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AN ABSTRACT OF THE THESIS OF 

 

 

 

Christelle Basset    for       Master of Engineering 

Major: Environmental and Water Resources Engineering 

 

 

 

Title: Physically based model for extracting dual-permeability parameters using non-

Newtonian fluids  

 

 

 

 

Dual-permeability models simulate flow and transport within soils characterized 

by preferential (macro) and matrix (micro) pore domains that each possess distinct 

hydraulic properties. The lack of suitable methods for determining appropriate and 

physically meaningful model parameters remains the major challenge to applying these 

models.  

 

Here, we present a method that constrains dual-permeability model parameters 

using experimental saturated flow results from water and a non-Newtonian fluid. We 

present two sub-models that solve for the effective pore sizes of micropores and 

macropores, with macropores represented either with cylindrical (for biological pores) or 

planar (for shrinkage cracks and fissures) pore geometries. The model determines as well 

the percent contribution (wi) of the representative macro and micro pores to water flow. 

 

We applied the model to experimental soil samples constructed with capillary 

tubes describing the macropores, and proved its ability to derive the bimodal pore size 

distributions in dual-domain soils using only two fluids. As such, we present this method of 

characterization of dual structures for improved modeling of non-uniform preferential flow 

and transport in macroporous soils. 
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CHAPTER I 

THEORETICAL BACKGROUND 

A. Introduction 

Many soils contain complex structures such as fractures, fissures, cracks, and 

macropores that dissect the soil matrix. These structures form as result of multiscale 

complex interactions between soil physical and biogeochemical properties, moisture 

condition, stress level, and biological activity (Abou Najm et al., 2010), and can affect 

water and solute transport by creating preferential flow (Beven, 1991). During preferential 

flow events, non-equilibrium conditions lead to differences in water pressures and solute 

concentrations (Gerke and van Genuchten, 1993, Jarvis, 2007). Such features of 

preferential flow cannot be captured by the Richards equation based on the single-porosity 

approach (Beven and Germann, 1982; van Ghenuchten et al., 1990). 

Different approaches have been proposed to describe water flow in the porous 

media using double-porosity or dual-permeability models (Gerke and van Genuchten, 1993; 

Jarvis, 1994; Simunek et al., 2003; Lewandowska et al., 2004). The term dual-permeability 

is used to characterize a porous medium composed of two subdomains with distinct pore 

sizes and hydraulic conductivities. For example, Gerke and van Genuchten (1993) derived 

two Richards’ equations coupled by an exchange term to represent the water transfer 

between macropores in a fracture network and micropores in the soil matrix. The exchange 

term is proportional to the conductivity of the interface and the difference in pressure head 

between the two domains. Jarvis (1994) described flow in high-permeability domain by 

kinematic wave equation and assumed the water transfer to be proportional to the 



2 
 

difference in relative saturations. Lewandowska et al. (2004) described flow within each 

domain using the Richards equation, yet their solution requires knowledge of geometry and 

hydraulic conductivity of the high-permeability domain.  

A major challenge to using these theoretical models is that we currently have 

limited ability to measure or identify their required parameters (Kohne et al., 2002), 

especially since inverse identification of macroscopic parameters can encounter several 

challenges mainly related to the instability and nonuniqueness of the parameters (Larsson 

and Jarvis, 1999). Non-Newtonian fluids have recently been used to characterize soil 

properties (Di Federico et al., 2010; Comba et al., 2011; Bush et al., 2014; Gastone et al., 

2014; Tosco et al., 2014; Stewart et al., 2014), with Abou Najm and Atallah (2016) 

building a system of equations that abstracts the pore structure into a system of N pore 

groups, each having a corresponding representative pore radius (Ri) and percent 

contribution to water flow (wi). The model (hereafter referred to as ANA model) requires 

only the experimental results of saturated flow experiments of the tested medium with 

water and N-1 non-Newtonian fluids. The model was tested on synthetic porous media and 

demonstrated its ability to extract multiple porosity-permeability domains (Atallah and 

Abou Najm, 2018). 

Here, we use the ANA model with water and a non-Newtonian fluid in saturated 

flow experiments to extract the physically-based parameters of dual-permeability model 

required for improved flow predictions. Two sub-models are established to determine the 

effective macropore sizes assuming either cylindrical or planar pore geometries, with 

micropores represented by cylindrical geometry. This model also determines the percent 

contribution to flow (wi) corresponding to the representative macro and micro pores. A 
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user-friendly solver was developed to solve the system of equations, including numerical 

and analytical integration of the non-Newtonian viscosity models.  

 

B. Why Non-Newtonian Fluids? 

Non-Newtonian fluids have viscosities that vary with the rate of applied stresses. 

Their behavior opened a wide range of applications in porous media, including hydraulic 

fracturing, the injection and delivery of iron particles for soil, and groundwater remediation 

(Comba et al., 2011; Bush et al., 2014; Gastone et al., 2014; Tosco et al., 2014). 

Furthermore, non-Newtonian fluids, used separately or in combination with Newtonian 

fluids with constant viscosities, proved helpful in aiding the understanding of flow and 

transport mechanisms in porous media. They were used to characterize the pore space, in 

terms of flow and porosity (Di Federico et al., 2010; Stewart et al., 2014; Abou Najm and 

Atallah, 2016). Modeling flow of non-Newtonian fluids requires the characterization of 

fluid’s viscosity model before solving the flow equation on the modeled pore structure. 

Common viscosity models for non-Newtonian fluids are defined as follows:  

Power Law               𝜂 = 𝑘 (−
𝜕𝑣𝑧

𝜕𝑟
)
𝛼−1

                                                                               (1) 

Cross                         𝜂 = 𝜂∞ +
𝜂0−𝜂∞

1+𝑘(−
𝜕𝑣𝑧
𝜕𝑟
)
1−𝛼                                                                      (2)                              

Carreau-Yasuda       𝜂 = 𝜂∞ +
𝜂0−𝜂∞

[1+(−𝑘
𝜕𝑣𝑧
𝜕𝑟
)
𝜆
]

1−𝛼
𝜆

       (3) 

Carreau                    𝜂 = 𝜂∞ +
𝜂0−𝜂∞

[1+(−𝑘
𝜕𝑣𝑧
𝜕𝑟
)
2
]

1−𝛼
2

                                                                   (4)                                     
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where 𝑘 is the consistency index or the viscosity at a shear rate of 1 s-1 [M L-1 T-1], 𝛼 the 

exponent in dimensionless units (1 for Newtonian, 0 <  𝛼 < 1 for shear thinning, and 𝛼 >

1 for shear thickening fluids), 𝜂0 the viscosity at zero shear rate [M L-1 T-1], 𝜂∞ the 

viscosity at infinite shear rate [M L-1 T-1] and λ the relaxation time [T].  

 

Figure 1: Velocity profiles for Newtonian and non-Newtonian fluids 

 

Figure 1 presents three different velocity profiles depending on the fluid behavior, 

representing three of the most common flow patterns (Newtonian, and non-Newtonian 

shear thinning and thickening). Here we analyze the cross-sectional flow of non-Newtonian 

fluid and we compare it with the Newtonian’s flow. For Newtonian fluid, the structure of 

the flow is quadratic (𝑉 ∝  𝑟2 from Poiseuille Law). For shear thinning fluid, the velocity 

profile is flatter near the boundary of the cross-sectional pipe (i.e. lower viscosity), then it 

reaches its maximum 𝑉𝑚𝑎𝑥  at the middle covering a wider range of the cross-section. For 

shear thickening fluid, the velocity profile is steeper near the boundary walls (i.e. higher 

viscosity), then it decays faster towards the middle to reach 𝑉𝑚𝑎𝑥   exactly at the midpoint of 

the cross-sectional area. 

-1.5
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-0.5
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0.5

1

1.5
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R
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Figure 2: Velocity profiles for three Newtonian fluids with different viscosities and their corresponding 

velocity ratios (a) and three non-Newtonian Cross model viscosity fluids with different K constants and their 

corresponding velocity ratios (b) (Abou Najm and Atallah, 2016) 

 

Figure 2 (a) shows that using three Newtonian fluids with three different 

viscosities did not generate additional unique information related to flow. This explains the 

reason why using more than one Newtonian fluid on the same porous medium generates 

flows that are proportional to the inverse of their corresponding viscosities. On the other 

hand, flow ratios from the three different non-Newtonian fluids generated additional unique 

information which can be used in porosity characterization. The flows within the same 

porous medium are proportional to different powers of the pore structure, thus presenting 

additional unique information that can be used in the characterization of different pore 

structures (Figure 2 (b)). From that point, Abou Najm and Atallah (2016) proved that 
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combining water and N-1 non-Newtonian fluids can result in N unique flow signatures for 

each pore size. 

 

C. ANA Model  

Abou Najm and Atallah (2016) utilized water and N-1 non-Newtonian fluids on 

saturated soil samples to represent the pore structure with N radii, such that each radius has 

a corresponding contribution to total water flow. 

Assuming steady-state, incompressible, saturated and laminar flow under 

isothermal conditions having a generalized Newtonian viscosity models, the Navier-Stokes 

equations for flow in circular in cylindrical coordinates reduce as follows to: 

1

𝑟

𝑑

𝑑𝑟
(𝑟𝜂

𝑑𝜈𝑧

𝑑𝑟
) = 𝜌𝑔

(
 𝜕ℎ

𝜕𝑧
−1)

𝑇
                                                                                                      (5) 

where: 𝜌 is the density [M L-3], g is the gravitational acceleration [M T-2], 𝜂 is the dynamic 

viscosity [M L-1 T-1], and 
𝜕𝑣𝑧

𝜕𝑟
 is the shear rate [L T-1] and 

𝜕ℎ

𝜕𝑧
 is the head gradient per unit 

length [L L-1], and T is the tortuosity factor [L L-1]. For horizontal flow, the right hand side 

of the governing differential equation becomes equal to: 𝜌𝑔
(
 𝜕ℎ

𝜕𝑧
)

𝑇
.  

A NxN square matrix is derived by associating two systems. The first system is flow 

generated from N constant head experiments (using water and N-1 non-Newtonian fluids) 

on real soil and the second system is the flow from N representative effective radii along 

with their corresponding weights. In addition, the last row of the matrix is derived by 

equating the pore volume of the real soil to the volume of the representative system as 

follows: 
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[
 
 
 
 
 
 
 
 
 
[2𝜋 ∫ 𝑟×𝑣𝑆2𝑑𝑟

𝑅1
0 ]

𝑅1
4

[2𝜋 ∫ 𝑟×𝑣𝑆2𝑑𝑟
𝑅2
0 ]

𝑅2
4

[2𝜋 ∫ 𝑟×𝑣𝑆2𝑑𝑟
𝑅3
0 ]

𝑅3
4 ⋯

[2𝜋 ∫ 𝑟×𝑣𝑆2𝑑𝑟
𝑅𝑁
0 ]

𝑅𝑁
4

[2𝜋 ∫ 𝑟×𝑣𝑆3𝑑𝑟
𝑅1
0 ]

𝑅1
4

[2𝜋 ∫ 𝑟×𝑣𝑆3𝑑𝑟
𝑅2
0 ]

𝑅2
4

[2𝜋 ∫ 𝑟×𝑣𝑆3𝑑𝑟
𝑅3
0 ]

𝑅3
4 ⋯

[2𝜋 ∫ 𝑟×𝑣𝑆3𝑑𝑟
𝑅𝑁
0 ]

𝑅𝑁
4

⋮ ⋮ ⋮ ⋱ ⋮
[2𝜋 ∫ 𝑟×𝑣𝑆𝑁𝑑𝑟

𝑅1
0 ]

𝑅1
4

[2𝜋 ∫ 𝑟×𝑣𝑆𝑁𝑑𝑟
𝑅2
0 ]

𝑅2
4

[2𝜋 ∫ 𝑟×𝑣𝑆𝑁𝑑𝑟
𝑅3
0 ]

𝑅3
4 ⋯

[2𝜋 ∫ 𝑟×𝑣𝑆𝑁𝑑𝑟
𝑅𝑁
0 ]

𝑅𝑁
4

𝑇1
[2𝜋 ∫ 𝑟×1𝑑𝑟

𝑅1
0

]

𝑅1
4 𝑇2

[2𝜋 ∫ 𝑟×1𝑑𝑟
𝑅2
0

]

𝑅2
4 𝑇3

[2𝜋 ∫ 𝑟×1𝑑𝑟
𝑅3
0

]

𝑅3
4 ⋯ 𝑇𝑁

[2𝜋 ∫ 𝑟×1𝑑𝑟
𝑅𝑁
0

]

𝑅𝑁
4 ]

 
 
 
 
 
 
 
 
 

⏟                                                
𝐴

[
 
 
 
 
 
 
 
 
𝑤1𝑇1

𝑤2𝑇2

𝑤3𝑇3

⋮

𝑤𝑁𝑇𝑁]
 
 
 
 
 
 
 
 

⏟    
𝑤

=

[
 
 
 
 
 
 
 
 
 
𝑄2𝐶1

𝑄1

𝑄3𝐶1

𝑄1

⋮

𝑄𝑁𝐶1

𝑄1

𝜙𝐴𝑇𝐶1

𝑄1 ]
 
 
 
 
 
 
 
 
 

⏟    
𝐵

 (6) 

where: 𝑅𝑖 is the representative radius [L], 𝑣𝑆𝑗  is the velocity function for fluid 𝑆𝑗 [L T-1], 𝑤𝑖 

is the flow contribution of each radius 𝑅𝑖, 𝑄𝑗 is the flow generated from the jth infiltration 

experiment [L3 T-1], 𝜙 is the porosity of the porous media [L3 L-3], 𝐴𝑇 is the total area of 

the porous media [L2], and C1 = π
α

1+3α
[−

H

2β
]

1

α
 (with β as the consistency index in [M L-1 

T-1], α is the exponent in dimensionless units, with α = 1 for water, and H = ρg(
 ∂h

∂z
− 1) 

for vertical flow or ρg
 ∂h

∂z
 for horizontal flow). 

As a simplistic approach, Abou Najm and Atallah (2016) solve the proposed 

model of N parallel capillary tubes assuming tortuosity is equal to 1. However, water flow 

is sensitive to the changes in tortuosity within the soil structure. The infiltration rate of 

water is slow due to tortuosity, the extent to which pathways are winding rather than 

straight or direct. Thus, tortuosity should be considered as a model parameter for 

characterization of porous dual structures. 

 

D. Tortuosity 

The soil structure is a complex and highly interconnected network of three-

dimensional pores. Representing such complexities with dual structures or one dimensional 
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bundles of capillary tubes may be practical for some soil applications but surely does not 

satisfy all soil structures. To account for some of the structural complexities that are beyond 

the capabilities of the simple model of parallel tubes, tortuosity was incorporated in the 

model with the ability to put different tortuosities for each of the dual structures. Tortuosity 

is defined as the ratio of the actual distance traveled by a fluid through the pore structure 

(𝑙𝑒)  to the straight line distance (𝑙) crossing the porous medium, i.e. 𝑇 =
𝑙𝑒

𝑙
 (Moldrup et 

al., 2001). It is commonly characterized by the porosity of the porous medium with typical 

range between 1.2 and 3, but can reach values as high as 50 for low porosity media 

(Matyka et al., 2008). However, Carey et al. (2016) indicated that total porosity is a poor 

predictor for tortuosity coefficient, and suggested hydraulic conductivity as more reliable 

predictor for tortuosity. A comprehensive summary of different theoretical and 

experimental attempts to define tortuosity is summarized in Table 1. 

Table 1:  Historic summary of tortuosity-porosity relations 

 

Reference Relation Type of soil Method of 

Analysis 

Type of 

Tortuosity 

Maxwell  

(1881) 
𝑇 = 1.5 − 0.5∅ 

 

Ordered packing Theoretical Electric 

Bruggeman 

(1935) 
𝑇 = ∅−0.5 

 

Non mono-sized 

spheres 

Theoretical Electric 

Carman  

(1937) 
𝑇 = 2 

 

Equal-sized 

spheres 

Theoretical Hydraulic 

Archie  
(1942) 

𝑇 = ∅−0.4 
 

Consolidated 
sandstones             

0.1 < ∅ < 0.6 

Empirical Electric 

Millington  

and Quirk  
(1961) 

𝑇 = ∅−1/3 Partly saturated 

homogeneous 
isotropic mono-

disperse spheres 

Theoretical Diffusive 

Weissberg 
(1963) 

𝑇 = 1 − 0.5ln (∅) 

 

Bed of overlapping 
spheres 

Empirical Diffusive 

Dullien 

 (1975) 
𝑇 = 3 Parallel capillary 

model 

Theoretical Hydraulic 



9 
 

Berryman  

(1981) 
𝑇 = (1 + 1/∅)/2 

 

Fully consolidated 

granular 

constituents 

Theoretical Hydraulic 

Beekman 
 (1990) 𝑇 =

∅

1 − (1 − ∅)1 3⁄
 

Heterogeneous

0.1 < ∅ < 0.7 

Theoretical Diffusive 

Du Plessis 

and 

Masliyah  
(1991) 

𝑇 =
∅

1 − (1 − ∅)2 3⁄
 

 

Isotropic granular 

media 

Analytical Hydraulic 

Boudreau  

(1996) 
𝑇 = √1 − ln (∅2) 

 

Fine-grained 

unlithified 

sediments                   

∅ < 0.85 

Empirical Diffusive 

Mauret and 

Renaud 
(1997) 

𝑇 = 1 − 0.49ln(∅) 
 

Packed beds with 

spherical particles 

Experimental Hydraulic 

Boving and 

Grathwohl 
(2001) 

𝑇 = ∅−1.2 
 

Limestone and 

sandstone rocks 

∅ > 0.2 

Experimental Diffusive 

Mota et al. 
(2001) 

𝑇 = ∅−0.4 
 

Spherical particles Empirical Hydraulic 

Yu and Li 

 (2004) 
𝑇 =

1

2

[
 
 
 

1 +
𝛼

2
+ 𝛼

√(
1
𝛼
− 1)

2

+
1
4

1 − 𝛼

]
 
 
 

 

where 𝛼 = √1 − ∅ 

Square particles Theoretical Geometric 

Yun et al.  
(2005) 𝑇 =

𝑇1
∗ + 𝑇2

∗∗

2
 

Spherical 
overlapping 

particles 

Theoretical Geometric 

Matyka et 
al. (2008) 

𝑇 = 1 − 0.77ln(∅) 
 

Overlapping 
mono-sized 

squares                          

∅ ≥ 0.4 

Empirical Hydraulic 

Lanfrey et 
al. (2010) 𝑇 = 1.23

(1 − ∅)4 3⁄

𝑆2∅
 

where S: sphericity factor 

Bed of spheres Theoretical Geometric 

Ahmadi et 

al. (2011) 𝑇 = √
2∅

3[1 − 1.209(1 − ∅)2/3]
+
1

3
 

Mono-sized 

spherical particles 

∅ ≥ 0.3 

Theoretical Hydraulic 

Duda et al. 

(2011) 
𝑇 = 1 + (1 − ∅)1 2⁄  Freely overlapping 

squares ∅ < 0.8 

Empirical Hydraulic 

Pisani 

 (2011) 
𝑇 =

1

1 − 𝑆(1 − ∅)
 

where S: sphericity factor 

Random, partial 

overlapping shapes 

Theoretical Diffusive 
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Li and Yu  

(2011) 𝑇 = (
19

18
)
ln(∅)/ln (8 9⁄ )

 
Particles of same 

size 

Analytical Geometric 

Liu and 
Kitanidis  

(2013) 

𝑇 = ∅0.28 + 0.15 Isotropic spherical 
grains                

0.25 < ∅ < 0.5 

Empirical Electric 

Saomoto  

and Katagiri 
 (2015) 

𝑇 = 1 + 0.217(∅−1.748 − 1)0.428 Packed beds with 

spherical particles   

0.5 ≤ ∅ ≤ 0.9 

Empirical Hydraulic 

 

Carey et al. 

(2016) 
𝑇 = √1/(0.77𝐾0.04) 

 

Saturated 

unconsolidated 

soil  0.3 ≤ ∅ ≤
0.5 

Experimental Diffusive 

 

∗ 𝑇1 =
[1+

√3(𝜋−2)

6+3𝑃
]+[

√2+3𝑃2 4+3𝑃⁄ +arccsin(√3(2+𝑃) 2⁄ )
−1

√3(2+𝑃) 2⁄
]

4
+

1

√1−[
1

√3(2+𝑃) 2⁄
]
2
+

1

√1−[
1

√3(2+𝑃) 2−1⁄
]
2

4
  

 ∗∗ 𝑇2 = (1 −
𝑃1

𝑃1+1
) (1 +

𝜋−2

𝑃1+2
) +

𝑃1

𝑃1+1
  ,  𝑃 = √2𝜋/ (√3(1 − ∅)) and   𝑃1 = √𝜋/(1 − ∅) − 2 

 

E. Preferential Flow Models  

At this point, we introduce the past common modeling approaches of preferential 

flow with their limitations that triggered us to develop a physically based dual-permeability 

model using the ANA model for improved characterization of dual structures.  

Preferential flow has been described by wide range of modeling approaches, most 

commonly using dual structures, namely dual-porosity models (van Genuchten and 

Wierenga, 1976) and dual-permeability models (Gerke and van Genuchten, 1993; Jarvis, 

1994; Simunek et al., 2003; Lewandowska et al., 2004). Both models divide the porous 

medium into two sub-regions, one characterized by the macropore network (fracture, inter-

porosity domain) and one by the micropore network (matrix, intra-porosity domain). 

Compared to single pore domain models, dual-domain models involve additional 

parameters that describe the dual pore regions.  
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Figure 3: Conceptual physical models for water flow (Simunek and van Genuchten, 2008) 

 

Dual-porosity models (Figure 3 (b)) assume that water is immobile between the 

micropores, such that water can move from the macropore into the soil aggregates and vice 

versa, but not directly between the aggregates themselves. For that reason, water is 

considered immobile in the aggregates from a larger scale. The dual-porosity formulation 

for water flow describes water flow in the macropores (subscript mo for mobile region) 

using the Richards Equation and the moisture dynamics in the matrix (subscript im for 

immobile region) using a mass balance equation (Simunek et al., 2003): 

𝜕𝜃𝑚𝑜(ℎ𝑚𝑜)

𝜕𝑡
=

𝜕

𝜕𝑧
[𝐾(ℎ𝑚𝑜) (

𝜕ℎ𝑚𝑜

𝜕𝑧
+ 1)] − 𝑆𝑚𝑜(ℎ𝑚𝑜) − 𝜏𝑤                                                    (7)     

𝜕𝜃𝑖𝑚(ℎ𝑖𝑚)

𝜕𝑡
= −𝑆𝑖𝑚(ℎ𝑖𝑚) + 𝜏𝑤                                                                                               (8)   

where 𝑧[𝐿] the vertical coordinate (positive in the upward direction), t [T] time, ℎ[𝐿] the 

pressure head, 𝜃(ℎ) the soil water retention curve describing the relationship between the 

water content 𝜃[𝐿3𝐿−3] and the pressure head ℎ[𝐿], 𝐾(ℎ) the unsaturated hydraulic 

conductivity (often equal to the product of the relative hydraulic conductivity 

𝐾𝑟(𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠) and the saturated hydraulic conductivity 𝐾𝑠(𝐿𝑇
−1)), 𝑆(𝑇−1) a sink 
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term describing the root water uptake, and 𝜏𝑤(𝑇
−1) the water transfer between the two pore 

regions. 

However, dual-permeability models overcome the limitation of water being 

immobile between aggregates. In such models (Figure 3 (c)), the porous medium consists 

of two homogeneous regions, one associated with the macropore (fracture, inter-porosity 

domain) of high permeability, and the other associated with the micropore (matrix, intra-

porosity domain) of low permeability. This concept was used in the model proposed by 

Gerke and van Genuchten (1993) that consists of two Richards’ equations coupled by an 

exchange term to represent the water transfer between the two pore regions. The flow 

equations for the macropore (subscript f for fracture) and micropore (subscript m for 

matrix) are given by: 

𝜕𝜃𝑓(ℎ𝑓)

𝜕𝑡
=

𝜕

𝜕𝑧
[𝐾𝑓(ℎ𝑓) (

𝜕ℎ𝑓

𝜕𝑧
+ 1)] − 𝑆𝑓(ℎ𝑓) −

𝜏𝑤

𝜔
                                                                   (9)                   

And 

𝜕𝜃𝑚(ℎ𝑚)

𝜕𝑡
=

𝜕

𝜕𝑧
[𝐾𝑚(ℎ𝑚) (

𝜕ℎ𝑚

𝜕𝑧
+ 1)] − 𝑆𝑚(ℎ𝑚) −

𝜏𝑤

1−𝜔
                                                       (10)    

Respectively, where, 𝜔(𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠) the ratio of the volume of the macropore domain 

to the volume of the total soil domain. 

The water transfer 𝜏𝑤(𝑇
−1) between the two pore regions is described as follows: 

𝜏𝑤 = 𝛼𝑤(ℎ𝑓 − ℎ𝑚)                                                                                                             (11) 

where ℎ𝑓(𝐿) and ℎ𝑚(𝐿) the average pressure potentials in the macropores and in the 

micropores respectively, and 𝛼𝑤(𝐿
−1𝑇−1) a first-order coefficient defined as follows: 

𝛼𝑤 =
𝛽

𝑎2
𝛾𝑤𝐾𝑎                                                                                                                     (12) 
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where 𝛽 a geometry factor (𝛽 = 3 for rectangular aggregates and 𝛽 = 15 for spherical 

aggregates), 𝑎 [L] the distance from the center of a matrix block to the fracture boundary, 

𝛾𝑤 an empirical coefficient assumed as 0.4 and 𝐾𝑎 the apparent hydraulic conductivity 

defined as : 𝐾𝑎 = 0.5[𝐾𝑎(ℎ𝑓) + 𝐾𝑎(ℎ𝑚)]. 

Those theoretical models are still limited because they require parameters that 

cannot be directly identified (Kohne et al., 2002). The inverse identification of the 

macroscopic parameters can encounter challenges since the sources of errors cannot be 

distinguished during the analysis like model or parameters errors (Larsson and Jarvis, 

1999). Therefore, it is very difficult to use those models under field conditions, due to the 

large number of parameters involved and the current lack of standard experimental 

procedures to estimate them. For that reason, a new physically based dual-permeability 

model should be presented to overcome the current inabilities of the earlier flow models to 

cope with the complexities of the pore medium. 
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CHAPTER II 

THEORY AND METHODS 

In this work, we use the ANA model to develop a 2x2 matrix (solving for the case 

of N = 2) that can be used to extract physically based dual-permeability model parameters. 

We refer to this model as ANA-2 model. We simplify the pore structure into one of two 

configurations (Figure 4): micropores represented by cylindrical pore geometries with 

macropores either in cylindrical (e.g., biological pores) or planar (e.g., shrinkage cracks and 

fissures) pore geometries. 

 

 

Figure 4: The two abstractions of the pore structure in dual-structured soils 

 

A. Flow Equation in Parallel Plates 

Given that macropores can attain planar and cylindrical pore geometries, we re-

derive the ANA model for the case when part of the pore structure is represented as 
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rectangular sections (macropores) by using the solutions of flow with parallel plates’ 

conditions. 

 

Figure 5: Coordinate system, notation used in the analysis and parabolic velocity distribution for flow 

between parallel fixed plates (Munson et al., 2001) 

 

Assuming steady-state, incompressible, saturated and laminar flow under 

isothermal conditions having a generalized Newtonian viscosity models, the Navier-Stokes 

equations for flow between fixed parallel plates in Cartesian coordinates reduce as follows 

to: 

𝑑

𝑑𝑦
(𝑛

𝑑𝑢

𝑑𝑦
) =

𝑑𝑃

𝑑𝑥
− 𝜌𝑔                                                                                                           (13) 

where 𝑃 is the pressure, 𝜌 is the density (M L-3), 𝑔 is the gravitational acceleration (M T-2), 

𝑛 is the dynamic viscosity in (P T) and 
𝑑𝑢

𝑑𝑦
 is the shear rate in (T-1). Assuming a constant 

pressure gradient: 

𝑑

𝑑𝑦
(𝑛

𝑑𝑢

𝑑𝑦
) = 𝜌𝑔 (

𝑑ℎ

𝑑𝑥
− 1) = 𝐻                                                                                            (14) 

where 
𝑑ℎ

𝑑𝑥
 is the pressure head gradient per unit length, while 𝐻 is the overall hydraulic head 

term for vertical flow. For horizontal flow, 𝐻 becomes 𝜌𝑔 (
𝑑ℎ

𝑑𝑥
). 

To account for tortuosity: 
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𝑑

𝑑𝑦
(𝑛

𝑑𝑢

𝑑𝑦
) =

𝐻

𝑇
                                                                                                                      (15) 

where 𝑇 is the tortuosity factor  

Assuming power law viscosity model fluids with different 𝛼 constants, 

𝑛 = 𝛽 (−
𝑑𝑢

𝑑𝑦
)
𝛼−1

                                                                                                                (16) 

where 𝛽 is the consistency index in (P T) or the viscosity at a shear rate of 1s-1, 𝛼 is the 

exponent in dimensionless units (1 for Newtonian, 0 <  𝛼 < 1 for shear thinning, > 1 for 

shear thickening). 

The velocity profile derived in the special case of non-Newtonian power law viscosity 

model is as follows (detailed derivations are provided in the Appendix). 

𝑢 =
𝛼

𝛼+1
(−

𝐻𝑗

𝛽

1

𝑇𝑖
)

1

𝛼
{
1

2
1
𝛼
+1
 𝑊

1

𝛼
+1 − 𝑦

1

𝛼
+1}                                                                            (17) 

where 𝑊 (L) is the distance between the two parallel fixed plates as shown in Figure 5 

The general flow equation is then derived by integrating 𝑢 using the general flow equation 

for parallel fixed plates: 

𝑞 = ∫ 𝑢𝑑𝑦
𝑊/2

−𝑊/2
                                                                                                                    (18) 

The analytical equation of flow through parallel plates in the special case of non-Newtonian 

power law viscosity model is therefore: 

𝑄 =
𝛼

(2𝛼+1)2
1
𝛼
+1
(−

𝐻𝑗

𝛽

1

𝑇𝑖
)

1

𝛼
𝑏𝑊

1

𝛼
+2

                                                                                       (19)        

where 𝑏 (L) is the width of the plane normal to the plane shown in Figure 5 
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B. Dual-permeability Cases 

As it has been already mentioned, this research focuses on improved 

characterization of dual structures using non-Newtonian fluids. The ANA-2 model assumes 

two pore configurations: (1) macropores are represented as linear cracks while micropores 

are represented as circular pores and (2) both micro and macro pores are represented as 

circular pores. 

 

1. Case 1: Circular micropores and linear macropores 

𝑄𝑗 = 𝑄𝑗𝑘 +𝑄𝑗𝑖                                                                                                                                  (20) 

where 𝑗 the number of fluids, 𝑖 the number of linear (i.e. rectangular) macropores and 𝑘 the 

number of circular micropores. In case 1,  𝑗 = 2 and 𝑖 = 𝑘 = 1 

 

Figure 6: Proposed ANA-2 Model (1) 

 

The pore structure of the porous medium is abstracted into 1 representative radius 

(𝑅1) with 𝑋1 the number of circular pores for radius (𝑅1) and into 1 width (𝑊1) and length 

(𝑏1) with 𝑌1 the number of linear pores for width (𝑊1) and length (𝑏1). 
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Two equations can be derived from equating the total flow from each of the two 

solutions (water and one non-Newtonian fluid) to the flow in the proposed pore structure. 

The total saturated flow (𝑄𝑗) resulting from water in a porous medium idealized into one 

representative radius (𝑅1), width (𝑊1) and length (𝑏1): 

𝑄1 = 𝐴1
𝑋1

𝑇𝑐1
𝑅1
4 + 𝐵1

𝑌1

𝑇𝑙1
𝑏1𝑊1

3                                                                                            (21) 

where: 

{
 
 

 
 𝐴1 =

𝜋

4
[−

𝐻𝑐1

2𝜇
]

𝐵1 =
1

6
[−

𝐻𝑙1
2𝜇
]

𝑋1: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑝𝑜𝑟𝑒𝑠 𝑓𝑜𝑟 𝑟𝑎𝑑𝑖𝑢𝑠 (𝑅1)
𝑌1: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑛𝑒𝑎𝑟 𝑝𝑜𝑟𝑒𝑠 𝑓𝑜𝑟 𝑤𝑖𝑑𝑡ℎ (𝑊1) 𝑎𝑛𝑑 𝑙𝑒𝑛𝑔𝑡ℎ (𝑏1)

 

For 𝑗 = 2, the total saturated flow (𝑄𝑗) resulting from solution (fluid) 𝑆𝑗 in a porous medium 

idealized into 1 representative radius (𝑅1), width (𝑊1) and length (𝑏1): 

𝑄𝑗 = 𝑋1 (2𝜋∫ (𝑢𝑐)
𝑆𝑗𝑟𝑑𝑟

𝑅1

0
) + 𝑌1 (2∫ (𝑢𝑙)

𝑆𝑗𝑏1𝑑𝑦
𝑊1/2

0
)                                                                    (22)                                      

where 𝑢𝑐 the velocity in circular pores and 𝑢𝑙 the velocity of in linear pores 

The total volume of pores within the sample (𝑉𝑝𝑜𝑟𝑒𝑠) can be calculated as: 

∅𝑉𝑝𝑜𝑟𝑒𝑠 = 𝑋1𝐿𝑐1𝜋𝑅1
2 + 𝑌1𝐿𝑙1𝑏𝑊1                                                                                                 (23) 

where ∅ the total porosity of the medium sample, 𝑉𝑇 the total volume of the sample, 𝐿𝑐1 the 

length of the tube corresponding to 𝑅1 and 𝐿𝑙1 the length of the rectangular pores 

corresponding to width 𝑊1 and length 𝑏1. Dividing by the sample length 𝐿, and using the 

identities that 𝐿𝑐1 = 𝑇𝑐1𝐿 and 𝐿𝑙1 = 𝑇𝑙1𝐿: 

∅𝐴𝑇 = 𝑋1𝑇𝑐1𝜋𝑅1
2 + 𝑌1𝑇𝑙1𝑏1𝑊1                                                           (24)                                                                                                    

where 𝐴𝑇 the total cross-sectional area of the sample, 𝑇𝑐1 the tortuosity of the tube 

corresponding to 𝑅1 and 𝑇𝑙1 the tortuosity of the parallel plates corresponding to 𝑊1 and 𝑏1. 
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The set of equations is: (𝑗 = 2) 

{
 
 

 
 𝑄1 = 𝐴1

𝑋1

𝑇𝑐1
𝑅1
4 + 𝐵1

𝑌1

𝑇𝑙1
𝑏1𝑊1

3

𝑄2 = 𝑋1 (2𝜋∫ (𝑢𝑐)
𝑆2𝑟𝑑𝑟

𝑅1

0
) + 𝑌1 (2∫ (𝑢𝑙)

𝑆2𝑏1𝑑𝑦
𝑊1/2

0
)

∅𝐴𝑇 = 𝑋1𝑇𝑐1(𝜋𝑅1
2) + 𝑌1𝑇𝑙1𝑏1𝑊1

                (25) 

Dividing the total flow into flow in macropores [(𝑤1)𝑐𝑄1] vs. flow in micropores [(𝑤1)𝑙𝑄1]: 

where (𝑤1)𝑐the ratio of flow in circular micropores to the total is flow and (𝑤1)𝑙 the ratio of 

flow in rectangular macropores to the total flow. 

{

(𝑤1)𝑐𝑄1 = 𝐴1
𝑋1

𝑇𝑐1
𝑅1
4

(𝑤1)𝑙𝑄1 =  𝐵1
𝑌1

𝑇𝑙1
𝑏1𝑊1

3
{

𝑄1 =
𝐴1𝑋1𝑅1

4

𝑇𝑐1(𝑤1)𝑐

𝑄1 = 
𝐵1𝑌1𝑏1𝑊1

3

𝑇𝑙1(𝑤1)𝑙

                                           (26)                                                                      

Subject to {

(𝑤1)𝑐 + (𝑤1)𝑙 = 1

𝑤𝑚𝑖𝑛 ≤ (𝑤1)𝑐 ≤ 1

𝑤𝑚𝑖𝑛 ≤ (𝑤1)𝑙 ≤ 1

 

Dividing the equations (22) and (24) by 𝑄1 from (26), we obtain: 

[
(
1

𝐴1
)
(2𝜋 ∫ (𝑢𝑐)

𝑆2𝑟𝑑𝑟
𝑅1
0

)

𝑅1
4 (

1

𝐵1
)
(2∫ (𝑢𝑙)

𝑆2𝑑𝑦
𝑊1/2
0

)

𝑊1
3

(
1

𝐴1
) (𝑇𝑐1

𝜋

𝑅1
2) (

1

𝐵1
) (𝑇𝑙1

1

𝑊1
2)

]

⏟                            
A1

[
Tc1(𝑤1)𝑐
Tl1(𝑤1)𝑙

]
⏟      

w

= [

𝑄2

𝑄1
∅𝐴𝑇

𝑄1

]                     (27)                                

A1  is a matrix derived by incorporating two systems. The first system is the flow generated 

form 2 constant head experiments (water and 1 non-Newtonian fluid) on the soil and the 

second system is the flow through micropores represented by a single effective radius R1 and 

macropores represented by a single effective width R1 as well as their corresponding 

contributions to water flow (𝑤1)𝑐 and (𝑤1)𝑙. 
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2. Case 2: Circular micropores and macropores 

𝑄𝑗 = 𝑄𝑗𝑘                                                                                                                              (28) 

where 𝑗 the number of fluids and 𝑘 the number of circular pores. In case 2, 𝑗 = 2 and 𝑘 = 2 

 

Figure 7: Proposed ANA-2 Model (2) 

 

In the case 2, the model is derived using the same methodology followed in case 1;       

 [

(2𝜋 ∫ (𝑢𝑐)
𝑆2𝑟𝑑𝑟

𝑅1
0

)

𝑅1
4

(2𝜋 ∫ (𝑢𝑐)
𝑆2𝑟𝑑𝑟

𝑅2
0

)

𝑅2
4

(𝑇𝑐1
𝜋

𝑅1
2) (𝑇𝑐2

𝜋

𝑅2
2)

]

⏟                      
A2

[
𝑇𝑐1(𝑤1)𝑐
𝑇𝑐2(𝑤2)𝑐

]
⏟      

w

= [

𝑄2𝐴1

𝑄1
∅𝐴𝑇𝐴1

𝑄1

]                                              (29)                                           

A2  is a matrix derived by incorporating two systems. The first system is flow generated 

from two constant head experiments (water and one non-Newtonian fluid) on the soil and 

the second system is the flow through circular micropores and macropores represented 

respectively by effective radii R1 and R2 as well as their respective corresponding 

contributions to water flow (𝑤1)𝑐 and (𝑤2)𝑐. 
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C. Numerical and Analytical Techniques 

To evaluate each matrix (A1 and A2), we need a numerical or analytical approach 

for viscosity models. Abou Najm and Atallah (2016) created a Matlab based solver which 

numerically integrates and optimizes an NxN matrix to solve the N effective radii of circular 

pores in a porous medium. 

The previous solver is modified in order to account for the planar pore geometries 

and for the analytical solution of viscosity models, while restricting the number of solutions 

with N=2.  

The numerical approach derives the velocity function for Power Law, Cross and 

Carreau-Yasuda then determines the flow to fill each matrix. However, the analytical 

approach directly estimates the flow values for Power Law, Cross and Carreau models. 

In Sochi 2015, analytical equations are derived for the flow of Carreau and Cross 

fluids through straight rigid circular uniform pipes and long thin uniform plane slits. The 

analytical equations (Figure 8) are validated by comparing their solutions to those obtained 

from numerical integration in Matlab. The comparison show identical results in the 

investigated case for both Carreau and Cross fluids.  
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Figure 8: Flow of Carreau and Cross fluids through straight rigid circular uniform pipes and long thin uniform 

plane slits within the porous medium  

 

D. Problem Types 

Similar to the ANA model, ANA-2 solves the derived system of equations to 

provide answers to three different problem types. A numerical solver was developed for 

ANA-2 using Matlab optimizer (available upon request from the corresponding author). 

The solver numerically evaluates the ANA-2 system of equations for a dual-domain soil to 

answer the following three problem types: 

 Problem-Type 1: Assuming a relatively known or predefined structure 

represented as micropores of radius 𝑅1 and tortuosity 𝑇𝑐1 as well as macropores of either 

linear cracks of width 𝑊1 and tortuosity 𝑇𝑙1 (Configuration 1) or circular pores of radius 𝑅2 

and tortuosity 𝑇𝑐2 (Configuration 2), what are the corresponding weights or contributions to 

total saturated flow 𝑄1 (with water)? The model output is the following weights: (𝑤1)𝑐 for 

circular micropores and (𝑤1)𝑙 or (𝑤2)𝑐 for macropores with linear or circular 



23 
 

configurations, respectively. In this problem-type, the objective function is to minimize 

1

2
‖𝐴𝑤 − 𝐵‖2 subject to: {

𝑤1 + 𝑤2 = 1
𝑤𝑚𝑖𝑛 ≤ 𝑤1 ≤ 1
𝑤𝑚𝑖𝑛 ≤ 𝑤2 ≤ 1

 

 Problem-Type 2: Given pre-defined flow regimes (represented by weights 

(𝑤1)𝑐 for circular micropores and (𝑤1)𝑙 or (𝑤2)𝑐 for macropores), what are the 

representative pore size dimensions of the micropores and macropores that satisfy the 

predefined weights for the given soil? Here, the model output is the micropores 

representative radius 𝑅1 given tortuosity 𝑇𝑐1 and the linear cracks representative width 𝑊1 

(given tortuosity 𝑇𝑙1 for Configuration 1) or circular macropores representative radius 𝑅2 

(given tortuosity Tc2 for Configuration 2). In this problem-type, the objective function is to 

minimize 

𝐴𝑤 − 𝐵 subject to: {
0 < 𝑅1 < 𝑅2

𝑂𝑟
0 < 𝑅1 < 𝑊2

 

 Problem-Type 3: More generally, and given only the total saturated flows 

from water (𝑄1) and the non-Newtonian fluid (𝑄2), what is an optimum and representative 

pore dual structure that can represent the soil sample and what are the corresponding 

contributions to flow for each of the micro and macropores? The model output is the 

micropores representative radius 𝑅1 and contribution to flow (𝑤1)𝑐 as well as 𝑊1 and (𝑤1)𝑙 

or 𝑅2 and (𝑤2)𝑐 for macropores with linear or circular configurations, respectively. This 

problem-type is subject to: 

{

𝑇2𝑅2
2

𝑇1𝑅1
2 ≥ 𝑑𝑎𝑑𝑗

𝑇2𝑅2
2

𝑇1𝑅1
2 ≤ 𝑑𝑟𝑎𝑛𝑔𝑒

 Or   {

𝑇2𝑊1𝑏1

𝑇1𝜋𝑅1
2 ≥ 𝑑𝑎𝑑𝑗

𝑇2𝑊1𝑏1

𝑇1𝜋𝑅1
2 ≤ 𝑑𝑟𝑎𝑛𝑔𝑒
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where 𝑑𝑎𝑑𝑗  is the minimum ratio between the 2 representative areas of the pore size 

geometries for both dual-permeability cases; 𝑑𝑟𝑎𝑛𝑔𝑒  the maximum ratio between the largest 

and smallest pore size areas such that 𝑑𝑟𝑎𝑛𝑔𝑒 ≥ 𝑑𝑎𝑑𝑗 and 𝑏1 is the length of linear cracks 

determined as function of 𝑊1 where 𝑏1 = 𝑎𝑊1, given 𝑎 the length to width ratio. 

 

E. Optimizer Panels  

Four panels are inserted in the Matlab optimizer interface: 

 Flow Characteristics: take as input the 2 corresponding flows generated 

from the 2 constant head experiments (water and 1 non-Newtonian fluid), the head 

gradients (
dh

dz
) used or recorded in each experiment and the density of the 2 fluids. 

 Viscosity Characteristics: list the corresponding parameters of the viscosity 

model for each fluid. 

 Soil Characteristics: take as input the porosity, total volume and the 

saturated depth which is equivalent to the depth of the total soil sample. 

 Simulation Characteristics: validate the input of the three preceding 

characteristics, allow the selection of flow direction (horizontal or vertical), problem-type, 

objective function, constraints (𝑤𝑚𝑖𝑛 , 𝑑𝑎𝑑𝑗  and 𝑑𝑟𝑎𝑛𝑔𝑒) and the starting pore sizes or 

weights depending of the selected problem-type. 

Those four characteristics are displayed in Figure 9, which presents the Matlab 

optimizer interface. 
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Figure 9: Matlab Optimizer Interface 

 

F. Experimental Validation 

We assess the ANA-2 model’s ability to identify dual structural characteristics of 

porous media to aid dual-permeability models in identifying micropore and macropore flow 

characteristics and dual-permeability model parameters. To achieve this, ANA-2 model 

predictions were compared with experimental results of engineered dual structures to 

demonstrate the ANA model’s abilities.  

 

1. Experimental Setup 

To perform infiltration experiments, a typical Darcy’s setup was constructed to 

accommodate two distinct fluids and the test samples (Figure 10). The system comprised 

two reservoirs to ensure the two fluids’ supply (water and non-Newtonian fluid), a 

hydraulic pump to maintain constant head, a piezometer to record the head, shutoff and 
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control valves to adjust the flow and an outlet to collect the fluid once the outflow reaches a 

steady-state regime. 

Soils tested included three standard silica sands representing the matrix flow 

(micropores) coupled with different numbers of capillary tubes representing preferential 

flow (macropores). The three silica sands and their corresponding porosities were: #12/20 

(∅ = 0.35), #20/30 (∅ = 0.34), and #40/50 (∅ = 0.33). The capillary tubes were inserted 

vertically along the direction of the flow as one, two or three capillary tubes of 0.75 mm 

diameter. Infiltration tests were performed in a 50 cm high by 2.8 cm inner diameter tube, 

in which silica sand was packed to a height of 6 cm. The 6 cm sand columns were 

supported from the bottom by a mesh fixed to a perforated Plexiglas sheet of 2.7 cm 

diameter and 1.5 cm thickness, used to sustain the 7.5 cm long, 0.75 mm diameter capillary 

tubes. This sheet was held by another circular plate of 2.5 cm, perforated at the middle to 

allow water or non-Newtonian fluids to flow from the pipe into the porous medium. Both 

sheets were attached with O-rings to restrict drainage. To prepare the soil sample, the 

following procedure was followed: 

First, the capillary tubes of 7.5 cm length were put in place, then sand was poured 

layer by layer until the 6 cm column is completely covered. Note that the height of the 

capillary tube was equal to the height of the sand column and the thickness of the Plexiglas 

sheets. The top surface of the column was similarly covered as its lower inlet. Finally, the 

outflow fluid mass ∆𝑚𝑗 [M] and head [L] were recorded for given interval of time ∆𝑡 [T] 

once constant head was reached under saturated conditions. For each fluid, the volumetric 

flow rate 𝑄𝑗 [L T-3] was calculated as 
∆𝑚𝑗

𝜌𝑗×∆𝑡
 where 𝜌𝑗 is the density of fluid [M L-3]. 
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 Figure 10: Infiltration Apparatus for Constant Head Experiment  

 

2. Non-Newtonian Fluid 

For the non-Newtonian fluid, xanthan gum solutions of 0.5 and 1 g/kg (± 0.1 g/kg) 

concentrations were prepared by combining xanthan gum, deionized water, and sodium 

azide (0.1% by weight, to prevent biodegradation) in an electric kitchen blender, and 

blending until xanthan gum was fully dispersed. The mixture was then transferred to a 

sealed container and stirred with a laboratory electric stirrer for 48h, before being 

centrifuged for 1h at 2000G and vacuum filtered through a 2.5mm, glass fiber filter. After 

filtration, the solution was stored in sealed container in the dark at 5 oC. The final 
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concentration was determined gravimetrically by evaporating an accurately weighed mass 

of the solution at 105 oC. The Power Law viscosity model (𝜂 = 𝑘 (−
𝜕𝑣𝑧

𝜕𝑟
)
𝛼−1

 ) parameters 

for the 0.5 and 1 g kg-1 xanthan gum concentrations were  measured with a TA Instruments 

AR-G2 rotational rheometer with a cone-and-plate configuration. The samples were pre-

sheared at 1s-1 for one minute, and then measurements were taken over a torque range of 

0.05 to 500Nm at 22C. The apparent viscosity and shear rate values output by the 

instrument were used to fit the Power law model for each gum solution (Table 2). Both 

concentrations we tested to emphasize the reliability of the rheological properties of the 

fluids. Note that both xanthan gum solutions had densities of 1,500 kg m-3. 

Table 2: Power Law parameters of the two xanthum gum fluids 

Concentration (g/kg) k (Pa.s) 𝜶 

0.5 1.2162 0.4269 

1 1.8036 0.3638 

 

3. Soil Columns 

A total of 21 experiments were conducted including 3 soil configurations and 3 

fluids (0.5 and 1.0 g L-1 xanthan gum solutions and water). For the #12/20 and #20/30 silica 

sands, one, two, and three capillary tubes were used while one capillary tube was used for 

#40/50 silica sand, making a total of 7 different soil configurations. The experimental 

saturated flow results from water and each solution of xanthan gum were used as ANA-2 

model inputs. For each soil-capillary tube combination, the pore structures of micropores 

and macropores (obtained from ANA-2 model using water and one non-Newtonian fluid at 

a time) were compared with results of pore size distributions from 2.5 cm to 3.5 cm soil 
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sections using a Nikon XTH 225 ST high resolution x-ray microcomputed tomography 

(µCT) scanner. The (µCT) scanning was executed in the Shared Materials Instrumentation 

Facility (SMIF) at Duke University, with a resolution of between 11.9 to 18.9µm/pixel.  

 

4. Dual Pore Structure Calculations 

Results from the µCT showed that the largest pores for the coarsest sand used 

(#12/20) were less than 0.20 mm, with those of the other two sands (#20/30 and #40/50) 

having much smaller pores. Thus, the macropores were dominated by the size of the 0.75 

mm capillary tubes used, and the micropores were estimated as the average contribution of 

the entire sand structure. This latter was estimated by discretizing the pore size distribution 

(assuming all pores are conducting vertically) of each sand into at least 100 pore-size 

groups per sand type, calculating the number of pores per group from the incremental 

change in pore volume, and computing the theoretical flow per group using the Hagen-

Poiseuille equation to obtain the total theoretical flow, 𝑄 [L3 T-1]. Thus, for each soil, the 

average corresponding pore radius 𝑅 and number of pores 𝑋 were estimated using the 

following system of equations:  

{
𝑄 = 𝑋𝜋∆𝑃𝑅4/(8𝜇𝐿𝑇)

∅ = 𝑋𝜋𝑅2/𝐴𝑇
                                                                                     (30) 

Then we used the total theoretical flow to back calculate an average micropore size given 

the total porosity of the sand as follow: 

{
R = √(8𝜇𝐿𝑇Q) (∅𝐴𝑇∆𝑃)⁄

X = (∅𝐴𝑇)/(𝜋𝑅
2)

                                                                                               (31) 
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Figure 11 illustrates the pore size distribution of each of the three silica sands 

(#12/20, #20/30, and #40/50) while highlighting the average corresponding pore radius 

previously defined. In order to assess the performance of the infiltration apparatus, we 

plotted simultaneously the average pore radius calculated from experimental results of 

saturated water flow through each type of sand, satisfying our presumption in the several 

different porous sands. 

 

Figure 11: Pore size distribution of each of the three silica sands 
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The macropore (0.75mm) and each micropore size plotted in Figure 11 (hereafter 

referred to as experimental radii) were used to validate the ANA-2 macropore and 

micropore size estimates. The weights or contributions to flow were also calculated from 

the experimental results of total saturated water flow (𝑄1) for each soil combination (sand 

plus M capillary tubes) by assuming that total flow (𝑄1) is equal to the sum of flow from 

the sand plus the capillary tubes, and realizing that the flow in the macropores (0.75 mm 

radius capillary tubes) can be calculated from the Hagen-Poiseuille equation. The resulting 

weights w1 and w2 (for micropores and macropores, respectively) add up to 1 and hereafter 

are referred to as experimental weights.  
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CHAPTER III 

RESULTS AND DISCUSSION 

Experimental flows for water (𝑄1) and xanthan gum fluid (𝑄2) were used to solve 

the different optimization problems under the three problem-types. In Problem-Type 1, the 

model was provided with the experimental radii of the two dominant porous structures 

(sand and capillary tubes) to solve for the corresponding weights (𝑤𝑚𝑎𝑐𝑟𝑜) and (𝑤𝑚𝑖𝑐𝑟𝑜) or 

contributing to flow of macropores and micropores. In Problem-Type 2, the model was 

provided with the experimental weights to solve for the corresponding radii (𝑅𝑚𝑎𝑐𝑟𝑜) and 

(𝑅𝑚𝑖𝑐𝑟𝑜) of macropores and micropores. In Problem-Type 3, the corresponding radii and 

weights of the macropores and micropores were obtained without any help to the model. 

Results from the seven soil combinations under the three different problem types were used 

to evaluate the ANA-2 model ability to physically extract pore structural information that 

can be used in parameterizing dual-permeability models, using non-Newtonian fluids.  

 

A. Model Predictions under Problem Type 1 

Table 3 summarizes the results of the simulations for all three sands and seven soil 

combinations (sand with one, two or three capillary tubes) at different tortuosities under 

Problem-Type 1. The weights (flow contributions) were obtained by the ANA-2 model 

given the experimental average pore radii representing the micropores and the macropores. 

Statistical differences between experimental and modeled weights were between 1-7% 

when each of the two pore structures contributed to at least 10% of the total flow. The 

model was not able to capture the micropores contribution when macropores dominated the 
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total flow (> 90%), leaving micropores with small contributions of 1 and 2% (in the cases 

of #20/30 sand with three capillary tubes and #40/50 with one capillary tube, respectively). 

However, the model captured correctly the macropores contributions of those two cases, 

with only 5 and 4% differences between modeled and experimentally calculated weights. 

Table 3: Problem-Type 1 Summary 

Problem-Type 1 

Type of 
Sand 

Number of 

Macropores 

M 

Tortuosity 

of Sand  
(Between  

1.2 and 3) 

Weights (%) by 
ANA-2 Model 

Experimental 
Weights (%) 

Statistical 
Difference* 

wmicro wmacro wmicro wmacro Diffmicro Diffmacro 

#12/20 

M=1 1.224 64% 36% 67% 33% -0.03 0.07 

M=2 1.402 42% 58% 43% 57% -0.03 0.02 

M=3 1.807 22% 78% 23% 77% -0.03 0.01 

#20/30 

M=1 1.227 51% 49% 50% 50% 0.016 -0.02 

M=2 1.810 20% 80% 19% 81% 0.040 -0.01 

M=3 3.000 6% 94% 1% 99% 4.023 -0.05 

#40/50 M=1 3.000 5% 95% 2% 98% 2.333 -0.04 

*Statistical Difference = (Modeled – Experimental) / Experimental 

 

B. Model Predictions under Problem Type 2 

The ANA-2 model was next used to simulate the flow results under Problem Type 

(Figure 12). Here, experimental weights were provided and macropores were given a 

tortuosity of 1 while a wide range of hydraulic tortuosity models (Table 1) was tested for 

the micropores leading to tortuosity values ranging from 1.2 to 3. To highlight the 

contribution to flow, Figure 12 plots the % flow vs. pore size in an attempt to show the 

large contribution to flow from macropores (33-98% of total flow) despite the fact that they 

all contributed less than 1% of total pore space in the three cases. Furthermore, the porosity 

and volumetric contribution of micropores and macropores are highlighted on each graph 
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by two circles showing the corresponding % volume of the micropores and macropores in 

order to emphasize the micro and macro contribution to the total porosity. 

Comparisons between modeled and experimental radii reveal the model’s ability to 

estimate the effective pore sizes of the dual structure.  The model accurately estimated the 

0.75 mm radius of the capillary tube for the three dual soil configurations. Moreover, the 

model captured correctly the actual micropore radius of the #12/20 and #20/30 sand, with 

only 1 and 5% differences between modeled and experimental sizes respectively. However, 

the model was not able to capture the micropore size when macropores dominated the total 

flow (> 90% in the case #40/50 sand), leading to under-estimations in the micropore size 

estimate. 
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Figure 12: Bimodal pore size distribution in the dual-domain structure built with one capillary tube of 0.75 

mm radius along with the #12/20 (a) of tortuosity T=1.2, #20/30 (b) of T=1.2 and #40/50 (c) of T=3. 

Experimental results highlighted in red representing the porous structure in two points (𝑅𝑚𝑖𝑐𝑟𝑜 , 𝑤𝑚𝑖𝑐𝑟𝑜) and 

(𝑅𝑚𝑎𝑐𝑟𝑜 , 𝑤𝑚𝑎𝑐𝑟𝑜). Similarly, the two simulated radii predicted by the ANA model highlighted in black with 

the pre-defined set of weights estimated experimentally using the Hagen-Poiseuille equation. 
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However, as the number of capillary tubes increased from only one tube to 2 or 3 

tubes, the model’s ability to provide an accurate estimate of the macropores radii size was 

reduced. This is demonstrated in Figure 13, which shows model estimates for the #12/20 

and #20/30 silica soils with two and three capillary tubes. The #40/50 sand experiment with 

two and three capillary tubes was disregarded since macropores dominated flow with 98% 

contribution to flow with only one 0.75 mm tube. In all cases, the model assumed that the 

macropore domain was composed of a single pore, thus not identifying experiments where 

the soil had two or three capillary tubes. In those instances, the model estimated a larger 

pore size to match the assigned weights needed for the macropore contribution to flow. 

Still, the model is simulating a similar hydraulic behavior as the real soil, with the same 

relative contributions of the micropore and macropore domains to total flow, at slightly 

smaller %volume or porosity for macropores (Table 4). 
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Figure 13: Bimodal pore size distribution in the dual-domain structure built with one and two and capillary 

tubes of 0.75 mm radius with #12/20 (a) and #20/30 (b) silica sand  

Table 4: Problem Type 2 Summary 

Macropores 

Characterization 

M=1 M=2 M=3 

Experiment 
ANA 

model 
Experiment 

ANA 

model 
Experiment 

ANA 

model 

Rmacro (𝑚) 7.50E-04 7.50E-04 7.50E-04 8.92E-04 7.50E-04 9.87E-04 

Xmacro 1 1 2 1 3 1 

Kmacro(𝑚/𝑠)* 2.20E-03 2.20E-03 4.40E-03 4.40E-03 6.60E-03 6.60E-03 

Sand Type 1 #12/20 Sand 

%Volume ** 0.82% 0.82% 1.65% 1.16% 2.47% 1.43% 

Sand Type 2 #20/30 Sand 

%Volume 0.84% 0.84% 1.65% 1.16% 2.51% 1.43% 

Sand Type 3 #40/50 Sand 

%Volume 0.87% 0.87%  
 

∗ K =
π ρ g X R4

8 μ AT
     ;      ∗∗ %Volume =

π X R2

∅ AT
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C. Model Predictions under Problem Type 3 

While Problem Types 1 and 2 generate unique solutions, there is no unique 

solution under Problem Type 3, which solves two equations with four unknowns (radii 

Rmicro and Rmacro and their corresponding weights wmicro and wmacro) that vary 

simultaneously. Therefore, we investigated the stability of the obtained solutions to check 

whether they remain within acceptable margins from the experimental results for a wide 

range of runs and starting points. Thus, we performed 25 runs on each scenario from 

different and randomly selected starting points. The results of flow and pore structure 

predicted under Problem Type 3 were clustered around the experimental flow contributions 

and radii of macro and micro pores for the three dual structures soil combinations. (Figure 

14).  
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Figure 14: Cumulative pore size distribution of the dual-domain structure built with one capillary tube of 

0.75 mm radius with #12/20 (a), #20/30 (b) and #40/50 silica sand. Red circles signifying the experimental 

averaged micropore radius and corresponding weight (Rmicro,%Vmicro) as well as the experimental (actual) 

macropore radius and its corresponding weight and numbers (Rmacro,%Vmacro).  Results of the 25 ANA-2 

model runs plotted through a wide array of symbols. 
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As the number of capillary tubes increased from one tube to two or three tubes, the 

ANA-2 model was constantly capable of solving Problem Type 3 with representative radii 

of micropores clustered around the radii of the actual pores (Figure 15). However, the 

model predicted the macropore structure with providing possible solutions of the larger 

macropore radius with relatively smaller numbers. It is worth noting that both structures 

were hydrologically equivalent for all the soils tested. This behavior was previously 

encountered in the Problem Type 2 analysis, which emphasizes the consistency in results of 

the ANA-2 model between the different optimization problems. 

 

Figure 15: Cumulative pore size distribution of the dual-domain structure built with one and two and capillary 

tubes of 0.75 mm radius with #12/20 (a) and #20/30 (b) silica sand 
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Despite the infinite theoretical number of solutions, the ANA model provides an 

effective characterization of the pore structure under Problem Type 3 (Table 5).  

Table 5: Problem-Type 3 Summary 

 M=1 M=2 M=3 

Sand  

Type 1 

#12/20 Sand 

Experiment 
ANA 

model 
Experiment 

ANA 

model 
Experiment 

ANA 

model 

Rmicro 𝑚  1.16E-04 1.16E-04 1.16E-04 1.16E-04 1.16E-04 1.10E-04 

Rmacro 𝑚  7.50E-04 7.59E-04 7.50E-04 8.96E-04 7.50E-04 9.69E-04 

Xmacro 1 1 2 1 3 1 

𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 
 Rmacro 𝑚 

7.50E-04 7.59E-04 7.50E-04 7.54E-04 7.50E-04 7.36E-04 

wmicro % 66.67% 65.11% 42.99% 41.81% 23.13% 28.58% 

wmacro % 33.33% 34.89% 57.01% 58.19% 76.87% 71.42% 

Sand  

Type 2 

#20/30 Sand 

Experiment 
ANA 

model 
Experiment 

ANA 

model 
Experiment 

ANA 

model 

Rmicro 𝑚  8.91E-05 8.45E-05 8.91E-05 7.88E-05 8.91E-05 2.38E-05 

Rmacro 𝑚  7.50E-04 7.49E-04 7.50E-04 8.70E-04 7.50E-04 9.87E-04 

Xmacro 1 1 2 1 3 1 

𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 
 Rmacro 𝑚 

7.50E-04 7.49E-04 7.50E-04 7.31E-04 7.50E-04 7.50E-04 

wmicro % 50.13% 50.40% 19.27% 27.08% 1.19% 1.21% 

wmacro % 49.87% 49.60% 80.73% 72.92% 98.81% 98.79% 

Sand  

Type 3 

#40/50 Sand 

Experiment 
ANA 

model 

  

Rmicro 𝑚  4.58E-05 1.96E-05 

Rmacro 𝑚  7.50E-04 7.48E-04 

Xmacro 1 1 

𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 
 Rmacro 𝑚 

7.50E-04 7.48E-04 

wmicro % 1.50% 2.31% 

wmacro % 98.50% 97.69% 
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D. Summary of results 

Overall, the ANA-2 model was capable of predicting the micropores and 

macropores flow characteristics of dual structured soils given only the total flows from 

water and one non-Newtonian fluid. This effectiveness was demonstrated by the results 

under Problem Type 1 (Table 3) where the ANA-2 model was capable of predicting the 

flow contributions (weights of macro and micro structures) compared to the weights 

estimated using the Hagen-Poiseuille equation. A similar conclusion can be inferred from 

the model’s estimation of the pore structure of the dual structured soils under Problem Type 

2, particularly when one capillary tube was used (Figure 12). In addition, the ANA-2 model 

provides an effective characterization of the same dual soil configuration (i.e. M=1) under 

Problem Type 3 analysis despite the infinite theoretical number of solutions (Figure 14). 

However, the model was less successful in predicting the macropore structure when more 

than one capillary tube was used (Figure 13 and Figure 15), though it still provided a 

satisfactory simulation for flow distributions between domains. We should mention that the 

two concentrations of xanthan gum solutions (0.5 and 1.0 g/L) were analyzed under the 

three problem types. The rheological properties provide similar results in all scenarios, 

which emphasizes the well‐posedness of the rheological data as well as the efficiency of the 

experimental procedures.  
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CHAPTER IV 

CONCLUSION 

This study developed a new physically based model to extract dual-permeability 

parameters from heterogenous soils using non-Newtonian fluids. Due to the complexity of 

the pore structure, this latter is characterized by two effective pore sizes, one for the 

macropores of either cylindrical (e.g., biological pores) or planar (e.g., shrinkage cracks and 

fissures) pore geometries of high permeability, and one for the circular micropores of low 

permeability. This method utilizes two solutions including water and one non-Newtonian 

fluid to predict the two representative circular pore sizes and their corresponding 

contributions (weights) to total water flow. The efficiency of the proposed method was 

validated through a sequence of infiltration experiments with porous dual-domain samples 

made out of silica sand (as the micropore domain) and different numbers of capillary tubes 

(as the macropore domain). Results illustrated the ability of the model to characterize and 

quantify the representative macro and micro pores using only flows generated from two 

saturated infiltration experiments.  

This study introduces the use of non-Newtonian fluids for dual-permeability 

characterization using a relatively cheap and simple method, requiring limited input and 

simple experimental procedures. It is worth noting that the model did not perform as 

effectively when macropores dominated the flow, rendering this a point of further 

investigation. For example, when macropores dominated the flow, as occurred when more 

macropores were added to the soils, the model under-predicted the average micropore size. 

This result can be explained by the high contribution of macropores to water flow (beyond 
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90%), in which most of the water flows through the highly conducting macropores while 

acting insensitive to a large part of the micropores. At this level, the hydraulic conductivity 

of the matrix (micropores) becomes negligible compared to that of the macropores, and the 

system tends to behave as single porosity/permeability domain.  

Many different adaptations, tests, and experiments have been left for the future due 

to the time constraint. Future work concerns further assessment of the ANA-2 model’s 

ability to identify dual structural characteristics of porous media composed of circular 

micropores and linear cracks. This can be achieved using the water infiltration apparatus, 

where soils representing the matrix flow (micropores) can be tested with different numbers 

of capillary tubes of rectangular cross section representing the linear cracks. Obviously, the 

use of other experimental techniques can be investigated to improve our preliminary results 

and acquire better understanding of the preferential flow processes. It can be interesting to 

consider the injection of water and 1 non-Newtonian fluid into real macroporous soils as a 

transition from an infiltration dominated flow regime to a fracturing dominated regime.    
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APPENDIX 

A. Detailed Derivations 

 

The derivations for the velocity profile in the special cases of non-Newtonian 

power law viscosity model and water are as follows: 

𝑑

𝑑𝑦
(𝛽 (−

𝑑𝑢

𝑑𝑦
)
𝛼−1

(
𝑑𝑢

𝑑𝑦
)) =

𝐻𝑗

𝑇𝑖
                                                                                               (32) 

where 𝑗 the number of fluids and 𝑖 the number of representative geometries.                                                                                                      

𝑑

𝑑𝑦
(𝛽(−1)𝛼−1 (

𝑑𝑢

𝑑𝑦
)
𝛼

) =
𝐻𝑗

𝑇𝑖
       (33)                                                                                                   

𝛽(−1)𝛼−1 (
𝑑𝑢

𝑑𝑦
)
𝛼

=
𝐻𝑗

𝑇𝑖
𝑦 + 𝑐1       (34)                                                                                          

((−1)𝛼−1 (
𝑑𝑢

𝑑𝑦
)
𝛼

)

1

𝛼
= (

1

𝛽

𝐻𝑗

𝑇𝑖
𝑦 + 𝑐1)

1

𝛼
   (35)                                                                                                   

(−1)
𝛼−1

𝛼 (
𝑑𝑢

𝑑𝑦
) = (

1

𝛽

𝐻𝑗

𝑇𝑖
𝑦 + 𝑐1)

1

𝛼
    (36) 

For 𝑦 = 0,
𝑑𝑢

𝑑𝑦
= 0  𝑐1 = 0                                                                                                      

(−1)
𝛼−1

𝛼 (
𝑑𝑢

𝑑𝑦
) = (

𝐻𝑗

𝛽

1

𝑇𝑖
)

1

𝛼
 𝑦

1

𝛼   (37)                                            

  (−1)
𝛼−1

𝛼 𝑢 =
𝛼

𝛼+1
(
𝐻𝑗

𝛽

1

𝑇𝑖
)

1

𝛼
 𝑦

1

𝛼
+1 + 𝑐2    (38)          

For 𝑦 = +𝑊/2,𝑢 = 0 (no slip boundary condition)                                                                                        

 𝑐2 = −
𝛼

(𝛼+1)2
1
𝛼
+1
(
𝐻𝑗

𝛽

1

𝑇𝑖
)

1

𝛼
 𝑊

1

𝛼
+1

    (39) 

where 𝑊(L) the distance between the two parallel fixed plates (i.e. the width)                                         
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(−1)
𝛼−1

𝛼 𝑢 =
𝛼

𝛼+1
(
𝐻𝑗

𝛽

1

𝑇𝑖
)

1

𝛼
 𝑦

1

𝛼
+1 −

𝛼

(𝛼+1)2
1
𝛼
+1
(
𝐻𝑗

𝛽

1

𝑇𝑖
)

1

𝛼
 𝑊

1

𝛼
+1

    (40) 

Multiply each term by (−1)
1

𝛼                                           

−𝑢 =
𝛼

𝛼+1
(−

𝐻𝑗

𝛽

1

𝑇𝑖
)

1

𝛼
 𝑦

1

𝛼
+1 −

𝛼

(𝛼+1)2
1
𝛼
+1
(−

𝐻𝑗

𝛽

1

𝑇𝑖
)

1

𝛼
 𝑊

1

𝛼
+1

      (41)                                                                         

𝑢 =
𝛼

𝛼+1
(−

𝐻𝑗

𝛽

1

𝑇𝑖
)

1

𝛼
{
1

2
1
𝛼
+1
 𝑊

1

𝛼
+1 − 𝑦

1

𝛼
+1}           (42) 

In the case of Newtonian fluids, 𝛼 =  1; therefore, the velocity of water, 𝑢𝑤𝑎𝑡𝑒𝑟 , is found 

by: 

𝑢𝑤𝑎𝑡𝑒𝑟 =
1

2
(−

𝐻1

𝜇

1

𝑇𝑖
) {

1

4
 𝑊2 − 𝑦2}                                                                                     (43) 

where 𝜇 is the viscosity of water in (P T). 

The volume rate of flow for a unit length is obtained from the relationship:                                    

𝑞 = ∫ 𝑢𝑑𝑦 =
𝛼

𝛼+1
(−

𝐻𝑗

𝛽

1

𝑇𝑖
)

1

𝛼
[∫ (

1

2
1
𝛼
+1
 𝑊

1

𝛼
+1 − 𝑦

1

𝛼
+1)

𝑊/2

−𝑊/2
𝑑𝑦]

𝑊/2

−𝑊/2
     (44) 

where: 

∫ (
1

2
1
𝛼
+1
 𝑊

1

𝛼
+1 − 𝑦

1

𝛼
+1)

𝑊/2

−𝑊/2
𝑑𝑦 = 2 × ∫ (

1

2
1
𝛼
+1
 𝑊

1

𝛼
+1 − 𝑦

1

𝛼
+1)

𝑊/2

0
𝑑𝑦  

                                                                         = 2 × [(
1

2
1
𝛼
+1
 𝑊

1

𝛼
+1𝑦) −

𝛼

2𝛼+1
(𝑦

1

𝛼
+2)]]

0

𝑊/2

  

                                                                  = 2 × [
1

2
1
𝛼
+2
 𝑊

1

𝛼
+2 −

𝛼

(2𝛼+1)2
1
𝛼
+2
(𝑊

1

𝛼
+2)] 

                                             = [
𝛼+1

(2𝛼+1)2
1
𝛼
+1
] (𝑊

1

𝛼
+2)                   (45)                    

 

Then, the flow rate is given by: 
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𝑞 =
𝛼

(2𝛼+1)2
1
𝛼
+1
(−

𝐻𝑗

𝛽

1

𝑇𝑖
)

1

𝛼
𝑊

1

𝛼
+2

                                                                                         (46) 

In the case of Newtonian fluids, 𝛼 =  1; therefore, the flow of water, 𝑄𝑤𝑎𝑡𝑒𝑟 , is found by: 

𝑞𝑤𝑎𝑡𝑒𝑟 =
1

12
(−

𝐻1

𝜇

1

𝑇𝑖
)𝑊3                                                                                                   (47) 

Ultimately, the analytical equation of flow through parallel plates in the special case of 

non-Newtonian power law viscosity model is therefore: 

𝑄 =
𝛼

(2𝛼+1)2
1
𝛼
+1
(−

𝐻𝑗

𝛽

1

𝑇𝑖
)

1

𝛼
𝑏𝑊

1

𝛼
+2

                                                                                       (48)        

where 𝑏 (L) is the width of the plane normal to the plane (i.e. the length) 
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B. Experimental Illustrations 

 

 

Figure 16: Actual Infiltration Setup for Constant Head Experiment 



49 
 

 

Figure 17: Different experimental stages 

 

 

Figure 18: Preparation of xanthan gum fluids 
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