . . . . . . . . . . . . . 30
4.3.2.2 Redundancy Elimination . . . . . . . . . . . . . . . . 31
4.3.2.3 Transformations Reordering . . . . . . . . . . . . . . 31
4.3.2.4 Transformation Action Reordering . . . . . . . . . . 34
4.3.2.5 GroupBy-Aggregate . . . . . . . . . . . . . . . . . . 34

4.4 Code Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4.1 Synthesis Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4.2 Selection Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4.2.1 Maximum Weight Strategy . . . . . . . . . . . . . . 37
4.4.2.2 Minimum Cost Strategy . . . . . . . . . . . . . . . . 37

4.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 EVALUATION OF TABOS . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Evaluation of Rewrite Rules . . . . . . . . . . . . . . . . . . . . . . . 43
5.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3.1 State-Space Size . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3.2 Comparison of Selection Strategies . . . . . . . . . . . . . . . 53

6 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.1 Spark Program Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2 Data Flow Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3 MapReduce Programs Modeling and Optimization . . . . . . . . . . . 60
6.4 Spark Program Optimization . . . . . . . . . . . . . . . . . . . . . . 60
6.5 Spark Programs Composition . . . . . . . . . . . . . . . . . . . . . . 62
6.6 Spark RDD Automatic Checkpointing . . . . . . . . . . . . . . . . . 62

7 CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . 64
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

viii



List of Figures

2.1 Architecture View of the Components of a Spark Cluster . . . . . . . 6
2.2 A Diagram of the Data Processing Ecosystem Including Spark . . . . 6
2.3 Spark Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Dependencies Between Partitions for Narrow v.s. Wide Transformations 8

3.1 Design of Component Based Spark . . . . . . . . . . . . . . . . . . . 17
3.2 Comparison of Several Persisting Strategies for Scenario 1 . . . . . . 21
3.3 The Overlapping Between the Scopes of the Output RDDs . . . . . . 21
3.4 Comparison of Several Persisting Strategies for Scenario 2 . . . . . . 22
3.5 Comparison of Several Persisting Strategies for Scenario 2 on 8GB

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.6 Simulated Scenario 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.7 Graph Built Given the Simulated Scenario . . . . . . . . . . . . . . . 24
3.8 The Final Sequence SA of Scnearion 3 . . . . . . . . . . . . . . . . . 25
3.9 Comparison of Several Persisting Strategies for Scenario 3 . . . . . . 25

4.1 Synthesis Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 High Level Architecture of TaBOS . . . . . . . . . . . . . . . . . . . 40

5.1 Average Execution Time of Scenario 1 Under Various Input Data Sizes 44
5.2 Average Execution Time of Scenario 2 Under Various Input Data Sizes 45
5.3 Average Execution Time of Scenario 3 Under Various Input Data Sizes 46
5.4 Average Execution Time of Scenario 4 Under Various Input Data Sizes 48
5.5 Average Execution Time of Scenario 5 Under Various Input Data Sizes 49
5.6 Average Execution Time of Scenario 6 Under Various Input Data Sizes 51
5.7 Average Execution Time of the Case Study Under Various Input Data

Sizes on Local Machine . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.8 Average Execution Time of the Case Study for 50 GB Dataset Size

on a Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

ix



List of Tables

4.1 Alternative Transformation Sequences for Operations of the Iterator
Class in Scala . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1 Count of Applied Rewrite Rules in the Case Study . . . . . . . . . . 53

x



List of Abbreviations

CBD . . . . . . . . . Component-Based Development

DAG . . . . . . . . . Directed Acyclic Graph

DSL . . . . . . . . . Domain Specific Language

GC . . . . . . . . . . Garbage Collector

HDFS . . . . . . . . Hadoop Distributed File System

IR . . . . . . . . . . . Intermediate Representation

RDD . . . . . . . . . Resilient Distributed Dataset

UDF . . . . . . . . . User Defined Function

YARN . . . . . . . Yet Another Resource Negotiator

xi



Chapter 1

INTRODUCTION

Contents

1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Problem Definition

The huge interest in Big Data has advanced the development of distributed

computing frameworks that can abstract away parallelization, data distribution,

fault tolerance, and load balancing. Google’s MapReduce programming paradigm

[1] was the first contribution to efficiently process data on a cluster. It is based on

two simple primitives: map and reduce. The map transforms a key-value pair to list

of intermediate key-value pairs, which are shuffled through the network. Then the

reduce takes an intermediate key and a list of all the intermediate values for that

key and merge the values to produce the final output of the program.

Apache Hadoop [2, 3, 4] is an open source implementation of MapReduce, it

is made of three building blocks: (1) the Hadoop distributed file system (HDFS)

responsible for storing and replicating data on a cluster of machines, (2) YARN used

for job’s scheduling and monitoring, and (3) the MapReduce API used to write map

and reduce jobs. While Hadoop has its advantages, it still suffers from some major

limitations. First, it is unable to support iterative algorithm because of the high

latency introduced by the shuffling phase, which requires network communication

and disk operations, between each map and reduce. Second, it lacks expressiveness,

as it can only support two operations, map and reduce, and requires the developer

to write a Mapper and Reducer classes for each program.

Apache Spark [5, 6] was introduced in 2010 to overcome the limitations of

Hadoop. Since its release, it evolved to be one of the most active open-source

Apache projects with a huge developers and users community. Spark is uniquely
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fast, it supports the sharing of data in-memory between executions, which makes

it well suited for the iterative algorithms used in machine learning and graph pro-

cessing. Moreover, Spark has an extensible easy to use API, it provides richer and

more composable operations than those of Hadoop. Despite all the facilities offered

by Spark, there are still open potentials to automate programming tasks that can

increase the productivity of the programmer. We mainly distinguish two directions

to improve the development of Spark programs: (1) by allowing Spark programs to

be decomposed and written by several programmers, which can be achieved through

the use of component-based development, and (2) by automatically applying source-

to-source transformation to optimize Spark programs.

Component-based development (CBD) [7] is a branch in software engineering

that builds applications by composing components (black boxes) developed by dis-

tributed teams. This composition is based on the relationships between the ex-

ternally visible properties of the components. CBD has several advantages when

it comes to developing complex applications: (1) teams are able to work indepen-

dently, (2) components are easier to understand and modify as they form smaller

applications, (3) components can be re-used within different applications, and (4)

the time spent in the integration phase is well reduced. By combining CBD concept

with Spark, we can unleash programmers from the complications encountered while

developing complex monolithic Spark applications.

On the other hand, implementing Spark programs can be extremely tricky, as

you can have two different implementations of the same task, yet their execution

time can vary drastically, even when executed under the same environment. Listing

1.1 shows an example of two different implementations for computing the number

of trips and the amount of money spent by each individual customer for a flight

company. On a dataset composed of 20 million record, the first implementation

that uses groupByKey takes 15.48 sec, while the second implementation which uses

reduceByKey only takes 4.65 sec. The difference in execution time falls behind the

functionality of the groupByKey and the reduceByKey operations. The authors in

[8] discusses many optimization techniques that can be used to write the optimal

code for a given task, however, learning those techniques is a time-consuming

and a hardly predictable task. To tackle this issue, we need to use program
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optimization, a subscenario of program transformation [9, 10], that modifies the

structure of a program in order to improve its runtime and/or its space performance.

case class Purchase(customerId: Int, price: Double)

val purchasesRDD: RDD[Purchase] = sc.textFile(· · ·)

// using groupByKey

val purPerMonth1 = purchasesRDD.map(p => (p.customerId, p.price))

.groupByKey()

.map(p => (p._1, (p._2.size, p._2.sum)))

.count

// using reduceByKey

val purPerMonth2 = purchasesRDD.map(p => (p.customerId, (1, p.price)))

.reduceByKey((v1, v2) => {

(v1._1 + v2._1, v1._2 + v2._2)

}).count

Listing 1.1: An Example of Two Spark Implementations for the Same Task

Briefly speaking, the contribution of the thesis is twofold. First, we propose a CBD

framework for composing independently developed Spark applications. Second, we

introduce a transformation-based system to optimize Spark programs.

1.2 Our Approach

In the first part of the thesis, we seek to combine CBD with Spark. A Spark ap-

plication is built using a set of independently developed sub-Spark applications with

predefined dependencies. A sub-Spark application is embedded with placeholder in-

structions that declare waiting or outsourcing a dataset. These instructions form

the input/output interfaces and the only visible part of the application. Then, a

configuration file is provided, which is written using a domain-specific language, to

determine the dependencies between the interfaces of the sub-Spark applications.

We describe the algorithm used to automatically merge the sub-Spark applications

into one monolithic application. We further propose a technique for optimizing the

execution of the produced application based on reusing datasets that where previ-

ously computed within the same execution.
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As for the second part, we introduce TaBOS, an optimizer that automatically

transforms a given Spark program to a more efficient and semantically equivalent

one. We define a formal model that captures the structure of a Spark program. We

then present a set of rewrite rules, which replaces a fragment in the program with

a new one aiming at performance optimization while preserving its semantics. We

formalize a rewrite system that applies the defined rules to transform a given Spark

program into several optimized alternatives. We finally propose several strategies,

to select from the alternatives, the most optimized version. We evaluate TaBOS

and the rewrite rules defined on several non-trivial examples.

1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 introduces background

information about Apache Spark. Chapter 3 defines component-based Spark’s model

and design, along with the automatic (un)persisting method used. Then we shift

in chapter 4 to present a detailed description of our optimizer (TaBOS), including:

the formal model used for Spark program representation, the rewrite rules, the code

transformation algorithm, and some implementation details. Chapter 5 evaluates

the rewrite rules and algorithm used by TaBOS on six simple scenarios and two non-

trivial case studies. Chapter 6 surveys some of the related works. Finally, Chapter

7 draws conclusion and presents future work.
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Chapter 2

APACHE SPARK FRAMEWORK

Contents

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Spark Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Resilient Distributed Datasets . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Spark Execution Engine . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Fault Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6 RDD Persisting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Overview

Apache Spark [5, 8] is a high-performance general-purpose distributed computing

framework, initially developed by the University of California, Berkeley’s AMPLab,

and was later denoted by the Apache Software Foundation. It extends the popu-

lar MapReduce model to efficiently support iterative and interactive applications.

Spark’s ability to leverage in-memory computation of immutable data makes it par-

ticularly faster than other distributed data processing systems. It is also more ex-

pressive than the other systems, as it has a high level and relatively easy to use API

composed of highly generalizable methods beyond the traditional map and reduce

operations, providing the ability to develop applications in Scala, Java, Python, and

R. To get the most out of Spark, it is important to understand Spark’s architecture

and execution engine.

2.2 Spark Architecture Overview

Spark framework has a master/slave architecture. The driver program (master)

is responsible for running the main function of the Spark program. The executors,

which are scattered over the worker nodes (slaves), are responsible for running the

parallel computation tasks. When an application is launched, Spark’s driver sets

up the executors on the worker nodes and sends them the application code, then a

SparkContext object is created at the driver process in order to coordinate these
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executors and to send them the computation tasks to be executed.

Figure 2.1: Architecture View of the Components of a Spark Cluster

On its own, Spark is not a data storage solution, nor a cluster manager.

It is often used on top of an existing distributed storage system (e.g., HDFS,

Amazon S3, Cassandra) that house the data to be processed, and in tandem with

a cluster manager that is connected with the SparkContext object to arrange the

distribution of the Spark applications across the cluster. There are currently three

types of cluster managers option available: (1) Hadoop Yarn, (2) Apache Mesos,

and (3) standalone cluster manager which is a simple cluster manager supplied with

Apache Spark and requires the installation of Spark on every node in the cluster.

Furthermore, Spark can run in local mode on a single machine that spawns all the

execution components in the same single JVM.

Figure 2.2: A Diagram of the Data Processing Ecosystem Including Spark

Spark supports a rich set of high-level components used for data processing.

Spark core is the main one in the Spark ecosystem. It contains the main function-
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alities of Spark, such as IO functionalities, task scheduling, memory management,

fault recovery. It also provides the basic API for data manipulation. In this thesis,

we will be concentrating on this specific component as it the base of the other ones.

Other components in the Spark ecosystem that can be found on top of Spark Core

are:

• Spark SQL: provides a high-level API for extracting and merging various

structured and semi-structured data so that they are ready to use for machine

learning.

• Spark MLlib: provides multiple types of machine learning algorithms includ-

ing classification, regression, and clustering.

• Spark Streaming: a lightweight API that allows developers to perform batch

processing and streaming of data with ease, in the same application.

• GraphX: a library for creating, manipulating and performing computations

on graphs.

Figure 2.3: Spark Components

2.3 Resilient Distributed Datasets

Spark is based on two main abstractions for parallel programming: resilient

distributed datasets [11] to represent large datasets, and the parallel operations on

these datasets. A resilient distributed dataset (RDD) is immutable, lazily evalu-

ated, distributed collection of objects partitioned across the cluster’s machines with

a network in between and operated on in parallel. An RDD can be constructed ei-

ther by (1) reading a file form a stable storage (e.g., local, HDFS), (2) parallelizing
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a Scala collection (e.g., an array) in the driver program, or (3) applying a parallel

operation on an existing RDD (e.g., map, filter) which are often known as transfor-

mations. RDDs have a number of predefined “coarse-grained” parallel operations,

which are simply high order functions that execute a user-defined function (UDF)

in a particular manner. They can be distinguished into two categories:

• Transformations: are operations applied on an RDD and returns a new

RDD. They are lazy evaluated and their result RDD is not immediately com-

puted.

• Actions: are operations applied on an RDD and returns a non-RDD result,

which is either returned to the driver processor or saved to an external storage

system. They are eager operations and they trigger the evaluation of RDD

transformations.

Figure 2.4: Dependencies Between Partitions for Narrow v.s. Wide
Transformations

RDD transformations can be further classified into two sets:

• Transformations with Wide dependencies: are transformations, such as

groupByKey, where the partitions in the child RDD (the resulting RDD) have

dependencies on an arbitrary set of partitions in the parent RDD. These type

of transformations require data to be shuffled and partitioned according to the

operation (e.g., according to key). As such, downstream computation cannot
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be computed before this transformation ends which can introduce latency to

the execution time of the application.

• Transformations with Narrow dependencies: are transformations, such

as map and filter, where each partition in the child RDD has simple and finite

dependencies on partitions in the parent RDD. So narrow transformations can

be executed on an arbitrary subset of the data without any information about

the other partitions. Thus they can be pipelined and intermediate results can

be kept in memory.

2.4 Spark Execution Engine

As we have already mentioned, Spark transformations are lazily evaluated and

only executed once an action is encountered by the driver program. Meanwhile,

Spark preserves the logical execution plan (aka. lineage), which is the sequence of

transformations applied from a given data source to the current RDD. Once an

action is called, the DAGScheduler, which is the scheduling layer of Spark that

implements stage-oriented scheduling, build the physical execution plan, in the form

of a directed acyclic graph (DAG), from the logical execution plan and launches a

Spark Job.

Spark Job: is the highest element of Spark’s execution hierarchy. It is a

directed acyclic graph with nodes representing the computed RDDs and edges

representing the dependencies between the partition in RDD transformations, thus

an operation that returns something other than an RDD cannot have any children.

Then the Spark job is breakdown into stages based on the wide transformation

encountered.

Stages: Each stage corresponds to a shuffle dependency created by a wide

transformation in the Spark program. Thus a stage is a sequence of narrow

transformations that can be pipelined together. At a high level, it can also be

seen as the set of computations (tasks) where each task can be computed on one

executor without the need to communicate with other executors or the driver

process. And since the stage boundaries require communication with the driver,

the stages associated with the same job must be executed in sequence and not in
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parallel unless they are used to compute different RDDs that are combined in a

downstream transformation such as join.

Task: A task is the actual unit of execution in the physical plan and represents

one local computation performed by only one executor. All the tasks that correspond

to the same stage execute the same code on different partitions of the input RDD,

thus the number of tasks performed per stage is equal to the number of partitions

in the output RDD of that stage.

2.5 Fault Tolerance

Most distributed computing frameworks like Hadoop provide fault tolerance

through logging or the replication of data across machines. However, Spark’s unique

method to achieve fault tolerance is by replaying the computation of the lost parti-

tion. With the dependency information preserved by the RDDs, Spark remembers

how an RDD was built from some base dataset. This is often known as the RDD

lineage, and recalculate the lost partition in case of failure of a host machine or the

network. Moreover this calculation can be parallelized to make recovery faster.

2.6 RDD Persisting

According to the Spark’s execution engine, each Spark job is handled and exe-

cuted independently of the other jobs even if the two jobs compute the same RDD.

Moreover and as we have mentioned, Spark tolerates event failure by recomputing

the whole lineage of the failing RDD, which can slow down the execution of the job.

For this, Spark offers the capability of persisting/caching an RDD in memory, so

that the entire transformations proceeding this persisting are executed only once.

There are many cases in which persisting can lead to huge performance gain, some

of these cases:

• In iterative computations where a transformation uses the same parent RDD

several times, like when performing a loop of joins to the same RDD.

• When multiple actions are performed on the same RDD. In other words, the

same RDD is computed within several jobs.
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• When the cost of RDD computation is enormous and the chances of down-

stream failure is high. In this case, it is preferable to cache the RDD outside

of Spark’s executor memory (off heap).

Spark does not perform the RDD persisting automatically, it should rather be

done by the developer using the persist() or cache() methods on the RDD. The

reason why the developer should have a clear understanding of the cost and benefits

of such persisting. Furthermore, the developer should also be aware of removing

the RDDs from the memory when it is no longer used by the application using the

RDD.unpersist() method. Deciding whether to persist an RDD or not can form

a challenge to the user. First, it is space intensive to store data in memory, as it

can take from the space used in downstream computation, increasing the garbage

collector (GC) overhead and the risk of memory failure. Second, persisting is a

pipeline breaker that prevents transformations with narrow dependencies from be-

ing combined into a single task. Therefore, in some situations recomputing the RDD

is rather less expensive than storing and reading it. Moreover, there is one special

case where Spark automatically persists intermediate RDDs, in case of stage bound-

aries where a wide transformation (e.g., reduceByKey) is applied and a shuffling is

performed. It is done to avoid recomputing the entire input if a node fails during

the shuffle.
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3.1 Overview

Spark applications are getting larger and more complex, calling for a shift

from Spark programming to Spark system composing. For this, we present a

component-based Spark framework (CBSpark), that integrates the CBD approach

with Spark. In our framework, we consider a component to be an independently

developed Spark application, we shall call it a sub-Spark application. A sub-Spark

application has a well defined input/output interfaces that expresses exchanging

computed datasets (e.g., RDD, file path). The framework takes these components

as input, along with a configuration file defining the dependencies between their

interfaces. Then, based on the defined dependencies, it automatically composes the

sub-Spark applications to build a complete final Spark project.

We find this approach to be more efficient than using function calls for two

main reasons. First, using functions limit the scope of all the intermediate RDDs,
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produced while computing the desired output dataset, to the function’s scope, which

makes the developer incapable of using any of them within a different computation

in the same sub-Spark program. Second, component-based applications are easier

to maintain and modify. For example, updating an input interface point to receive

different output dataset only requires modifying the configuration file while keeping

the input sub-Spark set unchanged. Furthermore, sub-Spark applications are (1)

self-contained, (2) easier to understand, and (3) integrated easily to a Spark project

as it only requires knowing the configuration file of the project without examining

any of the previously developed code.

3.2 Spark Composition Model

3.2.1 Place Holder Instructions

A user writing a sub-Spark application can express in/outsourcing a dataset

within a specific location of the application using a set of predefined instructions

that represent an input/output interface. These instructions are called placeholder

instructions and are defined as follows:

Definition 1. (Place Holder Instructions) A place holder instruction describes wait-

ing input, providing output, or declaring end of scope of input/output place holders:

• val X = input(T), indicating that the application is waiting for a dataset

of type T to be used in the upcoming code.

• output(X), indicating that the application will provide dataset X resulting

from previous computation to other sub-Spark applications.

• endOfScope(X), indicating that the user is no longer using dataset X in his

application1.

3.2.2 Sub-Spark Application

Based on the place holder instructions, a sub-Spark application can be decom-

posed into sequence of computation blocks (set of instructions).

1. Note this can be removed by integrating static code analysis.
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Definition 2. (Sub-Spark Application) A sub-Spark application SSA is defined by a

sequence of blocks SSA = (δ1, δ2, . . . , δn), where each block δi can either represent

a place holder or a computation block.

For a n-tuple t = (t1, . . . , tn), we define t2s(t) the set containing the elements

in tuple t, i.e., t2s(t) = {t1, . . . , tn}.

For a given sub-Spark application SSA, let SSA.ins (resp. SSA.outs) denotes

all the input (resp. output) place holder blocks in the sequence SSA. Formally,

• SSA.ins = {δi ∈ t2s(SSA) | δi represents an input place holder block }.

• SSA.outs = {δi ∈ t2s(SSA) | δi represent an output place holder block }.

3.2.3 Configuration

Given a user defined configuration, sub-Spark applications are composed by

mapping input of sub-Spark applications to outputs of other applications.

Definition 3. (Configuration) Given a set of sub-Spark applications {SSAi}i∈I , a

configuration C is a function defined by C : Input→ Output, where:

• Input =
⋃
i∈I SSAi.ins;

• Output =
⋃
i∈I SSAi.outs.

For set of sub-Spark applications {SSAi}i∈I and a configuration C we define

the directed graph G = (V,E), where:

• V = ∪i∈I t2s(SSAi), is the set of vertices representing the set of blocks for

each of the sub-Spark application SSAi;

• E = L ∪G, with:

– L = ∪i∈I{(δ
(i)
k , δ

(i)
k+1) | 1 ≤ k < |SSAi| ∧ SSAi = (δ

(i)
1 , · · · , δ(i)

|SSAi|
) },

represent the local edges between blocks in the same sub-Spark applica-

tion,

– G = {(δout, δin) | i, j ∈ I ∧ i 6= j ∧ δout ∈ SSAi.outs∧ δin ∈ SSAj .ins ∧
C(δin) = δout} represent the global edges defined by the mappings in C.
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A configuration C is said to be valid iff:

• Each input in
⋃
i∈I SSAi.ins is mapped to an output with respect to configu-

ration C. Formally, ∀ in ∈
⋃

i∈I SSAi.ins : ∃ out ∈
⋃

i∈I SSAi.outs∧C(in) =

out;

• Inputs are mapped to outputs of different applications. Formally, ∀ in ∈
SSAi.ins ∧ out ∈ SSAj .outs : C(in) = out⇒ i 6= j;

• The directed graph G obtained from {SSAi}i∈I and C does not contain cycles.

3.3 Spark Composition Design

3.3.1 Sub-Spark Program Structure

A sub-Spark program follows the same structure of a typical Spark program. It

starts with a header declaration (object and main method header), followed by the

configuration of the Spark environment, creating a “SparkContext” object and giv-

ing it the corresponding parameters configuration. The rest of the file represents the

program’s body, which consists of a sequence of instructions to be executed. List-

ing 3.1 depicts the grammar for a sub-Spark program. According to the grammar,

the sub-Spark program’s body is composed of a sequence of blocks, as described

in definition 2, where a block is either a place holder instruction or a set of other

instructions representing specific computation.

SSA → MAINHEADER ’{’ SCDEF Body ’}’

SCDEF → ’val sc = new SparkContext(’ .+ ’)’

Body → (Block)+

Block → IBlock

| OBlock

| ESBlock

| CBlock

IBlock → ’val’ IDENTIFIER ’= input(’ Type ’)’

OBlock → ’output(’ IDENTIFIER ’)’

ESBlock → ’endOfScope(’ IDENTIFIER ’)’

CBlock → .*?

Type → RDD[.+]

| FILEPATH

Listing 3.1: Sub-Spark File Syntax
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3.3.2 DSL for the Configuration File

We define a Domain Specific Language (DSL) using JSON representation to

describe the location and interfaces of sub-Spark applications and the configuration

that connects them. Each sub-Spark application is identified by an identifier id, a

path where the sub-Spark program exists path, number of inputs ni, and number of

outputs no. Then, the configuration maps inputs to the output of other sub-Spark

applications. Listing 3.2 depicts the general structure to specify a set of sub-Spark

applications and a configuration. It mainly consists of two parts:

• The first part defines the set of sub-Spark applications with their correspond-

ing interfaces (i.e., an identifier, location, number of inputs and number of

outputs).

• The second part defines the configuration which connects the sub-Spark ap-

plications (i.e., connect inputs to outputs).

{"spark−applications":[
{"id":"id", "path":"path","ni":"n","no":"n"},
{"id":"id", "path":"path","ni":"n","no":"n"},
...

{"id":"id", "path":"path","ni":"n","no":"n"},
]}

{"configuration":[
{ "id":"id",
"i":["i1", "i2", ...],

"o":["o1", "o2", ...],

},

{ "id":"id",
"i":["i1", "i2", ...],

"o":["o1", "o2", ...],

},

...

{ "id":"id",
"i":["i1", "i2", ...],

"o":["o1", "o2", ...],

}

]}

Listing 3.2: General Structure of a Configuration File.
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3.3.3 Semantics and Code Generation

Figure 3.1 shows the general design of our framework. The framework takes as

input a set of sub-Spark application files and a configuration file. The sub-Spark

files are transformed by the “Spark File Parser” to a set of sequences {SSAi}i∈I .

Whereas, the “JSON File Parser” extracts the configuration C, containing the map-

pings between the input/output interfaces, from the configuration file. Then, the

sub-Spark sequences {SSAi}i∈I and the configuration C are fed to the composition

system that handles the corresponding merging into one single Spark sequence.

Listing 3.3 depicts the algorithm used by CBSpark system, it consists of four main

steps. The first step builds the graph G from {SSAi}i∈I and C according to the

description in the previous section. Once G is build “isValid(G)” checks the

validation of configuration C. If C passes the validation test, G is transformed by

“transformToSequence(G)” into a sequence of blocks ordered by their topological

order in G. Formally:

Figure 3.1: Design of Component Based Spark

Definition 4. Given a graph G, a sequence of blocks S = (δ1, δ2, . . . , δn) is defined

such that, if ∃ a path from δi to δj then δi will come before δj in S.
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G = buildGraph ({SSAi}i∈I, C);

if( isValid(G) ) {

SA = transformToSequence(G);

applyPersistStrategy(SA);
}

Listing 3.3: Automatic Merging of Sub-Spark Applications

Notice that several possible sequences can be obtained from the same graph

S, since two blocks may not have a path connecting them (i.e., are independent).

However, all the sequences generated based on definition 4 are semantically equiva-

lent, since two blocks that have no path in G performs computations independent

from each other. Hence, the order by which they are executed will not affect the

final result of the program.

In the final step of the algorithm, automatic (un)persisting of the output datasets

is applied. The (un)persisting of outputs in SA is explained in details in the next

section. Once the final Spark sequence is generated, the “Code Generator” trans-

forms this sequence to the final Spark application file.

3.4 Automatic Persisting of Output RDDs

Within a configuration, a dataset that is outsourced by a sub-Spark application

can have several inputs mapped to it. In addition, it may be used locally in further

downstream computation. To this end, multiple actions can be called on a single

output dataset, and since Spark recomputes an RDD each time an action is called

on it, the overall execution time of the resulting Spark application can be very slow.

In order to avoid such drawback in our composition, we suggest an optimization

technique based on RDD reuse by persisting them in-memory, which can introduce

a huge improvement in terms of speed. Throughout the rest of this section, we

refer to the set of sub-Spark applications as {SSAi}i∈I , the configuration as C, the

graph build from {SSAi}i∈I and C as G, and the final sequence of blocks for the

resulting Spark application as SA.

Let SA.outs denotes all the output place holders of the given Spark application.

Formally, SA.outs =
⋃
i∈I SSAi.outs. For each out ∈ SA.outs, we define two main

attributes:
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1. count(out) to denote the number of actions in the reachable computation

blocks from the node out in Graph G. Formally,

count(out) =
∑

i ∈ reachable(out) ∧ i is a computation block

count(i, out),

where, count(i, out) returns the number of actions in the computation block

i that includes (directly or indirectly) out in its lineage.

2. ScopeEnd(out) to denote the index of the last endOfScope block that cor-

responds to out or the inputs mapped to out. Formally,

scopeEnd(out) = Max
i = out ∨ C(i) = out

endOfScopeIndex(i),

where, endOfScopeIndex(i) returns the index (in the sequence SA) of the

endOfScope block that corresponds to i (input or output).

3.4.1 Persisting Strategy

A persisting strategy defines a criteria that decides for each out RDD, out ∈
SA.outs, whether to be persisted or not. We distinguish between three different

persisting strategies:

• Persist All: a naive strategy where every output RDD is selected to be per-

sisted;

• Persist “n” Top Used: in this strategy the “n” out ∈ SA.outs, that has the

highest count(out) values are persisted;

• Persist “n” Top Used Within the Same Scope: this strategy is similar to the

previous strategy, except that it takes the scope of the RDD into consider-

ation. For this, the out ∈ SA.outs, that has the highest count(out) values

are persisted, such that no more than “n” RDDs with overlapping scopes are

selected at the same time. Therefore, it is possible to persist more than “n”

output dataset in the entire SA.
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3.4.2 Persisting Task

The automatic (un)persisting of RDDs is performed by injecting the sequence

of blocks of SA with blocks having the persist() and unpersist() instruction

calls corresponding to the selected output datasets. The persist action is added

just after the output placeholder. Whereas, the unpersist action is added after the

returned value of the scopeEnd function. To this end, the persisting task is defined

as a function that takes an out ∈ SA.outs, and returns the corresponding index of

the persist and unpersist action, in case out was selected to be persisted, otherwise

it returns a pair of -1. Formally,

Definition 5. (Persisting Task) A persisting task is a function defined by P :

SA.outs→ N× N:

P (out) =

(index(out) + 1, scopeEnd(out) + 1), if out ∈ P

(−1,−1), otherwise

where, P represent the set of output RDD that satisfy the defined strategy.

3.4.3 Benchmarks

In order to evaluate the automatic persisting approach and the proposed strate-

gies, we have conducted three experimental sets each with different scenario. The

first two scenarios are simple scenarios in order to test wither automatic persisting

can reduce the total execution time of the composed Spark application. Whereas

the third scenario studies how the persisting strategies perform on real world ex-

ample. All of the experiments in this section were performed using a local machine

(Ubuntu 16.04.2) with 4 cores, running Spark 2.2.0, and on a “GeoNames” database

[12] covering all countries with over eleven million place names.

Scenario 1. In our first scenario, several sub-Spark applications are composed to

produce a Spark application with five output RDDs such that the actions invoked

on these RDDs do no overlap. We compare the performance of no persisting with

persist (1, 2, 3, and 4) top used RDDs and persist all strategy. Note that, we exclude

here the persist top used within same scope strategy since we have no overlapping
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between the RDDs’ scopes. Figure 3.2 shows the execution time of the Spark appli-

cation while varying the number of output RDDs persisted and for datasets of sizes

ranging from 250MB to 2GB. For all the datasets sizes, the execution time decreases

as the number of persisted RDDs increase. This shows that persisting output RDDs

can optimize the execution time of the final application produced by our framework.
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Figure 3.2: Comparison of Several Persisting Strategies for Scenario 1

Scenario 2. In this scenario, we modify the sub-Spark applications used in sce-

nario 1 such that the scopes of the output RDDs in the produced Spark application

overlap as shown in figure 3.3. In the comparison here, we add two extra strategies:

persist top used within the same scope which persists the RDDs O2, O4, and O5,

and persist 2 top used within the same scope which persists the RDDs O1, O2, and

O3. Figure 3.4 shows the execution time of the Spark application for the several

persist strategies. The persist all strategy had the best performance. Whereas the

worst performance was for the persist top used within same scope strategy, this

is because the amount of computation reduced by persisting the three RDDs is

low compared to the overhead added in the other computations, i.e., the actions

invoked on output O1, executed while those three RDDs are in memory.

Figure 3.3: The Overlapping Between the Scopes of the Output RDDs
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Figure 3.4: Comparison of Several Persisting Strategies for Scenario 2

To test more the influence of the automatic persisting on the application perfor-

mance we used a bigger dataset (8GB). The resulting execution time is depicted in

figure 3.5. The figure shows a change in the performance of the persisting strategies

than in previous results. Some of the persisting strategies had higher execution time

than that no RDD was persisted, and the persist all strategy no longer give the best

performance. After investigating the results, we noticed that the garbage collec-

tor (GC) time, in some of the strategies that had a bad performance, was higher

than that on smaller datasets. On the other hand, the persist 1 and 2 top used

within scope strategy had more consistent results that of all the other strategies.

To this end, we can deduce that the GC overhead is a parameter to be taken into

consideration for the automatic persisting approach2.

51,972.63 53,199.53

43,003.83

51,951.72 50,909.42
47,456.15 48,823.32 50,387.09

0

10000

20000

30000

40000

50000

60000

Persist	None Persist	Top	
Used

Persist	2	Top	
Used

Persist	3	Top	
Used

Persist	4	Top	
Used

Persist	Top	
Used	Within	
Same	Scope

Persist	2	Top	
Used	Within	
Same	Scope

Persist	All

Ex
ec
ut
io
n	
Ti
m
e	
(in
	se

c)
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dataset

2. This can be fixed using dynamic approaches that monitor the garbage collector
during execution.
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Scenario 3. In our final scenario, we used a more complex example. The

example consists of 13 sub-Spark application depicted in figure 3.6b with the

configuration shown in Listing 3.6a. Figure 3.7 shows the graph built for the

given scenario, the red edges correspond to the given mappings in 3.6a and the

black edges correspond to the local ordering between blocks within the same

sub-Spark application. Moreover, each output block is labeled with the count of

reachable actions (i.e., count), and the block that represents the end of scope for

this output ends (i.e., scopeEnd). For the sake of simplicity, we eliminate the

placeholder blocks corresponding to the endOfScope instruction and replace it

with labels of the directly preceding block. For example, the end of the scope of

O1 is block C2, hence if O1 was selected to be persisted the unpersist instruction

should be embedded directly after C2. Listing 3.8a represent the monolithic Spark

program SA obtained from applying topological sort on the built graph3, and

Listing 3.8b present the application SA after applying the persist 3 top used strategy.

"configuration": {
I1 → O1
I3 → O2
I2 → O3
I4 → O3
I5 → O4
I6 → O5
I7 → O6
I8 → O7
I9 → O8
I10 → O8
I12 → O9
I11 → O10
}

(a) Mappings from Inputs
to Outputs

SSA1I1 SSA2I2 O2

O1 SSA3I3 O3

SSA4I4 O4 SSA5I5 O5 SSA6I6

SSA7 O6 SSA8I7 O7 SSA9I8 O8

SSA10I9 SSA11I10 SSA12I11 O9

SSA13I12 O10

(b) The Sub-Spark Components

Figure 3.6: Simulated Scenario 3

3. Note that variable renaming may be needed to avoid any conflict.
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C22 . O10 . C23 . C25 . I12 . C26 . O11 . I11 . C24 . C15 . C13 .
O7 . I7 . C16 . O8 . I8 . C18 . O9 . I10 . C21 . I9 . C20 . C19 .
C17 . C14 . C7 . C5 . O3 . I4 . C8 . O4 . I5 . C10 . O5 . I6 .
C12 . C11 . C9 . C3 . O1 . I2 . C4 . O2 . I3 . C6 . C1 . I1 . C2

(a) Before Persisting

C22 . O10 . C23 . C25 . I12 . C26 . O11 . I11 . C24 . C15 .
C13 . O7 . O7.persist() . I7 . C16 . O8 . I8 . C18 . O9 . I10 .
C21 . I9 . C20 . C19 . C17 . C14 . O7.unpersist() . C7 . C5 .
O3 . O3.persist() . I4 . C8 . O4 . I5 . C10 . O5 . I6 . C12 .
C11 . C9 . C3 . O1 . O1.persist() . I2 . C4 . O2 . I3 . C6 .
O3.unpersist() .C1 . I1 . C2 . O1.unpersist()

(b) After persisting the Three Top Used Output RDDs

Figure 3.8: The Final Sequence SA of Scnearion 3

We compare the performance of the resulting Spark application SA without

persisting, when persisting the three top used outputs, when persisting the two top

used output in the same scope, and when persisting all the outputs. Figure 3.9

shows the execution time of SA when applying each of the four scenarios while

varying the dataset size. The obtained results confirm the previous deduction that

the expensive persistence can deteriorate the performance of SA on big datasets

and in complex applications. For instance, for 5GB dataset the persist all took

1018.90 sec whereas persisting none took 865 sec. The best performance in this

scenario was the persist 3 top used strategy (801 sec on 5GB).
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Chapter 4

TRANSFORMATION BASED OPTIMIZER FOR SPARK
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4.1 Overview

Spark provides developers with an extensible easy to use API. Despite that,

writing an efficient Spark program can be challenging, and requires a clear and

deep understanding of the inner-workings of Spark. For this, we present TaBOS, a

Spark job optimizer. For a given Spark job, TaBOS generates all the state space of

alternative jobs by applying a set of rewrite rules. Then, it selects the most optimal

state based on a predefined strategy. We present some strategies that can be defined

for selecting an optimal state, along with a cost model for comparing two Spark jobs,

i.e., states.
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4.2 Modeling Spark Jobs

As a first step, we describe the grammar, depicted in Listing 4.1, used for

modeling the structure of a Spark job. A Spark job ends with a unique Action

preceded with a Flow. A Flow consists of branches of transformations each

originating from a DataSource. The DataSource can be either a read operation

(e.g., textFile) or a pre-existing RDD. Transformation are separated into two sets.

Single transformation (SingleTrans) are operations that takes as input a single

RDD and produces one output RDD (e.g., map). These are further sub-divided

into four groups based on the parameters they take: (1) no parameters, (2) a

single unary or binary user-defined function “UDF”, (3) an initial value and a UDF,

or (4) an initial value and two UDFs. On the other hand, double transformations

(DoubleTrans) are operations that receive two RDDs as an input and merge them

into a new RDD (e.g., join). If a flow starts with a single transformation it is

considered as a SingleFlow, otherwise, i.e., it starts with double transformation, it

is considered as a DoubleFlow. The final operation in the Spark job is Action that

takes an input RDD and produces a non-RDD result (e.g., count), which is the

desired output of the job.

Within our grammar, we use “•” to denotes the composition of several flows,

i.e. ‘‘A • B’’ denotes that the output of B is the input of A. We also use “;” to

denote combining two terms, i.e., ‘‘A ; B’’ denotes that the outputs from both

A and B are combined together. For instance, ‘‘A • (B ; C)’’ denotes that the

outputs from B and C are both inputs for A.

Without loss of generality, we model a non-Pair RDD, which is a collection of

objects, as a collection of tuples, since any object can be easily mapped to a tuple

like structure. A tuple (v1, v2, · · · , vn) have several variables each of which has a

type (e.g., Integer, String, Array). On the other hand, a Pair RDD can be modeled,

based on the context of use, either as the non-Pair RDD or as a collection of pairs

consisting of a key and a tuple (k, (v1, v2, · · · , vn)), where key k has a type as well.
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Job → Action • Flow

Flow → SingleFlow | DoubleFlow | DataSource

SingleFlow → SingleTrans • Flow

DoubleFlow → DoubleTrans • ( Flow ; Flow )

SingleTrans → T1

| T2( UDF )

| T3( IDENTIFIER , UDF)

| T4( IDENTIFIER , UDF, UDF)

DoubleTrans → union | join | zip | subtract | intersection

Action → collect | forEach | count | reduce( UDF )

| take | first | max | min | sum

T1 → groupByKey

T2 → map | filter | flatMap | mapPartition | mapValues

| flatMapValues | reduceByKey

T3 → foldByKey

T4 → aggregateByKey

UDF → ( IDENTIFIER ) => CODE

| ( IDENTIFIER , IDENTIFIER ) => CODE

DataSource → textFile( STRING ) | RDD

Listing 4.1: Spark Job Syntax

4.3 Rewriting System

TaBOS performs Spark job optimization using a rewrite system composed of a set

of rewrite rules. Each one of these rules specifies a semantically valid modification

to the structure of the Spark job aiming at performance gain.

4.3.1 Preliminaries

We start this section by introducing some of the basic notations and concepts

that are used by our rewrite system.
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Definition 6. (Rewrite Rule) A Rewrite rule R denotes the transformation of a se-

quence of instructions matching pattern “A” to the instantiation of “B” under the

context “C”. It is expressed in the following form:

A

B
C

Definition 7. (Redex) A redex is subterm in job that matches a rewrite rule.

Definition 8. (Normal Form) A job is said to be in normal form if it has no redices.

We say job1[r] = job2 to denote that job1 evaluates to job2 after applying the

rewrite rules r to the first redex in job1. If job1 is in normal form, then job1[r] = ∅.

Definition 9. (Identity Function) A function f is said to be an identity function

over the domain M if: ∀ x ∈M, f(x) = x.

Definition 10. (Distributive Functions) A function f1 is said to be distributive

over another function f2 under the domain M if: ∀ x, y ∈ M, f2(f1(x), f1(y)) =

f1(f2(x, y)).

We define the read set of function f , denoted as Read(f), to be the indicies of

all the attributes in the input tuple that can influence and change the output tuple

of f . Formally,

Definition 11. (Read Set) For a function f : V → U , we define Read(f) = {i ∈
N+ | ∃x, y ∈ V, ∀ i, j < |V | ∧ i 6= j : xi 6= yi ∧ xj = yj ⇒ f(x) 6= f(y)}

4.3.2 Rewrite Rules

We introduce several rewrite rules where each of which performs a specific type

of modification. Based on the modification’s type, we classify these rules into five

distinct sets.

29



4.3.2.1 Transformation Fusion

The first set of rules, similar to those presented in [13] and inspired by the

deforestation rules in [14], are concerned with transformations’ composition. De-

forestation (a.k.a. data structure fusion) is an optimization technique in functional

languages, that aims to reduce the time consumed in constructing intermediate data

structure, through the composition of several functions that produce and consume

some temporary data structure. Since RDDs are considered as a data structure,

applying deforestation on Spark’s transformations can speed up the execution time

of the job. For instance, consider the example in Listing 4.2, which computes∑
x∈RDD

(2 ∗ x + 3)2, using Spark job in 4.2b instead of that in 4.2a eliminates the

time wasted on generating the intermediate RDD and requires a single pass over

the records of RDD instead of two.

sum • map(x => x2) • map(x => 2 ∗ x+ 3) • RDD

(a) Before Deforestation

sum • map(x => (2 ∗ x+ 3)2) • RDD

(b) After Deforestation

Listing 4.2: Transformation Fusion Example

Below are the fusion rewrite rules defined in this set:

map(udf2 ) • map(udf1 )

map(udf2 ◦ udf1 )
(4.1)

mapV alues(udf2 ) • mapV alues(udf1 )

mapV alues(udf2 ◦ udf1 )
(4.2)

map(udf2 ) • mapV alues(udf1 )

map(udf2 ◦ [(k, v) => (k, udf1(v))] )
(4.3)

mapV alues(udf2 ) • map(udf1 )

map( [(k, v) => (k, udf2(v))] ◦ udf1 )
(4.4)
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flatMap(udf2 ) • map(udf1 )

flatMap(udf2 ◦ udf1 )
(4.5)

flatMap(udf2 ) • mapV alues(udf1 )

flatMap(udf2 ◦ [(k, v) => (k, udf1(v))] )
(4.6)

flatMapV alues(udf2 ) • mapV alues(udf1 )

flatMapV alues(udf2 ◦ udf1 )
(4.7)

filter(udf2 ) • filter(udf1 )

filter(udf2 && udf1 )
(4.8)

where ◦ denotes function composition, (f ◦ g)(x) = f(g(x)).

4.3.2.2 Redundancy Elimination

In this set, we define rules that eliminate redundant transformations. We con-

sider a transformation to be redundant if removing it from the Spark job has no

influence on the final result of the job. As an example of such transformations are

those that take an identity function as an argument. This case can happen: (1) by

mistake from the developer; (2) after applying one of the transformation fusion rules;

or (3) after sequentially composing two flows. For example, applying rule 4.1 on the

following flow: “map(x => x2) • map(x =>
√
x)” will lead to “map(x => (

√
x)2)”,

which is equivalent to “map(x => x)” over positive integers. Clearly, eliminating

these transformations can drastically reduce the overall execution time of the Spark

job. Formally,

map(udf )

ε
udf is an identity function (4.9)

4.3.2.3 Transformations Reordering

As their name indicates, rules that belong to this set handles swapping trans-

formations for better execution. The reordering between two transformations can
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be established either based on their algebraic properties, or by reasoning about the

read and write “conflicts” between them.

reduceByKey(udf2 ) • map(udf1 )

map(udf1 ) • reduceByKey(udf2 )
udf1 is distributive over udf2 (4.10)

In the first rule, if a map is followed with a reducebyKey transformation and its

function distributes over the reducebyKey’s function, then the map can be safely

reordered with the reducebyKey. For datasets with plenty of records per key, the

following rule can lead to a huge performance gain. Listing 4.3 shows an example

which computes for each key in RDD “
∑

v∈RDD(k)
k ∗ v”, which is equivalent by the

distributive property to “k ∗
∑

v∈RDD(k)
v”, where RDD(k) represent all the values

in RDD that are associated with the key k. Now consider the case where we have

an RDD with 1032 record and only 10 keys, the job in figure 4.3a will have higher

execution time than that in 4.3b, as it will perform “1031− 10” more multiplication

operation.

collect • reduceByKey((a, b) => a+ b) • map((k, v) => (k, k ∗ v)) • RDD

(a) Before Reordering

collect • map((k, v) => (k, k ∗ v)) • reduceByKey((a, b) => a+ b) • RDD

(b) After Reordering

Listing 4.3: Example of Reordering map and reduceByKey

In the rest of the reordering rules, we consider pushing the filter transforma-

tion as close as possible to the data source, as early filter execution reduces the

quantity of records processed in downstream transformations which can help reduce

the overall execution time. In rule 4.11, a filter transformation is reordered with

any narrow transformation if the read set of udf2 used by filter does not conflict

with the changes made by udf1, i.e. there is no read/write conflict between udf1

and udf2. In the example of Listing 4.4, the map and filter transformations can

be safely reordered as Read((v1, v2) => v1 6= 0) = {1} and the map’s function

does not change the value of v1. Whereas, in the second example of Listing 4.5,

it is not possible to have any reordering since the value of v1 was changed by the
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map’s function. In the other rules, the filter transformation is reorder with wide

transformations. This can lead to a higher speedup in the total execution time of

the Spark job, since applying the filter before the wide transformation decreases

the number of records shuffled through the network. In rule 4.14, if the read set

of udf1 used by the filter does not intersect with the attributes of the records

produced by flow′, then the filter can be safely pushed to be composed with

flow. The opposite is true in case of rule 4.13. On the other hand, if the filter

operation is based only on the key value, then it should be executed on both of

the join’s input flow before joining them. As for union and intersection, any

filter transformation following them should be immediately pushed before them.

collect • filter((v1, v2) => v1 6= 0) • map((v1, v2, v3) => (v1, v1 ∗ v2)) • RDD

Listing 4.4: Example where map and filter can be Reordered

collect • filter((v1, v2) => v1 6= 0) • map((v1, v2, v3) => (v1 ∗ v3, v2, v3)) • RDD

Listing 4.5: Example where map and filter can not be Reordered

filter(udf2 ) • T (udf1 )

T (udf1 ) • filter(udf2 )

udf1[(v1, · · · , vn) => (u1, · · · , um)],

∀ i ∈ Read(udf2) : i <= m ∧ vi = ui
(4.11)

filter(udf1 ) • join( flow ; flow′ )
join( ( filter(udf2 ) • flow ) ; flow′ )

udf1[(k, v, v′) => (k, v, v′)],

v′ /∈ Read(udf1),

udf2[(k, v) => (k, v)]

(4.12)

filter(udf1 ) • join( flow ; flow′ )
join( flow ; ( filter(udf2 ) • flow′ ) )

udf1[(k, v, v′) => (k, v, v′)],

v /∈ Read(udf1),

udf2[(k, v′) => (k, v′)]

(4.13)
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filter(udf1 ) • join( flow ; flow′ )
join( ( filter(udf3 ) • flow ) ; ( filter(udf2 ) • flow′ ) )

udf1[(k, v, v′) => (k, v, v′)],
v, v′ /∈ Read(udf1),
udf2[(k, v′) => (k, v′)],
udf3[(k, v) => (k, v)]

(4.14)

filter(udf ) • T (flow1 ; flow2)

T ((filter(udf ) • flow1) ; (filter(udf ) • flow2))
T ∈ {union, intersection} (4.15)

4.3.2.4 Transformation Action Reordering

The transformation action reorder rule is similar to rule 4.10, except that instead

of reordering the map with the reduce, we move the function used by the map to be

computed after the reduce operation. This rule guarantees to have a speedup on

any dataset, since only one record is returned by the reduce action at the end.

reduce(udf2 ) • map(udf1 )

udf1 • reduce(udf2 )
udf1 is distributive over udf2 (4.16)

4.3.2.5 GroupBy-Aggregate

groupByKey is one of the most expensive transformations in Spark. It can cause

all dataset records to be shuffled around the network. Moreover, it combines records

with the same key in memory as an iterator, which can’t be distributed causing

memory errors at scale. For this, we propose a rewrite rule that substitutes a

flow composed of groupByKey followed with a map/mapValues by an alternative

sequence of transformations that applies the same computation performed by the

map/mapValues transformation. For simplicity, we will only handle computations

that uses some of the predefined operations of the Iterator class in Scala1. Formally,

1. This can be developed in future work by using tools that translate imperative code
to MapReduce form.
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map([(k, v) => (k, udf(v))]) • groupByKey()

Alt(opn) • · · · • Alt(op2) • Alt(op1)

udf = opn ◦ · · · ◦ op2 ◦ op1

opi ∈ S ∀i 1 ≤ i ≤ n
(4.17)

mapV alues([v => udf(v)]) • groupByKey()

Alt(opn) • · · · • Alt(op2) • Alt(op1)

udf = opn ◦ · · · ◦ op2 ◦ op1

opi ∈ S ∀i 1 ≤ i ≤ n
(4.18)

Where S represent the set of operations of the Iterator class in Scala, and

“Alt(op)” represent alternative sequence of transformation for the operation op.

Table 4.1 represent the alternative sequence Alt(op) for each operation op ∈ S.

Iterator Operation Alternative Sequence of Transformation

map(f) map((k, v) => (k, f(v)))

filter(p) filter((k, v) => p(v))

flatMap(f) flatMap((k, v) => (k, f(v)))

reduce(f) reduceByKey(f)

aggregate(v, f, f ′) aggregateByKey(v, f, f ′)
sum reduceByKey((a, b) => a+ b)

product reduceByKey((a, b) => a ∗ b)
size reduceByKey((a, b) => a+ b) • map((k, v) => (k, 1))

max reduceByKey((a, b) => Max(a, b))

min reduceByKey((a, b) => Min(a, b))

maxBy(f) reduceByKey((a, b) => Max(a, b)) • map((k, v) => (k, f(v)))

minBy(f) reduceByKey((a, b) => Min(a, b)) • map((k, v) => (k, f(v)))

forall(p) reduceByKey((a, b) => a&&b) • map((k, v) => (k, p(v)))

Table 4.1: Alternative Transformation Sequences for Operations of the Iterator
Class in Scala

4.4 Code Transformation

In this section, we present the algorithm used by TaBOS to generate for a given

Spark job “initJob” a semantically equivalent optimized job using the defined set of

rewrite rules “R”. The algorithm is composed of two cooperating phases: synthesis

and selection phase. The synthesis phase recursively applies the rewrite rules to

generates all the state space of alternative jobs. Then, the selection phase scavenges
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the generated states to select the most optimal job based on a predefined strategy.

We represent the search space using a directed acyclic graph (DAG) G = (V,E),

with vertices V representing the alternative jobs obtained from applying one or more

rewrite rules to initJob, and edges representing one step of transformation between

two vertices.

4.4.1 Synthesis Phase

The synthesis phase, presented in Figure 4.1 as a set of rules, populates the

search space G with alternative jobs of initJob produced by applying one or more of

the rewrite rules. The synthesis process is performed in a top-down fashion, it starts

with the “INIT” rule that initializes G with initJob, then it exhaustively applies the

“UPDATE” rule to generate all possible alternatives until it can longer be applied.

Rule UPDATE traverses the representation structure of job ∈ V to find the first redex

where a rule r ∈ R can be applied. It applies the rule, and update G to include

this new job. The algorithm terminates when all the reached vertices are in normal

form. The final result of the synthesis phase is the least acyclic graph that can

be generated from the synthesis rules (INIT and UPDATE) and originating from initJob.

V = {initJob} ∧ E = ∅
INIT

job ∈ V ∧ ∃ r ∈ R ∧ job[r] 6= ∅
V = V ∪ {job[r]} ∧ E = E ∪ {job r−→ job[r]}

UPDATE

Figure 4.1: Synthesis Rules

4.4.2 Selection Phase

Once the search space G is generated, the selection phase explores it to select

one optimal alternative job. This exploration requires a mechanism for comparing

solution based on some kind of strategy, either by comparing the entire paths of G

or by comparing the nodes. We distinguish between two selection strategies:
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4.4.2.1 Maximum Weight Strategy

In this strategy, we select the job that has the maximum sum of weights for

consecutive rewrite rules 2 applied to initJob. This can be obtained by finding the

path with maximum weight that originates from the source and ends at any sink in

G. Formally,

argmax
job

{ dw( initJob, job ) }

where dw(v1, v2) denotes the weight of the path from vertex v1 to v2 in G.

4.4.2.2 Minimum Cost Strategy

This strategy is based on cost estimation of each generated job, and the job with

the minimum cost is selected. Formally,

argmin
job

{cost(job)}

where cost(job) denotes the computed cost of job.

Cost Model: In order to compare Spark jobs, we propose a cost model that

estimates the cost of a given job. It is a linear model that sums the unit-cost of all

the operators (transformation or action) of the Spark job.

cost(job) =
n∑

i=1

cost(opi)

The unit cost of a give operator opi is the product of three main cost factors:

cost(opi) = computationi ∗ ratioIOi ∗ communicationi

with

• computationi: representing the cost of the computation performed by the

operator. It can be determined by the complexity of the UDF used, if any.

2. Weights can assigned to the defined rewrite rules in a greedy manner or based on
the benchmarks described in the evaluation chapter.
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• ratioIOi: this cost depends on how the operator influence the number of

records (#records) in the input. It is estimated based on the following equa-

tion:

ratioIOi =


distance(opi) if #records increases

1

distance(opi)
if #records decreases

1 otherwise

where distance(opi) represent the distance from opi to the unique action of

the Spark job. We base our equation on the observation that it is preferable

to have early evaluation of operations that reduce the #records of an RDD

(e.g., filter). Therefore, such operations should be as close as possible to the

data-source and as far as possible from the action operation. The opposite is

true for operation that increase the #records of an RDD (e.g., flatmap).

• communicationi: depends on the cost of communicating either with the file

system for read/write (e.g., textFile and saveAsTextFile), or with the

network for shuffling the data (e.g., reduceByKey and collect). In case of a

narrow transformation, this cost is set to 1 as no communication is required.

Furthermore, we have decided to multiply the cost factors instead of summing

them to better express the changes made by the defined rewrite rules, mainly the

fusion and reorder rules. Consider the example presented in Listing 4.6 for two

semantically equivalent Spark jobs. The corresponding cost for both jobs is:

cost(j1) = cost(count) + cost(filter(f3)) + cost(map(f2)) + cost(filter(f1))

cost(j2) = cost(count) + cost(filter(f3 && f1)) + cost(map(f2))

sum • filter(f3) • map(f2) • filter(f1) • RDD

(a) Spark Job j1

sum • filter(f3 && f1) • map(f2) • RDD

(b) Spark Job j2

Listing 4.6: Example of Two Semantically Equivalent Jobs
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Let comp(f) denote the complexity of function f . In our example:

comp(f3 && f1) = comp(f3) + comp(f1)

According to our model, where we multiply the factors to compute the unit-cost:

cost(j1)− cost(j2) = cost(filter(f3)) + cost(filter(f1)) − cost(filter(f3 && f1))

= comp(f3) ∗ 1
1 ∗ 1 + comp(f1) ∗ 1

3 ∗ 1 − (comp(f3 &&f1) ∗ 1
1 ∗ 1)

= comp(f3) + 1
3 ∗ comp(f1) − (comp(f3) + comp(f1))

= −2
3 ∗ comp(f1)

< 0

Therefore, cost(j1) < cost(j2) which means that job j1 is better than job j2, which

is true.

Whereas, summing the factors instead results with:

cost(j1)− cost(j2) = cost(filter(f3)) + cost(filter(f1)) − cost(filter(f3 && f1))

= comp(f3) + 1
1 + 1 + comp(f1) + 1

3 + 1 − (comp(f3 &&f1) + 1
1 + 1)

= 4
3

> 0

Then, cost(j1) > cost(j2) which means that job j2 is better than job j1, and this is

false in reality.

4.5 Implementation

TaBOS implements all the ideas discussed in the previous sections. Figure 4.2

presents the overall architecture of TaBOS, it is basically composed of six major

components:

• Parser: responsible for parsing the input file and converting the Spark job to

an intermediate representation (IR) which is based on the model presented in

section 4.2.

• Configuration: contains two main sub-components:

– Property Checker: used for checking the conflicts and the algebraic prop-

erties included in the premises of the rewrite rules (e.g., check if read-
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Figure 4.2: High Level Architecture of TaBOS

/write conflict exists between functions, check if a function is an identity

function).

– Function’s Operation: used for applying some of the functions’ manipula-

tion operations (e.g., composing functions, changing function’s domain).

our system is not restricted for specific implementation of these two sub-

components, as several solutions can exist.

• Rewrite Rules: includes the implementation of the rewrite rules defined in

section 4.3.2. Each rule class contains two main functions: one the matches

the rewrite rule with a given sub-term of the Spark job, and one that constructs

the new sub-term to replace the old one. New rules can be easily integrated

with TaBOS by simply extending the “Rule” interface.

• Selection Strategy: consist of the strategies used by the selection phase in
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order to determine the most optimal alternative generated job. Our system

currently support the two strategies discussed in section 4.4.2:

– Maximum Weight Strategy: takes a Weight Function that assign weights

to the rewrite rules, and finds the path with the maximum weight in the

generated search space using Dijkstra’s algorithm.

– Minimum Cost Strategy: takes a Cost Function that compute the cost

of a given Spark job, and compares all the generated alternative jobs

to find the one with the minimum computed cost. There are currently

two implementation for the Cost Function: one based on the length of

operations used in the Spark job, and the other is based on the cost model

discussed in section 4.4.2.2.

• Optimizer: it is the main component of TaBOS, it implements the algorithm

presented in section 4.4, and consist of two phases:

– Synthesis Phase: takes the intermediate representation of the Spark job

generated by the Parser, along with a selected Configuration and a set

of Rewrite Rules, then it applies the proposed synthesis algorithm to

generate an acyclic graph of alternative Spark jobs.

– Selection Phase: takes the generated graph from the Synthesis Phase and

selects one optimal job based on a given Selection Strategy object.

• Code Generator: translates the final selected Spark job to code that can be

executed in Apache Spark engine.

TaBOS design is based on decoupling the Configuration, Rewrite Rules, and Se-

lection Strategy modules form the internal core Optimizer in order to make it easy

for user’s and third part libraries to extend it. Furthermore, within each module

several extension points as offered to enable users to integrate their own implementa-

tions of: Property Checker, Function’s Operation, Rewrite Rules, Selection Strategy,

Weight Function, and Cost Function.
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Chapter 5

EVALUATION OF TaBOS
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5.1 Experimental Design

To evaluate the performance of our approach for Spark job optimization, we

carry two sets of experiments. In the first, we test the performance gain for each

individual rewrite rule. And in the second, we evaluate the synthesis algorithm and

selections strategies supported by our tool on non-trivial case study. To perform

our experiments we use several scenarios, each conducted under two environmental

setups:

• Local environment: that uses a Linux machine (64-bit Ubuntu 16.04 LTS)

with 32 core, Intel Xeon (R) processor, and 32 GB memory, running Spark

2.2.0. In this environment the applications are submitted locally on 5 cores

using spark-submit.

• Cluster environment: that uses a small cluster of four Linux machines

(64-bit Ubuntu 16.04 LTS), each with 8 cores, Intel Core i7-6700 processor,

and 32 GB memory. The machines are connected with a 500 MBit Ethernet.

Furthermore, we run Spark 2.2.0 using Yarn [15] cluster mode on top of Hadoop

Distributed File System (HDFS) version 2.8.1 with 128 MB block setting. In

this environment the application are submitted using spark-submit with client

deploy mode, 30 GB driver memory, and 3 executors each with 5 cores and 25

GB executor memory.
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For each experiment we report the average of 10 runs after dropping the highest

and lowest time values.

Four datasets are used in the performance evaluation. Two synthesized datasets

which we generate, one composed of doubles and the other composed of pairs of

integers. The “GeoNames” database [12] available on Kaggle, covering all countries

with over eleven million place names. And the “311 service requests” dataset [16]

available by the NYC Open Data Project, containing calls monitored to the non-

emergency service centers from 2010 to 2018.

5.2 Evaluation of Rewrite Rules

This section assesses the independent optimization potential of our rewrite rules

using six different scenarios. For each scenario, we report the average execution

time of the Spark job before and after applying the rewrite rule. In order to have

a better view of the actual performance gain of the rewrite rules, we report the

execution time without the preprocessing time. The preprocessing time is the time

consumed for computing the input RDD used by the redex that matches the rewrite

rule.

Scenario 1. In our first scenario, we test Rule 4.1 for map transformations’ fusion.

The scenario consist of a Spark job that invokes seven map transformations on an

“RDD” of double to compute the following result:

∑
x ∈ RDD

1

1− ex ∗ 1.5046 − 4.0777

We apply rule 4.1 five times to reduce the given Spark job to two map transforma-

tions, then we apply an extra fusion step to further reduce it to one map transforma-

tion. Figure 5.1 presents the average execution time for the originally given Spark

job compared to the reduced ones on the synthesized dataset of doubles with sizes

ranging from 1 GB to 150 GB. For all sizes, applying the rewrite rule showed an

improvement in the execution time, with speedup that increased from 1.3 to 1.5 as

the dataset size increased. Furthermore, investigating the effect of a single fusion

step showed a speedup ' 1.1.
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Figure 5.1: Average Execution Time of Scenario 1 Under Various Input Data Sizes
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Scenario 2. The second scenario evaluates the performance of Rule 4.2 for

mapValues fusion. We use an example similar to that used in scenario 1, expect

that we replace the map transformation with mapValues transformation and we

use a pair “RDD” of doubles (x, x2). The average execution time before and

after applying the five and six steps of fusion are presented in figure 5.2. The

results shows a speedup of two orders-of-magnitude for all dataset sizes, which is

a higher speedup than that in scenario 1. This is expected as mapValues fusion

reduces more time wasted on constructing intermediate data structures than map

fusion. This is because the mapValues transformation has a higher complexity in

constructing the resulting RDD than map transformation, as the results produced

by the mapValues’s function have to be joined back with their corresponding keys.
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Figure 5.2: Average Execution Time of Scenario 2 Under Various Input Data Sizes
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Scenario 3. Here we evaluate the effect of reordering reduceByKey with

map transformation based on the distributive property of the transforma-

tion’s functions. Listing 5.1 shows the example used by this scenario. Since

lcm(a, gcd(b, c)) = gcd(lcm(a, b), lcm(a, c)) the map transformation in this example

can be safely pushed past the reduceByKey. We measure the execution time

before and after the reordering on a synthesized dataset of integer pairs with sizes

ranging from 1 GB to 150 GB. The results are shown in figure 5.3. Based on

the results, the reordering had a speedup increasing from 2.5 on 1 GB to 3 on 150 GB.
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Figure 5.3: Average Execution Time of Scenario 3 Under Various Input Data Sizes
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collect • reduceByKey((a, b) => gcd(a, b)) • map((k, v) => (k, lcm(k, v))) • RDD

(a) Before Reordering

collect • map((k, v) => (k, lcm(k, v))) • reduceByKey((a, b) => gcd(a, b)) • RDD

(b) After Reordering

Listing 5.1: Scenario 3

Scenario 4. In this scenario, we handle reordering filter and map transfor-

mations in the absence of read/write conflict between them. The example used

in this scenario is depicted in Listing 5.2. In this example, the filter and map

transformation can be safely reordered as the read set of the filter’s function

(Read((k, v) => k % 2 = 0) = {1}) does not conflict with the values changed

by the map’s function. We compare the average execution time before and after

the reordering on a synthesized dataset of integer pairs. Figure 5.4 presents the

corresponding results, the maximum speedup reached by this scenario was ' 1.5

on the local benchmarks and ' 2.5 on the cluster benchmarks.

collect • filter((k, v) => k % 2 = 0) • map((k, v) => (k, lcm(k, v))) • RDD

(a) Before Reordering

collect • map((k, v) => (k, lcm(k, v))) • filter((k, v) => k % 2 = 0) • RDD

(b) After Reordering

Listing 5.2: Scenario 4
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Figure 5.4: Average Execution Time of Scenario 4 Under Various Input Data Sizes

Scenario 5. This scenario tests Rules 4.12 and 4.13 for reordering the filter

transformation to precede the join. For this evaluations, we use the GeoNames

dataset with the example presented in Listing 5.3. Given two rdds: RDD1 consisting

of the place id along with the country code, and RDD2 consisting of the place id

with the distance of the place from a certain origin. The given example joins the

two rdds, then filters the records using f1 to keep those with specific country code

and f2 to keep those with distance below a certain threshold. According to the

rules’ premises, both filter transformations can be safely applied prior to join.

Figure 5.5 shows the average execution time before and after applying the rewrite
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rules. In the local benchmarks, the optimized job was 3-8 orders of magnitude

faster. On the other hand, in the cluster benchmark, the optimized job was not

only faster than the original job but also more efficient as the original job failed

to execute in all the runs on 150GB, whereas the optimized version succeeds to

finish with acceptable time. Although this rule guarantees to have a speedup, as

it reduces the number of shuffled records during the join operation, there’s is no

correlation between the speedup and the dataset size, this is mainly because the

speedup depends on the filtered ratio of records which is not a constant ratio and

may vary with the dataset size.
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Figure 5.5: Average Execution Time of Scenario 5 Under Various Input Data Sizes
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count • filter((k, v1, v2) => f2(v2)) • filter((k, v1, v2) => f1(v1)) • join() • (RDD1 ; RDD2)

(a) Before Reordering

count • join() • ( filter((k, v1, v2) => f1(v1)) • RDD1 ; filter((k, v1, v2) => f2(v2)) • RDD2)

(b) After Reordering

Listing 5.3: Scenario 5

Scenario 6. The final scenario evaluates the substitution of groupByKey with a

more efficient sequence of transformations. We use the example presented in Listing

5.4 with the GeoNames dataset to compute for a given RDD, made of a country

code and the coordinates of a place that belongs to that country, the sum of the

distances of all the places that belongs to the same country. We compare the average

execution time of the example before and after the substitution. The results in figure

5.6 shows tremendous improvement in the execution time, the optimized job was

able to outperforms the naive job with over 60 times faster.

collect • mapValues(x => x.map((v1, v2) =>
√

v21 + v22).sum) • groupByKey() • RDD

(a) Before Optimization

collect • reduceByKey((a, b) => a + b) • map((k, v1, v2) =>
√
v21 + v22) • RDD

(b) After Substituting GroupByKey

Listing 5.4: Scenario 6
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Figure 5.6: Average Execution Time of Scenario 6 Under Various Input Data Sizes

5.3 Case Study

In this section, we present a case study that evaluates the performance of TaBOS

with respect to the size of the state-space generated, and the execution time of the

different Spark jobs selected based on several strategies. Our case study leverages

the “311 service requests” dataset containing call requests to the non-emergency

service centers. Each request record consists of the following information: request

id, created time, longitude and latitude of the incident location, and the responding

agency. Consider that we want to compute for each agency the number of requests

made during the busy hours and within a certain distance from the agency’s center.
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The corresponding handwritten Spark implementation is presented in Listing 5.5.

Lines 1-4 compute the number of requests made during each hour. Lines 6-17

identify for each request: the hour by which the request was made, the responding

agency, and the distance from that agency. Finally, lines 19-26, join and filter

the two resulting RDDs, then calculate for each agency the remaining number of

requests.

1 val RDD1 = sc.textFile(· · ·)
.map(line => line.split(","))

3 .map(x => (format.parse(x(1)).getHours, 1))

.reduceByKey((v1, v2) => v1 + v2)

5
val RDD2 = sc.textFile(· · ·)

7 .map(line => line.split(","))

.map(x => {

9 (format.parse(x(1)).getHours,(x(2),(x(5).toDouble,x(6).toDouble)))

})

11 .map(x => (x._1,(x._2._1,(x._2._2._1 - agencyX(x._2._1),

x._2._2._2 - agencyY(x._2._1)))))

13 .map(x => {

(x._1,(x._2._1,(pow(x._2._2._1, 2),pow(x._2._2._2, 2))))

15 })

.map(x => (x._1, (x._2._1, x._2._2._1 + x._2._2._2)))

17 .map(x => (x._1, (x._2._1, sqrt(x._2._2))))

19 val result = RDD1.join(RDD2)

.filter(x => x._2._2._2 < distEpsilon)

21 .filter(x => x._2._1 > hourEpsilon)

.filter(x => x._1 != 0)

23 .map(x => x._2._2)

.groupByKey()

25 .mapValues(x => x.size)

.collect()

Listing 5.5: A Handwritten Spark job Example

5.3.1 State-Space Size

We first discuss the size of the state-space attained by our synthesis algorithm.

For the given implementation in Listing 5.5, TaBOS was able to generate an acyclic

graph made of 5130 nodes and 18066 edges. As such, using Spark, a single task

can be written in plenty different possible ways. Moreover, we classify the edges in

the generated graph according to the sets defined in section 4.3.2. Table 5.1 shows
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the count of times each set of rewrite rules was used by our algorithm. According

to the table, the transformation fusion rules had the highest count followed by

transformation reordering rules.

Rewrite Rule Set Count of Used Times

Transformation Fusion 9714

Redundancy Elimination 0

Transformation Reordering 6642

Transformation Action Reordering 0
GroupBy-Aggregate 1710

Table 5.1: Count of Applied Rewrite Rules in the Case Study

5.3.2 Comparison of Selection Strategies

In the second part of this section, we evaluate and compare the acceleration

achieved by the different Spark jobs (i.e., states) selected from the generated state-

space based on the following strategies:

1. Max weight greedy: In this strategy, all the rewrite rules are assigned equal

weights, and the state reached by the longest path is selected.

2. Max weight without pruning: In this strategy, the rewrite rules are assigned

weights based on the benchmarks obtained from the previous section. The

weight assigned for each rewrite rule reflects its influence on the job’s execution

time, those accompanied with the highest speedup are assigned the highest

weights, and vise versa. Based on these weight, the strategy returns the state

reached by the path with the maximum weight.

3. Max weight with pruning: It is similar to the previous strategy, however, from

a given state, only the edges with the maximum assigned weights are traversed.

4. Min cost greedy: This strategy selects the state containing the Spark job with

the minimum number of operations.

5. Min cost without pruning: This strategy selects the state that contains the

Spark job with the minimum computed cost according to the proposed cost

model in section 4.6.
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6. Min cost with pruning: It is similar to the previous strategy, except that the

search is driven by our cost model, and only the job with the current minimum

weight is explored.

Three unique Spark jobs have been selected by TaBOS based on the above strate-

gies. The first three strategies selected the Spark job depicted in Listing 5.6. Al-

though the same Spark job was selected by the maximum weight strategy with and

without pruning, using pruning examined only 989 state, which is five-time less

than the total search space (5130 state). Listing 5.7 presents the Spark job selected

by the minimum cost greedy strategy, and which consist of only 12 operations. On

the other hand, the minimum cost strategy which uses the cost model presented in

section 4.6, selected the job depicted in Listing 5.8. Also here, the number of states

explored using pruning was 1207 state, which is also low compared to the whole

number of states. Therefore, we can deduce that pruning can significantly reduce

the generated state-space, thereby, decreasing the running time of the synthesis

algorithm.

val RDD1 = sc.textFile(· · ·)
.map(line => {

val record = line.split(",")

(format.parse(record(1)).getHours, 1)

})

.filter(x => x._1 != 0)

.reduceByKey((v1, v2) => v1 + v2)

.filter(x => x._2 > hourEpsilon)

val RDD2 = sc.textFile(· · ·)
.map(line => {

val x = line.split(",")

(format.parse(x(1)).getHours,(x(2),(x(5).toDouble,x(6).toDouble)))

})

.filter(x => x._1 != 0)

.map(x => {

(x._1, (x._2._1, sqrt(pow(x._2._2._1 - agencyX(x._2._1), 2)

+ pow(x._2._2._2 - agencyY(x._2._1), 2))))

})

.filter(x => x._2._2 < distEpsilon)

val result = RDD1.join(RDD2)

.map(x => (x._2._2._1, 1))

.reduceByKey((v1, v2) => v1 + v2)

.collect()

Listing 5.6: Spark Job Selected by the Max Weight Strategies
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val RDD1 = sc.textFile(· · ·)
.map(line => {

val x = line.split(",")

(format.parse(x(1)).getHours, 1)

})

.filter(x => x._1 != 0)

.reduceByKey((v1, v2) => v1 + v2)

.filter(x => x._2 > hourEpsilon)

val RDD2 = sc.textFile(· · ·)
.map(line => {

val x = line.split(",")

(format.parse(x(1)).getHours, (x(2),

sqrt(pow(x(5).toDouble - agencyX(x(2)),2) +

pow(x(6).toDouble - agencyY(x(2)),2))))

})

.filter(x => x._2._2 < distEpsilon)

val result = RDD1.join(RDD2)

.map(x => (x._2._2._1, 1))

.reduceByKey((v1, v2) => v1 + v2)

.collect()

Listing 5.7: Spark Job Selected by the Min Cost Greedy Strategy
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val RDD1 = sc.textFile(· · ·)
.map(line => {

val record = line.split(",")

(format.parse(record(1)).getHours, 1)

})

.filter(x => x._1 != 0)

.reduceByKey((v1, v2) => v1 + v2)

.filter(x => x._2 > hourEpsilon)

val RDD2 = sc.textFile(· · ·)
.map(line => {

val x = line.split(",")

(format.parse(x(1)).getHours, (x(2),

sqrt(pow(x(5).toDouble - agencyX(x(2)),2) +

pow(x(6).toDouble - agencyY(x(2)),2))))

})

.filter(x => x._1 != 0)

.filter(x => x._2._2 < distEpsilon)

val result = RDD1.join(RDD2)

.map(x => (x._2._2._1, 1))

.reduceByKey((v1, v2) => v1 + v2)

.collect()

Listing 5.8: Spark Job Selected by the Min Cost With/Without Pruning Strategies

Since the “GroupBy-Aggregate” rules have shown a tremendous speedup in exe-

cution time compared to the other rewrite rules, and to efficiently view the acceler-

ation obtained by applying all possible rewrite rules, we implemented and executed

the original Spark job after applying only the “GroupBy-Aggregate” rule. Figures

5.7 and 5.8 shows the average execution time of the original Spark job, compared to

that without the groupByKey operation and the three discussed Spark jobs gener-

ated by TaBOS, we vary the dataset size from 1 GB to 50 GB. Because of the high

complexity of the case study and the limited cluster size available, all the implemen-

tations of the case studies failed to execute on 100 and 150 GB. Therefore, for the

cluster benchmarks, we only reported those of 50 GB. The best execution time was

for the Spark job selected by the minimum cost strategy with the cost model. The

maximum weight strategy, had slightly higher execution time (' 10 sec). Whereas,

the minimum cost strategy with greedy approach had the worst results, proving that

using less operation does not always lead to better performance.
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Throughout the recent years, several researches have been conducted in the di-

rection of facilitating the process of writing efficient distributed data processing

programs. In this chapter, we present some of the presented work for generating,

optimizing, and composing spark and other data-parallel applications.

6.1 Spark Program Synthesis

MOLD [17, 18] and BIGλ [19] are tools proposed for automating MapReduce like

program synthesis (mainly Spark) from inputs of specific type (e.g., sequential code,

input-output examples). MOLD translates imperative Java code into parallel code

targeting Apache Spark. It works by transforming the sequential code into functional

intermediate representation (IR) based on λ-calculus. Then, using rewrite rules,

it attempts to introduce parallelism to the intermediate code generating a broad

space of equivalent MapReduce programs which is explored using a heuristic search

based on a customizable cost function. After that, the final selected program is

translated to Scala code that can run on Apache Spark. On the other hand, BIGλ

synthesize data-parallel programs from input-output examples. It uses two sets for

the synthesis, one composed of high-order sketches (HOS), which are sketches of

Spark programs with wildcards in the place of the user-defined functions (UDFs),

and another made of predefined components representing UDFs. The synthesis

algorithm used by BIGλ is composed of two cooperating phases:
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1. Synthesis Phase: which looks up for all possible components to be matched

with the wildcards in the HOS.

2. Composition phase: which produce all the possible programs by mapping

the selected components with the HOS.

At the end, BIGλ generates an optimal Spark program with respect to a predefined

weight function. BIGλ is still limited in the data-parallel operations used for the

synthesized programs. Our domain here is different, we handle generating Spark

programs which are optimized versions of input Spark programs using rewrite rules

that address some of the tricks that can be missed by programmers.

6.2 Data Flow Optimization

There have been several attempts for addressing the optimization of data flow

programs. Hueske et al. [20, 21] addressed the problem of automatic data flow

reordering without full knowledge of the operators’ semantics. The reordering was

based on read/write sets of the operators used. These sets were obtained via. static

code analysis passes over the 3-address form of the first-order functions used by the

operators. In particular, two subsequent operators may be safely switched if they

have no read/write or write/write conflict on any of the attributes. Hueske also

proposed a query optimizer which enumerates all alternative data flows that can be

derived from this setting. However, the query optimizer only handles plan enumer-

ation and does not identify the beneficial re-orderings that can lead to the optimal

alternative. The reason that derived SOFA [22, 21], an optimizer for UDF-heavy

data flows, to be developed. SOFA rewrites a given data flow into a semantically

equivalent one with higher efficiency. Its rewriting system consists of two major

components: an operator-property graph and rewrite templates. The operator-

property graph is composed of nodes representing the target platform’s operators,

manually annotated by the package developer with information describing their

input/output behavior and their algebraic and semantic properties, and edges rep-

resenting the relationships between them. Whereas, the rewrite templates specify

the valid reordering, insertion, and deletion of operators. On the other hand, the

optimization algorithm used by SOFA consists of two passes. The first pass infers

all the precedence relationships between the operators in the data flow based on the

operator-property graph and the rewrite templates defined. Once the precedence
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graph is built, it generates all possible alternative data flows while performing cost-

based pruning. Both optimizers were designed and implemented in the Stratosphere

[23] system, a platform for big data analytics, and to our knowledge, there were

no attempts to implement them in Spark. Moreover, the discussed optimizations

are limited to operation’s reordering ignoring other possible optimizations that we

handled in our work.

6.3 MapReduce Programs Modeling and Optimization

Dörre et al. in [24] proposed a formal data-flow model for MapReduce programs

presented in the functional language Haskel, and cost model that estimates and

compares the performance of such programs. The cost model takes into considera-

tion the input/output/intermediate data size, the cluster configuration parameter,

and the program parameter. It computes the cost by summing two main factors:

the startup cost needed to configure the cluster, and the processing cost based on

data reading/writing, function computation, and intermediate data shuffling. Dörre

also suggested two optimization rules formulated on top of the cost model. The

first introduces parallelism and decomposes a sequential Reducer in the MapReduce

program to two steps (a Combiner and a Reducer). The second fuses two parallel

steps (Mapper and Combiner) into a single one (Mapper) discarding the intermedi-

ate results and reducing the communication overhead. The presented models and

rules where evaluated and validated in the Apache Hadoop MapReduce framework.

However, the proposed work cannot be generalized and does not fit into the Spark

computing framework.

6.4 Spark Program Optimization

Some frameworks where proposed in the previous years tackling the problem of

optimizing Spark programs. For example, Catalyst [25, 26] is an extensible query

optimizer which transforms a query plan to Java bytecode that can run by Spark.

It is based on representing user’s program as trees (aka. logical plans) and applying

transformation rules to manipulate these trees. Several sets of rules are defined

on top of this framework, and each set handles one of the fours phases of query

execution: (1) analysis phase, (2) logical plan optimization, (3) physical planning,

and (4) code generation. The first phase resolves the reference and types of the
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expression in the unresolved logical plan constructed from the program to change it

to a resolved logical plan. Then Catalyst applies a number of simplifications (e.g.,

constant folding, projection pruning, boolean expression simplification) directly

on the logical plan to produce an optimized logical plan. Once the logical plan is

optimized, several physical plans are generated using physical operators that match

the Spark execution engine, and the most optimal plan is selected using a cost

model. Also, in this phase, some rule-based physical optimizations, like predicate

pushdown from the logical plan to the data source level, are applied. At the final

phase, the Java bytecode is generated from the physical plan to be run on each

machine. Catalyst leverage some features of the Scala programming language,

such as pattern matching for applying the optimization rules, and quasiquotes for

simplifying and speeding up the code generation phase. The main advantage of

Catalyst is being extensible, it allows external developers to add optimization rules

and extend the optimizer in an easy manner.

VEGA [27] instead optimizes a series of Spark programs, by reusing interme-

diate results that are materialized at the stage’s input and job’s final output of

the previous executions of the program. When a new version of the program is

executed, it automatically pushes down, using a set of rewrite rules, the modified

operations for later data flow stages to enable using the materialized points instead

of re-computing the upstream operations. Furthermore, it uses the incremental

execution [14] to also avoid re-computing the downstream operations from scratch.

VEGA proposes a library that is implemented in two modules, (1) VEGA SQL

implemented at the level of Spark SQL by extending the Catalyst optimizer with

their rewrite rules, and (2) VEGA RDD extends the Spark RDD abstraction with

API that enables the rewrite rules to be applied, this API requires some information

(e.g., the inverse function of the used user-defined function) to be provided by the

programmer.

In a more recent work, a tool, HYLAS [13], was presented for optimizing Spark

queries using semantic preserving transformation rules. The rules were inspired

by the deforestation techniques [28] to eliminate intermediate superfluous data

structures.
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All of the introduced tools performs the rewriting at the compiler level, either

directly on the abstract syntax tree (AST) like in HYLAS or on an intermediate

tree representation that is translated to AST like in Catalyst and VEGA, which

can consume from the total runtime of the application especially when the same

application is run several times and the same optimizations have to be re-performed.

Moreover, all the rewrite systems proposed are either specific to a certain module

(e.g., Spark SQL in case of Catalyst) or limited to a specific optimization (e.g.,

eliminating intermediate data structures in case of HYLAS). VEGA, on the other

hand, can only handle optimization after the second execution of the program,

nevertheless, it is memory expensive. To our knowledge, we are the first to propose

a framework that translates Spark code to more efficient and robust Spark code

through rewrite rules that covers a wide range of optimization tricks.

6.5 Spark Programs Composition

Reconfigurable component-based Spark [29] is a high-level specification language

that has been recently proposed to compose independently developed Spark appli-

cations with predefined dependencies. Given a set of dependent Spark application

with input/output interfaces located at the extremities of the program and a con-

figuration defining the mappings between them, a composition is performed by aug-

menting each application with the proper code to send and receive from/to other

applications. Unlike their work, our composition is based on building a complete

Spark application from the decomposed parts which deducts the synchronization

and communication overhead from the program execution time. Furthermore, we

increase the level of visibility of the component to enable input/output interfaces

within the program, allowing more composition expressiveness.

6.6 Spark RDD Automatic Checkpointing

In [30] an automatic checkpointing algorithm for Spark RDD was proposed.

The algorithm starts by selecting the candidate RDDs to be checkpointed, and

then based on the utilization rate of JVM old generation heap space, the time by

which checkpointing should be performed is decided. The proposed checkpointing

algorithm has several drawbacks. First, the selection strategy is based on selecting

all RDDs that are included in more than one Spark job. Second, their timing requires
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knowing the utilization rate of the JVM heap space of the machines that are running

the Spark program.
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Chapter 7

CONCLUSION AND FUTURE WORK
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7.1 Conclusion

Apache Spark is one of the key big data distributed processing frameworks

that introduces the concept of resilient distributed datasets leveraging distributed

memory. Its in-memory data operation makes it uniquely fast and well-suited for

iterative algorithms such as those used in machine learning and graph processing. In

addition to that, it provides a developer-friendly API that uses powerful distributed

abstractions which are beyond the simple map/ reduce, and similar to those in

functional programming (e.g., filter, join, and collect). While Spark have all

of these advantages, developing complex and efficient Spark application remains

to impose effort, burden, and complication on the programmer. Therefore, in this

thesis, we propose two solutions that can increase the programmers productivity

by automating some of the programming tasks in Spark, such as: (1) integrating

independently developed Spark applications, and (2) automatically transform a

given Spark program to a more efficient version.

First, we presented CBSpark, a component-based framework that builds a

Spark application from independently developed sub-Spark components with

input/output interfaces. The input/output interfaces are specified by the developer

within a sub-Spark application using a pre-defined placeholder instructions which

describes wither waiting or sending a computed dataset.Moreover, the composition

of the sub-Spark applications is based on the dependencies between their interfaces.

These dependencies are provided using an input configuration file, written by

a Domain Specific Language (DSL) that we define, as mappings from input

interfaces to output interfaces. Moreover, We have introduced several strategies to

automatically (un)persist the output datasets, and compare the different strategies
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on simple and real life scenarios.

Second, we propose TaBOS, a transformation based optimizer that can optimize

a given Spark program using a set of rewrite rules. A rewrite rules transforms

a sequence of operations into different sequence that can optimize the program

performance while preserving its semantics. We define several rewrite rules that can

accelerate the execution time of a given Spark program. And we further describe

the algorithm used for applying the rewrite rules. The algorithm consists of two

phases: a synthesis phase which generate a state-space of possible alternative Spark

programs, and a selection phase which uses one of several defined strategies to select

the most optimal program from the generated space. We evaluate the effectiveness

of our system on several simple scenarios and one non-trivial case study. We show

a speedup in execution time up to 60 times faster.

7.2 Future Work

Our future work goes in several directions:

• Improve the automatic (un)persisting module in CBSpark to be able to:

– handle the persisting of any RDD and not only the output RDDs. This

can be addressed by building a directed acyclic graph of the produced

Spark application that represent the dependencies between the computed

RDDs and then apply the strategies on the nodes with the several output

edges.

– take the garbage collector utilization into consideration. This can be

achieved using dynamic approach that monitors the garbage collector

during runtime.

• Expanding TaBOS to be able to:

– optimize a complete Spark program instead of a single Spark job.

– optimize Spark program written by any language and not just Scala.

– use tools that can identify parallelism in imperative code, to be able to

refine our “GroupBy-Key” rewrite rules so that it does not stay limited

to using operation of the Iterator class in Scala.
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– use module that can automatically identify the best selection strategy

based on input dataset features (e.g., structure and size).

• A third direction would be to establish an integration between the two frame-

works.
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