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An Abstract of the Thesis of

Mohammad Kazem Hadi for Master of Science
Major: Physics

Title: Thermal Properties Measurement Using Mirage-Effect Experiment

The analysis of the heat transport in insulator crystals has always been the
focus of research because the knowledge that can be gained on the fundamental
physical mechanisms governing the heat transport can help in the development
of efficient thermal management strategies for many technological applications.
Thermal properties of materials usually give us practical information about its
properties. Experimental measurement of thermal properties is the main subject
for this thesis. We built a Mirage-Effect experiment to measure thermal proper-
ties of materials where its main concept is to focus a modulated heat source on
the surface of the sample. As heat is absorbed, it will create a temperature gra-
dient arising in the gas near the surface which will create a gradient of refractive
index of the gas. This gradient is detected by another probe laser skimming the
surface of the heated spot where the deflection of this probe beam is detected
through a four position detector. The main concept of the experiment is based
on generating thermal waves on the surfaces of the elaborated samples. These
waves are determined by the thermal properties of the samples. Their propaga-
tion in the air just above the boundary will create a gradient of refraction index
in the air. This will allow the probe laser beam to deflect. The deflection of
the probe laser beam as a function of the distance from the heating spot will
allow the determination of the thermal properties of sample under consideration.
The deflection of the probe beam has two components:transverse and normal.
We do a multi-parameter fit of the experimental results with the expression of
the deflection where we can deduce the values of thermal diffusivity and thermal
conductivity of the material.

We also measure the thermal diffusivity and thermal conductivity of a set of
silicon carbide samples characterized by different dozes of proton bombardment
in order to study the effect of bombardment of protons on the thermal efficiency
of SiC.
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Chapter 1

Introduction

The study of thermal properties of materials has witnessed technological break-
throughs since the development of microelectronics and nanotechnology. The
reason is that the reduction of the electronic devices should be accompanied with
an efficient thermal management strategy to prevent the failure of the device. In
what follows we describe the fundamental of physics heat transfer.

1.1 Fundamental Laws of Heat Transfer

Heat can be transferred through materials via conduction, convection, or radia-
tion. The three heat transfer processes are described below [1].

1.1.1 Heat Transfer by Conduction

The most important quantity describing the heat transfer is the thermal conduc-
tivity, which is defined as the rate of energy transfer per unit length between two
point of temperature difference of 1K. The transfer of heat through one material
is called heat transfer by conduction. This type of heat transfer is described by
the Fourier law which relates the energy density of the heat flux j to the applied
temperature gradient on the sample.

j = κ∇T (1.1)

Here κ is the thermal conductivity of the material.
Using the equation of conservation of energy we can find the time-position evo-
lution of temperature by the following equation:

∂T

∂t
=

κ

ρcp
∇2T (1.2)

The coefficient of the Laplacian of temperature is known as the heat diffusivity
α = κ/ρcp, with ρ being the density of the material and cp its heat capacity at
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constant pressure. The thermal diffusivity α is defined by the ratio κ/ρcp. The
latter is related to the ability of the material to diffuse energy by conduction.

In the macroscopic scale, Fourier assumes instantaneous response of the system
to the temperature gradient. In this case the response time of the system is very
short and considered negligible compared to the time of observation.

1.1.2 Energy Transfered by Convection

Macroscopic movement of molecules within the fluid is the main mode of energy
transfer in fluids. This is known as convection. In fluids, molecules can freely
move unless their mean free path is affected by their intermolecular collisions.
There are two types of convection, the neutral and forced convection. In the
natural convection, forces of gravity are the main factors for dynamics of fluids.
However, forced convection enhances the thermal tranfser performance since a
collective movement of ensembles of molecules is imposed on the fluid.

In microscales, the dimension of the fluid is insignificant compared to the mean
free path of the molecules. In this case the regime is called ballistic.

1.1.3 Energy Transfer by Radiation

Emitting and absorbing electromagnetic radiation of a body at a non-zero tem-
perature can be easily seen from the Stephans-Boltzmann law where the energy
absorbed or radiated is directly proportional to the temperature power four. The
wavelength λ is the main characteristic length for radiation. In the case where
λ is much greater than the characteristic size of the system the radiation can be
treated as a simple electrostatic problem and delay effect can be ignored. How-
ever, when λ is smaller than the dimensions of the system the electrostatic picture
can no longer describe the thermal radiation, since electromagnetic waves cannot
be considered as plane waves. In fact, when the characteristic lengths are larger
than the wavelength, the far field approximation can be applied. In conclusion,
In a material where the wavelength is comparable to the dimension of the system
the macroscopic heat transfer is not any more valid and new theories must be
considered.

1.2 Introduction to Physics of Phonons

In the present thesis we are focusing on the phonon energy transfer in semiconduc-
tors. This section presents the basic theories and laws for describing phonons and
their contribution to heat transfer by understanding the laws of lattice dynamics.
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Figure 1.1: Schematic diagram of a monoatomic linear chain that consists of
atoms of mass m, separated by a distance a and interacting with a harmonic
potential of force constant C

1.2.1 Phonons in a Monoatomic Linear Chain

The vibrations of atoms in a crystal lattice produce phonons, the normal modes
of these vibration waves. Phonons are characterized by an angular frequency ω,
a wave-vector k and a polarization s.
Consider a monoatomic linear chain that consists of atoms of mass m, force
constant C between the atoms, and separated by a distance a. The dynamical
equation of the atom when interacting with nearest neighbors is given by:

m
d2un(t)

dt2
= −C(un(t)− un+1(t)) + C(un−1(t)− un(t)) (1.3)

The phonons are considered as plane waves, so the displacement can be written
as,

un(t) = u0(k)ei(ωt−kna) (1.4)

Substituting equation (1.4) in (1.3), we can get the dispersion relation ω versus
the wave vector k in the following relation

ω(k) = 2

√
C

m
| sin ka

2
| (1.5)

It is critical to study the dispersion relation in the first Brillouin zone, which
is in the interval [0,2π/a[. In this case, the number of vibrating modes equals
the number of degrees of freedom. Figure (1.2) shows the plot of the dispersion
relation, for m=10g/mol and C=10N/m, and the group velocity of the phonons
which is the derivative of the dispersion relation with respect to the wavevector
k.

1.2.2 Phonons in a Diatomic Linear Chain

Figure (1.3) shows a schematic diagram of a diatomic linear chain where two
atoms of mass m and M are placed in alternating order on the linear chain.
A distance a always separates every neighbor. The interactions between atoms
remain identical to the previous case. The Bravais lattice now has a period of 2a,

3



Figure 1.2: a) Dispersion relation for a monatomic linear chain. (b) Group
velocity for all phonons of a monatomic linear chain. The dotted horizontal line
represents the speed of sound in the material [19].
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Figure 1.3: Schematic of a diatomic linear chain that consists of atoms of masses
m and M, separated by a distance a and interacting with a harmonic potential
of force constant C

whereas the first Brillouin zone, which is inversely proportional to the periodicity
in the direct space, will be in the interval [0, π/a]. Hence our interest will be
centered on this interval.
The aim is to establish two dynamical equations, one for each atom of the unit
cell. We can write:

m
d2u2n(t)

dt2
= −C(u2n(t)− u2n+1(t)) + C(u2n−1(t)− u2n(t)) (1.6)

M
d2u2n+1(t)

dt2
= −C(u2n+1(t)− u2n+2(t)) + C(u2n(t)− u2n+1(t)) (1.7)

The displacement for each atom of the primitive cell can be written as progressive
planar waves.

u2n(t) = u1(k)ei(ωt−k2na) (1.8)

u2n+1(t) = u1(k)ei(ωt−k(2n+1)a) (1.9)

It is important to note here that the amplitudes of vibration are different for each
atom of the unit cell. For each vibration mode, the two atoms do not vibrate in
the same manner. Therefore, we are left with a system of two equations with two
unknowns.
Substituting equations (1.6 and 1.7) in (1.8 and 1.9), the dispersion relation of
phonons which is the angular frequency versus ω as a function of the wavevector
k becomes

ω2 =
C(m+M)

mM
(1±

√
1− 4mM sin2 ka

(m+M)2
) (1.10)

If we consider that the chain consists of N atoms and use cyclic periodic boundary
conditions we find the following quantized values for the wavevectors

kn =
2π

Na
n (1.11)
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Where n is an integer.

The phonons are characterized by a wave packet structure, which allows the
definition of their group velocity vg as the derivative of the angular frequency
with respect to the wave vector:

vg(k) = ∇kω(k) (1.12)

The aim is to study the dispersion relation in the first Brillouin zone, precisely
in the interval [0, π/2a[, with n∈[0...N -1]. Thus, the number of the vibration
modes is equal to the number of degrees of freedom in the system. Figure (1.4)
shows the obtained dispersion relations and the associated group velocities with
m=10g/mol, M=20g/mol and C=44N/m. The first branch is called the acoustic
branch. It is characterized, as in the case of the monatomic chain, by a zero
frequency for a zero wave vector. The number of acoustic branches is equal to
the dimensionality of the system. Again, in the case of long-wavelengths approx-
imation, the speed of sound is found in the chain, as indicated in Figure(1.4).

The group velocity goes to zero again near the edge/boundary of the Brillouin
zone, and therefore it corresponds to a standing wave. The highest branch is
called the optical branch. The number of optical branches is normally equal to
the total number of degrees of freedom in the primitive cell minus the number of
acoustic branches. For these optical branches, the frequency is never zero, even
for a zero wave vector. The group velocity goes to zero at the center and near
the boundary of the Brillouin zone, and therefore its group velocity is negative,
with an absolute value smaller than that of the acoustic branch.

From the figure (1.4) we see that the graph shows two branches, an optical branch
and an acoustic branch. The acoustic branch has a zero frequency for wavevector
zero, while the optical branch has non-zero frequency even for a zero wavevector.
The group velocity of phonons can be obtained from these branches since it is
the derivative of the frequency with respect to the wavevector as shown in figure
(1.5). For acoustic waves the velocity is higher while for the optical waves the
velocity is negative but goes to zero near the boundary and at the center. The
amplitude of vibrations will also be different according to different branches. In
the acoustic branch, the atoms always vibrate inphase but the amplitude decays
near the edge of the BZ which means the energy of this mode is not going to
contribute to transfer in the system.

1.2.3 Phonons in a 3D Lattice

After finishing the study of diatomic 1D lattices, we can find by a similar approach
the dispersion relation corresponding to a 3D crystal. The dynamical equation

6



Figure 1.4: (a) The dispersion relations for a diatomic linear chain. (b) The group
velocity of all the phonons of a diatomic linear chain. The dotted horizontal line
represents the speed of sound in the material [19].
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Figure 1.5: (a) Amplitude of vibration of the normal modes for the acoustic
branch. (b) Amplitude of vibration of the normal modes for the optical branch
[19].
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Figure 1.6: The dispersion relations for a bulk Germanium crystal [20].

will be expressed in terms of the potential energy which has the form:

Etot = E0 +
∑
l,b,α

(
∂U

∂ubαl
)0u

bα
l (t) +

∑
l,b,α

∑
l′,b′,β′

(
∂2U

∂ubαl ∂u
b′β
l′

)0u
bα
l (t)ub

′β
l′ (t) (1.13)

Which gives a dynamical equation of the form:

mbd
2ubαl (t)

dt2
= − ∂U

∂ubαl
= −

∑
l′,b′,β

(
∂2U

∂ubαl ∂u
b′β
l′

)0u
b′β
l′ (1.14)

From this dynamical equation the calculation of the dispersion relations in the
general case of an arbitrary crystal is obtained and solved numerically. Figure
(1.6) shows the plot of the dispersion relation for a bulk Germanium crystal.

1.3 Thermal Transport Models

In the previous sections, the characterization of phonons as the heat carriers
which occupy different branches and states and energies was done. From this
study we can now proceed to model phonon transport which contributes to heat
transport. Thermal transport studies of materials are extremely useful since the
world is searching for new materials that can challenge modern device working
environment and size. Dissipation of heat in semiconductor materials is very es-
sential to increase the lifetime of a device and to work in harsh environments. The
decrease in the size of laptops and smartphones for instance was made possible
after overcoming the problem of heat dissipation of materials. On the other hand,
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understanding heat transport in materials is useful for choosing different mate-
rials for different applications. Low thermal conductivity materials which also
have high electrical conductivity can be used as thermoelectric devices. In the
following section we will describe the theoretical models for calculating thermal
conductivity and heat capacity in a given material.

1.3.1 Callaway’s Model for Thermal Conductivity

For the study of thermal conductivity, we consider the different directions of
propagation of waves in a crystal. Usually, each high symmetry direction affects
the overall lattice thermal conductivity of the crystal. The phonon heat current
j along any direction in any crystal can be considered as the sum of individual
vector components jhkl directed along the high- symmetry directions [h,k,l] of the
crystal. Thus, we may write

j =
∑
[h,k,l]

jhkl (1.15)

where the summation runs over all the high-symmetry directions of the crystal.
On the other hand, the individual component jhkl of the total heat current j is
defined as the sum over all states khkl of the number of phonons with a given
frequency that are incident per unit time parallel to the high symmetry direction
[h,k,l], times the phonon energy ~ω(khkl). This can be expressed as

jhkl =
∑
[h,k,l]

~ω(khkl)N(khkl).vhkl (1.16)

Here, vhkl is the phonon velocity in the high symmetry direction [h,k,l], and
N(khkl) is the phonon distribution in the state khkl, defined as the sum of the
phonon distribution at equilibrium N̄(khkl) and the deviation of the phonon dis-

tribution from equilibrium Ñ(khkl) in the state khkl. Typically, in an infinite
crystal, the change in the phonon distribution is due to the combined effects of
temperature gradient together with phonon collisions with each other and defects.
In the steady state regime, the total rate of change in the phonon distribution
must vanish. Thus, Boltzmann equation, which describes this total rate of change
in the phonon distribution, takes the form

−vhkl.∇N(khkl) +
∂N(khkl)

∂t
= 0 (1.17)

The usual way to solve equation (1.17) is to approximate its second term by∂N(khkl)
∂t

=
N̄(khkl)−N(khkl)

τ(khkl)
. With this approximation, it is assumed that in the absence of a

temperature gradient, any deviation from equilibrium in the state khkl damps
out rapidly in a time τ(khkl). This approximation is valid in some circumstances,
but it generally ignores the difference between the physical nature of the normal
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processes, which tend to displace the phonon distribution by a small vector u in
the direction of the heat current, and the nature of the resistive processes, which
tend to restore it back to its equilibrium value. Although the normal processes do
not contribute to the thermal resistance, they must be taken into account when
solving Boltzmann equation, because they cause the deviation of the phonon
distribution function in a direction opposite to the resistance direction. The dis-
regard of this effect often leads to inaccurate estimation of the magnitude of κ.
Therefore, a more accurate approximation to the second term in equation (1.17)
would be given by

∂N(khkl)

∂t
=
Nu(khkl)−N(khkl)

τN(khkl)
+
N̄(khkl)−N(khkl)

τR(khkl)
(1.18)

Where Nu(khkl) is the displaced phonon distribution, which is stationary in the
state khkl for the normal processes, and τN(R)(khkl) the relaxation time associated
with normal (resistive) processes. In the case of an infinite crystal, the spatial
dependence of the phonon distribution function can be ignored and equation
(1.17) reduces to

−vz,hkl
dN̄(khkl)

dT
.
∂T

∂z
+
∂N

∂t
= 0 (1.19)

In equation (1.19), it is assumed that the temperature gradient is directed along
the z direction and is too weak to alter the deviation of the phonon distribution.
By using equation (1.18) in equation (1.19) and following Callaways mathematical
arrangements [23,24], the individual component of the total phonon heat current
takes the form

jhkl = −
∑
khkl

τ(khkl))vhkl.∇Thkl ×
~ω(khkl)

kbT 2

e
~ω(khkl)

kbT

(e
~ω(khkl)

kbT
−1

)2

vhkl (1.20)

where ∇Thkl = ∇Tcosψhkl (the component of the temperature gradient aligned
parallel to the high symmetry direction[h,k,l], with ψhkl being the angle between
the crystallographic direction along which the temperature gradient is directed
and the high-symmetry direction [h,k,l]. In equation (1.20), τ(khkl) is the total
relaxation time defined as τ(khkl) = τC(khkl)[1 + βhkl

τN (khkl)
], with τC(khkl) being a

combined relaxation time for the state khkl defined as 1
τC(khkl)

= 1
τN (khkl)

+ 1
τR(khkl)

and βhkl a parameter with the dimension for a relaxation time given by

βhkl =

∫ θD,hkl/T

0
dx x4ex

(ex−1)2
τC(khkl)
τN (khkl)∫ θD,hkl/T

0
dx x4ex

(ex−1)2
1

τN (khkl)
(1− τC(khkl)

τN (khkl)
)

(1.21)

Where x = ~ω(khkl)
kBT

is a dimensionless parameter. Thus, the thermal conductivity
along the high-symmetry direction [h,k,l] can be written as

κ = − jhkl
∇T

=
∑
khkl

∑
j

τj(khkl)v̄
2
j,hkl

~ωj(khkl)
kBT 2

× e
~ωj(khkl)

kbT

(e
~ωj(khkl)

kbT
−1

)2

cosψhkl (1.22)
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where the subscript j denotes the phonon polarization and v̄j,hkl is a temperature-
dependent phonon group velocity averaged over all khkl states. By combining this
equation with equation (1.15), one can readily find that the thermal conductivity
in an infinite crystal along a well-defined crystallographic direction takes the form

κ =
∑
[hkl]

∑
khkl

∑
j

τj(khkl)v̄
2
j,hkl

~ωj(khkl)
kBT 2

× e
~ωj(khkl)

kbT

(e
~ωj(khkl)

kbT
−1

)2

cosψhkl (1.23)

and the average thermal conductivity of the same crystal is

κ̄ =
1

m

∑
[hkl]

∑
khkl

∑
j

τj(khkl)v̄
2
j,hkl

~ωj(khkl)
kBT 2

× e
~ωj(khkl)

kbT

(e
~ωj(khkl)

kbT
−1

)2

(1.24)

where m is the number of high-symmetry directions in the crystal structure under
consideration. We note here that the number of high-symmetry directions in a
given crystalline structure equals the number of independent elastic constants
[25].The major importance of equations (1.23) and (1.24) stems in that they can
be used to describe κ either for a specific surface orientation or as an average
over all crystallographic directions, with taking into account the various intrinsic
phonon processes that may influence the heat transport mechanism [23,24].

1.3.2 Debye Model for Heat Capacity

In fact, it was known that at low temperatures most materials have a heat capac-
ity that is proportional to T 3. In 1912 Peter Debye discovered how to better treat
the quantum mechanics of the oscillations of atoms, and managed to explain the
T 3 dependance of the specific heat. Debye realized that the oscillation of atoms
is the same thing as sound, and sound is a wave, so it should be quantized the
same way as Planck had quantized light waves in 1900 [26].
We will consider waves with periodic or Bornvon Karman boundary conditions.
It is easiest to describe this first in one dimension i.e. in infinite crytals. Here,
instead of having a one-dimensional sample of length L with actual ends, we
imagine that the two ends are connected together making the sample into a
circle. The periodic boundary condition means that, any wave in this sample eikr

is required to have the same value for a position r as it has for r+L (we have gone
all the way around the circle). This then restricts the possible values of k to be

k =
2πn

L
(1.25)

for n an integer. If we are ever required to sum over all possible values of k, for
large enough L we can replace the sum with an integral obtaining∑

k

→ L

2π

∫ ∞
−∞

dk (1.26)
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A way to understand this mapping is to note that the spacing between allowed
points in k space is 2π/L, so the integral

∫
dk by a sum over k points times the

spacing between the points.
In three dimensions, the story is extremely similar. For a sample of size L3, we
identify opposite ends of the sample (wrapping the sample up into a hypertorus!)
so that if you go a distance L in the x, y or z direction, you get back to where
you started. As a result, our k values can only take values

k =
2π

L
(n1, n2, n3) (1.27)

for integer values of ni, so here each k point now occupies a volume of (2π/L)3.
Because of this discretization of values of k, whenever we have a sum over all
possible k values we obtain ∑

k

→ L3

(2π)3

∫ ∞
−∞

dk (1.28)

Debye decided that the oscillation modes of a solid were waves with frequencies
ω(k) = v|k| with v the sound velocity and for each k there should be three
possible oscillation modes, one for each direction of motion. After doing the
calculations Debye found the average energy to be

〈E〉 =

∫ ∞
0

dωg(ω)(~ω)(nB(β~ω) +
1

2
) (1.29)

Where β = 1/kBT and nB is the Bose factor such that nB(x) = 1/(ex − 1) and
g(ω) is the density of state give by

g(ω) = N
9ω2

ω3
d

(1.30)

Where
ω3
d = 6π2nv3 (1.31)

This frequency will be known as the Debye frequency and n is the density of the
atoms give by nL3 = N .The meaning of the density of states here is that the
total number of oscillation modes with frequencies between ωand ω+ dω is given
by g(ω)dω. We are concerned with heat capacity which is partial derivative of
energy with respect to time

C =
∂〈E〉
∂T

= NkB
(kBT )3

(~ω)3

12π4

5
∼ T 3 (1.32)

Unfortunately, now Debye has a problem. In the expression just derived, the
heat capacity is proportional to T3 up to arbitrarily high temperature. We know
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however, that the heat capacity should level off to 3kBN at high T. Debye guessed
(correctly) that really there should be only as many modes as there are degrees of
freedom in the system. To fix this problem, Debye decided to not consider sound
waves above some maximum frequency ωcutoff , with this frequency chosen such
that there are exactly 3N sound wave modes in the system (three dimensions of
motion times N particles). We thus define ωcutoff via

3N =

∫ ωcutoff

0

dωg(ω) (1.33)

Following the same procedure we did befor we find the heat capacity at the limit
of high temperature to be 3kBN [26].
From the knowledge of the material thermal conductivity and specific heat, the
material heat diffusivity can be derived from equation (1.2).

1.3.3 Phonon Heat Transport Approaches

Three main approaches are known in the study of phonon transport. The first is
the study of Boltzmanns transport equation whose solution enters the expression
of the thermal conductivity when thermal energy transfer by particle-like car-
riers is assumed. The Boltzmann equation is considered the classical approach
to the heat transfer where elasticity theory is involved to obtain the strain and
stress tensors from which we deduce the elastic waves equation and deduce the
dispersion relation of the material. The dispersion relation allows us to calculate
the frequency of phonons having different wave-vectors with the frequency and
dispersion curve of the material, we identify the normal modes and then many
thermal properties can be obtained such as specific heat. Next the phonons inter-
actions are studied by analyzing their relaxation times. These phonons interact
by creation and annihilation processes while maintaining a conservation of en-
ergy. These anharmonic interactions between the lattice normal modes can occur
via non-resistive normal processes or resistive Umklapp processes. The main dif-
ference between these processes is that in the case of anharmonic interactions
via normal processes one must consider momentum conservation, while momen-
tum conservation exists in Umklapp processes. Other phonon processes include
boundary interactions and point defect phonons interactions. These processes
are similar to Umklapp phonon processes. The major similarity is that all these
phonon processes affect the momenta of the involved phonons. That is why we
consider resistive phonon processes to include Umklapp phonon processes rate
and those of point defect and boundary interactions to give the overall resistive
scattering rate. The resistive phonon interaction processes are the contributors
to the shifting of phonon heat current to zero. These mechanisms, along with
their relation to the thermalization and resistance to the heat flow, are described
by several theories. This approach works well at high energies. However, at
low energies, the quantum theory is involved. Studying phonons in the quantum

14



mechanical point of view was discussed in the ab-initio study. Ab-initio uses
quantum mechanical approach by solving Schrodinger equation, with some weak
approximations, to find force constants and consequently finds the thermal prop-
erties of the crystals.The last approach to tackle the phonon transfer problem
is the molecular dynamic method in which it uses Newton’s laws as its starting
point, so by calculating position and velocity other properties can be found. In
this case phonons in solids are considered as a box of particles, similar to the
study of a gas. Then by simulation techniques, such as the Monte Carlo study,
the dynamics of phonons and their mode of transfer is predicted depending on
different elastic and thermal properties of the material. A computer simulation
is used to numerically solve the equations of motion for obtaining the vibrational
modes of a material. However, MD is an extremely lengthy process. It considers
interactions within a material atom by atom, and therefore the simulations are
too long and sometimes do not provide correct results due to lack of theoretical
studies and considerations of heat transfer physical laws.

1.4 Experimental Measurement of Heat Prop-

erties

On the other hand, several experimental methods are used to measure the heat
transfer in materials. These include photoacoustic microscopy, where a sample is
enclosed with a gas in an isolated volume and pressure variation is measured to
obtain a thermal wave image. A well-known method is the mirage effect method.
In this case the gradient of the index of refraction of the air in contact with the
sample is detected by a probe beam. [8–10] Infrared detection is also a well know
method of measurement of heat emitted by a sample.

1.4.1 Thesis problem

In this dissertation, we intend to investigate the physics of heat transport in sili-
con carbide substrate bombard by H+ ions. These bombardment are expected to
generate strains, and consequently elastic fields, which may scatter the phonons.
Hence, the work outlined in this thesis will describe the effect of elastic field on
phonon scattering and heat transport.
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Chapter 2

Theory of the Mirage Effect

The mirage effect is based on a theory, which can be used to obtain the thermal
properties of the measured sample. This theory is presented below.

2.1 Thermal waves

The total temperature field T, as a function of position x and time t, is described
by the general heat conduction equation [8].

ρcp
∂T (x, t)

∂t
= ∇.(κ∇T (x, t)) (2.1)

Where ρ is the density, cp is the specific heat at constant pressure and κ is the
thermal conductivity. For a steady state regime where the partial derivative of
temperature with respect to time is zero, the heat equation is independent of
material properties and will only depend on the geometry of the body. Hence
equation (2.1) will be simplified to Laplace equation. In general, the density, heat
capacity and thermal conductivity are important parameters since they describe
heat transfer inside the material.
In the case of composite samples κ will be a function of the position i,e, κ = κ(x)
with constant ρ and cp. We can then obtain a solution to the equation (2.1) [8].
For a homogeneous isotropic solid whose thermal conductivity is independent of
position, equation (2.1) becomes

ρcp
∂T

∂t
= κ∇2T (2.2)

Another important derived thermal property is the thermal diffusivity,

α =
κ

ρcp
(2.3)

where α is the diffusivity of the substance. The quantity is called by Clerk
Maxwell as the Thermometric conductivity since it measures the change of tem-
perature, which should be produced in a unit volume of the substance, by the
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quantity of heat which flows in a unit time through a unit area of a layer of the
substance of a unit thickness with a unit difference of temperature between its
faces [8]. The thermal diffusivity, besides being a derivable quantity, is an impor-
tant thermal parameter, and for homogeneous materials it will replace the two
thermal parameters of equation (2.2). We can solve this equation then for ther-
mal diffusivity instead of dealing with two thermal properties to solve the heat
equation. Microcracks, delamination, and impurities are thermal barriers that
give non uniform diffusivity values. Thus the thermal diffusivity measurement
can be used as an efficient structural characterization technique [9].
This equation is known as heat equation where α is the thermal diffusivity of the
material. In our experiment a heating source is used to heat the sample so we
add to the heat equation a term associated to the heat source.

∇2T (x, t)− ρcp
κ

∂T (x, t)

∂t
= −A(x, t)

κ
(2.4)

Here A(x, t) is the total amount of heat deposited per unit time per unit volume
by the heat source. If we have a periodic source of heat with angular frequency
ω, A will have the following form,

A(x, t) = A(x)e−iωt (2.5)

If the temperature also has the same form as (2.5), equation (2.4) will be

κ∇2T (x) + κq2T (x) = −A(x) (2.6)

where q is the thermal complex wave number given by [10]

q =

√
iωρcP
κ

= (1 + i)

√
ωρcp
2κ

(2.7)

The appearance of ”thermal waves” comes from equation (2.4) due to the equiv-
alence with Helmhotz equation for wave motion, which results in a wave-like
solution [8,10]. The wave number q has real and imaginary parts, so the solution
of the equation should fall to 1/e after covering a distance called the ”thermal
diffusion length”µ .

µ =

√
2κ

ωρcP
(2.8)

If we have a heat source applied to a material with variable frequency pulses, the
physical intuition tells us that if we increase the frequency the heat will reach
smaller distance in the material. This is because the material doesn′t have enough
time to absorb heat, and it will dissipate heat directly. The reversed mechanism
also true. On the other hand, the thermal diffusion length is inversely proportion
to the square root of the frequency, so the penetration depth of thermal waves
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Figure 2.1: Spatial distribution of the time-independent temperature for a 1-d
heat flow [9]

may be varied according to the frequency where it usually varies from the order of
microns to millimeter according to the material type and frequency. This short
penetration depth makes the mirage effect technique a useful tool for imaging
near surface features. The wavelength of a thermal wave is

λthermal = 2πµ (2.9)

The amplitude of the thermal wave decreases by a factor of e−2π ≈ 1/500 after
traveling one wavelength. This means that the experiment involving scattering
of thermal waves must lunch, scatter, and receive the wave in a total propagation
distance not much larger than a wavelength. For a 1D case, where the reference
is taken at x=0, using equation (2.6) T is found to be

T (x, t) = T0e
i(qx−wt) (2.10)

where T0 is the amplitude of the thermal wave as x→0. A plot to the real part
of T (x, t)/T0 versus distance x in terms of thermal diffusion length is shown in
figure (2.1).
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2.2 Theoretical description of mirage effect ex-

periment

Mirage-effect experiment is used to measure the thermal properties of a uniform
material such as substrate of metal or semiconductor, thin films, and super-
lattices. Determination of the thermal wavelength in equation (2.9) as a function
of frequency is useful since the slope of the plot of that wavelength versus the
reciprocal of the inverse of the square root of the frequency is a function of
the thermal diffusivity ,α, of the material. The derivation of the theory of mi-
rage effect explains exactly how this is accomplished. The main concept of the
mirage effect experiment is the detection of thermal waves in solids where the
temperature distribution creates a temperature gradient which leads to an index
of refraction gradient in the gas above the sample which is detected by a second
laser beam called probe beam directed along the surface of the sample near the
heating spot which is generating thermal waves. In addition, the heat capacity of
the air is so small compared to that of the solid, so the temperature distribution
in the air very close to the surface of the sample is determined by the temperature
distribution in the solid. Then, the deflection of the probe beam by a refractive
index gradient produces a measured signal. However, the deflection angle is very
small, typically less than Millie-radiant, so that the path of the probe beam is
considered to be a straight line across the surface. [10]

The formula of the deflection of the mirage probe is found to be [11–13]

M = −
∫

1

n

dn

dT
∇T (r)× dr (2.11)

Where M is the vector angular deflection. This formula expresses the angle of
deflection in terms of an integral of the fractional change in the index of refraction,
and the temperature in the air. Since the expected temperature variation are
quite small, it is reasonable to assume that the ratio (dn/dT )/n will be essentially
constant over the path. Typically, dn/dT is 10−4/◦C for liquids and 10−5/◦C for
solids [12]. Moreover, the angular deflection is small, so the direction of the beam
path, dr, can be taken to be constant, say in the y-direction, so the deflection
can be written to a high degree of accuracy as,

M = − 1

n

dn

dT
∇T̄ (x, z)× ŷ (2.12)

where the bar indicates an average over the y-coordinate. The average reduces
the problem to a two dimensional one. The main important point left is to find
the temperature distribution in the material according to its type which will help
us in the calculation of the vector angular deflection.
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2.2.1 Bulk Materials

The temperature which appears in equation (2.12) is the temperature for the
medium above the sample which is usually air, so the thermal wave problem that
must be solved is one with two media: The first medium is the gas above the
sample which will be denoted by g as a subscript in the studied parameters, the
second medium is the sample and will be denoted by s as a subscript. The gas
will be taken to occupy the region z<0 and the sample region z≥0. The wave
equation that must be solved can then be written as

∇.[κg∇T̄g(x, z)] + κgq
2
g T̄g(x, z) = 0; z < 0, (gas) (2.13)

and
∇.[κs∇T̄s(x, z)] + κsq

2
s T̄s(x, z) = −δ(x)δ(z); z ≥ 0, (solid) (2.14)

where we have assumed that the heating beam is a point source of unit strength
at x=0 and z=0. These equations are perhaps most easily solved by writing the
temperature,T̄ (x, z), as a fourier transform in x,

T̄ (x, z) =

∫ ∞
−∞

dkeikxt(k, z) (2.15)

equations (2.13) and (2.14) then become,

∂

∂z
[κg

∂

∂z
tg(k, z)] + κgk

2
gtg(k, z) = 0 (2.16)

and
∂

∂z
[κs

∂

∂z
ts(k, z)] + κsk

2
sts(k, z) =

−1

2π
δ(z) (2.17)

where
kg = (q2

g − k2)1/2 (2.18)

and
ks = (q2

s − k2)1/2 (2.19)

Since the only source is located at z=0, the thermal waves must propagate away
from that plane, i.e., in the negative z-direction for z<0, and in the positive
z-direction for z>0. Thus, they can be written as

tg(k, z) = Cge
−ikgz (2.20)

and
ts(k, z) = Cse

iksz (2.21)

The boundary conditions that must be applied to these waves are the temper-
ature continuity across the plane, z=0, and the heat flux discontinuity which
corresponds to the source strength in equation (2.17) on the same plane,

Cg = Cs (2.22)
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iκsksCs + iκgkgCg = − 1

2π
(2.23)

These equations can be solved for the constant Cg,

Cg =
i

2π(κsks + κgkg)
(2.24)

The mirage deflection signal can now be obtained by combining equations (2.12),
(2.15), (2.20), (2.21), and (2.24).

M =
i

2π

1

n

dn

dT
ŷ ×∇

∫ ∞
−∞

ei(kx−kgz)

κsks + κgkg
(2.25)

The equation (2.25) describes the signal produced by an infinitesimally narrow
probe beam scanning the region of a point heating beam. However, in experimen-
tal work, both the probe beam and heating beam radii are significant which affects
the formula of the deflection, so we should produce a theoretical expression that
can be compared with data from real experiments in which both of these beams
have finite radii. Consequently, we assume that both beams have Gaussian pro-
files with R1 and R2 representing the radii of the heating beam and probe beam,
respectively. The heating beam will be assumed to be centered at the origin, and
the probe beam centered at a distance, x, horizontally away from the origin and
a height, h, above the surface as in figures (2.2) and (2.3). Equation (2.25) con-
tains only simple exponential functions ofx and z, these Gaussian averages can
be performed analytically, yielding final expressions for the normal(z-direction)
and tangential(x-direction) deflections of the probe beam,

Mnorm =
−1

π

1

n

dn

dT
e−

q2gR
2
2

4

∫ ∞
0

dk
kgcos(kx)eikghe−k

2R2
1/4

κsks + κgkg
(2.26)

and

Mtan =
−i
π

1

n

dn

dT
e−

q2gR
2
2

4

∫ ∞
0

dk
ksin(kx)eikghe−k

2R2
1/4

κsks + κgkg
(2.27)

In these expressions we have used the symmetry in the integrand to express the
deflections as integrals from zero to infinity with trigonometric functions in x,
rather than from minus infinity to infinity with exponential functions. It′s clear
from equations (2.26) and (2.27) that the normal deflection as in figure (2.5) is an
even function of the horizontal offset, x, between the heating and probe beams,
and that the tangential deflection as in figure (2.4) is an odd function of the offset.
The technique for measuring the thermal diffusivity involves measuring Mtan as
a function of the offset distance, x, in the limit of very small probe beam height,
h [14–16]. The dependence of Mtan on the thermal diffusivity of the sample is
through the quantity ks which appears in the denominator of the integrand and
which was defined in equation (2.19). Except for the overall phase factor involving
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Figure 2.2: mirage-effect geometry [9]

Figure 2.3: Top view of the sample which shows the probe beam spot and several
positions on the probe beam axis. In the diagram, the heating beam scans the
probe beam at the position −s1 [9].
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Figure 2.4: The real part of the transverse deflection versus the offset distance
x [9]

the probe beam radius, R2, its dependence on kg, at least for small values of h, is
quite weak. Plots of the real part of the function versus the offset, x, for a small
value of R1 are given in figure (2.6). The antisymmetric of the function is quite
apparent as is the fact that it represents a very heavily damped wave. The two
points at which this plot of the real part of Mtan heavily damped wave. The two
points at with this plot of the real part of Mtan first goes to zero on either side
of the central zero are of particular interest. Since the real part of the function
vanishes there, the function is purely imaginary, corresponding to values of the
phase ±π/2. A numerical analysis shows that the distance x0, between the two
ninety degree phase points on either side of the origin is given by

x0 = d+
√

1.4πα/f (2.28)

where d is a distance of the order of the heating beam diameter and where f is the
frequency (f = ω/2π). Thus, a plot of x0 versus the reciprocal of the square root
of the frequency should have a slope given by

√
1.4πα and an intercept which

is dependent on the size of the heating beam. A theoretical and experimental
plot of this type for chromium is shown in figure (2.7). It is important, when
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Figure 2.5: The real part of the normal deflection versus the offset distance x [9]

Figure 2.6: Plots of the real part of Mtan equation 2.26 as a function of the offset
distance, x, between the probe and heating beam for three different frequencies
[10,15]
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Figure 2.7: Experimental (squares) and theortical(line) plots of x0 versus the
reciprocal of the square root of the frequency for a pure single crystal of chromium
[16]

making experimental measurements, that the low- frequency portion of this plot
be used to calculate the slope. This is because we have assumed that the probe
beam height, h, is small. ”Small” in this case means compared to the thermal
wavelength in air. The thermal wavelength increases with decreasing frequency,
decreasing the effective height of the beam and making our assumption more
valid. The high-frequency portions of both the theoretical and experimental
curves show deviation from linearity associated with the finite beam height and
the properties of the gas.

2.2.2 Layered Materials

The method used to measure the thermal diffusivity can also be applied to layered
structures. This will be illustrated here by considering a material with a coating
or an oxide on its surface. The theoretical description of the mirage effect for a
coated material is very similar to the description of the uncoated material above.
In the following, we extend the theoretical treatment to a more general case of
situations. We will again let the subscript ”g” indicate the gas above the surface,
but will use the subscript ”i” to indicate the layered material, rather than the
bulk material under it. We can describe the layered material by simply adding
more equations to equation (2.13).

∇.[κi∇T̄i(x, z)] + κiq
2
i T̄i(x, z) = −δ(x)δ(z) (2.29)
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where we also use the Fourier transform as following

T̄i(x, z) =

∫ ∞
−∞

dkeikxti(k, z) (2.30)

which satisfies the differential equation

∂

∂z
[κi

∂

∂z
ti(k, z)] + κik

2
i ti(k, z) =

−1

2π
δ(z) (2.31)

where
ki = (q2

i − k2)1/2 (2.32)

With a corresponding addition to equations 2.13 and 2.16 the solution to 2.31
take the form

tg(k, z) = Cge
−ikgz; z < 0(gas) (2.33)

t1(k, z) = C1sinh(O1 + ik1z); 0 < z < a1 (2.34)

ti(k, z) = Cisinh(Oi + iki(z − ai−1)); ai−1 < z < ai, i = 2, 3, .... (2.35)

The form of the equations (2.34) and (2.35) was chosen to include waves propa-
gating in both positive and negative directions. This is because the wave propa-
gating away from the source (at z=0) will now scatter at each of the boundaries
between two adjacent layers at z = ai. The constant Cg describes the amplitude
and phase of the thermal waves propagating into the gas. This wave is the one
that is responsible for the deflection of the probe beam that gives rise to the
mirage signal. The complex constant O1 describes the relative amplitude and
phase between forward-going and backward-going waves in layer 1. With the
only source at z=0, this quantity describes the collective response to a forward-
going thermal wave of all layers in the half-space z>0. Indeed, when we apply
the boundary conditions as before at z=0, we obtain

Cg = C1sinh(O1) (2.36)

and

iκgkgCg + iκ1k1C1cosh(O1) =
−1

2π
(2.37)

The value of the constant Cg is all that is necessary to describe the temperature
distribution in the gas, and hence to calculate the probe-beam deflection. If we
combine both equations (2.36) and (2.37) we get the following

Cg =
i

2π(κ1k1coth(O1) + κgkg)
(2.38)

Now, we do the same procedure we did for the bulk to find the formula of trans-
verse and normal deflection to get the following

Mnorm =
−1

π

1

n

dn

dT
e−

q2gR
2
2

4

∫ ∞
0

dk
kgcos(kx)eikghe−k

2R2
1/4

κ1k1coth(O1) + κgkg
(2.39)
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and

Mtan =
−i
π

1

n

dn

dT
e−

q2gR
2
2

4

∫ ∞
0

dk
ksin(kx)eikghe−k

2R2
1/4

κ1k1coth(O1) + κgkg
(2.40)

The value of O1 can be determined if the value of O2 is known, the value of O2

can be determined if the value of O3 is known, etc. This follow from the fact that
the constant Ci can be eliminated from the boundary conditions at the interface
between two successive layers [16].

tanh[Oi + iki(ai − ai−1)] =
κiki

κi+1ki+1

tanh(Oi+1) (2.41)

In the following I will do the calculation only for thin films since my experimental
measurements are based on thin films. Since the subscript ”2” now refers to the
substrate, which we shall consider to be thermally thick we set tanh(O2) = 1. we
get

O1 = −ik1a1 + tanh−1(
κ1k1

κbkb
) (2.42)

where the subscript ”b” stands for the bulk substrate, and a1 is the thickness
of the thin film. With the resulting modified expression it is possible to extract
information about the substrate as well as the thin film from experimental plots
of Mtan. In this case, however, one needs more information than just the slope
of x0 versus f−1/2. The full procedure is to make a multi-parameter fit of the
real and imaginary part of Mtan formula with experimental results versus the
offset distance, x. Depending on the magnitudes of the parameters involved, one
can find any or all of the thin film thickness, thermal diffusivity, and thermal
conductivity. These parameters can also similarly be found for the substrate. We
can also find experimental parameters as probe beam height and radius of probe
beam and heating beam. If some of the parameters are known from independent
measurement the fitting process will be faster. Moreover, we should note that
it’s not necessary to use ultra-high frequencies to measure thin films. [10,16].
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Chapter 3

Description of The Experiment

The technique used in this experiment is to measure the transverse and normal
deflection of the probe beam versus the distance x between the probe beam
and the heating beam. In order to measure the following data we designed the
experiment schematized in figure (3.1).

CO2 IR Laser

AOM

Sample

IR Lens, f=30mm

Sample Stage
With Vacuum Suction,
Y, R movement

Platform for Laser, AOM and LENS
Motorized in the vertical X direction.

HeNe Red Laser
Mounted On R Stage

Lens, f=200mm

Vertical X Motor

4-Quadrant Position Detector

X, Z stage

RF Generator

RF IN

Power Supply

RF OUT DC OUT

DC IN

Control and
Protection PCB

Digital Modulation Input

TTL FREQUENCY
GENERATOR

LOCK-IN
AMPLIFIER

X Channel

Y Channel

SUM Channel

Signal Channels

REFERENCE CHANNEL

0th Order Beam Stopper

Beam Stopper

Rotating Beam Splitter

POLARIZER

Gold Coated Flat Mirror

LN2, MCT Detector
Mounted on X-Z Stage

Gold Coated Concave Mirror

ANALYZER

YX
Z

Figure 3.1: Schematic diagram of the experimental setup.
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Figure 3.2: Power versus time of laser at 81.5◦F

3.1 Building the Experiment

In the following sections, we will describe in details the procedures of building
the experiment.

3.1.1 Heating Beam

For the heating beam, we use a continuous CO2 laser infrared laser, with an
operating power of 1 watt. The wavelength is temperature dependent. It can
be varied in the range 10.3−10.8 µm. The beam waist diameter is 2.4 mm, the
full divergence angle is 5.5 mrad, and it is horizontal linear polarized. In our
experiment we set the laser temperature to 81.5 ◦F. This temperature produces
a wavelength 10.551µm. As shown in figure (3.2), the stabilization of the laser
requires 25 minutes. The use of an infrared laser gives us the advantage that the
measurment will not be affected by the surface roughness it doesn′t see the surface
roughness. To make this laser stable, we should maintain the laser temperature
at 81.5 ◦F. Therefore, the laser is connected to an air cooling system as shown in
figure (3.3).
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Figure 3.3: Laser system connection diagram

3.1.2 Modulation of the Heating Beam

The laser is in continuous wave mode. According to the theory of mirage effect,
the heating beam should be modulated with a specific frequency. For this reason,
the laser beam passes through an AOM (acousto-optic modulator). The AOM
allows the intensity of light to be controlled and modulated at rates that far
exceeding 70 KHz. The AOM is optimized for low scatter and high laser damage
threshold. The rise time, modulation rate, beam diameter, and power handling
needs of our application were studied carefully to identify the best AOM and
RF(Radio Frequency) driver solution. An AOM uses sound waves within a crystal
to create a diffraction grating. As the power of the applied RF signal is varied, the
amount of diffracted light varies proportionally. Modulators can be used like a
shutter (cycling light on and off at a set frequency), or as a variable attenuating
value. (controlling the intensity of transmitted light dynamically). The most
important factor in selecting a modulator is the required speed. This influences
the choice of material, modulator design, and RF driver to be used. The speed
of a modulator is described by the rise time, which determines how quickly the
modulator can respond to the applied RF driver, and limits the modulation rate.
The rise time is proportional to the time required for the acoustic wave to traverse
the optical beam. Therefore, it is influenced by the beam diameter within the
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modulator. The specifications of the used AOM is 10.6 µm wavelength, horizontal
polarization, and numerical aperture up to 9.6 mm, which is adequete for the
heating laser beam. Moreover, water is passing throught the AOM and its RF
generator for cooling. Water is cooled by a chiller to keep the temperature fixed
around 19◦C. We have two diffracting beams from the AOM the zeroth and first
order. The zeroth order beam is a beam modulated between 700 mW and 100
mW. The 100 mW would keep heating the surface of the sample which contradicts
the theory of mirage-effect. Therefore, can′t be used in our measurement. The
first order beam is modulated between 700 mW and 0 mW, which is convenient
for our measurement.Hence we stop the zeroth order from hitting the sample,
and we use only the first order beam. AOM is mounted on a stage for purpose
alignment where we maximize the first order by measuring the intensity using
an infrared power meter. The frequency is controlled by a square wave function
generator.

3.1.3 Focusing the Heating Beam

The heating beam then passes through an infrared converging lens of 3 cm focal
length that focuses the heating beam diameter to a 71 µm diameter. The sample
surface is at exactly 3cm from the center of the lens. However, it is hard to put
the sample exactly at 3 cm from the lens. This uncertainty affect the value of the
heating beam diameter on the sample which is an important factor for the normal
and transverse deflection. An accurate method to focus the heating beam was
devised. We measure the reflectance of the infrared laser which gives an image of
the spot temperature. The maximum reflectance means a maximum temperature
and thus a minimum heating beam size spot. In order to measure the reflectance
we emloyed a beam splitter as shown in figure (3.1). The reflected beam from the
sample is reflected again by the beam splitter as shown in the figure (3.1). The
reflected beam is measured by means of an infrared detector. A polarizer and an
Analyzer are placed before the detector in order to control and keep it below 1
mW to avoid damaging the IR detector. The laser beam is focused by changing
the position of the sample holder untill the maximum reflectance is reached. The
signal of the detector is measured using a lock-in amplifier that measures only the
modulated signal with frequency of the heating laser beam to avoid measuring
errors of external infrared radiations.

3.1.4 Probe Beam

We use a He-Ne laser as a probe beam with 632.8nm wavelength, 5mW power,
0.81 mm beam diameter, and 1 mrad beam divergence . We focus the probe
beam using a 20 cm focal length lens to achieve a 100 µm probe beam radius on
the surface of the sample. The most challenging part in the experiment is the
alignment of the probe beam with the heating beam because the heating beam
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Figure 3.4: Position Sensing Quadrant Detector

is infrared. We found a convenient way that helps us in the alignment. We check
whether the signal of the transverse deflection is antisymmetric or not.

3.1.5 Detection the Deflection of the Probe Beam

The reflected beam from the sample surface is directed to a Position Sensing
Quadrant Detector that can be used to measure the deflection of the probe beam.
The importance of this detector as shown in figure (3.4) is that it can measure
normal and transverse deflections of the probe beam simultaneously. The detector
operates in the wavelength range between 400 and 1100 nm, and for spot size
diameter less than 3.9 mm. We mounted the detector on a stage for alignment at
the minimum signal before heating as depicted. Figures (3.5) and (3.6) indicates
that the probe beam is not at the center of the detector, which implies deflection
by the heat waves.

The probe beam should be at the center of the detector before any measurement,
the shutter of the heating laser is then opened and probe beam deflects. However,
the signal of the detector passes through a lock-in amplifier that is referenced
to the frequency of the modulated heating beam as shown in figure (3.5) and
(3.6). Here we can see the importance of the lock-in amplifier in neglecting noise
signals during measurement. Furthermore, the deflection is a horizontal straight
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line which is an experimental verification that the deflection is not a function of
the temperature. The heating beam is scanned along the sample surface in the
vertical direction since we need the deflection versus, x, which is the distance
between the heating beam and the probe beam. For that reason the laser, AOM
and the lens system are mounted on very sensitive stages, with an error around
1 µm, to scan the sample in the vertical direction.

Figure 3.5: The graph shows the signal before passing to the lock-in amplifier

Figure 3.6: The graph shows the signal after passing to the lock-in amplifier
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3.1.6 Verification of the Experiment

The last part of the experiment is to verify the results against theoretical graphs.
The experiment is working properly and this shown in the measurement of the
normal and transverse deflections of Silicon carbide sample with 4000 Hz modu-
lation frequency where we see the shape of experimental results shown in figures
(3.7) and (3.8) matches the theoretical results shown before in figures (2.4) and
(2.5).

-600 -400 -200 200 400 600

postion( m)

-6

-4

-2

2

4

Transverse Deflection

10
5

Figure 3.7: The experimental measurement of the real part of the transverse
deflection versus the offset distance x
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Figure 3.8: The experimental measurement of the real part of the normal deflec-
tion versus the offset distance x
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Figure 3.9: Geometry for a tightly closed, model slanted crack. The shaded
region represents the area on the top surface, intersected by the crack, which is
scanned by the heating beam in thermal wave imaging [16].

Figure 3.10: Mirage-effect thermal wave images and corresponding line scans for
a fabricated vertical crack θ= 90 in figure (3.9), using the variations in magnitude
of normal deflection. (a) The heating beam is to the left of the probe beam; (b)
the heating and probe beams intersect, and (c) the heating beam is to the right
of the probe beam [16].

3.2 Image of Surface and Subsurface defects in

Solid

Another important application of the Mirage-Effect experiment is the detection
of cracks in materials. However, this application is limited to samples with flat
surface. The procedure for the experiment is the same as before but we don’t
scan the heating beam with respect to the probe beam. The probe beam and
the heating beam are kept aligned, and sample position is scanned with respect
to the intersection of the heating and probe beams while storing the amplitude
and the phase of both signals. Figures (3.9) and (3.10) shows some results of the
detection of cracks using mirage-effect experiment.
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Chapter 4

Dynamic Heat Management and
Heat Flux Switching Through
Stresses

In this chapter, we present the application of the developed optical setup to
the measurement of the effect of external stress on the thermal conductivity of
4H-silicon carbide. We investigate the possibility of dynamic heat measurement
in bulk materials and the development of bulk material based thermal switch
through the application of external stresses.

4.1 Static and Transient Heat Transfer Manage-

ment

The emergence of phononic in the last decades is the attempt to understand
and control the thermal energy carried by phonons in a beneficial way. One can
categorize two approaches to this task. The static and the dynamical approach.
The static approach has demonstrated to be useful and efficient when it comes
to problems related to thermoelectric, for instance. One strategy consists in
introducing localized mass fluctuations through adding impurities or by alloying
and nanostructuring [27]. The goal of introducing point defects or alloying is
to increase the scattering of phonons. The phonon scattering rate will certainly
depend on the energy of the phonon and the temperature of the sample. These
static approaches are usually employed in thin films and bulk dielectric materials.
Other static approaches of heat transfer control and management involve phonon
confinement and localization, which are mechanisms that manifest themselves in
nanostructures and superlattices. Surprising values of thermoelectric figure of
merit have been achieved using these static approaches, and the topic remains
an object of intensive research [28].
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Although static tailoring of the phonon heat transfer is of utmost need and impor-
tance for many technological applications, dynamic management of heat transfer
can open the door for interesting technologies. For instance, dynamic heat man-
agement can be well suited for system that are required to adapt to their sur-
roundings. For example, recent research for developing phonon analogue to the
electric diode, memory, transistor would allow for applications such as heat-based
data storage or smart thermoelectric devices capable of adjusting their thermal
properties to the temperature of the environment. Other examples involve de-
vices and systems that can change their thermal properties when they are subject
to different heat load. Component heating in electronic systems, ultimately, is de-
pendent on the load of the task, and such heat loading is essentially of a transient
character. Hence, transient thermal transfer management lends itself naturally
in this case.

Some recent research works on thermal rectification approached the idea of tran-
sient heat management [29]. However, the observed thermal rectification coeffi-
cients were very small for potential integration in applications. Phase change ma-
terials have shown electrically controlled fast nanoscale heat flux modulation [30].
Significant contrast of heat flux has been observed due to the interplay between
radiation heat transfer at the nanoscale and phase change materials. Further-
more, is was demonstrated that active and fully reversible control of thermal
transport in a solid-state device can be achieved using ferroelectric thin films.

Strain has also been used to modify the thermal conductivity dynamically. Large
reversible changes in thermal conductivity on the order of 70% could be achieved
using only 2% mechanical strain due to the change in the density of twin-boundaries
in thin films [31]. The increase in twin-boundary density has been shown to vary
concurrently with the thermal conductivity. It was also shown that thermal con-
ductivity could be modified in zinc oxide (ZnO) nanorods by the application of
strain fields. Under high strain values (values exceeding the elastic limit), the
phase change from wurtzite structure to another hexagonal structure induces a
change in the thermal conductivity by a factor of almost two [32]. Such effects
could be exploited in the development of non mechanical thermal modulators.
Many studies have also shown that strain can be effective in changing the heat
transfer in nanostructures and bulk crystals. Our objective for this thesis is to
try and see whether it is possible to design a thermal switch. In other words, our
objective is to try and see whether it is possible to control the thermal conduc-
tivity of a material using low values of stain, i.e., values that do not exceed the
elastic limit. Hence, we are interested in systems whose thermal conductivity can
be modified by external stresses, and recover their initial thermal conductivity
value after removal of the external stresses.
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4.2 Thermal Switch

A prototype model for mechanical thermal switch system was proposed in 2008.
It is based on two contacts that can be brought together by mechanical actuation.
The presence of a high-thermal conductivity material in between the substrates
changes the thermal resistivity of the system when the two contacts touch. The
design based on liquid metal droplets had shown superior ”on/off” ratio than
other designs. The ”on/off” ratio of the liquid metal based switch was 1:100.
The applicability of such a thermal switch into technological systems has not
been considered. Although such systems have high efficiency when it comes to
”on/off” ratio, they suffer from some size impracticalness and from operational
degradation.

Other models for thermal switches come from recent investigations into the ef-
fect of strain on thermal conductivity. The reported results show that for low
temperatures antimony doped germanium present a large increase in thermal
conductivity when tensile strain is applied in some crystallographic directions.
The theory of phonon scattering by donors predicted the magnitude and effect
of applying strain which modified the electronic band structure of the antimony
donors in the crystal. Amorphous silicon thermal conductivity also showed sen-
sitivity to strain. By coupling an 50nm thick amorphous silicon film to a MEMS
actuator, it was possible to apply large tensile strain to the film and demonstrate
a decrease in thermal conductivity by a factor of 8. This fact was attributed
to strong phonon localization in amorphous structures which is not present in
crystalline silicon. This observation was not in line with experiments performed
on thin films of silicon nitride that demonstrated that residual stress has no effect
neither on the specific heat nor on thermal conductivity.

More recent studies showed that the thermal conductivity of 200nm amorphous
silicon nitride can be increased upon mechanical loading up to 2.5% [33]. This
contrasting result to the previous experiment was explained through possible
changes in microstructure or carrier density.

Overall, it is clear that the topic of tailoring thermal conductivity using me-
chanical strains exhibits significant variability and promise. This opens up large
possibilities for study and experimentation to build a thermal switch system.

As a theoretical ideal component, the thermal switch is a system that should
have dynamic thermal conductivity. When the switch is in the on state, thermal
energy flow is nominal, i.e., the component is a good conductor of heat. In the
off state, the component acts as a thermal insulator. The switch can be triggered
by applying strain to the material. This strain can be applied using an external
electric field if the material is piezoelectric. It would also need to have response
and high ”on/off” ratio to be applicable with efficiency.
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4.3 The effect of strain on thermal conductivity

of dielectrics

One essential phonon scattering mechanism that we would like to discuss briefly
before presenting our results is the phonon scattering by a strain field. The
relaxation time associated with elastic strain field scattering of phonon modes
has been first studied by Carruther in 1959 using second order perturbation
theory [34]. He found that the effect of the Fourier component of the strain field
is similar to that of the potential. This is somehow expected as phonons can be
regarded as mechanical waves generated by lattice vibrations or localized strains.
The application of the theory to edge dislocations at low temperature shows
that the rate at which phonon scatter by strain is proportional to the density
of dislocations and to the wave vector magnitude. The author also derived a
Boltzmann like equation for the change in the phonon distribution due to the
interaction of phonon with strain field.
In what follows, we study the effect of strain induced by proton bombardment
on the thermal conductivity of silicon carbide. We use the infrared laser flash de-
scribed previously to measure the thermal properties of the bombarded samples.
Then, from the obtained results, we deduce the dependence of silicon carbide on
strain in the limit of weak strain fields. Finally, we derive the dependence of
silicon carbide thermal conductivity on external stress in the elasticity limit. We
demonstrate that bulk silicon carbide can be used for thermal switch applications
with ”on/off” ratio of approximately 10%.

4.4 Results and Discussion

The thermal conductivity and thermal diffusivity of intact and bombarded 4H-
silicon carbide substrates, as deduced from fitting the transverse deflection equa-
tion to the data obtained from the infrared laser flash experiment, are illustrated
in figure(4.1). The fitting of the experimental data is presented in the Appendix.
We note here that the measurements were carried out at eight laser modulation
frequencies (3, 4, 4.5, 5, 6, 7, 9, and 12 kHz), however we show in each figure
in the Appendix curves corresponding to three frequencies only for the sake of
clarity.
The thermal conductivity and thermal diffusivity of the intact substrate are found
to be 10.99 W.K−1.cm−1 and 4.6 cm2.s−1, respectively, which are in perfect agree-
ment with the reported thermal properties of 4H-silicon carbide. The energy of
the accelerated protons was 3meV. For that energy, the damage is expected to be
concentrated at a depth of 60±5µm. The only variable was the dose of the irradi-
ation. We have gradually varied the irradiation dose until we obtained observable
effect on the thermal properties of the bombarded substrate. The threshold dose
at which we observed effect on the thermal properties of the bombarded sub-
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strate was approximately 1013proton/cm2. As can be noticed from figure(4.1),
for a dose of approximately 1013proton/cm2, both the thermal conductivity and
thermal diffusivity reduce by approximately 10%. However, when the irradiation
dose doubles, the thermal conductivity drops rapidly while the thermal diffusivity
drops with a smaller rate.
By definition, the thermal conductivity κ is given by

κ = ρcpα (4.1)

where ρ is the material mass density, cp is the material specific heat at constant
pressure, and α is the thermal diffusivity. Given that all the silicon carbide
polytypes, which correspond to different silicon and carbon ions configurations
with comparable energies within a unit cell, have the same specific heat, we can
reasonably consider that irradiations with low doses induce weak variation in the
ions configuration and crystal energy and do not affect the material specific heat.
Hence, it will be possible to deduce the variation in the thermal conductivity
versus the relative variation in the volume per atom, i.e., the variation in the
thermal conductivity versus the strain.
Assuming unaffected specific heat by irradiations of low doses, equation(4.1) can
be used to derive the following expression for strain field induced by irradiations
of small doses,

∆V

V0

= strain =
∆α

α0

− ∆κ

κ0

(4.2)

whereV0, α0, andκ0 are the volume per atom, heat diffusivity, and thermal con-
ductivity of the intact substrate. At this point, it is possible to plot the thermal
conductivity versus strain up to a strain of 3% that correspond to the threshold
irradiation dose. This threshold strain is the point between the elastic and plas-
tic regimes. The linear relations between the physical quantities in the elastic
regime allow us to assume that in the elastic regime, the thermal conductivity is
linearly proportional to strain. The figure inset figure(4.1) presents the thermal
conductivity versus strain within the elastic limit as calculated under the assump-
tions presented above. The positive values of imply that the strain induced by
irradiations of ∆V low doses is a tensile strain.
On the other hand, for small deformation, we can express the strain as a function
of external stress

K =
stress

strain
(4.3)

where K is the silicon carbide bulk modulus, which is 250 GPa. Upon using
equation(4.3), we can plot the thermal conductivity of 4H-silicon carbide versus
external stress.
The thermal conductivity of 4H-silicon carbide versus external stress within the
elasticity limit is presented in figure(4.2), which shows that it is possible to reduce
the thermal conductivity of 4H-silicon carbide by approximately 10% by exerting
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Figure 4.1: Thermal conductivity of 4H-silicon carbide versus protons implanta-
tion dose. Inset: Thermal conductivity of 4H-silicon carbide versus strain.
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Figure 4.2: Thermal conductivity of 4H-silicon carbide versus stress within the
elasticity limit.
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weak stresses. In other words, the results presented in figure(4.2) demonstrate
that dynamic tailoring of thermal conductivity in bulk 4H-silicon carbide through
the application of weak stresses is possible. Nevertheless, the application of these
findings to thermal switch would result in ”on/off” ratio of only 1.15.
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Chapter 5

Future Work

In our thesis, we measure the thermal conductivity and thermal diffusivity for
substrate materials using mirage-effect. We are working to expand the experiment
to measure also the heat capacity. Moreover, this experiment can also be applied
to layered materials to measure thermal properties of thin films as shown in
section (2.2.2). We can do multiparameter fit for the experimental data with the
theoretical expression of equations (2.39) and (2.40).

5.1 Measuring Heat Capacity Using Mirage-Effect

Experiment

One of the important ideas that came to our mind when we were focusing the
heating beam as shown in section (3.1.3) is that the reflectance from the sample
can be used as thermometer for the temperature of the sample, and the reflected
beam from the beam splitter gives information about the transmitted power to
the sample, so for each power we can find the temperature. From this information
we can deduce the heat capacity of the material by making an extension to the
experiment as shown in figure(5.1). Moreover, the AOM (acousto-optic modula-
tor) has an option in monitoring the power of the heating beam. The main idea
is to vary the power and measure the temperature at each instant by heating the
sample then cooling it by increase the power of the heating beam then decreasing
it to the minimum. Then, we do a fit for the power versus temperature with the
expression that contains heat capacity to find it.

One of the important applications for this experiment is measuring all the thermal
properties of the materials which are thermal conductivity, thermal diffusivity,
and heat capacity at room temperature.
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Figure 5.1: Schematic diagram of the expected experimental setup.
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5.2 Conclusion

In the thesis discussed above we present measurements of thermal properties of
materials using mirage-effect experiment where chapter one talks about thermal
transport in general, chapter two describes the theory of mirage-effect experiment,
chapter three describes building the mirage effect experiment, chapter four tackles
the problem of heat flux in silicon carbide with external stress, and this chapter
shows the future work that we want to do in the experiment.
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Appendix A

Graphs
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Figure A.1: Measurement and data fitting corresponding to the intact substrate.
Symbols: measurements. Solid lines: data fitting. Measurements were carried
out for eight different frequencies of heat beam modulation. However, curves
corresponding to only three modulation frequencies are shown for the sake of
clarity.
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Figure A.2: Measurement and data fitting corresponding to the substrate irradi-
ated with the threshold dose. Symbols: measurements. Solid lines: data fitting.
Measurements were carried out for eight different frequencies of heat beam mod-
ulation. However, curves corresponding to only three modulation frequencies are
shown for the sake of clarity.
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Figure A.3: Measurement and data fitting corresponding to the substrate ir-
radiated with twice the threshold dose. Symbols: measurements. Solid lines:
data fitting. Measurements were carried out for eight different frequencies of
heat beam modulation. However, curves corresponding to only three modulation
frequencies are shown for the sake of clarity.
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Figure A.4: Measurement and data fitting corresponding to the substrate irra-
diated with four times the threshold dose. Symbols: measurements. Solid lines:
data fitting. Measurements were carried out for eight different frequencies of
heat beam modulation. However, curves corresponding to only three modulation
frequencies are shown for the sake of clarity.
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Figure A.5: Measurement and data fitting corresponding to the substrate irradi-
ated with eight times the threshold dose. Symbols: measurements. Solid lines:
data fitting. Measurements were carried out for eight different frequencies of
heat beam modulation. However, curves corresponding to only three modulation
frequencies are shown for the sake of clarity.

52



Bibliography

[1] G. Chen, Nanoscale energy transport and conversion: a parallel treatment of
electrons, molecules, phonons, and photons. Oxford University Press, 2005.

[2] G. Pells, “Ceramic materials for fusion reactor applications,” Journal of
Nuclear Materials, vol. 123, no. 1-3, pp. 1338–1351, 1984.

[3] R. Thorne and V. Howard, “Radiation-induced changes in porous cubic
silicon carbide.,” tech. rep., United Kingdom Atomic Energy Authority,
Culcheth, Eng., 1967.

[4] R. Price, “Effects of fast-neutron irradiation on pyrolytic silicon carbide,”
Journal of Nuclear Materials, vol. 33, no. 1, pp. 17–22, 1969.

[5] K. Minato, K. Fukuda, A. Ishikawa, and N. Mita, “Advanced coatings for
htgr fuel particles against corrosion of sic layer,” Journal of nuclear materi-
als, vol. 246, no. 2-3, pp. 215–222, 1997.

[6] S. Sharafat, R. Jones, A. Kohyama, and P. Fenici, “Status and prospects
for sic sic composite materials development for fusion applications,” Fusion
engineering and design, vol. 29, pp. 411–420, 1995.

[7] D. A. Bloore, Reactor physics assessment of thick silicon carbide clad PWR
fuels. PhD thesis, Massachusetts Institute of Technology, 2013.

[8] H. Carslaw and J. Jaeger, “Conduction of heat in solids,(1959), 282.”

[9] C. B. Reyes, “Thermal wave measurement of thermal diffusivities of solids.,”
1988.

[10] A. Mandelis, “Photoacoustic and thermal wave phenomena in semiconduc-
tors,” 1987.

[11] A. Boccara, D. Fournier, and J. Badoz, “Thermo-optical spectroscopy: De-
tection by themirage effect,” Applied Physics Letters, vol. 36, no. 2, pp. 130–
132, 1980.

53



[12] W. B. Jackson, N. M. Amer, A. Boccara, and D. Fournier, “Photother-
mal deflection spectroscopy and detection,” Applied optics, vol. 20, no. 8,
pp. 1333–1344, 1981.

[13] L. Aamodt and J. Murphy, “Thermal effects in photothermal spectroscopy
and photothermal imaging,” Journal of applied physics, vol. 54, no. 2,
pp. 581–591, 1983.

[14] P. Kuo, M.-J. Lin, C. Reyes, L. Favro, R. Thomas, D. Kim, S.-y. Zhang,
L. Inglehart, D. Fournier, A. Boccara, et al., “Mirage-effect measurement of
thermal diffusivity. part i: experiment,” Canadian journal of physics, vol. 64,
no. 9, pp. 1165–1167, 1986.

[15] P. Kuo, E. Sendler, L. Favro, and R. Thomas, “Mirage-effect measurement
of thermal diffusivity. part ii: Theory,” Canadian Journal of Physics, vol. 64,
no. 9, pp. 1168–1171, 1986.

[16] P. Kuo, L. Favro, and R. Thomas, “Mirage detection of thermal waves,”
Photothermal Investigations of Solids and Fluids, pp. 191–212, 1988.

[17] J. Pezoldt, C. Zgheib, P. Masri, M. Averous, F. Morales, R. Kosiba, G. Ecke,
P. Weih, and O. Ambacher, “Sims investigation of the influence of ge pre-
deposition on the interface quality between sic and si,” Surf. Interface Anal,
vol. 36, pp. 969–972, 2004.

[18] M. Foygel, R. Morris, D. Anez, S. French, and V. Sobolev, “Theoretical
and computational studies of carbon nanotube composites and suspensions:
Electrical and thermal conductivity,” Physical Review B, vol. 71, no. 10,
p. 104201, 2005.
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