

AMERICAN UNIVERSITY OF BEIRUT

COMPONENT-BASED CROWDSOURCING IN
SOFTWARE ENGINEERING

by

BILAL YEHYA ABI FARRAJ

A thesis
submitted in partial fulfillment of the requirements

for the degree of Master of Science
to the Department of Computer Science

of the Faculty of Arts and Sciences
at the American University of Beirut

Beirut, Lebanon

ACKNOWLEDGEMENTS

I would first like to thank my thesis advisor Dr. Mohamad Jaber of the Computer
Science Department at the American University of Beirut. Before being my advisor,
Dr. Jaber gave me my first computer science course ever, and introduced me to this
new world I live in today. Throughout both undergrad and grad schools, Dr. Jaber
guided me to opportunities I would not have taken without him. He has always been
a great mentor motivating me to successfully fulfill my graduation requirements by
writing this paper.

I would also like to thank my co-advisor Dr. Shady Elbassuoni who opened the
door for this research by introducing me to the topic and guided me on the way up
to this stage. Moreover, I would like to express my gratitude to Dr. Mohamad El
Baker Nassar for reviewing my thesis and for the input and comments he gave me,
acting as a member of the thesis committee.

Finally, I must express my gratitude to my family for always being by my side and
supporting me, through the process of researching and writing this thesis. Thank
you.

v

AN ABSTRACT OF THE THESIS OF

Bilal Yehya Abi Farraj for Master of Science
Major: Computer Science

Title: Component-Based Crowdsourcing in Software Engineering

Crowdsourcing in software engineering is a fast-growing and
promising area, yet it still lacks a rigorous platform that circumvents
the well-known issues such as task decomposition and composition,
scheduling, coordination, quality, payment and time-to-delivery. This
thesis introduces novel methods and tools for automating the crowd-
sourcing process of a software project, following the component-based
paradigm. We mainly exploit the abilities of a professional crowd on a
user-friendly and easy-to-use environment, to design, verify, code, test
and then assemble various high-quality software components. The pro-
cedure starts with a request consisting of a project idea or a high-level
specification on our platform. Then, the request is hierarchically devel-
oped with the help of the crowd. At each phase, the crowd competes to
decompose a specification into (1) components with well-defined inter-
faces and (2) a glue that defines the corresponding composition opera-
tor between components. This phase is repeated until we reach atomic
components that are ready for development. Additionally, the crowd
competes to develop atomic components and to compose/integrate com-
ponents. Our platform provides a fair and rigorous payment that can
be adapted according to the requester needs as well as an intelligent
rating system that mimics the crowds performance. We evaluate our
approach on non-trivial case studies and compare it to our main com-
petitors: (1) software companies; (2) freelancers; (3) state-of-the-art
software crowdsourcing platforms. Experimental results show the effec-
tiveness of our platform with respect to cost, time-to-deliver, fairness,
reusability, and quality.

vi

Contents

ACKNOWLEDGEMENTS . v

ABSTRACT . vi

LIST OF FIGURES . ix

LIST OF TABLES . x

1 INTRODUCTION . 1

2 PROBLEM STATEMENT DESCRIPTION AND FORMALIZATION . . . 5

3 CROWDSOURCING PLATFORM DESIGN 7
3.1 The Crowd . 7
3.2 The Projects . 10
3.3 The Jobs . 11

4 COMPONENTS AND CBSE . 14
4.1 Component-Based Software Engineering- (CBSE) 14
4.2 CBSE on the Platform . 16
4.3 Challenges and Solutions . 20

4.3.1 Challenge 1: Design Refinement 20
4.3.2 Challenge 2: Code Composition 24
4.3.3 Challenge 3: Component Verification/Testing 25

4.3.3.1 User Rating . 25
4.3.3.2 Submissions Rating 27

4.3.4 Challenges 3 and 4: Component Pricing and Winners’ Payments 27
4.4 On-Platform Challenges . 30

5 CROWDSOURCED PROJECT BUILDING WORKFLOW 32
5.1 Design Phase . 32
5.2 Development Phase . 34
5.3 Integration Phase . 35
5.4 Miscellaneous . 35

5.4.1 The importance of user ratings 35
5.4.2 Payment fairness . 36
5.4.3 Maintenance and bug hunts 37
5.4.4 Automation and Copilot’s Absence 38

6 IMPLEMENTATION . 39
6.1 Design and Architecture . 39
6.2 Requester’s Perspective . 41
6.3 Worker’s Perspective . 44
6.4 Project building process . 45

vii

7 CASE STUDIES AND BENCHMARKS 49
7.1 Measurables . 49
7.2 The Sample Projects . 50
7.3 Experimental Observations And Results 52

7.3.1 Observations . 52
7.3.2 Experimental Results . 53

8 RELATED WORK . 59
8.1 Full-task Crowdsourcing . 60
8.2 Stage-specific Crowdsourcing . 60

8.2.1 Crowdsourcing software requirements extraction 60
8.2.2 Crowdsourcing for Software Design 62
8.2.3 Crowdsourcing for Software Coding 63
8.2.4 Crowdsourcing for Software Testing and Verification 63
8.2.5 Crowdsourcing for Software Evolution and Maintenance 64

8.3 Research work in crowdsourcing softwares 65
8.4 Comparing existing platforms to ours 65

9 CONCLUSION AND FUTURE WORK 68
9.1 Conclusion . 68
9.2 Future Work . 69

viii

List of Figures

1.1 Project Decomposition . 3

4.1 Black Box Code . 16
4.2 Components Pool . 17
4.3 Component Decomposition . 22

5.1 Pre-development graph . 34
5.2 Post-development graph . 35

6.1 MVC design pattern [1] . 40
6.2 Options Tabs . 41
6.3 Project Creation View . 42
6.4 Project Details . 43
6.5 Design Job Details . 43
6.6 My Projects . 44
6.7 Design Search . 45
6.8 Development Job Search . 45
6.9 Assembly Job Search . 46
6.10 Testing Job Search . 46
6.11 A Simple Hierarchy . 47
6.12 A Simple Hierarchy- Full . 48

7.1 Number of submissions versus job hardship 56
7.2 Quality of submissions versus job hardship 57
7.3 Number of submissions versus job level 57
7.4 Quality of submissions versus job level 58

ix

List of Tables

3.1 Duties of the Crowd . 10

7.1 CPISE versus software company versus freelancer 54
7.2 Component-based versus single-component 55

x

Chapter 1

INTRODUCTION

Contents

“Crowdsourcing represents the act of a company or institution taking a function

once performed by employees and outsourcing it to an undefined (and generally large)

network of people in the form of open call” [2]

Crowdsourced jobs are usually relatively small, requiring little time and effort,

in a way the worker can finish as many jobs as possible and make as much money as

possible. Examples of crowdsourced jobs are data annotation, essay editing/writing,

answering questionnaires, review services. People seek posting jobs on crowdsourcing

platforms due to: the diversity of solutions, readily available human workforce,

cost reduction, faster time-to-market, higher quality through broad participation,

creativity and open innovation [3]. Job owners assign an amount of money, either

for whoever participates in the job, or only for those who do it correctly. Payments

on crowdsourced jobs are usually in terms of cents up to a few dollars and might

require some or no expertise. Before working on tough tasks, some platforms have

the worker undergo training or a simple quiz to make sure of his/her ability to do

the job correctly. Generally, the harder the task given is, the bigger the payment

gets, and the tougher joining it becomes. Example of crowdsourcing platforms used

in software-related fields [2] are:

• Amazon Mechanical Turk [4]: Mainly used for program synthesis, GUI Testing,

oracle problem mitigation, program verification

• uTest [5]: Mainly used for functional testing, usability testing, localization

testing and load testing.

1

• AppStori [6]: A mobile crowdsourcing platform that is based on a crowdfund-

ing model

• TopCoder [7]:A contest-based software development

Software engineering and development in practice are different from the“micro-

jobs” done on crowdsourcing platforms. This is mostly because the tasks are harder,

requiring more time and a higher level of expertise. But despite this fact, crowd-

sourcing in software engineering do exist, starting with TopCoder since 2001. In

general, crowdsourcing in SE is divided into the following main sections [2]:

• Study of practice

• Theories and models

• Evaluations ion SE research

• Applications to SE:

1. Requirements

2. Design

3. Coding

4. Testing

5. Verification

6. Other

Existing platforms are usually specialized in one or a few of the mentioned sec-

tions, and each does its job differently. The main objective of the thesis is to in-

troduce a new platform that overcomes the well-known issues of the aforementioned

platforms, such as task decomposition and composition.

Our platform tweaks two software engineering cycle models: the waterfall model

and the agile model, in a way that would fit the crowdsourcing paradigm. From

2

the waterfall model, we take the basic work-flow: requirement analysis, design,

implementation, testing, acceptance testing, production and finally modification and

maintenance. As for the agile model, we adapt its ability to scale well and the idea

of iterations. Both models are needed to create a well structured framework that is

able to exploit the abilities of the crowd to a maximum. The main functionalities

are decomposed in order to parallelize all of the cycle stages. Hence, projects get

delivered in the shortest time possible.

Moreover, we offer an automized system, with a set of specific rules moving away

from the human “copilot”[2]. In a standard crowdsourcing platform, a copilot acts

as a manager. For instance, a copilot in TopCoder is responsible running challenges,

communicating with the crowd, and posting periodic status reports. In order to

automatically manage projects of a large dimension, we use the component-based

approach to fine-grain their requirements and deal with each one individually. We

treat each set of sub-requirements as a project by itself, and perform the same

procedure for an undefined number of iterations until the project is accomplished.

Software Project ...

Sub-project 2

Sub-project 1

Sub-project n

Output 1

Output 2

Output 3→ n− 1

Output n

Project Output

Figure 1.1: Project Decomposition

The proposed platform does not use crowdsourcing in software engineering as a

mass freelancing technique, but it uses the power of the crowd to properly disinte-

3

grate the once huge and expensive software project into several, much smaller fine-

grained software particles, allowing the developers to implement reasonably sized

pieces of code per job. This approach makes testing the software particles easier

due to their small sizes, and increases the parallelism on the platform, thus main-

taining high quality and vastly improving the time-to-delivery (TTD). Figure 1.1

shows one level of refinement, at which a project is decomposed into n sub-projects.

Each sub-project is targeted separately and is the crowd is expected to produce a

solution for it. Outputs are then reduced into one final output representing the

solution.

In the following chapters we define the building blocks of our system, identify

the methods used, describe the designed workflow, demonstrate the platform built,

and finally analyze the test results we obtained. In the process, we compare our

approach to others whilst illustrating where and how our method is superior.

4

Chapter 2

PROBLEM STATEMENT DESCRIPTION AND

FORMALIZATION

Contents

Creating a software from a non-formal idea is generally a very challenging task,

especially for people who are less experienced in software development. One can

choose between either hiring a software company, or a freelancer to do the job,

which may introduce the following trade-offs:

1. High cost but guaranteed quality when handing the project to a well-reputed

software company.

2. Low cost but delayed delivery and untrusted quality of a freelancer’s work.

Residing to a third untraditional option, leads to posting the project on a crowd-

sourcing platform in the hope of receiving a diversity of solutions. Looking into

existing platforms showed promising features that could be utilized while designing

a new platform, but also showed downsides that must be overcame:

1. Software jobs are usually cumbersome, and workers do not like to take the risk

of not getting paid after investing too much time in them. Since a submission

to such jobs might not win, resulting in the worker’s demotivation.

2. Unfair competition for workers often exists. More experienced workers are

allowed to register for a job earlier than others, and thus giving them a higher

chance of gaining money. Less experienced workers thus suffer from unfair

treatment and competition.

5

3. Dependency on human “copilots” to manage the development process. Those

copilots might unexpectedly leave the project, or maybe mismanage it, leading

to the project’s failure or delivery delay.

4. Platforms are usually specialized in a certain domain, resulting in limited job

options, such as UI design, testing, mobile app development.

5. The work on a software job is done as a whole by one person, defying the idea

of crowdsourcing concerning the “wisdom of the crowd”.

In order to overcome the stated drawbacks and benefit from the added value of

crowdsourcing, we introduce a novel method that combines the quality of a program

made by a software company, with a cost close to that of a freelancer, and a fast

TTD. It allows the requester to initiate his/her project and view the progress made

on it in a very simple way, without having any background in software. The workers,

on the other hand, benefit from a wide variety of job options, due to the language-

independent and platform-independent projects to be posted. Workers should also

find fair payments for the “correct” jobs they submitted, even if their submissions

were not chosen as winners. Dealing with the copilot issue, we suggest a software-

driven automated copilot that operates based on a predefined workflow.

6

Chapter 3

CROWDSOURCING PLATFORM DESIGN

Contents

3.1 The Crowd . 7

3.2 The Projects . 10

3.3 The Jobs . 11

In the broad concept, our platform shares its main components with other crowd-

sourcing platforms, but in details, it is divided into three main sections:

1. The crowd

2. The projects

3. The jobs

3.1 The Crowd

The crowd, is the group of users signed up to the platform and they are classified

into two parties:

1. Requesters: Are people with no necessary technical background. Their job

is to post a project request and details about it, to facilitate the software

building process. The requester can supervise and manage the projects created

by him/her, and view their progress.

2. Workers: Those are the users with experience, who are willing to work on

as many jobs as possible in order to get paid per job. A worker is defined

by the type of job he/she would perform on the platform, and thus can be a:

designer, developer, assembler, tester. Refer to table 3.1 to see the different

workers and their duties.

7

Worker Duties

Designer

(a) Submits refined designs/requirements based on the requester’s

needs

(b) The new requirements are supposed to be categorized, such

that developers can work on each category or group of sub-

requirements independently from the other

(c) The designer should also attach tips for integration, if needed

(d) If the requirements are simple enough for development, the de-

signer sets the job to be “final”. A final job can be developed in

parallel to the design process.

(e) Create and attach the necessary test cases for the development

jobs. The test cases should be split into two parts: one for the

developers and one for the testers.

(f) Set the following for each job: due date, budget, and program-

ming language

(g) Generally, gets paid the most due to the difficulty of the job

8

Developer

(a) Implements the final output specifications of the design stage

i.e. the reads the specifications of the “final” jobs and code

implement them.

(b) Run the test cases attached by the designers on the codes to be

submitted and make sure they all work

(c) Stick to the programming language(s) set by the designer

Assemblers

(a) Read the related development job specifications

(b) Integrate the related implementations based on the interfaces

and the tips attached by the designer

(c) Make sure that the integrated code runs properly on the test

cases attached by the designer

Testers

(a) In case of a design job: study the designs submitted and the

budget decomposition per design

(b) In case of a development job: run a different set of test cases

attached by the designer and make sure the codes match the

requirements

(c) Rate the submissions (0-5)

(d) Leave a comment in case the submissions need editing

9

All

(a) Have access to all the jobs on the platform as long as the worker

has a rating higher than the required to join

(b) Have no limit on the number of jobs to participate in

(c) Are free to request a project or work on any job type

(d) Get to know the payment for the job before joining it, and will

get paid if their submission gets highly rated

(e) Their rating will adjust based on every submission made,

whether correct or wrong

Table 3.1: Duties of the Crowd

3.2 The Projects

A project can be a general non-formally defined idea posted by an inexperienced

person, leaving the full design process for the crowd; or it can be a set of well-defined

requirements posted by an experienced person or organization aiming for a better

design for their proposed software, added to the development part. Moreover, the

project has the following details, all set by the requester:

• The budget planned to be spent on the project

• A due-date

• Programming language(s) desired

• Number of winning submissions to be paid

• Minimum rating a worker should have to join the project building process

10

• Any document(s) that might help the designers and developers

Projects might vary in requirements, scale, programming language(s), platform,

technology, and needed crowd expertise. The design of the platform allows the

creation of any software, under the assumption that the crowd is large enough and

have experienced members in all the software domains. Another assumption made,

is that the number of submissions by the crowd will always be enough to satisfy the

needs of the requester, within the time limits set.

The flexibility of the platform and the diversity of the potential projects to be

posted on it, makes it different from other platforms as follows:

1. Attracts a wide range of requesters in very different domains such as soft-

ware development, GUI design, phone apps development, web development,

computation, code optimization, software maintenance.

2. The categorization of requirements done by the designers can give the workers

a chance to work on several parts of the same project at a time and thus make

more money. Workers have the complete freedom to participate in as many

project as they want.

3. The diversity of projects to be posted boosts the workers’ interest in the plat-

form.

4. There is no limit on the project sizes.

5. Workers’ interest in the project is highly dependent on the budget set by

the requester. Thus the requester is responsible for the feasibility of his/her

project idea.

3.3 The Jobs

One of the main downsides of some other software crowdsourcing platforms is the big

and often uninteresting jobs posted. Generally, the bigger the job is, the higher the

11

risk of a worker not getting paid is, since a lot of time is invested to solve large-scale

problems, and the worker might end up not getting paid even if the work submitted

is correct. Therefore, we decided to treat each project on the platform as a job,

where this job can be decomposed into several smaller jobs and each gets handled

independently. The new jobs can also be decomposed an unrestricted number of

times based on the need and the consent of the crowd. If the job requirements are

simple enough to be handled by one person, we call it a final job.

Therefore, a project P is decomposed recursively into sub-jobs. Then umber of

sub-jobs is unknown on project creation and might vary between one project and

another.

Jobs are related in a parent-child relationship, a child cannot exist without the

parent, and only gets added to the project if needed. Dealing with a child-job is of

course simpler than dealing with the parent, due to the smaller scale, improving by

that the manageability of software entities.

Similar to the waterfall model, our process goes as follows:

1. Design

2. Verification

3. Development

4. Unit testing

5. Integration

6. Integration testing

7. Delivery

8. Maintenance

Based on the aforementioned, our platform has four types of jobs: design, devel-

opment, assembly and testing/ verification. Our workflow is not linear though, since

12

we mimic the agile model by parellizing the work and running in several iterations.

Any combination of jobs can co-exist in the project building process, due to the

variable difficulty levels among jobs. As an example: two sibling jobs might have

very different requirements, so that one is final and the other is not. The final job

is ready to be developed and tested, whereas the other is still in the design phase.

This decomposition of work exploits the crowd power, allows a very fast TTD, and

encourages the workers to join more jobs due to the little time they need, compared

to projects on other platforms.

Each of the job types on the platform suits a worker type and thus offering a

wide range of job opportunities. The same worker can participate in the design, im-

plementation, integration and testing of the same project with only one restriction:

a worker cannot test and rate his/her own submissions.

When a job is available, workers can join it and submit their work to it. All

the submissions made to the platform get tested for correctness and rated by other

workers of the crowd. After the due date of a job is reached, the submissions with

the highest ratings win and get paid. The same rule is followed in case of a design

jobs, development jobs and assembly jobs.

13

Chapter 4

COMPONENTS AND CBSE

Contents

4.1 Component-Based Software Engineering- (CBSE) 14

4.2 CBSE on the Platform . 16

4.3 Challenges and Solutions . 20

4.3.1 Challenge 1: Design Refinement 20

4.3.2 Challenge 2: Code Composition 24

4.3.3 Challenge 3: Component Verification/Testing 25

4.3.3.1 User Rating . 25

4.3.3.2 Submissions Rating 27

4.3.4 Challenges 3 and 4: Component Pricing and Winners’ Payments 27

4.4 On-Platform Challenges . 30

4.1 Component-Based Software Engineering- (CBSE)

Moving from less formal general requirements to well defined formal ones, require

refinement and categorization of requirements. The refined requirements could each

define components, in a component-based system. Components sharing the same

“parent” or same requirements origin must be connected to each other by the means

of interfaces. An interface links any two related components or glues them in several

ways to avoid any mismatch [8]:

• Parameterized Interface: Makes it possible to change the component proper-

ties by specifying parameters that are the parts of the component interface.

Such parameters can be: memory allocation, number of input data· · ·

14

• Wrapper: A special type of glue-code that encapsulates a component and

provides a new interface that either restrict or extend the original interface,

or to add or ensure particular properties.

• Adapter : An adapter is a glue code that modifies (“adapts”) the component

interface to make it compatible with the interface of another component. The

intention of an adapter is not to hide or modify the component properties, but

to adjust the interfaces.

As explained in [9], CBSE gives developers the chance to reuse existing pieces of

code and not redo the whole job from scratch. It requires focus on system specs and

development added to additional consideration for the overall system context. Indi-

vidual components necessitates consideration on the level of: properties, acquisition,

and integration.

An individual software component is a unit of composition with contractually

specified interfaces and explicit context dependencies only. It can be deployed inde-

pendently and is a subject to third parties.

Component-based development (CBD) is a section of CBSE, and it is defined by

the following:

• Searching and identifying components based on preliminary assessment

• Selecting components based on stakeholder requirements

• Integrating and assembling the selected components

• Updating the system as components evolve over time with newer versions

Using CBD comes with the following advantages:

• Reduce development time

• Increased flexibility

15

• Reduced process risk

• Enhanced quality

• Low maintenance

• Standardization

4.2 CBSE on the Platform

Starting from the fact that several components can be integrated to form a fully

functional software, we established the idea of using component-based structures as

the basis for our designed platform. The implementation of such components is done

by the crowd, thus each component needs to be available for development through

some job. Therefore, each job J on the platform is associated with a component

C, so a project P having n jobs, also has n parallel components. Every component

posted for development would receive a number of implementations; all the correct

implementations would accept the same input and are expected to produce the same

output. Assuming that all the submitted codes are correct, we treat each one as a

black boxes : codes will differ just by their time and space complexities if they have

no visual aspect.

Correct Componentinput output

Figure 4.1: Black Box Code

For example a certain component might require a custom complex algorithm:

1. Worker 1 submits implementation I1 having time complexity = O(n2)

2. Worker 2 submits implementation I2 having time complexity = O(nlog(n))

Both I1 and I2 accept the same input and produce the same outputs, but I2 does it

efficiently, thus we select it to be the implementation of our component. If at some

16

point in time, an implementation I3 gets implemented and is more optimized than

I2, the component’s implementation could be simply be replaced by I3.

Adapting the component-based approach on a crowdsourcing platform also

makes sense in the following ways:

• Components can be very small in size, thus require little time to implement

and test, and also favors the micro-job concept

• Many implementations will be received for the same component, giving us the

chance to choose the best and thus boost the quality

• The number of components that would be needed to build one project should

be big and thus offering a bigger number of job opportunities

• Facilitates code maintenance and optimization

• Allows future code reuse

• Integrating two or more components will result in a new component, which

could be configured based on different permutations of the sub-components

it is made of. For example in figure 4.2, we have three implementations for

the first component and two for the second, therefore, we get six possible

permutations and thus six different compositions.

I1

I2

I3

+
I4

I5

→ ??

C1 C2 Integration of C1 amd C2

Figure 4.2: Components Pool

17

Figure 4.2 shows the post-development stage at which integration happens, but

prior to this stage, requirements must be defined for both C1 and C2. The two sets

of requirements are the output of the design stage, where the designer decided on

a specific refinement that led to the creation of the two components. Reaching a

component-based design is not as straight forward, especially when being handed to

a crowd. Therefore, using this approach in building the platform introduced some

challenges over the challenges faced in a traditional crowdsourcing platform:

• Design refinement without losing integrity:

Each complex component will have its requirement decomposed into several

sub-requirements to facilitate the development process and improve the gains

of using the CBSE. This decomposition, if done wrong, might ruin the integrity

of the whole system or might cause the loss of requirements due to human error.

To be a designer, the worker should have experience in the domain and thus

be careful while creating the sub-components.

• Code composition based on requirements and interfaces:

Just like the design refinement stage, requirements might end up not being

implemented due to human error. Its the designer’s job to attach the necessary

requirements, interfaces and tips for the designer to base the implementation

on. The developer should also pay attention to all the posted details, and test

the code using the cases posted by the designer. Testers should not only run

the codes submitted, but also examine them for any missing points.

• Unit testing and integration testing:

A component might work fine on its own but when integrated it might fail

and thus causing a problem, that could be resolved by choosing a different

implementation. Another problem might be arbitrary rating by the testers;

we attempt to solve this problem by using weighted ratings.

18

• Unfair component pricing:

Since the sub-components are priced by the designer, based on the budget set

by the requester, some components might be either underpriced or overpriced.

This could be due to:

1. The poor judgment of the designer

2. The low budget set by the requester

3. A possible run out of budget due to excessive design refinement

• Submissions ranking:

Submissions need to be rated by testers and given a (0− 5) grade. The crowd

of testers might highly rank a certain submission, although its not the best.

The rules of the platform dictate that the submission with the highest rate

gets chosen as a winner, regardless of how it compares to other submissions.

Weighted ratings act as a good safety net, to avoid random ratings by spam

users and maintain a good quality of submissions.

• Winner’s payments:

Paying a winner as soon as the job is closed seems to have some risk in it

due to the problem mentioned above: the component might be functional by

itself, but does not fit the project properly. This problem might be introduced

after the winner is paid, and thus losing the chance of a refund. To fix that

we proposed a certain percentage as a security fee per job, as a portion of the

prize. This security fee will not be paid for the winners until the whole project

is over. In this way, contacting the worker with a faulty component would be

easier.

• Cost estimation:

At this stage, a requester estimates the budget needed for the project to be

done, and sets it for the crowd. If we were to estimate the budget needed

19

based on the number of components to be used, we would have to estimate

the number of components as well. Going in this direction would suggest the

need for machine learning techniques, which we will leave for a future work.

4.3 Challenges and Solutions

4.3.1 Challenge 1: Design Refinement

Starting with the first and most important challenge, we introduce our first goal:

retrieving the general system specification from the requester and refining it into sim-

pler sub-specifications, where each sub-specification gets dealt with independently.

Each component C on the platform thus has a certain specification S, such that:

Definition 1. Specification: A (sub)specification S is defined by a formal or nar-

rative description of the desired system with optional interfaces used to compose

specifications. Give a specification S, we define the following two methods

• Design method: design(S) =
⊕
{Si}i∈I , which defines the set of sub specifi-

cations {Si}i∈I and their corresponding composition operator
⊕

(w.r.t. inter-

faces of sub specifications). If design(S) = ∅, we consider that S is an atomic

specification that cannot be decomposed further.

• Implementation method: the implementation of a specification is defined by

the code method as follows.

code(S) =

Implementation of S If S is atomic⊕
{code(Si)}i∈I Otherwise

design(Specification s) {

if(s is not atomic) {

lunch a design CrowdSource job of s;

s.design = winningDesign(s);

20

for(Specification si: s.design.specs) {

CrowdSource(si);

}

}

}

Listing 4.1: Design Method

code(Specification s) {

if(s is atomic) {

lunch an implementation job of s;

s.code = winningCode(s);

} else { // s is not atomic

if(s.design 6= ∅ ∧ ∀si ∈ s.design.specs : si.code 6= ∅) {

lunch
⊕

compose implementation job of s;

s.code = winningCode(s);

}

}

}

Listing 4.2: Code Method

Based on the above, when a design job is available on the platform, the crowd

members compete against each other to submit the best component-based design

for the component associated with the job:

1. Analyze the job requirements i.e. the component’s specification

2. Study the possible ways to categorize the specifications by: topic, programming

language, difficulty level, design logic, and so on.

3. Create as many sub-components as needed, one for each categorization. Other

users must be able to read the requirements of the sub-components and work

independently on them, without any need to refer to other components.

21

4. Ensure that the compositions of the sub-components will result in the com-

ponent itself. The designer should make sure that no requirements go missing

during the refinement process.

5. Specify the budget needed for each new component.

6. Assign the necessary programming language(s) needed to code each compo-

nent.

Each refinement process creates a hierarchy where the root node is the parent

component, and the leaf nodes are the sub-components:

Ci(parent)

Ci2Ci1 Ci3

⊕(Ci1 , Ci2 , Ci3)

Figure 4.3: Component Decomposition

In figure 4.3 we notice the following: design(Si) = ⊕(Si1 ,Si2 ,Si3). This illus-

trates the output of one design phase, but the whole refinement process should be

applied on all non-atomic components top-down, and is described by the following

method:

• Refinement method: Recursively refine components in the hierarchy. A single

refinement phase is taking any component C having a non-atomic specification

S, and calling on the design method on S. Then calling on the method refine

on all the sub-components of C. The base case is reached when C has an atomic

S.

22

refine(C) =

return If S corresponding

(Do not further refine) to C is atomic

design(C.S) Otherwise

refine(Ci)i∈I

refine(Component c) {

if(c.S is not atomic) {

design(c.S); // the output is a list of sub-components

for(Component ci: c.subcomponents) {

refine(ci);

}

} else { // c.S is atomic

return; //no refinement needed

}

}

Listing 4.3: Refine Method

The previous method necessitates the two following definitions on the type of

components:

Definition 2. Compound Components: Each C is considered a compound compo-

nent if its specification can be further decomposed (C.S is non-atomic)

Definition 3. Base Components: A component C is called a base component when

its corresponding specification S is atomic. In this case C requires no further de-

composition and is ready for development ⇒ code(C.S) can be applied on it.

23

4.3.2 Challenge 2: Code Composition

Now that we have implementations for all base components, we address the second

challenge: code composition. Referring to figure 4.3, and assuming that the sub-

components C1, 2, 3 are all base components, having C1, 2, 3.code 6= φ, but C.code =

φ. Thus we introduce a new method, similar to the refine method, but goes

bottom-up instead of top-down.

• Integrate method: Recursively go over each compound component C and inte-

grate the codes of its children, based on the specification of C and its interfaces.

If at least one of the components does not have its code ready, wait for it.

integrate(C) =

Merge the codes of C’s If all C ′is have

children and assign the code(Ci) 6= φ

output code to C

integrate(Parent(C)) If C 6= root

integrate(Component c) {

if(c is compound and c.code = φ) {

for(Component ci: c.subcomponents) {

if(ci.code = φ){

return;

}

}

lunch an implementation job of c;

if(c 6= root){ //root has no parent

24

integrate(c.Parent);

}

}

}

Listing 4.4: Integrate Method

When integrate(root) = final code, the project finishes and is ready for deliv-

ery.

4.3.3 Challenge 3: Component Verification/Testing

Every submission to the platform gets tested by the crowd, starting by designs, then

codes, then integrations. For this reason our testing method depends on the type

of the job at which a submission is made: design testing is done by designers, code

testing is done by developers and integration testing is done by assemblers. The

added value given by the repetitive testing is of course quality assurance: each sub-

component is tested independently, then the composition is tested again to eliminate

possible error. All submissions get rated and thus ranked, allowing the replacement

of any faulty component implementation and thus improving maintainablity.

A submission’s rating is done by the crowd, and the crowd might contain spam-

mers or fakes who would set random ratings for submissions and thus negatively

effecting the overall quality and effectiveness of the system. To conquer this chal-

lenge we define two interrelated rating systems: user rating and submission rating.

4.3.3.1 User Rating

A user’s rating can increase or decrease based on several factors, and this rating

effects the payments he/she gets, added to the jobs he/she can join on the platform:

• User rating has three independent values: Rdes, Rdev, Ri standing for design,

development, and integration ratings.

25

• All ratings are set to 2.5/5 upon sign up

• Rdes, Rdev, and Ri vary based on the user’s submissions (to be discussed

below)

• The rating also vary based on the user’s testing accuracy per job field. For

example, the design rating of a worker will be adjusted, in case of a correct or

wrong rating of a submission done to a design job.

Taking R to be any of Rdes, Rdev, and Ri. Let R = αRs + βRt such that

(α + β = 1) where Rs depends on every submission made to the platform by the

worker, and Rt depends on the testing jobs performed by the worker, on a certain

job type.

Calculating Rs:

User U has a set of n submissions {S1, S2, ..., Sn}, where each Si has a rating

0 ≤ ri ≤ 5 and a binary value ai = 1 if Si was accepted and ai = 0 otherwise.

A user’s rating is directly proportional to the average of his submission’s ratings

ravg =
∑n

i=1 ri
n .

If ai = 1, rating ri must be boosted by a certain percentage p1 set by the

platform, now: rinew = (1− p1)riold + 5(p1)

Else rinew = riold

Therefor, ravg =
∑n

i=1 rinew
n can be used to calculate the new rating:

Rsnew =
Rsold

+ravg
2 . The ratio of accepted submissions over total submissions

should also be included in the calculation of user rating based on a certain percentage

p2, therefore:

Rs = (1− p2)
Rsold + ravg

2
+ p2

Saccepted
Stotal

Calculating Rt:

26

User U has a set of m verifications on m different submissions, where those

submissions were made by other workers on a certain job type. A verification has

four characteristics: (1) the user who made it, (2) the job at which it was made on,

(3) the submission verified, and (4) the rating given. In order to calculate Rt we

need to examine the validations of U , to see how accurate the ratings are: After a job

J is closed and a winner is chosen, each submission to J has a final rating rsi∈I . We

should now check if the ratings given by U for each si is within a certain threshold:

accuracy = |rsi−final − rsi−given| <= threshold. Rt is thus simply an average of

accurate ratings over the total number of verifications m: Rt = correct ratings
all ratings

4.3.3.2 Submissions Rating

Every submission made to the platform should be rated, as part of its verifica-

tion/testing procedure. This rating is tightly connecting to that of the worker who

is doing the verification. Submission ratings are calculated based on the weighted

averaging of the workers’ ratings

4.3.4 Challenges 3 and 4: Component Pricing and Winners’ Pay-

ments

Given a specification S, a user can specify a budget B to crowd-source its devel-

opment. The budget is split into three phases: (1) design; (2) integration; and (3)

development. Let pdes, pint, pdev denotes the percentage of the design, integration,

and development of specification S, respectively, where pdes +pint +pdev = 1. The

value of these percentages depends on the level and the hardship of the task (i.e.,

pdes = pdes(`, h)1). Clearly, when S is atomic then pdes, pint, pdev are equal to 0,

0, 1, respectively.

• Design Budget : bdes is the budget allocated to the wining(s) design, ratings

of designs and a security fees, which is equal to pdes × B. Note, a user can

1. This function can be embedded by the users, which can also return fixed percentages.

27

Algorithm 1 userRating

1: function getUserSubmissionsRating(U, S, p1, p2)
2: n← number of submissions
3: Rs ← rating of user U’s submissions
4: if n = 0 then
5: return 2.5
6: else
7: Sacc ← numberofacceptedsubmissions
8: ravg ← getSubmissionsRatingAvg(S, p1)

9: Rs ← (1− p2)
R+ravg

2 + p2
Sacc
n

10: return Rs
11:

12: function getUserValidationsRating(U, V)
13: n← number of validations in V
14: c← correct ratings
15: i← 0
16: for i < n do
17: sub← V (i).submission
18: ri.given ← V (i).rating
19: acc← |ri.given − sub.rating|
20: if acc < threshold then
21: c← c+ 1

22: Rt = c
n

23: return Rt
24:

25: function getUserRating(U, α, β)
26: Rs ← getUserSubmissionsRating
27: Rt ← getUserV alidationsRating
28: R = αRs + βRt
29: return R
30:

31: function getSubmissionsRatingAvg(S, p1)
32: sum← 0
33: n← number of submissions
34: i← 0
35: for i < n do
36: ri ← S(i).rating
37: ai ← ri.accepted
38: if ai = True then
39: ri ← (1− p1)ri + 5(p1)

40: sum← sum+ ri
41: savg = sum/n
42: return savg

28

Algorithm 2 Update Submission Rating

1: function updateSubmissionRating(s, V)
2: n← number of verifications
3: sum1 ← 0
4: sum2 ← 0
5: i← 0
6: for i < n do
7: Ri ← V (i).User.rating
8: ri ← V (i).ratingGiven
9: sum1 ← sum1 + (Ri × ri)

10: sum2 ← sum2 + ri
11: rating ← sum1/sum2
12: return rating

13:

specify the number of winning designers and the corresponding percentage

distribution between them (e.g., 90% for the first and 10% for the second).

Rating and security fees take a fixed percentages, psecdes, pratint, respectively, of

the budget bdes (e.g., between 5% and 10%, which can be also given as input or

dynamically set by the designers). The security fees is released to the designer

when the integration of its design is accepted. The remaining of bdes, i.e.,

bdes× 1− psecdes− pratint, is to be paid for the wining(s) design. Let the winning

design, design(S) =
⊕
{Si}i∈I . The designer must submit (1) hardship of

the integration; (2) hardship of development; and (3) a percentage for each

sub specification, psub, where,
∑
i∈I psub(Si) = 1.

• Integration Budget : bint is the budget allocated to the wining(s) integration

and ratings of integrations, which is equal to pint × B. As for the design,

a user can specify the number of winning integrations and the corresponding

percentage distribution between them. Rating takes a fixed percentages, pratint,

of the budget bint.

• Development Budget : bdev is the budget to be allocated for sub specifications

(design, development and integration), which is equal pdev × B. Given the

wining design, design(S) =
⊕
{Si}i∈I , the budget allocated to sub specifica-

29

tions Si is equal to bdev× psub(Si). The winning designer of S is in charge of

setting the budgets for the sub-components.

4.4 On-Platform Challenges

Despite all the added value of using the component-based system, facing some

platform-related hurdles was inevitable. Putting our platform under test showed

us the following challenges, that are solved as explained:

• Lack of user knowledge: Some workers might not be familiar with the

component-based design, and would prefer on a rather traditional workflow.

To solve this issue documentations and tutorials are available for the users for

reference and guidance.

• Designer’s duties: A designer has far too many duties just like in any tra-

ditional approach, in terms of: proper requirements refinement, fair budget

decomposition, well defined interfaces and sub-specifications. Thus a designer

gets rewarded more than other workers in return for the challenging job they

do.

• The dead component scenario: We are working under the assumptions that

we have a crowd big enough and experienced enough to commit to all the

jobs posted. But in the real world, a component could be intentionally or

unintentionally left without development, causing the delay of the process.

The issue could be solved by raising the payment on such a job and giving it

priority over others.

• An unsolved component: A similar scenario to the “dead component”, is having

a component with several submissions to it, but the submissions are wrong

or not good enough. A similar case would be having a wrong judgment by

the testers, and having a submission highly rated, although its not the best.

30

This would also result in a delay of the development process, but back to our

assumption: there will always be a correct submission.

31

Chapter 5

CROWDSOURCED PROJECT BUILDING WORKFLOW

Contents

5.1 Design Phase . 32

5.2 Development Phase . 34

5.3 Integration Phase . 35

5.4 Miscellaneous . 35

5.4.1 The importance of user ratings 35

5.4.2 Payment fairness . 36

5.4.3 Maintenance and bug hunts 37

5.4.4 Automation and Copilot’s Absence 38

Now that the basic elements of the platform are defined, they should all be put

together in a well-defined workflow, in order to enforce automation. The rules stated

in the workflow, are meant to replace the human copilot that manages projects on

other platforms. The steps to be explained start from a requester’s post on the

platform initiating a project P , and finish at the delivery of P .

5.1 Design Phase

As mentioned before, upon posting a project request on the platform, a design job

gets automatically created. This root job J0 is associated with the root component

C0. The refine method should then be applied on C0: the output of the first stage

of refinement is several independent sub-components, smaller in size than C0 by

definition, such that the composition of those sub-components is equal to C0. An

example of three sub-components of a certain random project:

32

1. Front-end: this component can be further decomposed into several pages, and

each page will then be designed by a different worker. The designer must state

the proposed pages and a general description about each, leaving the detailed

description for the designers that will follow. The designer should state the

necessary interfaces to communicate with the back-end and the database, for

example: the database name and the languages to be used.

2. Back-end: can be of large-scale and needs several rounds of refinement. The

designer should give an overview of the requirements needed, and some details

as mentioned in the front-end component.

3. Database: might be simple and can be directly ready for development (an exam-

ple of a base component). Therefore, a detailed description of all the needed

tables, relations, keys, and data should be stated by the designer.

Working on the three sub-components from the example can be done in parallel,

noticing that the development stage can start independently before the design stage

is done. The flexibility offered by using the component-based approach allows us to

replace any defected or less optimized component at any stage of time, as long as

the inputs and the outputs of the two components are compatible.

Each job available on the platform, allows workers to sign up to it if their design

rating is higher than the minimum rating required for this job. Limiting the mini-

mum required rating improves the quality of work, and emphasizes weaker workers

to improve their ratings by working on simpler jobs requiring lower ratings. Design-

ers then read the specification Si of the component Ci they’re joined, and submit a

component-based design for it. All the submissions to the job get verified and rated

by verifiers, whose job is to make sure that the submitted design fits the specifica-

tion, then rated accordingly (0-5) and leave a comment if needed. The comments

give the designers a chance to resubmit their work edited and not lose their chance

of winning. The validation process runs in parallel with the design submission pro-

33

cess, so the earlier workers submit the better. When the job reaches its due date,

a pool of top-rated submissions get select and their submitters get paid (the size of

the pool is predetermined by the project requester).

Finally, the submission having the highest rating gets selected as a design for the

new sub-components, and the winning designer must create those sub-components

on the platform based on his design. Following the same recursive refinement ap-

proach, the output of the design phase is a tree hierarchy where the root is C0 and

all the leafs are base components, ready for development.

5.2 Development Phase

Development can start at any point in time when a base component design is ready,

so no need to wait for the whole design phase to finish. For the sake of simplicity,

we assume that the development phase at a component starts when all the sibling

components have their designs ready, and no code has yet been submitted to the

platform:

code(Si) =?

code(Si2) =?

code(Si1) =? code(Si3) =?

Figure 5.1: Pre-development graph

Based on the definition of the method code, the code of Si is the composition of

the codes of its children. And since the children are base components, their code is

the implementation submitted to the platform by the crowd.

Each component C having no implementation is part of an open job J on the

platform. Similar to the design phase, a competition gets carried out where workers

34

read the specification of C and submit a code that fits it. The code submitted should

also work properly on the test cases attached to the job, by its designer. Testers from

the crowd run a different test suite, rate the quality of the code submitted, and give

comments for the submitters. Just like the design phase, a certain pool of winners

gets paid for having the highest rated submissions. Finally, the highest rated code

gets assigned to the component such that code(C) = Implementation of S.

5.3 Integration Phase

code(Si) =?

code(Si2) = impl of Si2

code(Si1) = impl of Si1 code(Si3) = impl of Si3

Figure 5.2: Post-development graph

Whenever all the children of a compound component have their code 6= φ, an

integration competition starts on the platform, where the workers’ job is:

1. Examine the codes of sibling components

2. Examine the interfaces describes in the design (if they exists)

3. Create a functioning code out of the codes of the different sibling components

4. Submit the new code to the platform

5.4 Miscellaneous

5.4.1 The importance of user ratings

As discussed in the previous chapter, the rating of a user changes by the end of

each job he/she participated in. A rating plays a huge role in allowing the user

35

to join more jobs and gain more money, it is the only ticket in. Dividing the user

rating into three different ratings is to allow him/her to participate in a jobs type

even if their rating is zero in a different type: a user with zero design rating can

still participate freely in any development and integration jobs. Similarly a worker

might choose to participate in only one of the job types, and this is perfectly fine.

Ratings in different fields have no effect on one another.

One’s rating might allow him/her to join a certain job with a low minimum

required rating, but in the case of testing, the weighted submissions’ rating system

followed limit the user’s effectiveness on the submission’s final rating. This strict rule

is necessary on our automated platform to limit/restrict the participation of workers

with little or no experience. Moreover, it improves fairness towards experienced

workers, by giving their opinion a stronger effect on the project building process.

5.4.2 Payment fairness

Adopting the component-based approach allowed us to hugely improve the fairness

towards the workers. Since their is no way all the participants could be paid we

tried to reach a middle ground between the requesters and the workers. Fairness

was accomplished for both parties by the following:

• Budget set in advance: The platform forces the user to take responsibility of

the budget set. If the budget was little, prizes on jobs will be low and workers

will not be interested. But if the budget is set properly, the project will attract

more job seekers.

• Smaller jobs: Working for a little time and receiving no payment is much easier

than spending a long while and ending up losing the challenge and not getting

paid. Components are simplified as much as possible and thus giving the

chance for the worker to participate in several competitions, highly improving

the chance of a win.

36

• Submissions ranking: A requester can set any number of winners to be paid

based on rank. If the number is n, the workers having the top n submission

ratings all get paid. The worker can see the prize he/she would win in advance,

without knowing what n is, and thus freely deciding whether to participate or

not.

• Tester payments: A tester gets paid for each correct rating given. Each tester

gets an equal share of the testing budget set for the component.

• Security budget: Some percentage of the prize money is saved by the platform

and not given to the worker, until the project is done. This percentage is kept

as security, in case of a faulty component. Requesters would feel safer if this is

done, and would encourage them to post more projects. Workers on the other

hand will be more cautious with their submissions, knowing that they will be

paid the full amount after a certain period of time.

5.4.3 Maintenance and bug hunts

Maintenance is a crucial part of every software project, and using components in

building the software facilitates maintenance greatly. At any point, a component

can be replaced by another, having the same specifications, input and output. For

example, if a website owner wants to change the looks of a certain page, the com-

ponent responsible for that page can be replaced by another, either from the pool

of submissions made earlier, or a new job gets created for its sake.

Some existing platforms conduct a bug hunt during the user’s trial period. The

same exercise is done on our platform during the testing of the last component’s

composition i.e. the root component. Having all the codes assembled within it, the

code of the root component represents the whole project with all its functionalities.

Therefore, testing it, rating it, and commenting on its problems, is actually a bug

hunt.

37

5.4.4 Automation and Copilot’s Absence

With all the rules of the system set and well defined for both the requesters and

the workers, the need for a human copilot diminishes. The approach we followed

takes the managerial position from the copilot and gives it to all the winners in a

project. It lets the winners create the jobs, of designs they see best fit, putting them

in the position of responsibility and thus increasing their interest in the project. Not

having a fixed manager, minimizes the risk of that manager abandoning the project

or not being worthy of the position.

38

Chapter 6

IMPLEMENTATION

Contents

6.1 Design and Architecture . 39

6.2 Requester’s Perspective . 41

6.3 Worker’s Perspective . 44

6.4 Project building process . 45

Based on the design our research yielded, and for the sake of testing our approach,

we developed a prototype of a platform that implements our model. The platform

is a website created using ASP.net MVC5 [10], so-called CPISE: Crowdsourcing

Projects in Software Engineering. CPISE implements the crowdsourcing platform

described in the previous chapters, in all its aspects. The implementation process

improved the previously described design into its current form because it offered a

hands-on experience with our defined approach and a closer look at its details. In

the following sections, we describe the implemented platform and present a parallel

version of the workflow on CPISE, both from a requester and a worker’s perspective.

6.1 Design and Architecture

By default, using the MVC pattern divides the implementation into three intercon-

nected parts: model, view and controller.

Starting with the model part, objects created allow the interaction with the

MS SQL database [11] through the object relational mapper “Entity Framework

(EF)” [12]. Models also allow the secure transfer of data between the different

views of the website, passing through controllers. Several models were created to

favor the different data types needed: user, project, job, validation, submission

and more. A variety of model configurations were implemented, since the platform

39

Figure 6.1: MVC design pattern [1]

contains several forms and different operations require different pieces of data to be

communicated.

Views in MVC represent webpages and their contents, written mainly in HTML5,

styled with CSS, Java Script and Bootstrap. ASP.net allows the usage of “razor

syntax” [13], which allows embedding server-based code into webpages: the language

used to write in razor was C#. Partial-views were also implemented to improve code

reuse, since they can be embedded within other views and rendered by HTML. Views

and partial views were manipulated using razor syntax in order to display different

information, based on the user of the website and his/her status, for example:

• Project requester/owner: can view more details about his project, have the

ability to edit some of its parts, have access to detailed statistics, and more.

• Regular worker: has the ability to join a job, make a submission, rate a submis-

sion, all which the project owner cannot do. Has limited access to jobs based

on his/her rating. Moreover, jobs based on preferred programming languages

or job types are recommended for the worker on the home page.

• Winner of a competition: gets congratulated and informed about the money

won. A payment is issued for him/her, and a rating adjustment occurs.

• Loser of a competition: a regret message for not winning and the rating his/her

submission received.

40

Finally, controllers are the classes that handle user inputs, models, and query

strings. Controllers contain all the methods needed to select which views to open

(based on URL and parameters), send data to them, or receive data from them

through the different implemented models. Most of the operations done on the

database are written in the controllers, whether updating or selecting data. Back

end operations are mostly written in the controllers in the form of static and non-

static methods.

6.2 Requester’s Perspective

CPISE was built in a way that would serve its targeted audience, in the simplest way

possible. The audience can be either requesters or workers, and requesters could be

either experienced or inexperienced in the software domain. As mentioned before,

a user can be both a requester and a worker, and can choose what to do from a set

of options like in figure 6.2.

Figure 6.2: Options Tabs

A project post is the very first step of the workflow on CPISE, and it cannot

happen without a requester. Our main concern was always the inexperienced re-

questers who would like to get their software project built easily and fast, without

having to deal with companies or freelancers. So after a regular sign up, the user

will have to click a “Create Project” button that would lead to the new project form

found in figure 6.3.

An inexperienced requester can only fill the project description text area be-

fore clicking “Create Project”, and then the crowd will be fully responsible for the

41

Figure 6.3: Project Creation View

requirement extraction and design refinement process. On the other hand, more

experienced requesters are encouraged to attach any document that could be of

help for the designers. Note that having clear requirements from the start would

drastically facilitate the project building process, and mainly the design phase.

Upon filling the form a project gets created on the platform, and along with it

an open design job having the same description and details: budget, hardship level,

minimum worker rating, maximum accepted submissions, due date, and attached

files. An example is illustrated in figures 6.4 and 6.5.

In figure 6.4, we are assuming that the requirements of the requested project

are in the attached document “Cpise Specs”, since this project is created by an

experienced requester.

Figure 6.5 shows the respective design job automatically created by the platform,

so that the design phase gets initiated. The design job is represented as the root

42

Figure 6.4: Project Details

component in the component hierarchy and called “Parent Design”, like in figure

6.11.

Figure 6.5: Design Job Details

Now the job shown in figure 6.5 is available for all workers who have their design

rating > 2. Unlimited submissions can be made by any of the designers to the

job, but only a certain pool will be selected for payment, based on the number of

accepted submissions entered by the requester earlier.

Now the requester owns the project and can act as a supervisor to track the

progress of the process, with detailed statistics and overview of the project hierarchy.

43

The same user might own several projects and can visit them at any time (figure 6.6).

The platform would indicate if the projects is done, or if its still under construction.

Figure 6.6: My Projects

6.3 Worker’s Perspective

In order to help the worker find a suitable job on the platform, he/she should ideally

set a preferred job type upon sign up: design, development or integration. Moreover,

the worker can select a set of preferred programming languages, improving the job

recommendations on the home page and boosting the chance of joining relevant

and interesting job. Upon sign up, the user gets an initial rating of 2.5 on design,

development and integration, giving him the chance to join a wide range of available

jobs. Those ratings get adjusted based on the submissions in each field, or the correct

submissions’ rating in case of verification or testing.

Regardless of the preferences set, the worker can still join any type of job he/she

likes, as long as the rating in the particular field is higher than that required for the

job. Figures (6.7, 6.8, 6.9, 6.10) show the different tabs at which a user can find

suitable jobs.

44

Figure 6.7: Design Search

Figure 6.8: Development Job Search

6.4 Project building process

Naturally, requesters and workers come together in the project building process,

that starts as soon as a project gets created. As the aforementioned sections state,

the first job in the project is a design job that will start accepting submissions

from workers eligible to join it. The designer whose submission gets selected as a

winner for the first components must then create new components, based on the

design he/she submitted. Each new component created will have budget set by

the winning designer, and limited by the platform below the budget of the parent

component. The new components must also have a due date earlier than that of

the parent, to stay within time limits. A design competition will be held on every

component created, in a parallel fashion. Designers will make submissions that will

then be verified by other crowd members who should also have an above-the-limit

rating.

The same rules of winning and sub-jobs creation are followed recursively, until

a base component is reached. As mentioned before, a base component has the

simplest form of a specification, that can no longer be refined. In this case, the

winning designer will have to create a development job, and thus a development

45

Figure 6.9: Assembly Job Search

Figure 6.10: Testing Job Search

competition will start.

After all the design jobs are done (components are implemented), their respective

design jobs retrieve the winning code submissions. Based on the example hierarchy

reported in figure 6.11, if development jobs numbered: 3031, 3032 and 3033 all

have their codes ready, those codes will be handed respectively to the design jobs

numbered: 2030, 3029 and 3030. The only job with no code ready would now be

the “Parent design” numbered 2029. In order to give the root its code, the codes of

its child-nodes should be integrated by the crowd through a “merging job”. Such a

job will be automatically created by the platform as soon as all the sub-components

of any parent component in the hierarchy have implementations assigned for their

specifications. The full hierarchy is presented in figure 6.12, showing the new merging

job numbered 3034. The integrated codes from the three jobs submitted to the

merging job will be tested and rated as usual, where the winning code will be

assigned to the “Parent design”.

When “Parent design” has an implementation assigned to its specification, the

projects closes and a final code is available for the requester to download.

46

Figure 6.11: A Simple Hierarchy

47

Figure 6.12: A Simple Hierarchy- Full

48

Chapter 7

CASE STUDIES AND BENCHMARKS

Contents

7.1 Measurables . 49

7.2 The Sample Projects . 50

7.3 Experimental Observations And Results 52

7.3.1 Observations . 52

7.3.2 Experimental Results . 53

In order to study the validity of our approach in the first place, and its effec-

tiveness in the second place, a real life case study has been conducted over a group

of computer scientists acting as a crowd. The crowd members have different exper-

tise in different fields and collaboratively built the project to be described, without

having any direct contact between them.

7.1 Measurables

Our experiments test for the following in comparison with a freelancer or a software

company:

• TTD

• Price

• Quality

• Number of paid workers

• Worker’s availability

• Number of reusable codes

49

We also study was how our platform could be compared to other platforms.

More specifically how the component-based approach performs compared to the

single-component approach. We thus measure the following:

• Time to receive the first submission

• Time to delivery (TTD)

• Average submissions’ rating

• Overall quality

One more thing to analyze is the effect of the different jobs posted, on the workers

and their submissions in terms of:

• Number of submissions versus hardship level

• Number of submissions versus component level

• Number of submissions versus prize money

• Quality of submissions versus hardship level

• Quality of submissions versus component level

• Quality of submissions versus prize money

• Average submissions rating per job type

• Average workers’ rating at the end of the case study

7.2 The Sample Projects

Three projects were used for this case study, and each targets a certain set of mea-

surables. The first two projects were used to compare our platform to some other

existing crowdsourcing platforms. The projects have similar hardship levels to make

fair comparisons.

50

In order to perform the test we divided the crowd into two groups:

• First Group: Work on a single job project to simulate a project competition on

different platforms. That is, the worker reads the requirements and does the

whole project on his/her own and submit it to the platform, fully functional.

• Second Group: Build a component-based design, develop it and integrate it as

explained in the previous chapter

• Both Groups : Each group tests and rates the other group’s submissions

For the third project we used a real life project done by both a freelancer and a

software company, supplying us with the necessary data for the study: price, TTD

and the source code. The group of workers now acted as independent workers and

contributed to the building process in all its stages.

The projects were:

• Project 1: Daily expenses tracker. Given a monthly income and allowing the

addition of any daily income as well, add or remove expenses, monitor savings

and warn user if daily limit exceeded.

• Project 2: Supermarket items reminder that allows the creation of a list of

items from a pool of frequently added items. If the items do not exist in the

pool, create and add them. Each item should have: type, size, quantity and

prices.

• Project 3: A website that allows collecting information about local companies

(mostly SMEs) related to labor market trends, required skills and existing job

vacancies. This Labor Market Observatories will become resource hubs on

labor market data to job seekers, as well as private public and international

stakeholders. SMEs must be able to register and fill in their basic profile

information (name, corporation type, sectors) and another detailed profile

(governance and structure, employment status). SMEs must also fill Skills

51

Based Needs Information, composed of: Required technical skills based on

sector, required soft skills, and training history. Public visitors must be able

to register to access the platform, in order to see the profiles of the SMEs and

find job vacancies.

7.3 Experimental Observations And Results

The two following subsections are based on the case study we conducted and mon-

itored. Before working on the platform directly, we introduced the project to the

crowd in general and the rules of component-based design, development and inte-

gration. We then showed some design examples (component specification decom-

position) and possible implementations. The tutorial was thirty minutes long and

after that the workers were ready to work on the platform independently. Since the

projects were already posted by us, we acted as requesters.

7.3.1 Observations

When the crowd started working, we examined each individual separately and had

the following observations:

• Attention grabbed: As we explained our approach and our platform rules, the

crowd was positively reacting. The idea appealed to them and they were

excited to work on it.

• Fast start: What we directly noticed was the very fast adaptation to the

system, all the crowd members knew exactly what to do and competed against

each other in a real life scenario, despite the different skills and levels.

• Satisfactory results: Submissions were generally satisfactory with a relatively

high average submissions rating (≈ 4.14). We made sure that the winning

submissions are actually the best, by manually comparing the competing sub-

missions.

52

• Positive feedback: Despite some remarks about issues that could be fixed on

our implemented prototype of a platform, the feedback was generally positive

and the workers were satisfied and comfortable with the work-flow.

• Crowdsourcing effectiveness: Seeing the crowd work on the project collabo-

ratively, yet each worker doing the job independently, showed us the power

of crowdsourcing. We retrieved several solutions for the same problems, got

them tested, rated and ranked. The best submissions were used in the follow-

ing stages.

• CBS effectiveness: The huge added value to our platform was the utilization

of the component-based system, and this showed clearly when we compared

the regular crowdsourced project to a component-based crowdsourced project,

especially in terms of TTD (experimental results below).

7.3.2 Experimental Results

The results obtained are divided into three main parts:

1. CPISE versus software company versus freelancer

2. Component-based versus single-component

3. Jobs versus workers

Based on project 3 described earlier, we illustrate in table 7.1 the foundations of

comparing our platform to a software company and a freelancer, based on a common

project. Therefore, if the same project is to be distributed on the three parties we

can clearly notice that CPISE offers:

1. A much faster TTD, which could have been even faster if the crowd was bigger.

2. A much cheaper approach, half the price asked by a freelancer and one seventh

of that asked by a software company.

53

3. Good quality, that could be improved with more submissions from a bigger

crowd.

4. More shared resources, since more workers get paid in a component-based

project: a minimum of three workers per component assuming we are paying

only one designer, one developer and one tester. And thus the number of work-

ers can grow exponentially as the number of workers participating increases.

5. Each coded component serves as a potentially reusable code. Companies and

freelancers eventually reuse their codes, but on the platform, each component

has a pool of implementations that could be reused at will.

Criteria CPISE
Software Com-
pany

Freelancer

TTD (Days) 7 30 21
Price ($) 2000 14,000 4,000
Quality Good Very Good Good
Number of paid
workers

8 4 1

Number of
reusable codes

Equal to the num-
ber of base compo-
nents

∼ ∼

Table 7.1: CPISE versus software company versus freelancer

The natural thing to look at while benchmarking a crowdsourcing platform, is

how it compares with other already existing platform. In order to do that we created

two projects equal in hardship, and crowdsourced them. The first has to be worked

on individually by the crowd members, while the second has to be done collabora-

tively through the component-based approach. The differences were obvious, and

they are illustrated in table 7.2.

Knowing that the two crowds are randomly selected, the number of participants

is considered very little compared to an actual crowdsourcing practice, we notice

the following:

54

Criteria Component-based Single-component

Time to receive first
submission (hours)

0.5 3

TTD (hours) 3 4
Average Submis-
sions’ ratings

4.14 4.09

Overall Quality Very Good Good

Table 7.2: Component-based versus single-component

1. The component-based project felt very alive compared to the other one. Con-

secutive submissions started reaching the platform after hitting the half hour

mark, and kept flowing for three hours until the project was finished. On the

other hand, the single-component project’s first submission was made after

3 hours, that is when the component-based project was done. The second

project needed one extra hour for the other workers to submit their projects

and for testing to take place, and thus showing the difference in performance.

Note that the projects are small in size, and the marine would grow bigger as

the project scale increases.

2. Submissions’ ratings are highly dependent on the crowd members individually

and not necessarily state that one approach is better than the other. But

what is worth mentioning is that the small size of components made it much

easier for the workers to achieve high quality. What pulled the rating down

a little was the early stages of the project, where the workers were new to

the platform and had no experience in component-based systems. The quality

directly improved after we analyzed together the problems they faced and the

errors they made.

3. The variety of submissions made on the platform’s various jobs gave us a very

good output quality, due to the selection process that was carried on based on

ranking.

55

The final test we carried on was to analyze the effect of different jobs on the

workers submissions. The first test results shown in figures 7.1 and 7.2, provided

us with a general notion of how things would work on the platform in terms of job

hardship versus worker submissions:

1. The number of submissions is maximum at an average hardship level equals

to 5, being the simplest of the jobs. The simpler the job is, the more workers

it will attract, due to the easier win and the little time it would cost.

2. As the hardship of the job increases, the quality of the submissions decreases.

This is obvious due to the error-prone tougher jobs. But still, the lowest

average rating at hardship level 10 is about 3.6, which is still very acceptable.

5 6 7 8 9 10

4

10

Hardship

N
u
m

b
er

of
S
u
b
m

is
si

on
s

Number

Figure 7.1: Number of submissions versus job hardship

56

5 6 7 8 9 10
3.5

4

4.5

Hardship

S
u
b
m

is
si

on
R

at
in

g

Quality

Figure 7.2: Quality of submissions versus job hardship

The plot in figures 7.3 and 7.4 illustrates how the quality and interest of workers

in the posted jobs varied, as we went down the components’ hierarchy. Level 1

which is the very first component received the lowest number of submissions due to

its hardship. The number of submissions kept increasing with the level due to the

increasing number of components. Quality levels were variable due to the almost

unrelated level-hardship figures, but maintained a fairly good average.

1 2 3 4 5

4

10

Level

N
u
m

b
er

of
su

b
m

is
si

on
s

Number

Figure 7.3: Number of submissions versus job level

57

1 2 3 4 5

3.6

3.8

4

4.2

4.4

4.6

Level

S
u
b
m

is
si

on
R

at
in

g

Quality

Figure 7.4: Quality of submissions versus job level

As for the number and quality of submissions versus prize money we could not

retrieve the needed results, because the crowd operated on jobs with imaginary

prizes and participated in most of the jobs regardless of the prize. But it would be

safe to say that there should be a relationship between prize money and hardship

level, such that an easy job with little money would probably get more submissions

and better quality than a hard job with little money. We should also mention that

the hardship levels are roughly estimated, and set based on the objective opinion of

the designer, making the hardship-prize comparison harder to attain.

Average submissions rating per job type were all around 4.1 showing the con-

sistency of the submissions and the ratings. As for the workers’ ratings, they were

very similar to the submissions with the lowest rated at ≈ 3.5 and the highest at

about ≈ 4.6.

58

Chapter 8

RELATED WORK

Contents

8.1 Full-task Crowdsourcing . 60

8.2 Stage-specific Crowdsourcing . 60

8.2.1 Crowdsourcing software requirements extraction 60

8.2.2 Crowdsourcing for Software Design 62

8.2.3 Crowdsourcing for Software Coding 63

8.2.4 Crowdsourcing for Software Testing and Verification 63

8.2.5 Crowdsourcing for Software Evolution and Maintenance 64

8.3 Research work in crowdsourcing softwares 65

8.4 Comparing existing platforms to ours 65

Crowdsourcing [8] proved its effectiveness with tasks that require a big number

of people, and platforms such as Amazon Mechanical Turk [4] gave a space for those

willing to make a small amount money for every “hit” they make. “Hit” is the term

used on crowdsourcing platforms while referencing a micro-job. Mechanical Turk

is not software oriented, but some users still post their software-related jobs on it.

Despite the size of the crowd on Mechanical Turk, it does not have the means to

support software crowdsourcing, mainly due to its advertisement of micro-tasks and

not the macro-task of building a software.

As for pure software orientation, TopCoder [7] is the most known. It is an online

crowdsourcing platform where challenges get carried on the levels of development,

design and data science. The winning challenger gets rewarded by money and/or

gifts [2].

59

8.1 Full-task Crowdsourcing

TopCoder [14] is an example of full-task crowdsourcing, whether it is UI design,

software development, or algorithm optimization. By full-task we mean that one

person does the job from A to Z, and wins the money prize in case of winning the

competition. GetACoder [15] is another platform that serves the same goal using

yet a different technique: online bidding. GetACoder is more like online freelancer

searching, where bidders comment on the post and give the price they want to get

paid in return of their services. The chosen bidder gets to develop the job and wins

the money.

8.2 Stage-specific Crowdsourcing

Authors specifies the different fields software engineering, and how they get dealt

on different crowdsourcing platforms [2].

8.2.1 Crowdsourcing software requirements extraction

In the early stage of our research we considered the idea of extracting formal require-

ments from natural language. An example of that is a requester, not experienced in

the domain of software engineering, asking for a project on a software crowdsourcing

platform. The request should then be processed by the platform, and the output

would then be a set of requirements understandable by the experienced crowd.

A similar work was done by [16] when they introduced an Extended Functional

Requirement Framework (EFRF) that takes a natural language process (NLP) as

input and gives a software requirements specification (SRS) as output. An EFRF is

made up of the following elements:

• Agentive: the agent who’s activities will occur in EFRF’s affairs

• Action: defines the main action of the activity

60

• Objective: defines the object affected by the activity

• Agentmod : defines the feature of agent

• Objmod : defines the feature of object

• Location: defines the location where the EFRF affairs occur

• Temporal : defines the duration or frequency of the EFRF’s activity

• Manner :defines the way or tool by which the EFRF’s activity is performed

• Goal : defines the goal of the EFRF’s activity

• Constraint : defines the requirement and constraint that make the activity

occur

A different approach was followed by [17] to refine specification from spoken

English to formal specs using: system goals. Goal orientation is an increasingly rec-

ognized paradigm for eliciting, modeling, specifying and analyzing software require-

ments. Goals are statements of intent organized in AND/OR refinement structures;

they range from high-level, strategic concerns to low level, technical requirements

on the software-to-be and assumptions on its environment.

Operational software specifications are built incrementally from higher-level goal

formulations in a way that guarantees their correctness by construction. The opera-

tionalization process is based on formal derivation rules that map goal specifications

to specifications of software operations; more specifically, these rules map real-time

temporal logic specifications to sets of pre-, post- and trigger conditions.

How modeling works: An application model is composed of four sub-models:

1. a goal model in which the goals to be achieved by the system are described

together with their alternative refinement links and their conflict links

2. an object model in which the application objects involved are described

together with their relationships and attributes

61

3. an agent model in which the agents in the system are described together

with their interfaces and responsibilities with respect to the goals

4. an operation model in which the services operationalizating the goals as-

signed to software agents are described.

The paper concentrates on the derivation of the operation model from the goal

model; some features of the operation model will therefore be presented in greater

detail as they provide the basis for our operationalization process. Where oper-

ationalization refers to: the process of prescribing additional pre-, trigger-, and

post conditions on operations in order to achieve goal specifications.

• a required precondition captures a permission to perform the operation when

the condition is true;

• a required trigger condition captures an obligation to perform the operation

when the condition becomes true provided the domain precondition is true;

• a required post condition captures an additional condition that must hold after

any application of the operation [18] [19] [20]

8.2.2 Crowdsourcing for Software Design

Software design has several fields of action: user interface design, architecture de-

sign and design revision. Some of the platforms specialized in crowdsourced design

are [2]: 99designs [21], DesignCrowd [22], crowdSPRING [23]. Those platforms are

mainly into the graphical aspect of design, and leave the architectural design to a

proposed platform named Apparition [24]. Apparition helps designers prototype in-

teractive systems in real-time based on sketching and function description [2]. Those

platforms have their limitations in terms of evolving designs for multiple designers’

solutions, whereas [25] proposed a system to let designers produce initial designs

and evolve their solutions based on others’ solutions. The study is still a theory and

not yet implemented and cannot be considered while comparing platforms.

62

8.2.3 Crowdsourcing for Software Coding

1. IDE enhancement: crowd knowledge can help improve multiple functions such

as API documentation, code completion, code utilization, bug detection, and

code search. Some of the supporting platforms are: HelpMeOut [26], BlueFix

[27], Calcite [28], SeaHawk [29].

2. Crowd programming environment: There exists a design for a Cloud-based

Integrated Development and Runtime Environment (CIDRE) that consists

of: a crowd developer community, online IDE, and an app store [30]. These

components link the designers, developers and users together and promote the

mutual feedback among them. Examples of other platforms are: Code Hunt

[31], Jabberwocky [32], Automan [33]. Those platforms offer different ways to

crowdsource development practices either by retrieving solutions via different

submissions, or sharing an online API where coding is done in a shared fashion.

3. Program optimization: Crowdsourcing has been used to support compilation

optimization [34] and program synthesis [35] placing flags to guide the compiler

to perform optimization [2].

8.2.4 Crowdsourcing for Software Testing and Verification

Testing platforms recruit not only professional testers, but also end users to support

the testing task. They can be in both, black box or white box testing, in test case

generation, and the oracle problem.

1. Usability testing: Online users showed capability for detecting usability prob-

lem as good as done by experts [36]. Platforms supporting this kind of testing

found it challenging to detect cheating among users.

2. Performance testing: There’s a way to collect performance data from users like

Google Chrome’s and Firfox’s built in telemetries [37, 38, 39], and is considered

to be a kind of crowdsourcing although workers are mostly unaware about it.

63

3. GUI testing: Done using A/B tests of UI via remote virtual machines or by

offering remote virtual machines to testers. Such a job could be crowdsourced

on platforms like Amazon Mechanical Turk due to its simplicity.

4. Test Case generation: Puzzle-based Automatic Testing (PAT) environment

was presented for decomposing and translating the object mutation and con-

straint solving problems into human-solvable games (gamification) by [40].

Existing test case generation tools are jCUTE [41], Randoop [42], and Pex

[43].

5. Oracle problem: Oracles rely on human input, making it hard to fully auto-

mate software testing. It requires skilled workers provided with well-designed

and documented tasks. Frameworks to support such crowdsourced testing are:

CrowdBlaze [44], iTest [45], Caiipa [46], Xie [47].

8.2.5 Crowdsourcing for Software Evolution and Maintenance

1. Crowdsourced Software Evolution: A proposed solution named Social Sensing

[48] suggests to leverage the wisdom of the end users and use them as mon-

itors for software runtime adaptation. This helps software designers to cap-

ture adaptation drivers and define new requirement and contextual attributes

through users’ feedback.

2. Crowdsourced Software Documentation: Most of the studies were mainly con-

ducted on StackOverflow [49] and found that frequently asked questions can

be maintained for generating expanded API documentation automatically.

3. Crowdsourced Software Localization: Software localization is relevant to “soft-

ware internationalization” or “globalization”, such as tailoring the nature lan-

guage output for system for each country in which they are deployed. Localiza-

tion may be an important factor for the adoption and success of international

products [50].

64

4. Crowdsourcing for Other Software Engineering Activities: Security, privacy

[51, 52, 53], software end user support and software ideation [54, 55, 56], and

malware analysis can all be crowdsourced [57, 58].

8.3 Research work in crowdsourcing softwares

This section can be divided into two part: (1) using crowdsourcing to favor research

and (2) research done on software crowdsourcing. Starting with the first part, any

research involving human subjects can be crowdsourced [2]. An example can be

Social Sensing mentioned earlier or performance testing methods. The results har-

vested can be used in research, but there is still no crowdsourcing platform solemnly

created for research purposes. As for the second part, research done on software

crowdsourcing covers several topics, listed in decreasing frequency [2] application,

theoretical, practical, evaluations.

8.4 Comparing existing platforms to ours

Existing platforms have the following issues, that were all fixed on our platform as

follows:

1. Using the waterfall model like in TopCoder brought coordination issues be-

tween clients and coders. To solve that, we added the iterative characteristic

from the agile mode. Moreover, adapting the component-based system highly

improved the ability to maintain and replace any unwanted part of the built

softwares, thus making any edit possible.

2. Unfair competition for workers often exists: more experienced workers are al-

lowed to register for a job earlier than others, and thus giving them a higher

chance of gaining money. Less experienced workers then suffer from unfair

treatment and competition. Our platform on the other hand gives equal

65

chances to all workers, despite their level. The granularity of software com-

ponents further reduces the risk of not getting paid, offering workers a more

friendly working environment.

3. Managing: the crowd, the process, the techniques is not always satisfactory.

Thus we moved to the automated design with well defined rules, that would

outline the workflow for the workers and give them all the details they have

to be familiar with before working.

4. Dependency on human “copilots” to manage the development process. Those

copilots might unexpectedly leave the project, or maybe mismanage it, lead-

ing to the project’s failure. Automation solved this issue too, by giving the

managerial power to competition winners, decentralizing the copilot’s position

and reducing the risk.

5. Platforms are mostly specialized in a certain domain, resulting in limited job

options. Our platform on the other hand, supports any kind of software de-

velopment in any language available. It also combines the different fields of

software engineering: design, development, integration and testing all in one

place.

6. On the existing platforms, each project phase is done as a whole by one person,

that might end up not getting paid and causing a demotivation for this person.

Our platform splits each phase to multiple jobs and broadcasts them to the

crowd, giving the chance to as many workers as possible to participate.

7. Quality issues arise on some other platforms resulting in client distrust. To

overcome this problem, we introduced the rating system described earlier.

Ratings vary based on tester’s performance in a certain domain, and their

contribution is always weighted. Less skilled testers cannot affect the overall

rating of submissions and that is how we make sure that quality is guaranteed.

66

8. Cheating testers have been reported on testing platforms, and it was hard

to stop the cheaters activity. The rating system also solves this issue, since

any wrong or malicious act aiming for fast gains can be rewarded negatively,

reducing the risk of having the cheater acting again on the platform.

9. Requirement extraction techniques relying on NLP can be adapted, but might

cause problems rather than solving them. Therefore, having an old-fashioned

communication between the requester and the crowd remains the better way.

On our platform the requester is the project owner, and any component re-

quirement he does not approve can be edited and reworked. If the requester

lacks experience, the crowd designers and testers have to propose require-

ments and validate those requirements among themselves, in order to give the

requester what he/she needs.

10. Its true that some specialized platforms have gained popularity over the years,

but up till now, there is still no platform that fully combines all the aspects

of the software engineering cycle, in a true crowdsourced fashion. Theoretical

platforms do exist, but an implementation is still not yet available, unlike our

platform which implements and tests the theory.

67

Chapter 9

CONCLUSION AND FUTURE WORK

Contents

9.1 Conclusion . 68

9.2 Future Work . 69

9.1 Conclusion

Crowdsourcing is a very strong potential rival to both software companies and free-

lancers in the future, due to the power and knowledge the crowds have to offer.

The crowd being software developers, engineers, designers and more, can gather to

make a difference on the web, like they do in their workspaces. Working on a crowd-

sourcing platform would give those people a chance to make extra money from the

comfort of their homes, build their experience further more, and help requesters to

satisfy their software needs.

The platform we proposed overcomes the downsides of some of the existing plat-

form and proposes a new way of problem approaching and solving. If managed

properly, any problem could be solved after being broken down into simpler, more

manageable problems. And this is the case with software projects, they are large

in scale and hard to be dealt with, but our platform facilitates the breaking down

process through utilizing a component-based design. This design gave us the needed

tools to simplify projects, increase the number of jobs and offered a simple architec-

ture, allowing us to set the rules of automated crowdsourcing.

After thoroughly testing our platform, then using it to perform a real life case

study, we proved the validity and effectiveness of our approach. The results we

retrieved were both satisfactory and promising, perhaps due to the easy workflow

and the friendly environment our platform provides. The reaction of our test crowd

68

towards the platform gave us the needed assurance that what is correct in theory,

is also as correct in practice.

9.2 Future Work

The possible expenditures of the described platform are very broad. For instance,

the project requester on the existing platform, sets the budget he/she wants to place

for building his/her project in advance. This can be a tricky business, especially for

people who have no expertise in the software industry. Applying machine learning

algorithms to help predict the approximate budget would both help the requester

with the confusion, and unify the payment criteria over the platform projects. This

addition would require extra parameters to be set by the requester and/or by the

crowd, in order to improve the accuracy of the algorithm. Machine learning could

also be used to predict an extra factor: approximate TTD. Knowing the estimate

TTD would improve job scheduling and give the requester a clear view of how the

project building process will proceed. Different budget and TTD methods could be

tested as well. Pay-as-you-go could be implemented on a unified job price, that is:

jobs of a certain type, level, and hardship have the same price all over the platform.

The more jobs needed to complete the job, the more money is paid by the requester.

As for TTD, there would be no time limit and delivery would depend on the number

of participants and their submissions.

As mentioned before, the design process results in a tree hierarchy where each

node is a component. The next step would be redundancy elimination: finding

redundant component specifications and removing their respective jobs. Such an

action will reduce the design and development efforts needed, and thus testing and

assembly. But it will also lead to payment and scheduling reassignments, develop-

ment phase delay and hierarchy alteration, thus it requires further study.

A natural thing to do on such a platform is allowing group submissions or edits,

such that a group of people make a unified submission and have the freedom to edit

69

it in a shared environment. In order to do that, a simple IDE extension could be

added to the platform, so the group members can perform the edits on the spot.

An extension of this idea would be a Wikipedia-like approach, where the posted

code could be open for edits to all participants. To overcome the quality issues that

might rise, the edited code could be part of a crowdsourced testing job to make sure

of its correctness, before the edits are applied to the original code.

After running the platform for some time and having enough coded components,

a components’ pool can be constructed to fully utilize the component-based concept.

By doing that, designers can refer to the pool and select a suitable code, facilitating

the project building processes and saving the requester time and money.

70

References

[1] “Mvc design pattern,” https://i-msdn.sec.s-msft.com/dynimg/IC263184.png,

accessed: 2018-01-08.

[2] K. Mao, L. Capra, M. Harman, and Y. Jia, “A survey of the use of crowdsourc-

ing in software engineering,” Journal of Systems and Software, 2016.

[3] B. Fitzgerald and K.-J. Stol, “The dos and dont’s of crowdsourcing software

development,” in International Conference on Current Trends in Theory and

Practice of Informatics. Springer, 2015, pp. 58–64.

[4] A. M. Turk, “Amazon mechanical turk,” Retrieved August, vol. 17, p. 2012,

2012.

[5] “utest website,” https://www.utest.com/, accessed: 2018-01-08.

[6] “Appstori website,” https://www.appstori.com/, accessed: 2018-01-08.

[7] K. R. Lakhani, D. A. Garvin, and E. Lonstein, “Topcoder (a): Developing

software through crowdsourcing,” 2010.

[8] I. Crnkovic, M. Chaudron, and S. Larsson, “Component-based development

process and component lifecycle,” in Software Engineering Advances, Interna-

tional Conference on. IEEE, 2006, pp. 44–44.

[9] S. Mahmood, R. Lai, and Y. S. Kim, “Survey of component-based software

development,” IET software, vol. 1, no. 2, pp. 57–66, 2007.

[10] A. Freeman, “Pro asp. net mvc 5 platform,” in Pro ASP. NET MVC 5 Platform.

Springer, 2014, pp. 3–8.

[11] “Ms sql server,” https://www.microsoft.com/en-us/sql-server, accessed: 2018-

01-08.

71

https://i-msdn.sec.s-msft.com/dynimg/IC263184.png
https://www.utest.com/
https://www.appstori.com/
https://www.microsoft.com/en-us/sql-server

[12] “Entity framework,” https://docs.microsoft.com/en-us/aspnet/

entity-framework, accessed: 2018-01-08.

[13] “Razor syntax for asp.net,” https://docs.microsoft.com/en-us/aspnet/core/

mvc/views/razor, accessed: 2018-01-08.

[14] “Topcoder website,” https://www.topcoder.com/, accessed: 2018-01-08.

[15] “Getacoder website,” https://www.getacoder.com/, accessed: 2018-01-08.

[16] Y. Mu, Y. Wang, and J. Guo, “Extracting software functional requirements

from free text documents,” in Information and Multimedia Technology, 2009.

ICIMT’09. International Conference on. IEEE, 2009, pp. 194–198.

[17] E. Letier and A. Van Lamsweerde, “Deriving operational software specifications

from system goals,” in Proceedings of the 10th ACM SIGSOFT symposium on

Foundations of software engineering. ACM, 2002, pp. 119–128.

[18] D. Sannella and M. Wirsing, “Specification languages,” in Algebraic Founda-

tions of Systems Specification. Springer, 1999, pp. 243–272.

[19] S. Apel, C. Kästner, and C. Lengauer, “Language-independent and automated

software composition: The featurehouse experience,” IEEE Transactions on

Software Engineering, vol. 39, no. 1, pp. 63–79, 2013.

[20] A. Guerra-Hernández, J. M. Castro-Manzano, and A. E. F. Seghrouchni, “Ctl

agentspeak (l): A specification language for agent programs,” Journal of Algo-

rithms, vol. 64, no. 1, pp. 31–40, 2009.

[21] “99designs website,” https://www.99designs.com/, accessed: 2018-01-08.

[22] “Designcrowd website,” https://www.DesignCrowd.com/, accessed: 2018-01-

08.

[23] “crowdspring website,” https://www.crowdspring.com/, accessed: 2018-01-08.

72

https://docs.microsoft.com/en-us/aspnet/entity-framework
https://docs.microsoft.com/en-us/aspnet/entity-framework
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/razor
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/razor
https://www.topcoder.com/
https://www.getacoder.com/
https://www.99designs.com/
https://www.DesignCrowd.com/
https://www.crowdspring.com/

[24] W. S. Lasecki, J. Kim, N. Rafter, O. Sen, J. P. Bigham, and M. S. Bern-

stein, “Apparition: Crowdsourced user interfaces that come to life as you sketch

them,” in Proceedings of the 33rd Annual ACM Conference on Human Factors

in Computing Systems. ACM, 2015, pp. 1925–1934.

[25] T. D. LaToza, M. Chen, L. Jiang, M. Zhao, and A. Van Der Hoek, “Borrowing

from the crowd: A study of recombination in software design competitions,”

in Proceedings of the 37th International Conference on Software Engineering-

Volume 1. IEEE Press, 2015, pp. 551–562.

[26] B. Hartmann, D. MacDougall, J. Brandt, and S. R. Klemmer, “What would

other programmers do: suggesting solutions to error messages,” in Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems. ACM,

2010, pp. 1019–1028.

[27] C. Watson, F. W. Li, and J. L. Godwin, “Bluefix: Using crowd-sourced feed-

back to support programming students in error diagnosis and repair,” in Inter-

national Conference on Web-Based Learning. Springer, 2012, pp. 228–239.

[28] M. Mooty, A. Faulring, J. Stylos, and B. A. Myers, “Calcite: Completing code

completion for constructors using crowds,” in Visual Languages and Human-

Centric Computing (VL/HCC), 2010 IEEE Symposium on. IEEE, 2010, pp.

15–22.

[29] T. D. LaToza, W. B. Towne, A. Van Der Hoek, and J. D. Herbsleb, “Crowd

development,” in Cooperative and Human Aspects of Software Engineering

(CHASE), 2013 6th International Workshop on. IEEE, 2013, pp. 85–88.

[30] N. Tillmann, M. Moskal, J. de Halleux, and M. Fahndrich, “Touchdevelop:

programming cloud-connected mobile devices via touchscreen,” in Proceedings

of the 10th SIGPLAN symposium on New ideas, new paradigms, and reflections

on programming and software. ACM, 2011, pp. 49–60.

73

[31] J. Bishop, R. N. Horspool, T. Xie, N. Tillmann, and J. de Halleux, “Code

hunt: Experience with coding contests at scale,” in Proceedings of the 37th

International Conference on Software Engineering-Volume 2. IEEE Press,

2015, pp. 398–407.

[32] S. Ahmad, A. Battle, Z. Malkani, and S. Kamvar, “The jabberwocky program-

ming environment for structured social computing,” in Proceedings of the 24th

annual ACM symposium on User interface software and technology. ACM,

2011, pp. 53–64.

[33] D. W. Barowy, C. Curtsinger, E. D. Berger, and A. McGregor, “Automan: A

platform for integrating human-based and digital computation,” Acm Sigplan

Notices, vol. 47, no. 10, pp. 639–654, 2012.

[34] R. Auler, E. Borin, P. de Halleux, M. Moskal, and N. Tillmann, “Addressing

javascript jit engines performance quirks: A crowdsourced adaptive compiler,”

in International Conference on Compiler Construction. Springer, 2014, pp.

218–237.

[35] R. A. Cochran, L. D’Antoni, B. Livshits, D. Molnar, and M. Veanes, “Program

boosting: Program synthesis via crowd-sourcing,” in ACM SIGPLAN Notices,

vol. 50, no. 1. ACM, 2015, pp. 677–688.

[36] C. Schneider and T. Cheung, “The power of the crowd: Performing usability

testing using an on-demand workforce,” in Information Systems Development.

Springer, 2013, pp. 551–560.

[37] “Microsoft lync,” https://http://ofce.microsoft.com/lync/, accessed: 2018-01-

08.

[38] “Chrome telemetry,” https://http://www.chromium.org/developers/

telemetry, accessed: 2018-01-08.

74

https://http://ofﬁce.microsoft.com/lync/
https://http://www.chromium.org/developers/telemetry
https://http://www.chromium.org/developers/telemetry

[39] “Firefox telemetry,” https://https://telemetry.mozilla.org/, accessed: 2018-01-

08.

[40] N. Chen and S. Kim, “Puzzle-based automatic testing: Bringing humans into

the loop by solving puzzles,” in Proceedings of the 27th IEEE/ACM Inter-

national Conference on Automated Software Engineering. ACM, 2012, pp.

140–149.

[41] K. Sen and G. Agha, “Cute and jcute: Concolic unit testing and explicit path

model-checking tools,” in International Conference on Computer Aided Verifi-

cation. Springer, 2006, pp. 419–423.

[42] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed random

test generation,” in Proceedings of the 29th international conference on Software

Engineering. IEEE Computer Society, 2007, pp. 75–84.

[43] N. Tillmann and J. De Halleux, “Pex–white box test generation for. net,” in

International conference on tests and proofs. Springer, 2008, pp. 134–153.

[44] H. Xue, Using redundancy to improve security and testing. University of Illinois

at Urbana-Champaign, 2013.

[45] M. Yan, H. Sun, and X. Liu, “itest: testing software with mobile crowdsourc-

ing,” in Proceedings of the 1st International Workshop on Crowd-based Software

Development Methods and Technologies. ACM, 2014, pp. 19–24.

[46] C.-J. M. Liang, N. D. Lane, N. Brouwers, L. Zhang, B. F. Karlsson, H. Liu,

Y. Liu, J. Tang, X. Shan, R. Chandra et al., “Caiipa: Automated large-scale

mobile app testing through contextual fuzzing,” in Proceedings of the 20th an-

nual international conference on Mobile computing and networking. ACM,

2014, pp. 519–530.

[47] T. Xie, “Cooperative testing and analysis: Human-tool, tool-tool and human-

human cooperations to get work done,” in Source Code Analysis and Manipula-

75

https://https://telemetry.mozilla.org/

tion (SCAM), 2012 IEEE 12th International Working Conference on. IEEE,

2012, pp. 1–3.

[48] R. Ali, C. Solis, M. Salehie, I. Omoronyia, B. Nuseibeh, and W. Maalej, “Social

sensing: when users become monitors,” in Proceedings of the 19th ACM SIG-

SOFT symposium and the 13th European conference on Foundations of software

engineering. ACM, 2011, pp. 476–479.

[49] “Stackoverflow website,” https://www.stackoverflow.com/, accessed: 2018-01-

08.

[50] B. Esselink, A practical guide to localization. John Benjamins Publishing,

2000, vol. 4.

[51] J. Lin, “Understanding and capturing people’s mobile app privacy preferences,”

Ph.D. dissertation, Carnegie Mellon University, 2013.

[52] C. Arellano, O. Dı́az, and J. Iturrioz, “Crowdsourced web augmentation: a

security model,” in International Conference on Web Information Systems En-

gineering. Springer, 2010, pp. 294–307.

[53] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: behavior-based

malware detection system for android,” in Proceedings of the 1st ACM workshop

on Security and privacy in smartphones and mobile devices. ACM, 2011, pp.

15–26.

[54] P. K. Chilana, “Supporting users after software deployment through selection-

based crowdsourced contextual help,” Ph.D. dissertation, 2013.

[55] P. K. Chilana, A. J. Ko, and J. O. Wobbrock, “Lemonaid: selection-based

crowdsourced contextual help for web applications,” in Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems. ACM, 2012,

pp. 1549–1558.

76

https://www.stackoverflow.com/

[56] P. K. Chilana, A. J. Ko, J. O. Wobbrock, and T. Grossman, “A multi-site field

study of crowdsourced contextual help: usage and perspectives of end users and

software teams,” in Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems. ACM, 2013, pp. 217–226.

[57] W. Ebner, M. Leimeister, U. Bretschneider, and H. Krcmar, “Leveraging the

wisdom of crowds: Designing an it-supported ideas competition for an erp

software company,” in Hawaii International Conference on System Sciences,

Proceedings of the 41st Annual. IEEE, 2008, pp. 417–417.

[58] R. Jayakanthan and D. Sundararajan, “Enterprise crowdsourcing solutions for

software development and ideation,” in Proceedings of the 2nd international

workshop on Ubiquitous crowdsouring. ACM, 2011, pp. 25–28.

77

	Acknowledgements
	ABSTRACT
	List of figures
	List of tables
	Introduction
	Problem Statement Description and Formalization
	Crowdsourcing Platform Design
	The Crowd
	The Projects
	The Jobs

	Components and CBSE
	Component-Based Software Engineering- (CBSE)
	CBSE on the Platform
	Challenges and Solutions
	Challenge 1: Design Refinement
	Challenge 2: Code Composition
	Challenge 3: Component Verification/Testing
	User Rating
	Submissions Rating

	Challenges 3 and 4: Component Pricing and Winners' Payments

	On-Platform Challenges

	Crowdsourced Project Building Workflow
	Design Phase
	Development Phase
	Integration Phase
	Miscellaneous
	The importance of user ratings
	Payment fairness
	Maintenance and bug hunts
	Automation and Copilot's Absence

	Implementation
	Design and Architecture
	Requester's Perspective
	Worker's Perspective
	Project building process

	Case Studies and Benchmarks
	Measurables
	The Sample Projects
	Experimental Observations And Results
	Observations
	Experimental Results

	Related Work
	Full-task Crowdsourcing
	Stage-specific Crowdsourcing
	Crowdsourcing software requirements extraction
	Crowdsourcing for Software Design
	Crowdsourcing for Software Coding
	Crowdsourcing for Software Testing and Verification
	Crowdsourcing for Software Evolution and Maintenance

	Research work in crowdsourcing softwares
	Comparing existing platforms to ours

	Conclusion and Future Work
	Conclusion
	Future Work

