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AN ABSTRACT OF THE THESIS OF

Elie Youssef Abdo for Master of Science
Major: Mathematics

Title: Extension of Biholomorphic Maps from Special Domains into their Boundaries

Several theorems that hold in the theory of one complex variable cannot be generalized to the theory
of several complex variables. One of them is the Riemann Mapping Theorem, which states that every
non-empty simply connected domain which is not the entire complex plane is biholomorphic to the open
unit disc, and from which follows the fact that any two non-empty proper simply-connected domains in
C are biholomorphic. In this paper, we show that the last statement is not true in C™ for n > 2 using the
properties of the Levi form. However, the proof entails, assuming the existence of such a biholomorphism
f, some boundary information about f. This requirement is fulfilled alluding to Fefferman Theorem,
which will be proved for special domains using powerful tools: extremal and stationary maps.
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Chapter 1

Basics

Part of complex analysis in several variables is a generalization from the function theory of one complex
variable. However, things get more complicated in higher dimensions, and some theorems that hold in
the complex plane C do not apply in the complex n-space C™ for n > 2. In this chapter, we will provide
some definitions and recall basic theorems, some of which are generalized from the function theory of

one complex variable.

1.1 Holomorphic Functions from subsets of C" into

C

Etymologically, the word ”holomorphic” is derived from two Greek words: ”holos” meaning entire, and
”morphe” meaning form. Holomorphic functions are central objects in complex analysis. In this section,

we define holomorphic functions from subsets of C™ into C.

Definition 1.1.1

Let 2 be a domain in C". A function f : — C is said to be holomorphic if, for each j = 1,2,...,n and

each z1,...,2j_1, Zj41, ..., Zn, the function

C - f(zla vy Zj—1, <7 Zi41y ey ZTL)

is holomorphic.

In other words, f is holomorphic on  if it is holomorphic in each variable separately.

Next, we show that a holomorphic function f : 2 C C™ — C satisfies the Cauchy-Riemann equations.

Theorem 1.1.2

Let Q be a domain in C". A function f : Q — C, written as

flzr +iy1, 2 + Y2, ooy Tp + 1Yn) = W(@1, Y1, oo, Tos Yn) + 0(21, Y1, o, Tnr, Yn)



is holomorphic if and only if

Ug,, Uy, , Vz;, Uy, are continuous Vj =1,...,n

and of
— =0 Vi=1,..
8Z -] ) ) n?
0 . . . .
where e is the partial differential operator on C™ given by
Zj
0 _1(0 .0 .
o5 2\ox; oy ) JT et
Proof. Follows from Definition 1.1.1. and from the one-variable Cauchy-Riemann equations. O

1.2 Cauchy Formula for Polydiscs

In this section, we generalize the Cauchy Integral Formula of the function theory of one complex variable,

and we show that any holomorphic function from a subset of C" into C is infinitely differentiable.

We start our section by the definition of an open polydisc.

Definition 1.2.1

Let a € C™ and 7 > 0. An open polydisc, denoted by D"(a,r), is defined to be the set
D"(a,r)={2€C":|z; —a;|<rj=1,..,n}.

In other words, an open polydisc is a cartesian product of open discs.
The closure of D™(a,r) will be denoted by D" (a, 7).

Now, we state the Cauchy Formula for Polydiscs.

Theorem 1.2.2 (Cauchy Formula for Polydiscs)

Let w = (w1, ..., Wy ), T = (r1,..., ) € C™ with r,7r9,...,7, > 0.
Suppose f is continuous on D' (wy,7r1) X ﬁl(wg, r9) X ... X D' (wn, ) and holomorphic on D! (wy,71) x

DY (ws,r9) X ... x DY(wp,7,). Then, for any z = (21, ..., 2,) € DY (wy,71) X DY (wa,72) X ... x DY (wy,, ),

_ P > — 1 f(ClaaCn)
J2) =10 m) = ooy /o G = 1) (G — ) e

[Cn—wn|=rn  |C1—wi|=m1

Here is an important consequence of Cauchy Formula:

Corollary 1.2.3

Let ©2 be a domain in C™. Suppose f :  — Cis a holomorphic function. Then, fis infinitely differentiable.



1.3 Power Series representation

In this section, we define power series for functions of several variables and use them to show important

generalizations from the function theory of one complex variable.

Let o € Ng™ where Ng = N U {0}. In other words, we can write o = (ayq, ..., ), a; € Np.

Notation:

Qn

a 0 a2
2% =212 2,

o) =1 + ... + ap

Definition 1.3.1

Let a € C™. A power series centered at a is a series of the form

Z ca(z —a)®

aeNg

Example 1.3.2

For 3 variables, a power series at the origin is a series of the form
o0 o0 o0
J k1
E :E : E :Cjklz122Z3
j=0 k=0 =0

In the theory of one complex variable, if f is a holomorphic function on a domain Q2 and a € €,
then f is expressible as a power series centered at @ in the largest disc of center a lying in 2. Now, we

generalize our result to holomorphic functions from subsets of C" into C.

Theorem 1.3.3

Let D™(a,r) be a polydisc of center a € C™ and radius r > 0. Suppose f : En(a,r) — C is continuous
on D" (a,r) and holomorphic on D"(a,r). Then, f(z) is expressible as a power series centered at a, for

any z € D"(a,r).

Cauchy Estimates, an important inequality, is an aftermath of the previous theorem.

Theorem 1.3.4 (Cauchy Estimates)

Let D™(a,r) be a polydisc of center a € C" and radius 7 > 0. Suppose f : D' (a,r) — C is continuous
on En(a,r) and holomorphic on D"(a,r). Let C = Cy X ... x Cy, where C; is the positively-oriented



circle |(; — a;| = r. Then,

al
< Tasumeclf(Z)l

0! f(a)
‘ 0z%

The identity theorem, one of major theorems in the theory of one complex variable, is also generalized:

Theorem 1.3.5 (Identity Theorem)

Let © be a domain in C”. Let U be an open subset of (2. Let f : & — C be holomorphic. Suppose
f(z)=0,Vz € U. Then f(z) =0,Vz € Q.

We end our section by a consequence of the generalized identity theorem, the maximum principle.

Theorem 1.3.6 (Maximum Principle)

Let 2 be a domain in C". Let f : & — C be a holomorphic function on €, Suppose |f(z)| attains a

maximum at some a € Q, then f = f(a).



Chapter 2

Automorphisms of the unit ball

A bijective holomorphic function whose inverse is holomorphic is said to be biholomorphic. An auto-
morphism of a set U is a biholomorphism from U to U. Automorphisms of a set U form a group under
composition, called the automorphism group and denoted by Aut(U). Automorphisms of the unit disc
are well-known in the function theory of one complex variable. In this chapter, we will introduce auto-
morphisms of the unit ball in C™, but this entails Cartan’s Uniqueness Theorem which is an analogue of

Schwarz’s Lemma to several variables.

2.1 Holomorphic Functions from subsets of C" into
Cm

We start this section by defining holomorphic functions from 2 C C” into C™

Definition 2.1.1

Let Q be a domain in C™. A function f : Q — C™, written as f = (f1, f2, ..., fm) is said to be holomor-
phic if f; is holomorphic for all i = 1,2, ...,m.

The following theorem shows that a holomorphic function f : Q C C* — C™ satisfies the Cauchy-

Riemann equations.

Theorem 2.1.2

Let Q be a domain in C". A function f : Q — C™, written as
f(z1y e zn) = (F1(21y ooy 20)s f2(215 ooy Z0) s voes frn (215 o0y 20))
where f; : Q@ — C is written as
filwr +iy1, oo n +9Yn) = 4 (T1, Y1, ooy Ty Yn) + 905 (21, Y1, o, T, Y)Y =1, .m

bt



is holomorphic if and only if

Wiz Wiy, Vig,, Viy; are continuous Vi =1,...m Vj=1,..,n

Yj

and
ofi
%

=0 Vi=1,...m Vj=1,...,n

Proof. Follows from Definition 2.1.1. and from Theorem 1.1.2.
O

Now, we state and prove a version of the chain rule in the function theory of several complex variables.

Theorem 2.1.3

Suppose U C C™ and V C C™ are open sets. Let f: U — V, and g : V — C be differentiable maps.

Write the variables as z = (21, ..., 2,) € U and w = (w1, ..., wy,) € V. Then for any j =1, ...,n, we have

(99 0fi 99 O
823 (gof) = Z (3wl 0z; awl 62“3)

=1

Proof. Write fi = w +iv, forl =1,..,m, z; =x; +iy; for j=1,...,n, wy =5+t forl =1,....,m.

Then,
0 1/ 0
8zj<gof)_2<6 )(9 f)
1 <8gaul 8981}11(898m+6‘g0vl>)
2 - O0s; Ox; Ot Ox; O0s; 0y; Ot Oy,
_i@gl(@ul_ 3@”>+3gl<8vl_ 3vl>)
—~\0 Oz By] ot 2 \0z;  y;
_§ (e 00m)
= 0sy 8,2] Oty aZJ
Note that
090 9 _ (9 0
0s; o ow, ow;’ ot o ow, ow;

D (o) So (000, 000w (B v oy
0z; — dw; Dz 6wl 0z; Ow; 0z; 0w zj

=1

i g 8ul 81}1 +8g %7%
— awg 83’] azj ow; \ 0z 8zJ

l

f: g 6’fl dg Ofi
Ow; 0z; awl 0z

=1

~

We end this section by defining the derivative of a holomorphic function f : @ C C* — C™ at a
point z € (.



Definition 2.1.4

Let © be an open subset of C™. Let f :  — C™ be holomorphic. Let z € Q. Let f'(z) : 2 — C™ be the

linear transformation satisfying
fz+h) = f(2) + f(2)h + O(h]*)

for h near the origin of C™. Then, f’(z) is called the derivative of f at z. For 1 < k < n, let h = ey, where

er = (0,...,1,...,0) is the vector in C" having as coordinates zeros except one at the k' component.

Letting A — 0, we get f/(2)ex, = C%J;(z)

2.2 Cartan’s Uniqueness Theorem

Cartan’s uniqueness theorem is an important tool to deal with the automorphisms of the unit ball in
C™. Tt was shown by the French mathematician Henri Cartan in 1931. However, its proof requires the
notion of homogeneous expansion. So, we start our section by defining homogeneous polynomials from
C™ into C.

Definition 2.2.1

A polynomial P : C* — C is homogeneous of degree d if P(sz) = s?P(z),Vs € C and Vz € C".
Here’s an example:

Example 2.2.2

Let P : C? — C be the polynomial defined by P(z1, 22) = 27 +22123. Then, P is homogeneous of degree 3.
Now, we show that a holomorphic function f : 0 C C® — C has a homogeneous expansion.

Theorem 2.2.3

Let 2 be a domain in C”. Let f: Q — C be a holomorphic function. Let a € ). Then, the power series

of f at a can be written as
o0
Z f](z - a)’
§=0

where f; is a homogeneous polynomial of degree j.
Proof. The power series of f at a is given by
an(z—a)o‘, z € D"(a,r) CQ
(0%

with

_ 1 £(0)
‘= i) C/ C—a)eri®

7



where C' is the boundary of D™(a,r).
For j =1,2,..., let f;(2) be the sum of the terms ¢,z

® in the power series of f at 0 for which |a| = j.

See that f; is a homogeneous polynomial of degree j. O

Next, we provide a more generalized definition of homogeneous polynomials from C" into C™.

Definition 2.2.4

A polynomial P : C* — C™ is homogeneous if each component is homogeneous.

Accordingly, the next theorem shows that holomorphic functions f : Q C C™* — C™ have homoge-

neous expansion.

Theorem 2.2.5

Let 2 be a domain in C". Let f : Q — C™ be a holomorphic map. Let a € §). Then, the power series of

ij(z - a),

Jj=0

f at a can be written as

where f; is a vector-valued homogeneous polynomial.

Proof. Follows from Theorem 2.2.3 and Definition 2.2.4.

Finally, we state and prove Cartan’s uniqueness theorem.

Theorem 2.2.6 (Cartan’s Uniqueness Theorem)

Suppose 2 is a bounded domain in C". Let F': Q — Q be a holomorphic function. Assume there exists
a € Q such that F(a) = a and F'(a) is the identity. Then, F(z) = z for all z € Q.

Proof. WLOG, assume a = 0. Since 2 is open, there exists r; > 0 such that D™(0,r1) C . Since Q is
bounded, there exists ro > 0 such that Q@ C D™(0,ry). In D™(0,r1), F has a homogenous expansion

F(z)=z+ Y Fu(2),

where F is a map from C" into C" whose components are homogeneous polynomials of degree s. Note
that Fy(z) =0 and Fi(z) = 2z since F(0) = 0 and F’(0) is the identity.
Let F* be defined as follows:

F'=F

Fk=FF-1oF E>1

For m > 2, make the induction hypothesis that Fs = 0 for 2 < s < m, which is vacuously true for m = 2.

Then, F* has a homogeneous expansion

FFz2) =2+ kFn(z)+ > fi(2),2€ D"(0,m1)
j=k+1

8



where f; is a map from C” into C™ whose components are homogeneous polynomials of degree j. This
can be easily proved by induction on k.
Thus, for § € R,z € D™(0,r1), we have

FF(e2) = ez + kF,,(e"2) + Z fi(e"2)
j=k+1
Fk(eiez) =7+ k(eie)mFm(z) + Z (ew)jfj(z)
j=k+1

0o
Fk(eié’z)efime — eieefimez_Fka(z) + Z eijee—imﬁfj(z)
j=k+1

Hence,/Fk(ei‘gz)e_medH:z/eiee_im9d9+27rk:Fm(2)+/ Z ('m0 f,(2)d

g Zp J=k+1

= /Fk(ewz)e_"’mgdH =0+ 27kF,,(2) + 0.

1S v
Interchanging the integral and summation symbols is allowed because >’ eili—m)o fj(z) converges

j=k+1
uniformly on (—7; 7).
Therefore,
1 . .
kF,(2) = o /Fk(ewz)ff”’wde7 z € D"™(0,r)
T
Since F*(Q) C Q, we have
|F*(e2)| < ro Vz € D"(0,r1),V0 € R
This implies that
K| Fo(2)] = | — /Fk(eiez)e-imede <1 / |F*(e92)]d6 < r
" 27 27 =

Vz e D™(0,r),Vk=1,2, ...
Hence, F,,, = 0, and the induction hypothesis holds with m + 1 in place of m. Therefore, F/(z) = 2 Vz €
D™(0,71). By the identity theorem, we get F'(z) = 2z Vz € Q.

2.3 Automorphisms of the unit ball of C”

In the second chapter of his book ”Function Theory in the Unit Ball of C®”, Rudin handled the auto-

morphisms of the unit ball of C™. In this section, we will define them and list some of their properties.



Definition 2.3.1

A ball in C", denoted by B"(a,r), is defined to be the open set
BY(a,r) = {2z €C": |z1 —a1]* + ... + |2 — an|® < 1°}.

The closure of B™(a,r) will be denoted by B" (a, ).
The unit ball of C™ is the ball B™(0,1).

C™ is turned into an n-dimensional Hilbert space by considering the inner product
n
< z,w >:szw7j (z,weC")
j=1

and the associated norm

2| = V< z,2> (zeC™)

Definition 2.3.2

Let a € B™(0,1). Let P, be the orthogonal projection of C™ onto the subspace [a] generated by a. Let

Q. = I — P, be the projection onto the orthogonal complement of [a], where I is the identity operator.

Explicitly,

P=0
and _ -

Z,a
Paz:<a,a>a a#0.

Put s, = \/W and define b

a— Pyz —5,Q4%

Pa(2) = 1- < z,ag

See that if n =1, then P, = I and Q, = 0, so we get ¢,(z) = f:;z ,which is an automorphism of the

unit disc.

Next, we show some properties of the maps ¢, to conclude that ¢, is a biholomorphism from B"(0, 1)
to B™(0,1).

Theorem 2.3.3 (Properties of the maps ¢,)

Let a € B™(0,1). Then, ¢, has the following properties:
() $a(0) = a and ¢a(a) = 0.

i) ¢, (0) = —s2P, — 5,Qq and ¢ (a) = ——= — =2,
(i) 04(0) = ~1P, = 5,Qu and 04 (0) = 1% = %
(iii) The identity

(1- <a,a>)(1- < z,w>)

1= < ¢a(2), ¢a(w) >= (1- <z,a>)(1- < a,w >)

holds for all z,w € B"(0,1).

10



(iv) The identity

_ (I =la?)(1 = [2*)
1_|¢a(z)|2_ |1—<z,a> ‘2

holds for all z € B"(0,1).
(V) ¢q is an involution, that is, ¢a(¢q(2)) = z for all z € B"(0,1).

(vi) ¢q is a homeomorphism of B"(0,1) onto B"(0,1) , and ¢, € Aut(B).

a— (P0) —54(Q.0) a—0-0

Proof. (i) ¢a(0) = - <0~ =——g - %
_a—(Pya) —84(Qea) a—a—0
Pala) = 1- <a,a> _17<a,a>_0'

(ii) Let z € B"(0,1) be close to the origin of C™. Then,
1
ta(z) = m(a — Pz — 84Qq2)
=(I+<z,a>+<z,a>24.)(a— Pz —5,Q,2)
=a+ < z,a>a—8,Q4z— P,z +0(|z]%)
= ¢4(0) + |a|* Paz — 8,Quz — Poz + O(|2]?)
= ¢a(0) + (la|*Pa — Pa — 5aQa)z + O(|2[*)
= a(0) = (s2Pa + 54Qa)z + O(|2I%).

Therefore, it follows from Definition 2.2.3 that
#.(0) = =52 Py — 54Qq-

Now, let h € C™ be such that | < h,a > | < s2, with h close to the origin of C". Then,

_a—Py(a+h)—s5,Qala+h)
B 1-<a+h,a>
<a+h,a> < <a+h,a>>
a————a—8,|a+h————a
<a,a> <a,a>
1-<a,a>—<h,a>

da(a+h)

( <h,a> )
a—a————a—sq|la+h—a— —

a
<a,a >

1—la]*- < h,a>
—Pyh — 5,Quh
§2— < h,a>
—Pah — saQah

< h,a >
a(i- )
Sa

1 <ha> <h,a>?
1+ +

<2 2
S a

: e > (—Puh — $54Qah)

(_Pa - saQa)h + O(|h|2)

@cnm‘ =

Therefore, it follows from Definition 2.2.3 that

11



(iii) Let z,w € B (0,1). First, see that P2 = P, and Q?> = Q,. Second, since P, and Q, are

self-adjoint projections, we have:

(a) <a,Qqw>=<Qua,w>=<0,w>=0.

(b) < Quz,a>=<2,Qa>=<20>=0.

(¢) <a,Paw>=< Pa,w>=<a,w>.

(d) <P,z,a>=<z,Pa>=<za>.

(e) < Pyz,Pyw > =< 2, P?w> =<z, P,w >.

Also, we have the following equalities:

(a) <z,a><a,w>=<<za>aw>= la? < P,z,w >.

(b)

<z,a> <w,a >
<Paz,Qaw>:< ’ w— ’ a>

a’7
<a,a> <a,a>
< z,a> <z,a> <a,w>
= —<aw>— . <a,a>
<a,a> <a,a> <a,a>
=0.

< Piz,w>4+ < Quz,Quw >

=< Pz,w>+<z— Pz, w— Pw>

=< Pzw>+<z,w>+< Pz, Pbw>—<z,P,bw>— < Pyz,w>
=< Pzw>+<zw>+<z,Pw>—-<z,Pw>—<P,z,w>

=<z,w>.

(d) Since < a — Pz, —8,Qow > — < $,Qq2,a — P,w >= 0 (by expanding and using the
properties and equalities mentioned above), we have

<a—Pyz—5,002,a — Pyw — 5,Q.w >=<a— P,z,a — P,w > +s§ < Quz,Quw >

12



Finally,

1I-< ¢aza¢aw >

_1_<a—Paz—saQaz a—Paw—saQaw>

l-<za> ' 1-<w,a>

1 1
=1- ——<a—Puz—35s z,a— P,w—s w >
1-<za> 1-<w,a > ¢ ala? ¢ ala
:1_<a—Paz,a—Paw>+si<Qaz7Qaw>

(1- < z,a >)(1— < a,w >)
(1- < z,a>)(1- <a,w>)— <a— P,z,a— P,w> —52 < Qu2,Qqw >
(1- < z,a>)(1- <a,w>)
+<zja><a,w>—-<z,a>—<aw>—<a,a>+<a,Pw>
(I- < z,a>)(1- < a,w>)
< Puz,a>— < Pz, Paw > —52 < Quz, Quuw >
(I- < z,a>)(1- < a,w >)
L+ a? < Poz,w>— < z,a>— < a,w> —|a’+ < a,w >
(1- < z,a >)(1— < a,w >)
<z,a>— <z, Pow> —52 < Quz, Quuw >
(1- < z,a>)(1— < a,w >)
§2 — 82 < Poz,w > —52 < Quz, Quuw >
(I- < z,a >)(1- < a,w >)
$2(1— < Pozyw > — < Qq2, Quw >)
(1- < z,a >)(1— < a,w >)
$2(1- < z,w >)
(I- < z,a>)(1- < a,w>)

(iv) Take w = z in (iii). This shows that ¢, maps B™(0,1) into B"(0, 1) and the boundary of B™(0,1)
into the boundary of B™(0,1).

(v) First, note that P,Q, = P,(I — P,) = P, — P> = P, — P, = 0. Next, let 9 = ¢, 0 ¢,. ¥ is a
holomorphic map of B™(0, 1) into B"(0,1). Also,

’(/}(O) = ¢a(¢a(0)) = ¢a(0) =0.

Moreover,

¢g(¢a(0))¢;(0) = (/biz(a‘)gb:z(o) = (_ - ) (_SZPG - SaQa) =P, +Q.=1

Sa

Therefore, Cartan’s Uniqueness Theorem implies that ¥(z) = z.

(vi) Follows from (v). See that ¢, = ¢,.
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Chapter 3

The Levi Form

The Levi form of a hypersurface was named after the Italian mathematician Eugenio Elia Levi. Levi
introduced the concept of pseudoconvextiy, one of the most important concepts in the function theory of
several complex variables. In fact, an open connected subset £ of C* with a C? boundary is said to be
pseudoconvex if and only if the Levi form of its defining function at each point p € 9 in the direction
of v € Tp(99) is greater than or equal to zero. In this chapter, we will define these notions, and we will

end up showing that the Levi form is invariant under biholomorphic maps.

3.1 Some differential geometry

In this section, we define all the terms related to differential geometry, required for the upcoming sections

of this chapter.

We start our section by defining differential manifolds.

Definition 3.1.1

A real differentiable manifold M of real dimension n and of class C* is a topological space together with

a collection of homeomorphisms 7, : U, — V, such that:
- {U,} is an open cover of M.
- Vo, C R™ is open for all a.

- The map Tap : 78(Ua NUg) = 7o (Ua NUB) with 748 = 7 © 7'51 is C* diffeomorphism from an

open subset of Vg onto an open subset of V.

This collection of homeomorphisms is called an atlas of class C*.

What about smooth manifolds?

Definition 3.1.2

A real smooth manifold is a real differentiable manifold of class C*°.

We define now smooth maps.

14



Definition 3.1.3

Let M, N be real differentiable manifolds of dimensions m and n respectively. Then, F': M — N is said
to be a smooth map if, for each p € M, there is an element Uy, of the open cover of M containing p and
an element Uy g of the open cover of N containing F'(p) with F(Ups,) € Un g, such that 70 Fo Mgt

is smooth from 77, (Un,) to Tnp(Un,) as a map from R™ to R™.

Remark 3.1.4

A smooth complex manifold of dimension n has the structure of a real smooth manifold of dimension
2n.

Tangent spaces can be defined in several ways. One of the interesting ways is the following one:

Definition 3.1.5

Suppose M is a C* manifold of real dimension n, with k& > 1. Suppose p € M. Let 7, : U, — R™ be an
element of the atlas of M with U, containing p. Let

C={y:(-1,1) 2 Uy :v(0) =p,7q 0y : (—1,1) — R" is differentiable} .
Define an equivalence relation on C as follows:

M~ 726 (Ta ©1)'(0) = (70 072)'(0),

and let T, M be the set of equivalence classes under ~. T,,M is called the tangent space to M at p, and

the elements of T, M are called tangent vectors.

The following theorem shows that the tangent space to a manifold at a point can be turned into a

vector space over R of dimension n.

Theorem 3.1.6

Suppose M is a C* manifold of real dimension n, with £ > 1. Suppose p € M. Let 74 : U, — R™ be an
element of the atlas of M with U, containing p. Consider the equivalence relation defined above, and
define d, 7, : T,M — R™ by

dp7a([7]) = (70 ©7)(0).

Then,
(1) dp7a is a bijection.

(ii) T, M can be turned into a vector space over R.

Proof. (i) Let’s show that d,7, is a bijection.
First, dp7, is 1 — 1t Let [y1], [v2] € T, M such that (7, 0 71)'(0) = (74 © 2)'(0), then 71 ~ 72, and so

] = [l
Second, d, 7, is onto: Let v € R™. Define a: (—1,1) — R™ by a(t) = tv. Then, d,7, (75 0a]) = o/(0) =

15



v, with 7,1 oa: (—1,1) = U, € C.
(ii) Let [y1], [v2] € T, M, X € R. Define:

] & 2] = (dp7a) ™ (dpTalm] + dpTalr2)),

A0 1] = (dp7a) ™  (AdpTa[11])-

0 0
Hence, any vector v in 1, M can be written as v = Z v;—, Where {3 } is a basis of T, M. [
1

0
81‘1 6l‘n

Next, we define the differential of a smooth map.

Definition 3.1.7

Let f: M — R™ be a smooth map. Let p € M. Define the differential of f at p to be the linear map
dpf : T,M — R™ such that

n

8f — df
S -3 2o
i=1 0 = Oz
We proceed to define the tangent and cotangent bundles of a manifold.

Definition 3.1.8

Let M be a smooth manifold. We define the tangent bundle of M, denoted by T M, to be the disjoint
union of the tangent spaces at all points of M, and the cotangent bundle of M, denoted by TM*, to be

the disjoint union of the cotangent spaces at all points of M.

Differential forms constitute an important part of the field of differential geometry.

Definition 3.1.9

Let M be a smooth manifold. A differential 1-form o : M — TM* is defined as follows:
D — oy = Z w;(p)dz;.

If « is a 1-form, then

ow;
da = Z axj dr; \Ndx;.

Pullbacks can be defined for a k-differential form, and they have some interesting properties. How-

ever, we restrict our definition to a 1-form.

Definition 3.1.10

Suppose F' : M — N is a smooth map, and « is a differential 1-form on N. Define the pullback F*«
differential 1-form on M by

(Fa)p(v) = ap@p)(dpF(v)).

16



Next, we show that the tangent space to an embedded submanifold with a defining function is the

kernel of the differential of that defining map. However, some defintions are required first.

Definition 3.1.11

Suppose M is a smooth manifold. An embedded submanifold of M is a subset S of M that is a manifold

in the subspace topology, such that the inclusion map S — M is a smooth embedding.

Definition 3.1.12

Suppose M is a smooth manifold, and p : M — R is a smooth map. A levelset p=1(c) = {p € M : p(p) = ¢}
is called a regular level set if for every point p € p~1(c), the map d,p : T,M — R is surjective. In par-

ticular, if p=1(c) = ¢, then p~!(c) is a regular level set of p.

Definition 3.1.13

Suppose M is a smooth manifold. Assume S C M is an embedded submanifold. A smooth map

p: M — R such that S is a regular level set of p is a defining map for S.

Theorem 3.1.14

Assume S C R™ is a hypersurface, and p : R™ — R is a defining map for S. Then, T,,S = ker dpp, for
each p € S.

Proof. Consider the inclusion map i : S — R"™. Then, d,i(7,S) C R™. Note that poi is constant on .S,
so dpp o dpi is the zero map from 7,5 to R, hence Im d,i C ker d,p. Since dpp is surjective, then, by
the rank-nullity law, we have

dim(Ker d,p) = dim(R™) — dim(R) = dim(T,S) = dim(Im dpi).

Therefore, Im dyi = ker d,p.

We define now the complex tangent space and we provide some useful examples.

Definition 3.1.15

Assume Q = {p < 0}, where p : C* — R is a defining function for 9. Let p € 9Q. We define the
complex tangent space to 02 at p to be

TF(09) = T,(09) NiT,(09),
where T,,(00) = ker Vp(p) is the real tangent space at p.

17



Example 3.1.16

Consider the open unit ball B?(0,1) = {z = (21,22) € C?: |21]? + 22> < 1}. So, p(z1,22) = |z1]* +
|22/ — 1 or p(x1,91,22,y2) = 23 + 42 + 23 +y3 — 1. Let p = (p1,p2) € C? satisfy |p1|? + |p2|> = 1. Write
p1 = ay + iby, p2 = as + iba. Then,

ker Vp(ai,b1,az,b2) = {(z1,y1,22,y2) € R* : a121 + biys + azaa + bayz = 0}.

= T, {p =0} = ker Vp(p1,p2) = {(21,22) € C* : Re(p1z1 + Paz2) = 0}.

Consequently, iT), {p = 0} = ker Vp(p1,p2) = {(21,22) € C* : Im(p12z1 + P222) = 0}.

Therefore, Ty {p = 0} = {(z1,22) € C* : prz1 + P22 = 0}.

Example 3.1.17

Consider the bidisc D?(0,1) = {z € C?: || < 1, |22] < 1}. So,

|zo]? — 1, |22 > |21]
p(z1,20) = maz { |21, |22} =1 = ,
|z1]* — 1, |z1] > |22]
or
x5 +ys—1, x5 +ys > ai + oyt
p(z1,91, %2, y2) = ) ) ) ) ) )
x7+yr — 1, x5 +y; <21 Ty

Let p = (p1,p2) € C? satisfies max {\pl\z, |p2|2} =1.

Write p1 = a1 + b1, p2 = a2 + ibe. Then, 2 cases come into play:

Case 1: |p2| > |p1]. In such a case,

ker Vp(ay, by, az,b2) = {(21,y1,22,y2) € R? : agws + boys = 0} .

= T, {p =0} = ker Vp(p1,p2) = {(21,22) € C? : Re(pz22) = 0}.
Consequently, iT}, {p = 0} = {(21, 29) € C2: Im(paze) = O}.

Therefore, T {p = 0} = {(21,22) € C* : paz2 = 0} = {(21,0) € C*}.

Case 2: |p1| > |p2|.

Similarly, we get T {p = 0} = {(21,22) € C* : prz1 = 0} = {(0, 22) € C?}.

3.2 Jg - holomorphic maps

J-holomorphic curves are smooth maps, introduced by Mikhail Gromov in 1985, and satisfying the
Cauchy-Riemann equations. In this section, we will handle J-holomorphic maps, where J is the standard

complex structure, denoted by J;.

We start our section by defining complex structures.

Definition 3.2.1

A complex structure on a real vector space V is a real linear transformation J : V' — V such that
J? = —Idy.

We define the standard complex structure on R?" as an example.

18



Example 3.2.2

Let Jg : R2® — R?" be the linear transformation defined by

1 0O -1 ... 0 O x1 Y1
Y1 1 0 ... 0 O Y1 x1
Jal =1 oo =
Ty o o0 ... 0 -1 Tp —UYn
Yn o 0 ... 1 0 UYn T,
See that J2 = —Id, hence Jy; is a complex structure. It is called the standard complex structure.

Next, we show that (R?",.J) is a C-vector space.

Theorem 3.2.3

Let J : R?™ — R?" be a complex structure. Then, (R?",.J) is a C-vector space.

1 a;
(1 b1
Proof. Letvi=| ! |,ua=| ! | eR*, c=a+iBeC.
T an
Yn bn
1+ aq x1 Z1
Y1+ b1 (7 Y1
Define: vq @ vy = andcOv=a| : | +8J
Ty +ay Ty Ty
Yn + bn Yn Yn

Next, we provide a definition of a Jg-holomorphic map.

Definition 3.2.4

Let Q C R?" and €' C R?™ be domains. Let f : 2 — Q' be a real differentiable function. We say that f
is Jg-holomorphic < dpf o Jg = Jg o dy f.

We end our section by showing that Jg-holomorphic maps satisfy the Cauchy-Riemann equations.

Theorem 3.2.5

Let © C R?" and @ € R?™. Let f : Q — Q be a real differentiable function. We say that f is

Js¢-holomorphic < f satisfies the Cauchy-Riemann equations on 2.
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1 U1(37172Ul>~-~7$myn)

Y1 Ul(x17y17"'7'xn7yn)
Proof. Write f

T um(xlayla“'axnvyn)

Yn vm(xhylu“'amnvyn)

Then, it is easy to check that f is Jg-holomorphic < dpf o Jo¢ = Jy o dpf & Our Ov

(%cj 8y]‘
8uk 8vk

_— =, kj = 1, .,,)m, | = 17 ...,n.
3yj 8xj J

3.3 The Levi Form

In this section, we will introduce the Levi form and show that it’s invariant under biholomorphism maps.

We start our section by the definition of the Levi form.

Definition 3.3.1

Suppose p : C* — R is a C? function. Define the Levi form of p at p € C" in the direction v € C" to be

Next, we show that the Levi form is real-valued.

Theorem 3.3.2

If p: C" — Ris a C? function, p,v € C", then L, (v) € R.

Pplp) __ plp)__ _ Pp(p)
Proof. 62’,'8,277)1% = 750z, Vv = 750z, DRUR

Let’s compute the Levi form of the defining function of the open unit ball in C?
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Example 3.3.3

Consider B2(0,1) = {z € C? : |21|? + |22|* < 1}.
Then, p(z1, 22) = |21]? + |22)2 — 1. Let p = (p1,p2) € C%, v = (vy,v2) € C2. Hence,

»p(p)  p(p)
(i = 0210zZ1 029071 Gt
(Ul 112) (92/)(]3) 32/)(]3) <U2>
821872 822872

- () ()

= |v1]? + |va|?.

What about the Levi form of the defining function of the bidisc?

Example 3.3.4

Consider D?(0,1) = {2z € C?: |z1] < L and |z| < 1} = {z € C? : maz {|=1|*, |22]*} < 1}.
Then,
|22 — 1, |22 2 [21]
p(zl,zQ):max{\z1|2,\z2|2}—1: ,
lz1|® = 1, 21| = [22]
Let p = (p1,p2) € C? be such that |p;| # |p2|. Let v = (v1,v2) € C2. Two cases come into play:
Case 1: |p2| > |p1]. In that case, we have

Pp(p)  pp)

N\ 02077 0207 | [
L) (v) = (v1 vg) (9%})(;)1 agi’(;)l <U2>
021075 022073

- =)0 ()

= |’l)2|2.

Case 2: [p1| > |p2|- In that case, we have L, (v) = |v1|?.

We proceed now to show, via Theorems 3.3.6, 3.3.7 and 3.3.8, that the Levi form is invariant under

biholomorphic maps.

Definition 3.3.5

Let p: R?" — R be a C? function.
Define d5p : R?" — R by dSp(v) = —dp(Jsv).

From now on, J stands for Jg.
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Theorem 3.3.6

Let v € R?2". Then, 5
dp 9p
C - E - §

Proof. Let v = (a1,by, ..., an,b,) € R?™. Then,
d5p(v) = —dp(Jv)
(S )
B Zb 81;1 Z ayz
= Z 8—$idyi — Z gzidz,

The last equality is justified by the fact that

—dz;(v) = dSz;(J ) = —a;Vi

and

Theorem 3.3.7

Let p: R?" — R be a C? function. Let p,v € R?". Then,

ddgpp (v, Jv) = 4L, ;) (V).

Proof. Let v = (a1,b1, ..., an,b,) € R*™.
8p dp
dep—d( 7, dy; — Za da:)

2

8%p 9%p
:_Zmd;ﬁ]/\d;ﬁ Za dyj/\dxl—i—za o dxjAdyl+Za o dy; A dy;.
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Then,

2
-3 (,fj”(da:j( v)da (Jv) — day (v)dz; (Jv))
2
-3 () -
Z Wgzl(dxj(v)dyl(bfv) — dxz;(Jv)dy;(v))

9°p
+ 3 5y (Wi @) (V)

dx;(v)dy;(Jv))

— dy;(Jv)dy(v))

8xj8yl 1% 3o

9?p
Dyy0y (17 + it

+Zﬂ(a'a +bvb)—|—z O (aib; — a;by)
dz;0x, 0 dy;0m T

9?p
= b
Z (636]83?[ (‘3yj(9yl> (@1 +bid;)

+Z Op (arb; — ajby)
8%6@  z;0y) RCAER A

But,
82_ii+i_82+a2+82+82
Oz ;01 a Ox; |0z 07 a 0z;0z  0z;0z  0z;0z  0z;07
02 _iii_i 82_62_82+82
Oy;0y1 o dy; |0z 0Oz 8275‘27 07Z;0z 0z;0z  0z;0%
82 _i i_Fi _ 82 N 82 B 32 3 32
O0y;0x; _8yj 0z 07| 0z;0z  0%z;07  0z;0z  0z;07 ]’
02 772.& ifi _ 82 B 82 N 32 B 82
Oz 0y o Oz; |0z Oz B 02;0z 02;0z  0%z;0z  0%;0% '
Hence,
0%p 0%p
ddSp(v, Jv) 22 [azjazl 9207 (aga; + biby)
9?p
I [azjazl azjazl] (aib; = a;br)
0%p .
= ZQW[(W% + bibj) — iaib; — a;by)]
+22ﬂ[(aa-+bb-)+i(ab-—a-b)]
82’]‘82’7[ 14y 1A% A% 391
82p _ 2p _
Z 8 P 0%p _
- azazl * onoz; )
=4
Zazlaz
Therefore,

ddgpp (v, Jv) = 4L, (V).
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Theorem 3.3.8

Suppose p : C* = R be a C? function. Suppose F : Q C R?" — ' C R?™ is a biholomorphism. If
p € Qv e C” then
L) (V) = Lpor-1(r(p)) (dpF(v)).

Proof. 1t is enough to show that ddSp, (v, Jv) = dd5(po F~1) p(p) (dpF (v), dpF(Jv)), and the rest follows
from Theorem 3.3.7. Note that

d(p o F™)p (dpF(v)) = —d(po F~1)py) (Jdp F(v)) = =d(p o F~") pp) (dp F(Jv))
= —F*d(po F~Y),(Jv) = —=dF*(po F~1),(Jv)
=—d(po F~lo F)p(Jv) = —dpp(Jv)

= dS5p(v).

3.4 Plurisubharmonic Functions and Pseudoconvex

Domains

Pseudoconvex domains are extensively used in the theory of several complex variables. In this section,
we will just define them, and mention a useful test for domains having C? boundaries. Moreover, we

will show that two non-empty proper simply-connected domains in C? are not necessarily biholomorphic.

Definition 3.4.1

Let f: A— RU{—00;+0o0} be a function defined on a subset A of R™, and let 2o € A. Then:

a. f is said to be upper semi-continuous at xg if f(zg) > limsup f(x).
T—T0o

b. f is said to be lower semi-continuous at z¢ if f(zo) < liminf f(z).
T—x0

In particular, if f(xg) = 400 (or f(xg) = —00), then f is upper (or lower) semi-continuous at . Finally,

f is upper (lower) semi-continuous on A if it is upper (lower) semi-continuous at every point of A.

Definition 3.4.2

A function u(z) is said to be subharmonic in a domain G C C if the followings are satisfied:
1. —oo <wu(z) < +o0 in G.
2. wu(z) is upper semi-continuous in G.

3. For any subdomain G’ of G' and any function U(z) that is harmonic in G’ and continuous on G/,
the inequality u(z) < U(z) on dG’ implies u(z) < U(z) in G'.

A function u(z) such that —u(z) is subharmonic is called superharmonic.
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Definition 3.4.3
A function u(z) is said to be plurisubharmonic in a domain G C C™ if the followings are satisfied:
1. —oo < u(z) < +o0 in G.
2. wu(z) is upper semi-continuous in G.
3. For any zy € C", a € C", the function u(zy + Aa) is subharmonic on G ={A € C: 2o + Aa € G} .

A function u(z) is said to be plurisuperhamonic if —u(z) is a plurisubharmonic function.

Definition 3.4.4

Let G be a domain in C", z € G. Define

d(z,0G) = sup r
B"(z,r)CG

G is said the be pseudoconvex if the function —In(d(z,0G)) is plurisubharmonic in G.

If G has a C? boundary, a very special test allows us to check whether a domain is pseudoconvex or

not. Our next goal is to state the test, but no proof will be provided.

Theorem 3.4.5

Suppose G has a C? boundary. Then, it can be shown that G has a defining function, i.e. there exists
p: C" — R which is C? so that G = {p < 0} and G = {p = 0}. In such a case, G is pseudoconvex if
and only if for every p € 0G and w € T,0G, we have

p(p) Z 3218,2] w;w; = 0.

4,j=1

Recall that two non-empty proper simply-connected domains in C are biholomorphic, and this is a
consequence of the Riemann mapping Theorem. Does this theorem hold in the theory of several complex
variables?

Well, we end our chapter by showing that the complex ellipsoid
E = {(z1,22) €C*: |z1|* + |2o|* < 1}

and the open unit ball in C? are not biholomorphic. However, we will use the following theorem proved
by Bell in 1981: If F' : D; — D, is a biholomorphic map between two pseudoconvex domains with
C? boundaries, then F extends to a diffeomorphism of D; and D, if at least one of them is a smooth

bounded strictly pseudoconvex domain.

Theorem 3.4.6

The complex ellipsoid E and the open unit ball in C? are not biholomorphic.
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Proof. Let p(21,22) = |21)* + |22|* — 1 be the defining function of E, and note that
£p(p)(v) = |U1‘2 + 4|p2|2|1)2|2
for all p = (p1,p2),v = (v1,v2) € C2.

Now, suppose there exists a biholomorphism F : E — B2%(0,1). By the theorem mentioned above, F
extends to a diffeomorphism of E and EQ(O, 1). Let p = (1,0) and v = (0,1). Obviously,

Lopy(v) =0
whereas
Loor—1(r(p) ([dpF (v)) = |dpF(v)[* # 0
because v # 0 and F' is a diffeomorphism. Hence, we get a contradiction! O

26



Chapter 4

Stationary and Extremal Maps

In his paper, the Hungarian-American mathematician Laszlo Lempert defined stationary maps and used
them to get some useful applications in the field of complex analysis. In this chapter, we will provide

some definitions and prove Fefferman Theorem for special domains.

4.1 The Kobayashi Metric

The kobayashi metric, introduced by the Japanese-American mathematician Shoshichi Kobayashi in
1967, is a pseudometric defined on any complex manifold. This metric plays an important role in com-
plex geometry, since it is invariant under a biholomorphic map. In this section, we will show this latter

idea.

We start our section by recalling the Poincaré metric. we will denote the open unit disc in C by U.

Definition 4.1.1

Let z € U,v € C. Define the Poincaré metric at (z,v) to be

|v]

pu(z,v) = 1_7‘242

IfQ C C"and Q' C C™, we denote the set of all holomorphic functions from {2 into ' by Holo(Q, Q).

Let’s define now the kobayashi metric.

Definition 4.1.2

Let Q C C™.For p € Q, v € Tp{), define the Kobayashi metric at (p,v) to be
1
Kq(p,v) :==inf {7‘ >0: f e Holo(U,Q), f(0)=p, f(0) = rv} .

The following theorem shows that the Kobayashi metric of C™ vanishes.
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Theorem 4.1.3
Let z,v € C™. Then Kcn(z,v) = 0.
Proof. Let M > 0. Let f : U — C" be the function defined by f(¢) = z + M{v. It is clear that

f € Holo(U,C"), f(0) = z and f'(0) = Mv. Hence, K¢n(z,v)
Therefore, Kcn(z,v) = 0.

1
< W This is true for any M > 0.

O

Next, we show that the Kobayashi metric on the open unit disc is equal to the poincaré metric.

Theorem 4.1.4

Let p € U,v € C. Then, Ky(p,v) = pu(p,v).

Proof. If v = 0, the result is obtained directly. So, assume v # 0.
Let ¢, : U = U be an automorphism of U defined by

_ b=z
1-pz’

©p(2)

If f € Holo(U,U) with f(0) = p and f/(0) = rv for some r > 0, then ¢, o f € Holo(U,U) and
(¢p o f)(0) = 0. By the classical Schwarz lemma, we have

[(ep o £)(0)] < L.

This implies that

Hence,

On the other hand, let f : U — U be the function defined by

v
mz—i—p
f(z) = ——=—

1+ iﬁz.
|v]

1—[p|?

[l

It is clear that f € Holo(U,U), f(0) = p and f'(0) = v. Therefore,

[v]

Ky(p,v) = T—pP

= pu(p,v).

The following theorem shows that the Kobayashi metric has the distance-decreasing property.
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Theorem 4.1.5
Let f:Q CC™ — Q' C C™ be a holomorphic function on €. Then,
K(l’(f(z)vdzf(v)) < KQ(Z,U), Vz € Q,V’U € TZQ
Proof. Let z € Q,v € T,Q. Let ¢ : U — Q be a holomorphic function such that ¢(0) = z and ¢'(0) = rv
for some r > 0. Then, fo¢ € Holo(U,V) satisfying (f o $)(0) = f(z) and (f o ¢)'(0) = f'(¢(0)).¢'(0) =
rf'(z).v =rd, f(v). Hence, Ko/ (f(2),d. f(v)) < 1 Therefore,
T
Ko (f(2),d:-f(v)) < Ka(z,v).

O

As a consequence of Theorem 4.1.5, we show that the Koyabashi metric is invartiant under a biholo-

morphism.

Corollary 4.1.6

Let f: Q CC"™ — Q' C C™ be a biholomorphic function. Then,
Ko (f(2),d.f(v)) = Kq(z,v), Vz € Q,Yv € T,Q.
Proof. Let z € Q,v € T,Q). By applying Theorem 4.1.5 twice, we get

Ko (f(2),d.f(v)) < Ka(z,v) = Ko(f 7 (f(2)), dyiy fH(dof(0)) < Ko (f(2),d= f(v)).

O

We will denote the unit ball in C™ by B™ and the unit polydisc by D". We proceed now to compute
the Kobayashi metric of the unit ball and the unit polydisc in C™. This requires the following version of

the Schwarz Lemma:

Theorem 4.1.7

Let f: U — B™ be a holomorphic function. If f(0) = 0, then |f’(0)| < 1.

Proof. Let 0 < r < 1. Then,
1> L |f(re')|?dt
27

_ %/(|f1(re”)\2+...+|fn(re”)|2) dt

1 r it|2 1 r ity)2
27T/|f1(7"e )| dt+...+2ﬂ/|fn(re )|*dt.
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But Parseval’s identity implies that

> 17 .
12 (it |2 L
> lcinl 27r/|fz(re )|dt, i=1,..n
n=-—oo e
where

s
1 ) )
Cin = 5 /fi(relt)e_mtdt, i=1,..,n.
—1Tr

Since each f; is holomorphic on U, we have

1 r = fz(m)(o) m imt —int
Cin = ﬂ/ (mg_o o e e”""dt
— 1 = 7 fz(m)(o) m i(mfn)tdt
RE N et
£(0)
Hence, ¢;,, = 0if n < 0 and ¢;,, = = ‘ r™ if n > 0. Note that interchanging the summation and
n!
o S0) it
integral symbols is allowed since E ’7'7'7"6“”6*”” converges uniformly on (—, 7). Therefore,
m!
m=0

1 - 1 )
1> — / |f1(1"e”)|2dt+ e+ — / |fn(7"6”)\2dt
21 2

(AOF + 2O +..) + .+ (fa (O + 72 fL0) + ...)
> (1O + 72 A OF) + - + (1 fu(0) + 2| £,(0)]*)
= 1O + | (0)].

Since f(0) = 0, then |f'(0)] < 1. O

Note that one can also show that |f(z)] < |z] for all z € U, but this requires more tools. A
sophisticated proof is available in Chapter 8 of Rudin’s book ’Function Theory in the Unit Ball of C™’.

Theorem 4.1.8
Let p € B™,v € T,B™. Then, Kgn(p,v) = |dp¢,(v)|, where ¢, is an automorphism of the unit ball.

Proof. Since ¢, is a biholomorphism, then by Corollary 4.1.6, we have

Kpn(p,v) = Kpn ((bp(p)v dp¢p(“)) = Kpn (0, dp(bp(v))'

If dy¢,(v) = 0, then the equality is reached. So, assume d,¢,(v) # 0. If f € Holo(U, B™) is such that
£(0) =0 and f'(0) = rdp¢,(v) for some r > 0, then by the Schwarz Lemma, we have

|/ (0)] = r|dppp(v)] < 1.

Hence,

2 |dpp(v)]-

S|
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On the other hand, write d,¢,(v) = (dy¢p(v),, ..., dpop(v),,), and let f: U — B™ be the function defined
by

o dp¢p(”)1z dp¢p(”)nz
1) = <|dp¢p<v>| " o (0)] ) '

1
Clearly, f is holomorphic on U. Also, f(0) =0 and f/(z) = mdpgbp(v). Therefore, Kgn(p,v) =
pPp\U
|dpp(v)]- 0
Theorem 4.1.9
Let p = (p1,....,pn) € D™, v = (v1,...,v,) € T,D™. Then,
v |vn| }
Kpn(p,v) = mazx s eees .
petpo) =maz{ T 1p o

Proof. Let p = (p1,...,pn) € D™, v = (v1,...,v,) € T,D". If v = 0, we get our result. So, assume that
v # 0. Let f € Holo(D', D™) be a holomorphic function such that f(0) = p and f/(0) = rv for some
r > 0. Let ¢ : D™ — D" be the map defined by

pP1— 21 Pn — 2
D21y ey 2n) = ( o, ) .

171771217 1*]77”,2,’”

Let h=¢o f: D' — D" Then for any z € D', we have

(90 1)) = 01 :) = 6 (2 o) o fole)) = (LDEL L 2Bl
Hence, (¢ o f)(0) = (0,...,0). Let

hi(z) = pi— filz) i=1,..,n.

C1-pifi(2)’

By the classical Schwarz lemma applied to hq, ..., h,, we get

IR(0)] < 13,

Hence,
|v;] _
—— < 1Vi.
1 —[pif?
Therefore,
L e {12 il
~ > max s 50
r 1— |pa| 1 — |pn|
Let M = max{ 2 5+ o 2 } Let f: D' — D™ be the map defined by
1= |pa 1 — |pnl
U1 Un
P1— w7 9 % Pn— — 5%
f(2) = M(|p:[* — 1) M(|pn|* — 1)
z) = N s ey o —

1-— — P17 1-— —— 5 Pn?
M(|p:[?> = 1) M(|pn|? = 1)
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1
Obviously, f is holomorphic on D'. Also, it is easy to show that f(0) = p and f’(0) = Y Therefore,

vt |vn|
Kpn(p,v :max{ - .
(#,2) T o T= [paP

4.2 A metric for convex domains

In this section, we define a new metric for bounded convex domains and show that it is indeed a metric.

We start our section by the following definition:

Definition 4.2.1

Let D be a bounded domain in C". Let U = D'(0,1). Define the function dp : D x D — R by

0p(21,22) = inf{dg(C1,¢2) : 3f : U = D : f € Holo(U, D), f(C1) = 21, f(¢2) = 22},

) |

where
=G

dr (G, G2) = log (1—<<
1-— =G

1-¢1¢2

We note that dp has the following property:

Theorem 4.2.2

dp has the distance decreasing property.

Proof. Let g : D1 — D5 be a holomorphic function. Let 21,29 € D;. Let f: U — D; be a holomorphic
function such that f((1) = 21 and f((2) = 2z2. Then go f € Holo(U, D2) with (g o f)(¢1) = g(#1) and
(90 f)(¢2) = g(22). Hence,

0D, (9(21),9(22)) < dm(C1,C2)-

Therefore,
5D2 (9(21)7 g(ZQ)) < 5D1 (Zlv 22)'

Here is another straightforward property:

Theorem 4.2.3

Suppose D’ C D and 21,29 € D’'. Then dp(21, 22) < dp/ (21, 22).

Proof. Suppose there exists f € Holo(U, D') such that f(¢1) = 21, f(¢2) = z2. Let A = {dn(¢1,¢2) : 3f € Holo(U,D'), f((

and B = {du((1,¢2) : 3f € Holo(U, D), f(C1) = 21, f(¢2) = 22}. Define g : U — D by g(¢) = f(¢). Thus,
A C B. Therefore, dp(z1,22) < 0pr (21, 22)- O
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Our next goal is to show the following interesting axiom whose proof is not available in Lempert’s

paper:

Theorem 4.2.4

Let z1,29 € D. Then, dp(z1,22) =0 < 21 = 2.

Proof. <: Suppose that z1 = zo. Define f : U — D by f(¢) = z1. Note that f € Holo(U, D) and
f(0) = z1 = z2. Since dg(0,0) = 0, we have dp(z1,22) = 0.

=: Suppose now that dp(z1,22) = 0. Then, there is a sequence of functions {f,} such that f, €
HOlO(Ua D)a fn(Cn) = 21, fn(nn) = 29 and ILm dH(Cnann) =0, where {Cn} ) {nn} cu.
By Bolzano-Weierstrass, {(,} has a subsequence {(,,} that converges to ¢ € U, and {1, } has a subse-

quence {7, ., } that converges ton € U, and 80 fr i (Cokm) = 215 Frrem Mnkm) = 22 and dir (Cngms Mnkm) —
0.

Since D is bounded, then { f,4,,} is a sequence of holomorphic functions that is uniformly bounded, and
by Arzela-Ascoli it has a subsequence { fy,,;} that converges uniformly, on compact subsets of U, to a
function f.

Two cases come into play:

Case 1: |¢| < 1. Since ll_iglodH(anmlvnnkml) = 0, then ll_iglo(cnkml — Nngmg) = 0. So, ll_inganml =

llim Mnim;- Hence, ¢ =n, and |n| < 1.
— 00

Let € and ¢’ be small enough so that D (¢,e) C U and D (n,e)CU.
Since llim Cngm; = ¢, then there exists N € N such that
— o0

—1
ZZN:>|<kml_C‘ <€:><kml eD (<u€)~

Since frpm;(Crugm;) = 21, then nll_}n;lo Frkmi(Cnkm;) = z1. By uniform convergence on ﬁl(ﬁ,e), we get
f(¢) = 2. Similarly, f(n) = z2. But { =1, so0 z1 = 2.

Case 2: ( = c¢,|c| = 1. In such a case, we get lliglo di (Cngmps Mim;) = 00, which is a contradiction. So
this case is rejected.

O

Next, we note that if D is convex, then dp satisfies the triangle inequality:

Theorem 4.2.5 [Lempert, 81]

If D is convex, then dp(z,s) < dp(z,w) + dp(w, s)Vz, s,w € D.

Proof. Let z,w,s € D. Let € > 0. There exist f,g € Holo(U, D),({,n,no,€ U such that

€

f(C) = va(n) = w’50(27w) > dH(CJ]) Ty

€
9(0') = w,9(0) = 5,5p(w, ) > du(,0) ~ 5.
WLOG, assume ¢ =0, =1’ > 0,0 > n (If not, compose f and g with suitable automorphisms of the unit

disc and proceed). Assume also that f and g are continuous on U (If not, let R = max {|(], |n|, 7’|, |o|}
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and let r < R < 1. Define u: U — D by u(a) = f (%) andv:U — D by v(a) =g (%) and proceed).
Let
h(&) = A& (&) + (1 = A£))g(E)

o= (e-7) (%) (;) .

Note that A(0) = 1, A\(¢) = 0, A is holomorphic on U — {n} and X is real on U with 0 < \ < 1:
(€ )<§ 1)( 1 ) 1 nlE—ol* _,
-0 S I (. =4 ’
o) \&=n)\&-5 ) olE—nP
for all £ € OU.

Hence, h : U — C" is holomorphic on U (7 is a removable singularity) with h(0) = z, h(c) = s and

with

h(0U) C D (because D is convex). By the maximum principle, h(U) C D.
Therefore,
6D(z7 S) S dH(Oa U) = dH(Oa 77) + dH(n7 U) S 6D(Z7 w) + 6D(w7 S) + e

Corollary 4.2.6

If D is convex, then dp is a metric.

The following example shows that if D is not convex, then dp is not necessarily a metric.

Example 4.2.7

Let D, = {z € C?: |21]| < 2,|22| < 2, |2122| < €}. Let P = (1,0) and Q = (0,1). See that ép, (0, P) and
dp.(0,Q) do not depend on € but dp_(P,Q) — oo as € — 0.

Royden has shown that the Kobayashi distance on D is given by

k
HD(Zl,Zg) = inf Z5D(wj_1,wj) T W; S D(j = O, ...,k),’wo = Zl,wk = ZQ

Jj=1

for all Zy, Zy € D. It turns out that kp = dp if D is a bounded convex domain:

Theorem 4.2.8

If D is convex, then 0p(Z1, Z2) = kp(Zy, Z3).

Proof. First, note that if D is a bounded domain in C™, we have
HD(Zl,ZQ) S(sD(Zl,ZQ) v217Z2 e D.
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Moreover, if D is convex, then dp satisfies the triangle inequality. Hence, if Z1, Z5 € D, we have
§D(Z1, ZQ) < 5D(Zl7w1) + ...+ 5D(wk717 ZQ) Ywy,...,wp_1 € D

and so
5D(Zl,Z2) < K/D(Zl,ZQ) v21,Z2 e D.

4.3 Stationary and Extremal Maps

In this section, we will define stationary and extremal maps and prove that stationary maps are extremal.

We start our section by the definition of a strongly convex domain.

Definition 4.3.1

A domain D C C" is said to be strongly convex if it is bounded, with C? boundary, and whose defining

function p(z) satisfies

4,J=1

2Re Z m(p)vivj +2L,)(v) >0  Vp e dDVv € T,(0D)(v # 0).

Let’s fix some notations we are going to use throughout this chapter.

Notations
1. D will be used to denote a strongly convex domain.

2. If D is strongly convex with defining function p, SCp(p,v) will be used to denote

n 82p
2hie 1'jz=1 aziazj (p)vivj * 2£p(p)(v).

3. v(z) = (v1(2), ...,vn(2)) will be used to denote the exterior normal of 9D at z € 9D. Note that

since D has a C? boundary, it has a defining function p, and in such a case v(z) = Vp(z).

4. For 0 < p < oo, CP(K) will be used to denote the set of all |p]|-differentiable functions on the

interior of a compact set K such that:

(a) If p is an integer, h(¥) extends continuously to K for all k < p.

(b) If not, let # = p — [n] > 0. Then, h(® satisfies |h(¥)(z) — h{®)(w)| < Clz — w|?,Vz,w €
K° Va < |n].

5. C*(K) will be used to denote Np<oe CP(K)

6. If E C C" is a set, then CP(FE) will denote N {CP(K) : K C Ecompact} .
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7. C¥ will be used to denote the set of real analytic functions.

8. Pr_, will be used to denote the projective space of hyperplanes in C”.

What is an extremal map?

Definition 4.3.2

Let f: U — D be a holomorphic map.

1. f is said to be extremal with respect to Z1,Zs € D(Z1 # Zs) if f(0) = Z1, f(§) = Z2 (€ being a
positive real number), and §p(Z1, Z2) = dr (0, ).

2. f is said to be extremal with respect to Z € D,v #0 € C" if f(0) = Z, f(0) = A (A > 0), and
for each map g : U — D € Holo(U, D) such that g(0) = Z, ¢’(0) = pv (1 > 0), we have u < .

Finally, if f is extremal, then f(U) will be called the extremal disc with respect to Z1, Zs (resp. Z,v).

Here is an example of an extremal map:

Example 4.3.3

Let’s show that the map f : U — B?(0, 1) defined by f(z) = (z,0) is extremal with respect to f(0) = (0,0)
and f/(0) = (1,0). To do so, let g : U — B?(0,1) be a map such that g(0) = (0,0) and ¢'(0) = A(0,1)

for some A > 0. By the Schwarz Lemma, we have |¢’(0)] = A < 1. Hence, we get our result.

What is a stationary map?

Definition 4.3.4

A holomorphic map f : U — D is said to be stationary if it can be extended to a 1/2-Holder continuous
map on U (which will be called f also), f(OU) C 0D, and if there exists p : QU — R* such that p is
1/2-Holder continuous and the map (p(¢ )m defined on OU extends to a continuous map j? on U
that is holomorphic on U.

If f is stationary, f(U) will be called stationary disc.
Remark: By a Theorem of Hardy and Littlewood, fis 1/2-Holder continuous on U.

Our first goal is to show that a stationary map f is extremal with respect to f(0) and f/(0).

Theorem 4.3.5 [Lempert, 81]

A stationary map f is the unique extremal map with respect to z = f(0) and v = f/(0). In particular,

£(0) # 0.

Proof. Let g: U — D € Holo(U, D) with g(0) = f(0) = z and ¢’(0) = Af'(0), A > 0. Since g is bounded
on U, then
9(¢) = lim g(r¢)

r—1-
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exists for a.e. ( € OU by Fatou’s Theorem. Since D is strictly convex, then

Re < f(¢) —g(¢),v(f(¢)) >>0 for a.e. ( € OU.

Assume f # g. Since f(¢) — g(¢) is holomorphic and bounded on U, then f({) — g(¢) # 0 a.e. on U by

a theorem of F. and M. Riesz. Hence,

Re < f(¢) — g(Q),v(f(¢)) >>0 for a.e. ¢ € OU.

Multiplying by p(¢), we get

0 < Re < J(0) = 90001 (@) >= e (LI TG) - poraecew
Since <f(€)g(§)7]? is holomorphic and bounded on U, then

R (©)
Re <f(<)gg(o,f(g)> is harmonic and bounded on U. Hence,

0 < Re < f'(0) — ¢'(0), F(0) >= (1 — A)Re < f'(0), F(0) > .

This is true for any g satisfying the conditions above. In particular, take g(¢) = z, so A = 0 and hence

=

Re < f7(0), f(0) >> 0. Therefore, 1 — X > 0, and so |¢’(0)] < |f'(0)]. O

Here is an example of a stationary map:

Example 4.3.6

Let’s find all stationary maps f : U — B2(0,1) such that f(0) = (0,0) and f’(0) = (1,0). Suppose there
exists a stationary map f : U — B%(0,1) such that f(0) = (0,0) and f’(0) = (1,0). Then, f is the
unique extremal map with respect to f(0) and v = f/(0). However, the map f : U — B2(0, 1) defined by
f(2) = (2,0) is extremal with respect to f(0) = (0,0) and f’(0) = (1,0). By uniqueness, f(z) = (z,0).
Note that one can show, following the same procedure, that if f : U — B2(0, 1) is a stationary map such
that £(0) = (0,0) and f/(0) = (ay,az) with |a1|> + |aa|? = 1, then f(2) = (a12,az22).

One can see that the composition of a stationary map and an automorphism of the unit disc is a

stationary map:

Theorem 4.3.7 [Lempert, 81]

If f is a stationary map and a is an automorphism of U, then f, = f o a is a stationary map.

Proof. We have to show that there exists a 1/2-holder continuous map p, : U — RT such that

¢pa(O)v(fa(€)) extends to a map that is holomorphic on U and continuous on U.
Let ¢ be a holomorphic function on U such that

Im(¢(¢)) = Imlog (a(i)) V¢ € oU.
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Define g : OU — R by

Note that g is well-defined because

2(¢) = eRe@) imm(@©) U _ Re(6(0) lostaic) U8) _ reo(©@) v e ou
¢ ¢

Define p, : OU — RT by

Note that
(pa(Q)v(fa(Q)) = e®Da(C)p(a(Q))v(fa(C))

which extends to e#(©) f(a(¢)), a holomorphic function on U, continuous on U. O

Note that fa(g) = e‘b(C)J?(a(C)) =0« (J?O a)(¢) = 0.

Lempert has mentioned the following two corollaries without proof:

Corollary 4.3.8

If f is a stationary map, then f: U — C" is never zero.

=

In fact, < f/(¢), f({) ># 0 for all ¢ € U.

Proof. We have already shown that if f is stationary, then

=

Re < £(0), f(0) >> 0,

~

hence f(0) # 0.
Next, let ( € U. Let a be the automorphism of the unit disc defined by

_(+z
_1+ZZ.

a(z)

Hence, f;(O) # 0 and so (fo a)(0) # 0. Therefore, f(() # 0. Moreover, we know that

Re < (£00)'(0), fu(0) >= Re (1 = [c)e”® < £(0). () >) > 0.

=

Therefore, < f/'(¢), f({) ># 0. O

Corollary 4.3.9

A stationary disc f(U) is the unique extremal disc with respect to z = f(¢) and v = f(¢), for any ¢ € U.

Proof. Let ¢ € U. Let a(z) = f:ﬁ . Since f o a is stationary, then f o a is the unique extremal map
z

with respect to (f o a)(0) = f(¢) and (f o a)'(0) = (1 —[¢|?)f'(¢). In fact, f o a is also extremal with
respect to f(¢) and f/(¢):

L (foa)(0) = f(Q)
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2. (foa)'(0)=(1—[c[*)f(C), with 1 —[¢* > 0.

3. Suppose there exists g : U — D € Holo(U, D) such that g(0) = f(¢) and ¢’(0) = Af'(¢) with
A > 0. Write ¢’(0) = 1_)\|<|2(1 — ¢ £(¢), and use the fact that f o a is extremal with respect

to (foa)(0) = f(¢) and (f oa)'(0) = (1 —[¢|?)f'(¢) to conclude that A < 1 — [¢|*.
Moreover, f o a is the unique extremal map with respect to f(¢) and f'({). If not, then there exists an
extremal map F with respect to f(¢) and f'(¢). One can show in a very similar way that F is extremal
with respect to (foa)(0) = f(¢) and (foa)’(0) = (1—|¢|?)f'(¢) and conclude that F' = f oa. Therefore,
(foa)(U) = f(U) is the unique extremal disc with respect to z = f(¢) and v = f(¢). O

We proceed to show that a stationary disc f(U) is the unique extremal disc with respect to any two
elements in the image of f. Note that the proof of the following theorem is more detailed than the one

done by Lempert:

Theorem 4.3.10 [Lempert, 81]

A stationary disc f(U) is the unique extremal disc with respect to 21 = f(¢1),20 = f((2) for any
G # 6,0, eU.

Proof. Suppose z1 = f((1),22 = f((2). Let ¢1(2) = fir—zz Let ¢2(z) be the rotation of U that maps
12
Q=G| =0 ¢ oo
1—CiG 1-GiGe
(f o d1092)(0) = f(C1)
and ¢
1— G [\ _
(fod10¢s) ( era ) = f(C).

We will show that f o ¢ o @9 is the unique extremal map with respect to f(¢1) and f((2).

Suppose g : U — D € Holo(U,D) with ¢(0) = f({1) and g(w) = f({2), w > 0. Suppose also that

1 — ¢
f#g. Letl= ‘ —

1 -G
means that:

. It is enough to show that w > [ and it follows that dp(0,w) > dg(0,1) which

1. g is not extremal with respect to z; = f(¢1) and 25 = f({2).

2. fo ¢y 0 ¢ps is extremal with respect to 21 = f({1) and 25 = f({2) because
dy (0,w) > dp(0,1) = dy(0,1) < dp(f(C1), f(¢2)) = du(0,1) = 6p(f(¢r), £(¢2))

since (SD(f(Cl),f(CQ)) < dH(O,l)

Suppose that w < [. Define G: U — D by G({) =g (Clw> Note that G(0) = z; and G(I) = z2. Since

G # f and D is strictly convex, we have
Re < f(¢) — G(Q),v(f(Q)) >>0 for a.e. ¢ € 9U,

and hence

Re<f(C)EG(C),A(C)> >0 fora.e. ( € U.



But,

m{f@”éG“”jkﬂ>=o

G0 =
and Re <‘f(<)<(o, (¢ )> is harmonic, so we get a contradiction by the minimum principle. O

It follows that:

Corollary 4.3.11

Stationary maps are injective.

Proof. Let f be a stationary map. Let (1,(s € U with (3 # (5. From the previous proof, we see that
op(f(C), f(¢2)) = du(0,1) >0

so f(C1) # f(Ca)- O

4.4 Regularity of Stationary Maps

~

The goal of this section is to show that < f'(¢), f({) > is a positive constant for any stationary map f.

We start our section by the definition of a totally real submanifold:

Definition 4.4.1

A real submanifold M of a complex manifold is said to be totally real at z € M if T,M NI, M = 0.
Next, we state without proof the following theorem:

Theorem 4.4.2 ([7])

Let S be a real hypersurface in C" of class C?. Define ¥ : S — C" x P, by ¥(z) = (2,T5(S)). Then
U(S) is totally real at U(zp) if and only if the Levi form of S at zy is not zero.

We proceed to state and prove the required theorems to reach the main goal of the section:

Lemma 4.4.3

Let v € C1(C) such that supp(¢)) is compact. Then the function defined by
-1 (¥ =
=— | —%déNd
Q) = 5 [ P A
C

satisfies




Proof. Let D'(0,r) be a disc that contains supp(z). Then:

¢ 27r18< £—¢ C
10 [YE+Q) -
- ,/75 dE A dE

2mi 9¢
C
)
-1 €+ _
_ %/fdmdg
C
o)
2o
- / A
D1 (0, r)
- ~ 5 / = Cdf (Pompeiu’sFormula)
aD(0,r)
= (Q).

Theorem 4.4.4 [Lempert, 81]
Let:

1. E C U be a bounded domain such that OF is a simply connected curve with an open subarc
A C OF contained in 9U.

2. Let M be a totally real submanifold of a complex manifold X such that dimrM = dimcX = m.
3. g: EUA — X be a 1/2-Holder-continuous map, holomorphic on FE, such that g(A) C M.

If M is of class C"(r = 2,3, ...,w), then g € C""¢(F U A),e > 0.

Proof. WLOG, suppose X =C™, ECU" ={¢Ce€C:Im({) >0} and A C IJEUOU™ is a segment.

Case 1 : v = w: Since M is of class C", then there exists an analytic diffeomorphism ¢ : V. — M
where V' is an open subset of R™. Consequently, there exists a biholomorphism ® : Ny — C™ from a
neighborhood Ny of V into C™ such that ®|y; = ¢. Let ¥ = ®~!og. Note that ¥ is holomorphic on F,
continuous on A and is real-valued on A since g(A4) C M, so U(A) C V. By the reflection principle, ¥

extends analytically across A, and so does g.

Case 2: v < w: There exists a C"-diffeomorphism ¢’ : V' — M where V is an open subset of R™.
By HARVEY and WELLS Jr, there exists a C"-extension ® : Ny — C™ of ¢ from a neighborhood Ny
into C™, such that all derivatives of order < 7 — 1 of O® are 0 on V.Hence, ® is a diffeomorphism from
Ny into a neighborhood Ny, of M, such that all derivatives of order < r — 1 of 9®~ ! are 0 on M. Let
h be the function defined on QN U™ by



where €2 is a neighborhood of A symmetric with respect to A. Let

h(<) if¢ €, Im(C)

>0
HO)={"> " -
WO ifCe Im(C) <0

Note that H is continuous on (2 since h(A4) C V and of class C" on  — R since g is holomorphic on E.
Let
HAQ)  if¢eR—A

0 if(e A

Note that ¢ is continuous on €2 — A because H is of class C" there. We need to investigate the continuity
of pon A. Well, on QNUT,

HC) = 25— (6(0)g'(0)
Note that 01
S (9(0) = o)1~ [C) (¢~ Gy € A).

By a Theorem of Hardy and Littlewood,
g'(O) =01 =K = G € A).

Consequently, ¢(¢) — 0 as ¢ = (o € A. So, ¢ is continuous on €2, and hence for any Q' CC Q, there

exists U € C'7¢(Q) such that Uz = ¢. Thus, Hz — ¥z = 0 on ' — A, which implies that H — ¥ is

holomorphic on ' — A. Since H — ¥ is continuous on €', then H — ¥ is holomorphic on Q' by the

symmetry principle. Therefore, H € C'~¢(Q’). This is true for any ' cC Q, so h € C'=¢(QNUT) and
g€ C¢(QNUY). Now,

0o—1

0z

(9(¢)) =o)L = [¢N' ™ (C = Co € A)

and

9'() =0M)(A = [¢) (¢ = ¢o € A).

So, ¢ € C1¢(¥) and ¥ € C?~<(Q), hence h,g € C>~<(QNTUT).
If r = 2, stop. If » > 2, then ¢’ € C'~¢(QNUT), and by the same theorem of Hardy and Littlewood,

9" =01)1 - (¢ €A
and so ¢ € C?7¢(Y'). But
PpeC (V)= Vel (Y)=heC®(QNTUT)=geC*(QNUT).

If r = 3, stop. If not, proceed until you get g € C™"¢(E U A). O

Theorem 4.4.5 [Lempert, 81]

Suppose 9D is of class C¥(3 < k <w) and f: U — D be a stationary map. Then, f, fe Ck=2(U).

Proof. Let F=mo f: U — Pf_,, where 7 is the cannonical projection. Note that f;ﬁ 0on U, so Fis
well-defined.
The map (f, F) : U — C"x P*_, is 1/2-Holder continuous, holomorphic on U, and (f, F)(0U) C ¥ (D),
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where W(0D) is totally real since D is strongly convex. By Theorem 4.4.4, (f, F) € C*~1=¢(U), hence
f € CF2(U). Since vo f € CF17¢(9U), we just have to show that p € C*~2(9U).

Let (o € OU and suppose that v1(f({p)) # 0. Let ¢ : 90U — C be Holder-continuous of order k—1—e€
such that v (f(¢)) = e®© in a neighborhood V N U of ¢, € U.
Let v : OU — R be such that v + iIm(¢) extends to a holomorphic function on U. By Privaloff,
v € CF=1=¢(9U).

Since vy (f(¢))e?© =R and p(¢)v1(f(¢)) extend to holomorphic functions on U NV, so does
p(¢)efe(¢()=7(Q) which is real on V N AU, so it extends to an analytic function on V N OU. The regu-
larity of e®¢(®)=7 implies that p € C*~1=¢(V N oU).

Since (p is arbitrary, p € C*~1=¢(9U), so fe Ck=1=¢(U). O

Theorem 4.4.6 [Lempert, 81]

=

If f:U — D is a stationary map, then < f'(¢), f({) > is a constant positive map.

Proof. Since f(OU) C 0D, then the tangent to the curve {f(w):w € 9U} at f(¢) is orthogonal to
v(f(¢)). Hence, for ¢ € OU, we have

0= p(¢Q)Re < iCf"(¢),v(f(¢) >=p(Q)Im < (f'(¢), v(f(¢)) >

=Im < f'(¢),Cp(Q)u(f(¢)) >=Im < (), F(C) > .

=

Note that Im < f’(¢), f(¢) > is harmonic in U and continuous on U by Theorem 4.4.5 . Therefore,
Im < f'(¢), f(() > = 0 on U by the maximum principle. But < f’(¢), ]?(C) > is holomorphic on U, so

= =

< f'(Q), f(¢) > is a real constant c on U. Moreover, < f/(0), f(0) >> 0, which implies that ¢ > 0.

=

From now on, we will assume that < f/({), f(¢) >= 1 so that

1
T < O(f(Q) >

p(¢) (¢ e dl).

4.5 Holder Estimation of Stationary Maps

In this section, we prove some Holder estimates of stationary maps.

Theorem 4.5.1 [Lempert, 81]

Let f : U — D be a stationary map. Suppose that the diameter of dD (denoted by diamD),
SCp(p,v)(p € 0D,v € T,(0D)), and the distance from f(0) to dD are bounded below and above

by positive numbers a and b respectively. Then, there exists a uniform constant C; > 0 such that
dist(f(¢),0D) < Ci(1—[¢]), (el
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Proof. Let p > 0 be smaller than a. There exists a constant Co > 0 such that
z € D,dist(z,0D) > p = 0p(f(0),2) < Ch.

Let (e U.

If dist(f(¢),0D) > p, then

5p(f(0), £(C)) < C2
= Cy + log(diamD) — log(diamD)
= C5 — log(diamD)
< C3 — log(dist(f(¢),0D)).

If dist(f(¢),0D) < p, let Z be the closest point on 9D to f({) and let z be the center of the ball
b C D of radius p tangent to 0D at Z. Then,

op(f(0), £(€)) < dp(f(0),2) + dp(z, f(C))
< Coy+ 0z, f(C)) (dist(z,Z) = p,b C D)
< Cy —log(dist(f(¢),0D)).

But f(U) is the extremal disk determined by f(0), f(¢), i.e. f o ¢ is the unique extremal map with
respect to f(0) and f(¢), where ¢ is the rotation mapping || to ¢. Hence,

3(0) £(0) =1og (1) = ~tog(1 - e,
Hence,
log(dist(£(C), OD) < maz {Cs, Ca} +log(1 — [C]).
Therefore,
dist(f(¢),0D) < C1(1 —[¢]),
where € = emar{Cs,Ca} O

Lemma 4.5.2
Suppose g € Holo(U, B™(zo, R)) and |g(0) — zo| = 7. Then |¢'(0)| < VRZ — r2.

Proof. If r = 0, we get the result by the Schwarz Lemma. If not, we can compose g with an automorphism
of the ball B™(2g, R) and then apply the Schwarz Lemma. O

Theorem 4.5.3 [Lempert, 81]

Let f: U — D be a stationary map. Suppose that the diameter of dD,SCp(p,v)(p € dD,v € T,(dD)),
and the distance from f(0) to 9D are bounded below and above by positive numbers. Then there exists

a uniform constant Cs > 0 such that

1£(G) = f(G)] < Csléa — G2 (¢, G €U).
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Proof. Let (o € U. Let Z € 9D be the closest point to f({y). Let B be the smallest ball tangent to 0D
at Z such that D C B. Let zg be the center of B. Let

o-1(£55)

Hence, h(U) C B and h(0) = f(¢o). By Lemma 4.5.2, we have

1K (0)] < V1Z = 202 = £ (Co) — 202 < Csf(Co) — Z|/2.

Hence,

1 dist(f(Co), 0D)
T jep MOl =321

(o)l =

By Theorem 4.5.1,
/(I <Cs—[gh? (CeU).

By a theorem of Hardy and Littlewood, the last inequality is equivalent to

1£(G) = f(G)] < Cslét — G2 (¢, €U).

O
Lemma 4.5.4
Suppose f: U — {z € C: Re(z) < 0} is a holomorphic map. Let ¢ € U. Then,
, 2|R
(o< 2PN
Proof. Define B: U — U by
B = e
+(z
and h: {z € C: Re(z) <0} — U by
he) = 224
2+ f(¢)
By the Schwarz Lemma,
[(ho foB)(0) <1,
hence oIR
o) < AN
O

Theorem 4.5.5 [Lempert, 81]

Let f: U — D be a stationary map. Suppose that the diameter of 9D, SCp(p,v)(p € dD,v € T,(dD)),
and the distance from f(0) to D are bounded below and above by positive numbers. Then, there exist

uniform constants Cy, C1g such that

0 < Cy << f(€), Cu(f(¢)) >=p(¢) ™" < Cug (¢ €0U).
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Proof. Let ( € U,e > 0,(; = (1 — €)(. WLOG, assume that v(f(¢)) = (1,0,...,0) and f(¢) = 0. Hence,
z=(21,...,2n) € D = Re(z1) < 0.
Write f = (f1,..., fn)- Hence,
fi(U) Cc{z1 € C: Re(z1) < 0}.

By Lemma 4.5.4,
2[Re(f1(1))] .

|f1(G)] < 1= |62

But there exists € > 0 such that

G1 = ¢l < e = [Re(f1(G1))| ~ dist(f(C1), 0D).

By Theorem 4.5.1,

_ 2dist(f(G1), 9D)

|C1_§|<€:>|f{(gl)|f AR <2C.

In particular,

1O =< (), v(£()) >< 2C.

Next, consider the subharmonic function V : U — R defined by

V(C) = —dist(f(¢),0D).

Note that V' attains its maximum on QU where it is differentiable.
Let d be the diameter of D and b = dist(f(0),0D). Let B be the ball of center f(0) and radius d. Note
that

IF(Q) = f(O) <d v¢eU,

so f(U) C B. By the Schwarz Lemma,

b . b
[£(Q) = FO) = d|¢| < 5 if ¢< o5

Let

M(z) = mamoStS%V(eIHt).

b b - b
If x < log Yh then e* < 2d and so |e* 1] < %4 for all t. Hence,

A b b
Ttit) < Z . < iy
FE —fO <Y ite <o,

Therefore,

dist(f(e*T),0D) > if z <log Q—bd

N o
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b
Now, M is a convex function, so for log % <z <0,

M(z)— M <log 2bd>

x — log i
2d

M(O)—M(m)

<
- 0—2x

b b
Since M (0) =0 and M (log Zd) < —3 then we have

1 b b b
- < < _Z
M(m)(xlog2d>_M(log2d>_ 5

—xb

and therefore
M(z) <

 2log —
%8 94

if log2—bd§w§0.

Finally, if ¢ € 9U, then V(¢) = 0 and so

V) V(O € — it logyn<a <0
ZIOgﬁ
Hence, ( ©
—b V(¢e®) -V (¢ . b
2log£§ pow— if logz—dgxgo.
2d
Therefore,
—b dv(¢e®
P | T2 —ao =<0t >
210gﬁ z=0

Note that the proof of the following theorem is more detailed than the one done by Lempert:

Theorem 4.5.6 [Lempert, 81]

Let f: U — D be a stationary map. Suppose that the diameter of 9D, SCp(p,v)(p € dD,v € T,(dD)),
and the distance from f(0) to 9D are bounded below and above by positive numbers. Then, there exists

a uniform constant C7; > 0 such that
p(G1) = p(G2)] < CulGr — G|/ (C1,¢2 € OU).

Proof. Let’s prove that it is enough to show that there exist uniform constants 0 < Ci5 < 1,C17 > 0
such that

C1,G € 9U,|C1 — G2] < Ci2 = [p(¢1) — p(G)| < Cril¢ — C2|1/2~

First, fix 0 < k < C12. Suppose, in the worst case, that |1 — (2| = 2 and partition the semi-circle whose
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endpoints are ¢; and ¢, into n points, (1,1 = (1,(1,2,-..-C1,n = (2 such that

IC1i — Crit1] =k, ifl1<i<n-—2

IC1i — Crig1| <k, ifi=n—1

Hence, if (1, (s € U satisfy |(1 — (2] > Ca, then partition the part of the unit circle whose endpoints
are ¢; and (2 into ! points, (1,1 = (1, ...1,; = (2 such that

G — Crit1| =K, if1<i<i—2
C1,i — Criv1| <k, ifi=1-1

Note that [ < n and n depends only on C12. Now,

Ip(¢1) — p(C2)| = |p(C1,1) — p(Cr2) + p(Cr2) — p(Cr3) + -+ p(Cra—1) — P(C2)]
<OulG = CiolY? + CualCip — sl + oo+ Cra|Crir — G2
<O+ e + .+ OGP
<1010y
< nCC1y°
< nCu|¢r — G| /2
=Cl¢1 — Gf'?

where C' = nC1; is uniform. Hence we get,

Ip(C1) — p(G2)| < Cl¢1 — (o2 (C1,¢2 € OU).

Now, let’s prove the theorem.
Let ¢; € OU. Suppose that v1(f(¢1)) = 1.

Let e = 3 Since OU is compact and v; is continuous on QU, then there exists § > 0 such that

¢, ¢ €U, [¢ = <d=|vi(C) —vi(¢)] <

DN | =

Note that § does not depend on f. Let ( € QU. Since there exists a uniform constant C5 such that

1£(C) — F(C)| < Csl¢ — G|V,

then,

C-Gl < & = M) -1 <5

]
Note that o is uniform. Therefore, one can find Ci2 € (0,1/4) such that
5

1

I =G <2012 = |ui(f(Q) — 1] < 3

Next, construct a function ¢ : QU — C such that:

L ¢(¢) = v1(f(Q)) if [¢ — C1| < 2C1;
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2. [o(Q) =1 < 5.

3. The 1/2-Holder norm of ¢ is equal to that of vo f.

Let r : OU — R be the harmonic conjugate of Im(log(¢)), hence r+iIm(log(¢)) extends to a holomorphic
function on U. By a theorem of Privaloff, since log(¢) is 1/2-Holder continuous, then r is too. Moreover,
the 1/2-Holder norm of r is uniformly bounded. Hence, if ¢ = r — Re(log(#)), then

4(¢) — a(¢")| < Cusl¢ — ¢/[V? (¢, ¢ e o)

and ¢ + log(¢) = r + iIm(log(¢)) extends to a function h : U — C, 1/2-Holder continuous, holomorphic
on U.

Let 9(¢) = fi(Q)e™© and G(¢) =
U — {0}. Moreover, g is uniformly bounded because p is uniformly bounded. Also, G is uniformly
bounded on B = U NU; where U; = {¢ € C: | — (1| < 2012} because [(| > 1 —2C15 > 0 on B.

If € OU NUy, then

g(f). Note that g is holomorphic on U and G is holomorphic on

9O F(Qe O
G(Q) = T =

- p<<>¢<oe*r<<>@ — p(Q)e"O),

= p(O)r (f(C))e (O e=imlog(#(0))

so G is real on OU N Uy, hence G extends holomorphically across U N Uy and the extended function is

uniformly bounded on U;. Hence, G is uniformly Lipschitz on compact subsets of U;. In particular,

G2 — C1| < C12 = |G(G) — G(G2)| < CralCr — G2

Finally, since e" and v; o f are uniformly Holder-continuous, then we get the desired inequality for
Gel

p= : =
viof

Theorem 4.5.7 [Lempert, 81]

Let f: U — D be a stationary map. Suppose that the diameter of 9D, SCp(p,v)(p € 0D, v € T,(0D)),
and the distance from f(0) to 9D are bounded below and above by positive numbers. Then, there exists

a uniform constant Cy5 > 0 such that

1£(C1) = F(G2)l < Cusl¢y — G| /2 (¢1,¢2 € U).

Proof. If (1,(s € U, then the desired inequality follows from the previous theorems of this section. By
a Theorem of Hardy and Littlewood, the inequality holds for any (i, (s € U. O
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4.6 Discs attached to a small perturbation of the
boundary of the unit ball in C?

In this section, the spaces C**1=¢(9U), ¢ > 0, k € N are equipped with their usual norm:

)

k
[R5 (¢) — B ()|
hlck1- =) |+ sup
¢ (o0 lz:; C£nedU IC —nl°

where ||h()|| o := max|/h®].
oUu

We start our section by stating, without proof, the following theorem:

Theorem 4.6.1 (Birkhoff Factorization)

Consider a map G : OU — GLy(C). Define

B(¢) = =G(O)~G(Q), ¢eau.
Then, there exist two continuous maps B* : U — GLx(C) and B~ : (CUoo) — U — GLx(C) such that
B(¢) = BY(QAC)B™(¢)
where BT and B~ are holomorphic on U and C — U respectively, and

¢ (0)

(0) ¢
with k1 > ... > Kpn.

The integers k1, ..., ky are called the partial indices of B. We define the Maslov index of B to be

N
k= Y k;, and show that it is given by a winding number:
j=1

Theorem 4.6.2 ([9])

Suppose that the determinant of B is of class C' on OU. Then

1 [ (detB)(Q)
T o / detB(C)
ouU

dc.

Proof. Extend the map B~ antiholomorphically to U by defining

B~ (()=B" <2> , V¢ eU.

Fix 0 < r < 1, and let
b (6) = det(BT (re'?)),

T
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b,

(0) = det(B~ (re??)) = det(B~ (re~ ")),
B.(0) = b (B)r e™%b (6).

T

Since B,.(0) # 0 on [0, 2], then the curve v, = 5,([0, 27]) does not pass by 0. Hence,
‘ dC 2m b+’ (0) 2m ‘ 2 bf’(g)

2milnd.,, (0 :/ —:/ z d9+/ md9+/ L —2df.
O=] =) e, o b (6)

O [ deBHQY
/ =0 W= [ )= 2o~ )

where Ny and N, are the number of zeros and poles of det(B*(¢)) in rU. Since B is invertible, we get

2w 34/
/ b (0) df = 0.
0

But

bt (0)
Similarly,
2w '
/ b @ 40— o
0 br (
Therefore,

Ind, (0) = k.

Now since the compact set {3,(0) | r € [1/2,1], 0 € [0,27]} does not contain 0, it is then contained
in an open set {2 that does not contain 0. Moreover, the closed curves 7,2 and 7; are of class C! and

homotopic in 2 by the application
(t,0) = B1/2—)(0).

Since any two homotopic curves have the same index, we get:

) = k= Indy, (0) = —— [ 21O 4

Y1/2

where 3 (0) = det(B(e)). O

Our next goal is to give a more general definition of stationary maps. To do so, we need to provide

the following definitions:

Definition 4.6.3

Let T' = {p = 0} be a smooth real hypersurface of C". Let p € T'. Define the conormal fiber at p, denoted
by N;T',to be the real line generated by

Vp(p) = <§2(p),---,$l(p)) :

That is,
N,T = spang{Vp(p)} C C".

Definition 4.6.4

A holomorphic disc f is a holomorphic map f: U — C™.
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Definition 4.6.5

A holomorphic disc f is said to be attached to a submanifold M C C" if f extends to a continuous map
on U (which will be denoted by f) such that h(0U) C M.

Definition 4.6.6
Let I' be a real hypersurface in C". We define the conormal fibration to be set

AT = ] 4T,
¢ceoUu

where

AT() ={(z,Cw) [ z €T, we NT —{0}}.

Definition 4.6.7

A holomorphic disc f attached to a a real hypersurface I' is said to be stationary for I" if there exists a
holomorphic lift f = (f, f) : U — C?" of f continuous up to the boundary of U such that f(¢) € AT(()
for all ¢ € OU.

In case T' = {p = 0}, one can show that Definition 4.6.7 is equivalent to the existence of a continuous
function p : U — R such that (p(¢)Vp(f(¢)) is continuous on AU and extends to a holomorphic

function on U.

We proceed now to compute the defining equations of conormal fibration AT, where T' is the

boundary of the open unit ball in C2.

Example 4.6.8
Let T be the boundary of the unit ball in C? defined by
p(2) = |l + [2af? — 1.

Let (#1,22) € I'. WLOG, suppose z; # 0. Then Vp(z) = (z1,72). Hence, the conormal fiber at z is given
by
NT = spang {(z1,%2)} -

Let ¢ € dU. Then, (z,w) = (21,22, w1, ws) € AT(¢) C C* if and only if p(z) = 0 and w = ¢((z71, Z2) for

some ¢ € R. Therefore,

(z,w) € HT & p(z) = 0, 2L € R,wy = 2122,
(z1 z1

We get the following defining equations of AT
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p(Q)(z,w) = |zl +]z*-1=0,

pOEw) = gt - S,

Oz w) = wr— T - T =, (4.1)
Q) = i (w22 ) i (w2 o

In other words,
(z,w) € AT < p1(Q)(z,w) = p2(Q) (2, w) = p3(C) (2, w) = pa(¢)(z,w) = 0.
We note that if f is stationary for I', then p(¢)(f(¢)) = 0.

Next, we want to construct stationary discs for small perturbations of I'. To do so, we need the

following version of the implicit function theorem:

Theorem 4.6.9 ([2])

Let X,Y, Z be Banach spaces. Let U an open neighborhood of 0 in X xY, and let F : U — Z be a C' map
such that F(0) = 0. Assume that dy F(0) : Y — Z is onto and that kerdy F(0) is complemented in Y,
namely Y = kerdy F(0)® H where H is a closed subspace of Y. Identify X xY with X xKerdy F(0,0)x H
in the canonical way. Then there are neighborhoods V; of 0 in X, V5 of 0 in Kerdy F(0), V5 of 0 in H
and a C' map ¢ : Vi x Va — V3 such that

(x1,29,23) € U and F(x1,x2,23) =0

if and only if

(x1,22) € Vi x Vo and a3 = g(x1,22).

In particular the set {z € V4 x Vo x V3 | F(x) = 0} is a C* submanifold of Vi x Vo x V3 and for each
x1 € Vi the set {(xq,13) € Vo x V3 | F(x1,22,23) = 0} is a C! submanifold of Vo x V3.
One can show that if kerdy F(0) has finite dimension N then kerdy F(0) is complemented in Y and

therefore {(w2,23) € Vo x V3 | F(z1,22,73) = 0} is a C! submanifold of finite dimension N.
Now, in order to apply this theorem, we define first the following Banach spaces for 0 < € < 1:
1. X =C?7¢(dU,C3(CH RY)),
2. Y = A2¢(U,CY),
3. Z=C2 (U, RY),
where A27¢(U,C*) is the set of lifts of class C2~¢ up to the boundary of U.

Let U be a neighborhood of p in X. Counsider the lift fo = ({,0,1,0) and let V be a neighborhood
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of fo in Y. Define the map
F:UxV —=Z

by

One can show that F is well defined and is of class C* [3]. Moreover,

dy F(p, fo)(f) = 2Re (G )

where G : 0A — GL4(C) is given by
G(0) = (2 (Fol6)) 2 (Fol6): e (o). e

Our next step is to show that dy F(p, fo) is onto and compute the dimension of its kernel. However,

we need first the following lemma:

Lemma 4.6.10 ([1])

Let A: 090U — GLo,(C) of class C* (0 < a < 1), and denote by k1 > ... > kg, the partial indices of the
map ¢ — A(¢)A(¢)~!. Then there exists a map © : U — G Lo, (C) of class C*, holomorphic on U, such

that
¢ (0)
O(QAQA(Q) ! = (), V¢ € aU.

Theorem 4.6.11

Let B(¢) = —G(¢)~*G(¢). Then, the partial indices of B are nonnegative and the Maslov index of B is
equal to 4.

Proof. Tedious calculation leads to

—~¢2 0 0 0
o 00 ¢
B(C)_2<o1o
0 ¢ 00

Apply Lemma 4.6.10 to the matrix iG(¢)~1 to get a continuous map © : U — G Ly (C), holomorphic
on U such that
¢ (0)
O(O)B(() = 0(¢) V¢ € UL

(0) ¢
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Denote by [ = (I1,12,13,14) the last row of the matrix ©. Then, for all { € U, we have:

I3(¢) = ¢"13(¢)
—C*1(€) +2¢13(¢) = ¢™11(C)
Cla(¢) = ¢12(¢)
(l2(¢) = ¢"14(C)

If I3 # 0, then k4 > 0 by holomorphicity of I3. If [3 = 0 and I; # 0, then k4 > 2. If I3 =0 and I; = 0,
then we must have Iy # 0 by invertibility of ©, and so k4 > 1.

Since kK1 > ... > K4, then the partial indices of B are nonnegative. Therefore, the linear map
dy F(p, fo) is onto by a result of Globevnik [2,3]. Moreover, by Theorem 4.6.2,

KR =

1 /(detB)’(C) 1 4<3d<:4.

i | deaB@Q) T am | ot
oU oU

It follows again by a result of Globevnik that the kernel of dy F(p, fo) has dimension x + dim¢ C* =
44+4=8.
O

Applying Theorem 4.6.9, we get the following corollary:

Corollary 4.6.12

There are neighborhoods V; of g in X and V5 of fg in Y such that for each 7 € V7, the set

{f eV | F(r, f) =0}

is a C! submanifold of Y of real dimension 8.

Notation:

We write D ~ B if D is a domain having a defining function r such that 7 € V.

Theorem 4.6.13

Let D C C? be a strongly convex domain such that D ~ B. Let Z € D,v € C?2 withv # 0(Z,z € D, Z #
z). Then, there exists a unique extremal map f : U — D with respect to Z,v (or Z,z). Moreover, f(U)
is extremal with respect to any couple of points wy,ws € f(U)(w; # ws) and with respect to any point
w = f(w) and direction f’(w) € C2.

Proof. Let D C C? be a strongly convex domain such that D ~ B. Let r be the defining function of D,
so7 € Vy. Let Z € D,v € C? with v # 0. Then, there exists a neighborhood U of 0 € R® such that for
each t € U, there is a unique H(7,t) € {f = (£, 1) : FF ) =0,||f — foll << 1}. It follows that the
map U : U — R® defined by



is a bijection of U onto D x C2, where 7 be the projection onto the first component. Hence, there exists
a unique ¢ € U such that (7 o H(7,t))(0) = Z and (7 o H(7,1))’(0) = v, with 7 o H(7,t) a stationary

map, so extremal with respect to Z,v. O]

4.7 Applications

In this last section, we state and prove some applications.

We start our section by showing that there is a bijection between a strongly convex domain D such
that D ~ B and B:

Theorem 4.7.1

Let D C C? be a strongly convex domain such that D ~ B. There is a bijection between D and B.

Proof. Fix Z € D. Define &5 : D — B as follows:
Let z € D. Let f: U — D be the extremal map with respect to Z and z, so

f(0)=2,f(§) = 2(£ > 0),6p(Z,2) = du(0,).

Let

Define ¥ : B — D by

v fzo(|v])

where f7, is the unique extremal map with respect to Z and v.

1. Let v e B. ; (O)
! v A
Then, @2(¥(v)) = (Fz.(0l)) = ol 22 v = ol 0 =
2. Let z € D. ,
Then, U (®z(2)) =T (§|;’583|> = fz...(£) where f is the extremal map with respect to Z, z and
_ 10
SN0

By Theorem 4.3.5, f is the unique extremal map with respect to f(0) = Z and f'(0). But fz .,
is extremal with respect to Z and f’(0), and hence U(Pz(z)) = f(§) = 2.

O

In fact D and B are homeomorphic. Moreover, one can show using advanced tools the following

stronger statement:

Theorem 4.7.2 ([7])

Let D C C? be a strongly convex domain such that D is of class C® and D ~ B. Let Z € D. The map
®, extends to a homeomorphism between D and B, and this extended map is a diffeomorphism of class
C? between D — {Z} and B — {0}.
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Finally, we state and prove Fefferman Theorem for strongly convex domains D such that D ~ B.

Theorem 4.7.3 [Fefferman, 74 ; Lempert, 81]

Let D1, Dy be domains in C? such that 0D;, D5 are of class C%, Dy ~ B and Dy ~ B. Let F : D; — Dy
be a biholomorphic map. Then, F' € C?(Dy)

Proof. WLOG, suppose that 0 € Dy, Dy, F(0) =0, F'(0) = I.

Let q)éi) : D; — B be the maps defined in Theorem 4.7.1. We will show that (I>(()1) = (1362) oF.

Let z € Dy. Suppose f : U — D; is extremal with respect to 0, z. Consider F o f : U — D5, and note
that F o f is extremal with respect to 0 and F'(z). Hence

F'(f(0))£(0)
[E(f(0))f(0)]

f'(0)
|1(0)]

B (F(2) = € o =T g,

=&

But by Theorem 4.7.2, @éi) extends to a diffeomorphism of class C? between D; — {0} and B — {0}.
Therefore, F' € C?(Dy). O

o7
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