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 An electrical distribution system with high penetration levels of photovoltaic 

(PV) generation is exposed to degradation in power quality due to voltage fluctuation 

beyond the acceptable levels; this is caused by the rapidly varying generation levels 

from the PV generators possibly causing reverse power flows. Currently installed 

regulation equipment like under load-tap changing transformers, step voltage regulators, 

and switched capacitors are slow; they cannot provide an adequate response to the fast 

varying generation levels.  

A proposed solution is the introduction of fast-reacting PV inverters that can 

consume or supply reactive power to account for the voltage sags and swells on the 

distribution network, and that also provide the network operators with the opportunity to 

optimize thermal losses.  

This thesis presents an affinely adjustable robust counterpart (AARC) approach 

for the optimal local dispatch of reactive power from the PV inverters; it accounts for 

uncertainty in the photovoltaic generation levels and aims to minimize the maximum 

absolute voltage magnitude deviation from the nominal voltage level. Numerical results 

confirmed the effectiveness of the proposed approach in reducing both the maximum 

absolute voltage magnitude deviation and the system power loss.  
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NOMENCLATURE 

A. Notation 

𝐴̅                        Complex value. 

|𝐴̅|                       Magnitude of 𝐴̅. 

𝑩                       Matrix or vector  𝑩. 

𝑖𝑛𝑣(𝑩)                      Inverse of matrix 𝑩. 

𝐵𝑖                       Row 𝑖 of matrix 𝑩. 

𝒅𝒊𝒂𝒈(𝒗) Square diagonal matrix with the elements of vector 𝒗 on the 

  main diagonal. 

𝒆𝒚𝒆(𝒏) 𝑛 × 𝑛 identity matrix with ones on the main diagonal and zeros 

  elsewhere. 

𝒐𝒏𝒆𝒔(𝒏, 𝟏) 𝑛 × 1 matrix of ones. 

𝑟𝑒(𝑩), 𝑖𝑚𝑎𝑔(𝑩)       Real and imaginary parts of matrix 𝑩. 

𝒛𝒆𝒓𝒐𝒔(𝒏, 𝟏) 𝑛 × 1 matrix of zeros. 

B. Parameters, Vectors, & Variables 

𝛼𝑖                          Constant term of the local control rule of the PV inverter at bus 𝑖. 

𝛾𝑖                          Slope of the local control rule of the PV inverter at bus 𝑖. 

𝑑(𝑖)                           Set of all descendants of node 𝑖 excluding node 𝑖. 



 

 

 

 

 

 

xii 

 

 

 

 

 

𝐿𝑖                          Set of all lines between bus 0 and bus 𝑖. 

|∆𝑉|∞              Maximum absolute voltage magnitude deviation in the network. 

𝑛                         Number of nodes. 

𝑛𝑏  Number of branches 

𝑁                         Set of all buses excluding bus 0. 

𝑃𝑖 , 𝑄𝑖                         Real and reactive power flow out of bus 𝑖. 

𝑃𝐿𝑖, 𝑄𝐿𝑖                        Real and reactive power of the load at bus 𝑖. 

𝑝𝑖
𝑔

, 𝑝𝑖
𝑐                     PV real power generation and load real power consumption at  

bus 𝑖 respectively. 

𝒑𝒈, 𝒑𝒄                        Real power generation and consumption vectors of size (𝑛 × 1). 

𝑞𝑖
𝑔

, 𝑞𝑖
𝑐                         Inverter’s reactive power and consumed reactive power by the         

                                    load at bus 𝑖. 

𝒒𝒈, 𝒒𝒄                        Reactive power generation and consumption vectors of size  

                                    (𝑛 × 1). 

𝑟𝑖, 𝑥𝑖                       Resistance and reactance of the line departing from bus 𝑖. 

𝑆𝑙̅𝑖                        Complex power of the load at bus 𝑖. 

𝑆𝑖̅                         Net complex power at bus 𝑖.  

𝑠𝑖                         Apparent power capability of the inverter at bus 𝑖. 

𝑉0̅                                Reference voltage (1 pu, zero angle) at bus 0. 

𝑽𝟎                        Vector containing |𝑉0̅| as elements of size (𝑛 × 1). 
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𝑽                         Vector containing bus voltages of size (𝑛 × 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

DEDICATION 
 

 

 

 Dedicated to my affectionate mother, Siham Mustafa; my brothers, Nabil and 

Mohammad; my sisters, Ghada and Amaal, my roommate Eng. Hussam Al Shami and 

my best friends for their care and support. 

 

 Dedicated to the memory of my father, Nayef Mousa, who was deceased on 

November 18, 2016. It was the worst news I have ever heard, but you taught me to be 

strong and fight in life.  

 

 I hope you are still alive and share with me this achievement; I always remember 

your dream for me to be a Ph.D. holder; this is the second step, and I promise that I will 

aggressively seek to accomplish it whenever the chance arises. Thank you for being my 

father, my teacher in class, my friend, and my mentor. 

 



 

 

 

 

 

 

1 

 

 

 

 

 

CHAPTER I 

INTRODUCTION 

 

 
A. Problem Definition 

 The installed renewables worldwide, mainly solar and wind projects, are 

increasing at a rapid rate where it is estimated that a total capacity of 153 GW of 

renewable energy projects was installed in 2015 including about 500,000 photovoltaic 

panels and that saw renewables surpassing coal as the most significant source of power 

capacity. However, coal remains the largest supplier of the world’s power with a share 

of 39% and renewables with 23% share [1]. Lebanon has followed the path of 

sustainable energy since the commitment launched by the Lebanese government to 

install and finance renewable energy projects in Copenhagen during the 2009 

Conference of Parties meeting. The average production capacity in Lebanon in 2009 

was 1500 MW with a total produced energy of 11522 GWh, while the average demand 

during the same year was 2400 MW of power and 15000 GWh of energy. This deficit 

has led the Government to take actions, and approving the Ministry of Energy and 

Water Policy Paper for the Electricity Sector in 2010 was a turning point which includes 

solutions at the generation, transmission and distribution levels [2], [3]. The plans have 

turned into actual projects with a total installed solar PV electricity of 9.45 MWp by 

2015 and a total investment of $30.5 M [4]. According to the National Renewable 



 

 

 

 

 

 

2 

 

 

 

 

 

Energy Action Plan (NREAP) 2016-2020 [2], the set target is to reach by 2020 a 

production from renewable sources amounting to 12% of the projected total electricity 

and heating demand in Lebanon during that year, where solar photovoltaic distributed 

generation represents 4% of that 12% share. Integrating distributed photovoltaic 

generation with the distribution network may have adverse effects such as voltage 

flicker, introducing harmonics, altering short circuit levels and most importantly 

changing voltage levels and power flows [5], [6]. Voltage fluctuation beyond the 

acceptable levels can be caused by the varying generation levels from the PV 

generators. The rapidly varying irradiance levels impose a challenging problem on the 

distribution system because the currently installed regulation equipment like under load-

tap changing transformers, step voltage regulators, and switched capacitors are slow; 

they cannot provide an adequate response to the fast varying generation levels. Initially, 

PV inverters were not allowed to regulate voltage levels [7], but according to a recent 

amendment to the IEEE 1547 interconnection standards [8], they are now required to 

absorb or supply reactive power to account for voltage sags and swells in the network, 

and that provides a new opportunity for optimizing the operation of distribution 

systems. 
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B. Literature Review 

 The problem of reactive power based voltage control can be classified into two 

main categories: centralized with the possibility of distributed computation, and 

decentralized (or local) [9]. The use of centralized control algorithms depends on the 

deployment of smart grid technologies which facilitate the fast exchange of voltage 

levels and power measurements, and thus allow the centralized optimization algorithms 

to dispatch the reactive power from PV inverters guaranteeing optimal solutions [10]. 

Reference [10] tackled the problem of integrating PV generation by proposing a 

centralized optimization algorithm with the objective of minimizing thermal losses 

while keeping voltage levels within constraints. The proposed algorithm is based on the 

Linearized Distribution Flow (LinDistFlow) equations that have been developed in [11]; 

results showed that it could achieve 20% reduction in losses. Reference [12] proposed 

an improved centralized control scheme by developing a convex relaxation of the 

Distribution Flow (DistFlow) equations in the formulation of the Volt/VAR control 

optimization problem, with the aim to minimize network losses and power consumption 

across the network. Another centralized optimal inverter dispatch has been proposed in 

[13] where the algorithm employs semidefinite relaxation techniques to determine the 

active and reactive power set points of critical PV inverters on the network. The work in 

[13] has also been developed into distributed optimal inverter dispatch (DOID) 

algorithms using the alternating direction method of multipliers, where the OID 
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problem is divided into sub-problems that can be solved locally to determine the 

inverters’ set points. This approach has been improved by [14] that used a dual ԑ-

subgradient method; results showed that the proposed controller could be employed in a 

distributed fashion where the optimal signals are updated at a faster rate than those 

introduced in [13], and speed of performance remains fast even when controlling a high 

number of PV systems. 

      On the other hand, the dependence on communication introduces a new 

vulnerability that may limit the applicability of centralized algorithms; thus 

decentralized control algorithms have been proposed which depend on local 

measurements of power and voltage levels. The local control scheme presented in [10] 

is based on reactive power consumption and achieved 80% of loss savings compared to 

the centralized control algorithm. Refs. [9], [15] have extended [10] by optimizing both 

the power losses and the voltage deviation; results showed that the optimal solution 

hinges on the appropriate choice of a weighting parameter that trades between the two 

objectives. Ref. [16] explained that the use of local voltage measurements is insufficient 

to maintain voltage within an acceptable range, and proposed two decentralized control 

algorithms that can achieve acceptable voltage levels for various operating conditions. 

Using also local measurements of active power production and voltage, [17] developed 

an active power dependent characteristic Q(P) curve that is in function of the produced 

PV active power levels; results showed that the proposed characteristic outperformed 
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the German Grid Code characteristics [17] in terms of reactive power consumption, 

power losses, and voltage regulation.  The authors in [18] proposed a local controller to 

alleviate voltage rise using both reactive power compensation in addition to active 

power curtailment, where the use of the latter for up to 3% of the annual yield can 

increase the hosting capacity of the LV networks by about 50% [19].      

 Researchers have also studied the performance of coordinated control between 

PV inverters and other network components like capacitor banks, tap-changer 

transformers, and network configuration switches. Ref. [20] developed a dynamic 

control strategy for voltage regulation resulting in better performance compared to 

cos𝜑(P) and Q(V) control strategies, while [21] proposed a passive approach by 

regulating power factor and the transformer tap-changer settings to improve the system 

performance from transmission and distribution perspectives. Ref. [22] developed a 

mixed integer linear programming (MILP) tool to achieve minimum loss operation by 

coordinating the control of PV inverters, capacitor banks, and network configuration 

switches. The percentage of loss reduction obtained using the MILP tool surpassed 

those obtained using local control [10], which confirmed the effectiveness of 

coordinated control in power system optimization. 
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C. Thesis Contribution and Organization      

 This paper considers the local control of inverter reactive power via a Q(P) 

decision rule, in which the reactive power is a linear function of the real generated 

power along the lines of the solution suggested in  [23]. The coefficients of the linear 

decision rule are computed using an affinely adjustable robust counterpart (AARC) 

approach [24]. Ref. [25] used the AARC approach for the optimal power flow under 

uncertain renewable energy resources. This optimization method can also be used here 

to account for uncertainty in the photovoltaic generation levels due to rapidly varying 

cloud transients; the result is an optimal local dispatch of reactive power from the PV 

inverters that leads to minimizing the maximum absolute voltage magnitude deviation 

from the nominal voltage level. 

      The rest of the thesis is organized as follows. Chapter II describes the 

mathematical modeling of the radial network used in this thesis, the governing power 

flow equations, in addition to the inverter capacity model. Chapter III introduces the 

robust optimization method and the application of the AARC approach in computing 

local decision rules that minimize the maximum absolute voltage magnitude deviation 

in distribution systems. Numerical results are presented in chapter IV, and the thesis is 

concluded in chapter V. 
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CHAPTER II 

MATHEMATICAL MODELING 

 

 
A. DistFlow Equations in a Radial Distribution System 

 To derive the governing power flow and voltage equations, consider the radial 

distribution system given in Fig. 1 with 𝑛 nodes. 

 

  

 

 

    

The net complex power 𝑃𝐿𝑖+1 + 𝑗𝑄𝐿𝑖+1 drawn at node 𝑖 + 1 is composed of the local 

consumed power by the load minus the local produced PV power at that node (if any), 

i.e. 𝑃𝐿𝑖+1 + 𝑗𝑄𝐿𝑖+1 =(𝑝𝑖+1
𝑐 − 𝑝𝑖+1

𝑔
 ) + 𝑗(𝑞𝑖+1

𝑐 − 𝑞𝑖+1
𝑔

). 

 From Fig. 1, the complex power 𝑆1̅ at node 1 can be expressed in terms of the 

complex substation power 𝑆0̅, the loss in the line between node 0 and node 1, and the 

net power drawn at node 1 as: 

                            𝑆1̅ = 𝑆0̅ − 𝑆𝑙̅𝑜𝑠𝑠0 − 𝑆𝐿̅1      (1) 

The complex power loss can be expressed as: 

0 

 

1 𝑖 
 

𝑖 + 1  

 

𝑛 

 
𝑃𝑛 + 𝑗𝑄𝑛 

𝑃𝑖+1 + 𝑗𝑄𝑖+1 𝑃1 + 𝑗𝑄1 𝑃𝑖 + 𝑗𝑄𝑖 𝑃0 + 𝑗𝑄0 

𝑟0 + 𝑗𝑥0 𝑟1 + 𝑗𝑥1 𝑟𝑖 + 𝑗𝑥𝑖 𝑟𝑖+1 + 𝑗𝑥𝑖+1 

𝑃𝐿𝑖+1 + 𝑗𝑄𝐿𝑖+1 𝑃𝐿1 + 𝑗𝑄𝐿1 

Fig.1.    Radial distribution circuit diagram with notations of the power flow and complex impedance 

of lines. 
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𝑆𝑙̅𝑜𝑠𝑠0 = (𝑟0 + 𝑗𝑥0)
|𝑆̅0|2

|𝑉0|2     (2) 

Using (2), 𝑆1̅ can be written as: 

𝑆1̅ = 𝑆0̅ − (𝑟0 + 𝑗𝑥0)
|𝑆̅0|2

|𝑉̅𝑖|2
− 𝑆𝐿̅1     (3) 

Equating the real and imaginary parts of (3) gives: 

                                      𝑃1 = 𝑃0 − 𝑟0
(𝑃0

2+𝑄0
2)

|𝑉̅0|2
− 𝑃𝐿1             (4) 

𝑄1 = 𝑄0 − 𝑥0
(𝑃0

2+𝑄0
2)

|𝑉̅0|2 − 𝑄𝐿1     (5) 

Equations (4) and (5), which represent the real and imaginary power flow in the lines 

can be generalized to (6) and (7), which are known as the DistFlow power equations [9-

11], [15]: 

𝑃𝑖+1 = 𝑃𝑖 − 𝑟𝑖
(𝑃𝑖

2+𝑄𝑖
2)

|𝑉̅𝑖|2 − 𝑃𝐿𝑖+1     (6) 

𝑄𝑖+1 = 𝑄𝑖 − 𝑥𝑖
(𝑃𝑖

2+𝑄𝑖
2)

|𝑉̅𝑖|2 − 𝑄𝐿𝑖+1     (7) 

The voltage at node 1 can be expressed in terms of the substation voltage 𝑉̅0 and the 

voltage drop in the line between node 0 and node 1 as: 

   𝑉̅1 = 𝑉̅0 − (𝑟0 + 𝑗𝑥0)
𝑆̅0

∗

𝑉̅0
∗      (8) 

Using the complex numbers identities |𝑧̅|2 = 𝑧𝑧̅  and 𝑎 + 𝑏̅̅ ̅̅ ̅̅ ̅ = 𝑎̅ + 𝑏̅, the voltage 

magnitude squared at node 1 can be written as: 

    |𝑉̅1|2 = [𝑉̅0 − (𝑟0 + 𝑗𝑥0)
𝑆̅0

∗

𝑉̅0
∗    ] [𝑉̅0

∗
− (𝑟0 − 𝑗𝑥0)

𝑆̅0

𝑉̅0
    ]   (9) 
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By multiplying the terms on the right-hand side, (9) can be expressed as: 

  |𝑉̅1|2 = |𝑉̅0|2 − 2(𝑟0𝑃0 + 𝑥0𝑄0) + (𝑟0
2 + 𝑥0

2)
(𝑃0

2+𝑄0
2)

|𝑉̅0|2   (10) 

Equation (10) can be generalized to form the DistFlow voltage equation [9-11], [15]: 

  |𝑉̅𝑖+1|2 = |𝑉̅𝑖|
2 − 2(𝑟𝑖𝑃𝑖 + 𝑥𝑖𝑄𝑖) + (𝑟𝑖

2 + 𝑥𝑖
2)

(𝑃𝑖
2+𝑄𝑖

2)

|𝑉̅𝑖|2
  (11) 

 

B. Linearized DistFlow Equations 

 In practical networks, the complex power flow 𝑆𝑖̅ = 𝑃𝑖 + 𝑗𝑄𝑖 in the lines is much 

greater than the losses, therefore a good approximation of the DistFlow equations is to 

drop the 2nd order quadratic terms corresponding to the losses [11], [15-16]. Following 

this assumption, the DistFlow equations can be linearized to form the LinDistFlow 

equations [11], [15-16] and expressed by: 

                   𝑃𝑖+1 = 𝑃𝑖 − 𝑃𝐿𝑖+1       (12) 

                             𝑄𝑖+1 = 𝑄𝑖 − 𝑄𝐿𝑖+1      (13) 

 |𝑉̅𝑖+1|2 = |𝑉̅𝑖|
2 − 2(𝑟𝑖𝑃𝑖 + 𝑥𝑖𝑄𝑖)       (14) 

 

The squared voltage in (14) is an independent variable. By approximating the voltage 

magnitude, |𝑉̅𝑖| at any node 𝑖 to 1pu [16], [26], the voltage equation (14) can be further 

reduced to: 

  |𝑉̅𝑖+1|  = |𝑉̅𝑖|  − (𝑟𝑖𝑃𝑖 + 𝑥𝑖𝑄𝑖)     (15) 
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Based on (15), the difference in voltage magnitude between node 0 and node 2 can be 

found as follows:   

                           |𝑉̅0|  − |𝑉̅1|  = 𝑟0𝑃0 + 𝑥0𝑄0                  (16) 

                |𝑉̅1|  − |𝑉̅2|  = 𝑟1𝑃1 + 𝑥1𝑄1     (17) 

  |𝑉̅0|  − |𝑉̅2|  = 𝑟0𝑃0 + 𝑥0𝑄0 + 𝑟1𝑃1 + 𝑥1𝑄1  (18) 

Based on (12) and (13), the power flows 𝑃𝑖 and 𝑄𝑖 in the lines can be expressed by: 

  𝑃𝑖 = ∑ 𝑃𝐿𝑘𝑘∈𝑑(𝑖) = ∑ (𝑝𝑘
𝑐 − 𝑝𝑘

𝑔
)𝑘∈𝑑(𝑖)     (19) 

 𝑄𝑖 = ∑ 𝑄𝐿𝑘𝑘∈𝑑(𝑖) = ∑ (𝑞𝑘
𝑐 − 𝑞𝑘

𝑔
)𝑘∈𝑑(𝑖)            (20) 

Substituting (19) and (20) in (18) yields: 

|𝑉̅0|  − |𝑉̅2| = 𝑟0[(𝑝1
𝑐 − 𝑝1

𝑔
) + (𝑝2

𝑐 − 𝑝2
𝑔

) + ⋯ + (𝑝𝑛
𝑐 − 𝑝𝑛

𝑔
)] + 𝑥0[(𝑞1

𝑐 − 𝑞1
𝑔

) +

                                    (𝑞2
𝑐 − 𝑞2

𝑔
) + ⋯ + (𝑞𝑛

𝑐 − 𝑞𝑛
𝑔

)] + 𝑟1[(𝑝2
𝑐 − 𝑝2

𝑔
) + ⋯ + (𝑝𝑛

𝑐 − 𝑝𝑛
𝑔

)] +

                             𝑥1[(𝑞2
𝑐 − 𝑞2

𝑔
) + ⋯ + (𝑞𝑛

𝑐 − 𝑞𝑛
𝑔

)]    (21)

        

Rearranging (21) yields: 

|𝑉̅0|  − |𝑉̅2| = (𝑝1
𝑐 − 𝑝1

𝑔
)(𝑟0) + (𝑝2

𝑐 − 𝑝2
𝑔

)(𝑟0 + 𝑟1) + ⋯ + (𝑝𝑛
𝑐 − 𝑝𝑛

𝑔
)(𝑟0 + 𝑟1) +

                   (𝑞1
𝑐 − 𝑞1

𝑔
)(𝑥0) + (𝑞2

𝑐 − 𝑞2
𝑔

)(𝑥0 + 𝑥1) + ⋯ + (𝑞𝑛
𝑐 − 𝑞𝑛

𝑔
)(𝑥0 + 𝑥1)         (22) 

Equation (22) can be expressed by: 

|𝑉̅0|  − |𝑉̅2| = ∑ 𝑅2𝑗(𝑝𝑗
𝑐 − 𝑝𝑗

𝑔
) +𝑗∈𝑁 ∑ 𝑋2𝑗(𝑞𝑗

𝑐 − 𝑞𝑗
𝑔

)𝑗∈𝑁   (23) 

Therefore, the voltage at any node 𝑖 can be expressed by (24) as [26]: 



 

 

 

 

 

 

11 

 

 

 

 

 

|𝑉̅𝑖|  = |𝑉̅0| + ∑ 𝑅𝑖𝑗(𝑝𝑗
𝑔

− 𝑝𝑗
𝑐) +𝑗∈𝑁 ∑ 𝑋𝑖𝑗(𝑞𝑗

𝑔
− 𝑞𝑗

𝑐)𝑗∈𝑁   (24) 

where 𝑅𝑖𝑗, and 𝑋𝑖𝑗 can be found using (25) as illustrated in Fig. 2:   

 𝑅𝑖𝑗 = ∑ 𝑟𝑧𝑧∈𝐿𝑖∩𝐿𝑗
, 𝑋𝑖𝑗 = ∑ 𝑥𝑧𝑧∈𝐿𝑖∩𝐿𝑗

      (25) 

 

 

  

 

              

Equation (24) can be written in matrix form as [26]: 

𝑽 = 𝑽𝟎 + 𝑹(𝒑𝒈 − 𝒑𝒄) + 𝑿(𝒒𝒈 − 𝒒𝒄)       (26) 

where  

  𝑹 = [𝑅𝑖𝑗]
𝑛×𝑛

, 𝑿 = [𝑋𝑖𝑗]
𝑛×𝑛

            (27)  

The 𝑹, and 𝑿 matrices could be alternatively computed starting from the 𝒀𝒃𝒖𝒔 matrix as 

in (28); then 𝑹 = 𝑟𝑒(𝒊𝒏𝒗(𝒀𝒃𝒖𝒔)), and 𝑿 = 𝑖𝑚𝑎𝑔(𝒊𝒏𝒗(𝒀𝒃𝒖𝒔)), where their 1st row and 

1st column are set to zeros (here node 1 is considered as the substation bus conforming 

to the systems employed in numerical testing) as illustrated in (29) and (30): 

     Fig. 2.     Diagram demonstrating the definition of the 𝑅𝑖𝑗 and 𝑋𝑖𝑗 values. 

𝑖 
 

𝑅𝑖𝑗, 𝑋𝑖𝑗 

 
0 

 

𝑗 
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𝒀𝒃𝒖𝒔 = [

1 0 …    0
𝑌̅21 𝑌̅22   …   𝑌̅2𝑛

⋮
𝑌̅𝑛1

⋮
𝑌̅𝑛2

⋮     ⋮
 …  𝑌̅𝑛𝑛

]             (28) 

                      𝑹 = [

0 0 …    0
0 𝑅22   …   𝑅2𝑛

⋮
0

⋮
𝑅𝑛2

⋮     ⋮
 …  𝑅𝑛𝑛

]            (29) 

                           𝑿 = [

0 0 …    0
0 𝑋22   …   𝑋2𝑛

⋮
0

⋮
𝑋𝑛2

⋮     ⋮
 …  𝑋𝑛𝑛

]          (30)  

  

C. Inverter Modeling 

1. Inverter Capability Model 

 In this section, a simple inverter model previously used in [9-10], [15], and [23] 

is presented to determine the limitations for the inverter’s reactive power contribution to 

the distribution system. According to a recent amendment to the IEEE 1547 

interconnection standards [8], PV inverters are now required to contribute to voltage 

control by absorbing or supplying reactive power. The PV inverter’s reactive power is 

limited by the capacity model shown in Fig. 3. From Fig. 3, the relation between the 
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inverter’s apparent power capability 𝑠𝑖, real power generated 𝑝𝑖
𝑔

, and its reactive power 

𝑞𝑖
𝑔

 is expressed by: 

    |𝑞𝑖
𝑔

| ≤ √ 𝑠𝑖
2 − (𝑝𝑖

𝑔
)

2
    (31) 

 

 

 

   

 

 

 

 

 

 

 

 

𝑞𝑔 

𝑠 

𝑝𝑔 
|𝑞𝑔| ≤ ඥ𝑠2 − (𝑝𝑔)2 

Fig. 3.     Capability model of the inverter. 



 

 

 

 

 

 

14 

 

 

 

 

 

2. Linearized Inverter Capability Model 

 A good approximation of the capability model can be obtained by replacing it 

with the inscribed trapezoid having maximum area; thus the first step is to determine its 

coordinates on the capability model as shown in Fig. 4.  

From Fig. 4, 𝑏1 = 2𝑟 and the area of the inscribed trapezoid is given by: 

                                               𝐴 =
(𝑏1+𝑏2)ℎ

2
                          (32) 

Based on the drawn right triangles, 𝑟2 is equal to: 

                                               𝑟2 = ℎ2 + (
𝑏2

2
)2           (33) 

Then, 𝑏2 is equal to: 

    𝑏2 = 2√𝑟2 − ℎ2      (34) 

Substituting 𝑏1 and 𝑏2 in (32) yields: 

                                               𝐴 = ℎ𝑟 + ℎ√𝑟2 − ℎ2           (35) 

The maximum area of the inscribed trapezoid can be found by setting  
𝑑𝐴

𝑑ℎ
= 0, thus:                             

                                               𝑟 + √𝑟2 − ℎ2 −
ℎ2

√𝑟2−ℎ2
= 0                                    (36) 
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Solving for ℎ from (36) gives: 

                                               ℎ =
√3

2
𝑟                                       (37)  

Substituting ℎ in (34) results in 

 𝑏2 = r         (38) 

   

Expressing the derived coordinates in terms of inverter’s parameters results in the 

linearized inverter capability model shown in Fig. 5. The equations of the sides of the 

trapezoid can be found as follows: 

 

Fig. 4.     Diagram demonstrating the inscribed trapezoid having maximum area. 

 

𝑟 

𝑏2 𝑏1 
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Equation of line 𝑎:-   

                                               𝑝𝑖
𝑔

= 0                                        (39)          

 

Equation of line 𝑏:- 

                                               𝑝𝑖
𝑔

=
√3

2
𝑠𝑖                                       (40) 

Equation of line 𝑐:- 

                                               𝑞𝑖
𝑔

= −
√3

3
𝑝𝑖

𝑔
+ 𝑠𝑖           (41)                    

Equation of line 𝑑:- 

                                               𝑞𝑖
𝑔

=
√3

3
𝑝𝑖

𝑔
− 𝑠𝑖           (42)      

Following this approximation, constraint (31) is replaced by (43)-(46): 

                                               𝑝𝑖
𝑔

≥ 0              (43) 

                                               𝑝𝑖
𝑔

≤
√3

2
𝑠𝑖             (44) 

                                               𝑞𝑖
𝑔

≤ −
√3

3
𝑝𝑖

𝑔
+ 𝑠𝑖           (45) 

                                               𝑞𝑖
𝑔

≥
√3

3
𝑝𝑖

𝑔
− 𝑠𝑖           (46) 

The choice of the inverter’s apparent capability 𝑠𝑖 was the subject of a recent study [10]; 

it was concluded that a value of  𝑠𝑖 around 10% higher than the maximum real power 

𝑝𝑖
𝑔𝑚𝑎𝑥

  would allow for reactive power dispatching from the inverter without curtailing 

the real power that could be produced.  
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(
√3

2
𝑠,

𝑠

2
) 

𝑝𝑔 

𝑞𝑔 

𝑎 
𝑏 

𝑐 

(
√3

2
𝑠,

−𝑠

2
) 

𝑑 

𝑞𝑔 ≤ ඥ𝑠2 − (𝑝𝑔)2 

Fig. 5.     Linearized inverter capability model. 
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CHAPTER III 

METHODOLOGY 

 

 
Robust Optimization (RO) is an optimization methodology that deals with 

uncertainty in the optimization parameters; it is appropriate when the uncertain 

parameters vary in a domain that is bounded and known, and when the constraints have 

to be satisfied for every value of the uncertain parameters in that domain. For instance, 

the uncertain parameters could be physical quantities such as temperature or pressure of 

approximate values obtained from a measuring device. A characteristic of RO is that it 

is a worst case oriented methodology. That is to say, if it is desired to get the optimal 

cost function that depends on a specific uncertain parameter, RO will give the 

supremum of the optimal cost of the instances. This, however, raises questions about the 

optimality of RO; it may give a cost which is far from optimal when the scenario is not 

the worst one. This has led to the development of adjustable robust counterpart (ARC) 

and affinely adjustable robust counterpart (AARC) approaches; they both give less 

conservative solutions than RO [24], as will be discussed in the next sections. 
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A. Robust Counterpart (RC)  

 Consider the following uncertain optimization problem: 

        min {
𝒙

𝒄𝑻𝒙: 𝒙 ∈ 𝑿, 𝑓𝑖(𝒙, 𝜉 𝑖) ≥ 0 , 𝑖 = 1, … , 𝑚} (𝝃 𝟏,…..𝝃 𝒎)∈(𝒁𝟏×….𝒁𝒎)        (47) 

where 𝒄 ∈ 𝑹𝒏 is a vector of constant coefficients, 𝑿 is a convex and compact set, and 

the uncertain parameters are grouped in vector 𝝃 whose elements belong to nonempty 

convex, compact and known uncertainty set 𝒁, i.e., (𝝃 𝟏,….. 𝝃 𝒎) ∈ (𝒁𝟏 × … × 𝒁𝒎). 

The robust counterpart (RC) of problem (47) can be expressed as [27]: 

      min
𝒙

{𝒄𝑻𝒙: 𝒙 ∈ 𝑿, 𝑖𝑛𝑓
𝜉 𝑖∈𝑍𝑖

𝑓𝑖(𝒙, 𝜉 𝑖) ≥ 0 , 𝑖 = 1, … . , 𝑚}      (48)  

The best possible solution for every value of the uncertain parameter 𝝃 can be found by 

solving the RC (48). According to the above formulation and before knowing the values 

of the uncertain parameters, all decision variables grouped in vector 𝒙 have to be defined. 

However, in reality, part of the decision variables have to be defined before knowing the 

values of the uncertain parameters, and the others can adapt to the uncertain data. As a 

result, vector 𝒙 is divided into non-adjustable variables 𝒖 and adjustable variables 𝒗. 

Thus, the RC can be expressed as (49) or equivalently as (50) [24]: 

 min
𝒖,𝒗

{𝒄𝑻𝒖: (𝒖, 𝒗) ∈ 𝑿, 𝑖𝑛𝑓
𝜉 𝑖∈𝑍𝑖

𝑓𝑖(𝒖, 𝒗, 𝜉 𝑖) ≥ 0 , 𝑖 = 1, … . , 𝑚}  (49)

         

  min
𝒖

{𝒄𝑻𝒖: ∃𝒗 | (𝒖, 𝒗) ∈ 𝑿, ∀𝑖 = 1, … , 𝑚, ∀ (𝜉 𝑖 ∈ 𝑍𝑖), 𝑓𝑖(𝒖, 𝒗, 𝜉 𝑖) ≥ 0}        (50) 
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B. Adjustable Robust Counterpart (ARC)  

 A more flexible model than the RC is the adjustable robust counterpart (ARC); it 

has a larger feasibility set than the RC and thus allows achieving a better optimal value 

of the solution while satisfying the constraints for every value of the uncertain 

parameters. ARC is introduced in [28] as follows: 

  min
𝒖

{𝒄𝑻𝒖: ∀𝝃 ∈ 𝒁, ∃𝒗 | (𝒖, 𝒗) ∈ 𝑿, ∀𝑖 = 1, … , 𝑚 , 𝑓𝑖(𝒖, 𝒗, 𝜉 𝑖) ≥ 0}  (51)  

According to [28], the ARC of an uncertain linear optimization problem (52) can be 

expressed by (53):  

            min {
𝒖,𝒗

𝒄𝑻𝒖:  𝑼𝒖 + 𝑽𝒗 ≤ 𝒃} 𝝃≡[𝑼,𝑽,𝒃]∈𝒁                                       (52)

 min
𝒖

{𝒄𝑻𝒖: ∀(  𝝃 ≡ [𝑼, 𝑽, 𝒃] ∈ 𝒁), ∃𝒗 |  𝑼𝒖 + 𝑽𝒗 ≤ 𝒃}    (53) 

where the data  𝝃 ≡ [𝑼, 𝑽, 𝒃] varies in the uncertainty set 𝒁 and 𝑽 is called the recourse 

matrix; the notation 𝝃 ≡ [𝑼, 𝑽, 𝒃] implies that the elements in [𝑼, 𝑽, 𝒃] are in general 

uncertain. Ref. [28] proved that ARC is a linear programming problem when the 

recourse matrix is fixed and set 𝒁 is a convex hull of scenarios; however, when 𝒁 is 

polytope defined by a list of linear inequalities, ARC can be NP hard.  
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C. Affinely Adjustable Robust Counterpart (AARC) 

  To look for more tractable approximations of the ARC, [28] introduced the 

concept of Affinely Adjustable Robust Counterparts (AARC) for a wider range of 

uncertainty sets. The AARC deals with linear problems, quadratic, and conic quadratic 

optimization problems [24]. Following [24], the AARC of the uncertain linear 

programming problem (52), is expressed as (54)-(55): 

                                                        min 𝒄𝑻𝒖             (54)  

subject to  

                       𝑼𝒖 + 𝑽𝒗 ≤ 𝑨𝝃 + 𝒃                                       (55)  

where 𝑼, 𝑽, 𝑨, and 𝒃 are fixed, and the adjustable variables 𝒗 are considered affine 

(linear) dependent on the uncertain parameters 𝝃 according to:                          

𝒗 = 𝜶 + 𝜸𝝃                         (56) 

The dependency of the adjustable variables 𝒗 as a function of the uncertain data is not 

definitely linear, however, in some cases, this dependency can be justified (see section 

4.2 in [24] for the detailed discussion).     

For a box constrained uncertainty set (57), (55) can be expressed for each row 𝑖 by (58) 

as [24-25]: 

                    𝝃 ∈ [𝝃𝒎𝒊𝒏, 𝝃𝒎𝒂𝒙]                                                    (57)

         

  𝑼𝒊𝒖 + 𝑽𝒊𝜶 − 𝒃𝒊 + max
 𝛏∈[𝛏𝒎𝒊𝒏,𝛏𝒎𝒂𝒙]

[𝑽𝒊𝜸 − 𝑨𝒊] 𝛏 ≤ 0                                  (58)  
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The maximization term in (58) is equivalent to: 

      ∑ [𝑽𝒊𝜸 − 𝑨𝒊]𝑗ξ𝑗
𝑚𝑎𝑥

[𝑽𝒊𝜸−𝑨𝒊]
𝑗
≥0 + ∑ [𝑽𝒊𝜸 − 𝑨𝒊]𝑗ξ𝑗

𝑚𝑖𝑛
[𝑽𝒊𝜸−𝑨𝒊]

𝑗
<0         (59)     

= ∑ max ([𝑽𝒊𝜸 − 𝑨𝒊]𝑗, 0)ξ𝑗
𝑚𝑎𝑥

𝑗 + ∑ min ([𝑽𝒊𝜸 − 𝑨𝒊]𝑗 , 0)ξ𝑗
𝑚𝑖𝑛

𝑗         (60)  

By making use of column vectors 𝜽𝒊, 𝝋𝒊 of positive and negative slack variables 

respectively, the AARC can be finally written as the following LP: 

                           min
𝒖,𝜶,𝜸,𝜽𝒊,𝝋𝒊

𝒄𝑻𝒖              (61)  

subject to 

    𝑼𝒊𝒖 + 𝑽𝒊𝒘 − 𝒃𝒊 + 𝝃𝒎𝒂𝒙
𝑻 𝜽𝒊 + 𝝃𝒎𝒊𝒏

𝑻 𝝋𝒊 ≤ 0                           (62) 

    𝜽𝒊 ≥ 0, 𝜽𝒊
𝑻 ≥ 𝑽𝒊𝜸 − 𝑨𝒊                                                      (63)

   𝝋𝒊 ≤ 0, 𝝋𝒊
𝑻 ≤ 𝑽𝒊𝜸 − 𝑨𝒊                                                     (64) 

The AARC seeks to find the optimal values of 𝜶 and 𝜸 corresponding to any value of 𝝃, 

which is considered highly uncertain and varies according to the box constrained set 

defined by (57). The infinitely many constraints in (55) that corresponds to the infinite 

values of the uncertain parameter 𝝃 ∈ [𝝃𝒎𝒊𝒏, 𝝃𝒎𝒂𝒙] are reduced to linear inequalities by 

introducing slack column vector variables 𝜽𝒊 and  𝝋𝒊. The detailed proof is presented in 

[24]. 
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D. Affinely Adjustable Robust Counterpart Approach for Minimizing the  

     Maximum Absolute Voltage Magnitude Deviation             

 

 The affinely adjustable robust counterpart (AARC) approach can be used here to 

account for uncertainty in the photovoltaic generation levels due to rapidly changing 

cloud transients; it computes the coefficients of the linear decision rule of the inverter 

reactive power, which is a linear function of the real generated power. The result is an 

optimal local dispatch of reactive power from the PV inverters that leads to minimizing 

the maximum absolute voltage magnitude deviation.  

Minimizing the maximum absolute voltage magnitude deviation (65) that may occur at 

any node along the distribution system can be cast as a linear program (LP) with linear 

constraints (26) and (45)-(46): 

  min max
1

|𝑉̅0| 
||𝑉̅𝑖|  − |𝑉̅0| |    (65) 

By introducing a slack variable 𝑡 with ||𝑉̅𝑖| − |𝑉̅0|| ≤ 𝑡, (65) can be expressed as: 

    min
1

|𝑉̅0|
𝑡                             (66) 

subject to  

− 𝑡 ≤ |𝑉̅0| − |𝑉̅𝑖|     (67) 

− 𝑡 ≤ |𝑉̅𝑖| − |𝑉̅0|    (68) 

Equations (67)-(68) can be written in matrix form as: 

−𝒐𝒏𝒆𝒔(𝒏, 𝟏)𝑡 ≤ 𝑽𝟎 − 𝑽    (69) 

−𝒐𝒏𝒆𝒔(𝒏, 𝟏)𝑡 ≤ 𝑽 − 𝑽𝟎    (70) 
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Substituting (26) into (69)-(70) yields: 

−𝒐𝒏𝒆𝒔(𝒏, 𝟏)𝑡 + 𝑿𝒒𝒈 ≤ −𝑹𝒑𝒈 + (𝑹𝒑𝒄 + 𝑿𝒒𝒄)   (71) 

−𝒐𝒏𝒆𝒔(𝒏, 𝟏)𝑡 − 𝑿𝒒𝒈 ≤ 𝑹𝒑𝒈 − (𝑹𝒑𝒄 + 𝑿𝒒𝒄)   (72) 

The LP (65), (71)-(72) can be reformulated into the following standard form [24-25]:  

min 𝒄𝑻𝒖    (73) 

subject to 

𝑼𝒖 + 𝑽𝒒𝒈 ≤ 𝑨𝒑𝒈 + 𝒃       (74) 

where 𝒄𝑻𝒖 can be found by identification with (66) resulting in: 

𝒄𝑻 =
1

|𝑉̅0|
, 𝒖 = 𝑡    (75)  

Similarly, the matrices 𝑼, 𝑽, 𝑨, and vector 𝒃 can be found by identifying with 

constraints (45)-(46) and (71)-(72).  

To simplify the expressions, define the following matrices: 

 𝑵 = −𝒐𝒏𝒆𝒔(𝒏, 𝟏), 𝑫 = −
√𝟑

𝟑
𝒐𝒏𝒆𝒔(𝒏, 𝟏)    (76) 

𝑺𝒏×𝟏 = [𝒔𝟏 … 𝒔𝒏]𝑻, 𝑰 = 𝒆𝒚𝒆(𝒏), 𝒁𝒆𝒏×𝟏 = 𝒛𝒆𝒓𝒐𝒔(𝒏, 𝟏) (77) 

where 𝑠𝑖 in (77) is the inverter’s apparent capability that is set equal to 1.1𝑝𝑖
𝑔𝑚𝑎𝑥

 as 

discussed in the linearized inverter capability model.   

Using (76)-(77), the matrices 𝑼, 𝑽, 𝑨, and vector 𝒃 can be defined by: 

𝑼 = [

𝑵
𝑵
𝒁𝒆
𝒁𝒆

], 𝑽 = [

   𝑿
−𝑿
    𝑰
−𝑰

], 𝑨 = [

−𝑹
𝑹

𝒅𝒊𝒂𝒈(𝑫)
𝒅𝒊𝒂𝒈(𝑫)

], 𝒃 = [

(𝑹𝒑𝒄 + 𝑿𝒒𝒄)

−(𝑹𝒑𝒄 + 𝑿𝒒𝒄)
𝑺
𝑺

]  (78) 
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The vector 𝒑𝒈 represents the PV real power and 𝒒𝒈 represents the reactive power 

generated from the PV inverters. The reactive power generated from the PV inverter is 

considered affine (linear) dependent on the PV real power according to the local control 

rule (79), which has been recently employed for mitigating the effect of solar power 

intermittency [23]: 

𝑞𝑖
𝑔

= 𝛼𝑖 + 𝛾𝑖𝑝𝑖
𝑔

     (79) 

where 𝛼𝑖 and 𝛾𝑖 are constants that are to be computed from solving the AARC (73)-

(74). The AARC seeks to find the optimal values of 𝛼𝑖 and 𝛾𝑖 corresponding to any 

value of 𝑝𝑖
𝑔

, which is considered highly uncertain and varies according to the box 

constrained set defined by (80):   

     𝑝𝑖
𝑔

∈ [0, 𝑝𝑖
𝑔𝑚𝑎𝑥

  ]    (80) 

The lower and upper limits of (80) are calculated in accordance with (43)-(44). Given 

(80), (74) can be expressed for each row 𝑖 as [24-25]: 

𝑼𝒊𝒖 + 𝑽𝒊𝜶 − 𝒃𝒊 + max
 𝒑𝒈∈[0,𝒑𝒈𝒎𝒂𝒙]

[𝑽𝒊𝜸 − 𝑨𝒊] 𝒑𝒈 ≤ 0    (81) 

where 𝜶 is a column vector with values 𝛼𝑖 and 𝜸 is a diagonal matrix with values 𝛾𝑖 on 

the diagonal. 

The maximization term in (81) is equivalent to: 

∑ [𝑽𝒊𝜸 − 𝑨𝒊]𝑗𝑝𝑗
𝑔𝑚𝑎𝑥

[𝑽𝒊𝜸−𝑨𝒊]
𝑗
≥0

 

= ∑ max ([𝑽𝒊𝜸 − 𝑨𝒊]𝑗 , 0)𝑝𝑗
𝑔𝑚𝑎𝑥

𝑗                 (82) 
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By making use of column vectors 𝜽𝒊(𝑛×1)
 of positive slack, the AARC can be finally 

written as the following LP:   

min
𝒖,𝜶,𝜸,𝜽

𝒄𝑻𝒖    (83) 

subject to 

  𝑼𝒊𝒖 + 𝑽𝒊𝜶 − 𝒃𝒊 + 𝒑𝒈𝒎𝒂𝒙𝑇𝜽𝒊 ≤ 0    (84) 

  𝜽𝒊 ≥ 0    (85) 

 𝜽𝒊
𝑇 ≥ 𝑽𝒊𝜸 − 𝑨𝒊    (86) 
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CHAPTER IV 

NUMERICAL RESULTS 

 
 The AARC formulation (83)-(86) was programmed in MATLAB, and CPLEX 

was used to solve the LP [29]. Tests were reported for two distribution networks; the 1st 

network shown in Fig. 6, is a lightly loaded 56-node distribution feeder modified from 

[30] with one large PV plant (5 MW) installed at node 45 away from the substation. The 

2nd network shown in Fig. 7, is a 47-node distribution feeder modified from [12] with 

five PV plants of capacities (in MW): 1.5, 0.4, 1.5, 1, and 2 at nodes: 13, 17, 19, 23, 24. 

The networks data is available in the Appendix. 

 

 

   

 

 

 

 

 

 

 

Fig. 6.     Network diagram for Southern California Edison (SCE) distribution system. 

 



 

 

 

 

 

 

28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The maximum absolute voltage magnitude deviation and power loss were calculated 

assuming that the reactive power generation from each PV inverter is given by the local 

control rule (79); the coefficients in (79) were obtained by solving the AARC (83)-(86). 

For 1st and 2nd networks, computing the decision rules via CPLEX [29] required 2.3 s 

and 1.3 s respectively, on a PC having 2.2 GHz Intel Core i7 processor with a memory 

of 8 GB. The computed coefficients of the linear decision rules are reported in TABLE 

I. These linear decision rules are used to determine the required reactive power from the 

PV inverters at the nodes having PV real power generation. Fig. 8 represents simulated 

PV real power generation for the 1st network and the corresponding inverter’s reactive 

power. Similarly, for the 2nd network, the real and reactive power generation are 

represented in Figs. 9 and 10, respectively.  

Fig. 7.     Network diagram of the 47-node distribution feeder with high PV penetration. 
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TABLE I.    Coefficients of the Linear Decision Rules 

Network # Inverter # 𝜶𝒊 (pu) 𝜸𝒊 

1 45 2.5708 -0.4170 

2 

13 

17 

19 

23 

24 

1.65 

0.44 

1.65 

1.1 

2.2 

-0.5774 

-0.5774 

-0.5774 

-0.5774 

-0.5774 

 

 

 

 

 

 

 

 

 

 

Fig. 8.     Simulated PV real power generation for the 1st network and the 

corresponding inverter’s reactive power. 
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Fig. 9.     Simulated PV real power generation for the 2nd network. 

 

Fig. 10.     Inverters’ reactive power for the 2nd network. 
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A. Quantifying the Degree of Optimality of the Local Rules 

  To examine the optimality of the obtained results from the AARC formulation, 

a Monte-Carlo simulation with 10,000 trials was carried out; each trial corresponds to 

uniformly sampling values of PV real power from the box constrained set (80). The 

obtained values were used to calculate the maximum absolute voltage magnitude 

deviation using (26) and the power loss.  

The power loss on each branch is equal to: 

𝑃𝑜𝑤𝑒𝑟 𝑙𝑜𝑠𝑠𝑏𝑟𝑎𝑛𝑐ℎ = 𝑟𝑖|𝐼𝑖̅|
2   (87) 

where the magnitude of the current squared |𝐼𝑖̅|
2 can be found from: 

|𝐼𝑖̅|
2 = |(

𝑆̅𝑖

𝑉̅𝑖
)

∗

|
2

=
𝑃𝑖

2+𝑄𝑖
2

|𝑉̅𝑖|2     (88) 

Following the LinDistFlow model discussed earlier, |𝑉̅𝑖|=1 pu is used as a first estimate; 

thus the real power loss per branch can be approximated by: 

𝑃𝑜𝑤𝑒𝑟 𝑙𝑜𝑠𝑠𝑏𝑟𝑎𝑛𝑐ℎ = 𝑟𝑖(𝑃𝑖
2 + 𝑄𝑖

2) pu     (89) 

Therefore, the power loss across all branches can be approximately calculated using [11]: 

𝑃𝑜𝑤𝑒𝑟 𝑙𝑜𝑠𝑠 = ∑ 𝑟𝑖(𝑃𝑖
2 + 𝑄𝑖

2) 
𝑛𝑏
𝑖=0 pu   (90) 

The following 3 cases were considered: 

1) Base Case (BC): the maximum absolute voltage magnitude deviation and power loss 

for each trial were calculated assuming no reactive power generation from the PV 
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inverters, i.e., the vector 𝒒𝒈 is set to zero and the maximum absolute voltage magnitude 

deviation and power loss are calculated accordingly.  

2) AARC: the maximum absolute voltage magnitude deviation and power loss for each 

trial were computed assuming that the reactive power is dispatched based on the linear 

decision rules whose coefficients are computed in TABLE I.  

3) Centralized Control (CC): Assuming that the PV real power is measured at the PV 

generation nodes and sent to a centralized computer, the centralized computer solves the 

LP (91)-(92) in each Monte-Carlo Simulation (𝒑𝒕𝒆𝒔𝒕
𝒈

 is a column vector that represents 

the simulated PV generation values in each trial) for the optimal values of reactive 

power generation, and sends them back to the PV generation nodes for implementation. 

These calculated reactive generation values were used to obtain the maximum absolute 

voltage magnitude deviation and power loss. 

min 𝒇𝑻𝒙  (91) 

subject to 

𝑨𝒙 ≤ 𝒃  (92)  

where   

𝒇𝑻 = [
1

|𝑉̅0|
,  𝒛𝒆𝒓𝒐𝒔(𝒏, 𝟏)𝑻], 𝒙 = [

1

|𝑉̅0|

𝒒𝒈
]    (93) 

𝑨 = [

𝑵    𝑿
𝑵
𝒁𝒆
𝒁𝒆

−𝑿
    𝑰
−𝑰

], 𝒃 = [

−𝑹
𝑹

𝒅𝒊𝒂𝒈(𝑫)
𝒅𝒊𝒂𝒈(𝑫)

] 𝒑𝒕𝒆𝒔𝒕
𝒈

+ [

(𝑹𝒑𝒄 + 𝑿𝒒𝒄)

−(𝑹𝒑𝒄 + 𝑿𝒒𝒄)
𝑺
𝑺

]  (94)  
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  The comparison between the above 3 cases is reported in TABLE II.  The 

comparison between the AARC solution and the centralized control was extended by 

calculating the percentage of improvement in the maximum absolute voltage magnitude 

deviation and power loss; the percentage improvement represents the percentage 

reduction of these values relative to the base case calculated as follows:   

% 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑦 =
𝑦𝐵𝐶−𝑦𝐴𝐴𝑅𝐶 𝑜𝑟 𝐶𝐶

𝑦𝐵𝐶
× 100  (95) 

TABLE II.    Maximum Absolute Voltage Magnitude Deviation and Power Loss from the Base Case, the 

AARC, and the Centralized Control 

Network 

# 

Max |∆𝑽| ∞(pu) Max Power Loss (kW) Avg. Power Loss (kW) 

BC AARC CC BC AARC CC BC AARC CC 

1 0.0613 0.0186 0.0186 123.74 113.05 113.05 62.94 57.24 57.21 

2 0.0767 0.0436 0.0436 341.91 244.40 244.40 252.58 155.99 155.99 

 

TABLE III.    Percentage Improvement of the AARC and the Centralized Control Relative to the Base 

Case 

Network # 
Max |∆𝑽| ∞ Max Power Loss Avg. Power Loss 

AARC CC AARC CC AARC CC 

1 69.7 69.7 8.6 8.6 9.1 9.1 

2 43.2 43.2 28.5 28.5 38.2 38.2 

 

 

 TABLE II shows that in the 1st network, the integration of the 5 MW plant led to 

a maximum absolute voltage magnitude deviation of 0.0613 pu, a maximum power loss 

of 123.74 kW, and an average power loss of 62.94 kW over 10,000 trials. The 

implementation of the AARC linear decision rules decreased the deviation to 0.0186 pu, 
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the maximum power loss to 113.05 kW, and the average power loss to 57.24 kW; this 

represents a reduction of 69.7%, 8.6%, and 9.1% from the base case respectively, as 

displayed in TABLE III. Similar and very close results were obtained when applying 

the centralized control which serves as an upper bound on the expected improvement 

from the AARC. 

 Similarly, for the 2nd network, TABLE II shows that the integration of the five 

PV plants gave a maximum absolute voltage magnitude deviation of 0.0767 pu, a 

maximum power loss of 341.91 kW, and an average power loss of 252.58 kW over 

10,000 trials. The implementation of the AARC linear decision rules decreased the 

deviation to 0.0436 pu, the maximum power loss to 244.40 kW, and the average power 

loss to 155.99 kW; the corresponding percentages of improvement relative to the base 

case are given in TABLE III. The same results were obtained when applying the 

centralized control. 

  The above-reported results verify the degree of optimality associated with the 

AARC local control rules, and corroborate their effectiveness in reducing the maximum 

absolute voltage magnitude deviation in the system. It is worth mentioning that although 

the reduction of power loss is not in the objective function of the AARC, the power loss 

has been improved in both systems due to the reactive power support from the PV 

inverters. 
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B. Quantifying the Accuracy of the LinDistFlow Model 

 To examine the accuracy of the LinDistFlow model, the maximum absolute 

voltage magnitude deviation, the maximum power loss, and the average power loss 

(over 10,000 trials) were computed using (i) the  LinDistFlow model and (ii) the 

MATPOWER AC power flow  [31]. Also, a modeling error was computed as follows: 

𝑀𝑜𝑑𝑒𝑙𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟 =
𝑥𝑀𝐴𝑇𝑃𝑂𝑊𝐸𝑅−𝑥𝐿𝑖𝑛𝐷𝑖𝑠𝑡𝐹𝑙𝑜𝑤

𝑥𝐿𝑖𝑛𝐷𝑖𝑠𝑡𝐹𝑙𝑜𝑤
× 100   (96) 

where 𝑥 can represent the maximum absolute voltage magnitude deviation, the 

maximum power loss, or the average power loss; the results are reported in TABLES IV 

and V for all cases (base case,  AARC, and the centralized control). 

 TABLE IV shows that in the 1st network, the AC power flow in the base case 

resulted in a maximum absolute voltage magnitude deviation of 0.0663 pu as compared 

to 0.0613 pu from LinDistFlow; for AARC and centralized control the deviation was 

0.0203 pu from MATPOWER and 0.0186 pu from the LinDistFlow; this represents a 

modeling error of 8.2% for the base case and 9.1% for AARC/centralized control as 

displayed in TABLE V. The AC power flow resulted in a maximum power loss of 

128.12 kW for the base case and 111.95 kW for AARC/centralized control, as 

compared to 123.74 kW and 113.05 kW from LinDistFlow; this represents a modeling 

error of 3.5% for the base case and -1% for AARC/centralized control (the negative 

percentage implies the value obtained from LinDistFlow is higher than the one obtained 

from MATPOWER) as shown in TABLE V. The average power loss (over 10,000 
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trials) was also employed to compute the corresponding modeling error as shown in 

TABLES IV and V. Similar results for the 2nd network are also reported in TABLES IV 

and V. These differences between the AC power flow and LinDistFlow are expected 

due to the approximations going into the LinDistFlow model.  

According to the modeling error values shown in TABLE V, the LinDistFlow slightly 

underestimates the maximum absolute voltage magnitude deviation, and the linear 

decision rules when employed in the AC power flow simulation yield acceptable results. 

 

TABLE IV.    Maximum Absolute Voltage Magnitude Deviation and Power Loss from the Base Case, the 

AARC, and the Centralized Control using the LinDistFlow Model and MATPOWER 

Network 

# 

LinDistFlow Model MATPOWER 

Max |∆𝑽|∞ (pu) 

Max Power Loss (kW) 

Avg. Power Loss (kW) 

Max |∆𝑽|∞ (pu) 

Max Power Loss (kW) 

Avg. Power Loss (kW) 

BC AARC CC BC AARC CC 

1 

0.0613 

123.74 

62.94 

0.0186 

113.05 

57.24 

0.0186 

113.05 

57.21 

0.0663 

128.12 

67.78 

0.0203 

111.95 

56.76 

0.0203 

111.95 

56.73 

2 

0.0767 

341.91 

252.58 

0.0436 

244.40 

155.99 

0.0436 

244.40 

155.99 

0.0844 

404.51 

295.18 

0.0461 

261.61 

169.12 

0.0461 

261.61 

169.12 

 

TABLE V.    Percentage Modeling Error from the LinDistFlow Model 

Network 

# 

Max |∆𝑽| ∞ Max Power Loss Avg. Power Loss 

BC AARC CC BC AARC CC BC AARC CC 

1 8.2 9.1 9.1 3.5 -1.0 -1.0 7.7 -0.8 -0.8 

2 10.0 5.7 5.7 18.3 7.0 7.0 16.9 8.4 8.4 
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CHAPTER V 

CONCLUSION 

 

 The introduction of high penetration levels of PV generation into the distribution 

system necessitates the use of fast-reacting PV inverters for reactive power dispatching. 

This thesis presents an affinely adjustable robust counterpart approach for computing 

linear decision rules; these rules are then used locally to calculate the required reactive 

power support from the PV inverters for any value of generated real power. The 

methodology employs the LinDistFlow approximation of radial networks, and builds on 

recent advances in robust optimization theory. The results showed that the proposed 

control could significantly reduce the maximum absolute voltage magnitude deviation 

and at the same time reduce the power loss; in addition, comparison with centralized 

control on the available test instances suggest that the AARC decision rules are likely to 

give a maximum absolute voltage magnitude deviation that is very close to optimal. 

Validation was carried out with the AC power flow, and it showed that the AARC 

formulation that is based on the LinDistFlow model gives AC voltage levels that are 

within acceptable limits; in addition the power loss reduction as predicted by 

LinDistFlow holds to a good extent in the AC model.  Future research directions include 

extending the approach to model meshed distribution networks, and coordinating the 
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decision rules for PV reactive power control with classical Volt-VAR optimization of 

switched capacitors and transformer taps. 
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Network Data 

Line Data Line Data Line Data Load Data Load Data Photovoltaic 

From 

Bus 

To 

Bus 

R 

(Ω) 

X 

(Ω) 

From 

Bus 

To 

Bus 

R 

(Ω) 

X 

(Ω) 

From 

Bus 

To 

Bus 

R 

(Ω) 

X 

(Ω) 

Bus 

# 

Peak 

MVA 

Bus 

# 

Peak 

MVA 

Bus 

# 

Capacity  

(MW) 

1 
2 

2 

3 
3 

3 

4 
4 

5 

5 
6 

6 

7 
7 

8 

8 

2 
13 

3 

4 
14 

15 

20 
5 

26 

6 
27 

7 

32 
8 

40 

39 

0.259 
** 

0.031 

0.046 
0.092 

0.214 

0.336 
0.107 

0.061 

0.015 
0.168 

0.031 

0.076 
0.015 

0.046 

0.244 
 

0.808 
** 

0.092 

0.092 
0.031 

0.046 

0.061 
0.183 

0.015 

0.031 
0.061 

0.046 

0.015 
0.015 

0.015 

0.046 

8 
8 

8 

9 
9 

10 

10 
11 

11 

15 
15 

16 

18 
20 

20 

21 

41 
35 

9 

10 
42 

11 

46 
47 

12 

18 
16 

17 

19 
21 

25 

24 

0.107 
0.076 

0.031 

0.015 
0.153 

0.107 

0.229 
0.031 

0.076 

0.046 
0.107 

** 

** 
0.122 

0.214 

** 

0.031 
0.015 

0.031 

0.015 
0.046 

0.076 

0.122 
0.015 

0.046 

0.015 
0.015 

** 

** 
0.092 

0.046 

** 

21 
22 

27 

27 
28 

29 

32 
33 

35 

35 
35 

42 

43 
43 

22 
23 

31 

28 
29 

30 

33 
34 

36 

37 
38 

43 

44 
45 

0.198 
** 

0.046 

0.107 
0.107 

0.061 

0.046 
0.031 

0.076 

0.076 
0.107 

0.061 

0.061 
0.061 

 

0.046 
** 

0.015 

0.031 
0.031 

0.015 

0.015 
** 

0.015 

0.046 
0.015 

0.015 

0.015 
0.015 

1 
11 

12 

14 
16 

18 

21 
22 

25 

26 
28 

29 

30 
31 

32 

33 

30 
0.67 

0.45 

0.89 
0.07 

0.67 

0.45 
2.23 

0.45 

0.2 
0.13 

0.13 

0.2 
0.07 

0.13 

0.27 

34 
36 

38 

39 
40 

41 

42 
44 

45 

46 

0.2 
0.27 

0.45 

1.34 
0.13 

0.67 

0.13 
0.45 

0.2 

0.45 

13 
17 

19 

23 
24 

1.5 
0.4 

1.5 

1 
2 

 

Base Values and 

pf 

 

 

Vbase = 12.35 kV 
Sbase = 1 MVA 

Zbase = 152.52 Ω 

pf = 0.8 
** = 0.00001 

 

APPENDIX 

Modified Networks data of the systems presented in [30] and [12] respectively: 
    

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE VI.     Modified network data for Southern California Edison (SCE) distribution system 

 

 
Network Data 

Line Data Line Data Line Data Load Data Load Data Load Data 

From 

Bus 

To 

Bus 

R 

(Ω) 

X 

(Ω) 

From 

Bus 

To 

Bus 

R 

(Ω) 

X 

(Ω) 

From 

Bus 

To 

Bus 

R 

(Ω) 

X 

(Ω) 

Bus 

# 

Peak 

MVA 

Bus 

# 

Peak 

MVA 

Bus 

# 

Peak 

MVA 

1 
2 

2 

4 
4 

4 

7 
8 

8 

10 
11 

11 

13 
13 

15 

15 

17 

18 

4 

2 
3 

4 

5 
6 

7 

8 
9 

10 

11 
12 

13 

14 
15 

16 

17 

18 

19 

20 

0.160 
0.824 

0.144 

1.026 
0.741 

0.528 

0.358 
2.032 

0.502 

0.372 
1.431 

0.429 

0.671 
0.457 

1.008 

0.153 

0.971 

1.885 

0.138 

0.388 
0.315 

0.349 

0.421 
0.466 

0.468 

0.314 
0.798 

0.441 

0.327 
0.999 

0.377 

0.257 
0.401 

0.385 

0.134 

0.722 

0.721 

0.334 

20 
21 

20 

23 
23 

25 

26 
27 

28 

29 
30 

26 

32 
32 

34 

34 

36 

34 

38 

21 
22 

23 

24 
25 

26 

27 
28 

29 

30 
31 

32 

33 
34 

35 

36 

37 

38 

39 

0.251 
1.818 

0.225 

0.127 
0.284 

0.171 

0.414 
0.210 

0.395 

0.248 
0.279 

0.205 

0.263 
0.071 

0.625 

0.510 

2.018 

1.602 

0.610 

0.096 
0.695 

0.542 

0.028 
0.687 

0.414 

0.386 
0.196 

0.369 

0.232 
0.260 

0.495 

0.073 
0.171 

0.273 

0.209 

0.829 

0.406 

0.238 

39 
34 

41 

42 
42 

42 

42 
41 

47 

47 
49 

49 

51 
51 

53 

53 

53 

40 
41 

42 

43 
44 

45 

46 
47 

48 

49 
50 

51 

52 
53 

54 

55 

56 

2.349 
0.115 

0.159 

0.934 
0.506 

0.095 

1.915 
0.157 

1.641 

0.081 
1.727 

0.112 

0.674 
0.070 

2.041 

0.813 

0.141 

0.964 
0.278 

0.384 

0.383 
0.163 

0.195 

0.769 
0.379 

0.670 

0.196 
0.709 

0.270 

0.275 
0.170 

0.780 

0.334 

0.340 

3 
5 

6 

7 
8 

9 

10 
11 

12 

14 
16 

17 

18 
19 

22 

24 

25 

27 

28 

0.057 
0.121 

0.049 

0.053 
0.047 

0.068 

0.048 
0.067 

0.094 

0.057 
0.053 

0.057 

0.112 
0.087 

0.063 

0.135 

0.100 

0.048 

0.038 

29 
31 

32 

33 
34 

35 

36 
37 

38 

39 
40 

41 

42 
43 

44 

46 

47 

48 

50 

0.044 
0.053 

0.223 

0.123 
0.067 

0.094 

0.097 
0.281 

0.117 

0.131 
0.030 

0.046 

0.054 
0.083 

0.057 

0.134 

0.045 

0.196 

0.045 

52 
54 

55 

56 

0.315 
0.061 

0.055 

0.130 

Photovoltaic 

Bus 

# 

Capacity 

(MW) 

45 5 

Base Values 

and pf 

 
 

Vbase = 12 kV 

Sbase = 1 MVA 
Zbase = 144 Ω 

pf = 0.9 

 

 

 

 

TABLE VII.     Modified network data of the 47-node distribution feeder with high PV penetration 
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