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An Abstract of the Thesis of

Karen Tatarian for Master of Engineering
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Title: Towards a Systematic and Unified Method to Solving Nonholonomic Systems

Understanding locomotion is one of the most ongoing quests in the world
of mechanics and robotics; ranging widely from legged locomotion to any biome-
chanically inspired system. While traditional frameworks, such as the Lagrangian
and general Hamiltonian formulations, have served to provide a base platform for
having an idea about the equations of motion of a system, it has equipped the
user with no knowledge on the geometry of the mechanical systems with the non-
holonomic constraints and no clarification on its implications. In addition, the
resulting equations are of high index Di↵erential-Algebraic equations (DAE’s)
with the constraints added at the force level as Lagrangian multipliers �.

In this work, the formulation of reduced constraint Hamiltonian is utilized
to model the dynamics of mechanical systems with nonholonomic constraints.
Rather than enforcing the constraints by introducing Lagrange multipliers – extra
variables and dimensions – to the equations of motion, the constraints are inte-
grated at the geometry level. This allows the definition of a reduced constrained
Hamiltonian and a Poisson structure which in turn are utilized to express the full
dynamics of the system in a series of first order di↵erential equations. A major
contribution of this work it to make the formulation of such equations of motion
accessible.

A 20-Step method is designed which requires the knowledge only of: the
coordinates of the system q, the Lagrangian L, the constraint equations !(q),
the generalized forces ⌧ , and the parameters of the variables P. As a first step,
the method finds the full symmetry group of the system on which a map is
built transforming the dynamics from a general manifold to a reduced constraint
submanifold.
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Chapter 1

Introduction

In the world of robotics, while machine intelligence is flourishing, the mechan-
ical systems governing robots seem to be moving at a much slower pace. The
understanding of locomotion is still an ongoing quest for many researchers from
modeling legged locomotion to locomoting snake-like robots. In many cases there
seems to lack a unified and consistent approach applicable to such mechanical sys-
tems specifically arbitrary nonholonomic mechanical systems.

Problems of nonholonomic mechanics, which have played an important role
in robotics, wheeled vehicular dynamics and motion generation, have attracted
considerable attention since they are intimately connected with fundamental engi-
neering issues, including but not limited to path planning, dynamic stability, and
control. Despite the history of nonholonomic mechanism, there has still not been
established productive links with corresponding problems in the geometric me-
chanics of systems with configuration space constraints. In addition, traditional
analysis of locomotion, including Lagrangian and Hamiltonian formulations, do
not provide the complete examination of the dynamics of the system and the
mechanism of the locomotion. This in turn renders issues of controllability and
choosing gaits impossible to solve [2]. Unlike traditional frameworks, the work
presented in this thesis builds on the geometry of mechanical systems with non-
holonomic constraints in the attempt of better highlighting the structure of the
equations of motion promoting the analysis and isolation of the crucial geometric
objects that govern this motion. This in turn clarifies the basic mechanics un-
derlying locomotion.

Nonholonomic systems are divided into two categories. First, constraints,
which are not imposed externally but rather are a consequence of the equation
of motions, are known as dynamic nonholonomic constraints. Such constraints
are conserved by the basic Euler-Lagrangian and Hamiltonian equations and are
sometimes regarded as conservation laws instead of constraints. Second, the con-
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straints imposed by kinematics, known as kinematic nonholonomic constraints,
are linear in velocity, such as rolling constraints[2].

With a long standing history, the theory of mechanical systems with kine-
matic constraints dates back to two centuries ago during which it had important
contributions by Ferrers [1871], Neumann [1888], Vierkandt [1892], Hertz (1894),
and Chaplygin [1897]. With ever growing importance of solving the problem, the
theory was picked up again by several scientist, each introducing di↵erent meth-
ods. With the rise of modern di↵erential geometry, various methods were used to
obtain the equations of motion under invariant form using: connections([3],[4]),
almost product structures ([5],[6]), and jet bundles ([7]) [8]. Many of these papers
used reduction by symmetry groups ([9], [10],[11],[2], and [3]) making a promising
tool for solving nonholonomic constraint problems. The method introduced in
this thesis is a systematic ”black box” approach, inspired by the Poisson Geome-
try within a Hamiltonian framework, that results in the equations of the motion
of the nonholonomic mechanical system by only knowing the configuration space,
Lagrangian, and constraint equations.

In the vast literature in classical mechanics, i.e Edelen [12] and Arnold [13],
nonholonomic mechanical systems are described within the variational frame-
work by Euler-Lagrange equations in addition to extra terms corresponding to
the constraint forces. It was Bates & Śniatycki [9] that showed that the dy-
namics of mechanical systems with nonholonomic constraint may be described
within the Hamiltonian framework. However, using the standard Hamiltonian
equations were not permissible for such systems since the two-form with respect
to which the Hamiltonian equations of motion (on a reduced state space, and
without constraint forces) are defined result in equations of motions that do not
admit canonical coordinates.

Influenced by Bates & Śniatycki , Van Der Schaft and Maschke [14] used the
dual object of a ”Poisson” bracket not necessarily satisfying the Jacobi identity
to introduce a generalized bracket with respect to which the dynamics of the me-
chanical systems with nonholonomic constraint are portrayed in the Hamiltonian
framework. The produced ”Poisson” bracket satisfies the Jacobi Identity if and
only if the constraints are holonomic. In order to find the dynamical equations
of motion on the constrained state space and eliminating the Lagrangian multi-
pliers, new coordinates (generally not canonical) were introduced by establishing
new momenta. The final result was a reduced Poisson-like bracket, which allowed
expressing the equations of motion in a pseudo-Hamiltonian format. This finding
motivated further study of brackets not satisfying the Jacobi identity and their
Hamiltonian equations of motion.
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Building on the work of Van Der Schaft and Maschke [14], many scholars fur-
ther developed the theory of nonholonomic Poisson reduction and tied it to other
work in the area. Koon and Marsden [15] established the link between the sym-
plectic geometry on the Hamiltonian side of nonholonmic systems, developed by
Bates and Śniatycki [9], and the Lagrangian side. Specifically, they described the
link between the momentum equation, the reduced Lagrange-d’Alembert equa-
tions, and the reconstruction equation corresponding to both sides. Moreover,
this was proven to be equivalent to the Lagrangian reduction methods demon-
strated by Bloch, Krishnaprasad, Marsden, and Murray [16]. Bloch [17] tied the
previously mentioned work together and use the reduction procedure of Van Der
Schaft and Maschke [14] to organize nonholonomic dynamics into a reconstruc-
tion equation, a nonholonomic momentum equation, and the reduced Lagrange-
d’Alembert equations in Hamiltonian form.

In addition to providing the needed links between the symplectic geometry
on the Hamiltonian side of nonholonomic systems and the Lagrangian reduc-
tion, Koon and Marsden [15] demonstrated where the the momentum lies on the
Hamiltonian side and the way it relates to the dynamics of nonholonomic systems
with symmetry into three parts:

1. a reconstruction equation for the group element g

2. an equation for the nonholonomic momentum p

3. the reduced Hamilton equations for the shape variables r and pr

Moreover, traditional frameworks, including the Lagrangian and Hamiltonian
formulations, lead to Di↵erential-Algebraic equations (DAE) of high indexes.
This is due to the fact that in such formulations the constraints are simply added
at the last step as add-ons at the force level in the form of Lagrangian multipliers
�’s. No special attribute is done concerning the fiber bundle of the system and
the e↵ect the constraints have on the geometry of the system. In contrast, the
Hamiltonian formulation defines a physical coordinate, which is the momenta
related to the motion. This leads to a set of DAE equations of index 1 in com-
parison to the Lagrangian Formulation, which results in a set of DAE equations
of index 2. However, using the constraints along with the geometry of the con-
figuration space results in the ability to built a reduced constraint submanifold
in which the equations of motion can be retrieved using a reduced constraint
Hamiltonian. This would eliminate the problem of the Lagrangian multipliers
since the constraints were added at the initial level. Moreover, the result is a set
of Ordinary Di↵erential equations (ODE) of motion.

While using geometry to recover the equations of motion of the system has
been approached by influential scientists in the field, all the work seem to diverge
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and thus making it inaccessible to users. Based on reduced constraint Hamil-
tonian formulation, this thesis presents a 20-step method that results in a set
of (2n � r) ODE’s describing the equations of motions of any system with non-
holonomic constraints with n and r being the number of coordinates q and the
number of constraint equations, respectively. The 20-step method finds the Full
Symmetry group of the system and on it builds a map from the general manifold
to the reduced constraint submanifold. The method does not require the user to
have any background knowledge on any of the formulations listed above nor on
di↵erential geometry. This is because, the flow of the steps from one to another
take care of any needed changes in the submanifolds.

Chapter 2 is dedicated to introducing all mathematical and mechanical pre-
liminaries needed for the thesis. This includes Lagrangian and Hamiltonian dy-
namics as well as the reconstruction equation. Moreover, Chapter 3 compares the
three formulations: Lagrangian, Hamiltonian, and reduced constraint Hamilto-
nian. In addition, all the steps of the method and their e↵ects on the flow leading
to the final set of equations are highlighted. As a first step, the method finds
the full symmetry group of the system and this gives q a structure and allows
the mapping of the dynamics. In addition, the method makes use of the recon-
struction equation as an intermediate step for simplification purposes and shows
that whether one chooses to build the reconstruction equation using geometry
or simply using an identity matrix, both lead to the same result. Furthermore,
all three frameworks are applied to the Unicycle and Snakeboard problems and
are simulated to show that the 20-Step method does indeed render the correct
description of the dynamics of the system.

4



Chapter 2

Background

The purpose of this chapter is to introduce several terms and definitions that will
be used throughout this thesis. In order to make the reader more comfortable
with the material discussed in the rest of the thesis, this chapter is to refresh
the reader about some terms with clarification examples and does not constitute
either a reference or a tutorial.

The goal of this chapter is to highlight both mathematical and mechanics
preliminary topics needed. First, the aim of the mathematical preliminaries sec-
tion is to point out the special structure of the configuration space (Q) of simple
mechanical systems. The systems configuration space is the set of configurations
the system can assume. In addition, it has as many dimensions as the system has
degrees of freedom, and a structure that encodes how these degrees of freedom are
coupled or connect back on themselves [18]. Second, the mechanics section is to
present the Lagrangian and Hamiltonian dynamics along with the reconstruction
equation, which is generally made of both the conservation of momentum along
the allowable directions and the nonholonomic constraints acting on the systems.

2.1 Mathematical Preliminaries

The aim of this chapter is to highlight the special structure of the configuration
space, which is the space that represents the degrees of freedom of mechanical
systems. In addition, it is important to shed a light on principal fiber bundle
structure, which plays a vital role in the rest of the thesis. This will be done
through a brief introduction to the action and lifted action maps by defining and
employing the textitLie group structure of the fiber space, which is a sub-space
of the configuration space, to map configurations and velocities, respectively. In
conclusion, all terms will be defined in this section and the needed tools for each
respectively will be introduced.
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2.1.1 Groups & Matrix Groups

First, starting with a definition of groups and their properties:

Definition 2.1 : Group A group (G, ⇤) is a combination of a set G and an
operation ⇤, which acts as a map taking G ⇥ G ! G. A group has the following
four properties:

1. Closure: the product of any element belonging to G acting on another by
the group operation (⇤) is in concequence an element of G

g1, g2 ✏ G , g1 ⇤ g2 ✏ G

2. Associativity: the order in which a sequence of group operations are
assessed does not change their net product

(g1 ⇤ g2) ⇤ g3 = g1 ⇤ (g2 ⇤ g3)

3. Identity: there exists an identity element e in the set, that does not a↵ect
other elements when interacting with them

e ⇤ g = g ⇤ e = g

4. Inverse: the inverse, with respect to the group operation, of each group
element is an element that belongs to group. When operating on each other,
they produce the identity element

g ✏ G , g�1 ✏ G
g�1 ⇤ g = g ⇤ g�1 = e

Second, important for the rest of thesis is to introduce the groups that represent
rigid body motions. Groups of rigid rotation SO(n) are special orthogonal groups.
The set of elements for SO(n) is given by

SO(n) = {R ✏ Rn⇥n : RRT = In⇥n, detR = +1}

where In⇥n is a n ⇥ n identity matrix. For example, to represent all rotations
in the plane or the set of all displacements that can be generated by a single
revolute joint, taking n = 2 results in SO(2), which is the group of rotations in
two dimensions. The elements of SO(2) have the following form:

SO(2) =

(✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆
: ✓ ✏ R

)
(2.1)
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Another significant group is the special Euclidean group SE(n), which is the
group of rigid translations and rotations in an n-dimensional space. The set of
elements for SE(n) is given by:

SE(n) =

(✓
Rn⇥n| pn⇥1

01⇥n| 1

◆
: p ✏ Rn⇥n✏ SO(n)

)
= Rn ⇥ SO(n) (2.2)

SE(3) is the special Euclidean group of rigid body displacements in three-dimensions.
A subgroup of SE(3) is SE(2), which is used to represent the configuration of
a rigid body in the plane. For more on rigid body motion groups, the reader is
referred to [19] and [20].

2.1.2 Lie Groups and Group Actions

Before describing Lie groups, a few definitions need to be introduced including
manifolds. In a nutshell, a manifold is a topological space that locally looks like
Rn. A good start would be defining topological space.

Definition 2.2 : Topological Space A set X in combination with a collec-
tion of open subsets T form a topological space if the following conditions and
properties apply:

1. The empty set ; is in T

2. The entire set X is in T

3. The intersection of a finite number of sets in T is also in T

4. The union of an arbitrary number of sets in T is also in T

Definition 2.3 : Manifold A manifold M is a topological space on which the
following properties apply:

1. M is Hausdor↵

2. M is locally Euclidean

3. M has a countable basis of open sets

A submanifold is a subset of a manifold that is itself a manifold, but has a
smaller dimension. For more information, the reader is referred to [21] and [22].

Definition 2.4 : Homeomorphism A homeomorphism is a function f map-
ping between two spaces and it has the following properties:

1. Bijective, that is invertible. Bijective functions are surjective (onto) and
injective (one-to-one) that is:
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(a) f�1 is a true function whose domain is the entire range of f

(b) f ⇤ f�1 and f�1 ⇤ f are both identity maps

2. Continuous with a continuous inverse.

Di↵eomorphism is homeomorphism for which both { and {�1 are addition-
ally di↵erentiable; implying that they are not only continuous, but their deriva-
tives are also continuous.

Thus, a n-dimensional manifold is a topological space M for which every point
q ✏ M has a neighborhood homeomorphic to Euclidean space Rn.

Definition 2.5 : Lie group A Lie group is a finite dimensional smooth manifold
G together with a group structure on G, such that both

1. product map: G ⇥ G ! G

2. inverse map g ! g�1 : G ! G

are both smooth maps. In addition, Lie groups are continuous groups, implying
that the group elements act on each other in a continuous manner. SO(2), SE(3),
and SE(2) are also Lie groups

Example 2.1 : Elroy Beanie
Elroy’s Beanie, shown in Figure 2.1, which a robot composed of two rigid bodies
allowing rotation with respect to each other. Its variables are q = (x, y, ✓,�),
where (x, y, ✓) identify the robot’s location and orientation with respect to an
inertial frame and (�) specifies the relative angle between the rigid bodies. Lie

Figure 2.1: Sketch for Elroy Beanie example

group SE(2) represents the location and orientation of the beanie; that is for
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initial configuration g = (x, y, ✓) ✏ SE(2) , it can be represented as a matrix
using homogeneous coordinates, where:

g =

0

@
cos ✓ � sin ✓ x
sin ✓ cos ✓ y

0 0 1

1

A (2.3)

Group actions are maps associated with Lie groups that allow the manifold ele-
ments to act on each other.

Definition 2.6 Group action An action of a group G on a set Q is represented
by the map �(g, q) : G ⇥ Q ! Q for some g ✏G and q ✏ Q. Action � has the
following properties with g, h ✏ G, q ✏ Q and e being the identity element of G:

1. �(g, �(h, q)) = �(gh, q)

2. �(e, q) = q

Left and Right actions are defined on matrix groups such that L(g, h) = gh
and R(g, h) = hg.

2.1.3 Tangent Space, Lie Algebras, and Lifted Actions

The first part of this section is to present the tangent spaces of manifolds used
to represent the velocities of the robot. For instance, as seen in Example 2.1,
q = (x, y, ✓,�) ✏ Q was defined as the configuration of the robot and Q as the
configuration manifold of the mechanical system. The elements of the tangent
space of this manifold would represent the configuration velocity elements, which
are q̇ = (ẋ, ẏ, ✓̇, �̇).

Definition 2.7 : Tangent Spaces on general di↵erentiable manifolds
Take a curve �(t) on a manifold Q, it is parameterized by time and passes through
a point q ✏ Q at time t = 0. Thus, �

0
(t) is the velocity vector to the curve �(t) at

t = 0. There are infinitely many possible curves passing through point q at t = 0.
As a result, the tangent vectors to these curves span a vector space, generally
denoted by TqQ, which describes the tangent space of Q at point q. In its turn,
the tangent bundle, TQ is represented as

TQ = [
q✏Q

TqQ

Definition 2.8 : Vector field A vector field is a smooth map X from a manifold
Q to its tangent space TqQ such that:

X : Q ! TqQ
q 7! X(q)
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Thus, X(Q) is the set of all smooth vector fields on Q.

Definition 2.9 : Lie algebra A Lie algebra is a vector space g with an operation
[., .] : g ⇥ g ! g, which is a Lie bracket, and the following axioms are satisfied:

1. It is skew symmetric, [⇠, ⇠] = 0 for all ⇠ ✏ g

2. It is bilinear, [a⇠, b⌘] = a[⇠, ⌘] + b[⇠, ⌘] and [⇠, a⌘ + b�] = a[⇠, ⌘] + b[⇠,�]
for all a, b, ✏ R and ⇠, ⌘,� ✏ g.

3. It satisfies the Jacobi Identity, [[⇠, ⌘],�] + [[�, ⇠], ⌘] + [[⌘,�], ⇠] = 0 for all
⇠, ⌘,� ✏ g

Using the exponential map, Lie algebra elements act like generators, which can
recover the entire Lie group.

Definition 2.10 : Exponential map For a Lie group G with its associated Lie
algebra g, one can define the exponential map with ⇠ ✏g and t ✏ R defined by:

exp : g ! G
⇠ 7! g = exp(t⇠)

The exponential map generates a configuration fiber variable reached by flowing
along the fiber for time t and whose initial velocity was ⇠.

Now that the group actions acting on group and configuration elements were
defined, it is crucial at this point to define lifted actions, which act on tangent
vectors of manifolds.

Definition 2.11 : Lifted Action For a manifold Q, the lifted action is defined
as a linear map represented as:

Tq�g : TqQ ! T�gqQ
q̇ 7! T�gq�g q̇

The above translates to: the action and lifted action map q and q̇ to a new
configuration,�gq, and velocity, T�gq�g q̇, respectively.

In addition, for a given group velocity ġ:

• The left lifted action which maps ġ to the Lie algebra, yields the body
velocity representation of ġ.

• The right lifted action, on the other hand, yields the spatial velocity repre-
sentation of ġ.

Definition 2.12 Body and spatial velocity representations For a given Lie
group G with point g ✏ G and vg ✏ TgG, the body and spatial body representations
are defined respectively as:

⇠b = TgLg�1vg
⇠s = TgRg�1vg
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2.1.4 Fiber Bundles

A configuration is the minimum number of variables required to specifically rep-
resent the location in two or three dimensions of each physical point of the mech-
anism or robot [17]. While rigid bodies have a fixed shape with the location and
orientation of a body-attached reference coordinate frame being su�cient, robots
or mechanisms made up of several rigid bodies require additional variables to
specify the robot’s shape. Thus, the configuration space of multi-bodied robots
are made of position and shape variables.

Since the position variables belong to the configuration manifold, the position
variables are governed by a Lie group structure. Thus, one can assume that
the position variables are elements of a set that has a group structure such as
Rn, SO(n), or SE(n). Thereby, for mechanical systems, general configuration
manifold is represented by Q = G ⇥ M with G being the fiber space indicating
the position of the robot and M being the base space specifying the internal
shape of the robot. In this thesis, the configuration manifolds dealt with have a
principal fiber bundle structure.

Definition 2.13 : Fiber bundle A fiber bundle is a manifold Q with a base
subspace M and a projection map ⇡ : Q ! M with fiber G(r), which is defined
by G = ⇡�1(r),and it has every neighborhood U ⇢ M of r satisfying:

The bundle is locally trivial: ⇡�1(U) is homeomorphic to G ⇥ U

Thus, the fiber bundle is denoted by Q = (G, M).

Important notes to consider:

• Q is a principal fiber bundle if the fibers of the bundle are homeomorphic
to the structure group, i.e fiber G has a group structure.

• Q is a trivial fiber bundle if Q = G ⇥ M globally.

• The configuration space of all mechanical systems are trivial principal fiber
bundles.

For Example 2.1, Q = SE(2) ⇥ S1 is a trivial principal bundle with G having a
group structure. A lifted map, which is induced by the projection map associated
with the fiber bundle manifold, acts on the manifold’s tangent space as:

⇡ : Q ! M ) T⇡ : TQ ! TM

Thus, the lifted action divides the manifold’s tangent space into two subspaces.

Definition 2.14 : Vertical and horizontal spaces For a given fiber bundle
Q along with a projection map ⇡ : Q ! M , a vertical space Vq is represented at
point q ✏ Q such that:

11



Vq = ker(T⇡)

On the other hand, the horizontal space Hq is simply the complement of Vq so
that:

TqQ = Vq � Hq

As previously explained, Lie algebras define the entire group using the exponential
map. This notion will now be extended to principal fiber bundles.

Definition 2.15 : Lie group generator Q = G⇥M is a trivial principal fiber
bundle with an action �(g, q) : Q ! Q for which a generator on Q is defined as:

⇠Q : g ! TQ
⇠ 7! d

dt
(�(expt⇠, q))t=0

Figure 2.2: The exponential map and the vector field generation on Q along the
fiber G [1]

Lemma 2.1 : Generator on principal bundles For a given Q = G ⇥ M ,
principal fiber bundle, the Lie group generator is equivalent to:

⇠Q(g, r) = (TeRg⇠, ṙ)

For a configuration manifold with a principal fiber bundle, one can now define a
principal connection.

Definition 2.16 : Principal Connection: For a given Q = G ⇥ M , trivial
principal fiber bundle, associated with a projection map ⇡ : Q ! M , a principal
connection, which is a Lie algebra valued map A : TQ ! g, is defined such that:

• A(⇠Q(q)) = ⇠, for all ⇠ ✏ g q ✏ Q, i.e, for a vector in tangent space of Q
was generated by a Lie group generator, the principal connection maps the
generated vector back to the Lie algebra elements which generated it.
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• A(Tq�gvg) = AdgA(vq), for all q ✏ Q, vq ✏ TqQ, and g ✏ G, i.e, for two
elements belonging to the tangent space of Q and related by a lifted map
Tq�g, the Lie algebra elements correlated to these vectors are connected by
the Adjoint map.

Lemma 2.2 : Kernel of the principal connection For a given Q = G⇥M ,
trivial principal fiber bundle, associated with a projection map ⇡ : Q ! M , Vq is
the vertical space at q ✏ Q and Hq = ker(A(vq) is the horizontal space such that
TqQ = Vq � Hq.

2.2 Mechanics

2.2.1 Lagrangian Dynamics

The first approach to model of mechanical systems and compute the governing
equations of motion is the Lagrangian. The result is second order of di↵erential
equations of motion of the mechanical system that will be reduced by the end of
the thesis using a di↵erent procedure.

Given a system with a n-dimensional configuration space Q, then the La-
grangian is a map L(t, q, q̇) : [a, b] ⇥ Rn ⇥ Rn ! R. The Lagrangian takes a
specific form for mechanical systems composed of multiple rigid bodies. For the
following definitions, consider a mechanical system of n rigid bodies and whose
configuration space is Q.

Definition 2.17 : Kinetic energy of multi-bodied mechanical systems
The kinetic energy of the system is defined by:

KE =
nX

i=1

1

2
(q̇T

i
miq̇i + µ̇T

i
jiµ̇i) (2.4)

where q̇i is the linear velocity of the center of mass of each rigid body, µi is the
angular velocity of each of the bodies, mi and ji are the mass and inertia of each
of the bodies respectively.

Definition 2.18 : Mass Matrix Through the kinetic energy of mechanical sys-
tems, a kinetic energy metric, which is on the tangent space of the configuration
manifold, utilizing the mass matrix is defined by:

KE = hhv1, v2ii =
1

2
vT

1 M(q)v2 (2.5)

where v1,v2 ✏ TqQ and M(q) is the mass matrix.
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Definition 2.19 : Lagrangian for mechanical systems The Lagrangian for
such systems is defined by:

L(q, q̇) =
1

2
q̇TMq̇ � V (q) (2.6)

where M is the mass matrix of the mechanical system, (12 q̇
TMq̇) is the kinetic

energy, and V (q) is the potential energy.

The principle of least action, which is known as Hamiltons principle, states that
the mechanical system is characterized by the Lagrangian function L(q, q̇) such
motion of the system satisfies a certain condition. The condition states that the
mechanical system evolves in time such that the action integral,

R
t1

t0
L(q, q̇)dt is

minimized. The resultant dynamics equations of motion for mechanical system
is equivalent to the first Euler-Lagrange equations. Thus, the configuration of
the system will evolve along the curve q(t) , which is a minimizer of the integral
action.

Euler-Lagrange Equations

First, for isolated mechanical systems with no external forces nor nonholonomic
constraints, q(t) must satisfy the first Euler-Lagrange equations which are the
dynamic equations of motion:

d

dt

⇣ @

@q̇i
L(q, q̇)

⌘
� @

@qi
L(q, q̇) = 0, (i = 1, ..., n) (2.7)

Second, for systems with k nonholonomic constraints given in the Pfa�an form
!(q)q̇ = 0, the dynamic equations of motion given by:

d

dt

⇣ @

@q̇i
L(q, q̇)

⌘
� @

@qi
L(q, q̇) = �j!

j

i
+ ⌧i, (i = 1, ..., n, j = 1, ..., k) (2.8)

where ⌧i are the generalized external forces and �j’s are the Lagrange multipliers.

Example 2.2 : The Unicycle
Given a unicycle as represented in figure 2.3. The system is made of a homoge-
neous disk rolling without slipping (represented as its nonholonomic constraints)
on a horizontal plane. The robot’s configuration space, which is four-dimensional
manifold, is represented as Q = R ⇥ R ⇥ S ⇥ S.The robot is described using the
generalized coordinates q = (x, y, ✓,�), where (x, y) denote the position of the
contact point in the xy-plane, ✓ represents the orientation of the disk, and � is
the rotation angle of the disk.
As a side note, (x, y, ✓) may be regarded as an element of the Euclidean group
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Figure 2.3: Sketch for unicycle example

SE(2), which is the group of rigid motions in the plane, since (x, y, ✓) give both
the translational position of the disk as well as its rotational position.

Using Equation 2.6, the Lagrangian of the unicycle is equal to its kinetic
energy, with the potential energy being equal to zero, and is given by:

L(q, q̇) =
1

2

�
m(ẋ2 + ẏ2) + J✓✓̇

2 + J��̇
2
�

(2.9)

where m is the total mass of the disk, J✓ is the moment of inertia about the
z-axis, and J� is the moment of inertia pf rolling of the wheel. With r being the
radius of the unicycle, the two nonholonomic constraints, describing the ”rolling
without slipping” and ”no sideways slipping” conditions, are written as:

ẋ � r(cos✓)�̇ = 0

ẏ � r(sin✓)�̇ = 0
(2.10)

Writing the constraint equations in the Pfa�an form !(q)(̇q) = 0:

✓
1 0 0 �r(cos✓)
0 1 0 �r(sin✓)

◆
0

BB@

ẋ
ẏ
✓̇
�̇

1

CCA =

✓
0
0

◆
(2.11)

Furthermore, having the generalized forces in the steering and rolling directions
are ⌧✓ and ⌧� respectively, the equations of motion can be written using Equation
2.8 such that:

mẍ = �1
mÿ = �2

m✓̈ = ⌧✓

m�̈ = �r(cos ✓)�1 � r(sin✓)�2 + ⌧�

ẋ � r(cos ✓)�̇ = 0

ẏ � r(sin ✓)�̇ = 0

(2.12)
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As one can notice, the resultant equations of motion are second order di↵erential
equations and thus have an index of reduction of two.

An important Theorem to point to and which will be used in Chapter 3 is the
following:

Theorem 2.1 Euler-Poincaré Equations Given a Lie group G with a left-
invariant Lagrangian L : TG ! R and l : g ! R being its restriction to the
tangent space to G at the identity; thus for a curve g(t) ✏ G let:

⇠(t) = g(t)�1.ġ(t); i.r, ⇠(t) = Tg(t)Lg(t)�1⇠ġ(t) as seen in Definition 2.12.

The following are equivalent:

1. g(t) satisfies the Euler-Lagrange equations for L on G.

2. The variational principal �
R

L(g(t), ġ(t))dt = 0 applies for variations with
fixed endpoints.

3. The Euler-Poincaré equations hold.

2.2.2 Hamiltonian Dynamics

The second approach is looking at Hamiltonian mechanics. Used commonly in
Quantum Mechanics and Statistical Mechanics, the Hamiltonian Formulation is
equivalent to Newton’s Laws and to the Lagrangian Formulation. The Hamil-
tonian is described in terms of coordinates and their conjugate momenta rather
than the coordinates and their time derivatives as with the Lagrangian.

As previously mentioned, the principal of critical action for a curve q(t) is
equivalent to the condition that q(t) satisfies the textitEuler-Lagrange equation,
which is 2.7. Let L be the Lagrangian on TQ and let FL : TQ ! T ⇤Q be defined
in coordinates by:

(qi, q̇j) 7! (qi, pj) (2.13)

where FL is the fiber derivative, which di↵erentiates L in the fiber direction, and
pj being the generalized momenta for a Lagrangian mechanical system defined
as:

pj =
@L

@q̇j
(j = 1, ..., n) (2.14)

Definition 2.20 : Legendre Transformation If FL is a di↵eomorphism, then
the Lagrangian L on TQ is hyperrregular. As a consequence, the corresponding
Hamiltonian is defined by:

H(qi, pj) = piq̇
i � L (i, j = 1, ..., n) (2.15)

Thus, the Legendre Transform is the change of data from L on TQ to H on
T ⇤Q.
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Definition 2.21 : Hamilton’s Equations of Motion Lagranges equations of
motion imply Hamiltons canonical equations, for i = 1, ..., n, being:

q̇i =
@H

@pi

ṗi = �@H
@qi

(i = 1, ..., n)
(2.16)

Thus, this results in 2n first order equations of motion.

It is important to note that for N degrees of freedom in a system, the Lagrangian
formulation leads to N generalized coordinates qi, (i = 1, .., N) thus a N dimen-
sional configuration space. On the other hand, in the Hamiltonian formulation,
there are N pairs of canonical conjugate pairs, (q, p)i, (i = 1, ..., N), and as such
a 2N dimensional phase space. Moreover, there are as many canonical conjugate
pairs as there are degrees of freedom.

Definition 2.22 Poisson Bracket For two functions u = u(q, p) and v =
v(q, p), where q = (q1, ..., qn)Tand p = (p1, ..., pn)T , we define their Poisson bracket
to be:

[u, v] :=
nX

i=1

⇣ @u
@qi

@v

@pi
� @u

@pi

@v

@qi

⌘
(2.17)

The Poisson bracket have three important properties shown in the following
lemma 2.3.

Lemma 2.3 : Lie Algebra Properties The bracket satisfies the following
properties for all functions u = u(q, p), v = v(q, p) and w = w(q, p) and scalars
a and b:

1. Skew-symmetry: [v, u] = [u, v];

2. Bilinearity (Leibniz rule): [au + bv, w] = a[u, w] + b[v, w];

3. Jacobis identity: [u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0.

These three properties define the Lie algebra, which is a non-associative algebra.

Corollary 2.1 Knowing that all the coordinates (q1, ..., qn) and (p1, ..., pn) are
independent, by direct substitution into the definition, the following results are
deduced for anyu = u(q, p) and all (i, j = 1, ..., n):

@u

@qi
= [u, pi] , @u

@pi
= �[u, qi] ,[qi, qj] = 0, [pi, pj] = 0, and [qi, pj] = �ij .

where �ij is the Kronecker delta such that:

�ij =

⇢
1 i = j
0 i 6= j
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Nonholonomic Constraints. The constraints are written as !a(q̇) = 0, and
the basic equations are given by the Lagrange-d’Alembert principle:

d

dt

⇣ @

@q̇i
L(q, q̇)

⌘
� @

@qi
L(q, q̇) = �a!

a

i
(i = 1, ..., n, a = 1, ..., k) (2.18)

The generalized Hamiltonian formulation and the Legendre Transformation, which
is defined as the momentum associated with each variable and the Hamiltonian,
become:

H =
nX

i=1

piq̇
i � L

pi =
@L

@q̇i
(i = 1, ..., n)

(2.19)

with the moment being p = @L

@q̇
. This will result in the equations of motion

written in the Hamiltonian form being:

q̇ =
@H

@pi
(i = 1, .., n)

ṗ = �@H
@qi

+ �a!
a

i
+ ⌧i (a = 1, ..., k)

(2.20)

The cotangent bundle T ⇤Q contains its canonical Poisson bracket expressed in
natural canonical coordinates (q, p) = (ql, ..., qn, P1, ..., Pn) for T ⇤Q as:

{F, G}(q, p) =
nX

i=1

⇣@F
@qi

@G

@pi
� @F

@pi

@G

@qi

�
(q, p) =

�@F T

@q
,
@F T

@p

�
J

✓
@G

@q

@G

@p

◆
(2.21)

where J is the standard Poisson structure matrix:

J =

✓
0n In

�In 0n

◆
(2.22)

and it is intrinsically determined by the Poisson bracket {, } :

J =

✓
({qi, qj)i,j} ({qi, pj})i,j
({pi, qj)i,j} ({pi, pj})i,j

◆
, (i, j = 1, .., n) (2.23)

Thus, the constrained Hamiltonian equations can be written as

✓
q̇i

ṗi

◆
= J

 
@H

@qj

@H

@pj

!
+

✓
0

�a!a

i

◆
+

✓
0
⌧i

◆
(i = 1, .., n)

!a

i

@H

@pi
= 0 (a = 1, ..., k)

, (2.24)
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In order to get rid of the Lagrangian multipliers and write the the dynamical
equations of motion on the constrained state space, which is defined as

M =
n

(q, p)✏T ⇤Q | !a

i

@H

@pi
= 0
o

(2.25)

Van Der Schaft and Maschke [14] introduced a change in coordinates. With the
rank(!a

i
) = k, there exists locally a smooth n ⇥ (n � k) matrix X↵

i
of rank n � k

such that !i

a
X↵

i
= 0. Thus, the coordinate transformation (q, p) 7! (q, ep↵, epa) is

defined by:
ep↵ = X i

↵
pi

epa = !i

a
pi

(2.26)

With the new coordinates, the Poisson matrix structure becomes as follows:

J̃(q, p̃) =

✓
({qi, qj)i,j} ({qi, p̃j})i,j
({p̃i, qj)i,j} ({p̃i, p̃j})i,j

◆
(2.27)

This leads to the following constrained Hamiltonian equations

0

@
q̇i

˙̃p↵
˙̃pa

1

A = J̃(q, p̃)

0

B@

@H̃

@qj

@H̃

@p̃�

@H̃

@p̃b

1

CA+

0

@
0
0
�a

1

A (i = 1, .., n)

@H̃

@p̃a
(q, p̃) = 0 (a = 1, ..., k)

(2.28)

where H̃(q, p̃) is the Hamiltonian H(q, p) expressed in the new coordinates. A
second change in coordinates is done, transforming (q, ep↵, epa) 7! (q, ep↵). The
reduced Hamiltonian is defined by HM as H̃(q, ep↵, epa) with (q, ep↵, epa) satisfying

the constraint equation @H̃

@p̃a
= 0. Restricting the dynamics on the constraint

state space M and having the constraint equation as 2.28, a (2n � k) ⇥ (2n � k)
skew-symmetric matrix JM is defined by truncating the last k row and k column
from the Poisson structure J̃ . By disregarding the last equations, the Lagrange
multipliers � are eliminated.

As a note to consider, when first introduced, Van der Schaft and Maschke [14]
defined a JM as:

JM =

✓
0n X(q)

�XT (�pT [Xi, Xj](q))i,j=1,..,n�k

◆
(2.29)

where k is the rank of !(q) and [Xi, Xj] is a lie bracket, defined in local
coordinates q as:

[X, Y ](q) = @Y

@q
(q)X(q) � @X

@q
(q)Y (q)
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with @Y

@q
and @X

@q
are the Jacobian matrices.

Finally, the dynamical equations on M expressed in the coordinates (q, ep↵),
which serve as local coordinates for the constrained state space, are given as:

✓
q̇i

˙̃p↵

◆
= JM(q, p̃↵)

 
@HM
@qj

(q, p̃↵)
@HM
@p̃�

(q, p̃↵)

!
,

✓
qi

p̃↵

◆
✏ M (2.30)

These equations are in pseudo-Hamiltonian format. Furthermore, the matrix JM
defines a bracket {, }M on constrained state space M as follows:

{FM, GM}M(q, p̃↵) :=
⇣@F T

M
@q

,
@F T

M
@p̃↵

⌘
JM

 
@GM
@qj

@GM
@p̃�

!
(2.31)

for any two smooth functions FM, GM on M. Indeed, this bracket satisfies the
first two defining properties of a Poisson bracket: the skew-symmetry and the
Leibniz rule. In addition, the bracket {, }M on M, satisfies the Jacobi identity
and as such becoming a Poisson bracket, if and only if the constraints are holo-
nomic.

Example 2.3 : The Unicycle
Following Example 2.2, which resulted in the equations of motion using the La-
grangian formulation, this example uses the Hamiltonian formultion with non-
holonomic constraints, that is the method presented by Van der Schaft and
Maschke [14], to obtain the dynamics of the unicycle of Figure 2.3.

After calculating the equations of motion in Equation 2.12 using Euler-Lagrangian,
one defines the Hamiltonian by the Legendre transformation using Equation 2.19
such as:

p =
@L

@q̇i
=

0

BB@

mẋ
mẏ
J✓✓̇
J��̇

1

CCA (2.32)

where the momentum p is also defined as p = (px, py, p✓, p�)T . Thus using Equa-
tion 2.19, H(q, p) is defined as:

H =
1

2

�
mẋ2 + mẏ2 + J✓✓̇

2 + J��̇
2
�

(2.33)

which is also equivalent to:

H(q, p) =
p2
x

2m
+

p2
y

2m
+

p2
✓

2J✓
+

p2
�

2J�
(2.34)
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Recall that !(q) was defined in the Pfa�an form in Equation (2.11), using Equa-
tions (2.20) the constrained Euler-Lagrangian equations transform into:

q̇ =
⇣

px

m

py

m

p✓

J✓

p�

J�

⌘T

ṗ =

0

BB@

�1
�2
0

�r(cos ✓)�1 � r(sin ✓)�2

1

CCA+

0

BB@

0
0
⌧✓
⌧�

1

CCA
(2.35)

Equations (2.35) are the second set of equations of motion found for the Unicycle
problem.

The rest of the example is to highlight the method introduced by Van der Schaft
and Maschke [14]. In order to eliminate �i in the Euler-Lagrangian equations,
new momenta are introduced using Equation 2.26 by defining a new matrix X(q)
such that !(q)TX(q) = 0 where

!(q) =

✓
1 0 0 �r(cos✓)
0 1 0 �r(sin✓)

◆
(2.36)

as previously defined. As a result,X(q) becomes:

X(q) =

0

BB@

r(cos✓) 0
r(sin✓) 0

0 1
1 0

1

CCA (2.37)

Now introducing the new momenta p̃ = (p̃↵, p̃a) where p̃↵ = (p̃1, p̃2) and p̃a =
(p̃3, p̃4), using Equation 2.26 such that

p̃↵ := XT (q)p =

✓
p� + pxr(cos✓) + pyr(sin✓)

p✓

◆
(2.38)

p̃a := !T (q)p =

✓
px � p�r(cos✓)
py � p�r(sin✓)

◆
(2.39)

As suggested by Van der Schaft and Maschke [14], JM was found using Equation
2.29 as

JM =

0

BBBBBB@

0 0 0 0 r(cos✓) 0
0 0 0 0 r(sin✓) 0
0 0 0 0 0 1
0 0 0 0 1 0

�r(cos✓) �r(sin✓) 0 �1 0 0
0 0 �1 0 0 0

1

CCCCCCA
(2.40)

Note: If all parameters were taken to be equal to one, then p̃3 = 0 and p̃4 = 0.

As shown in Equation 2.28:
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@H̃

@p̃3
(q, p̃) = 0 and @H̃

@p̃4
(q, p̃) = 0

Finally, using the Equations 2.38, the reduced Hamiltonian becomes

HM(x, y, ✓,�, p̃1, p̃2) =
1

2

⇣ p̃2
J✓

+ mẋ2 +
(�p̃1 + mr(cos✓)ẋ + mr(sin✓)ẏ)

J�

⌘

(2.41)

While using the Van der Schaft and Maschke method did introduce a new way
of looking at solving nonholonomic constraint systems without worrying about
the Lagrange multipliers, the Hamiltonian formulation still needed some work.
For these reasons, the method introdcued in Chapter 3 makes use of other meth-
ods such as the Reduced Lagrangian and uses a reduced constrained Hamiltonian
and a new way of formulating the reduced Poisson structure matrix JM̄ .
By focusing on the Poisson structure and combining the reduced Lagrangian
methods [16] with Van der Schaft and Maschke’s method [14], one can derive
the equations of motion without the Lagrangian multipliers in a reduced con-
straint state space by focusing on the building a new Poisson matrix structure
to accommodate the constraints. Instead of keeping the constraints outside the
Poisson matrix, a new Poisson-like matrix will be introduced and inside of which
the constraints will be integrated resulting in a set of first order equations with
no Lagrangian multipliers (�).

2.2.3 Reconstruction Equation

The reconstruction equation for mechanical systemsplays a major role in the
method presented in this thesis. This section simply introduces a partition over
the family of simple mechanical systems. In addition, a general type of sys-
tems, generalized mixed systems, is defined and it represents a superset of all
the mechanical systems considered for the method. Finally, the respective recon-
struction equations for these mechanical systems are presented. It is important
to note that this section merely serves as a summary and introduction of me-
chanical systems classification. Further study of the topic and its relation to gait
generation techniques can be found in E.Shammas [1].

Definition 2.23 : Generalizeed mixed systems A simple mechanical system
(as defined by Smale ([23], [24]) with an n-dimensional configuration space Q,
which has a trivial principal fiber bundle structure where Q = G ⇥ M with G
being an l-dimensional Lie group fiber space and M is an m-dimensional base
space, subjected to a k-dimensional set of nonholonomic constraints is consider
to be of the generalized mixed type if:

1. Its Lagrangian is made of the system’s kinetic energy alone:

L(q, q̇) =
1

2
q̇TM(q)q̇ (2.42)
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where M(q) is the n ⇥ n mass amtrix defining the kinetic energy metric as
defined in 2.18

2. The nonholonomic constraints, which the system is subjected to, can be
written in a Pfa�an form:

!(q)q̇ = 0 (2.43)

where !(q) is k ⇥ n matrix describing the constraints.

3. Both the Lagrangian and the set of nonholonomic constraints are invariant
with respect to the fiber group Lie actions such as:

L(q, q̇) = L(�gq, Tq�g q̇) (2.44)

!(q)q̇ = !(�gq)Tq�g q̇ (2.45)

where �g is the Lie group action on Q and Tq�g is the lifted action on TQ

4. Away from singular configurations of the systems, the nonholonomic are
linearly independent, which ensures that none of the constraints is a linear
combination of the other velocity constraints, such that:

det(!(q)) 6= 0 (2.46)

In the rest of the thesis, the mechanical systems assumed are considered gener-
alized mixed type. In the following part of the section, the di↵erent sub-types
of mixed systems are introduced with their respective reconstruction equations.
For the derivation of the reconstruction equation for generalized mixed systems,
please refer to E.Shammas [1]. In addition, the techniques needed to obtain the
reconstruction equation of the systems for the method presented in this thesis
will be shown in the next chapter.

In order to define sub-types of mechanical systems, additional conditions are
imposed on the dimensions of fiber and base spaces and the number of nonholo-
nomic constraints. Table ?? summarized the conditions to have di↵erent types
of mechanical systems and their respective reconstruction equations.

Definition 2.24 : Mixed Belonging to the generalized mixed system family,
mixed systems have at least one nonholonomic constraint and at most one less
nonholonomic constraints than the dimension of the fiber space, that is:

0 < k < l

where l is the dimension of the fiber space G and k is the number of non-holonomic
velocity constraints the system is exposed to.
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Sub-types of Mixed Systems

System Type Condition Reconstruction
Equation

Mixed 0 < l < k ⇠ = �A(r)ṙ + �(r)pT

Principally Kine-
matic

l = k ⇠ = �A(r)ṙ

Purely Mechanical k = 0(no nonholo-
nomic constraints) &
p(t) = 0

⇠ = �A(r)ṙ

Purely Dynamic m = 1 ⇠ = �(r)pT

Table 2.1: Various types of mechanical systems and their respective reconstruc-
tion equations

Based on the condition stated, it can be infered that mixed systems do not
have enough nonholonomic constraints to fully span the fiber space. As a re-
sult, there are directions of motion that are in a sense ”orthogonal” to all of the
system’s nonholonomic constraints. Along these allowable directions, there ex-
ists a generalized momentum whose varaibles are instantaneously conserved and
governed by a first order di↵erential equation.

Furthermore, the reconstruction equation for mixed systems is as follows

⇠ = �A(r)ṙ + �(r)pT (2.47)

where A(r) is a l⇥m matrix representing the local form of the mixed connections
and �(r) is a l ⇥ (l � k) matrix multiplying the transpose of the generalized
nonholonomic momentum. In addition, ⇠ is a Lie algebra element or a fiber
velocity at the group identity such that ⇠ = TgLg�1 ġ.

Definition 2.25 : Principally Kinematic systems Principally kinematic
systems, also known as Chaplygin, unlike mixed systems have enough nonholo-
nomic constraints to fully span the fiber space since

k = l
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where l is the dimension of the fiber space and k is the number of nonholonomic
velocity constraints on the system. Thus, there will be no generalized momentum
variables for such systems.

As a result, the reconstruction equation for principally kinematic systems
reduces to

⇠ = �A(r)ṙ (2.48)

where A(r) is an l ⇥ m matrix representing the local form of the principal con-
nection.

Definition 2.26 : Purely Mechanical systems On the opposite end of the
spectrum across from the principally kinematic systems, purely kinematic systems
have no nonholonmic constraints on the system such that

k=0

where k is the number of nonholonmic velocity constraints acting on the system.
As shown in E.Shammas [1], an additional condition is introduced ensuring that
there are no external forces acting on system and that the system starts from
rest. As a result, this forces all the momentum variables to start and stay at
zero at all time. This leads to the following reconstruction equation for purely
mechanical systems:

⇠ = �A(r)ṙ (2.49)

where A(r) is a l ⇥ m matrix representing the local form of the mechanical con-
nection.

Definition 2.27 : Purely Dynamic systems Belonging to the family of mixed
type of systems, purely dynamic systems have an one-dimensional base space such
that

m=1

where m is the dimension of the base space M . Its reconstruction equation
reduceds to :

⇠ = �(r)pT (2.50)

where �(r) is an l ⇥ (l � k) matrix multiplying the transpose of the generalized
nonholonomic momentum variable p.
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Chapter 3

Systematic Method for Dynamic
Modeling of Nonholonomic
Mechanical Systems

Understanding locomotion is one of the most ongoing quests in the world of me-
chanics and robotics; ranging widely from legged locomotion to any biomechan-
ically inspired system. While traditional frameworks, such as the Lagrangian
and general Hamiltonian formulations, have served to provide a base platform
for having an idea about the equations of motion of a system, it has equipped
the user with no knowledge on the geometry of the mechanical systems with the
nonholonomic constraints and no clarification on its implications. In the context
of locomotion’s mechanism, controllability and choice of gait are the stepping
stones on which successful mechanical systems with nonholonomic constraints
are built. Without the special structure, which is built on the geometry of the
system, traditional framework makes choosing gaits and similar issues impossible
[2]. The method presented in this chapter, builds on the geometry of mechanical
systems with nonholonomic constraints in the attempt of better highlighting the
structure of the equations of motion promoting the analysis and isolation of the
crucial geometric objects that govern this motion. This in turn clarifies the basic
mechanics underlying locomotion.

However, in contrast to the Lagrangian and Hamiltonian formulations, nontra-
ditional frameworks, which are based on the geometry of the system, still lack
a unified systematic procedure and as such making it inaccessible to all users.
This thesis presents a 20-step method that results in a set of (2n � r) Ordinary
Di↵erential Equations (ODE) describing the equations of motions of any system
with nonholonomic constraints with n and r being the number of coordinates q
and the number of constraint equations, respectively. The 20-step method finds
the Full Symmetry group of the system and on it builds a map from the general
manifold to the reduced constraint submanifold.
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The method requires simply and only the knowledge on the following:

1. The local coordinated (qi)

2. The Lagrangian (L(q, q̇)), which can be calculated using 2.42

3. The constraint equations (!(q))

4. The generalized forces on the system (⌧)

5. The parameters of the variables (P)

3.1 Overview Comparison between the Frame-
works Presented

Before diving into the method, one may take a step back to zoom out and compre-
hend the impact of the main di↵erences of the three formulations: the Lagrangian
Formulation, the Hamiltonian Formulation, and the Reduced Constraint Hamil-
tonian Formulation. A comparison chart is presented in Figures 3.1 and 3.2.

First regarding the Lagrangian Formulation, while the Euler-Lagrangian equa-
tions provide a one-step method to find the equations of motion, the constraints
are added at the force level as add-ons to the equations. This results in equa-
tions of high index, specifically Di↵erential-Algebraic Equations (DAE) of index
2, which require additional mathematical steps and e↵ort for solver to find the
equations of motion. In addition, adding the constraints as such forces the intro-
duction of new variables, the Lagrangian multipliers �0s, which are of zero order
and act as constraint forces. Furthermore, both Lagrangian and Hamiltonian
formulations make no special contribution to the constraints and make no use of
the fiber bundle information found in Q.
On the other hand, the Hamiltonian Formulation introduces a physical term, the
momenta of the coordinates q , and which is attributed to the motion of the
system. This results in first order 2n, where n is the number of the coordinates q,
set of equations (q̇, ṗ). However the constraints in the Hamiltonian Formulation
are still added at the force level using the Lagrangian multipliers �0s, which are
of zero order. This makes the entire set of equations DAE’s of index 1. There is
still no association between the equations of motion and the actual geometry of
the system and its nonholonomic constraints.

Finally, the Reduced Constraint Hamiltonian Formulation uses the nonholo-
nomic constraints along with the geometry of the configuration space to create a
map from the general manifold to a reduced constraint submanifold, where the
constraints are integrated, and finds the dynamics within that submanifold. This

27



eliminates the need to introduce and then solve the constraint forces �0s since the
constraints were added at an initial level, at the geometry level. The outcome is
a set of (2n � r) ODE equations of motion.

The method presented in this chapter is a 20-step procedure that makes the
simplifies the Reduced Constraint Formualtion in order to make it more accessi-
ble to users. Along the 20-steps, important information on the system is revealed
and can be extracted for di↵erent purposes. The map, designed in this 20-step
method,to move to the reduced constraint submanifold requires finding the Full
Symmetry group of the system and thus introducing new momenta coordinates
(p̃i, p̃↵). The Full Symmetry group divides the fiber bundle Q and coordinates
q by highlighting what is crucial for the dynamics of the system. In addition,
the procedure makes use of the Reconstruction Equation to simplify intermediate
steps.

Problem Statement: (qn, L, �(q)r, �, P)

Lagrangian Formulation Hamiltonian Formulation
Reduced Con-

straint Hamiltonian

⇢
q̈ (n equations)
� (r equations)

DAE’s of index 2

No Special attribution
to the constraints and
to Q, the configuration
space and fiber bundle
of the system

Constraints are added
at force level as simply
add-on’s to the Euler-
Lagrangian equations of
motion

⇢
q̇, ṗ (2n equations)
� (r equations)

DAE’s of index 1

No Special attribution
to the constraints and to
the geometry (structure
of configuration space)

Constraints are added
at force level as simply
add-on’s to the deriva-
tive of the momenta

Introduction of physi-
cal term p, which is the
momenta assigned to
the motion, through the
Legendre Transforma-
tion:

p = �L
�q̇

H =
�n

i=1 pq̇ � L

⇢
q̇ (n equations)
˙̃p (n � r equations)

ODE

Use constraints along
with geometry of con-
figuration space to find
the equations of mo-
tion withina reduced con-
straint submanifold

Constraints are added at
geometry level and used
to find Full Symmetry

Group

Makes use of the Re-

construction Equa-

tion

1

Figure 3.1: Comparison flow chart of the three di↵erent formulations: Lagrangian
Formulation, the Hamiltonian Formulation, and the Reduced Constraint Hamil-
tonian Formulation
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Problem Statement: (qn, L, �(q)r, �, P)

Lagrangian Formulation
Reduced Con-

straint Hamiltonian

⇢
q̈ (n equations)
� (r equations)

DAE’s of index 2

No Special attribution
to the constraints and
to Q, the configuration
space and fiber bundle
of the system

Constraints are added
at force level as simply
add-on’s to the Euler-
Lagrangian equations of
motion

⇢
q̇ (n equations)
˙̃p (n � r equations)

ODE

Constraints are added at
geometry level and used
to find Full Symmetry

Group

Decides on the division
of qn into sa, which are
the coordinates related
to the full symmetry
group G, and r�, which
are the remaining coor-
dinates relating to the
base space M . ( where
Q = G⇥M is the general
configuration manifold)

Gives qn a structure (i.e
SE(2) or R2 ⇥ S1)

Finding the Full Sym-
metry group highlights
the geometry important
for the dynamics of the
system

Makes use of the Re-

construction Equa-

tion

Plays a role in simplify-
ing intermediate steps
(though not an integral
step in the method)

Building the Reconstruc-
tion equation using the
geometry of the system
or an identity matrix
lead to the same set of
equations of motion

1

Figure 3.2: Continuation of the Comparison flow chart of the three di↵erent
formulations: Lagrangian Formulation, the Hamiltonian Formulation, and the
Reduced Constraint Hamiltonian Formulation

Comparison between method presented and the Van der Schaft and
Maschke method
Inspired by the work of Van der Schaft and Maschke [14], the method presented
makes use of the poisson geometry of nonholonmic systems to create a unified
systematic approach to solving all mechanical systems with nonholonmic con-
straints acting on them. Building on the work of Van der Schaft and Maschke
[1994], the method also makes use of the work of Bloch, Krishnaprasad, Marsden,
and Murray [1996] [2]. In addition, the method encompasses the findings of Marle
[8] on the bracket {, }M found in 2.31 can be given an intrinsic interpretation.

While Van der Schaft and Maschke [14] set a stepping stone for Poisson Re-
duction formulation, the method introduced in this chapter builds on the later
and makes use of di↵erent formulations and theorems.

1. As seen in Section 2.2.2, the Van der Schaft and Maschke method focuses
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on the constraint submanifold (M). On the other hand, with G, the config-
uration group of the system, being the symmetry group of the system, the
Hamiltonian H is G-invariant; thus, the method presented uses reduction
by symmtery to build the reduced poisson structural matrix to finally get
the equations of motion on the reduced constraint submanifold (M̄).

2. Second, instead of focusing only on the Poisson Reduction formulation
alone, the method links and makes use of both the Poisson Reduction for-
mulation and the Lagrangian Reduction procedure.

3. Third, as seen in Equation 2.41, hM is not fully in terms of the new mo-
menta introduced but rather includes extra terms. Moreover, hm̄ solves that
problem by employing the reduced lagrangian.

4. Fourth, unlike the method of Van der Schaft and Maschke, the method
introduced in this chapter utilizes the reconstruction equation, presented
in Section 2.2.3, to recover the full dynamics of the system.

5. Fifth, a big role in the following method is given to the geometry of the
system,where the first step is to test to find the full symmetry group of the
system.

3.2 The 20-Step Method

The method is over-viewed in Figures 3.3,3.5,3.6, and 3.7 and as shown it is di-
vided into five parts. First is the Set-Up, which is simply to describe the local
coordinates, the configuration space, and the Lagrangian. Second is the Equiva-
lence of Poisson and Lagrangian reduction, where both equations representing ⇠,
the body representation of the fiber velocity ġ, are calculated to finally find the re-
duced constrained Lagrangian. Third is the Legendre Transformation & Reduced
Hamiltonian constraint, where the new momenta are introduced leading to the
reduced constrained Hamiltonian. Fourth is the Poisson Reduction, in which are
the steps needed to construct the reduced Poisson structure matrix. Finally, the
Reduced Hamiltonian results in (2n�r) first order di↵erential equations (ODE’s).

3.2.1 Set-Up

As previously mentioned, the method requires merely the knowledge of a max-
imum of five ingredients: the coordinates q, the Lagrangian L, the constraint
matrix !(q), if present the generalized forces acting on the system ⌧ , and for
simulation purposes the parameters of the variables P. As seen in Figure 3.3,a
general configuration manifold denoted by Q = G ⇥ M exists for mechanical
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systems.In general, G is the fiber space specifying the position and orientation of
the robot and M is the base space specifying the internal shape of the robot. In
the problem statement given throughout the thesis, the configuration manifolds
have a principal fiber bundle structure.
However, at this point, one does not need to know how Q is divided into G and
M since G will be picked by a test, which reveals the full symmetry group of the
system. Similarly, the local variables are divided as qi = (r↵, sa), where sa are
the coordinates related to the configuration group G and r↵ are the remaining
coordinates known as the shape or base variables.
Once again, the Lagrangian L is defined as the kinetic energy of the system mi-
nus its potential energy. In addition, the matrix !(q) is the arrangement of the
constraint equations with respect to q̇ as portrayed in Figure 3.3.

Set-Up

For mechanical systems, one assumes a general configuration
manifold denoted by Q = G ⇥ M , where G is the fiber

space specifying the position of the robot and M is the base
space specifying the internal shape of the robot. Here, the

configuration manifolds have a principal fiber bundle structure.

Let qi = (r�, sa) be the local coordinates, where sa are the
coordinates related to the configuration group G and r� are
the remaining coordinates. Typically, sa are referred to as
the fiber variables, and r� as the base or shape variables.

For mechanical systems with configuration space Q, the Lagrangian is defined by:

L(q, q̇) =
1

2
q̇TMq̇ � V (q) (1)

where M is the mass matrix of the mechanical system,
q̇TMq̇ is the kinetic energy, and V (q) is the potential energy.

For systems with k nonholonomic constraints ci given in the Pa�an form !(q)q̇ =
0, we define !a, which is the matrix representing the constraints, has the form :

!a(q) = dsa + Aa
�(r, s)dr� (2)

Figure 3.3: Over-view of Systematic Method to Solving Nonholonomic Mechani-
cal Systems (part 1/4)
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3.2.2 Equivalence of Poisson and Lagrangian Reduction

The first ”box” establishes the map from the general manifold to the reduced
constraint submanifold M and as such the building ground of the method. The
steps are found in Figure 3.5.
The three main purposes are:

1. To find the full symmetry group, which will allow the mapping from the
general manifold to M through ⇠q

Q
, the vector field of the Lie algebra ele-

ment found.

2. To retrieve the Reconstruction Equation and rewrite it within a reduced
constraint submanifold.

3. To calculate the Lagrangian within the submanifold M giving lc.

The nonholonomic constraints equations reveal information on the geometry of
the system that may be extremely useful to better structure the equations of
motion and highlight the way the system’s geometry influences its dynamics.
One of the crucial information one can obtain from the nonholonomic constraints
equations is the full symmetry group of the system. By taking the null space of
!(q), one can acquire which set of coordinates from q would lead to a non-zero
Lie algebra element, which acts as the fixed basis on which the submanifold M is
build. The set of coordinates, which achieve that, are referred to in the problem
as sa and thus matching to its configuration space disclose the full symmetry
group G. This implies that even without a full understand of the configuration
space Q of the system, one can recover the way it is divided into G ⇥ M . It is
important to note that having a Lie algebra element made of a zero in one of the
basis means that no motion is allowed in that direction. For this reason, only the
full symmetry group would give a full non-zero lie algebra element ⇠.

After having the Set-Up make up the first two steps, the rest of the steps in
this section are as follows (which are detailed in Figure 3.5):

3. Find the Full Symmetry group from the Null Space of !(q), this leads to
finding ⇠q

Q
and respectively the Lie algebra element ⇠.

4. Calculate the nonholonomic momentum: p = @L

@q̇
(⇠q

Q
)

5. Obtain the Reconstruction equation g�1ṡ + A(r)ṙ = �(r)p by solving for
g�1ṡ by setting the constraints to zero and using the nonholonomic momen-
tum.

6. Compute the body fixed axis e = g�1⇠q
Q

and replace in the Reconstruction
equation �(r)p = ⌦e, where ⌦ is the body angular velocity.
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7. Find the reduced Lagrangian l(r, ṙ, ⇠)

8. Get the reduced constrained Lagrangian lc(r, ṙ, ⌦)

3.2.3 Legendre Transformation & Reduced Constraint Hamil-
tonian

The motivation for this part of the method is the following:

After having defined the reduced constraint lagrangian lc, the new momenta
are introduced and act as Legendre Transformation allowing the movement from
the Lagrangian to Hamiltonian formulation but within the reduced constraint
submanifold M.

Continuing the steps from the list 3.2.2, the steps of this part are detailed in
Figures 3.5 and 3.6 and summarized below:

9. The new momenta and Legendre Transformation are calculated eP↵ = @lc

@ ˙r↵

and ePi = @lc
@⌦i

10. Retrieve ⌦ and ṙ↵ from the Legendre Transformation

11. Find the reduced Hamiltonian formulation h
M

= ePi⌦i + eP↵ṙ↵ � lc by ex-
panding the expressions of ⌦ and ṙ↵ calculated previously.

3.2.4 Poisson Reduction

This section of the method is dedicated to building the new Poisson-like structure
matrix JM that can be used within the reduced constraint submanifold M .

To able to use the Poisson brackets {, } on the new momenta introduced, the
constraints need to be conserved within a variable µ,which is an element of the
dual of the Lie algebra g⇤, and µa are its coordinates with respect to a fixed
dual basis. Once the {, } are calculated for ePi and eP↵ written in terms of µa,
they can be mapped to the reduced constraint submanifold M by expanding µ,
where µ = @l

@⇠
. Finally, the new Poisson-like structure can be built. All steps are

highlighted in this section’s box in Figures 3.6 and 3.7.

Continuing the steps from the list 3.2.3, the steps of this section are as follows:

12. Write ePi in terms of pi = @L

@q̇i

13. Write eP↵ as eP↵ = p↵ + µ↵(
@⇠
↵

@ ˙r↵
) with p↵ = @L

@ṙ↵
and µa = @l

@⇠a
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14. Calculate µ, such that µd =
ePi

e
d
i

and write ePi and eP↵ in terms of it.

15. Apply the Poisson bracket {, } to ePi and eP↵ to calculate { ePi, ePj},{ ePi, eP↵},and

{ eP↵, eP�} in terms of µ.

16. Expand µ = @L

@⇠
by replacing ⌦ and ṙ↵,by their respective expressions. This

will restrict µ to submanifold M

17. Construct the new Poisson structure matrix:

2

664

0 eb
j

0 �Ab

�

�(ec
i
)T { ePi, ePj}M

0 { ePi, eP�}M

0 0 0 �↵
�

(Ac

↵
)T { eP↵, ePj}M

���
↵

{ eP↵, eP�}M

3

775

where eP↵ = P↵ � µbAb

↵
and eP� = P� � µdAd

�
and

⇥
(Ac

↵
)T
⇤

=


Ab

↵

Ad

�

�

3.2.5 Reduced Constraint Hamiltonian Equations

Finally, the purpose of this section is the to retrieve all ODE equations of motion.
The steps are pointed out in Figure 3.7 and are as follows:

18. Calculate the derivative of hM with respect to ePi, r, and eP↵

19. Find (⇠, ėP i, ṙ↵, ėP↵) by expanding the following:

2

6664

⇠b

ėP i

ṙ↵

ėP↵

3

7775
=

2

664

0 eb
j

0 �Ab

�

�(ec
i
)T { ePi, ePj}M

0 { ePi, eP�}M

0 0 0 �↵
�

(Ac

↵
)T { eP↵, ePj}M

���
↵

{ eP↵, eP�}M

3

775

2

66664

0
@hM

@ ePj
@hM
@r�

@hM

@ eP�

3

77775

20. Obtain the equations of motion of ṡa within the reduced constraint sub-
manifold by knowing that ⇠ = g�1ṡa
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3.2.6 Summary of the 20-Step Method and Comparison
to General Hamiltonian Formulation

Figure 3.4: General Flow-Chart of General Hamiltonian Formulation and Re-
duced Constraint Hamiltonian Formulation, where the color orange depicts be-
ing within a reduced constraint submanifold and the color blue represents being
within the general manifold
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At this point, one may zoom out to better understand the e↵ect of the 20-
step method and be able to locate the changes in comparison to the general
Hamiltonian formulation. Figure 3.4 highlights the consequences of the sections
(boxes) of the 20-step method in comparison to the general Hamiltonian Formu-
lation. The color orange depicts being within a reduced constraint submanifold
and the color blue represents being within the general manifold. As it is no-
tices, Equivalence of Poisson and Lagrangian Reduction section directly
transforms the entire system in a general manifold to the submanifold M. As
a consequence, the use of the constraint matrix is no longer in need since the
system now within a submanifold that already includes the constraints. This
eliminates the Lagrangian Multipliers, which only appeared in the very last step
general Hamiltonian formulation. This is because the constraints were added at
the force level. In addition, the constraint forces �, which are of zero order, cause
the final 2n set of equations to be DAE’s of index 1. On the other hand, entering
the constraints at the initial geometry level using a full symmetry group G in
the reduced constraint Hamiltonian framework leads to a (2n � r) ODE set of
equations of motion.

Figures 3.3 , 3.5, 3.6, and 3.7 represent all the steps of the 20-Step Method
while depicting the transition from one section to another.

In addition, in Section 3.3, all three formulations are applied to the Unicycle
and the Snakeboard problems. A simulation of all three results is done for each,
highlighting that the 20-Step Method does indeed give the correct physics and
equations of motion for the system.
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Equivalence of
Poisson and
Lagrangian
Reduction

Legendre
Transfor-
mation

& Reduced
Constraint

Hamiltonian

First step is to test to find the Full Symmetry Group on which
the map to the reduced constraint submanifold will be based.

Taking the Null Space of !(q) gives the constraint distribution of
Dq. TqOrb(q), which is the span of the coordinates of the symmetry

group G, is tested and chosen such that Sq = Dq \ TqOrb(q)
has a full span in terms of all the coordinates of TqOrb(q).

Accordingly, the full symmetry group G is chosen. ⇠q
Q

is the vector field of Sq and ⇠ the Lie algebra element.

(Please refer to the Examples below for a demonstration)

Find the nonholonomic momentum:

p =
@L

@q̇
(⇠q

Q) (3)

Choose g either based on the geometry of the sys-
tem (i.e SE(2) or R2 ⇥ S1) or as an identity matrix.

Calculate g�1ṡ by using the solution of ṡ that one gets by equating the constraint equations
to zero and using the nonholonomic momentum from equation 3. This will result in
the reconstruction equation and accordingly one can find A(r) and �(r) sucht that:

g�1ṡ + A(r)ṙ = �(r)p (4)

, where g�1ṡ = ⇠ and s are the fiber variables related to G

But �(r)p = ⌦e, where ⌦ is defined as
the body angular velocity and e = g�1⇠q

Q

is the body fixed axis. Write ⇠ as:

⇠ = �A(r)ṙ + ⌦e (5)

From the Lagrangian L, obtain the re-
duced Lagrangian l(r, ṙ, ⇠) using ⇠ = g�1ṡ

Obtain the reduced constrained Lagrangian
lc(r, ṙ, ⌦) by plugging ⇠ using equation 5

Find the Legen-
dre Transformation:

eP� =
@lc
@ṙ�

(6)

ePi =
@lc
@⌦i

(7)

Figure 3.5: Over-view of Systematic Method to Solving Nonholonomic Mechani-
cal Systems (part 2/4) 37



Legendre
Transfor-
mation

& Reduced
Constraint

Hamiltonian

Poisson
Reduction

From the Legendre Transfor-
mation, deduce ⌦ and ṙ�

Calculate the Reduced Constrained Hamiltonian:

hM = ePi⌦
i + eP�ṙ� � lc (8)

Write ePi in terms of:

pi =
@L

@q̇i
(9)

Write eP� as:

eP� = p� + µ�(
@⇠�

@ṙ�
) (10)

where p� = �L
�ṙ� and µa = �l

��a . µ is an ele-
ment of the dual of the Lie algebra g⇤, and µa are
its coordinates with respect to a fixed dual basis.

Similarly ,

ePi = µde
d
i (11)

Calculate µ using 11 and write
ePi and eP� in terms of it.

The matrix JM is the constrained Poisson structure matrix constructed
from J , the canonical Poisson tensor, by transforming the canoni-
cal coordinates (q, p) to the non-canonical coordinates (⇠b, r�, ePi, eP�).

Before mapping to the reduced constraint submanifold, the Poisson bracket {, },
defined in equation 12, is applied on ePi and eP� while they are written in terms of µ.

{F, G}(q, p) =
@F

@qi

@G

@pi
� @F

@pi

@G

@qi
(12)

Calculate { ePi, ePj},{ ePi, eP�},and { eP�, eP�} in terms of µ

In order to restrict µ to the reduced con-
straint submanifold M , expand µ = �L

��
by replacing ⌦ and ṙ� by their re-
spective expressions found previously

Figure 3.6: Over-view of Systematic Method to Solving Nonholonomic Mechani-
cal Systems (part 3/4) 38



Reduced
Constraint

Hamiltonian
Equations

Expand the µi, using the previous step, in the
Poisson brackets calculated and as such restrict-

ing them to the reduced constraint submanifold M .

This results in obtaining { ePi, ePj}M ,{ ePi, eP�}M ,and { eP�, eP�}M

Construct the reduced Poisson structure matrix:
2

66664

⇠b

ėP i

ṙ�

ėP �

3

77775
=

2

6664

0 eb
j 0 �Ab

�

�(ec
i)

T { ePi, ePj}M 0 { ePi, eP�}M

0 0 0 ��
�

(Ac
�)T { eP�, ePj}M ���

� { eP�, eP�}M

3

7775

2

666664

0
�hM

� ePj
�hM

�r�

�hM

� eP�

3

777775
(13)

Where

�
(Ac

�)T
�

=

�
Ab

�

Ad
�

�
(14)

and eP� = P� � µbAb
� and eP� = P� � µdAd

�. In addition,{ ePi, ePj}M = �{ ePj, ePi}M and the

same applies for all such brackets and { ePi, ePi} = 0. Furthermore,��
� is the Kronecker delta.

Calculate the derivative of hM

with respect to ePi, r, and �P�

Calculate the momentum equation and the reduced constrained
Hamilton equations using 13. It is important to note that the gener-
alized forces ⌧ are added to the equations of ePi and eP� accordingly.

Knowing that ⇠ = g�1ṡ, write ṡ in terms of ⇠i.

Replace the ⇠i with the ones found from the previous step,
obtaining the reconstruction equations on the Hamiltonian side.

Having both sets of equations gives the dynamics of the full
constrained systems but in a more suitable and useful form.

(
q̇ (n equations)
˙̃p (n � r equations)

Figure 3.7: Over-view of Systematic Method to Solving Nonholonomic Mechani-
cal Systems (part 4/4)
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3.3 Examples

Example 3.1 :The Unicycle

After addressing the Unicycle problem in Example 2.3, where the method
introduced by Van der Schaft and Maschke [14] was applied, it was concluded
that while the elimination of Lagrangian multipliers was very helpful, the reduced
Poisson structure matrix and reduced Hamiltonian needed improvements.

In this example, the Unicycle’s equations of motions will be obtained using
the method introduced in this chapter.

First, looking at the first step, which is the Set-Up box, as previously es-
tablished the local coordinates are q = (x, y, ✓,�).The configuration manifold is
four-dimensional with Q = R ⇥ R ⇥ S ⇥ S. Since Q has a principle fiber bundle
structure as Q = G ⇥ M , where G = SE(2) is the fiber Lie group and M = S1 is
the base space. In addition, the Lagrangian was first calculated in Equation 2.9
in Example 2.2 as:

L(q, q̇) =
1

2

�
m(ẋ2 + ẏ2) + J✓✓̇

2 + J��̇
2
�

(3.1)

and the constraint equations were given in Equation 2.10 as:

ẋ � r(cos ✓)�̇ = 0
ẏ � r(sin ✓)�̇ = 0

Writing the constraint equations in Pfa�an form !(q)q̇ resulted in Equation 2.11,
which was:

✓
1 0 0 �r(cos ✓)
0 1 0 �r(sin ✓)

◆
0

BB@

ẋ
ẏ
✓̇
�̇

1

CCA =

✓
0
0

◆
(3.2)

Now that the Set-Up has been established, one can translate to the second box
Equivalence of Poisson and Lagrangian Reduction. After calculating the La-
grangian and writing the constraint equations, making it the first step in the
method, the second step is taking the Null Space of !(q), which results in the
following matrix:

NullSpace(!(q)) =

✓
r(cos ✓) r(sin ✓) 0 1

0 0 1 0

◆
(3.3)

which translate to the constraint distribution Dq such that

Dq = span
n @

@✓
, r(cos ✓)

@

@x
+ r(sin ✓)

@

@y
+

@

@�

o
(3.4)
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Putting aside the knowledge on the configuration space and choice of G, in order
to get a convenient Sq, which is the intersection given by the tangent space of
the orbit with the constraint distribution, it is reasonable to choose TqOrb(q) as

TqOrb(q) = span
n @

@x
,
@

@y
,
@

@�

o
(3.5)

Equation 3.5 represents the tangent space to the orbits of the group G = R2⇥S1.
The resultant Sq becomes

Sq = Dq \ TqOrb(q) = span
n

r(cos ✓)
@

@x
+ r(sin ✓)

@

@y
+

@

@�

o
(3.6)

Thus, for G = R2 ⇥ S1 the section of Sq, which was calculated in 3.6, is taken to
be the vector field:

⇠q
Q

= r(cos ✓)
@

@x
+ r(sin ✓)

@

@y
+

@

@�
(3.7)

with a corresponding Lie algebra element being:

⇠ = (r(cos ✓), r(sin ✓), 1) (3.8)

In addition, since q = (r↵, sa) are the local coordinates, where sa are the coordi-
nates related to the configuration group G and r↵ are the remaining coordinates,
the coordinates here of sa = (x, y,�) and r↵ is composed of r↵ = (✓).

Before proceeding it is important to note the following:

Remark 3.1 The configuration space is a SE(2) ⇥ S1, which is the group over
which the dynamics takes place. While the whole group SE(2)⇥S1 is a symmetry
group, using it as is, in the presence of controls, could violate symmetry. In such
a case, it is appropriate to consider smaller symmetry groups. Here, the subgroup
G = R2 ⇥ S1 is a symmetry group, which is invariant under translation and axial
rotation.

G has to be the full symmetry group of the system at hand and as result have
a full lie algebra element. Table 3.1 shows the e↵ect of selecting di↵erent G
groups on the lie algebra element.
Reminder: Configuration of the Unicycle is Q = R1 ⇥ R1 ⇥ S1 ⇥ S1 with q =
(x, y, ✓,�). Since it is a fiber bundle, the configuration space is divided as such
Q = G ⇥ M and q = (sa, r↵) where sa are the fiber variables thus related to G
and r↵ are the shape variables related to M . Note that one has no control on
Dq; however has control over selecting TqOrb(q), based on G, to get the proper
Sq with a full lie algebra element.
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!

Choosing the fully symmetry group G for the Unicycle

sa G TqOrb(q) Sq = Dq \ TqOrb(q) ⇠

(x) R1 span
n

@

@x

o
span

n
0
o

(0)

(x, y) R1 ⇥ R1 span
n

@

@x
, @

@y

o
span

n
0
o

(0, 0)

(x, y,✓) SE(2) = R2 ⇥S1 span
n

@

@x
, @

@y
, @

@✓

o
span

n
@

@✓

o
(0, 0, 1)

(x, y,�) R2 ⇥ S1 span
n

@

@x
, @

@y
, @

@�

o
span

n
r(cos ✓) @

@x
+

r(sin ✓) @

@y
+ @

@�

o
(r(cos ✓), r(sin ✓), 1)

Table 3.1: Selecting the full symmetry group G for the Unicycle

Remark 3.2 If one choose G to be SE(2), thus leading to Sq = span @

@✓
, and

follows the method, the equations of motion would be zero. In addition, having
such an Sq would lead to a lie algebra element of ⇠ = (0, 0, 1). Having a Lie algebra
element made of a zero in one of the basis means that no motion is allowed in
that direction; after all, the lie algebra element acts as the fixed basis on which the
constraint space, in which motion is allowed, is being built. In this case, having
a lie algebra element of (0, 0, 1) implies that direction in ✓ is the only allowed
direction. It is then no surprise that the result was that all equations of motions
were zero except for ✓’s dynamical equation. The reason is that G = SE(2) does
not provide full symmetry in this example.

Remark 3.3 As one notices, taking the null space of !(q) reveals the appropriate
G group to choose and thus leading to a convenient Lie algebra ⇠ to work with.
This will be shown even more with the next Examples.

The third step is to calculate the nonholonmic momentum such that

p =
@L

@q̇
(⇠q

Q
) = mr(cos ✓)ẋ + mr(sin ✓)ẏ + J��̇ (3.9)

The fourth step is to build the reconstruction equation using Equation 2.47,
where ⇠ = g�1ṡ with G being the symmetry group, such that:

g�1ṡ = �A(r)ṙ + �(r)pT (3.10)

While one has no longer liberty in selecting G or the fiber variables sa since
they have to represent full symmetry, one has the choice to select g, which can
selected to be an Identity matrix or the g of SE(2). Even though SE(2) in this
example is not the symmetry group, it still represents the position and orientation
of the system. Form this point, this example will be divided into two versions.
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The first has g as an Identity matrix (Version A) while the second has g as
representing SE(2) (Version B). However, it is important to note that while both
lead to the same dynamical equations of the system, Version B results in a simpler
representation of the reconstruction equation.
Version A:
Take g to be an Identity matrix:

g =

0

@
1 0 0
0 1 0
0 0 1

1

A (3.11)

Solving for the left side of the equation for g�1ṡ gives

g�1ṡ =

0

@
ẋ
ẏ
�̇

1

A (3.12)

Solving for the right side of the equation is done also by calculating g�1ṡ; how-
ever, this time by solving for ṡa = (ẋ, ẏ, �̇) using the constraint equations in
Equation 2.10 and the nonholonomic momentum p found in (3.9). The resultant
reconstruction equation is the following:

0

@
ẋ
ẏ
�̇

1

A =

0

B@

r cos(✓)
J�+mr2

p
r sin(✓)
J�+mr2

p
1

J�+mr2
p

1

CA (3.13)

With A(r) = 0, the resultant reconstruction equation shows that system at hand
is purely dynamic. Moving to the fifth step, �(r)p = ⌦e where e = g�1⇠ is the
moving basis and ⌦ is the body angular velocity. With

e = (r cos(✓), r sin(✓), 1) (3.14)

the reconstruction equation becomes:
0

@
⇠1
⇠2
⇠3

1

A =

0

@
r⌦ cos(✓)
r⌦ sin(✓)

⌦

1

A (3.15)

Step six is to find the reduced Lagrangian l by replacing ṡ = (ẋ, ẏ, �̇), knowing
that ⇠ = g�1ṡ, in Equation 3.1:

l(r, ṙ, ⇠) =
1

2

�
m(⇠21 + ⇠22) + J✓✓̇

2 + J�⇠
2
3

�
(3.16)

This leads to step seven to find the reduced constraint Lagrangian by replacing
⇠ in Equation 3.16 by Equation 3.15:

lc(r, ṙ, ⌦) =
1

2

�
(J� + mr2)⌦2 + J✓✓̇

2 (3.17)
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Moving to the Legendre Transformation and Reduced Hamiltonian Constraint
box and to step eight, in order to find the Legendre Transformation needed
with p = @lc

@⌦ and p̃↵ = @lc
@(ṙ)↵ :

p =
@lc
@⌦

= (J� + mr2)⌦

p̃✓ =
@lc

@✓̇
= J✓✓̇

(3.18)

From the Legendre Transformation in Equation 3.18 one can derive ⌦ and (ṙ)↵

in step nine:

⌦ =
p

J� + mr2

✓̇ =
p̃✓
J✓

(3.19)

To finally reach step ten that gives the reduced constraint Hamiltonian such that
hM̄ = (p̃i⌦i + p̃↵(ṙ)↵) � lc :

hM̄ =
1

2

� p2

J� + mr2
+

p̃2
✓

J✓

�
(3.20)

Moving to the Poisson Reduction box, where each step is dedicated towards
building the reduced Poisson structure matrix, step eleven is to write p̃i, here
being p of Equation 3.9 in terms of pi = @L

@q̇i
(by replacing q̇ in p accordingly):

pi = (px, py, p✓, p�)
T = (mẋ, mẏ, J✓✓̇, J��̇)T (3.21)

thus p becomes:
p = r(cos ✓)px + r(sin ✓)py + p� (3.22)

Similarly, step twelve is to write p̃↵ in terms of p↵ = @L

@(ṙ)↵ , the equation

p̃↵ = p↵ + µ↵(
@(⇠)↵

@(ṙ↵) must be followed such that the ⇠ is that of Equation 3.15

(note: If necessary expand ⌦ using Equation 3.19).
In addition, µ↵ is found by µ↵ = @l

@⇠
and then expanding the result using Equation

3.15 with l being the reduced Lagrangian found in Equation 3.16.

µ =
@l

@⇠
= (m⇠1, m⇠2, J�⇠3)

T = (mr(cos ✓)⌦, mr(sin ✓)⌦, J�⌦)T (3.23)

p̃✓ = p✓ (3.24)

In order to make sure the constraint will be conserved while applying the Poisson
brackets, in step thirteen, p̃i and p̃↵ need to be written in terms of µ, which
this time will derived using p̃i = µdedi with e being described in Equation 3.14:

p = e1px + e2py + e3p� (3.25)
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this gives :
µ = (px, py, p�) (3.26)

Now rewrite Equations 3.22 and 3.24 in terms of µ:

p = µ1r cos(✓) + µ2r sin(✓) + µ3

p̃✓ = p✓
(3.27)

Step fourteen is to find {p̃i, p̃↵} and {p̃↵, p̃�} that will go in the reduced Poisson
structure. In this case, there is only one p̃↵, so one needs to find {p̃i, p̃↵}(q, p)
using the equation of the brackets in Figure 3.6:

{p, p̃✓} = r(µ2 cos(✓) � µ1 sin(✓)) (3.28)

As previously mentioned p̃i and p̃↵ were written in terms µ in order to conserved
the constraint and thus once µ is expanded the brackets {, }(q, p) will become
restricted to the submanifold M̄. Before expanding µ, it needs to be defined
once again by writing µ found in Equation 3.23 and replacing ⌦ and ṙ↵, which
are calculated in Equation 3.19. Thus, step fifteen gives:

µ = (
mr cos(✓)

J� + mr2
p,

mr sin(✓)

J� + mr2
p,

J�
J� + mr2

p) (3.29)

Finally, step sixteen restricts the brackets {, } to the reduced constraint sub-
manifold M̄ by replacing the µ in Equation 3.28 using Equation 3.29. In this
case,

{p, p̃↵}M̄ = 0 (3.30)

Finally step seventeen is the construction of the reduced Poisson structure
matrix as shown in Figure 3.7. In this case, it is:

0

BBBBBB@

⇠1
⇠2
⇠3
ṗ
✓̇
˙̃
✓
p

1

CCCCCCA
=

0

BBBBBB@

0 0 0 r cos(✓) 0 0
0 0 0 r sin(✓) 0 0
0 0 0 1 0 0

�r cos(✓) �r sin(✓) �1 0 0 0
0 0 0 0 0 1
0 0 0 0 �1 0

1

CCCCCCA

0

BBBBBBB@

0
0
0

@hM̄
@p

@hM̄
@r
@hM̄
@p̃✓

1

CCCCCCCA

(3.31)

Finally moving to the last box the Reduced Hamiltonian, step eighteen is to
calculate the derivative of hM̄ with respect to p̃i, r↵, and p̃↵ to build the matrix
on the right seen in Equation 3.31. The matrix has the first three element zero
representing the three ⇠: 0

BBBBBB@

0
0
0
p

J�+mr2

0
p̃✓

J✓

1

CCCCCCA
(3.32)
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Since the left side of reconstruction equation for g being an identity matrix di-
rectly has (⇠1, ⇠2, ⇠3)T = (ẋ, ẏ, �̇)T , steps step nineteen and step twenty can
be combined in one. In step nineteen, expanding Equation 3.31 using Equation
3.32 gives the reduced constraint Hamiltonian equations: beginequation

⇠1 = ẋ =
r cos(✓)

J� + mr2
p

⇠2 = ẏ =
r sin(✓)

J� + mr2
p

⇠3 = �̇ =
p

J� + mr2

ṗ = ⌧�

✓̇ =
p̃✓
J✓

˙̃p✓ = ⌧✓

(3.33)

It is important to note that the external forces (⌧� and ⌧✓) were added to their
respective momenta for simulation purposes. As defined in Equation (2.20),
(ṗx, ṗy, ṗ✓, ṗ�) include their respective external forces in them as seen in Equa-
tion (2.20). Since p includes (px, py, p�) as seen in Equation (3.22), its derivative
would include the external forces related to (x, y,�) (in this case ⌧�). The same
applies to ˙̃p✓.

Version B:
While the user does have a choice in using either an identity matrix or the group
representing the configuration of the orientation of the system(i.e (x, y, ✓) in this
case leading to a SE(2) configuration), only the latter would result in simplified
middle steps to reach the exact final solution.
Take g to represent the position and orientation of the system SE(2):

g =

0

@
cos ✓ � sin ✓ 0
sin ✓ cos ✓ 0

0 0 1

1

A (3.34)

Solving for the left side of the equation for g�1ṡ gives

g�1ṡ =

0

@
(cos ✓)ẋ + (sin ✓)ẏ

(� sin ✓)ẋ + (cos ✓)ẏ
�̇

1

A (3.35)

The resultant reconstruction equation here becomes:
0

@
(cos ✓)ẋ + (sin ✓)ẏ

(� sin ✓)ẋ + (cos ✓)ẏ
�̇

1

A =

0

B@

r

J�+mr2
p

0
1

J�+mr2
p

1

CA (3.36)
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The resultant reconstruction equation system is once again revealed to be purely
dynamic with A(r) = 0. In step five, �(r)p = ⌦e where e = g�1⇠ , being the
moving basis, and ⌦ the body angular velocity are found to di↵er from . With

e = (r, 0, 1) (3.37)

the reconstruction equation becomes:

0

@
⇠1
⇠2
⇠3

1

A =

0

@
r⌦
0
⌦

1

A (3.38)

Step six through step ten are found to be exactly the same as Version A, where
g is an identity matrix, since they are not a↵ected by the choice of representation
of the reconstruction equation.
Jumping directly to the Poisson Reduction box and specifically to step eleven.
Writing p̃i of Equation 3.9 in terms of pi = @L

@q̇i
, which were found in Version A,

Equation (3.21):
p = r(cos ✓)px + r(sin ✓)py + p� (3.39)

As for step twelve, a simplification pf µ is noticed:

µ =
@l

@⇠
= (m⇠1, m⇠2, J�⇠3)

T = (mr⌦, 0, J�⌦)T (3.40)

while p↵ = @L

@(ṙ)↵ remains una↵ected by µ in this example:

p̃✓ = p✓ (3.41)

Looking at step thirteen, p̃i = µdedi with e being described in Equation 3.37,
changed accordingly:

p = e1((cos ✓)px + (sin ✓)py) + e3p� (3.42)

leading to a change in µ:

µ = (cos ✓px + sin ✓py, 0, p�) (3.43)

Now rewrite Equations 3.39 and 3.41 in terms of µ:

p = µ1r + µ3

p̃✓ = p✓
(3.44)

In this version, {p, p̃✓}(q, p) goes to zero as of step fourteen:

{p, p̃✓} = 0 (3.45)
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Using Equation 3.40 and replacing ⌦ and ṙ↵, which are calculated in Equation
??,µ redefined in step fifteen:

µ = (
mr

J� + mr2
p, 0,

J�
J� + mr2

p) (3.46)

Finally, step sixteen, which restricts the brackets {, } to the reduced constraint
submanifold M̄, is now the same as Version A.

{p, p̃↵}M̄ = 0 (3.47)

Step seventeen reveals a much a reduced and simplified Poisson structure ma-
trix being:

0

BBBBBB@

⇠1
⇠2
⇠3
ṗ
✓̇
˙̃
✓
p

1

CCCCCCA
=

0

BBBBBB@

0 0 0 r 0 0
0 0 0 0 0 0
0 0 0 1 0 0

�r 0 �1 0 0 0
0 0 0 0 0 1
0 0 0 0 �1 0

1

CCCCCCA

0

BBBBBBB@

0
0
0

@hM̄
@p

@hM̄
@r
@hM̄
@p̃✓

1

CCCCCCCA

(3.48)

Moving to the last box the Reduced Hamiltonian, the derivative of hM̄ with
respect to p̃i, r↵, and p̃↵ is calculated step eighteen. Reminder, the matrix
has the first three element zero representing the three ⇠:

0

BBBBBB@

0
0
0
p

J�+mr2

0
p̃✓

J✓

1

CCCCCCA
(3.49)

In step nineteen, expanding Equation 3.48 using Equation 3.49 gives the re-
duced constraint Hamiltonian equations:

⇠1 =
r

J� + mr2
p

⇠2 = 0

⇠3 =
p

J� + mr2

ṗ = ⌧�

✓̇ =
p̃✓
J✓

˙̃p✓ = ⌧✓

(3.50)
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Finally in the last step,step twenty, one obtains the reconstruction equations
on the Hamiltonian side:

ẋ = ⇠1 cos(✓) � ⇠2 sin(✓) =
r cos(✓)p

J� + mr2

ẏ = ⇠1 sin(✓) + ⇠2 cos(✓) =
r sin(✓)p

J� + mr2

�̇ = ⇠3 =
p

J� + mr2

(3.51)

These equations (3.50) and (3.51) are equivalent to equations (3.1),which is found
in Version A.

Simulation

In this section, the four sets of equations representing the unicycle are simulated.
Equation (2.12) represents the Euler-Lagrangian formulation and equation (2.35)
represents the Hamiltonian formulation with both including the Lagrangian mul-
tipliers (�1, �2). On the other hand, equations (3.1) and (3.50, 3.51), while both
being equivalent, represent the constraint Hamiltonian formulation using Poisson
geometry with no Lagrangian multipliers.
For all three sets, a Proportional Derivative (PD) controller was designed with
specified angles and control parameters. The parameters were taken to be m =
0.5, r = 0.1, J� = 0.2, and J✓ = 0.3. The desired trajectories for ✓ and � were
specified as:

✓d = sin(t)

�d = t
(3.52)

The PD controller for both ✓ and � were defined as:

⌧✓ = kp(✓d � ✓) + kd(✓̇d � ✓̇)

⌧� = kp(�d � �) + kd(�̇d � �̇)
(3.53)

where the controller gains are kp = 20 and kd = 5. The initial conditions were
designed as to start at the origin and move along the x � axis.

For the equations of motion, (2.12), which are derived using the Lagrangian
formulation , the initial conditions (x, y) were set at zero where as the initial
conditions for (✓,�) and their first derivatives, they were set their desired values,
respectively.
Second, for the results of the Hamiltonian Formulation with Lagrangian multipli-
ers,the same set of initial conditions were kept, but instead of setting the initial
condition of the first order derivatives of (✓,�), the initial conditions of their
respective momenta were defined by using the relationship between the moments
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Lagrangian

x(0) = 0

y(0) = 0

✓(0) = ✓d(0)

�(0) = �d(0)

✓̇(0) = ✓̇d(0)

�̇(0) = �̇d(0)

Hamiltonian
p✓(0) = J✓✓̇d(0)

p�(0) = J��̇d(0)

Constrained Reduced Hamiltonian

˙̃p✓(0) = J✓✓̇d(0)

p(0) = (J� + mr2)�̇d(0)

Table 3.2: Initial conditions of the Unicycle for all three sets of formulations,
where C-Hamiltonian refers to the Constrained Hamiltonian

and (✓̇d, �̇d), as shown in equations (3,4) of Equation 2.35 at the origin, respec-
tively.
Third, for the results of the constraint Hamiltonian formulation with no La-
grangian multipliers, the same was done for the initial conditions as set two but
this time with respect to the newly introduced set of momenta using equations
(3,5) in Equation (3.1). All initial conditions chosen are specified in Table 3.2.
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Figure 3.8: The solution for (x(t), y(t)) of the Unicycle for a 2⇡ cycle for all three
sets of formulation, where C Hamiltonian refers to the Constrained Hamiltonian

Figures 3.8, 3.9, and 3.10 show how all three sets result in solutions that
specifically overlap; however, it is only the constraint Hamiltonian formulation
that has no Lagrangian multipliers. In addition, Figure 3.17 shows how for both
the classical Hamiltonian formulation and the Lagrangian formulation have solu-
tions for the Lagrangian multipliers that overlap.
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Figure 3.9: The solution for (✓(t)) of the Unicycle for a 2⇡ cycle for all three sets
of formulation
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Figure 3.10: The solution for (�(t)) of the Unicycle for a 2⇡ cycle for all three
sets of formulation

Now that one has a clearer idea of how the steps flow, here is another example.
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Figure 3.11: The solution for �1 and �2 of the Unicycle for a 2⇡ cycle for the
Hamiltonian formulation and Lagrangian formulation

Example 3.2 : The Snakeboard
Taking the Snakeboard example, which is inspired [2] and [25], and applying the
method introduced in this chapter on it. The configuration of the board is given
by q = (x, y, ✓, ,�), where (x, y, ✓) represent the position and orientation of the
board in the plane, and  represents the angle of the momentum wheel relative to
the board, and � is set to be � = �f = ��b, where �f and �b are the angles of the
back and front wheels relative to the board, respectively. Figure 3.12 shows the
the geometry of the snakeboard. The configuration space is Q = SE(2)⇥S1⇥S1.

Figure 3.12: Sketch for Snakeboard example

As a first step for the Set-up, the Lagrangian L(q, q̇) is the total kinetic energy
of the system defined using Equation 2.4:

L(q, q̇) =
1

2
m(ẋ2+ẏ2)+

1

2
J ✓̇2+

1

2
Jr(✓̇+ ̇)2+1/2Jw(✓̇��̇)2+1/2Jw(✓̇+�̇)2 (3.54)

where m is the total mass of the board, J is the inertia of the board,Jr is the
inertia of the rotor, and Jw is the inertia of each of the wheels. A condition is set
such that J + Jr + 2Jw = mr2 for simplification purposes. L, being independent
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of the of the configuration of the system, is invariant to all possible group actions
by SE(2). The Lagrangian shortens to:

L(q, q̇) =
1

2
m(ẋ2 + ẏ2) +

1

2
mr2✓̇2 +

1

2
Jr ̇

2 + Jr ̇✓̇ + Jw�̇
2 (3.55)

Second part of the first step of Set-Up is to define the constraint equations which
are:

� sin(✓ � �)ẋ + cos(✓ � �)ẏ � r cos(�)✓̇ = 0

� sin(✓ + �)ẋ + cos(✓ + �)ẏ + r cos(�)✓̇ = 0
(3.56)

From Equation 3.56, !(q), in Pfa�an form !(q)q̇ = 0 is:

✓
� sin(✓ + �) cos(✓ + �) �r(cos�) 0 0
� sin(✓ � �) cos(✓ � �) r(cos�) 0 0

◆

0

BBBB@

ẋ
ẏ
✓̇
 ̇
�̇

1

CCCCA
=

✓
0
0

◆
(3.57)

Lagrangian Formulation:
The first set of equations of motions for the Snakeboard is found through the
Euler-Lagrangian equations (2.8) with the generalized forces on the coordinates
( ,�):

mẍ = � sin(✓ � �)�1 � sin(✓ + �)�2
mÿ = cos(✓ � �)�1 + cos(✓ + �)�2

Jr✓̈ + Jw ̈ = ⌧ 

2Jr�̈ = ⌧�

� sin(✓ � �)ẋ + cos(✓ � �)ẏ � r cos(�)✓̇ = 0

� sin(✓ + �)ẋ + cos(✓ + �)ẏ + r cos(�)✓̇ = 0

(3.58)

The first set of equation, as seen, yields second-order equations of motion with
extra variables, which are the Lagrangian multipliers.

Hamiltonian Formulation:
The second set of equations of motions, which includes the Lagrangian multipli-
ers, is derived using the he generalized Hamiltonian formulation and the Legendre
Transformation, which is defined as the momentum associated with each variable
and the Hamiltonian, via Equation 2.19. The Legendre Transformation are cal-
culated to be:

p =
@L

@q
=

0

BBBB@

mẋ
mẏ

mr2✓̇ + Jr ̇
Jr(✓̇ +  ̇)

2Jw�̇

1

CCCCA
(3.59)
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where p = (px, py, p✓, p , p�)T . Using Equation (2.19), this leads to the following
Hamiltonian:

H(q, p) =
1

2

⇣
p2
x

+ p2
y
� p2

✓

Jr � mr2
+

p2
�

Jw

+
2p✓p 

Jr � mr2
� mr2p 

Jr(Jr � mr2)

⌘
(3.60)

Using Equation (2.20), the second set of equations of motion are of first-order,
yet still include the Lagrangian multipliers:

ẋ =
px
m

ẏ =
py
m

✓̇ =
p✓ � p 

Jr � mr2

 ̇ =
�Jrp✓ + mr2p 

Jr(Jr � mr2

�̇ =
p�
2Jw

ṗx = � sin(✓ � �)�1 � sin(✓ + �)�2
ṗy = cos ✓ � �)�1 + cos(✓ + �)�2

ṗ✓ = r(��1 + �2) cos�

ṗ = ⌧ 
ṗ� = ⌧�

� sin(✓ � �)ẋ + cos(✓ � �)ẏ � r cos(�)✓̇ = 0

� sin(✓ + �)ẋ + cos(✓ + �)ẏ + r cos(�)✓̇ = 0

(3.61)

While the generalized Hamiltonian formulation decreased the index of reduction
of the equations of motion, it increased the equations from second order n equa-
tions to first order 2n equations and the Lagrangian multipliers are still present.

Reduced Constraint Hamiltonian formulation:
In order to get the third set of equations with no lagrangian multipliers and sim-
plified first order equations of motion, the method introduced in this chapter is
implemented on the Snakeboard problem.
Continuing to the Equivalence of Poisson and Lagrangian Reduction box, the
second step is to find ⇠q

Q
by taking the Null Space of !(q), which gives:

NullSpace(!(q)) =

0

@
0 0 0 0 1
0 0 0 1 0

r cos(✓) cot(�) r sin(✓) cot(�) 1 0 0

1

A (3.62)

Thus, the constraint distribution Dq is:

Dq = span
n @

@�
,

@

@ 
, (r cos(✓) cot(�))

@

@x
+(r sin(✓) cot(�))

@

@y
+
@

@✓

o
(3.63)
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For simplification purposes of trigonometry and in turn simplify further steps
down the method, simplify Dq to:

Dq = span
n @

@�
,

@

@ 
, (2r cos(✓) cos2(�))

@

@x
+(2r sin(✓) cos2(�))

@

@y
+Sin(2�)

@

@✓

o

(3.64)
Here, one can see by looking at Dq that SE(2) gives full symmetry and as such
is the convenient G group to have. In its turn, TqOrb(q) is chosen to be:

TqOrb(q) = span
n @

@x
,
@

@y
,
@

@✓

o
(3.65)

Finally, Sq is:

Sq = Dq\TqOrb(q) = span
n

(2r cos(✓) cos2(�))
@

@x
+(2r sin(✓) cos2(�))

@

@y
+sin(2�)

@

@✓

o

(3.66)
All of this is done, to conclude that for G = SE(2) the section of Sq takes the
vector field:

⇠q
Q

= (2r cos(✓) cos2(�))
@

@x
+ (2r sin(✓) cos2(�))

@

@y
+ sin(2�)

@

@✓
(3.67)

with a corresponding Lie algebra element:

⇠ = (2r cos(✓) cos2(�), 2r sin(✓) cos2(�), sin(2�)) (3.68)

Furthermore, with the local coordinates being written as q = (r↵, sa), here
r↵ = ( ,�) and sa = (x, y, ✓). Moving to the third step, which is to find
the nonholonomic momentum:

p =
@L

@q̇
(⇠q

Q
) = 2mr cos(✓) cos2(�)ẋ2mr sin(✓) cos2(�)ẏ + sin(2�)(mr2✓̇ + J0�̇)

(3.69)
The fourth step is to write the reconstruction equation g�1g + A(r)ṙ = �(r)p
with ⇠ = g�1g by solving Equations 3.56 and 3.69. Due to the simplification in
geometry, G = SE(2) was chosen for the reconstruction equation:

g =

0

@
cos ✓ � sin ✓ 0
sin ✓ cos ✓ 0

0 0 1

1

A (3.70)

To finally get:

0

@
(cos ✓)ẋ + (sin ✓)ẏ

(� sin ✓)ẋ + (cos ✓)ẏ
✓̇

1

A+

0

@
Jr sin(2�)

2mr
�̇

0
2Jr sin2(�)

2mr2
�̇

1

A =

0

@
1

2mr
p

0
tan(�)
2mr2

p

1

A (3.71)
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Fifth step is to replace �(r)p = ⌦e, where ⌦ is the local version of the locked
angular velocity and e, the moving basis, is found by e = g�1.⇠q:

e = (2r cos2(�), 0, sin(2�)) (3.72)

As a result, Equation 3.71 becomes ⇠ = �A(r)ṙ + e⌦ such that:

0

@
⇠1
⇠2
⇠3

1

A =

0

@
�Jr cos(�) sin(�)

mr
�̇+ 2r cos2(�)⌦
0

�Jr sin2(�)
mr2

�̇+ (sin(2�)⌦

1

A (3.73)

Step six is to find l(r, ṙ, ⇠) by solving for ṙ in terms of ⇠ (via ⇠ = g�1ṡ) and
replacing the found ṙ in Lagrangian L calculated in Equation 3.55:

l(r, ṙ, ⇠) =
1

2

�
m⇠21 + m⇠22 + mr2⇠23 + 2Jw�̇

2 + 2Jr⇠3�̇+ Jr�̇
2
�

(3.74)

Finally reaching step seven to calculate the reduced constrained Lagrangina
lc(r, ṙ, ⌦) by replacing ⇠ with the ⇠ found in Equation 3.73:

lc(r, ṙ, ⌦) = 2mr2⌦2 cos2(�) + Jw�̇
2 + (

1

2
Jr +

�Jr sin2(�)

2mr2
) ̇2 (3.75)

Moving to Legendre Transformation & Reduced Hamiltonian Constraint, step
eight is to find the Legendre Transformation to lead to the reduced Poisson:

p =
@lc
@⌦

= 4mr2 cos2(�)⌦ (3.76)

p̃ =
@lc

@ ̇
= (

1

2
Jr +

�Jr sin2(�)

2mr2
) ̇

p̃� =
@lc

@�̇
= 2Jw�̇

(3.77)

Step nine, from the Legendre Transformation, deduce ⌦, ṙ↵:

⌦ =
sec2(�)

4mr2
p (3.78)

 ̇ =
2mr2

Jr(�Jr + 2mr2 + Jr cos(2�)
p̃ 

�̇ =
1

2Jw

p̃�

(3.79)

Finally, step ten gives the Reduced Constrained Hamiltonian (hM̄ = p⌦ +
p̃↵ṙ↵ � lc):

hM̄ =
1

4Jw

p̃2
�

+
mr2

Jr(�Jr + 2mr2 + Jr cos(2�)
p̃2
 

+
sec2(�)

8mr2
p2 (3.80)
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Moving to Poisson Reduction, step eleven is to write p in terms of pi = @L

@qi
:

p = �2r cos(✓) cos2(�)px + �2r sin(✓) cos2(�)py + sin(2�)p✓ (3.81)

Step twelve: write p̃↵ such that p̃↵ = p↵ + µ↵(
@⇠
↵

@ṙ↵
) with p↵ = @L

ṙ
and µ↵ = @l

@⇠
:

µ =

0

@
2mr cos2(�)⌦ � Jr cos(�) sin(�)

r
 ̇

0
cos(�)

�
2mr2 sin(�)⌦ + Jr cos(�) ̇

1

A (3.82)

p̃ = p +
Jr sin2(�)

mr2
p✓ +

Jr cos(✓) sin(2�)

2mr
px +

Jr sin(✓) sin(2�)

2mr
py

p̃� = p�

(3.83)

Step thirteen is to find p, p̃↵ in terms of µ, which can also be found from
p = µdedi using e from Equation 3.72.

p = (cos ✓px + sin ✓py)e1 + p✓e3 (3.84)

thus:

µ =

0

@
cos(✓)px + sin(✓)py

0
p✓

1

A (3.85)

To finally write p, p̃↵ in terms of µ:

p = 2r cos2(�)µ1 + sin(2�)µ3 (3.86)

p̃ = p � Jr sin(2�)

2mr
µ1 � Jr sin2(�)

mr2
µ3

p̃� = p�

(3.87)

Using brackets {, }M defined in Figure 3.6, step fourteen is to find {p, p̃↵}M
and {p̃↵, p̃�}M while they are written in terms of µ:

{p̃ , p̃�}M =
Jrr cos(2�)

mr2
µ1 � Jr sin(2�)

mr2
µ2

{p, p̃�}M = 2r sin(2�)µ1 + 2 cos(2�)µ3

{p, p̃ }M = 0

(3.88)

In order to restrict to M̄, in step fifteenlet the µ found in Equation 3.82 in
terms of p, p̃↵ using Equations 3.78 and 3.79:

0

@
µ1

µ2

µ3

1

A =

0

B@

1
2rp � mr sin(2�)

2(mr2�Jr sin2 �)
p̃ 

0
1
2 tan(�)p + mr

2 cos2(�)
mr2�Jr sin2 �

p̃ 

1

CA (3.89)
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Now that µ is restricted to M̄, it is time to restrict the brackets to the submanifold
M̄ by replacing the mu found in Equation 3.89 in the brackets in step sixteen:

{p̃ , p̃�}M̄ = � Jr

2mr2
p � Jr sin(2�)

2(mr2 � Jr sin2 �)
p̃ 

{p, p̃�}M̄ = � tan(�)p +
2mr2 cos2(�)

mr2 � Jr sin2(�)
p̃ 

{p, p̃ }M̄ = 0

(3.90)

Finally, the Reduced Poisson structure matrix is now ready to built using
the format found in Figure 3.7 in step seventeen:

0

BBBBBBBBBB@

0 0 0 2r cos2(�) 0 0 � Jr
2mr

sin(2�) 0
0 0 0 0 0 0 0 0
0 0 0 sin(2�) 0 0 � Jr

mr2
sin2 � 0

�2r cos2(�) 0 � sin(2�) 0 0 0 {p, p̃ }M̄ {p, p̃�}M̄
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

Jr
2mr

sin(2�) 0 Jr
mr2

sin2 � 0 �1 0 �{p, p̃ }M̄ {p̃ , p̃�}M̄
0 0 0 �{p, p̃�}M̄ 0 �1 �{p̃ , p̃�}M̄ {p, p̃ }M̄

1

CCCCCCCCCCA

(3.91)
Now ready to move to The Reduced Hamiltonian, step eighteen is to calculate
the derivatives of hM̄ with respect to p, r, p̃↵ in that order while keeping the first
three elements zero in reference to the three ⇠:

0

BBBBBBBBBBBB@

0
0
0

@hM̄
@p

@hM̄
@ 

@hM̄
@�

@hM̄
@p̃ 
@hM̄
@p̃�

1

CCCCCCCCCCCCA

=

0

BBBBBBBBBBB@

0
0
0

sec2 �
4mr2

p
0

mr
2 sin(2�)

2(mr2�Jr sin2 �))2
p̃2
 

+ sec(�)2 tan(�)
4mr2

p2

mr
2

Jr(mr2�Jr sin2 �))
p̃ 

1
2Jw

p̃�

1

CCCCCCCCCCCA

(3.92)

Finally, step nineteen gives the Reduced Hamiltonian Equations by mul-
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tiplying the reduced Poisson structure matrix found by Equation 3.92:

⇠1 =
p

2mr
� r sin(2�)

�Jr + 2mr2 + Jr cos(2�)
p̃ 

⇠2 = 0

⇠3 = � 2 sin2(�)

�Jr + 2mr2 + Jr cos(2�)
p̃ +

tan(�)

2mr2
p

ṗ =
p̃�
2Jw

� 4mr2 cos2(�)

�Jr + 2mr2 + Jr cos(2�)
p̃ � tan(�)p

�

 ̇ =
2mr2

Jr(mr2 � Jr sin2 �)
p̃ 

�̇ =
p̃�
2Jw

˙̃p =
p�
2Jw

⇣ �Jr

2mr2
p +

Jr sin(2�)

Jr � 2mr2 � Jr cos(2�)
p̃ 
⌘

+ ⌧ 

˙̃p� = ⌧�

(3.93)

It is important to note that the generalized forces were added to the first order
equation of motion of ˙̃p and ˙̃p� respectively. At last, step twenty, which is the
last step, gives the reconstruction equations on the Hamiltonian side by using ⇠
found in Equation 3.93 and replacing it in left side of Equation 3.94 to give:

ẋ = cos ✓
⇣ p

2mr
� r sin(2�)

�Jr + 2mr2 + Jr cos(2�)
p̃ 
⌘

ẏ = sin ✓
⇣ p

2mr
� r sin(2�)

�Jr + 2mr2 + Jr cos(2�)
p̃ 
⌘

✓̇ =
tan(�)

2mr2
p � 2 sin2(�)

�Jr + 2mr2 + Jr cos(2�)
p̃ 

(3.94)

The Reduced Constraint Hamiltonian formulation using Poisson geometry lead
to a set of first order equations of motion with no Lagrangian multiplier and less
than 2n equations.

Simulation

Three sets of equations of motion representing the Snakeboard were calcu-
lated. Equations (3.58) represents the Euler-Lagrangian formulation and equa-
tion (3.61) represents the Hamiltonian formulation with both including the La-
grangian multipliers (�1, �2) and both have a High Index of Reduction. However,
equations (3.93,3.94), developed using the constraint Hamiltonian formulation via
Poisson geometry, make up the only set of equations that has no Lagrangian mul-
tipliers and of first order.
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Lagrangian

x(0) = 0

y(0) = 0

✓(0) = 0

 (0) =  d(0)

�(0) = �d(0)

 ̇(0) =  ̇d(0)

�̇(0) = �̇d(0))

ẋ(0) = ẏ(0) = ✓̇(0) = 0

Hamiltonian

px(0) = py(0) = 0

p✓(0) = p (0) = Jr ̇d(0)

p�(0) = 2Jw�̇d(0)

C-Hamiltonian

p(0) = Jr sin(2�d(0)) ̇d(0)

p̃ (0) = 2Jr
mr2

�
mr2 � Jr sin2 �d(0)

�
 ̇d(0)

p̃�(0) = 2Jw�̇d(0)

Table 3.3: Initial conditions for all three sets of formulations of the Snakeboard,
where C-Hamiltonian refers to the Constrained Hamiltonian

For all three sets, a Proportional Derivative (PD) controller was designed with
specified angles and control parameters. The parameters were taken to be m =
0.5, J = 0.3, Jr = 0.2,Jw = 0.1, and r = 1.18322 was chosen as to not violate
the condition imposed J + Jr + 2Jw = mr2 . The desired trajectories for  and
� were specified as:

 d = sin(t)

�d = sin(t +
⇡

2
)

(3.95)

The PD controller for both  and � were defined as:

⌧ =  ̈d + kp( d � ✓) + kd( ̇d �  ̇)

⌧� = �̈d + kp(�d � �) + kd(�̇d � �̇)
(3.96)

where the controller gains are kp = 10 and kd = 5. The initial conditions were
designed as to start at the origin and move along the x � axis. All initial condi-
tions chosen are specified in Table 3.3.

For the first set of equations, (3.58) derived using the Lagrangian formulation
, the initial conditions were set similarly to the way it was done in the Unicy-
cle problem. For all three sets, the initial conditions of (x, y, ✓) and their first
derivatives were set to zero while the initial conditions for ( ,�) and their first
derivatives were set at their desired values, respectively.
Moving to the second set of equations, (3.61) derived using the generalized Hamil-
tonian Formulation with Lagrangian multipliers, the same set of initial conditions
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were kept, but here the initial conditions that were previously set for q̇(0) were
used to find the initial conditions of their respective momenta p(0), which were
derived in equations (3.59).
Finally, for the third set of equations,(3.93, 3.94) derived using the reduced con-
straint Hamiltonian formulation with no Lagrangian multipliers, once again while
keeping the same initial conditions of q(0), the initial conditions set for q̇(0) were
used to get the initial conditions of (P (0), p̃ (0), p̃�(0)).

●●●● ● ● ● ●●●●●●● ●
● ● ●●●●●●● ● ● ● ●●●●●●● ●

● ● ●●●●●●● ● ● ● ●●●●●●● ●
● ● ●●●●●●● ● ● ● ●●●●●●● ●
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Figure 3.13: The solution for (x(t), y(t)) of the Snakeboard for a 10⇡ cycle for
all three sets of formulation, where C Hamiltonian refers to the Constrained
Hamiltonian

Figures 3.13, 3.14, 3.15, and 3.16 show how all three sets result in solutions
that specifically overlap. Once again, it is important to highlight the fact that
it is only the constraint Hamiltonian formulation that has no Lagrangian mul-
tipliers. In addition, Figure 3.17 shows how for both the classical Hamiltonian
formulation and the Lagrangian formulation have solutions for the Lagrangian
multipliers that overlap.
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Figure 3.14: The solution for (✓(t)) of the Snakeboard for a 10⇡ for all three sets
of formulation
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Figure 3.15: The solution for ( (t))of the Snakeboard for a 10⇡ cycle for all three
sets of formulation
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Figure 3.16: The solution for (�(t)) of the Snakeboard for a 10⇡ cycle for all three
sets of formulation
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Figure 3.17: The solution for �1 and �2 of the Snakeboard for a 10⇡ cycle for the
Hamiltonian formulation and Lagrangian formulation
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Chapter 4

Conclusion

This work presented a study on robotic systems with nonholonomic constraints.
A 20-Step method was designed to make reduced constraint Hamiltonian formu-
lation more accessible to the user. The result is a set of (2n � r) set of ODE
equations of motion suitable for observability, controllability, and choice of gait
studies, with n and r being the number of coordinates q and the number of con-
straint equations, respectively.

The method integrates the constraints at the initial and geometry level build-
ing a reduced constraint submanifold where the dynamics of the system are re-
trieved. This removes the need to solve for the constraint forces �, which are of
zero order. With only the knowledge of the coordinates q, the Lagrangian L, and
the constraint equations !(q), first the method finds the full symmetry group of
the system. This allows the mapping from the general manifold to the reduced
constraint submanifold. In addition, it gives structure to q and decides on its
division along with the system’s fiber bundle Q. In addition, the reconstruction
equation is used as an intermediate step. It shows that choosing to build the
reconstruction equation using an identity matrix or based on the system’s ge-
ometry lead to the same result and set of equations. However, only the latter
simplifies all intermediate steps.Moreover, a Poisson like structure is built using
the Poisson brackets but within the reduced constraint submanifold.

As part of the work, the 20-Step method was applied to the Unicycle and
the Snakeboard problem to clarify and highlight the e↵ects of the steps on the
problen and the results. In addition, all three sets of equations from the three
frameworks were simulated to show that the result of the 20-Step method co-
incide with the results of the traditional frameworks. Moreover, a set of initial
conditions had to be established for each problem. Furthermore, the new method
allows the user to retrieve many valuable information about the system that the
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tradition frameworks fail to achieve. For instance, focusing on the unicycle prob-
lem, inspecting the geometry of the constrained distribution revealed that the
group of full symmetry is in fact not the SE(2) but rather G ⇥ R2. In addition,
it also showed that despite being given two choices while building the recon-
struction equation, both lead to equivalent equations of motion. This reduced
constraint Hamiltonian formulation opens the door to more concrete and solid
ways of solving nonholonomic systems.
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