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Slope stability is a branch of geotechnical engineering that is affected significantly 

by uncertainty due to spatial variability of soil properties. Traditional deterministic slope 

stability design methodologies account for these uncertainties in an indirect manner by 

adopting a target factor of safety that is generally equal to 1.5. In the last two decades, 

results from published reliability-based design methods for slopes indicated that even for 

the case of a simple homogeneous slope, a factor of safety of 1.5 may not lead to designs 

that have a consistent level of risk. More importantly, published results show lack of 

knowledge about the reliability levels that are inherent in the design of multi-layered slopes 

which are very common in applications involving compacted embankments over soft clays 

or in natural multi-layered slopes. The main objectives of this thesis are twofold. The first 

objective is to quantify the reliability levels that are inherent in spatially random multi-

layered clayey slopes with different thicknesses and soil properties. The second objective is 

to generate simplified equations that would allow for conducting reliability-based design 

for a two-layered slope system using only the deterministic results and the input soil 

properties. To achieve these objectives, Monte Carlo simulations that involve clayey slopes 

with multiple layers are performed using the finite difference software FLAC. To allow for 

realistic modeling of the failure surface in the multi-layered system, FISH functions were 

used in FLAC to model the spatial variability using realistic anisotropic random fields that 

would ensure a realistic representation of the soil properties in the multi-layered slope and 

result in probabilities of failure that reflect the real level of risk. The models generated to 

predict the behavior when accounting for spatial variability in soil will lead to improved 

design practices for multi-layered clayey slopes. 
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CHAPTER I 

 INTRODUCTION 

 

A. Background 

Slope stability is a branch of geotechnical engineering that is affected by 

uncertainty due to spatial variability of soil properties. Traditional design approaches for 

slopes adopt a target global factor of safety (FS) of 1.5 to account for these uncertainties 

(Terzaghi and Peck, 1948). The deterministic analysis methods use the Limit Equilibrium 

(LEM) or Finite Element Method (FEM) to calculate the factor of safety. Given the 

different sources of uncertainty affecting slope stability problems, designs that are based on 

a fixed factor of safety of 1.5 may not lead to reliable designs. A probabilistic design 

approach can incorporate all sources of uncertainty and lead to quantification of the 

probability of failure of the slope and its level of risk (Griffiths et al. 2009).  

Previous published work has shown that the use of a single factor of safety cannot 

result in a consistent measure of reliability. Results of Li and Lumb (1987) showed that 

slopes that are designed with the same FS may have different levels of risk depending on 

the variability of the soil properties. Although soil properties are rarely homogeneous by 

nature and vary spatially due to different depositional environments and loading histories, 

most slope stability methods ignore the spatial variation of soil properties (Hong et al., 

2008). In the late 90’s, and as a result of limitations that are associated with the Limit 

Equilibrium Method (LEM) in relation to the relatively rigid choice of the shape and 

location of the failure surface, slope stability analyses that are based on the finite element 
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method started grasping more attention. Griffiths and Lane (1999) were the first to present 

the finite element method in analyzing slope stability problems which relaxed the choice of 

the failure surface with regards to shape and location.  

The finite element method was later combined with random field theory to 

produce the Random Finite Element Method (RFEM) after it was shown to have a clear 

advantage over the LEM, given its ability to model the spatial variation of soil properties to 

resemble natural deposition of soil layers. The RFEM was used to investigate the effect of 

spatial variability of soil parameters on the failure probabilities of single-layered slopes 

with different heights, angles, and soil properties. The RFEM was first applied by Fenton 

and Griffiths (2000) who established a dedicated Software for this purpose.  

For cases involving clayey slopes, results from RFEM analyses indicated that the 

most important parameters affecting the probability of failure of spatially random slopes 

are: (1) the assumed factor of safety, (2) the degree of uncertainty in the undrained shear 

strength of the clay, and (3) the vertical and horizontal scales of fluctuation that define the 

degree of correlation which exists in the random field defining the uncertainty in the 

undrained shear strength, and (4) the height of the slope which is directly correlated with 

the length of the failure surface around which the soil properties vary. Jha and Ching (2013) 

present relationships which link the mean factor of safety and the coefficient of variation in 

the factor of safety of an undrained slope to the deterministic factor of safety, the COV of 

the undrained shear strength, the ratio of the vertical scale of fluctuation to the length of the 

failure surface, and the ratio of the horizontal scale of fluctuation to the vertical scale of 

fluctuation. These relationships were obtained from results of random finite element 
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analyses and allow for estimating the probability of failure of any single-layered spatially 

variable clayey slope. 

The proposed research aims at extending the use of the RFEM to cases involving 

multi-layered slopes. Slopes that consist of several soil layers are more complex to analyze 

given the contrast in the soil properties between the multiple layers. Results from 

deterministic studies on multi-layered slopes point to this complexity. There is a need for 

modeling the spatial variability in the soil properties within the multi layers using random 

field theory to enhance the understanding of the reliability of multi-layered slopes in 

cohesive soils.   

This thesis is divided as follows: Chapter II is a literature review narrating the 

evolvement of slope stability analysis methods throughout the years. Chapter III includes a 

background about the software FLAC used. Chapter IV states the deterministic results of 

FLAC while Chapter V shows the results accounting for the spatial variability of soil 

properties. Chapter VI discusses the relationship between probabilistic and deterministic 

results as a function of the main factors that may affect the problem and Chapter VII 

presents models to simplify reliability based design for two-layered cohesive slopes. 

Finally, a design example is shown in Chapter VIII and Chapter IX summarizes the main 

findings of this research. 
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B. Objectives and Scope of Research 

In clayey slopes, the uncertainty is mostly associated with the undrained shear 

strength of the clay, which governs the probability of failure. Most of the aforementioned 

studies focused on homogeneous slope cases that could be modeled using a single-layer 

system, except for Abusharar and Han (2011) , Li et al. (2014), Qian et al. (2015), Hong et 

al. (2016), Li et al. (2016), Liu et al. (2017) and Jiang et al. (2017) who analyzed two- and 

three-layered systems. In the papers dealing with multi-layered systems, the focus was on 

new analysis methods or new probabilistic approaches rather than systematically studying 

the factors that affect the factor of safety and probability of failure of the multi-layered 

system.   

The main objective of this thesis is to study the effect of spatial variability on the 

probability of failure of two-layered slopes with clay layers of contrasting undrained 

strength. The focus will be on practical scenarios that involve a stiff clay layer on top of a 

soft clay layer. Examples of these cases include but are not limited to compacted clay 

embankments laying on a natural clay and natural cut slopes that are composed of multiple 

layers with different nature or consistency. The reliability of spatially random cohesive 

multi-layered slopes will be assessed for a wide variety of slope geometries and soil 

conditions and for different soil correlation structures. 

The proposed scope of work is composed of several steps for achieving the 

objectives. 
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1. Conduct a comprehensive literature review on methods of slope stability analysis 

for spatially variable single and multi-layered clayey slopes. 

2. Establish a methodology for conducting Monte Carlo Simulations for multi-layered 

spatially random slopes using FLAC 2D. 

3. Analyze the impact of the major input parameters on the uncertainty in the resulting 

factor of safety (FS) and the stability number (N). 

4. Design and implement a parametric study for quantifying the reliability of two-

layered undrained clayey slope. 
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CHAPTER II  

LITERATURE REVIEW 

This section depicts a literature review showing some of the previous work done 

on the role of spatial variability in slope stability analysis following limit equilibrium 

methods (LEM) in addition to subsequent finite element methods (FEM) using several 

software programs. The quest to incorporate uncertainty in soil properties in the design of 

slopes was initiated by Venmarcke (1977) who shed light for the first time on the 

significance of spatial correlation between soil properties and its effect on the probability of 

failure of slopes. This was followed by work published by Li and Lumb (1987), Malkawi et 

al. (2000), Cho (2007 and 2010), and Wang et al. (2011), who investigated spatial 

variability in slope stability using limit equilibrium methods. 

A. Studies Involving LEM with Random Field Theory 

Li and Lumb (1987) were among the early pioneers of utilizing a probabilistic 

approach in slope stability analysis using LEM with random field theory. The method used 

in performing LEM was the Morgenstern and Price Method. The authors used the First 

Order Second Moment (FOSM) method in calculating the reliability of slopes. Li and 

Lumb assumed an isotropic correlation in soil properties between elements. This 

assumption yielded an overestimation in failure probabilities. The results showed the 

sensitivity of the probability of failure to the scale of fluctuation, thus recommending better 

estimation of the scale of fluctuation. They concluded that the deterministic critical slip 

surface can serve as a good initial guess in the reliability analysis.  
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Low (2003) applied a procedure to implement Spencer’s method of slices in 

deterministic and probabilistic approaches using a spreadsheet-automated optimization to 

calculate the reliability index. The deterministic approach was then extended to the 

probabilistic approach with constrained dispersion of the original space of random 

variables. The results of the probabilities of failure and probability density functions 

computed indicated good and acceptable values with respect to the ones computed by the 

Monte Carlo Simulation method. 

Babu and Mukesh (2004) also modeled spatial variation in slope stability 

problems. They assumed a simple cohesive soil with definite geometry and soil properties. 

The authors took two cases into consideration, assuming isotropic and anisotropic 

correlations in soils properties. Their results showed that the mean factor of safety, as well 

as the coefficient of variation and correlation distance, can affect the calculated probability 

of failure. Also, the study concluded that assuming isotropic correlation distance results in 

an overestimated probability of failure, which raises the need to account for anisotropic 

correlation in slope stability analysis. 

Cho (2007) presented a numerical procedure for probabilistic slope stability 

analysis using Monte Carlo simulations while accounting for spatial variations in slope 

properties. The stability analyses were done on layered slopes to study the effect of 

uncertainty. The results showed some differences in the locations of the probabilistic and 

deterministic critical failure slope. Cho concluded that the correlation characteristics of soil 

properties significantly affect the probabilities of failure and convergence of the analysis 

and found the assumption of isotropic field to be conservative. Cho also deduced that there 
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exists a relation between the probability of failure and the scale of fluctuation. The 

probability of failure was found to decrease as the scale of fluctuation decreased. The 

results point to the importance of incorporating spatially variability of soil properties in soil 

stability analysis. 

Cho (2010) used the Karhunen-Loeve Expansion method in generating random 

fields and used Monte Carlo simulations to calculate the statistics of the factor of safety. 

The strength reduction method was used in calculating the factor of safety and adapted a 

search concept based on finding the surface with the minimum reliability index. No 

previous assumptions were made about the critical failure surface. The stability analysis, 

based on strength reduction method, was conducted using FLAC (How is this an LEM 

method?). Cho concluded in his paper that the proposed method considers various failure 

mechanisms efficiently.  

Wang et al. (2011) studied slope stability analysis using a probabilistic approach 

that is based on “subset simulation”, an advanced MCS method that could improve the 

efficiency and resolution of MCS at low failure probabilities. The analysis is implemented 

using a spreadsheet package in Microsoft Excel to investigate the effect of spatial 

variability. Wang et al. found that ignoring spatial variability by assuming perfect 

correlation results in overestimating the variance of the factor of safety, especially if the 

effective correlation length is smaller than the slope height. Wang et al. recommended the 

spatial variability of soil properties to be accounted for accurately to prevent errors in the 

probability of failure.  
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B. Studies Involving the Random Finite Element Methods 

All the studies presented above used the limit equilibrium method with the random 

field theory. This approach limits the influence of the random field to the failure line only, 

rendering the randomness one-dimensional. Therefore, the need for a new method that can 

overcome the limitation proposed by LEM became evident, and the random finite element 

method (RFEM) was established to serve this purpose. RFEM combines nonlinear finite 

element methods with random field generation. This approach soon became a powerful tool 

in slope stability analysis, fully capturing the soil spatial correlation and averaging. It also 

does not require any priori assumptions of the failure mechanism regarding shape or 

location. The pioneers of this approach were Griffiths and Fenton, followed by many 

researchers who focused on this method in slope stability analysis. 

Griffiths and Fenton (2000) conducted a probabilistic study on undrained clay 

slopes focusing on the effect of the scale of fluctuation and the coefficient of variation of 

soil properties. The results showed that as the coefficient of variation increases, the 

probability of failure increases. This study deduced that assuming perfect correlation 

resulted in over estimation in the probability of failure in case of low COV and high factor 

of safety (FS > 1.4) and underestimation in the probability of failure in opposite cases. 

Griffiths and Fenton (2004) compared simple and probabilistic approaches for a cohesive 

undrained slope. The results using RFEM showed that combining both concepts of spatial 

correlation with local averaging yielded smaller probabilities of failure. Griffiths and 

Fenton reassured that RFEM overcomes LEM limitations by the absence of any 

assumptions of the failure surface. 
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Griffiths et al. (2009) investigated the probability of failure of both 2D and 3D 

slopes using RFEM for deterministic and probabilistic analyses. The results showed that 2D 

analysis results were non-conservative to a certain limit and were affected by the boundary 

conditions of the out of plane direction and length to height ratios. Griffiths et al. (2010) 

made a comparison among different methods of the limit equilibrium method: Point 

Estimate Method, First Order Second Moment Method, and First Order Reliability Method 

with the random finite element method in slope analysis problem. It was concluded that 

RFEM is superior to LEM. 

The random finite element analysis was later extended to applications involving 

random finite difference analyses. The finite difference software FLAC was generally used 

in these studies as the main calculation platform. Srivastava (2012) conducted random 

finite difference analyses of slope stability using FLAC. Soil parameters were modeled 

using lognormally-distributed 2D random fields with their spatial correlation properties 

modeled using Cholesky decomposition. The study re-confirmed the finding that 

incorporating spatial variation using random fields is required to ensure realistic factors of 

safety compared with conventional limit equilibrium-based factor of safety. Results 

indicated that by increasing the coefficient of variation, there is a decrease in the reliability 

index. On the other hand, increasing the correlation distance results in a decrease in the 

reliability index.   

Jha and Ching (2013) studied the effect of slope geometry, mean, and coefficient 

of variation of the soil properties and the scale of fluctuation on the probabilities of failure 

of undrained slopes using RFEM. The scale of fluctuation in the vertical direction was back 
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calculated from a database of 34 real undrained slope cases. The horizontal scale of 

fluctuation was assumed due to the lack of data. An added value of this paper was 

providing relationships between the mean and coefficient of variation of the factor of 

safety, and between the mean and coefficient of variation of soil parameters and the slope 

geometry. The authors showed that the mean FS and its COV are always less than the 

deterministic FS and the COV describing the uncertainty in the undrained shear strength, 

respectively. In both cases, the reduction is most shown when the inherent COV is large. 

Li et al. (2015) integrated RFEM with advanced Monte Carlo Simulation (MCS) 

method called “Subset Simulation (SS)” to eliminate the exhaustive computational efforts, 

especially at small probabilities in reliability analysis of soil slopes. The results obtained 

from the SS-based RFEM were validated against those obtained using the direct MCS 

based RFEM. Results of the paper demonstrated the improved computational time for 

computing probability of failure and risk of the slope. In addition, the sensitivity study 

presented the significant effect of vertical spatial variability on the slope failure risk. 

Furthermore, Li et al. (2016) combined LEM with FEM in a new probabilistic approach to 

get advantage of fast computational time with more realistic results. The results showed 

significant reduction in the time and in the number of finite element analyses time at low 

probabilities of failure.  

On the other hand, Jiang et al. (2016) presented a new approach based on multiple 

response surface method and Subset simulation and using improved Cholesky 

decomposition techniques for calculating small probabilities of failure of spatially variable 

soil for multiple soil layered system. The paper concluded that the proposed methodology 
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can estimate small probabilities of failure with high computational efficiency for circular 

slip surfaces. However more research is required to investigate non-circular slip surfaces.  

In the most recent study, Griffiths et al. (2017) used the random finite element 

method to investigate spatial variability effects based on non-stationary random fields in 

undrained slopes. They assumed that the mean undrained shear strength varied linearly with 

depth with a COV that is depth independent. The results were divided based on low or high 

levels of COV and were found to be sensitive to what the authors call the “seeking out” 

phenomenon in which deeper failure mechanisms can be attracted to low strengths at 

greater depths generated by the random field.  

 

C. Studies of Multi-layered Slope Systems 

Abusharar and Han (2011) used the finite difference Software FLAC for 

estimating the factor of safety in embankments over stone-column-improved soft clay (Fig. 

1) based on individual and equivalent area models. The paper investigated the factors 

influencing the factor of safety including the properties of the embankment fill, cohesion of 

soft clay, friction angle of stone columns, and ground water. Results indicated higher 

factors of safety using equivalent area models in comparison to individual area models. 

Lower factors of safety were also observed when ground water is incorporated in the model 

since pore pressure reduced the frictional shear strength.  
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Li et al. (2014) proposed a multiple response-surface method for slope stability 

analysis accounting for spatial variability of soil parameters using extended Cholesky 

decomposition. The authors studied the effect of five different theoretical autocorrelation 

functions to model the spatial variability. A three-layered slope case was used to validate 

the effectiveness of the proposed method as shown in Figure 2. The results proved the 

proposed method suggested by the authors to be a practical tool for assessing slope stability 

analysis for spatially variable soils. The computational efficiency was enhanced especially 

for relatively low-probability analysis. The paper concluded that the difference between the 

probabilities of failure corresponding to each autocorrelation function is minimal.  

 

 

Figure 1. Stability of the embankment over stone columns considering water table 

(Abusharar and Han 2011) 
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Qian et al. (2015) proposed stability charts for cohesive soil slopes as a design 

tools. These charts were produced using finite element upper and lower bound limit 

analysis and compared with LEM methods. The slope material and subgrade foundation 

material of the slope were of two different undrained shear strengths. Results were 

presented and compared in the form of a dimensionless stability number (N2C) for a range 

of slope inclinations, depth factors, and strengths ratios. Differences in (N2C) between 

numerical limit methods and LEM methods reached 20%. It was concluded that the 

predetermined circular slip surface in LEM is not always suitable for evaluating two-

layered slopes. Fig. 3 is an example of chart results presented for a slope angle of 60 

degrees.  

Figure 2. Profile of a slope and typical realization of random fields with slope 

stability results (Li et al., 2014) 
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Hong et al. (2016) proposed a practical method that combines finite difference 

method with random field theory for probabilistic slope stability analysis based on Monte 

Carlo simulations. The factor of safety was estimated using the strength reduction method 

and a two-layer slope case study was presented and analyzed in FLAC. The cohesion in the 

upper soil layer was modeled with stationary and non-stationary random fields and the 

spatial correlation lengths were taken to be isotropic, while the cohesion of the lower rock 

layer is taken to be deterministic. Results showed the strong effect of the correlation 

characteristics of the random field on the convergence of the analysis and the probabilities 

of failure. Figs. 4 and 5 represent stationary and non-stationary random field model 

(changes with depth) of cohesion for the upper layer and an example of the factor of safety 

results, respectively. 

Figure 3. Chart Results for slope angle of 60º (Qian et al., 2015)  
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Li et al. (2016) also compared previous studies that were based on developments 

of response surface methods (RSM) using examples of four different slope stability analysis 

cases. The case analyzed involved (1) single-layered soil slope problem without spatial 

variability, single-layered soil slope problem considering spatial variability, multiple-

layered soil slope problem ignoring spatial variability, and multiple-layered soil slope 

problem considering spatial variability. Furthermore, the most common RSMs were 

Figure 4. Geometry of Slope Considered in Hong et al. (2016)  

Figure 5. Example of factor of Safety Results (Hong et al., 2016) 
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compared based on efficiency and accuracy for both cohesive slopes and c–ϕ slopes for the 

aforementioned slope stability cases. Fig. 6 displays a sample of comparison charts for 

multi-layered cohesive slope with no inherent spatial variability (ISV) and inherent spatial 

variability while Fig. 7 represents a realization of random field with ISV. The results 

demonstrated that the efficiency of the RSM depends on the system of soil slope engaged 

in, where each RSM is best employed for a certain slope stability case. Nevertheless, when 

including spatial variability for either single or multiple layered system, the multiple 

stochastic response surface method (MSRSM) proved to be the most efficient method. 

 

 

 

Zaskórski et al. (2017) presented a stochastic analysis of bearing capacity of a 

shallow foundation on a two-layered soils. Soil strength parameters (friction angle and 

Figure 6. Results obtained from three-layered cohesive slope for no ISV and ISV respectively 

(Li et al., 2016) 

Figure 7. Realization of random field with ISV (Li et al., 2016) 
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cohesion) were characterized as random fields and computations were modeled by RFEM. 

Cases analyzed presented variations of strong and weak layers configurations, layers 

thicknesses, correlations lengths and COV’s. Results indicated dependency of the stochastic 

bearing capacity of shallow foundations on the stochastic characterization of soil 

parameters in the two layers. 

Liu et al. (2017) addressed the effect of stratigraphic boundary uncertainty in 

spatially variable layered slopes on the system reliability. The spatial variability of soil 

strength properties is simulated by non-stationary random fields and the stochastic 

stratigraphic boundary is simulated by discrete random variable. Reliability analyses for 

calculating the failure probabilities were conducted using Monte Carlo simulations. Results 

showed the significance of the role of the stratigraphic boundary uncertainty in determining 

the slope failure mechanism, and that ignoring this uncertainty would lead to 

overestimating the slope failure risk except at small coefficients of variation of the friction 

angle, where the results are underestimated. Fig. 8 represents typical realizations of random 

fields for soil cohesion and friction angle, while Fig. 9 shows the influence of COV and 

vertical scale of fluctuation on the probability of failure. 
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Finally, Jiang et al. (2017) proposed an approach for risk assessment of slope 

failure taking into account the spatial variation in soil properties using LEM framework. 

Using the approach, the slope key failure modes can be identified and their involvement in 

the slope failure risk is quantified. A two-layered slope is used to illustrate the effectiveness 

of the approach. The upper shear strength ranged from 80 to 120 kpa, while the lower shear 

strength ranged from 120 to 160 kpa respectively with a constant COV of 0.3, and a range 

of correlation lengths for comparison purposes. Fig. 10 shows the effect of correlation 

lengths on the risk of slope failure for the proposed approach and limit-analysis based 

Figure 8. Random Field Realization for Soil properties (Liu et al., 2017) 

Figure 9. Effect of COV and SOF on probability of failure (Liu et al., 2017) 
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MCS. Results indicated that the proposed approach showed more efficiency than the RFEM 

by assessing slope failure at small probabilities of failure. In addition, it was concluded that 

failure surfaces with the highest probability of failure are not necessarily the ones 

contributing the most to the risk of slope failure. 

 

 

 

 

 

 

 

 

Figure 10. Effect of Correlation Length on risk of slope failure for the proposed approach 

and the limit analysis-based MCS (Jiang et al., 2017) 
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CHAPTER III  

FLAC SOFTWARE 

 

A. Background 

FLAC (Fast Lagrangian Analysis of Continua) is a two-dimensional, explicit finite 

difference numerical program for engineering mechanics computation that offers a wide 

range of capabilities to solve complex problems. Typical problem applications that can be 

treated in FLAC involve mechanical loading capacity and deformations as slope stability 

and foundations design, tunnel design, soil nailing, earthquake engineering, and 

liquefaction phenomena in foundations. FLAC was originally developed for geotechnical 

and mining engineers in 1986 and since then, it has become an essential analysis and design 

tool in a variety of civil, mining, and mechanical engineering fields. Since its first 

commercial release in February 1986, it has undergone two major upgrades and 

subsequently has been updated to the latest version of FLAC 8.0 on December 2015. FLAC 

is not a black box that will give the solution, since the behavior of the numerical system 

must be analyzed and interpreted. It is based on a “Lagrangian” calculation scheme that is 

well suited for modeling large distortions and material collapse. 

FLAC also contains a powerful built-in programming language, FISH (short for 

FLAC-ish), that enables the user to define new variables and functions and offers a unique 

capability to users who wish to tailor analyses to suit their specific needs. FISH functions 

were used extensively in this research to map specific soil property values to elements 

accordingly as will be detailed later. 
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Materials in FLAC are represented by elements within a grid that is adjusted by 

the user to fit the shape of the object to be modeled. Each element behaves according to a 

prescribed linear or non-linear stress/strain law in response to applied forces or boundary 

restraints. The software takes into account different soil properties as input parameters and 

the number of realizations in each case is determined from the FISH functions. For each 

realization, FLAC draws the slope geometry, assign mesh and properties, and then 

calculates the corresponding factor of safety. The yielded factors of safety of each 

realization are saved in a separate file. The details of this process are further elaborated in 

Section 3. 

B. Input Parameters 

The main input parameters in FLAC are defined and discussed below according to 

Itasca software guide. 

 

1. Slope Generation  

Slope shapes are created using slope tools where the rise with the slope degree, or 

the rise with the run are determined in addition to the depth and boundary lengths. In this 

thesis, three slope cases are considered: a slope of angle 30°, angle 45°, and angle 60°.  The 

slope height or rise (H) is taken as 5m or 10m and the total height (d) is taken according to 

d//H values which will be discussed later in Chapter IV. 

2. Finite Difference Grid/Mesh 

The finite difference grid is an assemblage of one or more finite difference zones 

across the physical region that is being analyzed. A grid is defined by specifying the 
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number of zones “i” desired in the horizontal (x) direction, and the number of zones “j” in 

the vertical (y) direction.  The grid is organized in a row-and-column fashion. Any zone in 

the grid is uniquely identified by a pair of i, j indices. The mesh sizes chosen are either 

medium (60 average total zones in the horizontal direction) or fine (100 average total zones 

in the horizontal direction). The mesh sizes were specified for each case according to a 

maximum element size of 1m in the vertical direction. Fig. 11 shows an example of fine 

meshed slope geometry. 

 

  

3. Finite Difference Zone/Element  

The finite difference zone is the smallest geometric domain within which the 

change in phenomenon can occur. FLAC uses Quadrilateral zones and internally it divides 

each zone into four triangular “subzones,” but the user is not normally aware of these. 

 

 

L=68 m 

Figure 11. Medium Mesh Slope Geometry 
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4.  Boundary Conditions  

A boundary condition is the constraint or controlled condition along a model. 

Automatic boundary conditions are assumed for all slope models of this thesis: roller 

boundary conditions are applied along the sides of the grid and a fixed (pinned) boundary 

condition is applied along the bottom.  

5. Number of Realizations 

Each realization in the Monte Carlo process involves the same characteristics of 

the soil properties; however the spatial distribution varies from one realization to another. A 

sufficient number of realizations is required for the results to be accurate. The number of 

realizations N to get a certain degree of precision (indicated by the % error) with 95% 

confidence is described below: 

𝑁 = (
196

% 𝐸𝑟𝑟𝑜𝑟 𝑖𝑛 𝜇𝑌
)

2
δ𝑌

2
         (Eq. 3.1) 

Where % Error in μY  is the desired precision in the estimate of mean of Y and δY is 

the estimate of coefficient of variation of Y. For instance, the number of realizations 

required in this study for a % Error in μY of 2.5 and a δY of 0.5 (highest possible value) is: 

𝑁 = (
196

2.5
)

2
∗ 0.52=1536 realizations≈1500 realizations 

In this study and for further accuracy, runs with 1500 realizations and 5000 

realizations were both applied and compared. The results show similar means of factors of 

safety, which confirms the choice of 1500 realizations as the standard number of N 

throughout the research. 
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6. Constitutive Model 

The model used in the analysis is the Mohr-Coulomb model, which is the 

conventional model used to represent shear failure in soils and rocks. The failure envelope 

for this model corresponds to a Mohr-Coulomb criterion (shear yield function) with tension 

cutoff (tensile yield function). 

7. Strength Reduction  

The analysis of slope stability problems in FLAC is performed by calculating the 

factors of safety. The factor of safety is calculated based on the “strength reduction 

method”. This method has been extensively used as a numerical method for evaluating 

factor of safety in geomechanics, and it has been commonly applied in the context of Mohr-

Coulomb failure criterion. Typically, numerical analyses programs utilizes three different 

computational methods in calculating the factor of safety for slopes: strength reduction 

method, limit analysis (upper and lower bound solutions), and limit equilibrium method 

(upper-bound solution). 

The “strength reduction technique” is the most popular method among the others 

applied, as it calculates the factor of safety by progressively reducing the shear strength of 

the material to bring the slope to a state of limiting equilibrium. 

In this case, the safety factor F is defined according to the Eq. 3.2 and 3.3: 

𝑐𝑡𝑟𝑖𝑎𝑙 =
1

𝐹𝑡𝑟𝑖𝑎𝑙 𝑐          (Eq. 3.2) 

∅𝑡𝑟𝑖𝑎𝑙 = arctan (
1

𝐹𝑡𝑟𝑖𝑎𝑙 𝑡𝑎𝑛∅)         (Eq. 3.3) 
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A series of simulations are made using trial values of the factor F to reduce the 

cohesion, c, and friction angle, φ, until slope failure occurs. One technique to find the 

strength values that correspond to the onset of failure is to monotonically reduce (or 

increase) the strengths in small increments until a failure state is found. Alternatively, in 

FLAC, a bracketing approach similar to that proposed by Dawson, Roth and Drescher 

(1999) is used. With this technique, stable and unstable bracketing states are found first, 

and then the bracket between the stable and unstable solution is progressively reduced until 

the difference between stable and unstable solutions falls below a specified tolerance. 

8. Spatial Correlation  

Generally, soil particles at adjacent locations share more similar parameters than 

those at remote locations (Li et al., 2015). This phenomenon is what is known as spatial 

variability of soil properties, and it is governed by the autocorrelation coefficient functions 

(ACF) between the parameters at any two points. Typically, theoretical ACFs are assumed 

in research due to the limited site investigation data. In other words, the correlation length 

corresponds to the distance between two points where soil parameters are assumed to be 

correlated. Therefore, spatial variation in soil properties is significantly represented in the 

correlation structure (Vanmarcke 1983). 

Assuming a large autocorrelation distance value means the soil property is highly 

correlated for a large spatial distance. However, assuming a small autocorrelation distance 

implies that the soil property has large fluctuations through the soil (Cho, 2010). For 

clarification, taking a correlation length of 10 m implies that any two soil points within a 

distance less than 10 m will have correlated soil properties. On the other hand, if the 
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distance between these two points was more than 10 m, they would have statistically 

independent soil properties.  

In the geotechnical field, the uncertainty in soil properties is typically modelled 

through the lognormal distribution (ex. undrained strength Su) and the spatial correlation 

length is commonly measured by the correlation distance for lnsu instead of su, since the 

logarithm of the lognormal distribution yields a Gaussian (normal) distribution. This spatial 

correlation length (θlnsu) defines the distance beyond which the spatially random values of 

Su will no longer be correlated in the normal field. Therefore, a large value of the 

correlation length (θlnsu) represents smooth variation across the field, while a small value 

represents a more abrupt field with little correlations. The spatial correlation length is 

calculated after performing statistical analyses of shear strength data. The magnitude of the 

spatial correlation length estimated in the Gaussian field doesn’t vary much from the 

correlation length in the real space of Su and therefore θln su and θsu are interchangeable 

given their inherited uncertainty (Griffiths and Fenton, 2004). 

In this paper, a Markovian correlation function that is exponentially decaying is 

used (Griffiths and Fenton 2004) as indicated in Eq. [3.4]:   

Sue ln/2  


            (Eq. 3.4)   

Where   is the correlation coefficient assumed between two points and τ is the 

absolute distance between two points in a random field. According to Griffiths and Fenton 

(2004), this correlation form will give a correlation value of 0.135 for a distance between 

two points equal to θlnSu.  For smaller distances, the correlation ρ increases and therefore, 
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this correlation function serves as a way to reflect the field observation that soil samples 

taken close together are more likely to have similar properties than samples taken far apart. 

As a result, fields with large correlation lengths (θlncu) are considered smooth, unlike fields 

with small correlation lengths which are considered to be erratic and unpredictable.  

In the geotechnical literature, it is often assumed that soil properties follow an 

isotropic correlation structure. In fact, correlations in the vertical direction exhibit shorter 

distances than those in the horizontal direction. In other words, soils tend to exhibit 

anisotropy where the spatial correlation lengths for cu vary for each orthogonal direction 

(horizontal and vertical), whereby the lateral or horizontal direction demonstrates longer 

correlation lengths with respect to the vertical direction, since the soil is layered 

horizontally. This means there will be slower variations in the soil properties across the 

horizontal direction. This anisotropy correlation is attributed to the process of geological 

soil formation and post depositional history that characterizes most natural soil deposits 

(Cho et al., 2010). According to Cherubini (1997) and Phoon and Kulhawy (1999), typical 

values for horizontal scales of fluctuation range from 30 to 60m and  from 1 to 3m for 

vertical scales of fluctuation.  

To account for anisotropy in the correlation structure, the anisotropic 

autocorrelation model shown in Eq. 3.5 is generally adopted (Jha and Ching 2013):  

𝜌(Δx, Δz) = exp (−
2|Δx|

δx
−

2|Δy|

δy  
)         (Eq. 3.5)   

Where 𝛿𝑥 and 𝛿𝑦 are the horizontal and vertical correlation lengths respectively, 

and Δx and Δy are the horizontal and vertical distances between two points in space. 
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Figs. 12 and 13 show two illustrations of slopes with isotropic random fields of Su 

with δ=40m and δ=2m in both directions respectively. The examples relates to a slope with 

an angle= 30º, H=5m, and d/H=3 with mean cu1=100 kPa, mean cu2=20 kPa and COV 

cu=0.5. Fig. 13 shows that the colors which represent different ranges of Su values change 

more frequently than Fig.12 where colors vary more smoothly. The rapid change observed 

reflects the small correlation length assigned to the slope. As the correlation length 

increases, the change in the shear strength values for the elements becomes less abrupt and 

slower. 

 

 

Figure 12. Realization with isotropic random field δ=40m 
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Fig. 14 shows the same slope but for anisotropic random field with x=40m and 

y=2m. In the isotopic structure with xy=2m (Fig. 14 (a)), the variation in the undrained 

shear strength values along both the vertical and horizontal directions was very rapid. On 

the contrary, Fig. 14 (b), which reflects the anisotropic case with x=40m and y=2m, shows 

smoother variation in the horizontal direction which is due to the higher correlation length 

assigned in this direction. 

 

 

Figure 13. Realization with isotropic random field δ=2m 

Figure 14. Realization with (a) isotropic random field x =y =2m and (b) 

anisotropic random field with x =40m and y =2m 
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9. Friction Angle 

The friction angle is taken to be zero since the research analyzes slopes made of 

undrained clayey soil. 

10. Elastic Modulus  

The elastic modulus defined as the ratio of stress over strain is taken to be 

deterministic with a value of 40,000 kPa. 

11. Poisson’s Ratio 

The Poisson ratio is taken as deterministic with a magnitude of 0.45.  

12. Mass Density 

The mass-density which is the unit weight of the soil is also taken as deterministic 

with a value of 20 KN/m3 or 2039 Kg/m3 for the upper layer and 18 KN/m3 or 1835 Kg/m3 

for the lower layer. 

C. Probabilistic Distribution of Shear Strength 

 

1. Lognormal Distribution 

In this study, the undrained shear strength is expected to be the source of 

uncertainty while all other soil parameters are taken to be deterministic. For all of the cases, 

Su is characterized statistically by a log–normal distribution which is defined by a mean, 

μSu, and a standard deviation σSu following the model described by Griffiths and Fenton 

(2004). The probability density function (PDF) of a log–normal distribution is described in 

Eq. 3.6 below: 
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The mean and the standard deviation of the lognormal distribution are related by 

the dimensionless coefficient of variation COV, and are expressed in Eq. 3.7:  

COV=
uS

Su
          (Eq. 3.7)   

The standard deviation and mean underlying normal distribution are defined in Eq 

3.8 and 3.9 as follows: 
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           (Eq. 3.9)   

Rearranging Eq. 3.8 and 3.9 above yields the mean and the standard deviation of 

the lognormal distribution as shown in Eq. 3.10 and 3.11: 

𝜇𝑆𝑢 = exp (𝜇𝑙𝑛 𝑆𝑢 +
1

2
𝜎𝑙𝑛𝑆𝑢

2 )                              (Eq. 3.10) 

 

𝜎𝑆𝑢 = 𝜇𝑆𝑢√exp(𝜎ln 𝑆𝑢
2 ) − 1                       (Eq. 3.11)   
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2. Local Averaging 

In the finite element analysis, simulating single Su values for each element is more 

important than simulating the random field Su (x,y) within each element (Jha and Ching, 

2013). According to Griffiths and Fenton, this can be corrected by the use of local 

averaging and consideration of the sample size (Griffiths and Fenton, 2004).  

For the case where the point distribution is a normal distribution, local averaging 

has shown to affect the variance of the property by reducing the variance but not the mean. 

However, for lognormal cases, it has shown to reduce both the standard deviation and the 

mean. This behavior was explained by Griffiths and Fenton due to the dependence of the 

mean of the lognormal distribution on the mean and variance of its normal distribution.  

 The variance reduction factor due to local averaging γ, is defined as 

(Griffiths and Fenton, 2004): 

𝛾 = (𝜎𝑙𝑛𝑆𝑢𝐴 𝜎𝑙𝑛𝑆𝑢⁄ )2                    (Eq. 3.12)   

Where lnSuA is the standard deviation of the average soil property.  

Spatial averaging is affected by the scale of fluctuation and the length of the 

averaging interval, which is the approximate length of the failure surface. Vanmarcke 

(1983) discussed the concept of variance reduction as the result of spatial averaging of soil 

properties. The effect of the variance reduction process decreases the variance of the 

random field used to model the spatial variability in the soil property and therefore reduces 

the uncertainty in this soil property. This process is known to occur when the length of the 

failure surface (averaging length) is larger than the correlation length which defines the 
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scale of fluctuation of the soil property. Results show that the impact of variance reduction 

becomes more significant when the correlation length approach the element size (Farah et 

al. 2016). The approximate variance reduction function defined according to Vanmarcke 

(1983) is shown below: 

v a

2 L for1                     (Eq. 3.13)  

v

a

v

L



 a

2 L for                     (Eq. 3.14) 

where: δv= vertical scale of fluctuation and La= averaging interval. 

In this study, since the size of each element is approximately 1m in both 

directions, the variance reduction effect will be more significant for δ =1m. 

3. Generating & Mapping of Random Fields  

To generate the random field of undrained shear strength cu, R software and 

Microsoft Excel were used in this study. The main input parameters for the code in R are 

the statistical parameters of the shear strength distribution for the two layers (mean and 

COV), the correlation length in the horizontal and vertical direction, the coordinates of the 

elements taken from the slope geometry drawn in FLAC, the depth of each layer and the 

number of realizations. The procedure for generating and mapping the undrained shear 

strength random field into their respective elements is described in the following steps: 

 (1) Slope geometry is drawn in FLAC with the proper meshing ensuring all 

conditions are met (boundary and element size). 



35 

 

(2) The deterministic factor of safety is calculated and the length of the failure 

surface is measured in AutoCAD.  

(3) The coordinates of the elements making up the slope geometry are exported 

from FLAC into notepad files through the FISH function below: 

def _expo 
loop m(1,88) 
m=m+1 
loop n(1,44) 
n=n+1 
aa=x(m,n) 
bb=y(m,n) 
cc= out(string(aa) +' ' + string(bb)) 
end_loop 
end_loop 
end 
_expo 

 

(4) The coordinates are transferred into Excel worksheets and called in R as an 

input parameter.  

(5) After filling all input parameters required by R, the random field of the 

undrained shear strength is generated for the number of realizations required in the form of 

two Excel worksheets for each of the two layers, as detailed in the following steps: 

a) Define the input parameters for the two layers and call the Excel file of the 

slope elements coordinates. 

iy=4          #Y-coordinate of the interface between layers 
clx1=40         #Horizontal correlation length of layer 1 (top) 
cly1=4           #Vertical correlation length of layer 1 (top) 
clx2=40         #Horizontal correlation length of layer 2 (bottom) 
cly2=4        #Vertical correlation length of layer 2 (bottom) 
nr=1500           #Number of realizations/simulations 
msu1=100          #Mean of undrained shear strength of layer 1 
covsu1=0.4       #cov of undrained shear strength of layer 1 
msu2=50      #Mean of undrained shear strength of layer 2 
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covsu2=0.4       #cov of undrained shear strength of layer 2 
da=(read.csv("F:/FLACfile/PART Two/Uncertain Cases-Angle 45/Case 262/geometry1.csv")) 
da=data.frame(N=seq(1,length(da[,1]),1),X=da[,1],Y=da[,2]) 
 

 b) For each layer, calculate the distance between any two elements by 

constructing dx and dy matrices. 

#Layer 1(top) 
da1=da[da$Y>=iy,] 
#constructing dx and dy matrices for layer 1 
dx1=matrix(rep(NA,length(da1$X)^2),length(da1$X),length(da1$X)) 
dy1=matrix(rep(NA,length(da1$X)^2),length(da1$X),length(da1$X)) 
for (i in 1:length(da1$X)){ 
  for (j in 1:length(da1$X)){ 
    dx1[i,j]=abs(da1$X[i]-da1$X[j]) 
    dy1[i,j]=abs(da1$Y[i]-da1$Y[j]) 
  } 
} 

c) Construct the correlation matrix based on the markovian function in Eq. 3.4. 

#Constructing Correlation matrix for layer 1 
cormat1=exp(-(2*dx1/clx1+2*dy1/cly1)) 
isSymmetric(cormat1) 
 

d) Generate correlated random variables that belong to the standard normal 

distribution (with mean=0 and std=1) and then transfer them into a uniform distribution. 

AB1 <- rmvnorm(mean=rep(0,length(da1$X)),sig=cormat1,n=nr) #Our gaussian variables 
U1 <- pnorm(AB1) #Now U is uniform - check using hist(U[,1]) or hist(U[,2]) 
 

e) Define the mean and standard deviation of the lognormal distribution to be 

generated and build an empty matrix with the proper dimensions to transfer the uniform 

distribution into a lognormal distribution. 

sdsulog=sqrt(log(1+covsu1^2)) 
msulog=log(msu1)-sdsulog^2/2 
UU1=matrix(rep(NA,I(length(da1$X)*nr)),nr,length(da1$X)) 
for (i in 1:length(da1$X)){ 
  UU1[,i]=qtrunc(U1[,i],spec="lnorm",a=0,b=Inf,msulog,sdsulog) 
} 
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f) Transfer the generated random variables into an Excel worksheet, and calculate 

the exact mean and standard deviation for the 1500 realizations generated. 

write.csv(t(UU1),"F:/FLACfile/PART Two/Uncertain Cases-Angle 45/Case 262/realization1.csv") 
 
rmax=rep(NA,nr) 
rmin=rep(NA,nr) 
rmean=rep(NA,nr) 
for (i in 1:nr){ 
  rmax[i]=max(UU1[i,]) 
  rmin[i]=min(UU1[i,]) 
  rmean[i]=mean(UU1[i,]) 
} 
max(rmax) 
min(rmin) 
mean(rmean) 
 

 (6) Use Visual Basic in Excel to distribute the cu values of each realization into 

separate notepad files. 

Sub Do_itt() 
    Dim fs As Object 
    Set fs = CreateObject("Scripting.FileSystemObject") 
    For c = 1 To 16000 
        fn = Cells(1, c) 
        Set a = fs.CreateTextFile("F:\FLACfile\PART Two\Uncertain Cases-Angle 60\Case 208\" & fn & ".txt", 
True) 
        r = 2 
        While Not IsEmpty(Cells(r, c)) 
            a.writeline Cells(r, c) 
            r = r + 1 
        Wend 
    Next c 
End Sub 

 

(7) A master function is called in FLAC, where it calls another FISH function 

inside it. These functions are repeated according to the number of realizations required. The 

functions are responsible for drawing the slope geometry, mapping the shear strength value 

for the corresponding realization to each element, running the model to calculate the factor 

of safety, and storing it in a common notepad file.  
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new  
call 01_Lib.dat 
set cohesion_filename= 'V1.txt' 
set cohesion_filenamee= 'J1.txt' 
call 02_run.dat 
call factorof.dat 
 

For more details, the full codes and FISH functions used in the process described 

above are shown in Appendix A. 
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CHAPTER IV  

DETERMINISTIC ANALYSIS OF MULTI-LAYERED CLAYEY 

SLOPES 

A. Slope Parameters 

In this chapter, results from FLAC stability analyses that were conducted on 

several slope geometries and soil parameters for two-layered slope models will be 

presented and analyzed. The cases that will be considered involve a stiff upper layer resting 

on a softer lower layer, which is in turn assumed to be underlain by bedrock (Figure 15). 

The slope is assumed to be located entirely in the upper stiff layer. The undrained shear 

strength of the upper layer (cu1) was assumed to be of a constant value of 100 Kpa, and the 

undrained shear strength of the lower layer (cu2)  was varied depending on three ratios for 

cu1/cu2=1.5, 3, and 5. To simulate slope cases that reflect practical scenarios in the field, the 

slope height (H) was chosen to be either 5m or 10m with the base case being considered as 

H= 5m. The thickness of the second layer was varied depending on four d/H ratios (1.5, 2, 

3, and 5), where H represents the thickness of the first layer (slope height) and d represents 

the cumulative thickness of both layers (Figure 15).  

  
Figure 15. Slope geometry in FLAC 
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The slope system presented in Figure 15 models practical cases of two-layered 

clayey slopes, whereby the slope is usually comprised of compacted stiff clay or a natural 

cut in a desiccated crust that is over consolidated due to seasonal geologic fluctuations in 

the level of the water table. According to Mwasha (2011), the thickness of desiccated crusts 

generally varies between 1 and 3 meters, and may go up to maximum depths of 6 to 7m. 

These considerations dictated the choice of a slope thickness of H = 5m for the base case 

analyzed in this study. To account for the effect of the slope inclination, slope cases with 

three slope angles (β=30º, 45º, and 60º) were analyzed. As a result, the major parameters 

that were varied in the deterministic analysis are: (1) cu1/cu2, (2) d/H, and (3) β. For the 

probabilistic analysis, additional parameters are considered as will be discussed in Chapter 

V.  

B. FLAC Stability Results 

In the deterministic stability analyses that were conducted in FLAC, the undrained 

strengths in both layers were assumed to have deterministic constant values. Thirty six 

deterministic stability analyses (cu1/cu2 = 1.5, 3.0 and 5.0, d/H = 1.5, 2.0, 3.0, and 5.0, and β 

= 30, 45, and 60 degrees) were performed to investigate the effect of the different 

parameters on the deterministic factor of safety (FS) and the stability factor (N). The factor 

of safety FS was determined directly from the output of FLAC, while the dimensionless 

stability number N was calculated according to Eq. 3.15 such that: 

 𝑁 =
𝑐𝑢1

𝛾∗𝐻∗𝐹𝑆
                           (Eq. 3.15) 

Where cu1 is the undrained shear strength of the top layer (KN/m2), ɣ is the unit weight of 

the top layer (KN/m3), H is the slope height or the thickness of the top layer (m) and FS is 
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the calculated factor of safety. The stability number N was first proposed by Taylor (1937) 

to normalize the factor of safety with the respect to the undrained shear strength value 

assigned for the top layer (cu1) and the slope height (H) as will be further elaborated in 

section C. 

The deterministic stability number Nd that was calculated using FLAC for the 36 

deterministic cases analyzed in this study is plotted on Figure 16 as a function of the d/H 

ratio for slopes with different inclination angles and different ratios of cu1/cu2. The results 

on Figure 16 indicate that Nd is highly dependent on the ratio cu1/cu2, and less sensitive to β 

and d/H. For any given slope angle and geometry, Nd increases as cu1/cu2 increases. This 

relationship is expected given that large cu1/cu2 ratios are indicative of a softer lower clay 

layer. A softer clay layer results in a reduction in the factor of safety which in turn results in 

an increase in the value of Nd (see Equation 3.15).  The sensitivity of Nd to the ratio cu1/cu2 

increases for larger d/H ratios, since the effect of the soft lower clay layer on the factor of 

safety becomes more significant when the soft layer is thick relative to the upper stiff layer 

(larger d/H). If cu1/cu2 is held constant, results on Figure 16 clearly indicate that the stability 

number increases as d/H increases (thickness of soft layer increases). As expected, this 

effect becomes negligible for the smallest cu1/cu2 considered (low contrast between shear 

strength of two layers) and increases for the largest cu1/cu2 considered (Figure 16). As an 

example, for the case of cu1/cu2=5, Nd is found to increase from 0.59 to 0.91 as d/H 

increases from 1.5 to 5. This increase is less pronounced for cu1/cu2 =1.5, where Nd 

increases from 0.23 to 0.28 as d/H increases from 1.5 to 5. 
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Finally, it is clear on Figure 16 that the angle of the slope  has the smallest effect 

on the stability number Nd, particularly for cases with large d/H ratios where the stability 

seems to be governed by the strength of the soft soil layer rather than changes in slope 

geometry. The effect of  on the stability number starts to become significant at lower d/H 

ratios, particularly for cases where the contrast between the strength of the stiff clay layer 

and the soft clay layer is high (cu1/cu2 = 3 and 5). For these cases, a significant proportion of 

the failure surface lies in the upper clay layer (small d/H ratios) and the angle of the slope 

starts to have an influence on the stability number Nd.   

  
Figure 16. Variation of Nd with respect to d/H, cu1/cu2, and β 

 

To investigate the mechanism of failure in the two-layered slope system for 

different geometry and strength conditions, the variation of the maximum shear strain 

increment studied on Figure 17 for representative two-layered slope cases with different 
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geometric and strength characteristics. The first observation from Figure 17 is that the 

governing mode of failure is a deep seated/foundation failure, irrespective of the choice of 

β, d/H, and cu1/cu2. The deep seated failure is expected given the contrast in shear strength 

between the two layers whereby the soft layer is always at the lower part/foundation of the 

slope. An investigation of the effect of the cu1/cu2 ratio on the failure surface indicates that 

for cases with large cu1/cu2 ratios, the maximum shear strain increments are mostly 

concentrated in the lower soft layer and the portion of the failure surface that lies in the 

upper stiff slope is relatively steep.  

 

Figure 17. Shadings of the Maximum Shear Strain Increment for samples of the two-

layered slope cases analyzed (Shear strain increment increases from red, to orange, to 

yellow, to green and finally to blue). 

 

(c) β=30⁰, d/H=2, cu1/cu2=5 

(a) β=30⁰, d/H=1.5, cu1/cu2=5 

(c) β=30⁰, d/H=5, cu1/cu2=1.5 

(d) β=60⁰, d/H=1.5, cu1/cu2=1.5 

(b) β=60⁰, d/H=1.5, cu1/cu2=5 

(e) β=30⁰, d/H=5, cu1/cu2=5.0 
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C. Effect of the undrained shear strength of the top layer (cu1) 

The undrained shear strength of the upper layer of the slope (cu1) is taken as a 

constant value of 100 kpa throughout all the slope models. It is expected that varying the 

undrained shear strength value should not have an effect on the results of dimensionless 

stability factor, N although it would definitely affect the resulting factor of safety of any 

given slope. Taking lower values of the upper undrained shear strength will yield lower 

factors of safety. However, when calculating N, the effect of a smaller denominator in 

Equation 3.15 is offset by the low shear strength (cu1) value in the numerator. This should 

eliminate any effect caused by changing the value of the undrained shear strength of the 

upper layer on N values particularly for the deterministic analysis. The same logic applies 

for the opposite cases of higher undrained shear strengths.  

To verify this assumption, two cases of higher and lower shear strengths values of 

the upper layer were considered.  The results of Nd for shear strengths values of cu1=70 kpa 

and cu1=200 kpa for β=30⁰, d/H=3 were calculated and compared with the base case of 

shear strength cu1=100 kpa in Table 1. The results of Nm are even compared for the case of 

random field for future reference. As expected, the results indicate that Nd is almost 

insensitive to the assumed values of the undrained shear strength in the upper layer with a 

maximum error of 1.9% in the resulting values of Nd. Based on these results, a decision was 

made to use a constant value of cu1=100 kpa in the balance of this study.  

It should be noted however that while the deterministic Nd values was not 

sensitive to the choice of cu1, this does not guarantee that the probabilistic characteristics of 

N will not be affected for the cases where the undrained shear strength is assumed to be a 
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random variable. To get a feeling of whether the mean value of N (Nm) will be sensitive to 

the choice of cu1, probabilistic analyses where conducted for the same cases presented in 

Table 1, except that cu1 and cu2 where assumed to described by random fields having a 

coefficient of variation of 0.5 and vertical and horizontal correlation lengths of 2m and 

40m, respectively. The analyses were repeated while changing the mean value of cu1 from 

70 kPa to 200 kPa. The resulting mean values of N are presented in Table 1. Results show 

that although the mean value of the stability number (Nm) is slightly different than the 

deterministic value of N (Nd), there is no noticeable impact of the choice of the mean of cu1 

on the results. These observations confirm the fact that probabilistic runs with a constant 

value of 100 kPa for the mean of cu1 are sufficient to quantify the reliability of the two-

layered slope cases analyzed in this study. 

 

Table 1. Sensitivity of the Results of Nd and Nm to the choice of cu1 

 

cu1/cu2 

β=30⁰, d/H=3 COV cu=0.5 , 𝜹𝒙= 40m, 𝜹𝒚  =2m 

cu1=100 kpa cu1=70 kpa cu1=200 kpa cu1=100 kpa cu1=70 kpa cu1=200 kpa 

Nd Nd Nd Nm Nm Nm 

5 0.847 0.843 0.846 1.010 1.014 1.010 

4 0.680 0.675 0.676 0.813 0.814 0.810 

3 0.508 0.508 0.509 0.621 0.609 0.613 

2.5 0.427 0.426 0.427 0.524 0.519 0.519 

2 0.348 0.348 0.348 0.427 0.424 0.424 

1.5 0.268 0.269 0.268 0.330 0.329 0.329 
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D. Regression Model for the Deterministic Dimensionless Stability Number (Nd) 

The results presented in Figure 16 cover a wide range of cases that could 

encompass practical problems involving two-layered clayey slopes with a slope comprised 

of a stiff layer overlying a foundation comprised of a softer layer. These results were used 

to develop a simplified empirical equation that allows the designer to predict the 

deterministic dimensionless stability number Nd without the need for running 

computationally demanding numerical analyses using FLAC. The empirical equation 

expresses Nd as a non-linear function of β, d/H, and cu1/cu2 such that: 

 𝑁𝑑 = 0.141. (
𝑐𝑢1

𝑐𝑢2
)

0.942
. (tan 𝛽)0.092. (

𝑑

𝐻
)

0.245
              (Eq. 3.16) 

The constants in Equation 3.16 were determined using regression based on the 

deterministic results obtained from FLAC. The mathematical formulation of equation 3.16 

is simple and the resulting regression constants point to the significant impact of cu1/cu2 and 

the negligible impact of the slope angle β on the results. These trends are realistic and were 

discussed in the previous section. To investigate the reliability of the empirical correlation 

(Eq. 3.16) and its predictive performance for cases that were not included in the calibration 

data, 20 additional stability runs (Appendix A) for cases that include combinations of β, 

d/H, and cu1/cu2 that are different than those presented in Fig. 16 were analyzed in FLAC. 

The FLAC-predicted Nd values were obtained and compared with the Nd values predicted 

from Equation 3.16 on Figure 18. Results indicate that the simple empirical model (Eq. 

3.16) is reliable and yields an acceptable predictive performance. To quantify the bias and 

uncertainty in the simplified model predictions, the ratio (FLAC Nd/Predicted Nd) was 

calculated for the 20 cases. Results show that the mean of this ratio is 1.02 (model is 
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unbiased) and the coefficient of variation (COV) is relatively small with a value of 0.03. 

These statistics indicate that the simplified model could be used with confidence to predict 

the deterministic values of Nd for a two-layered slope system with parameters that fall in 

the range of the input parameters used in the FLAC analysis. 
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CHAPTER V 

STABILITY RESULTS FOR SPATIALLY VARIABLE TWO-

LAYERED CLAYEY SLOPES 

 

A. Introduction 

The main objective of this research study is to assess the impact of spatial 

variability in the undrained shear strength on the probability of failure of two-layered 

clayey slope systems. The aim is to use robust random field models to model the spatial 

variability of the clay properties within FLAC and to establish simplified relationships 

between the deterministic factor of safety and the probability of failure of the slope system. 

The major parameters that will affect the reliability of the slope are cu1/cu2, d/H, and β, in 

addition to the probabilistic characteristics of the random field of cu1 and cu2. To simplify 

the analysis, the coefficient of variation of the undrained shear strength is assumed to be the 

same for both layers with assumed values of 0.3 and 0.5. The vertical scale of fluctuation 

(y) is assumed to vary between 1, 2, and 5m while the horizontal scale of fluctuation (x) is 

assumed to be constant at a value of 40m. Assuming the same properties of the random 

field of the undrained shear strength in the two layers can be considered a limitation in this 

study. This assumption could be relaxed in future studies. Fig. 19 shows the slope geometry 

with the main parameters that are varied in the probabilistic analysis in an attempt to 

determine empirical models that relate between the deterministic and probabilistic results.  
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B. Effect of Random Field of cu1 and cu2 on Mode of Failure 

The mode of failure of the two-layered slope system in the deterministic FLAC 

analyses conducted in Chapter IV was governed by a deep-seated failure, with the failure 

surface reaching the rigid boundary (rock layer) under the clay. This mode of failure was 

dominant, irrespective of the slope geometry or shear strength conditions.  

Figure 20 illustrates the model of failure of 8 identical slope cases representing (1) 

a deterministic failure surface (Fig. 20a) and (b) seven representative Monte Carlo 

simulations (Fig. 20b-h) from the same random field of cu1 and cu2 as the deterministic case. 

The analyzed cases correspond to a typical two-layered slope system with β=45º, d/H=3, 

cu1/cu2=5, H=5m, COV cu=0.5, 𝛿𝑥 =40m, and  𝛿𝑦 =2m. The results on Figure 20 shed light 

on the importance of modeling the undrained shear strength as a realistic random field 

which represents the in-situ spatial variability of the soil in the field. A comparison between 

the failure surface in the deterministic case and the failure surfaces corresponding to the 

different random realizations for the random field points to significant differences in the 

shape and location of the failure surface. Unlike the deterministic case where the failure 

Figure 19. Slope geomtery with main input parameters 
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surface was always deep seated (reaching the rock layer), the failure surfaces in the random 

simulations showed significant variations in location, shape, and geometry. These results 

indicate that for any given two-layered slope, the factors of safety from the different 

realizations could differ from one another leading to a factor of safety (FS) and a stability 

number (N) that are random variables. The objective of the next section is to quantify the 

uncertainty in the resulting factor of safety (FS) and stability number (N) by determining 

their mean, COV, and probability distribution for the different slope cases analyzed.  

 

 

 

Figure 20. Different failure surfaces for random realizations 



51 

 

C. Analysis of Spatially Random Two-Layered Slopes 

To investigate the effect of the spatially random field of Su on the reliability of the 

slopes, the same cases that were studied in the deterministic analysis were considered. The 

base case analysis considers an anisotropic random field with a horizontal correlation 

length (δx) of 40 m and a vertical correlation length (δy) of 2m. The horizontal correlation 

length is kept constant while the vertical correlation length is varied such that (δy) is equal 

to 1, 2, and 5m for each slope angle (β=30⁰,45⁰,and 60⁰) considered. These assigned values 

fall in the range suggested by Phoon (1995) who reported horizontal and vertical 

correlation distances ranging between δx of 20m to 70m (mean ~ 45m) and δy of 0.8m to 

6.1m (mean ~ 2.5m). The COV’s of the random field of cu1 and cu2 are taken to be equal for 

both layers and studied for two COV cases of 0.5 and 0.3. Six values of d/H were selected 

for the probabilistic analysis (d/H=1.5, 2, 3, 4, 5, and 7). However, the initial runs indicated 

similar statistics for the resulting factor of safety for d/H of 4, 5, and 7 (see Fig. 21 for the 

mean FS). Therefore, d/H=4 and 7 were eliminated from the study for the purpose of saving 

time, and the focus was on the four values of d/H (1.5, 2, 3, and 5).  
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1. Effect of cu1/cu2, d/H, and COV cu on Probabilistic Stability Results 

In this section, cu1/cu2, d/H, and COV cu are varied to study their effect on the 

mean and COV of the factor of safety and the stability number, N. The random field 

analyses are conducted for the base case with a slope angle β=45⁰ and a vertical correlation 

distance of δy =2m. The effect of varying the vertical correlation length and the slope angle 

will be studied and discussed in a later section.   

Mean and COV of Factor of Safety 

Monte Carlo simulation results were used to calculate the mean and COV of the factor of 

safety for cases with random fields having COV cu of 0.3 and 0.5. The variations of the 

mean and COV of FS with d/H and the mean of cu1/cu2 are presented in Fig. 22 and 23, 

respectively. Results on Fig. 22 indicate that the mean FS decreases as the mean of cu1/cu2 

increases. For illustration, in the case with a COV cu of 0.5 and a d/H of 1.5, the mean FS 

decreases from 3.24 to 1.30 as cu1/cu2 increases from 1.5 to 5. Since the mean of cu1 was 

held constant, the decrease in the mean FS is attributed to the weaker undrained strength of 

the lower layer. The same trend applies to the four d/H cases and the other COV of cu of 

0.3. For a constant mean cu1/cu2, the only governing parameter becomes (d/H) and the mean 

FS is observed to decrease as d/H increases from 1.5 to 5. Smaller d/H values indicate 

smaller thicknesses of the weaker layer and thus larger mean FS.  In addition, slope systems 

with smaller “d” values are associated with shorter lengths of the failure surface. Shorter 

surfaces could decrease the effect of variance reduction due to averaging along the failure 

surface and may lead to smaller mean factors of safety due to higher uncertainty.  
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Figure 23. COV of F.S with respect to cu1/cu2 for different d/H and for COV cu=0.5&0.3 

 

The same observations apply to the case with a less uncertain random field of cu, except 

that the mean factors of safety where found to be slightly larger in the case involving the 

lower COV of cu (compare Fig. 22a to 22b). These results are expected since very low 

values of cu1 or cu2 are less likely to be observed in the Monte Carlo simulations for the 

smaller COV of cu, leading to mean factors of safety that are larger than those observed for 

a COV cu of 0.5, irrespective of the other input parameter. Finally, results on Fig. 22 

Figure 22. F.Sm with respect to cu1/cu2 for different d/H for COV cu =0.5&0.3 
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indicate that the effect of d/H on the mean factor of safety is more pronounced for lower 

values of mean cu1/cu2.  

The effect of the input parameters on the COV of the factor of safety is illustrated in 

Fig. 23 for the base case analyzed. Unlike the results of the mean factor of safety in Fig. 22, 

results on Fig. 23 indicate that the COV of FS is more sensitive to the ratio d/H than it is to 

the ratio of mean cu1/cu2. For illustration, the COV of FS decreases from 0.24 to 0.12 and 

from 0.3 to 0.11 as d/H increases from 1.5 to 5 for cu1/cu2 =1.5 and 5, respectively. The 

same trends are observed for the cases with COV cu =0.3 (Fig. 23b), but with lower COV of 

FS values. The sensitivity of the COV of FS to the ratio d/H can be directly traced to the 

phenomenon of variance reduction due to spatial averaging along the length of the failure 

surface. Large ratios of d/H are associated with longer failure surfaces which allow for 

more spatial averaging and increased variance reduction leading to a reduced uncertainty in 

the resulting FS distribution. Lower d/H values are associated with shorter failure surfaces 

that reduce the impact of variance reduction leading to larger COVs in the resulting FS.   

The effect of variance reduction is clearly exhibited in the values of the COV of FS, 

which are all smaller than the COV of cu in the random field. For example, the largest COV 

of FS was about 0.3 for the case involving a COV cu of 0.5, while the largest COV in FS 

was about 0.18 for the cases involving a COV cu of 0.3. Since variance reduction is 

governed by the ratio of the vertical correlation distance relative to the total length of the 

failure surface, results in Fig. 23 could only be assumed to be applicable for the case 

involving a vertical correlation length of 2m. The effect of the correlation length on the 

probabilistic results is studied in following sections. 
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Mean and COV of Dimensionless Stability Number (N) 

In Chapter IV, the results of the stability analysis of a two-layered clayey slope system 

were shown to be more conveniently presented using the dimensionless stability number, 

N. The resulting stability number (N) is not affected by the height of the slope and the 

actual values of cu1 and cu2.  Despite the fact that the factor of safety (figures 22 and 23) is 

more physically meaningful to practicing engineers, it cannot be used to generalize the 

results of stability analyses done on two-layered systems. As a result, a decision was made 

to express the deterministic and probabilistic results in this study in the form of the 

dimensionless stability number (N).  

 The variation of the mean and COV of N with the input parameters is presented in 

Fig. 24 and 25, respectively for the base case slope system.  The results show that the mean 

of N (Nm) increases linearly with the ratio of mean cu1/cu2. Since N and FS are inversely 

proportional, this increase is due to the decrease in the factor of safety which was explained 

previously. Interestingly, Nm seems to be insensitive to the d/H ratio at small mean cu1/cu2 

ratios but starts to increase with the d/H ratio at the larger mean cu1/cu2 ratios where there is 

more contrast in the shear strength between the upper and lower clay layers. Differences in 

the dependence of the mean of FS and the mean of N on d/H and cu1/cu2 is related to the fact 

that the stability number “N” includes in its formulation the mean of cu1. When values of 

“N” are calculated in each Monte Carlo simulation, the resulting factor of safety in that 

simulation is combined with the mean of cu1 in that particular simulation and Equation 3.15 

is used to calculate “N” for that simulation. This normalization of FS by cu1 results in 

differences between the statistics of N compared to the statistics of FS.  
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Regarding the COV of N, results on Fig. 25 indicate that the COV of N is 

relatively insensitive to cu1/cu2, except for cases involving small d/H ratios where the COV 

of N is found to increase as cu1/cu2 increases. On the other hand, the COV of N clearly 

decreases as the d/H ratio increases. This is attributed to variance reduction along the 

longer failure surfaces for the cases involving larger d/H ratios. For illustration, the COV of 

N is found to decrease from 0.30 to 0.24 and from 0.39 to 0.24 as d/H increases from 1.5 to 
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Figure 25. Nm with respect to cu1/cu2 for different d/H and for COV cu=0.5 and 0.3 

Figure 26. COV of N with respect to cu1/cu2 for different d/H and for COV cu=0.5 and 0.3 
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5, for cases involving mean cu1/cu2 of 1.5 and 5, respectively. The effect of d/H on the COV 

of N is higher at large mean cu1/cu2 ratios  

Probability Distribution for the Dimensionless Stability Number (N) 

To complete the statistical characterization of the uncertainty in the stability number N, the 

applicability of a theoretical lognormal distribution in modeling the uncertainty is 

investigated in this section. Although the exercise was done for multiple slope cases, only 

results from the case with d/H=1.5, COV cu =0.5, δy =2m, and cu1/cu2 =5 will be presented. 

The statistical test was conducted by comparing the CDF and PDF of the 1500 stability 

numbers “N” which were obtained from FLAC to the PDF and CDF of a typical lognormal 

distribution with the same mean and standard deviation as the FLAC N-values. 

Visual inspection of the comparison between the actual “N” distribution and the 

theoretical lognormal distribution shows an excellent match to the extent that the CDFs of 

both distributions fully overlap. Q-Q plots for both distributions are also shown on Fig. 27 

to further confirm the validity of the lognormal assumption. The results confirm that both 

sets of data come from the same distribution and as a result the uncertainty in the stability 

number N for the two-layered slope system can be realistically modeled using a lognormal 

distribution. 
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2. Effect of the Scale of Fluctuation (SOF) on Statistics of N 

The vertical scale of fluctuation (correlation length) is expected to have an impact 

on the shape and location of the failure surface and on the magnitude of variance reduction 

due to spatial averaging along the failure surface of the slope system. As a result, the mean 

and COV of N could be affected by the value of the scale of fluctuation. This Section 
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Figure 27. Comparison between the pdf and cdf of N distribution and a lognormal distribution 

Figure 28. QQ-plot between N distribution and lognormal distribution 
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investigates the effect of the vertical SOF (δy) on the mean and COV of N. This analysis is 

conducted for the same slope angle ( = 45) that was used in the previous sections to allow 

for direct comparison with the previous results. The two additional scale of fluctuations that 

are assumed are δy of 5m and 1m (compared to δy = 2m in the base case). 

The effect of the assumed vertical scale of fluctuation on the mean of N is studied 

on Figs. 28a and 28b for COV cu of 0.5 and 0.3, respectively. The results show that Nm is 

not sensitive to the vertical scale of fluctuation. These results are important because they 

indicate that Nm could be predicted as a function of d/H, mean of cu1/cu2, and the COV of cu 

only. This observation will facilitate and simplify the mathematical formulation of models 

that are needed to predict Nm empirically.   

 

Figure 29. Nm vs. cu1/cu2 for COV cu=0.5&0.3 
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Unlike Nm, the COV of N is highly sensitive to the assumed vertical correlation length as 

indicated in Figure 29. Cases with larger vertical correlation lengths resulted in larger 

values of the COV of N. This result is expected given that the effect of variance reduction 

due to averaging decreases dramatically as the correlation lengths approach the length of 

the failure surface. This explains why cases with d/H values that are small (d/H = 1.5) 

exhibited the least amount of variance reduction resulting in relatively high COV of N. If 

the results of the COV of N are plotted against the d/H ratio (Fig. 30), a clear decreasing 

trend in the COV of N is observed with increases in d/H. The sensitivity of the COV of N 

to the vertical correlation length indicates that the vertical correlation length will play a 

significant role in determining the reliability of a two-layered slope in clayey soils.  

Figure 30.  Comparison between COV of N for δy= 1, 2&5m for COV cu=0.5&0.3 
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3. Effect of the Slope Inclination Angle (β) on the Statistics of N  

The previous sections studied the effect of four parameters: d/H, cu1/cu2, COV cu 

and δy on the probabilistic results of the factor of safety and N distributions. In this section, 

the focus will be on the effect of the slope angle (β) on the results.  

Fig. 31 shows the sensitivity of the mean of N to inclination angle of the slope 

which was taken to be equal to 30⁰,45⁰, and 60⁰ for cases with δy =2m and d/H=1.5 and 3. 

As expected, results on Fig. 31 indicate that steeper slopes decrease the factor of safety and 

increase the mean of the stability number N. The effect of the slope angle on Nm increases 

for cases with larger mean cu1/cu2 ratios and smaller d/H ratios since the role of the upper 

layer in the stability calculations becomes more significant in these cases.  
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Figure 31. Comparison between COV of N for δy=1, 2&5m for COV cu=0.5 
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Fig. 32 shows the effect of β=30⁰, 45⁰ and 45⁰on the COV of N for δy =2m for 

d.H=1.5&3. The results show almost no effect of β on the COV of N. It can be assumed 

Figure 31. Comparison between Nm for β=30⁰, 45⁰, and 60⁰ for COV cu=0.5 

 

 

Figure 31. Comparison between Nm for β=30⁰, 45⁰, and 60⁰ for COV cu=0.5 

 

Figure 32. Comparison between COV of N for β=30⁰, 45⁰, and 60⁰ 
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that the slope angle has no significant impact on the graphs of COV of N and its effect 

seems to be the least compared with the four other major parameters studied in this chapter. 
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CHAPTER VI  

RELATIONSHIP BETWEEN DETERMINISTIC AND 

PROBABILISTIC RESULTS  

In Chapter V, the effect of slope geometry, shear strength properties, and random 

field characteristics on the mean and COV of FS and N was investigated. The main focus 

for the rest of the thesis will be on linking the deterministic stability factor (N) obtained 

using FLAC or through the simplified empirical model presented in Equation 3.16 to the 

probabilistic output relating to the mean and COV of the stability number N. The aim is to 

reach a stage where the statistical parameters of N can be predicted from the deterministic 

results without the need to go through the tedious simulations in FLAC. The between the 

deterministic and probabilistic results will established by studying the dependency of the 

ratios Nm/Nd and COV(N)/COV(cu) on the input parameters affecting the stability of two-

layered clayey slope systems. These parameters include: cu1/cu2, δy, d/H, COV cu, and β.  

A.  Relationship between Nm/Nd and COV cu 

The variation of the ratio Nm/Nd with the COV of cu is presented in Fig. 33 for the 

three slope angles considered in this study. Some additional runs increases were made for a 

random field with a COV of cu of 0.1 to establish the complete trend. Results on Fig. 33 

clearly show that the ratio of Nm/Nd increases from values of unity for the case with the 

least uncertain random field of cu (COV = 0.1) to values in the range of 1.17 to 1.40 for the 

cases involving the most uncertain random field (COV = 0.5). The observation that the 

mean value of N is larger than the deterministic value of N for larger COVs is realistic and 
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is related to the fact that the mean of FS becomes smaller than the deterministic value of FS 

for large COVs of cu. This trend is similar for the three slope angles. 

It is worth noting that the lower boundaries for all COV’s are associated with δy 

=5m, d/H=1.5, cu1/cu2=1.5 and the upper boundaries belong to δy =5m, d/H=5, cu1/cu2= 1.5. 

The extreme values belong to the highest SOF, the lowest and highest d/H respectively, and 

the lowest cu1/cu2 ratios. This can be explained by the fact that high SOF’s decrease spatial 

averaging which increases the difference between Nm and Nd. The fact that d/H governs the 

upper and lower bounds of the variation of Nm/Nd is expected given the strong impact that 

d/H had on the resulting Nm values as indicated in Figure 24. It is worth noting that 

although not all the cases for β=60⁰ were simulated it can be concluded from Figure 33 that 

(Nm/Nd) generally increases as β increases.        

  

 

 

Figure 33. Nm/Nd with respect to COV cu for β=30º, β=45º, and β=60º 
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B. Relationship between Nm/Nd and cu1/cu2   

The variation of Nm/Nd with cu1/cu2 is plotted on Fig. 34 for the three δy’s and for a 

slope angle of 30° and for the two COV’s of cu (0.5 and 0.3) considered. The results of Fig. 

35 show two sets of graphs, the upper set of solid lines belongs to COV cu=0.5, and the 

lower set of dashed lines belongs to COV cu=0.3. These results indicate that the COVof cu 

plays a much more significant role in determining the ratio Nm/Nd compared to the ratio 

cu1/cu2 which does not seem to have a strong impact on the results. An average line crossing 

the lower bundle of curves results in (Nm/Nd) of 1.1 with some scatter above and below as 

high as 1.14 and as low as 1.04 for cu1/cu2 less than 3. d/H values of 3 and 5 set the limit for 

the upper bound and d/H values of 1.5 and 2 set the limit for the lower. The average of the 

upper bundle of graphs (COV cu = 0.5) has an average (Nm/Nd) of 1.25 with higher scatter 

around the average compared to the results of COV cu=0.3.  

 

 

 

 

 

 

 

 
Figure 34. Nm/Nd with respect to cu1/cu2 for β=30º  
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In summary, the results of Figs. 33 and 34 show a clear effect of the slope angle, 

COV of the undrained shear strength, the scale of fluctuation, and the d/H ratio on the ratio 

Nm/Nd. The least significant impact is for the undrained shear strength ratio.  

C. Relationship between COV N/COV cu and cu1/cu2 

In this section, the relationship between (COV N/COV cu) and the major factors 

will be investigated in an attempt to establish simple equations that would allow for 

predicting COV N/COV cu without the need for expensive random fields using FLAC.  

The variation of COV N/COV cu with (cu1/cu2) is presented on Fig. 35 for the two 

extreme d/H conditions (1.5 and 5.0) and the three vertical correlation lengths (δy of 1m, 

2m, and 5m) considered in this study. The analysis is presented for the case with a slope 

angle β=30° for illustration. The major finding in Fig. 35 is that the ratio COV N/COV cu 

seems to be largely insensitive to the level of uncertainty in the random field of cu. This is 

shown on Fig. 35 by comparing the dotted (COV cu = 0.3) and solid (COV cu = 0.5) lines 

for any given combination of d/H and δy. This observation is of extreme importance since it 

points to the strong role that that the COV N/COV cu ratio could play in linking the 

probabilistic results to the deterministic results and the input parameters. 

The other conclusion from Fig. 35 is that the ratio COV N/COV cu is highly sensitive to the 

d/H ratio and the vertical scale of fluctuation δy. This is expected given the trends that were 

observed for the COV N with d/H and δy in Fig 30. The d/H ratio is directly correlated to 

the length of the failure surface, so both d/H and δy govern the degree of variance reduction 

due to spatial averaging which will eventually dictate the resulting COV N. The results also 
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show that the ratio cu1/cu2 plays a role in defining the COV N/COV cu particularly for small 

d/H values where the ratio of COV N/COV cu is observed to increase as the contrast 

between the strength of the upper and lower layer increases. This result can be explained by 

the fact that for cases with small d/H ratios where the softer layer is relatively thin, the 

failure surface in the lower (softer) layer is generally horizontal. Variance reduction along 

flat horizontal portions of the failure surface is expected to be minimal given that the 

undrained strength was assumed to have a relatively long correlation distance in the 

horizontal direction (x = 40m). This condition is amplified for cases with large cu1/cu2 

values of 5.0 since the factor of safety and thus the stability number N in these cases are 

governed by the lower soft clay layer. Given that variance reduction in this layer will be 

minimal as discussed, this will lead to minimal variance reduction in the case of small d/H 

ratios and large cu1/cu2 as indicated in Figure. 35. 
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D. Relationship between COV N/COV cu and δy/L.FS  

The results in section C show that the ratio COV N / COV cu is mostly governed 

by variance reduction due to averaging along the failure surface. The main parameter that 

governs variance reduction is the ratio δy /L.FS where L.FS is defined as the length of the 

failure surface and could be estimated from the results of the deterministic analysis 

conducted in FLAC for any set of input parameters. The ratio δy /L.FS embeds in it the 

effects of the vertical scale of fluctuation and the d/H ratio which have been shown to have 

a direct impact on the COV N / COV cu ratio. In addition, this ratio will indirectly reflect 

changes in the angle of the slope  since the length of the failure surface will be affected by 

the choice of . The only parameter that is not captured in the ratio δy /L.FS is cu1/cu2 ratio.  

The δy/L.FS ratio was calculated for all the cases analyzed in this study and plotted 

versus the COV N / COV cu on Figure 36. The results in Fig. 39 show that as δy /L.FS 

increases, the COV of N/COV cu increases till it reaches a horizontal asymptote at (δy 

/L.FS=0.2), whereby any increase in δy /L.FS results in negligible effect on the COV 

N/COV cu. This trend is observed in the three different slope angles with a minor deviation 

to the right as β increases, which shows little effect for the slope angle on the results as 

expected. The increase in the ratio of COV N/COV cu towards a ratio of 1 implies an 

increase in the COV of N to reach the input COV of the undrained shear strength 

distribution. This behavior is logical and can be attributed to the dual effect of δy and d/H 

which are both reflected in δy /L.FS. Increases in δy /L.FS imply either a large correlation 

length or a short failure surface, both which result in less variance reduction due to 

averaging, dictating the value of the COV of N. 
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The scatter in trend shown in Fig. 36 is explained by the fact that the COV of N is also 

affected by the relative strength between the first and the second layer. This is reflected in 

the ratio cu1/cu2 which is not taken into consideration in the relationship shown in Fig. 36. 

The impact of the cu1/cu2 on the ratio COV N / COV should be included in any empirical 

relationship that could be established to more reliable predictions of the ratio of COV N / 

COV for two-layered slope systems with stiff clays resting on softer clays. However, the 

relationship in Fig. 36 could serve as a first order approximation for predicting COV N / 

COV as a function of δy /L.FS only. 

 

 

Figure 36. COV N/COV cu with respect to δy/L.FS 
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CHAPTER VII 

RELIABILITY DESIGN OF SPATIALLY VARIABLE MULTI-

LAYERED CLAYEY SLOPES 

In this chapter, simplified empirical correlations that link the ratios Nm/Nd and the COV N/ 

COV cu to the main input parameters that were shown to affect the statistics of N are 

presented. The analysis is based on the results presented in Chapter VI. 

A. Mean of N as a function of COV cu 

The dependency between the ratio Nm/Nd and the COV of cu was thoroughly 

investigated in Chapter VI and it was shown that the mean of N was proportional to the 

COV of cu as indicated in Fig. 37. Using regression, a simple second order polynomial was 

used to fit the data. The resulting relationship is presented in Equation 7.1and consists of a 

second order polynomial.  

𝑁𝑚

𝑁𝑑
= 0.7475𝐶𝑂𝑉2 + 0.1799𝐶𝑂𝑉 + 0.9829     (Eq. 7.1) 

The empirical equation produces reasonable estimates of Nm/Nd with an R2 value 

of 0.91. To quantify the predictive performance of the simple relationship in Eq. 7.1, 

twenty five additional independent slope cases involving different combinations of the 

input parameters and random fields of cu (see Appendix 2) were analyzed in FLAC. The 

resulting FLAC-predicted Nm/Nd were calculated and compared to the Nm/Nd ratios that 

were predicted using the simple quadratic correlation of Equation 7.1 on Figure 38.  The 

results indicate an acceptable level of predictive performance with no apparent bias in the 
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model predictions and relatively low uncertainty around the mean trend. To quantify the 

model uncertainty, the ratio of FLAC (Nm/Nd) to predicted (Nm/Nd) was calculated for the 

60 cases analyzed. The mean of this ratio was calculated to be 0.98 while the COV of this 

ratio was around 0.02. These statistics indicate that Equation 7.1 is a cheap alternative for 

determining a first order estimate of the ratio Nm/Nd for two layered slope systems. 
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B.  (COV N/COV cu) as a function of (δy /length of the failure surface) 

The analysis pertaining to the ratio COV N / COV cu indicated a strong 

dependency on the ratio δy /L.FS as illustrated in Fig. 39. This dependency could be 

modeled using a logarithmic function as per Equation 7.2 such that:  

𝐶𝑂𝑉 𝑁

𝐶𝑂𝑉 𝑐𝑢
= 0.1765 ln (

δy

𝐿.𝐹𝑆
) + 1.1248       (Eq. 7.2) 

The empirical equation produces reasonable estimates of COV N / COV cu with an R2 

value of 0.84. To quantify the predictive performance of the simple relationship in Eq. 7.2, 

the twenty five additional independent slope cases were used as indicated in Figure 40. The 

results indicate that although the equation produces estimates of (COV N / COV cu) that are 

relatively unbiased, the predictions scatter significantly around the equality line with a 

relatively large estimated coefficient of variation 0.1.  

 

 Figure 39. COV N/COV cu with respect to δy /L. FS for COV cu=0.5&0.3 
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C. Regression Models for Predicting Mean and COV of N in Multi-Layered Slopes 

 

1. Regression Model for (Nm/Nd) 

In analyzing the results of chapters V and VI, it was shown that the statistical 

parameters (mean and COV) of N are influenced by four main factors: (1) the coefficient of 

variation of the undrained shear strength (COV cu), (2) the undrained shear strength of the 

first layer divided by the undrained shear strength of the second layer (cu1/cu2), (3) the d/H 

ratio, (4) the angle of the slope β which will be included as tanβ, and (5) the scale of 

fluctuation y.  A decision was made to normalize the vertical scale of fluctuation by the 

total vertical height of the combined slope system (d) and to include the normalized 

parameter y/d in the regression model.   

Using solver add-in in excel worksheet, the objective was to minimize the error 

between the predicted results using the empirical model and the measured results in FLAC 
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by changing the values of each parameter. The general mathematical form of the empirical 

model that was calibrated using regression is presented in Equation 7.3. The model 

calibration exercise was conducted using the excel solver to calculate the 6 parameters 

involved (a, b, c, d, e, and f): 

𝑁𝑚

𝑁𝑑
= 𝑓. (

δy

𝑑
)

𝑎
. (

𝑐𝑢1

𝑐𝑢2
)

𝑏
. (𝐶𝑂𝑉)𝐶 . (tan 𝛽)𝑑 . (

𝑑

𝐻
)𝑒     (Eq.7.3) 

Where Nm represents the mean of the probabilistic dimensionless number N, and Nd 

represents the deterministic value of N. Minimizing the summation of square error to a 

value of 0.09, the values of a, b, c, d e, and f were found to be equal to 0.009, -0.012, 0.265, 

0.034, 0.049, and 1.5 respectively. The empirical equation to calculate Nm/Nd is now shown 

in Eq. 7.4 as: 

𝑁𝑚

𝑁𝑑
= 1.5 (

δy

 𝑑
)

0.009
. (

𝑐𝑢1

𝑐𝑢2
)

−0.012
. (𝐶𝑂𝑉)0.265. (tan 𝛽)0.034. (

𝑑

𝐻
)0.049  (Eq.7.4) 

The bias and uncertainty of the above regression model was investigated on Figure 

41 which compares measured and predicted Nm/Nd values. Results indicate that the ratio of 

FLAC (Nm/Nd) to the predicted (Nm/Nd) has a mean of 0.99 with a COV of 0.03. A closer 

look at the model predictions indicate that the model slightly under predicts Nm/Nd for 

small values of Nm/Nd (generally associated with small values of COV of cu) and very 

slightly over predicts Nm/Nd for larger Nm/Nd values. The model however provides 

satisfactory predictions that allow the user to predict the mean value of N as a function of 

the deterministic N value and all the other parameters presented in Equation 7.4. 
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2. Regression Model for (COV N/COV cu) 

Following the same procedure, an empirical model that predicts the ratio COV N / 

COV cu as a function of the main parameters that were found to affect the problem was 

calibrated using regression resulting in: 

𝐶𝑂𝑉 𝑁

𝐶𝑂𝑉 𝑐𝑢 
= 1.117. (

δy

𝐿.𝐹𝑆
)

0.279
. (

𝑐𝑢1

𝑐𝑢2
)

0.168
. (𝐶𝑂𝑉)0.004. (tan 𝛽)−0.014    (Eq.7.5) 

To quantify the predictive performance of the model, the twenty five additional 

independent slope cases were used. The results are presented on Fig. 42 and indicate the 

model produces estimates of COV N / COV cu that are relatively unbiased and that the 

predictions scatter in the model predictions about the line of equality was reduced 

compared to the simplified model in Equation 7.2 whereby COV N / COV cu was expressed 

solely as a function of y/L.FS. This reduction in the model uncertainty is reflected in the 
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smaller COV value of 0.07 for the regression model of Equation 7.5 (compared to a COV 

of 0.10 for the simplified empirical model of Equation 7.2).  
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CHAPTER VIII 

DESIGN EXAMPLE 

In this chapter, a design example for a two-layered slope system is presented to 

illustrate the methodology in which the results of this research study could be used in 

practical design scenarios. The main objective is to link the deterministic design factor of 

safety of a two-layered slope system to the probability of failure of the slope without the 

need to conduct expensive FLAC models with random fields.  

The example involves investigating the reliability of a two layered slope system 

that is designed using different deterministic factors of safety. For illustration, the slope 

will be assumed to have a fixed slope angle  = 50 degrees. The height of the slope in the 

first layer is assumed to be a design parameter that varies with the design factor of safety 

while the thickness of the second layer is assumed to be fixed at 15m (see Fig. 43). The unit 

weight of both clay layers is assumed to be equal to 20 KN/m3 while the random fields of 

the undrained shear strength in the two clay layers are described by μcu1=100 kpa, COV 

cu=0.3, cu1/cu2=4, and δy=3m..  
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cu2=25 kpa 

Figure 43. Geometry and Soil Properties of the illustrative Design Example   
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The initial analysis involves finding the probability of failure of the slope system for a 

typical deterministic design factor of safety of 1.5. The probability of failure could be 

quantified following the step by step procedure outlined below: 

 The first step involves calculating the height of the slope that would result in a 

deterministic factor of safety of 1.5. This normally requires modeling the two 

layered system on FLAC. Alternatively, the simplified empirical model in 

Equation 3.16 for Nd could be used to calculate H such that: 

𝑐𝑢1

𝛾 ∗ 𝐻 ∗ 𝐹. 𝑆
= 0.141. (

𝑐𝑢1

𝑐𝑢2
)

0.942

. (tan 𝛽)0.092. (
𝑑

𝐻
)

0.245

 

 

Which gives H=4.38m making the total height of the slope system equal to 

d=19.38m. 

 The second step is to calculate the deterministic value of Nd that corresponds to 

the deterministic factor of safety (FS = 1.5): 

𝑁𝑑 =
100

20 ∗ 4.38 ∗ 1.5
 

Which gives Nd=0.76. 

  The third step is to calculate the mean value of Nm using Eq. 7.1: 

 

𝑁𝑚

𝑁𝑑
= 1.532. (

3

19.38
)

0.009

. (4)−0.012. (0.3)0.265. (tan 50)0.034. (
19.38

4.38
)

0.049

 

 

Which gives Nm=0.8. 
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 The fourth step is to calculate the COV of N using Eq. 7.5: 

 

𝐶𝑂𝑉 𝑁

𝐶𝑂𝑉 𝑐𝑢
= 1.117. (

3

𝐿. 𝐹𝑆
)

0.279

. (4)0.168. (0.3)0.004. (tan 50)−0.014 

 

Which gives COV N=0.18. 

 The fifth step is to check the probability of failure, which is calculated as: 

Pf=p (F.S<1) =P (N>1.142) =1-P (N<1.142) =1 − ф (
ln(1.142)−𝜆

𝜗
) 

Where  𝜆 = ln 𝑁𝑚 −
𝜗2

2
 and 𝜗 = √ln(1 + 𝐶𝑂𝑉2) 

Which gives pf=3.9%. 

The above procedure could be repeated for other deterministic factors of safety 

and different random fields of cu. For illustration, the above calculation is repeated for four 

COV cu values of 0.2, 0.3, 0.4, and 0.5 and for seven design factors of safety (F.S=1.3, 1.4, 

1.5, 1.6, 1.7, 1.8, 1.9, 2.0). The resulting probabilities of failure are presented in Fig. 44 as a 

function of the design F.S for each COV cu. As expected, results of the reliability analysis 

indicate that the probability of failure decreases as the factor of safety increases and as the 

COV of cu increases.  

The results on Figure 44 were obtained without the need for running any probabilistic 

analysis in FLAC. These results could be used to select the design factor of safety (and thus 

the design height of the slope) that would ensure a target level of risk in the two-layered 

slope system. The results of such an analysis are presented in Fig. 45.  The results on Fig. 
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45 indicate that the design height of the slope depends on the target probability of failure 

and on the assumed COV of cu. As a example, for the case with a COV cu of 0.3, the 

height of the slope will have to be reduced from 4.5m to 3.9m if the target probability of 

failure is decreased from 5% to 1%.    

 

 

 
Figure 45. Embankment Height (H) vs. COV cu 

Figure 44. Probability of failure (pf) vs. FS design 
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CHAPTER IX  

CONCLUSIONS 

In this thesis, the reliability of spatially variable two-layered slopes was studied 

and analyzed using FLAC software. The importance of this work comes from the need to 

consider the effect of spatial variability of soil on the resulting risk of failure of two-layered 

slopes. The effect of different slope geometries (slope height and angle), soil parameters, 

and random field properties was taken into account to draw relationships between the 

deterministic and the probabilistic results. The main focus in establishing these 

relationships was on the statistics of the dimensionless stability number N. The established 

relationships allow designers to predict the probability of failure in a simplified manner 

without the need for complicated and computationally expensive numerical analyses using 

random fields.  

The main parameters that were varied include the ratio of the slope height to the 

total height of the slope system (d/H) ranging from 1.5 to 5, the ratio of the upper mean 

undrained shear strength to the lower mean undrained shear strength ranging from 1.5 to 5, 

the slope angle ranging from 30º to 60º, the coefficient of variation of the undrained shear 

strength of 0.3 and 0.5, and the vertical correlation length ranging from 1 to 5m. The 

anisotropy in the random field is reflected in the horizontal correlation length which was 

kept constant throughout the study with a value of 40m.  

Upon the generation of random fields using R software and mapping them to their 

respective elements through FISH functions, FLAC was utilized to calculate the statistical 
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parameters of the stability number N. It should be noted that the undrained shear strength is 

the only source of uncertainty that was incorporated in the analysis. Based on the results of 

the analyses conducted in this study, the following conclusions can be made:  

1. A simplified empirical equation that allows the designer to predict the 

deterministic dimensionless stability number Nd without the need for 

running computationally demanding numerical analyses using FLAC was 

developed based on the results of FLAC. The empirical equation expresses 

Nd as a non-linear function of β, d/H, and cu1/cu2 (Eq. 3.16). The 

mathematical formulation of the established model is simple and points to 

the significant impact of cu1/cu2 and the negligible impact of the slope angle 

β on the results. 

2. An investigation of the mode of failure of two-layered slope systems 

pointed to the importance of modeling the undrained shear strength as a 

realistic random field which represents the in-situ spatial variability of the 

soil. A comparison between the failure surface in the deterministic case 

and the failure surfaces corresponding to random fields shows significant 

differences in the shape and location of the failure surface. Unlike the 

deterministic case where the failure surface was always deep seated 

(reaching the rock layer), the failure surfaces in the random simulations 

showed significant variations in location, shape, and geometry. 
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3. An investigation of the relationship between the mean value of N (Nm) and 

the deterministic N (Nd) showed that strong positive correlation exists 

between the ratio Nm/Nd and the COV of cu. A simple quadratic 

relationship was established between Nm/Nd and the COV of cu to provide 

first order approximations of this ratio. A more comprehensive empirical 

model that expresses Nm/Nd as a function of (1) the COV cu, (2) the ratio of 

mean (cu1/cu2), (3) the d/H ratio, (4) the angle of the slope β and (5) the 

scale of fluctuation y was also calibrated using the FLAC results to 

provide more reliable predictions of Nm/Nd. 

4.  With regards to the uncertainty in the stability number N, it was concluded 

that the ratio COV N / COV cu is a convenient parameter for generalizing 

the probabilistic results for two-layered soil systems. The ratio COV N / 

COV cu exhibited a strong dependency on the ratio δy /L.FS, where δy is 

the vertical correlation length and L.FS is the length of the failure surface. 

This dependency was modeled using a logarithmic function which was 

shown to produce reasonable estimates of COV N / COV cu that are 

relatively unbiased and characterized by predictions having a coefficient of 

variation 0.1. A more comprehensive model that expresses COV N / COV 

cu as a function of δy /L.FS in addition to the COV cu, the cu1/cu2 ratio, and 

the slope angle β was established and proven to be more efficient at 

producing reliable predictions of COV N / COV cu.   
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5. A practical design example that involved a two-layered slope system was 

used to show how the simple empirical models that were established in this 

thesis could be used to provide reliable estimates of the probability of 

failure of the slope system without the need for computationally 

demanding FLAC analyses with random fields. Estimates of the 

probability of failure could be obtained for different design factors of 

safety and for different conditions of slope geometry and soil properties.  
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APPENDIX I 

FLAC CODE 

new  

call 01_Lib.dat 

set cohesion_filename= 'V1.txt' 

set cohesion_filenamee= 'J1.txt' 

call 02_run.dat 

call factorof.dat 

------------------------------------------------------------------------------------- 

def variation 

array proper(330) 

status=open(cohesion_filename,0,1) 

status=read(proper,330) 

status=close 

loop i(1,330) 

proper(i)=parse(proper(i),1) 

endloop 

shadi=proper(1) 

k=0 

array bb(55,6) 

 loop m(1,55) 

  loop l(1,6) 

   k=k+1 

   bb(m,l)=proper(k) 

                endloop 

         endloop 

reem=bb(7,2) 

raj=bb(5,4) 

command 

 pri shadi 
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pri reem 

 pri raj 

endcommand 

end 

 

def function 

 

 loop r(1,55) 

  loop s(1,6) 

   cohesion(r,s)=bb(r,s) 

  endloop 

 endloop 

 ;cohesion(2,2)=bb(2,2) 

 ;command 

 ;pri cohesion 

 ;endcommand 

end 

def variationn 

array properr(595) 

status=open(cohesion_filenamee,0,1) 

status=read(properr,595) 

status=close 

loop ii(1,595) 

properr(ii)=parse(properr(ii),1) 

endloop 

shadii=properr(1) 

u=0 

array bbb(35,17) 

loop t(1,35) 

loop v(1,17) 

u=u+1 



88 

 

bbb(t,v)=properr(u) 

endloop 

endloop 

reemm=bbb(9,5) 

rajj=bbb(7,11) 

command 

pri shadii 

pri reemm 

pri rajj 

endcommand 

end 

def functionn 

f=0 

loop rr(21,55) 

dd=6 

f=f+1 

if f<36 

loop ss(1,17) 

dd=dd+1 

if dd<24 

cohesion(rr,dd)=bbb(f,ss) 

endloop 

endif 

endif 

endloop 

command 

pri cohesion 

endcommand 

end 

; Source: Simple slope 

;Units: SI: meter-kilogram-second 
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set gravity 9.81 ; m/s2 

config 

grid 55,23 

gen 0.0,0.0 0.0,10.0 35.0,10.0 35.0,0.0 i=1,21 j=1,7 

gen 35.0,0.0 35.0,10.0 104.64102,10.0 104.64102,0.0 i=21,56 j=1,7 

gen 35.0,10.0 69.64102,30.0 104.64102,30.0 104.64102,10.0 i=21,56 j=7,24 

; Define material models 

group 'upper layer:new1' i=21,55 j=7,23 

group 'lower layer:new2' i=1,20 j=1,6 

group 'lower layer:new2' i=21,55 j=1,6 

model mohr group 'upper layer:new1' 

prop density=2039.5 bulk=1.333333E8 shear=1.37931E7 cohesion=100000.0 friction=0.0 dilation=0.0 
tension=0.0 group 'upper layer:new1' 

model mohr group 'lower layer:new2' 

prop density=1835.5 bulk=1.333333E8 shear=1.37931E7 cohesion=20000.0 friction=0.0 dilation=0.0 
tension=0.0 group 'lower layer:new2' 

; Fixed boundary conditions 

fix x i=1 j=1,7 

fix x y i=1,21 j=1 

fix x i=56 j=1,7 

fix x y i=21,56 j=1 

fix x i=56 j=7,24 

set gravity=10.0 ; m/s2 

variation 

function 

variationn 

functionn 

 

 

; This state should NOT be changed. 

history 999 unbalanced 

solve fos no_restore file=FoSmode1.fsv 
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save trial1.sav 

def factor 

 

array arrsave(1501) 

array arra(1) 

statuss=open('resultss.txt',0,1) 

statuss=read(arra,1) 

nlines=parse(arra(1),1) 

if nlines>0 

loop n(1,nlines) 

statuss=read(arra,1) 

arrsave(n)=arra(1) 

endloop 

endif 

nlines=nlines+1 

statuss=close 

statuss=open('resultss.txt',1,1) 

arra(1)=string(nlines) 

statuss=write(arra,1) 

if nlines>1 

loop n(1,nlines-1) 

arra(1)=arrsave(n) 

statuss=write(arra,1) 

endloop 

endif 

arra(1)=string(fos) 

statuss=write(arra,1) 

statuss=close 

end 

factor 

--------------------------------------------------------------------------------------------------- 
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def setup 

 

array arra(1) 

statuss=open('resultss.txt',1,1) 

arra(1)=string(0) 

statuss=write(arra,1) 

statuss=close 

end 

setup 
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APPENDIX II 

R SOFTWARE CODE 

require(graphics) 

require(mvtnorm) 

require(truncdist) 

 

iy=4          #Y-coordinate of the interface between layers 

 

clx1=40         #Horizontal correlation length of layer 1 (top) 

cly1=4           #Vertical correlation length of layer 1 (top) 

clx2=40         #Horizontal correlation length of layer 2 (bottom) 

cly2=4        #Vertical correlation length of layer 2 (bottom) 

 

nr=1500           #Number of realizations/simulations 

 

msu1=100          #Mean of undrained shear strength of layer 1 

covsu1=0.4       #cov of undrained shear strength of layer 1 

 

 

msu2=50      #Mean of undrained shear strength of layer 2 

covsu2=0.4       #cov of undrained shear strength of layer 2 

 

da=(read.csv("F:/FLACfile/PART Two/Uncertain Cases-Angle 45/Case 262/geometry1.csv")) 

da=data.frame(N=seq(1,length(da[,1]),1),X=da[,1],Y=da[,2]) 

#plot(da$Y~da$X) 

#plot(da[da$Y>10,]$Y~da[da$Y>10,]$X) 

 

############################################### 
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############################################### 

#Layer 1(top) 

da1=da[da$Y>=iy,] 

 

#constructing dx and dy matrices for layer 1 

dx1=matrix(rep(NA,length(da1$X)^2),length(da1$X),length(da1$X)) 

dy1=matrix(rep(NA,length(da1$X)^2),length(da1$X),length(da1$X)) 

for (i in 1:length(da1$X)){ 

  for (j in 1:length(da1$X)){ 

    dx1[i,j]=abs(da1$X[i]-da1$X[j]) 

    dy1[i,j]=abs(da1$Y[i]-da1$Y[j]) 

  } 

} 

#Constructing Correlation matrix for layer 1 

cormat1=exp(-(2*dx1/clx1+2*dy1/cly1)) 

isSymmetric(cormat1) 

 

 

AB1 <- rmvnorm(mean=rep(0,length(da1$X)),sig=cormat1,n=nr) #Our gaussian variables 

U1 <- pnorm(AB1) #Now U is uniform - check using hist(U[,1]) or hist(U[,2]) 

#ratio <- qtrunc(U[,1],spec="lnorm",a=1,b=Inf,2,.2) #x is gamma distributed 

 

sdsulog=sqrt(log(1+covsu1^2)) 

msulog=log(msu1)-sdsulog^2/2 

 

UU1=matrix(rep(NA,I(length(da1$X)*nr)),nr,length(da1$X)) 

 

for (i in 1:length(da1$X)){ 

  UU1[,i]=qtrunc(U1[,i],spec="lnorm",a=0,b=Inf,msulog,sdsulog) 

} 
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UU1=UU1*1000 

write.csv(t(UU1),"F:/FLACfile/PART Two/Uncertain Cases-Angle 45/Case 262/realization1.csv") 

 

rmax=rep(NA,nr) 

rmin=rep(NA,nr) 

rmean=rep(NA,nr) 

for (i in 1:nr){ 

  rmax[i]=max(UU1[i,]) 

  rmin[i]=min(UU1[i,]) 

  rmean[i]=mean(UU1[i,]) 

} 

max(rmax) 

min(rmin) 

mean(rmean) 

 

############################################### 

############################################### 

############################################### 

 

#Layer 2(bottom) 

da2=da[da$Y<iy,] 

 

#constructing dx and dy matrices for layer 2 

dx2=matrix(rep(NA,length(da2$X)^2),length(da2$X),length(da2$X)) 

dy2=matrix(rep(NA,length(da2$X)^2),length(da2$X),length(da2$X)) 

for (i in 1:length(da2$X)){ 

  for (j in 1:length(da2$X)){ 

    dx2[i,j]=abs(da2$X[i]-da2$X[j]) 

    dy2[i,j]=abs(da2$Y[i]-da2$Y[j]) 

  } 
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} 

#Constructing Correlation matrix for layer 2 

cormat2=exp(-(2*dx2/clx2+2*dy2/cly2)) 

isSymmetric(cormat2) 

 

AB2 <- rmvnorm(mean=rep(0,length(da2$X)),sig=cormat2,n=nr) #Our gaussian variables 

U2 <- pnorm(AB2) #Now U is uniform - check using hist(U[,1]) or hist(U[,2]) 

#ratio <- qtrunc(U[,1],spec="lnorm",a=1,b=Inf,2,.2) #x is gamma distributed 

 

sdsulog=sqrt(log(1+covsu2^2)) 

msulog=log(msu2)-sdsulog^2/2 

 

UU2=matrix(rep(NA,I(length(da2$X)*nr)),nr,length(da2$X)) 

for (i in 1:nr){ 

  UU2[i,]=qtrunc(U2[i,],spec="lnorm",a=0,b=Inf,msulog,sdsulog) 

} 

UU2=UU2*1000 

write.csv(t(UU2),"F:/FLACfile/PART Two/Uncertain Cases-Angle 45/Case 262/realization2.csv") 

 

rmax=rep(NA,nr) 

rmin=rep(NA,nr) 

rmean=rep(NA,nr) 

for (i in 1:nr){ 

  rmax[i]=max(UU2[i,]) 

  rmin[i]=min(UU2[i,]) 

  rmean[i]=mean(UU2[i,]) 

} 

max(rmax) 

min(rmin) 

mean(rmean) 
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APPENDIX III 

VALIDATION CASES 

Table 2. The values of the main factors in the Nm and COV N equations for the validation 

cases 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ᵟy/f.s ᵟy /L F.S cu1/cu2 β d/H COV cu 

0.20 0.07 5 30 2 0.4 

0.67 0.10 1.5 45 1.5 0.4 

0.13 0.04 4 30 3 0.5 

0.10 0.04 2 60 2 0.3 

0.27 0.09 5 45 3 0.5 

0.40 0.16 3 60 1.5 0.3 

0.10 0.03 1.5 30 4 0.5 

0.25 0.08 3 30 4 0.3 

0.20 0.07 5 40 2 0.5 

0.50 0.18 1.5 50 2 0.5 

0.20 0.06 4 40 4 0.2 

0.30 0.11 4 50 2 0.4 

0.20 0.09 2 50 3 0.4 

0.30 0.11 4 45 2 0.2 

0.50 0.18 5 40 2 0.3 

0.13 0.05 2 30 1.5 0.4 

0.27 0.09 4 60 3 0.5 

0.15 0.05 4 30 4 0.4 

0.13 0.05 4 50 3 0.3 

0.07 0.02 5 60 3 0.4 
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