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AN ABSTRACT OF THE THESIS OF

Elie Youssef Abdo for Master of Science
Major: Mathematics

Title: Extension of Biholomorphic Maps from Special Domains into their Boundaries

Several theorems that hold in the theory of one complex variable cannot be generalized to the theory
of several complex variables. One of them is the Riemann Mapping Theorem, which states that every
non-empty simply connected domain which is not the entire complex plane is biholomorphic to the open
unit disc, and from which follows the fact that any two non-empty proper simply-connected domains in
C are biholomorphic. In this paper, we show that the last statement is not true in Cn for n ≥ 2 using the
properties of the Levi form. However, the proof entails, assuming the existence of such a biholomorphism
f , some boundary information about f . This requirement is fulfilled alluding to Fefferman Theorem,
which will be proved for special domains using powerful tools: extremal and stationary maps.
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Chapter 1

Basics

Part of complex analysis in several variables is a generalization from the function theory of one complex

variable. However, things get more complicated in higher dimensions, and some theorems that hold in

the complex plane C do not apply in the complex n-space Cn for n ≥ 2. In this chapter, we will provide

some definitions and recall basic theorems, some of which are generalized from the function theory of

one complex variable.

1.1 Holomorphic Functions from subsets of Cn into

C
Etymologically, the word ”holomorphic” is derived from two Greek words: ”holos” meaning entire, and

”morphe” meaning form. Holomorphic functions are central objects in complex analysis. In this section,

we define holomorphic functions from subsets of Cn into C.

Definition 1.1.1

Let Ω be a domain in Cn. A function f : Ω→ C is said to be holomorphic if, for each j = 1, 2, ..., n and

each z1, ..., zj−1, zj+1, ..., zn, the function

ζ → f(z1, ..., zj−1, ζ, zj+1, ..., zn)

is holomorphic.

In other words, f is holomorphic on Ω if it is holomorphic in each variable separately.

Next, we show that a holomorphic function f : Ω ⊆ Cn → C satisfies the Cauchy-Riemann equations.

Theorem 1.1.2

Let Ω be a domain in Cn. A function f : Ω→ C, written as

f(x1 + iy1, x2 + iy2, ..., xn + iyn) = u(x1, y1, ..., xn, yn) + iv(x1, y1, ..., xn, yn)
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is holomorphic if and only if

uxj , uyj , vxj , vyj are continuous ∀j = 1, ..., n

and
∂f

∂zj
= 0 ∀j = 1, ..., n,

where
∂

∂zj
is the partial differential operator on Cn given by

∂

∂zj
=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
, j = 1, ..., n.

Proof. Follows from Definition 1.1.1. and from the one-variable Cauchy-Riemann equations.

1.2 Cauchy Formula for Polydiscs

In this section, we generalize the Cauchy Integral Formula of the function theory of one complex variable,

and we show that any holomorphic function from a subset of Cn into C is infinitely differentiable.

We start our section by the definition of an open polydisc.

Definition 1.2.1

Let a ∈ Cn and r > 0. An open polydisc, denoted by Dn(a, r), is defined to be the set

Dn(a, r) = {z ∈ Cn : |zj − aj | < r, j = 1, ..., n} .

In other words, an open polydisc is a cartesian product of open discs.

The closure of Dn(a, r) will be denoted by D
n
(a, r).

Now, we state the Cauchy Formula for Polydiscs.

Theorem 1.2.2 (Cauchy Formula for Polydiscs)

Let w = (w1, ..., wn), r = (r1, ..., rn) ∈ Cn with r1, r2, ..., rn > 0.

Suppose f is continuous on D
1
(w1, r1)×D1

(w2, r2)× ...×D1
(wn, rn) and holomorphic on D1(w1, r1)×

D1(w2, r2)× ...×D1(wn, rn). Then, for any z = (z1, ..., zn) ∈ D1(w1, r1)×D1(w2, r2)× ...×D1(wn, rn),

f(z) = f(z1, ..., zn) =
1

(2πi)n

∫
|ζn−wn|=rn

...

∫
|ζ1−w1|=r1

f(ζ1, ..., ζn)

(ζ1 − z1)...(ζn − zn)
dζ1...dζn

Here is an important consequence of Cauchy Formula:

Corollary 1.2.3

Let Ω be a domain in Cn. Suppose f : Ω→ C is a holomorphic function. Then, f is infinitely differentiable.

2



1.3 Power Series representation

In this section, we define power series for functions of several variables and use them to show important

generalizations from the function theory of one complex variable.

Let α ∈ N0
n where N0 = N ∪ {0}. In other words, we can write α = (α1, ..., αn), αi ∈ N0.

Notation:

zα = zα1
1 .zα2

2 . ... .zαnn

|α| = α1 + ...+ αn

1

z
=

1

z1. ... .zn

α! = α1! ... αn!

∂|α|

∂zα
=

∂α1

∂zα1
1

. ... .
∂αn

∂zαnn

Definition 1.3.1

Let a ∈ Cn. A power series centered at a is a series of the form

∑
α∈Nn0

cα(z − a)α

Example 1.3.2

For 3 variables, a power series at the origin is a series of the form

∞∑
j=0

∞∑
k=0

∞∑
l=0

cjklz
j
1z
k
2z
l
3

In the theory of one complex variable, if f is a holomorphic function on a domain Ω and a ∈ Ω,

then f is expressible as a power series centered at a in the largest disc of center a lying in Ω. Now, we

generalize our result to holomorphic functions from subsets of Cn into C.

Theorem 1.3.3

Let Dn(a, r) be a polydisc of center a ∈ Cn and radius r > 0. Suppose f : D
n
(a, r) → C is continuous

on D
n
(a, r) and holomorphic on Dn(a, r). Then, f(z) is expressible as a power series centered at a, for

any z ∈ Dn(a, r).

Cauchy Estimates, an important inequality, is an aftermath of the previous theorem.

Theorem 1.3.4 (Cauchy Estimates)

Let Dn(a, r) be a polydisc of center a ∈ Cn and radius r > 0. Suppose f : D
n
(a, r) → C is continuous

on D
n
(a, r) and holomorphic on Dn(a, r). Let C = C1 × ... × Cn, where Ci is the positively-oriented

3



circle |ζi − ai| = r. Then, ∣∣∣∣∂|α|f(a)

∂zα

∣∣∣∣ ≤ α!

rα
supz∈C |f(z)|

The identity theorem, one of major theorems in the theory of one complex variable, is also generalized:

Theorem 1.3.5 (Identity Theorem)

Let Ω be a domain in Cn. Let U be an open subset of Ω. Let f : Ω → C be holomorphic. Suppose

f(z) = 0,∀z ∈ U . Then f(z) = 0,∀z ∈ Ω.

We end our section by a consequence of the generalized identity theorem, the maximum principle.

Theorem 1.3.6 (Maximum Principle)

Let Ω be a domain in Cn. Let f : Ω → C be a holomorphic function on Ω, Suppose |f(z)| attains a

maximum at some a ∈ Ω, then f ≡ f(a).

4



Chapter 2

Automorphisms of the unit ball

A bijective holomorphic function whose inverse is holomorphic is said to be biholomorphic. An auto-

morphism of a set U is a biholomorphism from U to U. Automorphisms of a set U form a group under

composition, called the automorphism group and denoted by Aut(U). Automorphisms of the unit disc

are well-known in the function theory of one complex variable. In this chapter, we will introduce auto-

morphisms of the unit ball in Cn, but this entails Cartan’s Uniqueness Theorem which is an analogue of

Schwarz’s Lemma to several variables.

2.1 Holomorphic Functions from subsets of Cn into

Cm

We start this section by defining holomorphic functions from Ω ⊆ Cn into Cm

Definition 2.1.1

Let Ω be a domain in Cn. A function f : Ω→ Cm, written as f = (f1, f2, ..., fm) is said to be holomor-

phic if fi is holomorphic for all i = 1, 2, ...,m.

The following theorem shows that a holomorphic function f : Ω ⊆ Cn → Cm satisfies the Cauchy-

Riemann equations.

Theorem 2.1.2

Let Ω be a domain in Cn. A function f : Ω→ Cm, written as

f(z1, ..., zn) = (f1(z1, ..., zn), f2(z1, ..., zn), ..., fm(z1, ..., zn))

where fj : Ω→ C is written as

fj(x1 + iy1, ..., xn + iyn) = uj(x1, y1, ..., xn, yn) + ivj(x1, y1, ..., xn, yn)∀j = 1, ...,m

5



is holomorphic if and only if

uixj , uiyj , vixj , viyj are continuous ∀i = 1, ...,m ∀j = 1, ..., n

and
∂fi
∂zj

= 0 ∀i = 1, ...,m ∀j = 1, ..., n

Proof. Follows from Definition 2.1.1. and from Theorem 1.1.2.

Now, we state and prove a version of the chain rule in the function theory of several complex variables.

Theorem 2.1.3

Suppose U ⊆ Cn and V ⊆ Cm are open sets. Let f : U → V , and g : V → C be differentiable maps.

Write the variables as z = (z1, ..., zn) ∈ U and w = (w1, ..., wm) ∈ V . Then for any j = 1, ..., n, we have

∂

∂zj
(g ◦ f) =

m∑
l=1

(
∂g

∂wl

∂fl
∂zj

+
∂g

∂wl

∂fl
∂zj

)

Proof. Write fl = ul + ivl for l = 1, ...,m, zj = xj + iyj for j = 1, ..., n, wl = sl + itl for l = 1, ...,m.

Then,

∂

∂zj
(g ◦ f) =

1

2

(
∂

∂xj
− i ∂

∂yj

)
(g ◦ f)

=
1

2

m∑
l=1

(
∂g

∂sl

∂ul
∂xj

+
∂g

∂tl

∂vl
∂xj
− i
(
∂g

∂sl

∂ul
∂yj

+
∂g

∂tl

∂vl
∂yj

))

=

m∑
l=1

(
∂g

∂sl
.
1

2

(
∂ul
∂xj
− i ∂ul

∂yj

)
+
∂g

∂tl
.
1

2

(
∂vl
∂xj
− i ∂vl

∂yj

))

=
m∑
l=1

(
∂g

∂sl

∂ul
∂zj

+
∂g

∂tl

∂vl
∂zj

)
.

Note that
∂

∂sl
=

∂

∂wl
+

∂

∂wl
,

∂

∂tl
= i

(
∂

∂wl
− ∂

∂wl

)
,

for l = 1, ...,m. Hence,

∂

∂zj
(g ◦ f) =

m∑
l=1

((
∂g

∂wl

∂ul
∂zj

+
∂g

∂wl

∂ul
∂zj

)
+ i

(
∂g

∂wl

∂vl
∂zj
− ∂g

∂wl

vl
zj

))

=

m∑
l=1

(
∂g

∂wl

(
∂ul
∂zj

+ i
∂vl
∂zj

)
+

∂g

∂wl

(
∂ul
∂zj
− i ∂vl

∂zj

))

=

m∑
l=1

(
∂g

∂wl

∂fl
∂zj

+
∂g

∂wl

∂fl
∂zj

)

We end this section by defining the derivative of a holomorphic function f : Ω ⊆ Cn → Cm at a

point z ∈ Ω.

6



Definition 2.1.4

Let Ω be an open subset of Cn. Let f : Ω→ Cm be holomorphic. Let z ∈ Ω. Let f ′(z) : Ω→ Cm be the

linear transformation satisfying

f(z + h) = f(z) + f ′(z)h+O(|h|2)

for h near the origin of Cn. Then, f ′(z) is called the derivative of f at z. For 1 ≤ k ≤ n, let h = λek, where

ek = (0, ..., 1, ..., 0) is the vector in Cn having as coordinates zeros except one at the kth component.

Letting λ→ 0, we get f ′(z)ek =
∂f

∂zk
(z).

2.2 Cartan’s Uniqueness Theorem

Cartan’s uniqueness theorem is an important tool to deal with the automorphisms of the unit ball in

Cn. It was shown by the French mathematician Henri Cartan in 1931. However, its proof requires the

notion of homogeneous expansion. So, we start our section by defining homogeneous polynomials from

Cn into C.

Definition 2.2.1

A polynomial P : Cn → C is homogeneous of degree d if P (sz) = sdP (z),∀s ∈ C and ∀z ∈ Cn.

Here’s an example:

Example 2.2.2

Let P : C2 → C be the polynomial defined by P (z1, z2) = z3
1 +2z1z

2
2 . Then, P is homogeneous of degree 3.

Now, we show that a holomorphic function f : Ω ⊆ Cn → C has a homogeneous expansion.

Theorem 2.2.3

Let Ω be a domain in Cn. Let f : Ω→ C be a holomorphic function. Let a ∈ Ω. Then, the power series

of f at a can be written as
∞∑
j=0

fj(z − a),

where fj is a homogeneous polynomial of degree j.

Proof. The power series of f at a is given by

∑
α

cα(z − a)α, z ∈ Dn(a, r) ⊂ Ω

with

cα =
1

(2πi)n

∫
C

f(ζ)

(ζ − a)α+1
dζ

7



where C is the boundary of Dn(a, r).

For j = 1, 2, ..., let fj(z) be the sum of the terms cαz
α in the power series of f at 0 for which |α| = j.

See that fj is a homogeneous polynomial of degree j.

Next, we provide a more generalized definition of homogeneous polynomials from Cn into Cm.

Definition 2.2.4

A polynomial P : Cn → Cm is homogeneous if each component is homogeneous.

Accordingly, the next theorem shows that holomorphic functions f : Ω ⊆ Cn → Cm have homoge-

neous expansion.

Theorem 2.2.5

Let Ω be a domain in Cn. Let f : Ω→ Cm be a holomorphic map. Let a ∈ Ω. Then, the power series of

f at a can be written as
∞∑
j=0

fj(z − a),

where fj is a vector-valued homogeneous polynomial.

Proof. Follows from Theorem 2.2.3 and Definition 2.2.4.

Finally, we state and prove Cartan’s uniqueness theorem.

Theorem 2.2.6 (Cartan’s Uniqueness Theorem)

Suppose Ω is a bounded domain in Cn. Let F : Ω→ Ω be a holomorphic function. Assume there exists

a ∈ Ω such that F (a) = a and F ′(a) is the identity. Then, F (z) = z for all z ∈ Ω.

Proof. WLOG, assume a = 0. Since Ω is open, there exists r1 > 0 such that Dn(0, r1) ⊆ Ω. Since Ω is

bounded, there exists r2 > 0 such that Ω ⊆ Dn(0, r2). In Dn(0, r1), F has a homogenous expansion

F (z) = z +

∞∑
s=2

Fs(z),

where Fs is a map from Cn into Cn whose components are homogeneous polynomials of degree s. Note

that F0(z) = 0 and F1(z) = z since F (0) = 0 and F ′(0) is the identity.

Let F k be defined as follows:

F 1 = F

F k = F k−1 ◦ F, k > 1

For m ≥ 2, make the induction hypothesis that Fs = 0 for 2 ≤ s < m, which is vacuously true for m = 2.

Then, F k has a homogeneous expansion

F k(z) = z + kFm(z) +

∞∑
j=k+1

fj(z), z ∈ Dn(0, r1)

8



where fj is a map from Cn into Cn whose components are homogeneous polynomials of degree j. This

can be easily proved by induction on k.

Thus, for θ ∈ R, z ∈ Dn(0, r1), we have

F k(eiθz) = eiθz + kFm(eiθz) +

∞∑
j=k+1

fj(e
iθz)

F k(eiθz) = eiθz + k(eiθ)
m
Fm(z) +

∞∑
j=k+1

(eiθ)
j
fj(z)

F k(eiθz)e−imθ = eiθe−imθz + kFm(z) +

∞∑
j=k+1

eijθe−imθfj(z)

Hence,

π∫
−π

F k(eiθz)e−imθdθ = z

π∫
−π

eiθe−imθdθ + 2πkFm(z) +

π∫
−π

∞∑
j=k+1

(eijθe−imθ)fj(z)dθ

=⇒
π∫
−π

F k(eiθz)e−imθdθ = 0 + 2πkFm(z) + 0.

Interchanging the integral and summation symbols is allowed because
∞∑

j=k+1

ei(j−m)θfj(z) converges

uniformly on (−π;π).

Therefore,

kFm(z) =
1

2π

π∫
−π

F k(eiθz)e−imθdθ, z ∈ Dn(0, r1)

Since F k(Ω) ⊆ Ω, we have

|F k(eiθz)| < r2 ∀z ∈ Dn(0, r1),∀θ ∈ R

This implies that

k|Fm(z)| =

∣∣∣∣∣∣ 1

2π

π∫
−π

F k(eiθz)e−imθdθ

∣∣∣∣∣∣ ≤ 1

2π

π∫
−π

|F k(eiθz)|dθ ≤ r2,

∀z ∈ Dn(0, r1),∀k = 1, 2, ...

Hence, Fm = 0, and the induction hypothesis holds with m+ 1 in place of m. Therefore, F (z) = z ∀z ∈
Dn(0, r1). By the identity theorem, we get F (z) = z ∀z ∈ Ω.

2.3 Automorphisms of the unit ball of Cn

In the second chapter of his book ”Function Theory in the Unit Ball of Cn”, Rudin handled the auto-

morphisms of the unit ball of Cn. In this section, we will define them and list some of their properties.

9



Definition 2.3.1

A ball in Cn, denoted by Bn(a, r), is defined to be the open set

Bn(a, r) =
{
z ∈ Cn : |z1 − a1|2 + ...+ |zn − an|2 < r2

}
.

The closure of Bn(a, r) will be denoted by B
n
(a, r).

The unit ball of Cn is the ball Bn(0, 1).

Cn is turned into an n-dimensional Hilbert space by considering the inner product

< z,w >=

n∑
j=1

zjwj (z, w ∈ Cn)

and the associated norm

|z| =
√
< z, z > (z ∈ Cn)

Definition 2.3.2

Let a ∈ Bn(0, 1). Let Pa be the orthogonal projection of Cn onto the subspace [a] generated by a. Let

Qa = I − Pa be the projection onto the orthogonal complement of [a], where I is the identity operator.

Explicitly,

P0 = 0

and

Paz =
< z, a >

< a, a >
a, a 6= 0.

Put sa =
√

1− |a|2 and define

φa(z) =
a− Paz − saQaz

1− < z, a >

See that if n = 1, then Pa = I and Qa = 0, so we get φa(z) =
a− z
1− az

,which is an automorphism of the

unit disc.

Next, we show some properties of the maps φa to conclude that φa is a biholomorphism from Bn(0, 1)

to Bn(0, 1).

Theorem 2.3.3 (Properties of the maps φa)

Let a ∈ Bn(0, 1). Then, φa has the following properties:

(i) φa(0) = a and φa(a) = 0.

(ii) φ′a(0) = −s2
aPa − saQa and φ′a(a) = −Pa

s2
a

− Qa
sa

.

(iii) The identity

1− < φa(z), φa(w) >=
(1− < a, a >)(1− < z,w >)

(1− < z, a >)(1− < a,w >)

holds for all z, w ∈ Bn(0, 1).

10



(iv) The identity

1− |φa(z)|2 =
(1− |a|2)(1− |z|2)

|1− < z, a > |2

holds for all z ∈ Bn(0, 1).

(v) φa is an involution, that is, φa(φa(z)) = z for all z ∈ Bn(0, 1).

(vi) φa is a homeomorphism of B
n
(0, 1) onto B

n
(0, 1) , and φa ∈ Aut(B).

Proof. (i) φa(0) =
a− (Pa0)− sa(Qa0)

1− < 0, a >
=
a− 0− 0

1− 0
= a.

φa(a) =
a− (Paa)− sa(Qaa)

1− < a, a >
=

a− a− 0

1− < a, a >
= 0.

(ii) Let z ∈ Bn(0, 1) be close to the origin of Cn. Then,

φa(z) =
1

1− < z, a >
(a− Paz − saQaz)

= (1+ < z, a > + < z, a >2 +...)(a− Paz − saQaz)

= a+ < z, a > a− saQaz − Paz +O(|z|2)

= φa(0) + |a|2Paz − saQaz − Paz +O(|z|2)

= φa(0) + (|a|2Pa − Pa − saQa)z +O(|z|2)

= φa(0)− (s2
aPa + saQa)z +O(|z|2).

Therefore, it follows from Definition 2.2.3 that

φ′a(0) = −s2
aPa − saQa.

Now, let h ∈ Cn be such that | < h, a > | < s2
a, with h close to the origin of Cn. Then,

φa(a+ h) =
a− Pa(a+ h)− saQa(a+ h)

1− < a+ h, a >

=

a− < a+ h, a >

< a, a >
a− sa

(
a+ h− < a+ h, a >

< a, a >
a

)
1− < a, a > − < h, a >

=

a− a− < h, a >

< a, a >
a− sa

(
a+ h− a− < h, a >

< a, a >
a

)
1− |a|2− < h, a >

=
−Pah− saQah
s2
a− < h, a >

=
−Pah− saQah

s2
a

(
1− < h, a >

s2
a

)
=

1

s2
a

(
1 +

< h, a >

s2
a

+
< h, a >2

s4
a

+ ...

)
(−Pah− saQah)

=
1

s2
a

(−Pa − saQa)h+O(|h|2).

Therefore, it follows from Definition 2.2.3 that

φ′a(a) = −Pa
s2
a

− Qa
sa
.
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(iii) Let z, w ∈ B
n
(0, 1). First, see that P 2

a = Pa and Q2
a = Qa. Second, since Pa and Qa are

self-adjoint projections, we have:

(a) < a,Qaw > = < Qaa,w > = < 0, w > = 0.

(b) < Qaz, a > = < z,Qaa > = < z, 0 > = 0.

(c) < a,Paw > = < Paa,w > = < a,w >.

(d) < Paz, a > = < z, Paa > = < z, a >.

(e) < Paz, Paw > = < z, P 2
aw > = < z, Paw >.

Also, we have the following equalities:

(a) < z, a >< a,w > = << z, a > a,w > = |a|2 < Paz, w >.

(b)

< Paz,Qaw > =

〈
< z, a >

< a, a >
a,w − < w, a >

< a, a >
a

〉
=
< z, a >

< a, a >
< a,w > −< z, a >

< a, a >
.
< a,w >

< a, a >
< a, a >

= 0.

(c)

< Paz, w > + < Qaz,Qaw >

=< Paz, w > + < z − Paz, w − Paw >

=< Paz, w > + < z,w > + < Paz, Paw > − < z, Paw > − < Paz, w >

=< Paz, w > + < z,w > + < z, Paw > − < z, Paw > − < Paz, w >

=< z,w > .

(d) Since < a − Paz,−saQaw > − < saQaz, a − Paw >= 0 (by expanding and using the

properties and equalities mentioned above), we have

< a− Paz − saQaz, a− Paw − saQaw >=< a− Paz, a− Paw > +s2
a < Qaz,Qaw >

12



Finally,

1− < φaz, φaw >

= 1−
〈
a− Paz − saQaz

1− < z, a >
,
a− Paw − saQaw

1− < w, a >

〉
= 1− 1

1− < z, a >
.

1

1− < w, a >
< a− Paz − saQaz, a− Paw − saQaw >

= 1− < a− Paz, a− Paw > +s2
a < Qaz,Qaw >

(1− < z, a >)(1− < a,w >)

=
(1− < z, a >)(1− < a,w >)− < a− Paz, a− Paw > −s2

a < Qaz,Qaw >

(1− < z, a >)(1− < a,w >)

=
1+ < z, a >< a,w > − < z, a > − < a,w > − < a, a > + < a,Paw >

(1− < z, a >)(1− < a,w >)

+
< Paz, a > − < Paz, Paw > −s2

a < Qaz,Qaw >

(1− < z, a >)(1− < a,w >)

=
1 + |a|2 < Paz, w > − < z, a > − < a,w > −|a|2+ < a,w >

(1− < z, a >)(1− < a,w >)

+
< z, a > − < z, Paw > −s2

a < Qaz,Qaw >

(1− < z, a >)(1− < a,w >)

=
s2
a − s2

a < Paz, w > −s2
a < Qaz,Qaw >

(1− < z, a >)(1− < a,w >)

=
s2
a(1− < Paz, w > − < Qaz,Qaw >)

(1− < z, a >)(1− < a,w >)

=
s2
a(1− < z,w >)

(1− < z, a >)(1− < a,w >)

(iv) Take w = z in (iii). This shows that φa maps Bn(0, 1) into Bn(0, 1) and the boundary of Bn(0, 1)

into the boundary of Bn(0, 1).

(v) First, note that PaQa = Pa(I − Pa) = Pa − P 2
a = Pa − Pa = 0. Next, let ψ = φa ◦ φa. ψ is a

holomorphic map of Bn(0, 1) into Bn(0, 1). Also,

ψ(0) = φa(φa(0)) = φa(0) = 0.

Moreover,

φ′a(φa(0)).φ′a(0) = φ′a(a).φ′a(0) =

(
−Pa
s2
a

− Qa
sa

)
(−s2

aPa − saQa) = Pa +Qa = I.

Therefore, Cartan’s Uniqueness Theorem implies that ψ(z) = z.

(vi) Follows from (v). See that φ−1
a = φa.
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Chapter 3

The Levi Form

The Levi form of a hypersurface was named after the Italian mathematician Eugenio Elia Levi. Levi

introduced the concept of pseudoconvextiy, one of the most important concepts in the function theory of

several complex variables. In fact, an open connected subset Ω of Cn with a C2 boundary is said to be

pseudoconvex if and only if the Levi form of its defining function at each point p ∈ ∂Ω in the direction

of v ∈ Tp(∂Ω) is greater than or equal to zero. In this chapter, we will define these notions, and we will

end up showing that the Levi form is invariant under biholomorphic maps.

3.1 Some differential geometry

In this section, we define all the terms related to differential geometry, required for the upcoming sections

of this chapter.

We start our section by defining differential manifolds.

Definition 3.1.1

A real differentiable manifold M of real dimension n and of class Ck is a topological space together with

a collection of homeomorphisms τα : Uα → Vα such that:

- {Uα} is an open cover of M .

- Vα ⊆ Rn is open for all α.

- The map ταβ : τβ(Uα ∩ Uβ) → τα(Uα ∩ Uβ) with ταβ = τα ◦ τ−1
β is Ck diffeomorphism from an

open subset of Vβ onto an open subset of Vα.

This collection of homeomorphisms is called an atlas of class Ck.

What about smooth manifolds?

Definition 3.1.2

A real smooth manifold is a real differentiable manifold of class C∞.

We define now smooth maps.
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Definition 3.1.3

Let M,N be real differentiable manifolds of dimensions m and n respectively. Then, F : M → N is said

to be a smooth map if, for each p ∈M , there is an element UMα of the open cover of M containing p and

an element UNβ of the open cover of N containing F (p) with F (UMα) ⊆ UNβ , such that τNβ ◦F ◦ τM−1
α

is smooth from τMα(UMα) to τNβ(UNβ ) as a map from Rm to Rn.

Remark 3.1.4

A smooth complex manifold of dimension n has the structure of a real smooth manifold of dimension

2n.

Tangent spaces can be defined in several ways. One of the interesting ways is the following one:

Definition 3.1.5

Suppose M is a Ck manifold of real dimension n, with k ≥ 1. Suppose p ∈M . Let τα : Uα → Rn be an

element of the atlas of M with Uα containing p. Let

C = {γ : (−1, 1)→ Uα : γ(0) = p, τα ◦ γ : (−1, 1)→ Rn is differentiable} .

Define an equivalence relation on C as follows:

γ1 ∼ γ2 ⇔ (τα ◦ γ1)′(0) = (τα ◦ γ2)′(0),

and let TpM be the set of equivalence classes under ∼. TpM is called the tangent space to M at p, and

the elements of TpM are called tangent vectors.

The following theorem shows that the tangent space to a manifold at a point can be turned into a

vector space over R of dimension n.

Theorem 3.1.6

Suppose M is a Ck manifold of real dimension n, with k ≥ 1. Suppose p ∈M . Let τα : Uα → Rn be an

element of the atlas of M with Uα containing p. Consider the equivalence relation defined above, and

define dpτα : TpM → Rn by

dpτα([γ]) = (τα ◦ γ)′(0).

Then,

(i) dpτα is a bijection.

(ii) TpM can be turned into a vector space over R.

Proof. (i) Let’s show that dpτα is a bijection.

First, dpτα is 1 − 1: Let [γ1], [γ2] ∈ TpM such that (τα ◦ γ1)′(0) = (τα ◦ γ2)′(0), then γ1 ∼ γ2, and so

[γ1] = [γ2].

Second, dpτα is onto: Let v ∈ Rn. Define α : (−1, 1)→ Rn by α(t) = tv. Then, dpτα([τ−1
α ◦α]) = α′(0) =

15



v, with τ−1
α ◦ α : (−1, 1)→ Uα ∈ C.

(ii) Let [γ1], [γ2] ∈ TpM,λ ∈ R. Define:

[γ1]⊕ [γ2] = (dpτα)−1(dpτα[γ1] + dpτα[γ2]),

λ� [γ1] = (dpτα)−1(λdpτα[γ1]).

Hence, any vector v in TpM can be written as v =
n∑
i=1

vi
∂

∂xi
, where

{
∂

∂x1
, ...,

∂

∂xn

}
is a basis of TpM .

Next, we define the differential of a smooth map.

Definition 3.1.7

Let f : M → Rn be a smooth map. Let p ∈ M . Define the differential of f at p to be the linear map

dpf : TpM → Rn such that

dpf(v) =

n∑
i=1

vi
∂f

∂xi
(p) =

n∑
i=1

∂f

∂xi
(p)dxi(v).

We proceed to define the tangent and cotangent bundles of a manifold.

Definition 3.1.8

Let M be a smooth manifold. We define the tangent bundle of M , denoted by TM , to be the disjoint

union of the tangent spaces at all points of M , and the cotangent bundle of M , denoted by TM∗, to be

the disjoint union of the cotangent spaces at all points of M .

Differential forms constitute an important part of the field of differential geometry.

Definition 3.1.9

Let M be a smooth manifold. A differential 1-form α : M → TM∗ is defined as follows:

p→ αp =
∑
j

wj(p)dxj .

If α is a 1-form, then

dα =
∑
i,j

∂wj
∂xi

dxi ∧ dxj .

Pullbacks can be defined for a k-differential form, and they have some interesting properties. How-

ever, we restrict our definition to a 1-form.

Definition 3.1.10

Suppose F : M → N is a smooth map, and α is a differential 1-form on N . Define the pullback F ∗α

differential 1-form on M by

(F ∗α)p(v) = αF (p)(dpF (v)).
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Next, we show that the tangent space to an embedded submanifold with a defining function is the

kernel of the differential of that defining map. However, some defintions are required first.

Definition 3.1.11

Suppose M is a smooth manifold. An embedded submanifold of M is a subset S of M that is a manifold

in the subspace topology, such that the inclusion map S →M is a smooth embedding.

Definition 3.1.12

SupposeM is a smooth manifold, and ρ : M → R is a smooth map. A level set ρ−1(c) = {p ∈M : ρ(p) = c}
is called a regular level set if for every point p ∈ ρ−1(c), the map dpρ : TpM → R is surjective. In par-

ticular, if ρ−1(c) = φ, then ρ−1(c) is a regular level set of ρ.

Definition 3.1.13

Suppose M is a smooth manifold. Assume S ⊆ M is an embedded submanifold. A smooth map

ρ : M → R such that S is a regular level set of ρ is a defining map for S.

Theorem 3.1.14

Assume S ⊆ Rm is a hypersurface, and ρ : Rm → R is a defining map for S. Then, TpS = ker dpρ, for

each p ∈ S.

Proof. Consider the inclusion map i : S → Rm. Then, dpi(TpS) ⊆ Rm. Note that ρ ◦ i is constant on S,

so dpρ ◦ dpi is the zero map from TpS to R, hence Im dpi ⊆ ker dpρ. Since dpρ is surjective, then, by

the rank-nullity law, we have

dim(Ker dpρ) = dim(Rm)− dim(R) = dim(TpS) = dim(Im dpi).

Therefore, Im dpi = ker dpρ.

We define now the complex tangent space and we provide some useful examples.

Definition 3.1.15

Assume Ω = {ρ < 0}, where ρ : Cn → R is a defining function for ∂Ω. Let p ∈ ∂Ω. We define the

complex tangent space to ∂Ω at p to be

TC
p (∂Ω) = Tp(∂Ω) ∩ iTp(∂Ω),

where Tp(∂Ω) = ker ∇ρ(p) is the real tangent space at p.
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Example 3.1.16

Consider the open unit ball B2(0, 1) =
{
z = (z1, z2) ∈ C2 : |z1|2 + |z2|2 < 1

}
. So, ρ(z1, z2) = |z1|2 +

|z2|2− 1 or ρ(x1, y1, x2, y2) = x2
1 + y2

1 + x2
2 + y2

2 − 1. Let p = (p1, p2) ∈ C2 satisfy |p1|2 + |p2|2 = 1. Write

p1 = a1 + ib1, p2 = a2 + ib2. Then,

ker ∇ρ(a1, b1, a2, b2) =
{

(x1, y1, x2, y2) ∈ R4 : a1x1 + b1y1 + a2x2 + b2y2 = 0
}

.

⇒ Tp {ρ = 0} = ker ∇ρ(p1, p2) =
{

(z1, z2) ∈ C2 : Re(p1z1 + p2z2) = 0
}

.

Consequently, iTp {ρ = 0} = ker ∇ρ(p1, p2) =
{

(z1, z2) ∈ C2 : Im(p1z1 + p2z2) = 0
}

.

Therefore, TC
p {ρ = 0} =

{
(z1, z2) ∈ C2 : p1z1 + p2z2 = 0

}
.

Example 3.1.17

Consider the bidisc D2(0, 1) =
{
z ∈ C2 : |z1| < 1, |z2| < 1

}
. So,

ρ(z1, z2) = max
{
|z1|2, |z2|2

}
− 1 =

|z2|2 − 1, |z2| ≥ |z1|

|z1|2 − 1, |z1| ≥ |z2|
,

or

ρ(x1, y1, x2, y2) =

x2
2 + y2

2 − 1, x2
2 + y2

2 ≥ x2
1 + y2

1

x2
1 + y2

1 − 1, x2
2 + y2

2 ≤ x2
1 + y2

1

.

Let p = (p1, p2) ∈ C2 satisfies max
{
|p1|2, |p2|2

}
= 1.

Write p1 = a1 + ib1, p2 = a2 + ib2. Then, 2 cases come into play:

Case 1: |p2| > |p1|. In such a case,

ker ∇ρ(a1, b1, a2, b2) =
{

(x1, y1, x2, y2) ∈ R4 : a2x2 + b2y2 = 0
}
.

⇒ Tp {ρ = 0} = ker ∇ρ(p1, p2) =
{

(z1, z2) ∈ C2 : Re(p2z2) = 0
}

.

Consequently, iTp {ρ = 0} =
{

(z1, z2) ∈ C2 : Im(p2z2) = 0
}

.

Therefore, TC
p {ρ = 0} =

{
(z1, z2) ∈ C2 : p2z2 = 0

}
=
{

(z1, 0) ∈ C2
}

.

Case 2: |p1| > |p2|.
Similarly, we get TC

p {ρ = 0} =
{

(z1, z2) ∈ C2 : p1z1 = 0
}

=
{

(0, z2) ∈ C2
}

.

3.2 Jst - holomorphic maps

J-holomorphic curves are smooth maps, introduced by Mikhail Gromov in 1985, and satisfying the

Cauchy-Riemann equations. In this section, we will handle J-holomorphic maps, where J is the standard

complex structure, denoted by Jst.

We start our section by defining complex structures.

Definition 3.2.1

A complex structure on a real vector space V is a real linear transformation J : V → V such that

J2 = −IdV .

We define the standard complex structure on R2n as an example.
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Example 3.2.2

Let Jst : R2n → R2n be the linear transformation defined by

Jst



x1

y1

...

xn

yn


=



0 −1 . . . 0 0

1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 −1

0 0 . . . 1 0





x1

y1

...

xn

yn


=



−y1

x1

...

−yn
xn


See that J2

st = −Id, hence Jst is a complex structure. It is called the standard complex structure.

Next, we show that (R2n, J) is a C-vector space.

Theorem 3.2.3

Let J : R2n → R2n be a complex structure. Then, (R2n, J) is a C-vector space.

Proof. Let v1 =



x1

y1

...

xn

yn


, v2 =



a1

b1
...

an

bn


∈ R2n, c = α+ iβ ∈ C.

Define: v1 ⊕ v2 =



x1 + a1

y1 + b1
...

xn + an

yn + bn


and c� v = α



x1

y1

...

xn

yn


+ βJ



x1

y1

...

xn

yn


.

Next, we provide a definition of a Jst-holomorphic map.

Definition 3.2.4

Let Ω ⊆ R2n and Ω′ ⊆ R2m be domains. Let f : Ω→ Ω′ be a real differentiable function. We say that f

is Jst-holomorphic ⇔ dpf ◦ Jst = Jst ◦ dpf .

We end our section by showing that Jst-holomorphic maps satisfy the Cauchy-Riemann equations.

Theorem 3.2.5

Let Ω ⊆ R2n and Ω′ ⊆ R2m. Let f : Ω → Ω′ be a real differentiable function. We say that f is

Jst-holomorphic ⇔ f satisfies the Cauchy-Riemann equations on Ω.
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Proof. Write f



x1

y1

...

xn

yn


=



u1(x1, y1, ..., xn, yn)

v1(x1, y1, ..., xn, yn)
...

um(x1, y1, ..., xn, yn)

vm(x1, y1, ..., xn, yn)


.

Then, it is easy to check that f is Jst-holomorphic ⇔ dpf ◦ Jst = Jst ◦ dpf ⇔
∂uk
∂xj

=
∂vk
∂yj

and

∂uk
∂yj

= −∂vk
∂xj

, k = 1, ...,m, j = 1, ..., n.

3.3 The Levi Form

In this section, we will introduce the Levi form and show that it’s invariant under biholomorphism maps.

We start our section by the definition of the Levi form.

Definition 3.3.1

Suppose ρ : Cn → R is a C2 function. Define the Levi form of ρ at p ∈ Cn in the direction v ∈ Cn to be

Lρ(p)(v) =

n∑
i,j=1

∂2ρ(p)

∂zi∂zj
vivj .

Next, we show that the Levi form is real-valued.

Theorem 3.3.2

If ρ : Cn → R is a C2 function, p, v ∈ Cn, then Lρ(p)(v) ∈ R.

Proof.
∂2ρ(p)

∂zi∂zj
vivj =

∂2ρ(p)

∂zi∂zj
vivj =

∂2ρ(p)

∂zi∂zj
vivj .

Let’s compute the Levi form of the defining function of the open unit ball in C2.
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Example 3.3.3

Consider B2(0, 1) =
{
z ∈ C2 : |z1|2 + |z2|2 < 1

}
.

Then, ρ(z1, z2) = |z1|2 + |z2|2 − 1. Let p = (p1, p2) ∈ C2, v = (v1, v2) ∈ C2. Hence,

Lρ(p)(v) =

2∑
i,j=1

∂2ρ(p)

∂zi∂zj
vivj

=
(
v1 v2

) ∂2ρ(p)

∂z1∂z1

∂2ρ(p)

∂z2∂z1
∂2ρ(p)

∂z1∂z2

∂2ρ(p)

∂z2∂z2

(v1

v2

)

=
(
v1 v2

)(1 0

0 1

)(
v1

v2

)
= |v1|2 + |v2|2.

What about the Levi form of the defining function of the bidisc?

Example 3.3.4

Consider D2(0, 1) =
{
z ∈ C2 : |z1| < 1 and |z2| < 1

}
=
{
z ∈ C2 : max

{
|z1|2, |z2|2

}
< 1
}

.

Then,

ρ(z1, z2) = max
{
|z1|2, |z2|2

}
− 1 =

|z2|2 − 1, |z2| ≥ |z1|

|z1|2 − 1, |z1| ≥ |z2|
.

Let p = (p1, p2) ∈ C2 be such that |p1| 6= |p2|. Let v = (v1, v2) ∈ C2. Two cases come into play:

Case 1: |p2| > |p1|. In that case, we have

Lρ(p)(v) =
(
v1 v2

) ∂2ρ(p)

∂z1∂z1

∂2ρ(p)

∂z2∂z1
∂2ρ(p)

∂z1∂z2

∂2ρ(p)

∂z2∂z2

(v1

v2

)

=
(
v1 v2

)(0 0

0 1

)(
v1

v2

)
= |v2|2.

Case 2: |p1| > |p2|. In that case, we have Lρ(p)(v) = |v1|2.

We proceed now to show, via Theorems 3.3.6, 3.3.7 and 3.3.8, that the Levi form is invariant under

biholomorphic maps.

Definition 3.3.5

Let ρ : R2n → R be a C2 function.

Define dCJρ : R2n → R by dCJρ(v) = −dρ(Jstv).

From now on, J stands for Jst.
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Theorem 3.3.6

Let v ∈ R2n. Then,

dCJρ(v) =
∑ ∂ρ

∂xi
dyi −

∑ ∂ρ

∂yi
dxi.

Proof. Let v = (a1, b1, ..., an, bn) ∈ R2n. Then,

dCJρ(v) = −dρ(Jv)

= dρ

(∑
bi

∂

∂xi
−
∑

ai
∂

∂yi

)
=
∑

bi
∂ρ

∂xi
−
∑

ai
∂ρ

∂yi

=
∑ ∂ρ

∂xi
dyi −

∑ ∂ρ

∂yi
dxi.

The last equality is justified by the fact that

−dxi(v) = dCJxi(J
−1v) = −ai∀i

and

−dyi(v) = dCJyi(J
−1v) = −bi∀i

Theorem 3.3.7

Let ρ : R2n → R be a C2 function. Let p, v ∈ R2n. Then,

ddCJρp(v, Jv) = 4Lρ(p)(v).

Proof. Let v = (a1, b1, ..., an, bn) ∈ R2n.

ddCJρ = d

(∑ ∂ρ

∂xi
dyi −

∑ ∂ρ

∂yi
dxi

)

= −
∑ ∂2ρ

∂xj∂yl
dxj ∧ dxl −

∑ ∂2ρ

∂yj∂yl
dyj ∧ dxl +

∑ ∂2ρ

∂xj∂xl
dxj ∧ dyl +

∑ ∂2ρ

∂yj∂xl
dyj ∧ dyl.
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Then,

ddCJρ(v, Jv) = −
∑ ∂2ρ

∂xj∂yl
(dxj(v)dxl(Jv)− dxl(v)dxj(Jv))

−
∑ ∂2ρ

∂yj∂yl
(dyj(v)dxl(Jv)− dxl(v)dyj(Jv))

+
∑ ∂2ρ

∂xj∂xl
(dxj(v)dyl(Jv)− dxj(Jv)dyl(v))

+
∑ ∂2ρ

∂yj∂xl
(dyj(v)dyl(Jv)− dyj(Jv)dyl(v))

= −
∑ ∂2ρ

∂xj∂yl
(albj − ajbl) +

∑ ∂2ρ

∂yj∂yl
(alaj + bjbl)

+
∑ ∂2ρ

∂xj∂xl
(ajal + bjbl) +

∑ ∂2ρ

∂yj∂xl
(albj − ajbl)

=
∑(

∂2ρ

∂xj∂xl
+

∂2ρ

∂yj∂yl

)
(alaj + blbj)

+
∑(

∂2ρ

∂yj∂xl
− ∂2ρ

∂xj∂yl

)
(albj − ajbl).

But,
∂2

∂xj∂xl
=

∂

∂xj

[
∂

∂zl
+

∂

∂zl

]
=

∂2

∂zj∂zl
+

∂2

∂zj∂zl
+

∂2

∂zj∂zl
+

∂2

∂zj∂zl
,

∂2

∂yj∂yl
= −i ∂

∂yj

[
∂

∂zl
− ∂

∂zl

]
= −

[
∂2

∂zj∂zl
− ∂2

∂zj∂zl
− ∂2

∂zj∂zl
+

∂2

∂zj∂zl

]
,

∂2

∂yj∂xl
=

∂

∂yj

[
∂

∂zl
+

∂

∂zl

]
= −i

[
∂2

∂zj∂zl
+

∂2

∂zj∂zl
− ∂2

∂zj∂zl
− ∂2

∂zj∂zl

]
,

∂2

∂xj∂yl
= −i ∂

∂xj

[
∂

∂zl
− ∂

∂zl

]
= −i

[
∂2

∂zj∂zl
− ∂2

∂zj∂zl
+

∂2

∂zj∂zl
− ∂2

∂zj∂zl

]
.

Hence,

ddCJρ(v, Jv) =
∑

2

[
∂2ρ

∂zj∂zl
+

∂2ρ

∂zj∂zl

]
(alaj + blbj)

+
∑

2i

[
∂2ρ

∂zj∂zl
− ∂2ρ

∂zj∂zl

]
(albj − ajbl)

=
∑

2
∂2ρ

∂zj∂zl
[(alaj + blbj)− i(albj − ajbl)]

+
∑

2
∂2ρ

∂zj∂zl
[(alaj + blbj) + i(albj − ajbl)]

=
∑

2
∂2ρ

∂zj∂zl
vlvj +

∑
2
∂2ρ

∂zj∂zl
vlvj

=
∑

2

(
∂2ρ

∂zj∂zl
+

∂2ρ

∂zl∂zj

)
vlvj

= 4
∑ ∂2ρ

∂zl∂zj
vlvj .

Therefore,

ddCJρp(v, Jv) = 4Lρ(p)(v).
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Theorem 3.3.8

Suppose ρ : Cn → R be a C2 function. Suppose F : Ω ⊆ R2n → Ω′ ⊆ R2m is a biholomorphism. If

p ∈ Ω, v ∈ Cn, then

Lρ(p)(v) = Lρ◦F−1(F (p))(dpF (v)).

Proof. It is enough to show that ddCJρp(v, Jv) = ddCJ(ρ◦F−1)F (p)(dpF (v), dpF (Jv)), and the rest follows

from Theorem 3.3.7. Note that

dCJ(ρ ◦ F−1)F (p)(dpF (v)) = −d(ρ ◦ F−1)F (p)(JdpF (v)) = −d(ρ ◦ F−1)F (p)(dpF (Jv))

= −F ∗d(ρ ◦ F−1)p(Jv) = −dF ∗(ρ ◦ F−1)p(Jv)

= −d(ρ ◦ F−1 ◦ F )p(Jv) = −dρp(Jv)

= dCJρ(v).

3.4 Plurisubharmonic Functions and Pseudoconvex

Domains

Pseudoconvex domains are extensively used in the theory of several complex variables. In this section,

we will just define them, and mention a useful test for domains having C2 boundaries. Moreover, we

will show that two non-empty proper simply-connected domains in C2 are not necessarily biholomorphic.

Definition 3.4.1

Let f : A→ R ∪ {−∞; +∞} be a function defined on a subset A of Rm, and let x0 ∈ A. Then:

a. f is said to be upper semi-continuous at x0 if f(x0) ≥ lim sup
x→x0

f(x).

b. f is said to be lower semi-continuous at x0 if f(x0) ≤ lim inf
x→x0

f(x).

In particular, if f(x0) = +∞ (or f(x0) = −∞), then f is upper (or lower) semi-continuous at x0. Finally,

f is upper (lower) semi-continuous on A if it is upper (lower) semi-continuous at every point of A.

Definition 3.4.2

A function u(z) is said to be subharmonic in a domain G ⊂ C if the followings are satisfied:

1. −∞ ≤ u(z) < +∞ in G.

2. u(z) is upper semi-continuous in G.

3. For any subdomain G′ of G and any function U(z) that is harmonic in G′ and continuous on G′,

the inequality u(z) ≤ U(z) on ∂G′ implies u(z) ≤ U(z) in G′.

A function u(z) such that −u(z) is subharmonic is called superharmonic.
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Definition 3.4.3

A function u(z) is said to be plurisubharmonic in a domain G ⊂ Cn if the followings are satisfied:

1. −∞ ≤ u(z) < +∞ in G.

2. u(z) is upper semi-continuous in G.

3. For any z0 ∈ Cn, a ∈ Cn, the function u(z0 + λa) is subharmonic on G = {λ ∈ C : z0 + λa ∈ G} .

A function u(z) is said to be plurisuperhamonic if −u(z) is a plurisubharmonic function.

Definition 3.4.4

Let G be a domain in Cn, z ∈ G. Define

d(z, ∂G) := sup
Bn(z,r)⊂G

r

G is said the be pseudoconvex if the function −ln(d(z, ∂G)) is plurisubharmonic in G.

If G has a C2 boundary, a very special test allows us to check whether a domain is pseudoconvex or

not. Our next goal is to state the test, but no proof will be provided.

Theorem 3.4.5

Suppose G has a C2 boundary. Then, it can be shown that G has a defining function, i.e. there exists

ρ : Cn → R which is C2 so that G = {ρ < 0} and ∂G = {ρ = 0}. In such a case, G is pseudoconvex if

and only if for every p ∈ ∂G and w ∈ Tp∂G, we have

Lρ(p)(w) =

n∑
i,j=1

∂2ρ(p)

∂zi∂zj
wiwj ≥ 0.

Recall that two non-empty proper simply-connected domains in C are biholomorphic, and this is a

consequence of the Riemann mapping Theorem. Does this theorem hold in the theory of several complex

variables?

Well, we end our chapter by showing that the complex ellipsoid

E =
{

(z1, z2) ∈ C2 : |z1|2 + |z2|4 < 1
}

and the open unit ball in C2 are not biholomorphic. However, we will use the following theorem proved

by Bell in 1981: If F : D1 → D2 is a biholomorphic map between two pseudoconvex domains with

C2 boundaries, then F extends to a diffeomorphism of D1 and D2 if at least one of them is a smooth

bounded strictly pseudoconvex domain.

Theorem 3.4.6

The complex ellipsoid E and the open unit ball in C2 are not biholomorphic.
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Proof. Let ρ(z1, z2) = |z1|2 + |z2|4 − 1 be the defining function of E, and note that

Lρ(p)(v) = |v1|2 + 4|p2|2|v2|2

for all p = (p1, p2), v = (v1, v2) ∈ C2.

Now, suppose there exists a biholomorphism F : E → B2(0, 1). By the theorem mentioned above, F

extends to a diffeomorphism of E and B
2
(0, 1). Let p = (1, 0) and v = (0, 1). Obviously,

Lρ(p)(v) = 0

whereas

Lρ◦F−1(F (p))(dpF (v)) = |dpF (v)|2 6= 0

because v 6= 0 and F is a diffeomorphism. Hence, we get a contradiction!
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Chapter 4

Stationary and Extremal Maps

In his paper, the Hungarian-American mathematician Laszlo Lempert defined stationary maps and used

them to get some useful applications in the field of complex analysis. In this chapter, we will provide

some definitions and prove Fefferman Theorem for special domains.

4.1 The Kobayashi Metric

The kobayashi metric, introduced by the Japanese-American mathematician Shoshichi Kobayashi in

1967, is a pseudometric defined on any complex manifold. This metric plays an important role in com-

plex geometry, since it is invariant under a biholomorphic map. In this section, we will show this latter

idea.

We start our section by recalling the Poincaré metric. we will denote the open unit disc in C by U .

Definition 4.1.1

Let z ∈ U, v ∈ C. Define the Poincaré metric at (z, v) to be

ρU (z, v) =
|v|

1− |z|2
.

If Ω ⊆ Cn and Ω′ ⊆ Cm, we denote the set of all holomorphic functions from Ω into Ω′ by Holo(Ω,Ω′).

Let’s define now the kobayashi metric.

Definition 4.1.2

Let Ω ⊆ Cn.For p ∈ Ω, v ∈ TPΩ, define the Kobayashi metric at (p, v) to be

KΩ(p, v) := inf

{
1

r
> 0 : f ∈ Holo(U,Ω), f(0) = p, f ′(0) = rv

}
.

The following theorem shows that the Kobayashi metric of Cn vanishes.
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Theorem 4.1.3

Let z, v ∈ Cn. Then KCn(z, v) = 0.

Proof. Let M > 0. Let f : U → Cn be the function defined by f(ζ) = z + Mζv. It is clear that

f ∈ Holo(U,Cn), f(0) = z and f ′(0) = Mv. Hence, KCn(z, v) ≤ 1

M
. This is true for any M > 0.

Therefore, KCn(z, v) = 0.

Next, we show that the Kobayashi metric on the open unit disc is equal to the poincaré metric.

Theorem 4.1.4

Let p ∈ U, v ∈ C. Then, KU (p, v) = ρU (p, v).

Proof. If v = 0, the result is obtained directly. So, assume v 6= 0.

Let ϕp : U → U be an automorphism of U defined by

ϕp(z) =
p− z
1− pz

.

If f ∈ Holo(U,U) with f(0) = p and f ′(0) = rv for some r > 0, then ϕp ◦ f ∈ Holo(U,U) and

(ϕp ◦ f)(0) = 0. By the classical Schwarz lemma, we have

|(ϕp ◦ f)′(0)| ≤ 1.

This implies that
r|v|

1− |p|2
≤ 1.

Hence,
1

r
≥ |v|

1− |p|2
.

On the other hand, let f : U → U be the function defined by

f(z) =

v

|v|
z + p

1 +
v

|v|
pz
.

It is clear that f ∈ Holo(U,U), f(0) = p and f ′(0) =
1− |p|2

|v|
v. Therefore,

KU (p, v) =
|v|

1− |p|2
= ρU (p, v).

The following theorem shows that the Kobayashi metric has the distance-decreasing property.
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Theorem 4.1.5

Let f : Ω ⊆ Cn → Ω′ ⊆ Cm be a holomorphic function on Ω. Then,

KΩ′(f(z), dzf(v)) ≤ KΩ(z, v), ∀z ∈ Ω,∀v ∈ TzΩ.

Proof. Let z ∈ Ω, v ∈ TzΩ. Let φ : U → Ω be a holomorphic function such that φ(0) = z and φ′(0) = rv

for some r > 0. Then, f ◦φ ∈ Holo(U,Ω′) satisfying (f ◦φ)(0) = f(z) and (f ◦φ)′(0) = f ′(φ(0)).φ′(0) =

rf ′(z).v = rdzf(v). Hence, KΩ′(f(z), dzf(v)) ≤ 1

r
. Therefore,

KΩ′(f(z), dzf(v)) ≤ KΩ(z, v).

As a consequence of Theorem 4.1.5, we show that the Koyabashi metric is invartiant under a biholo-

morphism.

Corollary 4.1.6

Let f : Ω ⊆ Cn → Ω′ ⊆ Cm be a biholomorphic function. Then,

KΩ′(f(z), dzf(v)) = KΩ(z, v), ∀z ∈ Ω,∀v ∈ TzΩ.

Proof. Let z ∈ Ω, v ∈ TzΩ. By applying Theorem 4.1.5 twice, we get

KΩ′(f(z), dzf(v)) ≤ KΩ(z, v) = KΩ(f−1(f(z)), df(z)f
−1(dzf(v))) ≤ KΩ′(f(z), dzf(v)).

We will denote the unit ball in Cn by Bn and the unit polydisc by Dn. We proceed now to compute

the Kobayashi metric of the unit ball and the unit polydisc in Cn. This requires the following version of

the Schwarz Lemma:

Theorem 4.1.7

Let f : U → Bn be a holomorphic function. If f(0) = 0, then |f ′(0)| ≤ 1.

Proof. Let 0 < r < 1. Then,

1 >
1

2π

π∫
−π

|f(reit)|2dt

=
1

2π

π∫
−π

(
|f1(reit)|2 + ...+ |fn(reit)|2

)
dt

=
1

2π

π∫
−π

|f1(reit)|2dt+ ...+
1

2π

π∫
−π

|fn(reit)|2dt.
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But Parseval’s identity implies that

∞∑
n=−∞

|cin|2 =
1

2π

π∫
−π

|fi(reit)|2dt, i = 1, ..., n

where

cin =
1

2π

π∫
−π

fi(re
it)e−intdt, i = 1, ..., n.

Since each fi is holomorphic on U , we have

cin =
1

2π

π∫
−π

( ∞∑
m=0

f
(m)
i (0)

m!
rmeimt

)
e−intdt

=
1

2π

∞∑
m=0

π∫
−π

f
(m)
i (0)

m!
rmei(m−n)tdt

Hence, cin = 0 if n < 0 and cin =
f

(n)
i (0)

n!
rn if n ≥ 0. Note that interchanging the summation and

integral symbols is allowed since

∞∑
m=0

f
(m)
i (0)

m!
rmeimte−int converges uniformly on (−π, π). Therefore,

1 >
1

2π

π∫
−π

|f1(reit)|2dt+ ...+
1

2π

π∫
−π

|fn(reit)|2dt

= (|f1(0)|2 + r2|f ′1(0)|2 + ...) + ...+ (|fn(0)|2 + r2|f ′n(0)|2 + ...)

≥ (|f1(0)|2 + r2|f ′1(0)|2) + ...+ (|fn(0)|2 + r2|f ′n(0)|2)

= |f(0)|2 + r2|f ′(0)|2.

Since f(0) = 0, then |f ′(0)| ≤ 1.

Note that one can also show that |f(z)| ≤ |z| for all z ∈ U , but this requires more tools. A

sophisticated proof is available in Chapter 8 of Rudin’s book ’Function Theory in the Unit Ball of Cn’.

Theorem 4.1.8

Let p ∈ Bn, v ∈ TpBn. Then, KBn(p, v) = |dpφp(v)|, where φp is an automorphism of the unit ball.

Proof. Since φp is a biholomorphism, then by Corollary 4.1.6, we have

KBn(p, v) = KBn(φp(p), dpφp(v)) = KBn(0, dpφp(v)).

If dpφp(v) = 0, then the equality is reached. So, assume dpφp(v) 6= 0. If f ∈ Holo(U,Bn) is such that

f(0) = 0 and f ′(0) = rdpφp(v) for some r > 0, then by the Schwarz Lemma, we have

|f ′(0)| = r|dpφp(v)| ≤ 1.

Hence,
1

r
≥ |dpφp(v)|.
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On the other hand, write dpφp(v) = (dpφp(v)1, ..., dpφp(v)n), and let f : U → Bn be the function defined

by

f(z) =

(
dpφp(v)1

|dpφp(v)|
z, ...,

dpφp(v)n
|dpφp(v)|

z

)
.

Clearly, f is holomorphic on U . Also, f(0) = 0 and f ′(z) =
1

|dpφp(v)|
dpφp(v). Therefore, KBn(p, v) =

|dpφp(v)|.

Theorem 4.1.9

Let p = (p1, ..., pn) ∈ Dn, v = (v1, ..., vn) ∈ TpDn. Then,

KDn(p, v) = max

{
|v1|

1− |p1|2
, ...,

|vn|
1− |pn|2

}
.

Proof. Let p = (p1, ..., pn) ∈ Dn, v = (v1, ..., vn) ∈ TpDn. If v = 0, we get our result. So, assume that

v 6= 0. Let f ∈ Holo(D1, Dn) be a holomorphic function such that f(0) = p and f ′(0) = rv for some

r > 0. Let φ : Dn → Dn be the map defined by

φ(z1, ..., zn) =

(
p1 − z1

1− p1z1
, ...,

pn − zn
1− pnzn

)
.

Let h = φ ◦ f : D1 → Dn. Then for any z ∈ D1, we have

(φ ◦ f)(z) = φ(f(z)) = φ(f1(z), f2(z), ..., fn(z)) =

(
p1 − f1(z)

1− p1f1(z)
, ...,

pn − fn(z)

1− pnfn(z)

)
.

Hence, (φ ◦ f)(0) = (0, ..., 0). Let

hi(z) =
pi − fi(z)
1− pifi(z)

, i = 1, ..., n.

By the classical Schwarz lemma applied to h1, ..., hn, we get

|h′i(0)| ≤ 1 ∀i.

Hence,
r|vi|

1− |pi|2
≤ 1 ∀i.

Therefore,
1

r
≥ max

{
|v1|

1− |p1|2
, ...,

|vn|
1− |pn|2

}
.

Let M = max

{
|v1|

1− |p1|2
, ...,

|vn|
1− |pn|2

}
. Let f : D1 → Dn be the map defined by

f(z) =

 p1 −
v1

M(|p1|2 − 1)
z

1− v1

M(|p1|2 − 1)
p1z

, ...,

pn −
vn

M(|pn|2 − 1)
z

1− vn
M(|pn|2 − 1)

pnz

 .
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Obviously,f is holomorphic on D1. Also, it is easy to show that f(0) = p and f ′(0) =
1

M
v. Therefore,

KDn(p, v) = max

{
|v1|

1− |p1|2
, ...,

|vn|
1− |pn|2

}
.

4.2 A metric for convex domains

In this section, we define a new metric for bounded convex domains and show that it is indeed a metric.

We start our section by the following definition:

Definition 4.2.1

Let D be a bounded domain in Cn. Let U = D1(0, 1). Define the function δD : D ×D → R by

δD(z1, z2) = inf {dH(ζ1, ζ2) : ∃f : U → D : f ∈ Holo(U,D), f(ζ1) = z1, f(ζ2) = z2} ,

where

dH(ζ1, ζ2) = log

1 +
∣∣∣ ζ2−ζ1

1−ζ1ζ2

∣∣∣
1−

∣∣∣ ζ2−ζ1
1−ζ1ζ2

∣∣∣
 .

We note that δD has the following property:

Theorem 4.2.2

δD has the distance decreasing property.

Proof. Let g : D1 → D2 be a holomorphic function. Let z1, z2 ∈ D1. Let f : U → D1 be a holomorphic

function such that f(ζ1) = z1 and f(ζ2) = z2. Then g ◦ f ∈ Holo(U,D2) with (g ◦ f)(ζ1) = g(z1) and

(g ◦ f)(ζ2) = g(z2). Hence,

δD2
(g(z1), g(z2)) ≤ dH(ζ1, ζ2).

Therefore,

δD2(g(z1), g(z2)) ≤ δD1(z1, z2).

Here is another straightforward property:

Theorem 4.2.3

Suppose D′ ⊂ D and z1, z2 ∈ D′. Then δD(z1, z2) ≤ δD′(z1, z2).

Proof. Suppose there exists f ∈ Holo(U,D′) such that f(ζ1) = z1, f(ζ2) = z2. LetA = {dH(ζ1, ζ2) : ∃f ∈ Holo(U,D′), f(ζ1) = z1, f(ζ2) = z2}
and B = {dH(ζ1, ζ2) : ∃f ∈ Holo(U,D), f(ζ1) = z1, f(ζ2) = z2}. Define g : U → D by g(ζ) = f(ζ). Thus,

A ⊂ B. Therefore, δD(z1, z2) ≤ δD′(z1, z2).
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Our next goal is to show the following interesting axiom whose proof is not available in Lempert’s

paper:

Theorem 4.2.4

Let z1, z2 ∈ D. Then, δD(z1, z2) = 0⇔ z1 = z2.

Proof. ⇐: Suppose that z1 = z2. Define f : U → D by f(ζ) = z1. Note that f ∈ Holo(U,D) and

f(0) = z1 = z2. Since dH(0, 0) = 0, we have δD(z1, z2) = 0.

⇒: Suppose now that δD(z1, z2) = 0. Then, there is a sequence of functions {fn} such that fn ∈
Holo(U,D), fn(ζn) = z1, fn(ηn) = z2 and lim

n→∞
dH(ζn, ηn) = 0, where {ζn} , {ηn} ⊂ U .

By Bolzano-Weierstrass, {ζn} has a subsequence {ζnk} that converges to ζ ∈ U , and {ηnk} has a subse-

quence {ηnkm} that converges to η ∈ U , and so fnkm(ζnkm) = z1, fnkm(ηnkm) = z2 and dH(ζnkm, ηnkm) −→
0.

Since D is bounded, then {fnkm} is a sequence of holomorphic functions that is uniformly bounded, and

by Arzela-Ascoli it has a subsequence {fnkml} that converges uniformly, on compact subsets of U , to a

function f .

Two cases come into play:

Case 1: |ζ| < 1. Since lim
l→∞

dH(ζnkml, ηnkml) = 0, then lim
l→∞

(ζnkml − ηnkml) = 0. So, lim
l→∞

ζnkml =

lim
l→∞

ηnkml. Hence, ζ = η, and |η| < 1.

Let ε and ε′ be small enough so that D
1
(ζ, ε) ⊂ U and D

1
(η, ε′) ⊂ U .

Since lim
l→∞

ζnkml = ζ, then there exists N ∈ N such that

l ≥ N ⇒ |ζkml − ζ| < ε⇒ ζkml ∈ D
1
(ζ, ε).

Since fnkml(ζnkml) = z1, then lim
n→∞

fnkml(ζnkml) = z1. By uniform convergence on D
1
(ζ, ε), we get

f(ζ) = z1. Similarly, f(η) = z2. But ζ = η, so z1 = z2.

Case 2: ζ = c, |c| = 1. In such a case, we get lim
l→∞

dH(ζnkml, ηnkml) = ∞, which is a contradiction. So

this case is rejected.

Next, we note that if D is convex, then δD satisfies the triangle inequality:

Theorem 4.2.5 [Lempert, 81]

If D is convex, then δD(z, s) ≤ δD(z, w) + δD(w, s)∀z, s, w ∈ D.

Proof. Let z, w, s ∈ D. Let ε > 0. There exist f, g ∈ Holo(U,D), ζ, η, η′σ,∈ U such that

f(ζ) = z, f(η) = w, δD(z, w) > dH(ζ, η)− ε

2
,

g(η′) = w, g(σ) = s, δD(w, s) > dH(η′, σ)− ε

2
.

WLOG, assume ζ = 0, η = η′ > 0, σ > η (If not, compose f and g with suitable automorphisms of the unit

disc and proceed). Assume also that f and g are continuous on U (If not, let R = max {|ζ|, |η|, |η′|, |σ|}
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and let r < R < 1. Define u : U → D by u(a) = f
(a
r

)
and v : U → D by v(a) = g

(a
r

)
and proceed).

Let

h(ξ) = λ(ξ)f(ξ) + (1− λ(ξ))g(ξ)

with

λ(ξ) = (ξ − σ)

(
ξ − 1

σ

)(
1

ξ − η

)(
1

ξ − 1
η

)
.

Note that λ(0) = 1, λ(σ) = 0, λ is holomorphic on U − {η} and λ is real on ∂U with 0 < λ < 1:

(ξ − σ)

(
ξ − 1

σ

)(
1

ξ − η

)(
1

ξ − 1
η

)
=
η

σ

|ξ − σ|2

|ξ − η|2
< 1,

for all ξ ∈ ∂U .

Hence, h : U → Cn is holomorphic on U (η is a removable singularity) with h(0) = z, h(σ) = s and

h(∂U) ⊂ D (because D is convex). By the maximum principle, h(U) ⊂ D.

Therefore,

δD(z, s) ≤ dH(0, σ) = dH(0, η) + dH(η, σ) ≤ δD(z, w) + δD(w, s) + ε.

Corollary 4.2.6

If D is convex, then δD is a metric.

The following example shows that if D is not convex, then δD is not necessarily a metric.

Example 4.2.7

Let Dε =
{
z ∈ C2 : |z1| < 2, |z2| < 2, |z1z2| < ε

}
. Let P = (1, 0) and Q = (0, 1). See that δDε(0, P ) and

δDε(0, Q) do not depend on ε but δDε(P,Q)→∞ as ε→ 0.

Royden has shown that the Kobayashi distance on D is given by

κD(Z1, Z2) = inf


k∑
j=1

δD(wj−1, wj) : wj ∈ D(j = 0, ..., k), w0 = Z1, wk = Z2


for all Z1, Z2 ∈ D. It turns out that κD = δD if D is a bounded convex domain:

Theorem 4.2.8

If D is convex, then δD(Z1, Z2) = κD(Z1, Z2).

Proof. First, note that if D is a bounded domain in Cn, we have

κD(Z1, Z2) ≤ δD(Z1, Z2) ∀Z1, Z2 ∈ D.
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Moreover, if D is convex, then δD satisfies the triangle inequality. Hence, if Z1, Z2 ∈ D, we have

δD(Z1, Z2) ≤ δD(Z1, w1) + ...+ δD(wk−1, Z2) ∀w1, ..., wk−1 ∈ D

and so

δD(Z1, Z2) ≤ κD(Z1, Z2) ∀Z1, Z2 ∈ D.

4.3 Stationary and Extremal Maps

In this section, we will define stationary and extremal maps and prove that stationary maps are extremal.

We start our section by the definition of a strongly convex domain.

Definition 4.3.1

A domain D ⊂ Cn is said to be strongly convex if it is bounded, with C2 boundary, and whose defining

function ρ(z) satisfies

2Re

 n∑
i,j=1

∂2ρ

∂zi∂zj
(p)vivj

+ 2Lρ(p)(v) > 0 ∀p ∈ ∂D∀v ∈ Tp(∂D)(v 6= 0).

Let’s fix some notations we are going to use throughout this chapter.

Notations

1. D will be used to denote a strongly convex domain.

2. If D is strongly convex with defining function ρ, SCD(p, v) will be used to denote

2Re

 n∑
i,j=1

∂2ρ

∂zi∂zj
(p)vivj

+ 2Lρ(p)(v).

3. v(z) = (v1(z), ..., vn(z)) will be used to denote the exterior normal of ∂D at z ∈ ∂D. Note that

since D has a C2 boundary, it has a defining function ρ, and in such a case v(z) = ∇ρ(z).

4. For 0 < p < ∞, Cp(K) will be used to denote the set of all bpc-differentiable functions on the

interior of a compact set K such that:

(a) If p is an integer, h(k) extends continuously to ∂K for all k ≤ p.

(b) If not, let θ = p − bnc > 0. Then, h(α) satisfies |h(α)(z) − h(α)(w)| ≤ C|z − w|θ,∀z, w ∈
K◦,∀α ≤ bnc.

5. C∞(K) will be used to denote ∩p<∞Cp(K)

6. If E ⊂ Cn is a set, then Cp(E) will denote ∩{Cp(K) : K ⊂ Ecompact} .
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7. Cω will be used to denote the set of real analytic functions.

8. P ∗n−1 will be used to denote the projective space of hyperplanes in Cn.

What is an extremal map?

Definition 4.3.2

Let f : U → D be a holomorphic map.

1. f is said to be extremal with respect to Z1, Z2 ∈ D(Z1 6= Z2) if f(0) = Z1, f(ξ) = Z2 (ξ being a

positive real number), and δD(Z1, Z2) = dH(0, ξ).

2. f is said to be extremal with respect to Z ∈ D, v 6= 0 ∈ Cn if f(0) = Z, f ′(0) = λv (λ > 0), and

for each map g : U → D ∈ Holo(U,D) such that g(0) = Z, g′(0) = µv (µ > 0), we have µ ≤ λ.

Finally, if f is extremal, then f(U) will be called the extremal disc with respect to Z1, Z2 (resp. Z, v).

Here is an example of an extremal map:

Example 4.3.3

Let’s show that the map f : U → B2(0, 1) defined by f(z) = (z, 0) is extremal with respect to f(0) = (0, 0)

and f ′(0) = (1, 0). To do so, let g : U → B2(0, 1) be a map such that g(0) = (0, 0) and g′(0) = λ(0, 1)

for some λ > 0. By the Schwarz Lemma, we have |g′(0)| = λ ≤ 1. Hence, we get our result.

What is a stationary map?

Definition 4.3.4

A holomorphic map f : U → D is said to be stationary if it can be extended to a 1/2-Holder continuous

map on U (which will be called f also), f(∂U) ⊂ ∂D, and if there exists p : ∂U → R+ such that p is

1/2-Holder continuous and the map ζp(ζ)v(f(ζ)) defined on ∂U extends to a continuous map f̂ on U

that is holomorphic on U .

If f is stationary, f(U) will be called stationary disc.

Remark: By a Theorem of Hardy and Littlewood, f̂ is 1/2-Holder continuous on U .

Our first goal is to show that a stationary map f is extremal with respect to f(0) and f ′(0).

Theorem 4.3.5 [Lempert, 81]

A stationary map f is the unique extremal map with respect to z = f(0) and v = f ′(0). In particular,

f ′(0) 6= 0.

Proof. Let g : U → D ∈ Holo(U,D) with g(0) = f(0) = z and g′(0) = λf ′(0), λ ≥ 0. Since g is bounded

on U , then

g(ζ) = lim
r→1−

g(rζ)
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exists for a.e. ζ ∈ ∂U by Fatou’s Theorem. Since D is strictly convex, then

Re < f(ζ)− g(ζ), v(f(ζ)) >≥ 0 for a.e. ζ ∈ ∂U.

Assume f 6= g. Since f(ζ)− g(ζ) is holomorphic and bounded on U , then f(ζ)− g(ζ) 6= 0 a.e. on ∂U by

a theorem of F. and M. Riesz. Hence,

Re < f(ζ)− g(ζ), v(f(ζ)) >> 0 for a.e. ζ ∈ ∂U.

Multiplying by p(ζ), we get

0 < Re < f(ζ)− g(ζ), p(ζ)v(f(ζ)) >= Re

〈
f(ζ)− g(ζ)

ζ
, f̂(ζ)

〉
for a.e. ζ ∈ U.

Since

〈
f(ζ)− g(ζ)

ζ
, f̂(ζ)

〉
is holomorphic and bounded on U , then

Re

〈
f(ζ)− g(ζ)

ζ
, f̂(ζ)

〉
is harmonic and bounded on U . Hence,

0 < Re < f ′(0)− g′(0), f̂(0) >= (1− λ)Re < f ′(0), f̂(0) > .

This is true for any g satisfying the conditions above. In particular, take g(ζ) = z, so λ = 0 and hence

Re < f ′(0), f̂(0) >> 0. Therefore, 1− λ > 0, and so |g′(0)| < |f ′(0)|.

Here is an example of a stationary map:

Example 4.3.6

Let’s find all stationary maps f : U → B2(0, 1) such that f(0) = (0, 0) and f ′(0) = (1, 0). Suppose there

exists a stationary map f : U → B2(0, 1) such that f(0) = (0, 0) and f ′(0) = (1, 0). Then, f is the

unique extremal map with respect to f(0) and v = f ′(0). However, the map f : U → B2(0, 1) defined by

f(z) = (z, 0) is extremal with respect to f(0) = (0, 0) and f ′(0) = (1, 0). By uniqueness, f(z) = (z, 0).

Note that one can show, following the same procedure, that if f : U → B2(0, 1) is a stationary map such

that f(0) = (0, 0) and f ′(0) = (a1, a2) with |a1|2 + |a2|2 = 1, then f(z) = (a1z, a2z).

One can see that the composition of a stationary map and an automorphism of the unit disc is a

stationary map:

Theorem 4.3.7 [Lempert, 81]

If f is a stationary map and a is an automorphism of U , then fa = f ◦ a is a stationary map.

Proof. We have to show that there exists a 1/2-holder continuous map pa : ∂U → R+ such that

ζpa(ζ)v(fa(ζ)) extends to a map that is holomorphic on U and continuous on U .

Let φ be a holomorphic function on U such that

Im(φ(ζ)) = Im log

(
ζ

a(ζ)

)
∀ζ ∈ ∂U.
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Define q : ∂U → R+ by

q(ζ) = eφ(ζ) a(ζ)

ζ
.

Note that q is well-defined because

q(ζ) = eRe(φ(z))eiIm(φ(ζ)) a(ζ)

ζ
= eRe(φ(ζ))elog(

ζ
a(ζ)

) a(ζ)

ζ
= eRe(φ(ζ)) ∀ζ ∈ ∂U.

Define pa : ∂U → R+ by

pa(ζ) = q(ζ)p(a(ζ)).

Note that

ζpa(ζ)v(fa(ζ)) = eφ(ζ)a(ζ)p(a(ζ))v(fa(ζ))

which extends to eφ(ζ)f̂(a(ζ)), a holomorphic function on U , continuous on U .

Note that f̂a(ζ) = eφ(ζ)f̂(a(ζ)) = 0⇔ (f̂ ◦ a)(ζ) = 0.

Lempert has mentioned the following two corollaries without proof:

Corollary 4.3.8

If f is a stationary map, then f̂ : U → Cn is never zero.

In fact, < f ′(ζ), f̂(ζ) > 6= 0 for all ζ ∈ U.

Proof. We have already shown that if f is stationary, then

Re < f ′(0), f̂(0) >> 0,

hence f̂(0) 6= 0.

Next, let ζ ∈ U . Let a be the automorphism of the unit disc defined by

a(z) =
ζ + z

1 + ζz
.

Hence, f̂a(0) 6= 0 and so (f̂ ◦ a)(0) 6= 0. Therefore, f̂(ζ) 6= 0. Moreover, we know that

Re < (f ◦ a)′(0), f̂a(0) >= Re
(

(1− |ζ|2)eφ(0) < f ′(ζ), f̂(ζ) >
)
> 0.

Therefore, < f ′(ζ), f̂(ζ) >6= 0.

Corollary 4.3.9

A stationary disc f(U) is the unique extremal disc with respect to z = f(ζ) and v = f ′(ζ), for any ζ ∈ U .

Proof. Let ζ ∈ U . Let a(z) =
z + ζ

1 + ζz
. Since f ◦ a is stationary, then f ◦ a is the unique extremal map

with respect to (f ◦ a)(0) = f(ζ) and (f ◦ a)′(0) = (1 − |ζ|2)f ′(ζ). In fact, f ◦ a is also extremal with

respect to f(ζ) and f ′(ζ):

1. (f ◦ a)(0) = f(ζ).
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2. (f ◦ a)′(0) = (1− |ζ|2)f ′(ζ), with 1− |ζ|2 > 0.

3. Suppose there exists g : U → D ∈ Holo(U,D) such that g(0) = f(ζ) and g′(0) = λf ′(ζ) with

λ > 0. Write g′(0) =
λ

1− |ζ|2
(1− |ζ|2)f ′(ζ), and use the fact that f ◦ a is extremal with respect

to (f ◦ a)(0) = f(ζ) and (f ◦ a)′(0) = (1− |ζ|2)f ′(ζ) to conclude that λ ≤ 1− |ζ|2.

Moreover, f ◦ a is the unique extremal map with respect to f(ζ) and f ′(ζ). If not, then there exists an

extremal map F with respect to f(ζ) and f ′(ζ). One can show in a very similar way that F is extremal

with respect to (f ◦a)(0) = f(ζ) and (f ◦a)′(0) = (1−|ζ|2)f ′(ζ) and conclude that F = f ◦a. Therefore,

(f ◦ a)(U) = f(U) is the unique extremal disc with respect to z = f(ζ) and v = f ′(ζ).

We proceed to show that a stationary disc f(U) is the unique extremal disc with respect to any two

elements in the image of f . Note that the proof of the following theorem is more detailed than the one

done by Lempert:

Theorem 4.3.10 [Lempert, 81]

A stationary disc f(U) is the unique extremal disc with respect to z1 = f(ζ1), z2 = f(ζ2) for any

ζ1 6= ζ2, ζ1, ζ2 ∈ U .

Proof. Suppose z1 = f(ζ1), z2 = f(ζ2). Let φ1(z) =
ζ1 + z

1 + ζ1z
. Let φ2(z) be the rotation of U that maps∣∣∣∣ ζ1 − ζ21− ζ1ζ2

∣∣∣∣ to
ζ2 − ζ1
1− ζ1ζ2

. See that

(f ◦ φ1 ◦ φ2)(0) = f(ζ1)

and

(f ◦ φ1 ◦ φ2)

(∣∣∣∣ ζ1 − ζ21− ζ1ζ2

∣∣∣∣) = f(ζ2).

We will show that f ◦ φ1 ◦ φ2 is the unique extremal map with respect to f(ζ1) and f(ζ2).

Suppose g : U → D ∈ Holo(U,D) with g(0) = f(ζ1) and g(w) = f(ζ2), w > 0. Suppose also that

f 6= g. Let l =

∣∣∣∣ ζ1 − ζ21− ζ1ζ2

∣∣∣∣. It is enough to show that w > l and it follows that dH(0, w) > dH(0, l) which

means that:

1. g is not extremal with respect to z1 = f(ζ1) and z2 = f(ζ2).

2. f ◦ φ1 ◦ φ2 is extremal with respect to z1 = f(ζ1) and z2 = f(ζ2) because

dH(0, w) > dH(0, l)⇒ dH(0, l) ≤ δD(f(ζ1), f(ζ2))⇒ dH(0, l) = δD(f(ζ1), f(ζ2))

since δD(f(ζ1), f(ζ2)) ≤ dH(0, l).

Suppose that w ≤ l. Define G : U → D by G(ζ) = g

(
ζw

l

)
. Note that G(0) = z1 and G(l) = z2. Since

G 6= f and D is strictly convex, we have

Re < f(ζ)−G(ζ), v(f(ζ)) >> 0 for a.e. ζ ∈ ∂U,

and hence

Re

〈
f(ζ)−G(ζ)

ζ
, f̂(ζ)

〉
> 0 for a.e. ζ ∈ U.
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But,

Re

〈
f(ζ2)−G(ζ2)

ζ2
, f̂(ζ2)

〉
= 0

and Re

〈
f(ζ)−G(ζ)

ζ
, f̂(ζ)

〉
is harmonic, so we get a contradiction by the minimum principle.

It follows that:

Corollary 4.3.11

Stationary maps are injective.

Proof. Let f be a stationary map. Let ζ1, ζ2 ∈ U with ζ1 6= ζ2. From the previous proof, we see that

δD(f(ζ1), f(ζ2)) = dH(0, l) > 0

so f(ζ1) 6= f(ζ2).

4.4 Regularity of Stationary Maps

The goal of this section is to show that < f ′(ζ), f̂(ζ) > is a positive constant for any stationary map f .

We start our section by the definition of a totally real submanifold:

Definition 4.4.1

A real submanifold M of a complex manifold is said to be totally real at z ∈M if TzM ∩ iTzM = 0.

Next, we state without proof the following theorem:

Theorem 4.4.2 ([7])

Let S be a real hypersurface in Cn of class C2. Define Ψ : S → Cn × P ∗n−1 by Ψ(z) = (z, TC
z (S)). Then

Ψ(S) is totally real at Ψ(z0) if and only if the Levi form of S at z0 is not zero.

We proceed to state and prove the required theorems to reach the main goal of the section:

Lemma 4.4.3

Let ψ ∈ C1(C) such that supp(ψ) is compact. Then the function defined by

u(ζ) =
−1

2πi

∫
C

ψ(ξ)

ξ − ζ
dξ ∧ dξ

satisfies
∂u(ζ)

∂ζ
= ψ(ζ).
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Proof. Let D1(0, r) be a disc that contains supp(ψ). Then:

∂u(ζ)

∂ζ
=
−1

2πi

∂

∂ζ

∫
C

ψ(ξ)

ξ − ζ
dξ ∧ dξ

=
−1

2πi

∂

∂ζ

∫
C

ψ(ξ + ζ)

ξ
dξ ∧ dξ

=
−1

2πi

∫
C

∂
∂ξ
ψ(ξ + ζ)

ξ
dξ ∧ dξ

=
−1

2πi

∫
D1(0,r)

∂
∂ξ
ψ(ξ)

ξ − ζ
dξ ∧ dξ

= ψ(ζ)− 1

2πi

∫
∂D1(0,r)

ψ(ξ)

ξ − ζ
dξ (Pompeiu′sFormula)

= ψ(ζ).

Theorem 4.4.4 [Lempert, 81]

Let:

1. E ⊂ U be a bounded domain such that ∂E is a simply connected curve with an open subarc

A ⊂ ∂E contained in ∂U .

2. Let M be a totally real submanifold of a complex manifold X such that dimRM = dimCX = m.

3. g : E ∪A→ X be a 1/2-Holder-continuous map, holomorphic on E, such that g(A) ⊂M .

If M is of class Cr(r = 2, 3, ..., ω), then g ∈ Cr−ε(E ∪A), ε > 0.

Proof. WLOG, suppose X = Cm, E ⊂ U+ = {ζ ∈ C : Im(ζ) > 0} and A ⊂ ∂E ∪ ∂U+ is a segment.

Case 1 : r = ω: Since M is of class Cr, then there exists an analytic diffeomorphism φ : V → M

where V is an open subset of Rm. Consequently, there exists a biholomorphism Φ : NV → Cm from a

neighborhood NV of V into Cm such that Φ|V = φ. Let Ψ = Φ−1 ◦ g. Note that Ψ is holomorphic on E,

continuous on A and is real-valued on A since g(A) ⊂ M , so Ψ(A) ⊂ V . By the reflection principle, Ψ

extends analytically across A, and so does g.

Case 2: r < ω: There exists a Cr-diffeomorphism φ′ : V → M where V is an open subset of Rm.

By HARVEY and WELLS Jr, there exists a Cr-extension Φ : NV → Cm of φ′ from a neighborhood NV

into Cm, such that all derivatives of order ≤ r − 1 of ∂Φ are 0 on V .Hence, Φ is a diffeomorphism from

NV into a neighborhood NM of M , such that all derivatives of order ≤ r − 1 of ∂Φ−1 are 0 on M . Let

h be the function defined on Ω ∩ U+ by

h(ζ) = (Φ−1 ◦ g)(ζ)
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where Ω is a neighborhood of A symmetric with respect to A. Let

H(ζ) =

h(ζ) ifζ ∈ Ω, Im(ζ) ≥ 0

h(ζ) ifζ ∈ Ω, Im(ζ) ≤ 0
.

Note that H is continuous on Ω since h(A) ⊂ V and of class Cr on Ω− R since g is holomorphic on E.

Let

φ(ζ) =

Hζ(ζ) ifζ ∈ Ω−A

0 ifζ ∈ A
.

Note that φ is continuous on Ω−A because H is of class Cr there. We need to investigate the continuity

of φ on A. Well, on Ω ∩ U+,

Hζ(ζ) =
∂Φ−1

∂z
(g(ζ))g′(ζ).

Note that
∂Φ−1

∂z
(g(ζ)) = o(1)(1− |ζ|)1/2(ζ → ζ0 ∈ A).

By a Theorem of Hardy and Littlewood,

g′(ζ) = O(1)(1− |ζ|)−1/2(ζ → ζ0 ∈ A).

Consequently, φ(ζ) → 0 as ζ → ζ0 ∈ A. So, φ is continuous on Ω, and hence for any Ω′ ⊂⊂ Ω, there

exists Ψ ∈ C1−ε(Ω′) such that Ψζ = φ. Thus, Hζ − Ψζ = 0 on Ω′ − A, which implies that H − Ψ is

holomorphic on Ω′ − A. Since H − Ψ is continuous on Ω′, then H − Ψ is holomorphic on Ω′ by the

symmetry principle. Therefore, H ∈ C1−ε(Ω′). This is true for any Ω′ ⊂⊂ Ω, so h ∈ C1−ε(Ω ∩ U+) and

g ∈ C1−ε(Ω ∩ U+). Now,
∂Φ−1

∂z
(g(ζ)) = o(1)(1− |ζ|)1−ε(ζ → ζ0 ∈ A)

and

g′(ζ) = O(1)(1− |ζ|)−ε(ζ → ζ0 ∈ A).

So, φ ∈ C1−ε(Ω′) and Ψ ∈ C2−ε(Ω′), hence h, g ∈ C2−ε(Ω ∩ U+).

If r = 2, stop. If r > 2, then g′ ∈ C1−ε(Ω ∩ U+), and by the same theorem of Hardy and Littlewood,

g′′(ζ) = O(1)(1− ζ)−ε(ζ → ζ0 ∈ A)

and so φ ∈ C2−ε(Ω′). But

φ ∈ C2−ε(Ω′)⇒ Ψ ∈ C3−ε(Ω′)⇒ h ∈ C3−ε(Ω ∩ U+)⇒ g ∈ C3−ε(Ω ∩ U+).

If r = 3, stop. If not, proceed until you get g ∈ Cr−ε(E ∪A).

Theorem 4.4.5 [Lempert, 81]

Suppose ∂D is of class Ck(3 ≤ k ≤ ω) and f : U → D be a stationary map. Then, f, f̂ ∈ Ck−2(U).

Proof. Let F = π ◦ f̂ : U → P ∗n−1, where π is the cannonical projection. Note that f̂ 6= 0 on U , so F is

well-defined.

The map (f, F ) : U → Cn×P ∗n−1 is 1/2-Holder continuous, holomorphic on U , and (f, F )(∂U) ⊂ Ψ(∂D),
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where Ψ(∂D) is totally real since D is strongly convex. By Theorem 4.4.4, (f, F ) ∈ Ck−1−ε(U), hence

f ∈ Ck−2(U). Since v ◦ f ∈ Ck−1−ε(∂U), we just have to show that p ∈ Ck−2(∂U).

Let ζ0 ∈ ∂U and suppose that v1(f(ζ0)) 6= 0. Let φ : ∂U → C be Holder-continuous of order k−1− ε
such that v1(f(ζ)) = eφ(ζ) in a neighborhood V ∩ ∂U of ζ0 ∈ ∂U .

Let γ : ∂U → R be such that γ + iIm(φ) extends to a holomorphic function on U . By Privaloff,

γ ∈ Ck−1−ε(∂U).

Since v1(f(ζ))eγ(ζ)−Re(φ(ζ)) and p(ζ)v1(f(ζ)) extend to holomorphic functions on U ∩ V , so does

p(ζ)eRe(φ(ζ))−γ(ζ) which is real on V ∩ ∂U , so it extends to an analytic function on V ∩ ∂U . The regu-

larity of eRe(φ)−γ implies that p ∈ Ck−1−ε(V ∩ ∂U).

Since ζ0 is arbitrary, p ∈ Ck−1−ε(∂U), so f̂ ∈ Ck−1−ε(U).

Theorem 4.4.6 [Lempert, 81]

If f : U → D is a stationary map, then < f ′(ζ), f̂(ζ) > is a constant positive map.

Proof. Since f(∂U) ⊂ ∂D, then the tangent to the curve {f(w) : w ∈ ∂U} at f(ζ) is orthogonal to

v(f(ζ)). Hence, for ζ ∈ ∂U , we have

0 = p(ζ)Re < iζf ′(ζ), v(f(ζ) >= p(ζ)Im < ζf ′(ζ), v(f(ζ)) >

= Im < f ′(ζ), ζp(ζ)v(f(ζ)) >= Im < f ′(ζ), f̂(ζ) > .

Note that Im < f ′(ζ), f̂(ζ) > is harmonic in U and continuous on U by Theorem 4.4.5 . Therefore,

Im < f ′(ζ), f̂(ζ) > = 0 on U by the maximum principle. But < f ′(ζ), f̂(ζ) > is holomorphic on U , so

< f ′(ζ), f̂(ζ) > is a real constant c on U . Moreover, < f ′(0), f̂(0) >> 0, which implies that c > 0.

From now on, we will assume that < f ′(ζ), f̂(ζ) >= 1 so that

p(ζ) =
1

< ζf ′(ζ), v(f(ζ)) >
(ζ ∈ ∂U).

4.5 Holder Estimation of Stationary Maps

In this section, we prove some Holder estimates of stationary maps.

Theorem 4.5.1 [Lempert, 81]

Let f : U → D be a stationary map. Suppose that the diameter of ∂D (denoted by diamD),

SCD(p, v)(p ∈ ∂D, v ∈ Tp(∂D)), and the distance from f(0) to ∂D are bounded below and above

by positive numbers a and b respectively. Then, there exists a uniform constant C1 > 0 such that

dist(f(ζ), ∂D) ≤ C1(1− |ζ|), ζ ∈ U.
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Proof. Let ρ > 0 be smaller than a. There exists a constant C2 > 0 such that

z ∈ D, dist(z, ∂D) ≥ ρ⇒ δD(f(0), z) < C2.

Let ζ ∈ U .

If dist(f(ζ), ∂D) ≥ ρ, then

δD(f(0), f(ζ)) < C2

= C2 + log(diamD)− log(diamD)

= C3 − log(diamD)

< C3 − log(dist(f(ζ), ∂D)).

If dist(f(ζ), ∂D) < ρ, let Z be the closest point on ∂D to f(ζ) and let z be the center of the ball

b ⊂ D of radius ρ tangent to ∂D at Z. Then,

δD(f(0), f(ζ)) ≤ δD(f(0), z) + δD(z, f(ζ))

< C2 + δb(z, f(ζ)) (dist(z, Z) = ρ, b ⊂ D)

< C4 − log(dist(f(ζ), ∂D)).

But f(U) is the extremal disk determined by f(0), f(ζ), i.e. f ◦ φ2 is the unique extremal map with

respect to f(0) and f(ζ), where φ2 is the rotation mapping |ζ| to ζ. Hence,

δD(f(0), f(ζ)) = log

(
1 + |ζ|
1− |ζ|

)
≥ −log(1− |ζ|).

Hence,

log(dist(f(ζ), ∂D) < max {C3, C4}+ log(1− |ζ|).

Therefore,

dist(f(ζ), ∂D) ≤ C1(1− |ζ|),

where C1 = emax{C3,C4}.

Lemma 4.5.2

Suppose g ∈ Holo(U,Bn(z0, R)) and |g(0)− z0| = r. Then |g′(0)| ≤
√
R2 − r2.

Proof. If r = 0, we get the result by the Schwarz Lemma. If not, we can compose g with an automorphism

of the ball Bn(z0, R) and then apply the Schwarz Lemma.

Theorem 4.5.3 [Lempert, 81]

Let f : U → D be a stationary map. Suppose that the diameter of ∂D,SCD(p, v)(p ∈ ∂D, v ∈ Tp(∂D)),

and the distance from f(0) to ∂D are bounded below and above by positive numbers. Then there exists

a uniform constant C5 > 0 such that

|f(ζ1)− f(ζ2)| ≤ C5|ζ1 − ζ2|1/2 (ζ1, ζ2 ∈ U).
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Proof. Let ζ0 ∈ U . Let Z ∈ ∂D be the closest point to f(ζ0). Let B be the smallest ball tangent to ∂D

at Z such that D ⊂ B. Let z0 be the center of B. Let

h(ζ) = f

(
ζ0 − ζ
1− ζ0ζ

)
.

Hence, h(U) ⊂ B and h(0) = f(ζ0). By Lemma 4.5.2, we have

|h′(0)| ≤
√
|Z − z0|2 − |f(ζ0)− z0|2 ≤ C6|f(ζ0)− Z|1/2.

Hence,

|f ′(ζ0)| = 1

1− |ζ0|2
|h′(0)| ≤ C7

√
dist(f(ζ0), ∂D)

1− |ζ0|
.

By Theorem 4.5.1,

|f ′(ζ)| ≤ C8(1− |ζ|)−1/2 (ζ ∈ U).

By a theorem of Hardy and Littlewood, the last inequality is equivalent to

|f(ζ1)− f(ζ2)| ≤ C5|ζ1 − ζ2|1/2 (ζ1, ζ2 ∈ U).

Lemma 4.5.4

Suppose f : U → {z ∈ C : Re(z) < 0} is a holomorphic map. Let ζ ∈ U . Then,

|f ′(ζ)| ≤ 2|Re(f(ζ))|
1− |ζ|2

.

Proof. Define B : U → U by

B(z) =
z + ζ

1 + ζz

and h : {z ∈ C : Re(z) < 0} → U by

h(z) =
z − f(ζ)

z + f(ζ)
.

By the Schwarz Lemma,

|(h ◦ f ◦B)′(0)| ≤ 1,

hence

|f ′(ζ)| ≤ 2|Re(f(ζ))|
1− |ζ|2

.

Theorem 4.5.5 [Lempert, 81]

Let f : U → D be a stationary map. Suppose that the diameter of ∂D, SCD(p, v)(p ∈ ∂D, v ∈ Tp(∂D)),

and the distance from f(0) to ∂D are bounded below and above by positive numbers. Then, there exist

uniform constants C9, C10 such that

0 < C9 << f ′(ζ), ζv(f(ζ)) >= p(ζ)−1 < C10 (ζ ∈ ∂U).
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Proof. Let ζ ∈ U, ε > 0, ζ1 = (1− ε)ζ. WLOG, assume that v(f(ζ)) = (1, 0, ..., 0) and f(ζ) = 0. Hence,

z = (z1, ..., zn) ∈ D ⇒ Re(z1) < 0.

Write f = (f1, ..., fn). Hence,

f1(U) ⊂ {z1 ∈ C : Re(z1) < 0} .

By Lemma 4.5.4,

|f ′1(ζ1)| ≤ 2|Re(f1(ζ1))|
1− |ζ1|2

.

But there exists ε > 0 such that

|ζ1 − ζ| < ε⇒ |Re(f1(ζ1))| ∼ dist(f(ζ1), ∂D).

By Theorem 4.5.1,

|ζ1 − ζ| < ε⇒ |f ′1(ζ1)| ≤ 2dist(f(ζ1), ∂D)

1− |ζ1|2
≤ 2C1.

In particular,

|f ′1(ζ)| =< f ′(ζ), v(f(ζ)) >≤ 2C1.

Next, consider the subharmonic function V : U → R defined by

V (ζ) = −dist(f(ζ), ∂D).

Note that V attains its maximum on ∂U where it is differentiable.

Let d be the diameter of D and b = dist(f(0), ∂D). Let B be the ball of center f(0) and radius d. Note

that

|f(ζ)− f(0)| ≤ d ∀ζ ∈ U,

so f(U) ⊂ B. By the Schwarz Lemma,

|f(ζ)− f(0)| ≤ d|ζ| ≤ b

2
if |ζ| ≤ b

2d
.

Let

M(x) = max0≤t≤2πV (ex+it).

If x ≤ log
b

2d
, then ex ≤ b

2d
and so |ex+it| ≤ b

2d
for all t. Hence,

|f(ex+it)− f(0)| ≤ b

2
if x ≤ log

b

2d
.

Therefore,

dist(f(ex+it), ∂D) ≥ b

2
if x ≤ log

b

2d
.
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Now, M is a convex function, so for log
b

2d
≤ x ≤ 0,

M(x)−M
(

log
b

2d

)
x− log

b

2d

≤ M(0)−M(x)

0− x
.

Since M(0) = 0 and M

(
log

b

2d

)
≤ − b

2
, then we have

M(x)

(
1

x
log

b

2d

)
≤M

(
log

b

2d

)
≤ − b

2

and therefore

M(x) ≤ −xb

2 log
b

2d

if log
b

2d
≤ x ≤ 0.

Finally, if ζ ∈ ∂U , then V (ζ) = 0 and so

V (ζex)− V (ζ) ≤ −xb

2 log
b

2d

if log
b

2d
≤ x ≤ 0.

Hence,
−b

2 log
b

2d

≤ V (ζex)− V (ζ)

x− 0
if log

b

2d
≤ x ≤ 0.

Therefore,
−b

2 log
b

2d

≤
[
dV (ζex)

dx

]
x=0

= ζV ′(ζ) =< ζf ′(ζ), v(f(ζ)) > .

Note that the proof of the following theorem is more detailed than the one done by Lempert:

Theorem 4.5.6 [Lempert, 81]

Let f : U → D be a stationary map. Suppose that the diameter of ∂D, SCD(p, v)(p ∈ ∂D, v ∈ Tp(∂D)),

and the distance from f(0) to ∂D are bounded below and above by positive numbers. Then, there exists

a uniform constant C11 > 0 such that

|p(ζ1)− p(ζ2)| ≤ C11|ζ1 − ζ2|1/2 (ζ1, ζ2 ∈ ∂U).

Proof. Let’s prove that it is enough to show that there exist uniform constants 0 < C12 < 1, C11 > 0

such that

ζ1, ζ2 ∈ ∂U, |ζ1 − ζ2| < C12 ⇒ |p(ζ1)− p(ζ2)| ≤ C11|ζ1 − ζ2|1/2.

First, fix 0 < k < C12. Suppose, in the worst case, that |ζ1 − ζ2| = 2 and partition the semi-circle whose
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endpoints are ζ1 and ζ2 into n points, ζ1,1 = ζ1, ζ1,2, ...ζ1,n = ζ2 such that|ζ1,i − ζ1,i+1| = k, if 1 ≤ i ≤ n− 2

|ζ1,i − ζ1,i+1| ≤ k, if i = n− 1
.

Hence, if ζ1, ζ2 ∈ ∂U satisfy |ζ1 − ζ2| ≥ C12, then partition the part of the unit circle whose endpoints

are ζ1 and ζ2 into l points, ζ1,1 = ζ1, ...ζ1,l = ζ2 such that|ζ1,i − ζ1,i+1| = k, if 1 ≤ i ≤ l − 2

|ζ1,i − ζ1,i+1| ≤ k, if i = l − 1
.

Note that l ≤ n and n depends only on C12. Now,

|p(ζ1)− p(ζ2)| = |p(ζ1,1)− p(ζ1,2) + p(ζ1,2)− p(ζ1,3) + ...+ p(ζ1,l−1)− p(ζ2)|

≤ C11|ζ1 − ζ1,2|1/2 + C11|ζ1,2 − ζ1,3|1/2 + ...+ C11|ζ1,l−1 − ζ2|1/2

≤ C11C
1/2
12 + C11C

1/2
12 + ...+ C11C

1/2
12

≤ lC11C
1/2
12

≤ nC11C
1/2
12

≤ nC11|ζ1 − ζ2|1/2

= C|ζ1 − ζ2|1/2

where C = nC11 is uniform. Hence we get,

|p(ζ1)− p(ζ2)| ≤ C|ζ1 − ζ2|1/2 (ζ1, ζ2 ∈ ∂U).

Now, let’s prove the theorem.

Let ζ1 ∈ ∂U . Suppose that v1(f(ζ1)) = 1.

Let ε =
1

2
. Since ∂U is compact and v1 is continuous on ∂U , then there exists δ > 0 such that

ζ, ζ ′ ∈ ∂U, |ζ − ζ ′| < δ ⇒ |v1(ζ1)− v1(ζ2)| ≤ 1

2
.

Note that δ does not depend on f . Let ζ ∈ ∂U . Since there exists a uniform constant C5 such that

|f(ζ)− f(ζ1)| ≤ C5|ζ − ζ1|1/2,

then,

|ζ − ζ1| <
δ

C5
⇒ |v1(f(ζ))− 1| < 1

2
.

Note that
δ

C5
is uniform. Therefore, one can find C12 ∈ (0, 1/4) such that

|ζ − ζ1| ≤ 2C12 ⇒ |v1(f(ζ))− 1| < 1

2
.

Next, construct a function φ : ∂U → C such that:

1. φ(ζ) = v1(f(ζ)) if |ζ − ζ1| ≤ 2C12;
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2. |φ(ζ)− 1| < 1

2
.

3. The 1/2-Holder norm of φ is equal to that of v ◦ f .

Let r : ∂U → R be the harmonic conjugate of Im(log(φ)), hence r+iIm(log(φ)) extends to a holomorphic

function on U . By a theorem of Privaloff, since log(φ) is 1/2-Holder continuous, then r is too. Moreover,

the 1/2-Holder norm of r is uniformly bounded. Hence, if q = r −Re(log(φ)), then

|q(ζ)− q(ζ ′)| ≤ C13|ζ − ζ ′|1/2 (ζ, ζ ′ ∈ ∂U)

and q + log(φ) = r + iIm(log(φ)) extends to a function h : U → C, 1/2-Holder continuous, holomorphic

on U .

Let g(ζ) = f̂1(ζ)e−h(ζ) and G(ζ) =
g(ζ)

ζ
. Note that g is holomorphic on U and G is holomorphic on

U − {0}. Moreover, g is uniformly bounded because p is uniformly bounded. Also, G is uniformly

bounded on B = U ∩ U1 where U1 = {ζ ∈ C : |ζ − ζ1| < 2C12} because |ζ| > 1− 2C12 > 0 on B.

If ζ ∈ ∂U ∩ U1, then

G(ζ) =
g(ζ)

ζ
=
f̂1(ζ)e−h(ζ)

ζ
= p(ζ)v1(f(ζ))e−r(ζ)e−iIm(log(φ(ζ))

= p(ζ)φ(ζ)e−r(ζ)
1

φ(ζ)
= p(ζ)e−r(ζ),

so G is real on ∂U ∩ U1, hence G extends holomorphically across ∂U ∩ U1 and the extended function is

uniformly bounded on U1. Hence, G is uniformly Lipschitz on compact subsets of U1. In particular,

|ζ2 − ζ1| ≤ C12 ⇒ |G(ζ1)−G(ζ2)| ≤ C14|ζ1 − ζ2|1/2.

Finally, since eh and v1 ◦ f are uniformly Holder-continuous, then we get the desired inequality for

p =
Geh

v1 ◦ f
.

Theorem 4.5.7 [Lempert, 81]

Let f : U → D be a stationary map. Suppose that the diameter of ∂D, SCD(p, v)(p ∈ ∂D, v ∈ Tp(∂D)),

and the distance from f(0) to ∂D are bounded below and above by positive numbers. Then, there exists

a uniform constant C15 > 0 such that

|f̂(ζ1)− f̂(ζ2)| ≤ C15|ζ1 − ζ2|1/2 (ζ1, ζ2 ∈ U).

Proof. If ζ1, ζ2 ∈ ∂U , then the desired inequality follows from the previous theorems of this section. By

a Theorem of Hardy and Littlewood, the inequality holds for any ζ1, ζ2 ∈ U .
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4.6 Discs attached to a small perturbation of the

boundary of the unit ball in C2

In this section, the spaces Ck+1−ε(∂U), ε > 0, k ∈ N are equipped with their usual norm:

‖h‖Ck+1−ε(∂U) =

k∑
l=0

‖h(l)‖∞ + sup
ζ 6=η∈∂U

‖h(k)(ζ)− h(k)(η)‖
|ζ − η|ε

,

where ‖h(l)‖∞ := max
∂U
‖h(l)‖.

We start our section by stating, without proof, the following theorem:

Theorem 4.6.1 (Birkhoff Factorization)

Consider a map G : ∂U → GLN (C). Define

B(ζ) = −G(ζ)−1G(ζ), ζ ∈ ∂U.

Then, there exist two continuous maps B+ : U → GLN (C) and B− : (C∪∞)−U → GLN (C) such that

B(ζ) = B+(ζ)Λ(ζ)B−(ζ)

where B+ and B− are holomorphic on U and C− U respectively, and

Λ(ζ) =


ζκ1 (0)

. . .

(0) ζκN


with κ1 ≥ ... ≥ κN .

The integers κ1, ..., κN are called the partial indices of B. We define the Maslov index of B to be

κ :=
N∑
j=1

κj , and show that it is given by a winding number:

Theorem 4.6.2 ([9])

Suppose that the determinant of B is of class C1 on ∂U . Then

κ =
1

2πi

∫
∂U

(detB)′(ζ)

detB(ζ)
dζ.

Proof. Extend the map B− antiholomorphically to U by defining

B̃−(ζ) = B−
(

1

ζ

)
, ∀ζ ∈ U.

Fix 0 < r < 1, and let

b+r (θ) = det(B+(reiθ)),

50



b−r (θ) = det(B̃−(reiθ)) = det(B̃−(re−iθ)),

βr(θ) = b+r (θ)rκeiκθb−r (θ).

Since βr(θ) 6= 0 on [0, 2π], then the curve γr = βr([0, 2π]) does not pass by 0. Hence,

2πiIndγr (0) =

∫
γr

dζ

ζ
=

∫ 2π

0

b+
′

r (θ)

b+r (θ)
dθ +

∫ 2π

0

iκdθ +

∫ 2π

0

b−
′

r (θ)

b−r (θ)
dθ.

But ∫ 2π

0

b+
′

r (θ)

b+r (θ)
dθ =

∫
r∂U

det(B+(ζ))′

det(B+(ζ))
dζ = 2πi(N0 −N∞)

where N0 and N∞ are the number of zeros and poles of det(B+(ζ)) in rU . Since B+ is invertible, we get

∫ 2π

0

b+
′

r (θ)

b+r (θ)
dθ = 0.

Similarly, ∫ 2π

0

b−
′

r (θ)

b−r (θ)
dθ = 0.

Therefore,

Indγr (0) = κ.

Now since the compact set {βr(θ) | r ∈ [1/2, 1], θ ∈ [0, 2π]} does not contain 0, it is then contained

in an open set Ω that does not contain 0. Moreover, the closed curves γ1/2 and γ1 are of class C1 and

homotopic in Ω by the application

(t, θ) 7→ β1/(2−t)(θ).

Since any two homotopic curves have the same index, we get:

Indγ1/2(0) = κ = Indγ1(0) =
1

2πi

∫ 2π

0

β′1(θ)

β1(θ)
dθ

where β1(θ) = det(B(eiθ)).

Our next goal is to give a more general definition of stationary maps. To do so, we need to provide

the following definitions:

Definition 4.6.3

Let Γ = {ρ = 0} be a smooth real hypersurface of Cn. Let p ∈ Γ. Define the conormal fiber at p, denoted

by N∗pΓ,to be the real line generated by

∇ρ(p) =

(
∂ρ

∂z1
(p), . . . ,

∂ρ

∂zn
(p)

)
.

That is,

N∗pΓ = spanR{∇ρ(p)} ⊂ Cn.

Definition 4.6.4

A holomorphic disc f is a holomorphic map f : U → Cn.
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Definition 4.6.5

A holomorphic disc f is said to be attached to a submanifold M ⊂ Cn if f extends to a continuous map

on U (which will be denoted by f) such that h(∂U) ⊂M .

Definition 4.6.6

Let Γ be a real hypersurface in Cn. We define the conormal fibration to be set

N Γ =
⋃
ζ∈∂U

N Γ(ζ),

where

N Γ(ζ) = {(z, ζw) | z ∈ Γ, w ∈ N∗zΓ− {0}}.

Definition 4.6.7

A holomorphic disc f attached to a a real hypersurface Γ is said to be stationary for Γ if there exists a

holomorphic lift f = (f, f̂) : U → C2n of f continuous up to the boundary of U such that f(ζ) ∈ N Γ(ζ)

for all ζ ∈ ∂U .

In case Γ = {ρ = 0}, one can show that Definition 4.6.7 is equivalent to the existence of a continuous

function p : ∂U → R+ such that ζp(ζ)∇ρ(f(ζ)) is continuous on ∂U and extends to a holomorphic

function on U .

We proceed now to compute the defining equations of conormal fibration N Γ, where Γ is the

boundary of the open unit ball in C2.

Example 4.6.8

Let Γ be the boundary of the unit ball in C2 defined by

ρ(z) = |z1|2 + |z2|2 − 1.

Let (z1, z2) ∈ Γ. WLOG, suppose z1 6= 0. Then ∇ρ(z) = (z1, z2). Hence, the conormal fiber at z is given

by

N∗zΓ = spanR {(z1, z2)} .

Let ζ ∈ ∂U . Then, (z, w) = (z1, z2, w1, w2) ∈ N Γ(ζ) ⊂ C4 if and only if ρ(z) = 0 and w = cζ(z1, z2) for

some c ∈ R. Therefore,

(z, w) ∈ N Γ⇔ ρ(z) = 0,
w1

ζz1
∈ R, w2 =

w1z2

z1
.

We get the following defining equations of N Γ:

52





ρ̃1(ζ)(z, w) = |z1|2 + |z2|2 − 1 = 0,

ρ̃2(ζ)(z, w) = i
w1

ζz1
− i ζw1

z1
= 0,

ρ̃3(ζ)(z, w) = w2 −
w1z2

z1
+ w2 −

w1z2

z1
= 0,

ρ̃4(ζ)(z, w) = i

(
w2 −

w1z2

z1

)
− i
(
w2 −

w1z2

z1

)
= 0.

(4.1)

In other words,

(z, w) ∈ N Γ⇔ ρ̃1(ζ)(z, w) = ρ̃2(ζ)(z, w) = ρ̃3(ζ)(z, w) = ρ̃4(ζ)(z, w) = 0.

We note that if f is stationary for Γ, then ρ̃(ζ)(f(ζ)) = 0.

Next, we want to construct stationary discs for small perturbations of Γ. To do so, we need the

following version of the implicit function theorem:

Theorem 4.6.9 ([2])

Let X,Y, Z be Banach spaces. Let U an open neighborhood of 0 in X×Y , and let F : U 7→ Z be a C1 map

such that F(0) = 0. Assume that dY F(0) : Y → Z is onto and that kerdY F(0) is complemented in Y ,

namely Y = kerdY F(0)⊕H where H is a closed subspace of Y . Identify X×Y with X×KerdY F(0, 0)×H
in the canonical way. Then there are neighborhoods V1 of 0 in X, V2 of 0 in KerdY F(0), V3 of 0 in H

and a C1 map g : V1 × V2 7→ V3 such that

(x1, x2, x3) ∈ U and F(x1, x2, x3) = 0

if and only if

(x1, x2) ∈ V1 × V2 and x3 = g(x1, x2).

In particular the set {x ∈ V1 × V2 × V3 | F(x) = 0} is a C1 submanifold of V1 × V2 × V3 and for each

x1 ∈ V1 the set {(x2, x3) ∈ V2 × V3 | F(x1, x2, x3) = 0} is a C1 submanifold of V2 × V3.

One can show that if kerdY F(0) has finite dimension N then kerdY F(0) is complemented in Y and

therefore {(x2, x3) ∈ V2 × V3 | F(x1, x2, x3) = 0} is a C1 submanifold of finite dimension N .

Now, in order to apply this theorem, we define first the following Banach spaces for 0 < ε < 1:

1. X = C2−ε(∂U, C3(C4,R4)),

2. Y = A2−ε(U,C4),

3. Z = C2−ε(∂U,R4),

where A2−ε(U,C4) is the set of lifts of class C2−ε up to the boundary of U .

Let U be a neighborhood of ρ̃ in X. Consider the lift f0 = (ζ, 0, 1, 0) and let V be a neighborhood
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of f0 in Y . Define the map

F : U × V → Z

by

F(r̃,f) = r̃(.)(f).

One can show that F is well defined and is of class C1 [3]. Moreover,

dY F(ρ̃,f0)(f) = 2<e
(
Gf
)

where G : ∂∆→ GL4(C) is given by

G(ζ) =

(
∂ρ̃

∂z1
(f0(ζ)),

∂ρ̃

∂z2
(f0(ζ)),

∂ρ̃

∂w1
(f0(ζ)),

∂ρ̃

∂w2
(f0(ζ)))

)
=


ζ 0 0 0

−iζ 0 −i 0

0 −ζ 0 1

0 −iζ 0 −i

 .

Our next step is to show that dY F(ρ̃,f0) is onto and compute the dimension of its kernel. However,

we need first the following lemma:

Lemma 4.6.10 ([1])

Let A : ∂U → GL2n(C) of class Cα (0 < α < 1), and denote by κ1 ≥ . . . ≥ κ2n the partial indices of the

map ζ 7→ A(ζ)A(ζ)−1. Then there exists a map Θ : Ū → GL2n(C) of class Cα, holomorphic on U , such

that

Θ(ζ)A(ζ)A(ζ)−1 =


ζκ1 (0)

. . .

(0) ζκ2n

Θ(ζ), ∀ζ ∈ ∂U.

Theorem 4.6.11

Let B(ζ) = −G(ζ)−1G(ζ). Then, the partial indices of B are nonnegative and the Maslov index of B is

equal to 4.

Proof. Tedious calculation leads to

B(ζ) =


−ζ2 0 0 0

0 0 0 ζ

2ζ 0 1 0

0 ζ 0 0

 .

Apply Lemma 4.6.10 to the matrix iG(ζ)−1 to get a continuous map Θ : Ū → GL4(C), holomorphic

on U such that

Θ(ζ)B(ζ) =


ζκ1 (0)

. . .

(0) ζκ4

Θ(ζ) ∀ζ ∈ ∂U.

54



Denote by l = (l1, l2, l3, l4) the last row of the matrix Θ. Then, for all ζ ∈ ∂U , we have:
l3(ζ) = ζκ4 l3(ζ)

−ζ2l1(ζ) + 2ζl3(ζ) = ζκ4 l1(ζ)

ζl4(ζ) = ζκ4 l2(ζ)

ζl2(ζ) = ζκ4 l4(ζ)

(4.2)

If l3 6≡ 0, then κ4 ≥ 0 by holomorphicity of l3. If l3 ≡ 0 and l1 6≡ 0, then κ4 ≥ 2. If l3 ≡ 0 and l1 ≡ 0,

then we must have l2 6≡ 0 by invertibility of Θ, and so κ4 ≥ 1.

Since κ1 ≥ ... ≥ κ4, then the partial indices of B are nonnegative. Therefore, the linear map

dY F(ρ̃,f0) is onto by a result of Globevnik [2,3]. Moreover, by Theorem 4.6.2,

κ =
1

2πi

∫
∂U

(detB)′(ζ)

detB(ζ)
dζ =

1

2πi

∫
∂U

4ζ3

ζ4
dζ = 4.

It follows again by a result of Globevnik that the kernel of dY F(ρ̃,f0) has dimension κ + dimC C4 =

4 + 4 = 8.

Applying Theorem 4.6.9, we get the following corollary:

Corollary 4.6.12

There are neighborhoods V1 of ρ̃ in X and V2 of f0 in Y such that for each r̃ ∈ V1, the set

{f ∈ V2 | F(r̃,f) = 0}

is a C1 submanifold of Y of real dimension 8.

Notation:

We write D ∼ B if D is a domain having a defining function r such that r̃ ∈ V1.

Theorem 4.6.13

Let D ⊂ C2 be a strongly convex domain such that D ∼ B. Let Z ∈ D, v ∈ C2 with v 6= 0(Z, z ∈ D,Z 6=
z). Then, there exists a unique extremal map f : U → D with respect to Z, v (or Z, z). Moreover, f(U)

is extremal with respect to any couple of points w1, w2 ∈ f(U)(w1 6= w2) and with respect to any point

w = f(ω) and direction f ′(ω) ∈ C2.

Proof. Let D ⊂ C2 be a strongly convex domain such that D ∼ B. Let r be the defining function of D,

so r̃ ∈ V1. Let Z ∈ D, v ∈ C2 with v 6= 0. Then, there exists a neighborhood U of 0 ∈ R8 such that for

each t ∈ U , there is a unique H(r̃, t) ∈
{
f = (f, f̂) : F(r̃,f) = 0, ||f − f0|| << 1

}
. It follows that the

map Ψ : U → R8 defined by

Ψ(t) = ((π ◦H(r̃, t))(0), (π ◦H(r̃, t))′(0))
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is a bijection of U onto D×C2, where π be the projection onto the first component. Hence, there exists

a unique t ∈ U such that (π ◦ H(r̃, t))(0) = Z and (π ◦ H(r̃, t))′(0) = v, with π ◦ H(r̃, t) a stationary

map, so extremal with respect to Z, v.

4.7 Applications

In this last section, we state and prove some applications.

We start our section by showing that there is a bijection between a strongly convex domain D such

that D ∼ B and B:

Theorem 4.7.1

Let D ⊂ C2 be a strongly convex domain such that D ∼ B. There is a bijection between D and B.

Proof. Fix Z ∈ D. Define ΦZ : D → B as follows:

Let z ∈ D. Let f : U → D be the extremal map with respect to Z and z, so

f(0) = Z, f(ξ) = z(ξ > 0), δD(Z, z) = dH(0, ξ).

Let

ΦZ(z) = ξ
f ′(0)

|f ′(0)|
.

Define Ψ : B → D by

v 7→ fZ,v(|v|)

where fZ,v is the unique extremal map with respect to Z and v.

1. Let v ∈ B.

Then, ΦZ(Ψ(v)) = ΦZ(fZ,v(|v|)) = |v|
f ′Z,v(0)

|f ′Z,v(0)|
= |v| λv

λ|v|
= v.

2. Let z ∈ D.

Then, Ψ(ΦZ(z)) = Ψ

(
ξ
f ′(0)

|f ′(0)|

)
= fZ,z∗(ξ) where f is the extremal map with respect to Z, z and

z∗ = ξ
f ′(0)

|f ′(0)|
.

By Theorem 4.3.5, f is the unique extremal map with respect to f(0) = Z and f ′(0). But fZ,z∗

is extremal with respect to Z and f ′(0), and hence Ψ(ΦZ(z)) = f(ξ) = z.

In fact D and B are homeomorphic. Moreover, one can show using advanced tools the following

stronger statement:

Theorem 4.7.2 ([7])

Let D ⊂ C2 be a strongly convex domain such that ∂D is of class C6 and D ∼ B. Let Z ∈ D. The map

ΦZ extends to a homeomorphism between D and B, and this extended map is a diffeomorphism of class

C2 between D − {Z} and B − {0}.
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Finally, we state and prove Fefferman Theorem for strongly convex domains D such that D ∼ B.

Theorem 4.7.3 [Fefferman, 74 ; Lempert, 81]

Let D1, D2 be domains in C2 such that ∂D1, ∂D2 are of class C6, D1 ∼ B and D2 ∼ B. Let F : D1 → D2

be a biholomorphic map. Then, F ∈ C2(D1)

Proof. WLOG, suppose that 0 ∈ D1, D2, F (0) = 0, F ′(0) = I2.

Let Φ
(i)
0 : Di → B be the maps defined in Theorem 4.7.1. We will show that Φ

(1)
0 = Φ

(2)
0 ◦ F .

Let z ∈ D1. Suppose f : U → D1 is extremal with respect to 0, z. Consider F ◦ f : U → D2, and note

that F ◦ f is extremal with respect to 0 and F (z). Hence

Φ
(2)
0 (F (z)) = ξ

(F ◦ f)′(0)

|(F ◦ f)′(0)|
= ξ

F ′(f(0))f ′(0)

|F ′(f(0))f ′(0)|
= ξ

f ′(0)

|f ′(0)|
= Φ

(1)
0 (z).

But by Theorem 4.7.2, Φ
(i)
0 extends to a diffeomorphism of class C2 between Di − {0} and B − {0}.

Therefore, F ∈ C2(D1).
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