


AMERICAN UNIVERSITY OF BEIRUT

APPROXIMATION OF NON-HOLOMORPHIC MAPS

by

NOUR AHMED KHOUDARI

A thesis
submitted in partial fulfillment of the requirements

for the degree of Master of Science
to the Department of Mathematics
of the Faculty of Arts and Sciences

at the American University of Beirut

Beirut, Lebanon
March 2018







ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my adviser: Professor Florian Bertrand for
steering me in the right direction. He has showed patience, motivation, enthusiasm, and immense
knowledge while supporting my current and future graduate studies.

I would like to extend my gratitude to all the faculty members of the department of mathematics at the
American University of Beirut, especially the chair of the department Professor W. Raji for organizing
all the seminars which enhanced our mathematical background and encouraging us to pursue our studies.
Moreover, I would like to thank the Professors with whom I had the pleasure of taking my graduate
courses: Professor K. Makdisi, Professor B. Shayya, Professor T. Tlas, Professor N. Nassif, Professor F.
Abi-Khuzam, and Professor N. Mascot. Each one of you left a special impact on an educational and
personal level.

I would also like to thank my graduate fellows for the good times we spent and the great memories we
made at AUB.

Finally, I must express my very profound gratitude to my parents and siblings for providing me with
unfailing support and continuous encouragement throughout all my years of study. Thank you.

v



AN ABSTRACT OF THE THESIS OF

Nour Ahmed Khoudari for Master of Science
Major: Mathematics

Title: Approximation of non-holomorphic maps

We will study the approximation of nonholomorphic maps from the unit disc to a complex manifold. This
starts by generalizations of some theorems from one complex variable to several complex variables like
the generalizations of Mittag-leffer and Weirstrass factorization theorem to the famous Cousin problems.
Through these generalizations we will face local to global problems, like the ∂ problem which can be
solved by some cohomology conditions. The work is based on a paper by Jean-Pierre Rosay which deals
with approximation of nonholomorphic maps and applications to the Poletsky theory of discs. The main
question to be answered is whether we can approximate a map with a small ∂ from the unit disc to
a complex manifold by a holomorphic map. Lempert gives an example that negatively answers this
question by taking any smooth map from the unit disc to any compact Riemann surface of genus greater
than or equal to two. However, by taking a condition on the map to be restricted we will prove that the
answer is positive.
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Chapter 1

Preliminaries on Banach Spaces

Throughout this paper ∆ will denote the open unit disc in the complex plane.

Banach spaces are used in the main theorem, so we start by introducing Banach spaces based on the

refernce [7] and we give some examples that will be mentioned in later sections in this paper.

Definition. A Banach space is a complete normed vector space, i.e a vector space with a metric that

allows the computation of vector length and distance between vectors and is complete in the sense that a

Cauchy sequence of vectors always converges to a well defined limit in that space.

Remark. One of the examples of Banach spaces is Lp spaces. Another Banach space that we will

encounter in this paper in the main theorem is

H∞(∆) = O(∆) ∩ L∞(∆)

the norm defined on this space is

‖f‖ = sup∆|f | = sup∂∆|f |

note that to show this is a Banach space it is enough to show it is closed since H∞(∆) ⊂ L∞(∆) and

L∞(∆) is a Banach space.

Take a sequence of holomorphic bounded functions fn that is Cauchy (Cauchy sequence converges in the

complete space L∞(∆)) , so fn −→ f but since fn holomorphic then f ∈ O(∆)

Definition. Let X,Y be two Banach spaces and F : X −→ Y and x ∈ X:

We say F is differentiable at x in the direction h if there exist a linear map DxF : X −→ Y such that

DxF (h) = limt→0
F (x+ th)− F (x)

t

or

F (x+ h) = F (x) +DxF (h) +O(|h|2)

Definition. Let X,Y be two Banach spaces and T : X −→ Y linear operator

the operator norm is defined as

‖T‖ = sup‖v‖X=1‖T (v)‖Y

and

‖T (v)‖Y ≤ ‖T‖‖v‖X
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Theorem 1. (Mean Value Theorem on Banach Spaces) Let X,Y be Banach spaces and F : X −→ Y

Let [x1, x2] denote the line segment joining two points x1, x2 in an open set U ⊂ X.

If F is differentiable in U then there exist x ∈[x1, x2] such that

‖F (x1)− F (x2)‖Y ≤ ‖DxF (h)‖Y ‖x1 − x2‖X

Proof. Define ϕ(t) = F [(1− t)x1 + tx2] and apply ordinary Mean Value Theorem on ϕ(0) and ϕ(1)

Definition. Let (X, d) be a metric space, then a self-map T : X −→ X is called a contraction mapping

on X if there exist q ∈ [0, 1) such that d(T (x), T (y)) ≤ qd(x, y) for all x, y ∈ X

Lemma 1. Let (X, d) be a metric space and f : X −→ X a contraction map

i.e : d(f(x), f(y)) ≤ cd(x, y) for all x, y ∈ X, 0 ≤ c < 1

then f is continuous.

Proof. Given ε > 0, choose δ = ε
c and a ∈ X

d(f(x), f(a)) ≤ cd(x, a) ≤ cδ = c
ε

c
= ε

so f is continuous at a arbitrary

therefore f is continuous on X

Now the following theorem will be used in the proof of the main theorem.

Theorem 2. (Banach Fixed point theorem) Let X be a Banach space and F : X −→ X a contraction

mapping on X, then there exist a unique x∗ ∈ X such that F (x∗) = x∗.

Proof. Let x, y ∈ X

d(x, y) ≤ d(x, f(x)) + d(f(x), f(y)) + d(f(y), y)

≤ d(x, f(x)) + qd(x, y) + d(f(y), y)

so d(x, y) ≤ d(f(x),x)+d(f(y),y)
1−q

Suppose both x and y are fixed points, then d(x, y) = 0, then x = y proving uniqueness of fixed point.

d(fn(x), fm(x)) ≤ d(f(fn(x)), fn(x)) + d(f(fm(x)), fm(x))

1− q

=
d(fn(f(x)), fn(x)) + d(fm(f(x)), fm(x))

1− q

≤ qnd(f(x), x) + qmd(f(x), x)

1− q

=
qn + qm

1− q
d(f(x), x)

so d(fn(x), fm(x)) −→m,n→∞ 0

therefore fn(x) is cauchy so it converges to a point x∗ ∈ X
fn(x) generates a sequence xn −→ x∗ such that:

x0 = x

x1 = f(x0) = f(x)

...

xn = fn(x) = f(xn−1)
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so limn→∞xn = limn→∞f
n(x) = limn→∞f(xn−1) = f(limn→∞xn−1) = f(x∗)

note that since f is a contraction then f is continuous.

therefore x∗ = f(x∗)

3



Chapter 2

One Complex Variable

2.1 Basic Definitions and Results

In this section we start by a review on some basic definitions and results in complex analysis in one

complex variable.

We begin with defining holomorphic functions in C.

Definition. Let Ω ⊂ C be an open set, and let f : C −→ C be a complex-valued function, if the limit

f ′(z0) = limz→z0
f(z)− f(z0)

z − z0

exists for all z0 ∈ Ω, then we say f is holomorphic on Ω.

Remark.

1. Throughout this paper we will denote by a domain an open connected subset of C.

2. We denote by O(Ω) the set of all functions that are holomorphic on Ω.

3. On an open subset Ω of the complex plane, a function that is holomorphic on all of Ω except for a

set of isolated points, which are poles of that function, is called a meromorphic function and the

field of meromorphic functions is denoted by M(Ω).

4. We denote by O(Ω)∩C(∂Ω) the set of all functions that are holomorphic in Ω and continuous in

Ω

Now we state a theorem named after Cauchy which gives an important result about line integrals for

holomorphic functions in the complex plane.

Theorem 3. (Cauchy theorem in one variable) Let Ω ⊆ C be a domain, K ⊂ Ω compact, and f ∈ O(Ω).

Then ∫
∂K

f(z)dz = 0.

A consequence of the above theorem is the Cauchy integral formula which shows that a holomorphic

function defined on a disk is completely determined by its values on the boundary of the disk.
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Theorem 4. (Cauchy integral formula in one variable) Let Ω be a disc in C. Suppose f : Ω −→ C and

f ∈ O(Ω) ∩ C(∂Ω). Then for z0 ∈ Ω

f(z0) =
1

2πi

∫
∂Ω

f(z)

z − z0
dz.

Remark. For a holomorphic function we have the following operators:

∂

∂z
=

1

2
(
∂

∂x
− i ∂

∂y
)

∂

∂z
=

1

2
(
∂

∂x
+ i

∂

∂y
)

We will now introduce the Pompeiu’s formula also known as the generalized Cauchy formula that will

be used later in 4.1. This formula is used in case f is not holomorphic. We refer to [3] as a citation for

the below:

Lemma 2. Let Ω ⊂ C be a bounded domain, ∂Ω piece-wise smooth, g(z) smooth function on Ω ∪ ∂Ω

then: ∫
∂Ω

g(z)dz = 2i

∫ ∫
Ω

∂g

∂z
dxdy

Proof.

dz = dx+ idy

so

∫
∂Ω

g(z)dz =

∫
∂Ω

g(z)dx+

∫
∂Ω

ig(z)dy

By Green’s theorem ∫
∂Ω

g(z)dz =

∫ ∫
Ω

(i
∂g

∂x
− ∂g

∂y
)dxdy = 2i

∫ ∫
Ω

∂g

∂z
dxdy

Theorem 5. (Generalized Cauchy Formula) Let Ω ⊂ C be a bounded domain, ∂Ω piece-wise smooth,

g(z) smooth function on Ω ∪ ∂Ω then:

g(w) =
1

2πi

∫
∂Ω

g(z)

z − w
dz − 1

π

∫ ∫
Ω

∂g

∂z
.

1

z − w
dxdy ∀w ∈ Ω

Proof. There exist ε > 0 such that {|z − w| ≤ ε} ⊂ Ω

Let Ωε = Ω− {|z − w| ≤ ε}
By the above lemma ∫

∂Ωε

g(z)

z − w
dz = 2i

∫ ∫
Ωε

∂

∂z
(

g

z − w
)dxdy

= 2i

∫ ∫
Ωε

∂g

∂z
.

1

z − w
+ g

∂

∂z
(

1

z − w
)dxdy

= 2i

∫ ∫
Ωε

∂g

∂z
.

1

z − w
dxdy

but ∫
∂Ωε

g(z)

z − w
dz =

∫
∂Ω

g(z)

z − w
dz −

∫
∂{|z−w|≤ε}

g(z)

z − w
dz =

∫
∂Ω

g(z)

z − w
dz − i

∫ 2π

0

g(w + εeit)dt

so 2i

∫ ∫
Ω

∂g

∂z
.

1

z − w
dxdy =

∫
∂Ω

g(z)

z − w
dz − i

∫ 2π

0

g(w + εeit)dt

Letting ε −→ 0 we have g(w + εeit) −→ g(w)

so 2i

∫ ∫
Ω

∂g

∂z
.

1

z − w
dxdy =

∫
∂Ω

g(z)

z − w
dz − 2πig(w)
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Now we define the notion of normal families and state without proof the theorem of Arzela-Ascoli [9]

which will be used in the proof of Lempert’s example in the main section.

Definition.

1. Let Ω ⊂ C be a domain. A family F of complex valued functions on Ω is called a normal family

if every sequence {fn} ∈ F contains a subsequence that converges uniformly on compact subsets

of Ω.

2. A family F of complex valued functions on Ω is said to be point-wise bounded if for each z ∈ Ω,

supf∈F |f(z)| <∞.

3. A family F of complex valued functions on Ω is equicontinuous if for every ε > 0 and z ∈ Ω, there

exist δ > 0 such that for all w ∈ Ω

|z − w| < δ =⇒ |f(z)− f(w)| < ε ∀f ∈ F

Theorem 6. (Arzela-Ascoli) Let Ω ⊂ C be a domain, and let F be a point-wise bounded, equicontinuous

family of complex valued functions on Ω. Then every sequence {fn} ∈ F has a subsequence that converges

uniformly on compact subsets of Ω.

The next Lemma will be used later in the proof of a proposition related to the second Cousin problem.

Lemma 3. Let Ω ⊂ RN be simply connected

f : Ω −→ C continuous and non-vanishing, then there is a continuous function g on Ω such that f = eg.

If f is Ck, then g is Ck also.

Proof. Let p0 ∈ Ω and let γ : [0, 1] −→ Ω be a loop i.e, γ(0) = γ(1) = p0 then f ◦ γ(t) has continuous

logarithm if f has a continuous logarithm.

Suppose f does not have a continuous logarithm (at 1 in particular), i.e Suppose limt→1− logf ◦ γ 6=
logf ◦ γ(0)

Let u(s, t) be the homotopy between γ and the point p0:

• u continuous on [0, 1]x[0, 1]

• u(0, t) = γ(t) for all t ∈ [0, 1]

• u(s, 0) = u(s, 1) = p0 for all s ∈ [0, 1]

• u(1, t) = p0 for all t ∈ [0, 1]

Consider ρ(s) = 1
2πi [limt→1− logf(u(s, t))− logf(u(s, 0))] continuous

but ρ(0) 6= 0 and ρ(1) = 0 ⇒ contradiction

the Ck result is by implicit differentiation of f = eg

2.2 Meromorphic functions with prescribed zeros/poles

In this section we give two important results for finding functions with prescribe zeros or poles and

principle parts. The first theorem is in the multiplicative form and is called after Weierstrass. The

second is in the additive form and is called after Mittag-Leffler.

6



Definition. An infinite product is an expression of the form
∏∞
j=1 pj where pj are complex numbers.

The infinite product converges if pj → 1 and
∑
log|pj | converges where the sum is over all pj 6= 0.

If the infinite product converges, then its value is zero if one of the pj is zero, otherwise
∏∞
j=1 pj =

exp(
∑∞
j=1 log|pj |).

Remark. If tj ≥ 0 then
∏

(1± tj) converges if and only if
∑
tj converges.

Lemma 4. Let z be a complex number and k a positive integer. Define the canonical factors by E0(z) =

1− z and Ek(z) = (1− z)ez+ z2

2 +...+ zk

k for k ≥ 1. If |z| ≤ 1
2 then |1− Ek(z)| ≤ c|z|k+1 for some c > 0.

Proof. since |z| ≤ 1
2 we can use the logarithm to write 1− z = elog(1−z)

so Ek(z) = elog(1−z)+z+
z2

2 +...+ zk

k = ew now using Taylor expansion:

w = log(1− z) + z +
z2

2
+ . . .+

zk

k

=

∞∑
n=1

(−1)
zn

n
+

k∑
n=1

zn

n

= −
∞∑

n=k+1

zn

n

Now |w| ≤ |z|k+1
∑∞
n=k+1

|z|n−k−1

n ≤ |z|k+1
∑∞
j=0 2−j ≤ 2|z|k+1 so

|1− Ek(z)| = |1− ew| = |1−
∞∑
n=0

wn

n!
|

= | −
∞∑
n=1

wn

n!
| = | − w − w2

2!
− . . . |

≤ |w|
∞∑
n=2

|w
n

n!
| ≤ |w|

∞∑
n=2

| 1
n!
|

= c
′
|w| ≤ c|z|k+1

Theorem 7. (Weierstrass Factorization Theorem) Given any sequence an of complex numbers with

|an| → ∞ as n→∞ there exist an entire function f that vanishes at all z = an and nowhere else.

Proof. Suppose that we are given a zero of order m at the origin, and that an 6= 0 for all n.

Define the Weierstrass product by

f(z) = zm
∞∏
n=1

En(
z

an
)

We claim that this function has the required properties: f is entire with a zero of order m at the origin,

zeros at each point of the given sequence, and f vanishes nowhere else.

Fix R > 0 and let z belong to the disc |z| < R

We prove that f has all the desired properties in the disc, and since R is arbitrary, this will prove the

theorem.

case1:an ≤ 2R

There are finitely many an’s that satisfy an ≤ 2R since |an| → ∞ and the finite product vanishes at all

z = an with |an| < R.

case2:an > 2R

7



| zan | ≤
1
2 so we can apply the above lemma:

|1− En( z
an

)| ≤ c| zan |
n+1 ≤ c

2n+1∑
c

2n+1 ≤ ∞ so
∑
|1 − En( z

an
)| converges uniformly on |z| < R then

∏
En( z

an
) is holomorphic on

|z| < R.

A direct result of this factorization theorem is proving that a meromorphic function is the quotient of

two holomorphic functions, i.e: M is a field of fractions of functions in the ring O.

Corollary 1. Let f be a meromorphic function on Ω then f = f1
f2

where f1, f2 are holomorphic on Ω.

Proof. f is meromorphic on Ω then f is holomorphic on Ω-{a1, a2, . . .} where {an} are the poles of f .

case1:f has finite number of poles a1, a2, . . . , an

f2 = (z − a1)m1(z − a2)m2 . . . (z − an)mn

f1 = ff2 = f(z − a1)m1(z − a2)m2 . . . (z − an)mn

f has a pole at a1, a2, . . . , an iff 1
f has zeros at a1, a2, . . . , an iff 1

f = (z − a1)m1 . . . (z − an)mng(z) where

g(z) is holomorphic and g(a1) 6= .. 6= g(an) 6= 0

so f(z − a1)m1 . . . (z − an)mn = 1
g(z) but 1

g(z) is holomorphic at a1, a2, . . . , an then f1 is holomorphic on

Ω and f2 has zeros at a1, a2, . . . , an

case2:f has an infininte number of poles an

By Weierstrass we can find an entire function f2 that vanishes at z = an only, so

f2 =

∞∏
n=1

En(
z

an
)

f1 = f.f2

f has poles at an iff 1
f has zeros at an, then 1

f =
∏∞
n=1En( z

an
)g(z)

g(z) holomorphic on Ω and g(an) 6= 0, f1 = 1
g(z) = f.f2 but 1

g(z) is holomorphic on an

Now we state without proof Runge’s theorem which is used in the proof of Mittag-Leffler.

Theorem 8. (Runge’s theorem) Let K ⊂ C be a compact set and P ⊂ C−K contains at least one point

from each connected component of C−K. If f(z) is holomorphic on an open set containing K, then for

any ε > 0, f can be approximated uniformly on K by rational function R with poles in P such that

maxz∈K |f(z)−R(z)| < ε

Theorem 9. (Mittag-Leffler Theorem) Suppose Ω is a domain, and A ⊂ Ω, A has no accumulation

point in Ω, and to each α ∈ A there are associated a positive integer m(α) and a rational function

Pα(z) =

m(α)∑
j=1

cj(z − α)−j

Then there exists a meromorphic function f in Ω, whose poles are α and whose principle parts at each

α is Pα

Proof. Let Km = {z ∈ Ω : |z| ≤ m} and the distance from z to ∂Ω is at least 1
m . Km is a sequence of

compact sets such that Ω ∈ ∪Km and Km ⊂ Km+1 and each component C−Km contains a component

of C− Ω.

Let A1 = A ∩K1 . . . Am = A ∩Km. Since Am ⊂ Km and A has no accumulation point in Ω and hence

8



in Km also, each Am is a finite set.

Put

Qm(z) =
∑
α∈Am

Pα(z)

Since each Am is finite, each Qm is rational. The poles of Qm lie in Km−Km−1 for m ≥ 2. In particular,

Qm is holomorphic in an open set containing Km−1. Now by Runge’s theorem there exist rational

functions Rm whose poles are all in C− Ω such that

|Rm(z)−Qm(z)| < 2−m

Let f(z) =
∑∞
m=1[Qm(z)−Rm(z)].

f converges uniformly on each compact subset of Ω by the Weierstrass M-test.

Fix N > 0,
∑∞
m=N+1[Qm(z)− Rm(z)] is holomorphic on KN , and

∑N
m=1[Qm(z)− Rm(z)] has poles at

the points α that are in KN , with prescribed principle parts, f(z) has the prescribed poles and principle

parts in Ω.

9



Chapter 3

Several Complex Variables

3.1 Basic Definitions and Theorems

In this section we will list some important definitions and results to be compared with the one variable

case.

Now we define holomorphic functions in several variables.

Definition. Let Ω ⊆ Cn be a domain, and let f : Ω −→ Cm be a map. We say f ∈ O(Ω)⇔ f1, . . . fm ∈
O(Ω) where fj : Ω −→ C⇔ f is smooth and for all j = 1, . . . ,m and for all k = 1, . . . , n

∂fj
∂zk

= 0

In one complex variable, we deal with a model domain called the unit disc

∆ = {z ∈ C; |z| < 1}

The importance of the unit disc becomes clear in the Riemann mapping theorem. However, in several

complex variables, let w ∈ Cn and r = (r1, . . . , rn) an n-tuple of positive real numbers and R > 0, there

are two different analogues of the unit disc:

• the ball: Bn(w,R) = {z ∈ Cn; |z − w| < R}

• the polydisc: Dn(w, r) = {z = (z1, . . . , zn) ∈ Cn; |zi − wi| < ri}

and it is well known, since Poincare that Bn and Dn are not biholomorphic to each other.

As we will see, the Cauchy formula can be generalized in several complex variables on polydiscs.

Theorem 10. (Cauchy Formula for Polydiscs) Let w ∈ Cn and r1, . . . , rn > 0. Suppose f continuous

on D
n
(w, r) = D(w1, r1)× . . .×D(wn, rn) and holomorphic on D(w1, r1)× . . . (wn, rn) then

f(z) =
1

2πin

∫
|ζn−wn|=rn

. . .

∫
|ζ1−w1|=r1

f(ζ1, . . . , ζn)

(ζ1 − z1) . . . (ζn − zn)
dζ1 . . . dζn ∀z ∈ Dn(w, r)

Proof. By repeated application of the one variable Cauchy integral formula, we obtain

f(z) =
1

2πi

∫
|ζn−wn|=rn

f(z1, z2, . . . , zn−1, ζn)

ζn − zn
dζn

...

=
1

2πin

∫
|ζn−wn|=rn

. . .

∫
|ζ1−w1|=r1

f(ζ1, . . . , ζn)

(ζ1 − z1) . . . (ζn − zn)
dζ1 . . . dζn

10



3.2 Manifolds

We know introduce a special type of topological spaces.

Definition. A differentiable manifold M of real dimension m and of class Ck is a topological space,

which we shall always assume Hausdorff and second countable, equipped with an atlas of class Ck with

values in Rm.

An atlas of class Ck is a collection of homeomorphisms τα : Uα −→ Vα, α ∈ I, where the pair (Uα, τα)

is called a coordinate chart, such that {Uα}α∈I is an open covering of M and Vα an open subset of Rm,

and such that for all α, β ∈ I the transition map

ταβ = τα ◦ τ−1
β : τβ(Uα ∩ Uβ) −→ τα(Uα ∩ Uβ)

is a Ck diffeomorphism from an open subset of Vβ onto an open subset of Vα

Figure 3.1: Charts and transition maps

Remark. A smooth manifold is a space that looks locally like an open set in Rn, and a complex manifold

is a manifold whose coordinate charts are open subsets of Cn and the transition functions between charts

are holomorphic functions.

We define now a special type of open sets in Cn called pseudoconvex sets.

Definition.

1. Let G be a domain, we say G has a defining function if there exist a function ρ : Cn −→ R of

class C2 so that G = {ρ < 0} and ∂G = {ρ = 0} and ∇ρ 6= 0.

2. The tangent space Tp,M at p on the n − dimensional manifold M is a vector space of all the

tangent vectors at p, i.e if w ∈ Tp,M then
∑n
i=1

∂
∂zi
|pwi = 0

3. Let G ⊂ Cn be a domain with C2 boundary, G has a defining function ρ of class C2,

Let p ∈ ∂G and w ∈ Tp,M we say G is pseudoconvex if for all such p and w we have

n∑
i,j=1

∂2ρ(p)

∂zi∂zj
wiwj ≥ 0
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Now we introduce partitions of unity that will be used in the proofs of the Cousin problems and conse-

quently contributes towards the proof of the main theorem.

Definition. A partition of unity on a smooth manifold M is a collection {ϕi} of smooth real valued

functions on M such that:

• ϕi ≥ 0 for all i

• for all x ∈ M there exist a neighborhood U such that U ∩ supp(ϕi) = φ for all but finitely many

ϕi

• for all x ∈M
∑
ϕi(x) = 1

Remark. We say that a partition of unity {ϕi} on M is subordinate to an open cover {Ui} if for all ϕi

there exist Ui ∈ {Ui} such that supp(ϕi) ⊂ Ui

Theorem 11. Let M be a manifold, then given any open cover {Uα} there exists a partition of unity

{φi} subordinate to {Uα}

Proof.

Since M is a manifold, it has a countable basis {Bα}.
Consider a local refinement {Bi} such that for each i there exists a coordinate ballB

′

i whereBi ⊂ B
′

i ⊂ Uα
for some α, and ϕi : B

′

i −→ Rn smooth and let ϕi(Bi) = Bri(0) and ϕi(B
′

i) = Br′i
(0) for ri < r

′

i.

Note that a coordinate ball is a compact subset of M such that there exists U open in M with B
′

i ⊂
U ⊂M and a homeomorphism ϕi : U −→ Rn such that ϕi(B

′

i) = {x : |x| ≤ 1} ⊂ Rn

Let Hi : Rn −→ R smooth function that is positive in Bri(0) and zero elsewhere.

Define fi : M −→ R by

fi =

{
Hi ◦ ϕi B

′

i

0 M −Bi

On B
′

i − Bi where the two definitions overlap, both lead to zero so fi is well defined and smooth and

supp fi = Bi.

Define f : M −→ R by f(x) =
∑
i fi(x)

Since each fi is nonnegative everywhere and positive on Bi, and for all x ∈ M , x ∈ Bi for some i, then

f(x) > 0 on M .

Define φi : M −→ R such that φi(x) = fi(x)
f(x) smooth, so

∑
i φi = 1.

We can reindex to match the index of the function with the index of the open set in the cover.

3.3 Differential Calculus on Complex Manifolds

We begin by introducing some complex differentials [2] that are important in the understanding of

Dolbeault Cohomology and Cousin problem.

Definition. Let Ω be n-dimensional complex manifold. Locally in a coordinate chart we can write

zj = xj + iyj for all 1 ≤ j ≤ n and

dzj = dxj + idyj dzj = dxj − idyj

We define a (p, q)− form to be a map defined on Ω with the following local form:

α =
∑

|I|=p,|J|=q

αIJdzI ∧ dzJ

12



where dzI = dzi1 ∧ . . . ∧ dzip and dzJ = dzj1 ∧ . . . ∧ dzjq
We denote by Λp,q(Ω) the space of all (p, q) − form on Ω. We also define the following operators on

these spaces:

∂ : Λp,q −→ Λp+1,q, ∂α =
∑

|I|=p,|J|=q

n∑
i=1

∂αIJ
∂zi

dzi ∧ dzI ∧ dzJ

∂ : Λp,q −→ Λp,q+1, ∂α =
∑

|I|=p,|J|=q

n∑
i=1

∂αIJ
∂zi

dzi ∧ dzI ∧ dzJ

The differential of a C1 function is defined as:

df =

n∑
j=1

∂f

∂xj
dxj +

∂f

∂yj
dyj =

n∑
j=1

∂f

∂zj
dzj +

∂f

∂zj
dzj

where
∂

∂zj
=

1

2
(
∂

∂xj
− i ∂

∂yj
)

∂

∂zj
=

1

2
(
∂

∂xj
+ i

∂

∂yj
)

Remark. Note that d = ∂ + ∂. Moreover, we have d2 = 0 (1.B.3 in [2]).

Since for a (p, q)− form
d2 = ∂2︸︷︷︸

(p+2,q)

+ ∂2︸︷︷︸
(p,q+2)

+ ∂∂ + ∂∂︸ ︷︷ ︸
(p+1,q+1)

= 0

Thus, each of the above must be zero, so ∂
2

= 0

In this paper we focus only on (0, q) − form and more specifically on the first Dolbeault cohomology

related to the space Λ0,1 = {α =
∑
i αidzi}

The above allows us to consider the Dolbeault complex chain as we will see in the next section.

3.4 Cohomology

To every complex manifold we can associate a system of cohomology groups called the Dolbeault Coho-

mology.

Consider Ω a complex manifold and define the following spaces on it:

C∞(Ω) = {f : Ω −→ C smooth}

Λ0,1(Ω) = {(0, 1)− forms on Ω}
...

Λ0,n(Ω) = {(0, n)− forms on Ω}

and for a (0, q)− form α =
∑
αIdzI define the ∂ operator to be:

∂α =
∑ ∂αI

∂zj
dzj ∧ dzI

so we can form the following long sequence:

C∞(Ω)
∂0−→ Λ0,1(Ω)

∂1−→ Λ0,2(Ω)
∂2−→ . . .

since ∂j ◦ ∂j−1 = 0 then Im(∂j−1) ⊂ Ker(∂j)

13



Definition. Define the Dolbeault Cohomology on Λ0,j(Ω) to be:

H0,j(Ω) =
Ker∂j

Im∂j−1

Take w1, w2 ∈ Ker∂j, to see if those two (0, j) − form are in the same equivalence class, we define a

relation ∼ on Λ0,j(Ω):

w1 ∼ w2 ⇔ w1 = w2 + ∂j−1(α) α ∈ Λ0,j−1(Ω)

⇔ w1 − w2 ∈ Im∂j−1

Our main purpose is to find conditions to solve the following:

Given w ∈ Λ0,1(Ω), find u ∈ C∞(Ω) such that w = ∂u (3.1)

Now we notice the following:

H0,1(Ω) =
Ker∂1

Im∂0

= 0⇔ Im∂0 = Ker∂1

⇔ ∀w ∈ Ker∂1, w ∈ Im∂0

⇔ ∀w ∈ Ker∂1,∃u ∈ C∞(Ω) st. w = ∂u

So the condition we are searching for to solve (3.1) is H0,1(Ω) = 0

14



Chapter 4

The Cousin Problems

In this section we deal with the two famous Cousin problems. We recall that we found in the Cohomology

section conditions on the Dolbeault cohomology of the domain on which the function is defined. This

condition will help us to determine on which domains the Cousin problems can be solved on.

4.1 Cauchy-Green Operator and the ∂ Problem

Given g, a big question is to solve the following linear non-homogeneous partial differential equation:

∂f

∂z
= g

The solution will be useful towards proving the main theorem, so in this section we introduce an operator

that helps solve this equation.

Definition. Let f : Ω −→ Cn and f ∈ C1 define the following operators:

• Cauchy transform operator:

Cf(z) =
1

2πi

∫
∂Ω

f(ζ)

ζ − z
dζ

If f is holomorphic then f(z) = Cf(z) ∀z ∈ Ω

• Cauchy-Green operator:

Tf(z) =
1

2πi

∫ ∫
Ω

f(ζ)

ζ − z
dζ ∧ dζ

then the General Cauchy formula (see page 5) translates as

f = Cf + T
∂f

∂z

Remark. Consider the following Banach spaces:

Lp(Ω) = {f : Ω −→ Cn;

∫ ∫
Ω

|f |p <∞} where ‖f‖p =
(∫ ∫

Ω

|f |p
) 1
p

W 1,p(Ω) = {f : Ω −→ Cn; f ∈ C1, f
′
∈ Lp} where ‖f‖1,p =

(∫ ∫
Ω

|f |p + |f
′
|p
) 1
p

By Vekua theorem [10], which we will not prove, the Cauchy-green operator above is a well defined

operator which maps continuous functions in Lp(Ω) to W 1,p(Ω),namely there exists c > 0 such that

‖Tf‖1,p ≤ c‖f‖p (4.1)
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Property. Notice that ∂
∂z ◦ T (u) = u for u = ∂f

∂z

Proof.

Apply ∂
∂z on f = Cf + T ∂f

∂z we get:

∂f

∂z
=

∂

∂z
Cf +

∂

∂z
T
∂f

∂z
=

∂

∂z
T
∂f

∂z

Remark. In general we have ∂ ◦ T = Id on Lp(Ω).

Now we will see the use of the Cauchy-green operator in approximation. The following proposition is

concerned with the approximation of non-holomorphic functions by holomorphic ones.

Proposition 1. Given ε > 0, there exist δ > 0 such that if h : ∆ −→ Cn smooth, such that ‖∂h∂z ‖p < δ

then there exist f : ∆ −→ Cn holomorphic such that ‖f − h‖∞ < ε

Proof.

Let ε > 0, c be the constant in equation 4.1 in case Ω = ∆

Take δ = ε
c and f = h− T ∂h

∂z

∂f

∂z
=
∂h

∂z
− ∂

∂z
T
∂h

∂z
=
∂h

∂z
− ∂h

∂z
= 0

⇒ f is holomorphic

‖f − h‖∞ = ‖T ∂h
∂z
‖∞ ≤ ‖T

∂h

∂z
‖1,p ≤ c.‖

∂h

∂z
‖p < c.δ = c.

ε

c
= ε

We state now an important result that helps in proving the Cousin problems. We refer to Corollary

(4.6.10) in [4].

Theorem 12. (Cauchy-green) If Ω ⊂ Cn is pseudoconvex and f is (p, q + 1)form on Ω with C∞

coefficients and satisfying ∂f = 0, then there is a (p, q) − form u on Ω with C∞ coefficients satisfying

∂u = f .

We end this section by stating a special case of the above theorem called Dolbeault-Grothendieck lemma

in [2].

If we define a closed form to be a differential form α such that dα = 0, and an exact form to be to

be a differential form α such that α = dβ for some differential form β. Since d2 = 0 we automatically

have that any exact form is closed. The Poincare lemma determines on which topological domains we

have that every closed form is exact.

We notice that this lemma is the analogue for ∂ of the Poincare lemma.

Lemma 5. (Dolbeault-Grothendieck lemma) Let v =
∑
|J|=q vJdzJ with q ≥ 1, be a (0, q)− form on a

polydisc Ω ⊂ Cn. Then there exist a smooth (0, q − 1)− form u on Ω such that ∂u = v.
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4.2 The First Cousin Problem

Problem. (First Cousin Problem) Let Ω ⊂ C be a domain. Let Ui be a an covering of Ω. Suppose that

for each Uj , Uk with non-empty intersection there is a holomorphic gjk : Uj ∩ Uk −→ C satisfying:

gjk = −gkj

gjk + gkl + glj = 0 Uj ∩ Uk ∩ Ul

Find holomorphic functions gj on Uj such that

gjk = gk − gj

on Uj ∩ Uk whenever this intersection is not empty.

An important tool in dealing with the Cousin problems is the Dolbeault-Grothendieck in 5

We show in the following proposition that the First Cousin problem can be solved on a pseudoconvex

domain.

Theorem 13. Let Ω ⊂ Cn be a pseudoconvex domain. Let Ui be an open covering of Ω. Suppose for

each Uj , Uk with non-empty intersection there is a holomorphic gjk : Uj ∩ Uk −→ C satisfying:

gjk = −gkj

gjk + gkl + glj = 0 Uj ∩ Uk ∩ Ul

then there exist holomorphic functions gj on Uj such that

gjk = gk − gj

on Uj ∩ Uk whenever this intersection is not empty.

Proof. Ω is a pseudoconvex domain, then it is manifold and all manifolds have a partition of unity

subordinate to any open covering.

Let ϕi be a partition of unity subordinate to Ui.

Define hi =
∑
k ϕkgki on Ui. Note that hi may not be holomorphic.

On Ui ∩ Uj : hj − hi =
∑
k ϕk(gkj − gki) =

∑
k ϕkgij = gij

but gij is holomorphic, then ∂gij = 0 =⇒ ∂hj = ∂hi on Ui ∩ Uj
Let f = ∂hj : f is well defined (agrees on intersection), ∂ closed, and C∞ on Ω (since hj is C∞).

By Cauchy-green theorem, there is a u ∈ C∞(Ω) such that ∂u = f

let gj = hj − u on Uj

then on Ui ∩ Uj :

gj − gi = (hj − u)− (hi − u)

= hj − hi = gij

and gj is holomorphic since on Uj :

∂gj = ∂hj − ∂u

= ∂hj − f

= ∂hj − ∂hj = 0
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We now give an alternative equivalent statement for the first Cousin problem.

Proposition 2. A solution of the above theorem implies a solution of the following formulation of the

first cousin problem:

Let Ui be an open covering of a pseudoconvex domain Ω ⊂ Cn. On each define fj meromorphic on

Uj such that fi − fj holomorphic on Ui ∩ Uj, then there exist f meromorphic on Ω such that f − fj
holomorphic on Uj for all j.

Proof.

Let gjk = fj − fk so gjk holomorphic on Ui ∩ Uj
and gjk = −gkj and gij + gjk + gki = fi − fj + fj − fk + fk − fi = 0

then gjk satisfy the first cousin data.

Let gj be the holomorphic solution of the above theorem then gjk = gk − gj but also gjk = fj − fk on

Uj ∩ Uk
then fj + gj = fk + gk

let f = fj + gj ∈M(Uj)

and f − fj = gj ∈ O(Uj)

Remark. A generalization of the Mittag-Leffler theorem into higher dimensions is the First Cousin

problem.

To elaborate this we show that the first Cousin problem in Cn is the equivalent of Mittag-Leffler in C, by

proving Mittag-Leffler using Cousin.

Proof. using the first cousin problem:

Denote by {wi} the set of given points in ΩC and pi the given polynomials.

Let Uj = Ω-{wk such that k 6= j}
then Uj is an open cover of Ω

Let fj =
∑m
n=1(z − wi)−n ∈M(Uj)

fj − fk ∈ O(Uj ∩ Uk) where Uj ∩ Uk = Ω− (wi) for all i.

then by the above proposition there exist f ∈M(Ω) such that f − fj ∈ O(Uj).

4.3 The First Cousin Problem with Bounds

In this section we will prove the first cousin problem with bounds on the unit disc, and this result will

be used in the proof of our main theorem:

Theorem 14. (The First Cousin Problem with Bounds) Let ∆ ⊂ ∪Ri=1Ui, with no triple intersection.

Given ε > 0, there exist δ > 0 such that if gjk : Uj ∩Uk ∩∆ −→ Cn and gjk ∈ O(Uj ∩Uk ∩∆) such that:

gjk = −gkj

gjk + gkl + glj = 0 Uj ∩ Uk ∩ Ul ∩∆

‖gkj‖∞ < δ

then there exist gj ∈ O(Uj ∩∆) such that gjk = gk − gj on Uj ∩ Uk ∩∆ and ‖gj‖∞ < ε
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Proof.

Denote by Vi = Ui ∩∆

Let δ = ε
L+C.M

Let {ϕi} be a partition of unity subordinate to {Vi}.
Define hj =

∑
i ϕigij on Vi.

On Vj ∩ Vk we have:

∂(hk − hj) = ∂(
∑
i ϕi(gik − gij)) = ∂(

∑
i ϕigjk) = ∂gjk = 0

‖hj‖∞ = ‖
∑
i

ϕigij‖∞ ≤
∑
i

‖ϕi‖∞‖gij‖∞

<
∑
i

‖ϕi‖∞δ let
∑
i

‖ϕi‖∞ = L

= L.δ

Let f = ∂hj : f is well defined (0, 1)− form, ∂ closed, and ∂hj =
∑

(∂ϕi)gij +
∑
ϕi(∂gij) =

∑
(∂ϕi)gij

so

‖f‖∞ ≤
R∑
j=1

‖∂hj‖∞

≤
∑
‖∂ϕi‖∞‖gij‖∞

<
∑
‖∂ϕi‖∞δ let

∑
‖∂ϕi‖∞ = M

= M.δ

By Cauchy-green theorem, there is a u ∈ C∞(∆) such that ∂u = f and ‖u‖∞ ≤ ‖u‖1,p ≤ c‖f‖p ≤ C‖f‖∞
then gj = hj − u solves the cousin problem and

‖gj‖∞ = ‖hj − u‖∞ ≤ ‖hj‖∞ + ‖u‖∞

≤ L.δ + C.M.δ

= (L+ C.M)δ

= ε

4.4 The Second Cousin Problem

In this section we deal with the multiplicative analogue of the First Cousin problem.

Problem. (Second Cousin Problem) Let Ω ⊂ C be a domain. Let {Ui} be a an covering of Ω. Suppose

that for each Uj , Uk with non-empty intersection there is a non-vanishing holomorphic gjk : Uj∩Uk −→ C
satisfying:

gjk.gkj = 1

gjk.gkl.glj = 1 Uj ∩ Uk ∩ Ul
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Find a non-vanishing holomorphic functions gj on Uj such that

gjk = gk/gj

on Uj ∩ Uk whenever this intersection is not empty.

We show in the following proposition that the Second Cousin problem can be solved on a pseudo-

convex domain.

Theorem 15. Let Ω ⊂ C be a domain. Let {Ui} be a an covering of Ω. Suppose that for each Uj , Uk

with non-empty intersection there is a non-vanishing holomorphic gjk : Uj ∩ Uk −→ C satisfying:

gjk.gkj = 1

gjk.gkl.glj = 1 Uj ∩ Uk ∩ Ul

If there exist a non-vanishing continuous function g
′

i : Ui −→ C such that gij = g
′

jg
′

i
−1 on Uj ∩ Ui then

there exist a non-vanishing holomorphic gi such that gij = gjg
−1
i on Uj ∩ Ui

Proof.

case 1: Ui is a polydisc ⇒ simply connected:

then by the above lemma we can write g
′

i = eh
′
i on Ui where h

′

i is continuous.

Let hij = h
′

j − h
′

i then gij = g
′

jg
′

i
−1 = eh

′
j .e−h

′
i = ehij Note that gij is non-vanishing holomorphic, then

hij is also holomorphic.

then {hij} satisfy the first cousin data for the cover {Ui}
then there exist holomorphic functions hi : Ui −→ C such that hij = hj − hi on Uj ∩ Ui.
then gi = ehi ∈ O(Ui) and non-vanishing

gjg
−1
i = ehj−hi = ehij = gij = eh

′
j−h

′
i = g

′

jg
′

i
−1

case 2: Ui are not all polydiscs:

Let {Ũ j} be a refinement of the open covering {Uj} such that Ũ j is a polydisc.

This refinement is done by a function ρ : N −→ N such that Ũ i ⊂ Uρ(i) for all i.

Define g̃ij : Ũ i ∩ Ũ j −→ C by

g̃ij = gρ(i)gρ(j)

then g̃ij is holomorphic satisfying the second cousin data for the covering {Ũ i}, by case 1, we can find

g̃i non-vanishing holomorphic on polydisc Ũ i such that

g̃ij = g̃j g̃
−1
i

Now on Ui ∩ Ũ j ∩ Ũk we have

g̃kg̃
−1
j gρ(k)igiρ(j) = g̃kg̃

−1
j gρ(k)ρ(j) = g̃kg̃

−1
j g̃kj = g̃kg̃

−1
j g̃j g̃

−1
k = 1

then on Ui ∩ Ũ j ∩ Ũk g̃kgρ(k)i = g̃jgρ(j)i

Let gi = g̃kgρ(k)i on Ui ∩ Ũk
then gi is well defined non-vanishing holomorphic on Ui

and gjg
−1
i = g̃kgρ(k)j g̃

−1
k g−1

ρ(k)i = gij

Another equivalent formulation for the Second Cousin problem is the following:
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Proposition 3. A solution of the above theorem implies a solution of the following formulation of the

second cousin problem:

Let {Ui} be an open covering of a pseudoconvex domain Ω ⊂ Cn. On each define fj meromorphic on Uj

such that fi.f
−1
j holomorphic on Ui ∩ Uj and non-vanishing, then there exist f meromorphic on Ω such

that f.f−1
j holomorphic and non-vanishing on Uj for all j.

Proof.

Let gjk = fj .f
−1
k so gjk holomorphic on Ui ∩ Uj

and gjk.gkj = 1 and gij .gjk.gki = 1

then gjk satisfy the second cousin data.

Let gj be the non-vanishing holomorphic solution of the above theorem then gjk = gk.g
−1
j but also

gjk = fj .f
−1
k on Uj ∩ Uk

then fj .gj = fk.gk on Uj ∩ Uk
let f = fj .gj ∈M(Uj)

and f.f−1
j = gj ∈ O(Uj)

Remark. A generalization of the Weierstrass theorem in higher dimensions is the second Cousin prob-

lem.

To elaborate this we show that the Second Cousin problem in Cn is the equivalent of Weierstrass in C,

by proving Weierstrass using Cousin.

Proof. using the second cousin problem:

Denote by {wi} the given set of points in the open set Ω ⊂ C
Let Uj = Ω− {wk such that k 6= j}
then {Uj} is an open cover of Ω

Let fj = (z − wi)−nj ∈M(Uj)

fi.f
−1
j ∈ O(Uj ∩ Ui) where Uj ∩ Uk = Ω− (wi) for all i.

then by the above proposition there exist f ∈M(Ω) such that f.f−1
j ∈ O(Uj) and non-vanishing.
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Chapter 5

Approximation of Non-holomorphic

Maps

In this section we will tackle the main theorem from the work of Rosay [6]. The main idea that Rosay

focused on in his paper ”Approximation of non-holomorphic maps and poletsky theory of discs” is ap-

proximation of non-holomorphic functions by holomorphic ones.

In his paper, Rosay tries to find specific conditions for a non-holomorphic function so that the following

works:

Let M be a complex manifold equipped with some metric, and let Ω be a relatively compact region

in M. For every ε > 0, does there exist δ > 0 such that if u is a map - with some conditions- from the

unit disc ∆ in C into Ω , with |∂| <δ , then there exist a holomorphic map h:∆ −→ Ω such that |h−u| <ε.

We start by the notations that will be used in the main theorem. As before, ∆ denotes the open unit disc

in C and ∆ the closed unit disc. M will denote a complex manifold with dimension n, Ω1, . . . ,ΩR some

open sets in M with K1, . . . ,KR compact subsets of Ω1, . . . ,ΩR respectively. Each Ωj is biholomorphic

to some open set in Cn. Denote, as before, by U1, . . . , UR open sets in C such that ∆ ⊂
⋃R
j=1 Uj .

We assume that all triple intersections are empty, i.e. Uj ∩ Uk ∩ Ul = φ if j, k, l are all distinct.

Definition. A map ϕ : ∆ −→M is called restricted if for every j ∈ {1, . . . , R}, ϕ(Uj ∩∆) ⊂ Kj.

We equipM with some metric to make sense of |∂ϕ| ≤ δ. We also define the distance between two maps

from ∆ into M by

d(f, g) = supζ∈∆dist(f(ζ), g(ζ))

Theorem 16. (Main Theorem)

For every ε > 0, there exits δ > 0 such that if u is a restricted map from ∆ into M satisfying |∂u| ≤ δ,

there exists a holomorphic map h from ∆ into M such that d(u, h) ≤ ε.
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Figure 5.1: An example of a covering with no triple intersections

Figure 5.2: Maps between the disc the manifold and Cn

5.1 Lempert’s Example

A general question that Rosay raised at the beginning of his paper is the following: Is every map from the

unit disc into a complex manifold, with a small ∂, close to a holomorphic map? The answer to Rosay’s

question is negative as it was shown by Lempert: it will not work for any non-holomorphic function in

general.

Proposition 4. Let M be a compact Riemann surface of genus≥ 2, equipped with some metric. There

exist ε > 0 such that for every δ > 0 there exists a smooth map ρ : ∆ −→M such that |∂ρ| <δ, but such

that for every holomorphic map λ : ∆ −→M sup z∈∆dist(ρ(z), λ(z)) ≥ ε.

Proof. Let P be a covering of M, by the unit disk. Let d denote the distance function on M, and let

d0 denote the Poincare distance on ∆.

We mention the following lifting fact: there exist ε > 0 such that if f and g are continuous maps from

∆ into M, and supz∈∆d(f(z), g(z)) ≤ ε, then f and g can be lifted to continuous maps f̃ and g̃ where

f = P ◦ f̃ and g = P ◦ g̃ and supz∈∆d0(f̃(z), g̃(z)) ≤ 1.

Let B be a function defined on a neighborhood of ∆ in C with the following properties:

1. |B(eiθ)| ≡ 1,
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Figure 5.3: Maps and lifts

2. |B| < 1 on ∆,

3. B is holomorphic on a neighborhood of the unit circle,

4. for every k ∈ N, zkB restricted to the unit circle does not extend holomorphically to the unit disk.

By conditions (1),(2), and (4), for every holomorphic map h : ∆ −→ ∆, supz∈∆d0(h(z), zkB(z)) =

+∞.

By a normal family argument, there exists αk, 0 < αk < 1, such that for every holomorphic map

h : ∆ −→ ∆, supz∈∆d0(h(z), (1− αk)zkB(z)) > 1.

Take ρk : ∆ −→M defined by

ρk = P ◦ ((1− αk)zkB(z))

Then |∂ρk| → 0 uniformly (by Arzela-Ascoli) on ∆ as k → +∞ due to condition (3).

Suppose for every holomorphic map λ : ∆ −→ M, supz∈∆d(ρk(z), λ(z)) < ε. Lift ρk to the map

(1 − αk)zkB(z) and lift λ to a map λ̃. Now by the lifting fact stated at the beginning, supz∈∆d0((1 −
αk)zkB(z), λ̃) ≤ 1 contradicting the choice of αk.

Thus,for every holomorphic map λ : ∆ −→M, supz∈∆d(ρk(z), λ(z)) > ε.

5.2 The Cartan Lemma with Bounds

We start by recalling the usual Cartan Lemma without proof:

Lemma 6. Let a1 < a2 < a3 < a4 and b1 < b2 and define rectangles in the complex plane by

K1 = {z1 = x1 + iy1 : a2 < x1 < a3, b1 < y1 < b2}

K
′

1 = {z1 = x1 + iy1 : a1 < x1 < a3, b1 < y1 < b2}

K”
1 = {z1 = x1 + iy1 : a2 < x1 < a4, b1 < y1 < b2}

24



so that K1 = K
′

1 ∩K”
1 . Let K2, . . . ,Kn be simply connected domains in C and let

K = K1 ×K2 × . . .×Kn

K
′

= K
′

1 ×K2 × . . .×Kn

K” = K”
1 ×K2 × . . .×Kn

so that again K = K
′ ∩K”. Suppose that F (z) is a complex holomorphic matrix-valued function on a

rectangle K ∈ Cn such that F (z) is an invertible matrix. Then there exist holomorphic functions F
′ ∈ K ′

and F ” ∈ K” such that

F (z) = F
′
(z)F ”(z) in K

An important result that is needed in the proof of the main theorem is the following Cartan Lemma

with bounds [1] which we state without proof:

Lemma 7. Let (Vj)
N
j=1 be a covering of the closed unit disc ∆ by open subsets of C. For each (j, k) ∈

{1, . . . , N}2 let gjk be a holomorphic (n× n) matrix bounded and with bounded inverse defined on (Vj ∩
Vk) ∩∆, with the conditions: gjj = 1, gjk = g−1

kj , gjkgklglj = 1. Then there exist bounded holomorphic

matrices gj with bounded inverses defined on Vj ∩ ∆ with j = 1, . . . , N such that gjk = g−1
k gj on

(Vj ∩ Vk) ∩ ∆, with bounds for the gj’s and their inverses depending only on the covering and the sup

norm of the gjk’s and of their inverses.

5.3 A non-linear Cousin problem

In this section we will prove a proposition that will be used to reduce the main theorem into a non-linear

cousin problem.

Let U1, . . . , UR be open sets in C that cover ∆ and with empty triple intersections. For 1 ≤ j < k ≤ R

we shall introduce subsets of Cn, ω
′

jk and ωjk such that ωjk ⊂ ω
′

jk. Let Fjk be a holomorphic immersion

from ω
′

jk into Cn. Note that we define Fjk and ωjk only for j < k.

Proposition 5. With the above notations: For every ε > 0 there exist δ > 0 such that if for every

j ∈ 1, . . . , R, uj is a holomorphic map from Uj ∩∆ into Cn such that for 1 ≤ j < k ≤ R, uj [(Uj ∩Uk)∩
∆] ⊂ ωjk and ‖uk − Fjk ◦ uj‖∞ ≤ δ, then there exist holomorphic maps v1, . . . , vR respectively from Uj

into Cn such that:

‖vj‖∞ ≤ ε

and

uk + vk = Fjk(uj + vj) on (Uj ∩ Uk) ∩∆

Proof.

case 1: Fjk being the identity map

We have {U1, . . . , UR} open cover of ∆ ⊂ C where ∆ is pseudoconvex and uj : Uj ∩ ∆ −→ Cn is

holomorphic with ‖uk − uj‖∞ < δ. Let ε > 0, then by the standard additive cousin problem there exist

a meromorphic function v on ∆ such that v − uj is holomorphic on Uj ∩∆.
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Let vj = v − uj |Uj and by the bounded first cousin problem 14 ‖vj‖∞ ≤ ε.
Now vj − vk = (v − uj)− (v − uk) = uk − uj
so uk + vk = uj + vj on (Uj ∩ Uk) ∩∆.

case 2: Fjk is different than the identity map

To prove uk + vk = Fjk(uj + vj) we can prove an equivalent equality.

We linearize using Taylor:

Fjk(uj(z) + t) = Fjk(uj(z)) + (F
′

jk(uj(z))t+O(|t|2)

for t ∈ Cn. Letting t = vj(z) we get:

Fjk(uj(z) + vj(z)) = Fjk(uj(z)) + [F
′

jk(uj(z)]vj(z)

but if uk + vk = Fjk(uj + vj) is true, then

[F
′

jk(uj(z)]vj(z)− vk(z) = −Fjk(uj(z)) + uk(z)

now using Cartan lemma with bounds we can write

F
′

jk(uj(z)) = g−1
k (z)gj(z)

for j < k where gj is holomorphic matrix on Uj . Now multiply by gk(z):

gk(z){(g−1
k (z)gj(z))vj(z)− vk(z) = −Fjk(uj(z)) + uk(z)}

so we should prove that

gj(z)vj(z)− gk(z)vk(z) = gk(z)[−Fjk(uj(z)) + uk(z)]

inorder to prove uk + vk = Fjk(uj + vj).

Let αjk = −Fjk(uj(z)) + uk(z)

so we have a family α = (αjk)1≤j<k≤R of n-tuples of bounded holomorphic functions αjk ∈ [H∞((Uj ∩
Uk) ∩∆)]n

by the first cousin problem there exist αj ∈ [H∞(Uj ∩∆)]n for all j such that for j < k on (Uj ∩Uk)∩∆

αjk = αj − αk

Define a new family β = (βjk)j<k where βjk = gkαjk

Similarly by the first cousin problem there exist βj such that on (Uj ∩ Uk) ∩∆

βjk = βj − βk

Now let vj = g−1
j βj

so gjvj − gkvk = gjg
−1
j βj − gkg−1

k βk = βj − βk = βjk = gkαjk

so gjvj − gkvk = gk[−Fjk(uj) + uk] therefore

uk + vk = Fjk(uj + vj)
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We still need to show that ‖vj‖∞ < ε:

Set the linear operator Sj(α) = vj = g−1
j βj so

[F
′

jk(uj)]Sj(α)− Sk(α) = αjk

Define the Banach space H = ⊕[H∞((Uj ∩ Uk) ∩∆)]n and the map Φ : H −→ H by

(Φ(α))jk = αjk − [Fjk(uj + Sj(α))− uk − Sk(α)]

Claim: Given ε > 0, if all ‖uk − Fjk ◦ uj‖∞ ≤ δ, Φ has a fixed point α with ‖S(α)‖ < ε:

On [H∞((Uj ∩ Uk) ∩∆)n] consider the norm:

‖f‖jk = maxmsup|fm|

for f = (f1, . . . , fn)

On H consider the norm:

‖α‖ = max‖αjk‖jk

for α = (αjk)

Note that Φ
′
(0) = 0:

(Φ(α))jk = αjk − Fjk(uj + Sj(α)) + uk + Sk(α)

(Φ(α+ th))jk = αjk + thjk − Fjk(uj + Sj(α) + tSj(h))

+ uk + Sk(α) + tSk(h)

(Φ(α+ th))jk − Φ(α))jk = t(hjk + Sk(h))

− Fjk(uj + Sj(α) + tSj(h)) + Fjk(uj + Sj(α))

Now since

hjk = F
′

jk(uj)Sj(h)− Sk(h) and F (x+ th) = F (x) + tF
′
(x)h+O(t2‖h‖2)

we get
(Φ(α+ th))jk − Φ(α))jk

t
= hjk + Sk(h)− F

′

jk(uj + Sj(α))Sj(h)

Φ
′
(0) = limt→0

Φ(0 + th)− Φ(0)

t

= hjk + Sk(h)− F
′

jk(uj + Sj(0))Sj(h)

= F
′

jk(uj)Sj(h)− Sk(h) + Sk(h)− F
′

jk(uj)Sj(h)

= 0

Denote by βρ the ball of radius ρ such that βρ ⊂ H
Let α ∈ βρ, choose ρ small enough such that ‖Φ(α)‖ ≤ ρ and thus Φ(βρ) ⊂ βρ.
By mean value theorem on Banach spaces and for α, β ∈ βρ

‖Φ(α)− Φ(β)‖ ≤ ‖Φ
′
(γ)‖‖(α− β)‖
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for some γ ∈ βρ By continuity of Φ
′

at 0:

Given 0 < c < 1, there exist r > 0 (in this case r = ρ) such that if ‖γ − 0‖ ≤ r then

‖Φ′(γ)− Φ
′
(0)‖ ≤ c

but Φ
′
(0) = 0 so if ‖γ‖ ≤ r then ‖Φ′(γ)‖ ≤ c

so ‖Φ(α)− Φ(β)‖ ≤ c‖α− β‖
so Φ is a contraction map.

By Banach fixed point theorem there exist α∗ ∈ βρ such that Φ(α∗) = α∗

Let δ = (1 + c) ε
‖S‖ and ρ ≤ ε

‖S‖

‖Φ(α∗)− Φ(0)‖ ≤ c‖α∗‖ but Φ(0) = (−Fjk(uj) + uk)jk

so ‖α∗ + (−Fjk(uj) + uk)jk‖ ≤ c‖α∗‖
‖Fjk(uj)− uk)jk‖ − ‖α∗‖ ≤ c‖α∗‖

‖Fjk(uj)− uk)jk‖ = (1 + c)‖α∗‖

≤ (1 + c)ρ

≤ (1 + c)
ε

‖S‖
= δ

Now using operator norm

|S(α)| ≤ ‖S‖‖α‖

≤ ‖S‖ρ

≤ ‖S‖ ε

‖S‖
= ε

so ‖vj‖ < ε for all j

5.4 Proof of The Main Theorem

In this section we prove the Main theorem

Proof.

Denote by Fj a biholomorphism from Ωj into an open set Fj(Ωj) ⊂ Cn for all j = 1, . . . , R.

Define uj = Fj◦u|Uj∩∆ from Uj∩∆ into Fj(Kj) ⊂ Cn such that on (Uj∩Uk)∩∆ we have uk = Fk◦F−1
j ◦uj

where the map Fk ◦ F−1
j is defined on a neighborhood of Fj(Kj ◦Kk).

We want to find a holomorphic map h : ∆ −→M. So we seekR holomorphic maps h1, . . . , hR respectively

from Uj ∩∆ into Cn for all j = 1, . . . , R satisfying hk = Fk ◦ F−1
j ◦ hj on (Uj ∩ Uk) ∩∆ and such that

d(hj , uj) is small as desired.

By the proposition 1 proved in 4.1, if uj : Uj∩∆ −→ Cn is such that |∂uj | ≤ δ, there exist wj : Uj∩∆ −→
Cn where wj = −T∂uj and such that hj = uj + wj is holomorphic, and |wj | ≤ cδ for some appropriate

c.

Due to non-linearity, we do not have

uk + wk = Fk ◦ F−1
j ◦ (uj + wj)

So we must perturb the holomorphic maps uj +wj in order to get holomorphic maps uj +wj +vj defined

on Uj ∩∆ such that uk + wk + vk = Fk ◦ F−1
j ◦ (uj + wj + vk) on (Uj ∩ Uk) ∩∆

Now we use the proposition in the previous section to complete the proof. We now match the corre-

sponding notations from the proposition to the ones in the main theorem.
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• uj = uj + wj

• w
′

jk = Fj(Ωj ∩ Ωk)

• wjk is the image under Fj of the intersection of given neighborhoods of Kj and Kk

• Fjk = Fk ◦ F−1
j
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