
AMERICAN UNIVERSITY OF BEIRUT

TUNABLE NEAR-FIELD HEAT TRANSFER
WITH PIEZOELECTRIC MATERIALS

by

RAZAN IBRAHIM BALTAJI

A thesis
submitted in partial fulfillment of the requirements

for the degree of Master of Science
to the Department of Physics

of the Faculty of Arts and Sciences
at the American University of Beirut

Beirut, Lebanon
August 2018







Acknowledgements

To my Abdurrahman.

v



An Abstract of the Thesis of

Razan Ibrahim Baltaji for Master of Science
Major: Physics

Title: Tunable Near-Field Heat Transfer with Piezoelectric Materials

Realizing a thermal counterpart for electronic devices has been recently pro-
posed; a thermal analogue requires processing information by heat currents rather
than by electric currents. Phononic heat currents are fundamentally limited by
the speed of acoustic phonons smaller than the speed of electrons by orders of
magnitude alongside the reduction of heat flow by local Kapitza resistances aris-
ing from the mismatch of vibrational modes at interfaces. Overlooked due to
the relatively weak heat flux limited by the Stefan-Boltzmann law in the far-field
limit, energy transfer mediated by thermal photons with contactless devices in
the near-field limit (NFRHT) has been recently considered as an alternative.

Several approaches for heat transfer modulation have been applied exploiting
the dependence of NFRHT on the geometric asymmetry of the surfaces, the
material properties, and the relative motion of the radiating objects. Classes
of materials studied include phase-change materials (PCM), ferroelectrics, and
chiral materials. In this dissertation, we propose, to the best of our knowledge, for
the first time the use of piezoelectrics for near-field radiative transfer modulation.
We detect a phase change in the optical properties of oxygen-contaminated AlN
attributed to an Oxygen related defect. The piezoelectric properties of AlN
enables fast electrical tuning and thus modulation of NFRHT. We show that
radiative heat transfer between the two piezoelectric materials can be tuned as
much as 40% by switching between the two phases. In addition, we detect a
coherence shift in near field transfer corresponding to the two phases of AlN and
demonstrate coherence tuning by a factor of 3.7.

We investigate the near-field radiative heat transfer between both the parallel
plates and the two sphere geometries. We demonstrate for the first time modu-
lation of NFRHT in the two sphere system via harnessing phase change in the
dielectric properties of the emitters material. We adopt the model proposed by
Narayanaswamy and Gang for calculating the NFRHT spectral conductivity be-
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tween two spheres applicable for arbitrary sphere sizes. We highlight the distinct
properties of the near-field transfer along with the distinct resonance conditions
for the two spheres geometry looking for asymptotic regimes for optimizing near-
field thermal transfer modulation.
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Nomenclature

"̂ electric permittivity

µ0 magnetic permeability of free space

�e electric scalar potential

⇢e electric charge density

� electric conductivity

I identity dyad

⇥ mean energy of a Planck oscillator at thermal equilibrium at temperature
T

" complex electric permittivity

"r relative permittivity or dielectric function

~A magnetic vector potential

~Jr random current density

D spectral mode density

eb,� Blackbody spectral emissive power

eb,! spectral emissive power

k wavevector

n mode occupation number of photons at thermal equilibrium

u0 spectral energy density
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Chapter 1

Introduction

1.1 Electromagnetic Fluctuations at the Nanoscale

The study of electromagnetic fluctuations at the nanoscale is essential for mod-

ern applied science. In the fluctuational electrodynamics framework, nanoscale

electromagnetic fluctuations are described by introducing a ‘random’ field into

Maxwell’s equations o↵ering a theoretical framework for modeling various interac-

tions such as Van der Waal’s and Casimir forces, radiative heat transfer, Casimir

friction, electromagnetic trapping mechanisms, as well as a number of major

physiochemical phenomena near the surface of condensed media. In particular,

fluctuational electrodynamics, as we thoroughly investigate, o↵ers the theoretical

framework for modeling radiative heat transfer in the near-field regime where

traditional formulations of thermal radiation cease to be valid.

Similar to radiative heat transfer, deviation from classical conductive heat

transfer formulations such as the Fourier conduction law has been well established

for small length scales. However, the violation of Planck’s law, as the classical

formulation for radiative heat transfer, and therefore the blackbody limit, which
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Figure 1.1: Nanoscale Fluctuational Electrodynamics Physics

has set a maximum for heat transfer for a long time, has been recently demon-

strated theoretically and experimentally. In contrary to classical formulations

regarding thermal radiation as incoherent, partially temporally and spatially co-

herent thermal radiation has been detected. Astoundingly, thermal transfer has

been detected exceeding the blackbody limit especially in the presence of sur-

face electromagnetic waves up to several orders of magnitude. Thus a new era

in harnessing radiative heat transfer at the nanoscale has been initiated opening

up novel unprecedented applications. This deviation from the classical theory,

as investigated in Chapter 3, is due to the near-field e↵ects described in terms

of electromagnetic fluctuations dominating heat transfer when the dimensions of

the objects and/or the gap separation is less than the peak thermal wavelength

[].
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1.2 Classical Formulations of Radiative Heat Trans-

fer

The relation between temperature and thermal radiation emitted by objects pre-

occupied 19th century physicists. Introducing his bold assumption of the quanta

of energy in contrary to classical electrodynamics, Max Planck used the maxi-

mum entropy principle, to derive Planck’s law quantifying the spectral emissive

power of blackbodies in agreement with Wien’s formula, applicable to the short-

wavelength region of the blackbody spectrum, and the Rayleigh-Jeans formula,

applicable for su�ciently high temperatures and long wavelengths. Planck’s law

of blackbody thermal radiation describes spectral emissive power of a blackbody

eb,� in a cavity in thermal equilibrium as [1]

eb,� =
2⇡hc2

�5(ehc/kB�T � 1)
(1.1)

Since then, Planck’s law has been of fundamental importance to the study of

radiative heat transport and thermal radiation of isolated objects. Thermal emis-

sion from real materials can be described by comparison with that emitted by

a blackbody at the same temperature using a property called emissivity. The

wavelength at which the spectral emissive power is maximum is given by

�W ⇡ 2900

T
µm (1.2)

This relationship is historically called the Wien’s displacement law. At room

temperature (⇠ 300K), the peak wavelength is about 10µm. The total emissive

power of a blackbody is thus given by eb = �T 4 as predicted by Stefan-Boltzmann

law. For a real object the spectral emissive power is given by eb = "�eb,� where
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Figure 1.2: Planck’s Law for Blackbody emissive power

"� is its emissivity at a wavelength of � and "� 2 [0, 1]. Accordingly, the Stefan-

Boltzmann law has set the maximum emissive power, referred to as the blackbody

limit, that is possible for any object, at a temperature T.

1.3 An Overview of Near-field Radiative Heat

Transfer

The quantum mechanical formulation of Rytov’s fluctuational electrodynamics

around the early 1950s [2], allowed for the first time relating thermal radiation

to its origin in the random fluctuations of charges acting as a stochastic current

source for thermal radiation. Thermally excited electromagnetic waves, as later

expanded upon in chapter 2, are of two types: propagating waves that radiate
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Figure 1.3: (a) Schematic for far-field radiation between two parallel semi-infinite

bodies (b) Schematic for near-field radiation for a vacuum gap comparable to or smaller

than the peak thermal wavelength

into free space, and non-propagating (evanescent) waves that decay away from

the surface on one or both sides of the surface of the emitter. Since the non-

propagating waves decay away from the emitter surface, no transport of energy in

a non-absorbing medium occurs unless another object is brought close enough to

the emitter, resulting in the tunneling of non-propagating waves as demonstrated

in Fig. 1.3. The tunneling of non-propagating waves is the key to the enhanced

energy transfer in the near field limit.

The classical theory of blackbody radiation, as proposed by Planck deals only

with the propagating modes and thus is only applicable when evanescent waves

can be ignored. The non-propagating modes are unimportant only when the

characteristic linear dimensions and gap between objects participating in thermal

radiative transfer are larger than the peak thermal wavelength, thus what is

called the far-field regime, which is approximately 10µm at room temperature

[3]. However, when the size of the bodies and/or their separation distance is

comparable to or smaller than the thermal wavelength, Planck’s theory ceases to

be valid and radiation heat transfer is said to be in the near-field regime and is

described by the fluctuational electrodynamics formulation for thermal radiation.
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1.4 Purpose and outline

The control of electric currents in solids is at the cornerstone of modern elec-

tronics. The diode and transistor are the fundamental building blocks of modern

electronic technologies, allowing for rectifying, switching, modulating, and am-

plifying electric currents. The thermal analogue for electronic systems would ex-

hibit faster responses, and consequently would pave the way for new generation of

technological applications. Therefore, much attention has been directed toward

thermal structures for rectifying, switching, modulating and amplifying heat flux.

Purely phononic systems have been proposed [4, 5, 6]; however, phononic heat

transfer su↵ers from some weaknesses of fundamental nature which intrinsically

limit its performance [6]. One limitation is linked to the speed of acoustic phonons

which is limited by the speed of sound in solids. Another limitation is the pres-

ence of local Kapitza resistances which is a result of the acoustic and vibrational

mismatch that may arise between di↵erent solid elements in contact. This re-

sistance can drastically reduce the heat flux transported across the system [7].

Therefore, an alternative for phononic heat transfer is required for a thermal

analogue of for electronic systems.

Because of the much lower heat flux limited by the Stefan-Boltzmann law in

comparison to other heat transfer modes, thermal radiation was not traditionally

considered as an e↵ective means for thermal management. Nevertheless, with the

significant enhancement by orders of magnitude demonstrated in the near-field

limit, near-field radiative heat transfer (NFRHT) has shown great potential in

controlling heat flow at the nanoscale. The capability of modulating heat flow

with near-field radiative transport can help realizing a photonic alternative to

the phononic systems.
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Recent works have theoretically proposed photonic systems operating via

NFRHT such as: thermal transistors [8], thermal rectifiers [9], photonic thermal

logic gates [10], and thermal memory [11] as an analog for electronic systems. To

achieve the functions of the proposed systems, tuning and modulating NFRHT is

crucial. Several approaches have been proposed to modulate radiative heat trans-

fer. One scheme exploits the dependence of NFRHT on the geometric asymmetry

of the surfaces or objects. For example modulation of NFRHT by changing the

relative orientation between gratings [12] and cylinders [13] has been theoreti-

cally predicted. Another approach for modulating NFRHT is based on dynamic

non-equilibrium by changing the relative movement between the radiating ob-

jects where the Doppler e↵ect resulting from the motion modifies the reflection

coe�cient, thus, modulating heat transfer [14, 15]. Furthermore, a major scheme

for modulating the near-field heat transfer is by tuning optical properties of ma-

terials. Modulation can be fast if tuning can be done via an electric or a magnetic

field.

Classes of materials investigated for modulating NFRHT so far include: phase-

change materials (PCM), ferroelectrics, and chiral materials. Modulating NFRHT

was proposed for chiral materials with magnetoelectric coupling via ultrafast op-

tical pulses [16] and for ferroelectric materials via an external electric field [17].

Borrowing from research on modulating Casimir force, PCMs such as AIST [18]

and Vanadium Dioxide (V O2) [19] has been proposed for modulating NFRHT.

Both can be switched between an amorphous and a crystalline state with a switch-

ing time on the order of a few nanoseconds by changing the lattice parameters

via temperature. Although these materials showed e�cient thermal modulation,

they are limited to applications in which the temperature does not exceed the

phase change temperature. In this work, we demonstrate that defect complexes
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in aluminum nitride AlN give rise to soft phonon modes that depend on the lat-

tice parameter and can be used for near-field thermal radiation modulation. We

hope that our results will open the door for new applications of near-field thermal

radiations as AlN has an important advantage over the commonly known phase

change materials that its lattice parameters can be changed by the application

of an electric field because of its high piezoelectric properties irrespective of the

ambient temperature.

Most of the research on tuning NFRHT for thermal modulation focus on semi-

infinite plates geometry [16, 17, 18, 19]. However, other geometries remain poorly

studied. For instance, the two sphere geometry has an additional length parame-

ter for heat transfer as well as surface polariton resonance conditions specific for

the spherical geometry, thus leading to novel properties for near-field heat transfer

modulation. Thermal rectification for the two sphere system geometry has been

proposed in Ref. [20] providing distinctive properties for thermal rectification in

contrary to the typical parallel plate system. The scale invariance properties of

the resonance modes of the spheres has shown to result in a large di↵erence in the

coupling constants between relevant modes in the forward and reverse scenarios,

thus, providing a mechanism for thermal rectification [20]. NFRHT modulation

in the two nanoparticles system has been simulated for anisotropic particles by

controlling their orientations [21]. However to the best of our knowledge, tuning

and modulating NFRHT by harnessing the properties of phase changing materials

has not yet been applied to the two sphere system.

This dissertation is organized as follows. After the introduction, we present in

Chapter 2 low temperature reflectivity measurements highlighting the detected

defect state change in AlN. We also introduce the Kramers-Kronig analysis tech-

nique for calculating the dielectric function for both defect states of AlN start-
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ing from the reflectivity measurements. In addition, we introduce the surface

phonon polaritons localized waves in both states, which are strongly related to

the infrared dielectric function and are the principle determinant of the near-

field radiation characteristics and the key players in tuning NFRHT. We also

demonstrate the resonance conditions for both the parallel plates and the two

sphere geometries highlighting the contrast between the two states of AlN. In

chapter 3, we introduce the fundamentals of near-field radiative transfer conclud-

ing with the NFRHT for the semi-infinite plates geometry. We investigate the

near-field transfer between two AlN plates harnessing the defect state change in

AlN for near-field thermal modulation and coherence tuning. In chapter 4, we

introduce the adopted Narayanaswamy model [22] for computing NFRHT for the

two sphere geometry investigating near-field transfer modulation and coherence

tuning between two AlN spheres. Finally, we conclude with the limitations of our

study and an outlook for future and current research.
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Chapter 2

Infrared Spectrum of Oxygen

Contaminated Aluminum Nitride

2.1 Oxygen-related Defect in Aluminum Nitride

Oxygen-related defect complexes have always been considered as the most im-

portant native defects in AlN ceramics, and the local atomic structure of oxygen

point defect has been intensively investigated [23, 24]. Theories have shown that

oxygen acts as a deep center in the wide band gap of AlN and substitutes for

the nitrogen atom in several charge states. Experiments demonstrated that a

change in the nature of the oxygen defect occurs above a critical value of oxy-

gen concentration [25, 26]. The model that has been proposed suggests that,

at concentration below 0.75%, the oxygen substitutes for nitrogen in the lattice,

with one aluminum vacancy occurring for every three substituted oxygen atoms.

However, for a concentration greater than 0.75% a new type of defect is sta-

ble, in which an aluminum atom is octahedrally bound to an increasing number

of oxygen atoms. No oxygen substitution for aluminum in the lattice has been
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reported.

Infrared spectroscopy can detect the oxygen-related defect complexes through

their localized and extended vibrational modes. We present below a simple theory

about the e↵ect of defect formation on the lattice dynamics. This theory will show

that a change in the oxygen accommodation results in the oxygen-related defect

complexes modes frequency, and consequently a change in the infrared spectrum.

The general equations for the vibrations of a perfect (Bravais) lattice take the

form:

Ms⌫
2Usl �

X

s0l0

Gss0ll0Us0l0 = 0 (2.1)

where Ms is the atomic mass of the atom on the site s, Usl and Us0l0 are the

displacement vector elements of the atom on the site s of the cell l and that on

the site s0 of the cell l0, respectively, and Gss0ll0 denotes the interatomic forces.

If we suppose now that we have made a change �M in the mass of the atom

at l = 0, at? an arbitrary site, and/or some change �Gss0ll0 in the interactions

of this atom with its neighbors in the crystal. Our dynamical equations in (2.1)

would now be read

Ms⌫
2Usl �

X

s0l0

Gss0ll0 · Us0l0 + �M⌫2U0 +
X

s0l0

�Gss0ll0 · Us0l0 = 0 (2.2)

which we symbolize as

LU + �LU = 0 (2.3)

and therefore

(1 +R�L)U = 0 (2.4)

where the resolvent or Green function, R, is the matrix inverse of the dynamical

matrix L. If R exists and can be calculated, we are on the way to solving the
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linear equations symbolized by (2.4). The resolvent must be a function of ⌫2,

satisfying the abstract formula

R(⌫2) · L(⌫2) = 1 (2.5)

If we take the displacement vectors to be

Ul = Uq exp(iql) (2.6)

where q denotes a phonon wave vector. Using the standard orthogonality prop-

erties of the solutions of (2.1), we find that the matrix R(⌫2) may be expressed

in the form

Rll0 =
1

NM

X

q

U⇤
qUq

⌫2 � ⌫2q
exp[iq(l � l0)] (2.7)

where N is the number of cells in the crystal. Here, for simplicity, we suppose

that the sum over all wave vectors q is extended to include the various modes of

phonon polarization.

Consider now an impurity where there is only a change in mass in (2.2).

Substituting from (2.7) into (2.2), we get an equation involving only U0, the

displacement vector on this site. This contains only the sum for R00(⌫2), i.e.

"
1 +

�M

M

⌫2

N

X

q

U⇤
qUq

⌫ � ⌫2

#
· U0 = 0 (2.8)

To understand what happens, when an impurity substitutes for an atom in the

lattice, let us ignore geometrical features such as the vector character of U0 and

treat (2.8) as a scalar equation. The normal mode frequencies are therefore roots
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of an equation of the form

1 +
�M

M

1

N

X

q

⌫2

⌫2 � ⌫2q
= 0 (2.9)

If we look for points where the function

f(⌫2) =
1

N

X

q

⌫2

⌫2 � ⌫2q
(2.10)

intersects the horizontal line (independent of ⌫) at �M
�M , we can distinguish two

cases:

Suppose first that �M is negative. Each root of (2.1) must lie above a pole

of f(⌫2); the normal modes of the perturbed system are interleaved in frequency

between those of the perfect crystal. Since the values of ⌫q form a dense band,

whose spacing tends to zero like 1/N , most of the new solutions are indistin-

guishable from the old. However, the higher root is not constrained, but can

move away from the top of the band by a finite amount. This mode must be

localized. It follows that, when �M is negative, the reflectivity spectrum will

exhibit a two-mode behavior and an additional band must be observed.

In contrast to this, for the case when �M is positive, the substituted impurity

ion must give rise either to a localized gap mode between the acoustical and

optical branches of the host crystal, or to in-band resonance mode where the

amplitude of vibration is much larger at the impurity site than in the rest of

the crystal, but does not die away exponentially with distance and is therefore

not strictly localized. Indeed, this would result in IR spectrum distortion. Thus,

when an in-band resonance mode occurs, the reflectivity spectrum exhibits only

one distorted Reststrahlen band.
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The temperature dependent FTIR spectra are shown in Fig 2.1. One criterion

for in-gap localized mode and consequently two-mode behavior is that the phonon

dispersion of the host crystal be such that a gap does exist between its acoustical

and optical branches. In other words, the density of phonon states must be very

low between the acoustical and optical branches. AlN in its wurtzite structure

does not have such a gap, and it therefore follows that any impurity with an

atomic mass larger than that of nitrogen (�M positive) that substitutes for nitro-

gen cannot exhibit the conventional two-mode behavior. Therefore, strict one-

mode behavior is possible when an oxygen impurity (which has a larger atomic

mass than that of nitrogen) substitutes for nitrogen. Thus, we attribute the

weak peaks below the lower edge of the main reststrahlen band to in-band res-

onance modes caused by nitrogen vacancy substituted by oxygen as highlighted

in Fig. 2.2. However, these peaks present drastic changes in their intensities

when the temperature reaches 90 K. This can be interpreted as a change in the

oxygen accommodation when the AlN unit cell expands above a certain threshold

corresponding to a temperature of 90 K.

The fact that AlN is a good piezoelectric material allows the control of the

expansion and compression of the AlN unit cell, and consequently the oxygen-

related defect complex formation, using an electric field with keeping the tem-

perature of the material around any fixed temperature. In other words, oxygen

defect state transition in AlN can be controlled using an electric field without

changing the sample temperature.
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Figure 2.1: Low Temperature Reflectivity measurements. The dashed vertical lines

are used to help tracking the transition of a localized defect mode into an in-band

resonant mode indicating a change in defect state
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Figure 2.2: Low Temperature Reflectivity measurements
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2.2 Kramers– Kronig Conversion Technique

2.2.1 Relationship between the complex dielectric func-

tion and reflectivity

The reflectivity spectra obtained by FTIR measurement can be described by

Fresnel equations of reflectivity. The Fresnel coe�cient of reflectivity is defined

as the ratio of reflected electric field (Er) to incident electric field (Ei) and is

related to the complex response function in the following way

r(!) =
Er

Ei
=

p
"(!)� 1p
"(!) + 1

(2.11)

The Fresnel coe�cient of reflectivity is a complex function itself which can be

written as

r(!) = ⇢(!)ei✓(!) (2.12)

where ⇢(!) is the amplitude and ✓(!) is the phase. The quantity being mea-

sured is the reflectivity which is defined as the complex conjugate of the Fresnel

coe�cient of reflectivity

R(!) = rr⇤ = ⇢(!)2 (2.13)

Unlike the amplitude ⇢(!) which is a real quantity, the phase ✓(!) cannot be

directly measured because it is an imaginary quantity. However it is possible to

determine ✓(!) using a Kramers– Kronig conversion technique if the reflectivity

R(!) is known for all frequencies.
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2.2.2 Kramers–Kronig Relations

The Kramers–Kronig conversion technique is a mathematical tool that allows

the evaluation of the real part of the dielectric function if the imaginary part is

known for all frequencies and vice versa. In order to apply the Kramers–Kronig

relations, a function must satisfy the following conditions:

1. The poles of "(!) must be below the real axis.

2. The integral of "(!)/! taken over an infinite semi- circle in the upper region

of the complex plane must tend to zero. In other words, "(!) ! 0 as

|!|! 1.

3. The real part "1(!) should be an even function while the imaginary part

"2(!) an odd function with respect to the real variable !.

We consider now the following Cauchy integral:

"(!) =
1

i⇡
P

Z +1

�1

"(⌦)

⌦ � !
d⌦ = "1(!) + i"2(!) (2.14)

where P is the main part of the integral. As we saw in condition (2) this integral

equals to zero when taken over an infinite semi- circle in the upper region of the

complex plane. Therefore by equating the real parts in equation (2.14) we find

"1(!) =
1

i⇡
P

Z +1

�1

"2(⌦)

⌦ � !
=

1

i⇡
P

Z +1

0

"2(⌦)

⌦ � !
+

Z 0

�1

"2(⌦)

�� !
d�

�
(2.15)

Replacing � by �⌦ and using the fact that "2(�⌦) = �"2(!) we arrive at

"1(!) =
2

⇡
P

Z +1

0

⌦"2(⌦)

⌦2 � !2
d⌦ (2.16)
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Therefore by knowing the imaginary part for all frequencies, the real part of the

dielectric function can be evaluated. Equating the imaginary parts in equation

(2.14) and using the fact that the real part is an even function, an expression for

the imaginary part of the response function can be found

"2(!) = �2!

⇡
P

Z +1

0

"1(⌦)

⌦2 � !2
d⌦ (2.17)

In order to apply the Kramers– Kronig relations to the reflectivity, we take

the logarithm of the Fresnel coe�cient of reflectivity

ln r(!) = lnR(!)1/2 + i✓(!) (2.18)

From FTIR reflectivity measurements R(!) will be determined for a certain

range of frequencies. Consequently the phase ✓(!) can be evaluated using the

Kramers–Kronig relations

✓(!) = �!
⇡
P

Z +1

0

lnR(!)

⌦2 � !2
d⌦ (2.19)

Integrating equation (2.19) by parts we express the phase in the following way

✓(!) = � 1

2⇡
P

Z +1

0

ln

����
⌦ + !

⌦ � !

����
d lnR(!)

d⌦
d⌦ (2.20)

Once the amplitude ⇢(!) and the phase ✓(!) are known, we can go back to

equations (2.11) and (2.12) to evaluate the real and imaginary parts of the com-

plex dielectric function. The Kramers– Kronig relations require an integration of

the reflectivity spectrum from zero to infinity. However, the experimental mea-

surement of the reflectivity is always within a finite range of frequencies. This
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appears to be a source of error when evaluating the complex dielectric function;

however the IR spectrum has been measured for a wide range such that the error

is minimal. The resulting dielectric function is calculated and discussed in the

following section.

2.2.3 Experimental Results

The AlN polycrystalline sample investigated in this work was grown by sub-

limation of an AlN charge placed in the hot zone of a tungsten crucible and

subsequent condensation of vapor species in a cooler region. Secondary Ion Mass

spectroscopy (SIMS) measurements indicated that oxygen is the only significant

impurity in the sample and a chemical analysis indicated that oxygen is presented

in the sample investigated in a concentration of about 4%. High-quality surface

for FT-IR measurements was prepared by chemical polishing to remove the oxide

films immediately prior to the measurements.

The FT-IR reflectivity measurements were performed in vacuum in the 30�

3000 cm�1 frequency range. In the 30 � 350 cm�1 frequency range, a 6µm/Ge

beam splitter and a bolometer were used, while in the 350 � 3000 cm�1, a KBr

beam splitter and a DTGS detector were used. The resolution was less than

1 cm�1. The used light was unpolarized and at near normal incidence. A mi-

crocryostat was used to vary the sample temperature from 10 �K to the room

temperature.

2.3 Surface Phonon Polaritons

The large enhancement in the heat transfer in the near-field regime, as briefly

mentioned in the introduction, generally originates from the coupling of the sur-
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face polaritons along with the associated photon tunneling. By definition, sur-

face polaritons are the quanta of surface-charge-density oscillations. In a classical

picture, surface polaritons are particular solutions of Maxwell’s equations (sur-

face modes) that appear for certain boundary conditions. In metals and doped

semiconductors, an electromagnetic field is generated due to the out of phase

longitudinal oscillations of free electrons relative to the positive ion cores creates

dipoles. The near-field component of the spectrum emitted is called a surface

plasmon-polariton (SPP). Similarly, the out of phase oscillations of transverse

optical phonons in polar crystals generates an electromagnetic field, and its near-

field component is called a surface phonon-polariton (SPhP). AlN supports sur-

face phonon polaritons in specific regions of the spectrum which would vary upon

the defect state change. Harnessing the defect state change in the optical proper-

ties of oxygen contaminated AlN for NFRHT modulation relies on predicting the

regions of existence of surface polaritons for the geometries under study and eval-

uating the impact of the defect state change on surface polaritons. In this section

we derive the surface phonon polariton existence and resonance conditions for the

semi-infinite plate and the two sphere geometries. Then, we investigate the im-

pact of the detected defect state change in AlN on surface phonon polaritons for

both geometries.

2.3.1 Surface Polaritons for the Semi-infinite plate

We consider the system in Figure 2.3 with: medium 1, of dielectric constant "r1

and magnetic constant µr1 , filling the lower half-space z < 0 and medium 2,

of dielectric constant "r2 , and magnetic constant µr2 , filling the upper half-space

z > 0. In this dissertation, we use the index r to denote the relative permittivities

(dielectric constant) and permeabilities (magnetic constant). The two media are
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Figure 2.3: A plane interface separating medium 1 (dielectric constant "r1 , magnetic

constant µr1) and medium 2 (dielectric constant "r2 , magnetic constant µr2)

assumed to be local and dispersive so that their complex dielectric and magnetic

constants only depend on !.

A surface wave is a particular solution of Maxwell’s equations propagating

along the interface and decreasing exponentially in the perpendicular directions.

A point in space is denoted as ~R = xx̂ + yŷ + zẑ = ~r + zẑ, where ~r = xx̂ + yŷ.

Similarly, a wave vector k = (kx, ky, kz) = (~q, kz) where ~q is the component

parallel to the interface and kz is the component in the z direction. The plane

wave solution decaying on the surface satisfies:

~E1(~R, z) =

2

66664

Ex,1

Ey,1

Ez,1

3

77775
exp[i(~q · ~r + kz1z)] (2.21)
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~E2(~R, z) =

2

66664

Ex,1

Ey,1

Ez,1

3

77775
exp[i(~q · ~r � kz2z)] (2.22)

kz1 =
p
"r1µr1(!/c)2 � q2 =(kz1) > 0 (2.23)

kz2 =
p
"r2µr2(!/c)2 � q2 =(kz2) > 0 (2.24)

Satisfying boundary conditions, we obtain:

kz1µr2 + kz2µr1 = 0 s� polarization (2.25)

kz1"r2 + kz2"r1 = 0 p� polarization (2.26)

Using (2.25) and (2.27) in (2.23) and (2.24) the following dispersion relation can

be found for the p-polarization for non magnetic materials [27]:

q =
!

c

s
"1(!)"2(!)

"2(!) + "1(!)
(2.27)

kz1 =
!

c

s
�"21(!)

"0 ("2(!) + "1(!))
(2.28)

kz2 =
!

c

s
�"22(!)

"0 ("2(!) + "1(!))
(2.29)

For the case of complex "2 and positive real "1 ("vac = 1), <(kz1) and <(kz2)

are positive, indicating decaying fields away from the interface, and thus surface

modes, when [28, 27]:

|=("r2)|< |<("r2)| and <("r2) < 0 (2.30)
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When these conditions are satisfied, surface polaritons can exist. In Figures 2.4

and 2.5, we highlight the SPhPs region of existence for the parallel plates geom-

etry for both AlN defect states of interest: H-state and L-state corresponding to

the states above and below 90K respectively. However, as highlighted in section

2.1, the piezoelectric nature of AlN allows the control of the expansion and com-

pression of the AlN unit cell, and thus imitating the e↵ect of temperature in the

oxygen-related defect complex formation, using an electric field while keeping the

temperature of the material around any fixed temperature. Accordingly, oxygen

defect state transition in AlN can be controlled without changing the sample

temperature transitioning between two distinct states (H-state and L-state).

2.3.2 Surface Polaritons for the Spherical geometry

Now, we consider a metallic or a semiconducting sphere with radius a embedded

in an infinite host medium. Region II corresponds to 0 < r < a (sphere), while

Region I corresponds to the range r > a (host medium). We use the following

wave numbers in order to describe wave propagation in regions I and II:

kI(!) =
!

c

p
"r1 (2.31)

kII(!) =
!

c

p
"r2 (2.32)

The S matrix of the sphere contains all the information about the interaction of

the electromagnetic field with the sphere. Applying the continuity conditions for

the electric and magnetic fields at the interface between the regions, we obtain

the elements of the electric part (TM) of the S matrix as:

SE
l (!) = 1� 2aEl (!) (2.33)
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Figure 2.4: Real ("
0
) and Imaginary ("

00
) parts of the dielectric function of AlN in the

L-state

Figure 2.5: Real ("
0
) and Imaginary ("

00
) parts of the dielectric function of AlN in the

H-state
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with

aEl (!) =
CE

l (!)

DE
l (!)

(2.34)

where CE
l (!) and DE

l (!)are expressed as

CE
l (!) = kII(!) l[k

II(!)a] 0
l[k

I(!)a]� kI(!) l[k
I(!)a] 0

l[k
II(!)a] (2.35)

DE
l (!) = kII(!) l[k

II(!)a]⇣(1)
0

l [kI(!)a]� kI(!)⇣(1)l [kI(!)a] 0[kII(!)a] (2.36)

while the elements of its magnetic part (TE) are given by:

SM
l (!) = 1� 2aMl (!) (2.37)

with

aMl (!) =
CM

l (!)

DM
l (!)

(2.38)

where CM
l (!) and DM

l (!)are expressed as

CM
l (!) = kII(!) l[k

I(!)a] 0
l[k

II(!)a]� kI(!) l[k
II(!)a] 0

l[k
I(!)a] (2.39)

DM
l (!) = kII(!)⇣(1)l [kI(!)a] 0

l[k
II(!)a]� kI(!) l[k

II(!)a]⇣(1)
0

l [kI(!)a] (2.40)

The Ricatti-Bessel functions  l(z) and ⇣
(1)
l (z), are linked to the spherical Bessel

functions jl(z) and h(1)
l (z) by  l(z) = zjl(z) and ⇣

(1)
l (z) = zh(1)

l (z)

The poles of the S matrix lying in the fourth quadrant of the complex !-

plane are the complex frequencies of the resonant modes !l. These resonances

are determined by solving for the vanishing denominator of the corresponding

scattering coe�cient al thus maximizing the scattering cross-section or resonance,
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in [29]

DE,M
l (!l) = 0 for l = 1, 2, 3... (2.41)

We now consider these conditions in the limit of small a corresponding to small

spheres. Expanding the spherical Bessel functions of order l alongside some

algebra, the denominator of al vanishes in this limit, provided that [30]

<{"r(!l)} = � l + 1

l
(2.42)

2.3.3 Defect State Change and SPhP lifetimes

In Figures 2.6 and 2.7, we highlight the region where the SPhPs resonance con-

ditions apply for the spherical geometry for both AlN defect states of interest.

Although the region where resonance conditions apply does not include the full

region of existence of surface phonon polaritons where emission might be pos-

sible, the resonance regions help indicate the region where emission would be

maximum. As demonstrated in the figures, the resonance regions shift upon the

defect state transition from [0.102eV, 0.105eV ] to [0.094eV, 0.1eV ]. This tran-

sition would be reflected in NFRHT spectral conductance as the maximum of

transfer shifts accordingly accompanied with an increase shift in coherence upon

switching defect state. The energy loss function in Fig. 2.8 as well as the imagi-

nary part of the dielectric function ("00) in Fig. 2.9 measure the response of the

TO and LO phonons respectively. The widths of energy loss function and "00

indicate the lifetimes of the TO and LO phonons respectively. By comparing the

lifetimes of the optical phonons, one can predict an enhanced coherence upon

switching from H-state to L-state determined essentially by the properties of the

surface phonon polaritons.
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Figure 2.6: Real ("
0
) and Imaginary ("

00
) parts of the dielectric function of AlN in the

L-state

Figure 2.7: Real ("
0
) and Imaginary ("

00
) parts of the dielectric function of AlN in the

H-state
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Figure 2.8: Energy Loss Function of AlN defect states

Figure 2.9: "
00
r of AlN defect states
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Chapter 3

Fundamentals of Near-Field

Radiative Heat Transfer

3.1 Limitations of the Classical formulation

We consider an enclosure at uniform temperature T. According to the classical

formulation of thermal radiation, the electromagnetic field inside the enclosure

can be described by an ensemble of photons forming standing waves with fre-

quency ! and energy E given by E = h̄!. The spectral mode density D(!) or

free space density of states (DOS) of photon states in the enclosure is given by

D(!) =
!2

⇡2c3
(3.1)

which is derived by counting the number of states in spherical shells in k-space[31].

At thermal equilibrium the mode occupation number of the photon energy states
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as governed by Bose-Einstein statistics is given by

n(!, T ) =
1

eh̄!/kBT�1
(3.2)

The spectral energy density u0(!, T ) may be expressed as the product of the

mode energy E(!), mode occupation n(!, T ), and mode density D(!)[32]

u0(!, T ) = n(!, T )E(!)D(!) =
!2

⇡2c3
h̄!

eh̄!/kBT � 1
= ⇥(!, T )D(!) (3.3)

The radiant energy flux through an ’aperture’ (area element) within a volume

V, is related to the energy density and the speed of light as qrad = u0c/4 [31].

By definition, a blackbody placed into that volume will absorb all of the incident

radiant energy. To remain at thermal equilibrium, it must also emit that same

amount of energy. Accordingly, the spectral emissive power of a blackbody eb,!

is given by

eb,! =
!2

4⇡2c2
h̄!

eh̄!/kBT � 1
(3.4)

However, unlike a blackbody which is an abstraction, real materials exhibit elec-

tron and lattice vibrational resonances resulting in spectral absorption or emission

features. The spectral emissive power of a material can be characterized by three

parameters: reflection, transmission, and absorption coe�cients and thus ex-

hibits resonant spectral features associated with the material’s properties unlike

the featureless spectrum of blackbody.

The classical approaches for the computation of net thermal transfer between

black bodies are implicitly based on the ray tracing method which relies on ap-

proximate solutions to Maxwell’s equations that are valid as long as the light

waves propagate through and around objects whose dimensions are much greater
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than the light’s wavelength. The ray tracing approximation disregards two basic

wave aspects of thermal radiation, namely: photon tunneling of evanescent waves

and interference. Various attempts have been made for considering the contribu-

tion of the wave aspects of thermal radiation between objects separated by small

distances beyond the thermal wavelength [33, 34, 35]. However, for conductive

media the previous calculations are not appropriate because of the large imagi-

nary part of the refractive index or the dielectric function [1]. Thus, treatment of

conductive media requires the introducing the fluctuational electrodynamics for-

mulation of thermal radiation and accounting for the evanescent surface phonon

polariton modes that dominate transfer in the near-field limit. In fact, tuning

the optical properties of doped Silicon between the dielectric and the conductive

limit illustrates the importance of considering the fluctuational electrodynamics

formulation for the origin of thermal radiation for conductive media [1, 36].

From an electromagnetic point of view, thermal radiation is related to its

origin in the thermal fluctuations of charges in the medium. For an object at non-

zero temperature T , thermal agitation causes a random motion of charges inside

the body. These charges are mainly electrons in metals and ions in polar crystals.

The random fluctuations of the charges generate a fluctuating electromagnetic

field, called the thermal radiation field. Macroscopically, the field fluctuations

are due to thermal fluctuations of the volume densities of the charges and current

and thus can be described by Fluctuational electrodynamics (FE) as proposed by

Rytov [2] and first simplified by Polder and Van Hove for computing thermal

radiative transfer in the near-field limit [37].

Maxwell’s equations provide the relation between the electromagnetic field,

its source, and the material properties of the emitter. Absorption in Maxwell’s

equations is accounted for by the imaginary part of the dielectric function also
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called the extinction coe�cient. Scattering can be explained by considering the

total field as the sum of the incident and scattered fields. However, thermal emis-

sion, which is a function of the temperature of the medium, is not considered in

Maxwell’s equations. The fluctuational electrodynamics formulation for thermal

radiation combines the fluctuation-dissipation theorem (FDT), with Maxwell’s

equations to fully describe thermal emission, in both the near and far-field.

3.2 Stochastic Maxwell Equations

Assuming that the time-harmonic fields have the form e�i!t, Maxwell equations

for non-magnetic media have the form [38, 39]:

r⇥ ~E(~r,!) = i! ~B(~r,!) = i!µ0
~H(~r,!) (3.5)

r⇥ ~H(~r,!) = ~J(~r,!)�i! ~D(~r,!) = � ~E�i!"̂ ~E(~r,!) = �i!("̂+i�/!) ~E = �i!"~E

(3.6)

r · ~B(~r,!) = 0 (3.7)

r · ~D(~r,!) = r · "̂ ~E(~r,!) = ⇢e (3.8)

In Ampere’s law, the current density ~J has been combined (using Ohm’s

law) with the electric permittivity, leading to a complex electric permittivity

" = "̂+ i�/!.

The thermal fluctuations of a body around an equilibrium temperature T

generate random fluctuations of current, which acts as the source for thermal

radiation. Therefore, an extraneous current density term should be added in

Ampere’s law to account for the random thermal fluctuations of current in the
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Maxwell equations [39]:

r⇥ ~H(~r,!) = �i!"~E + ~Jr(~r,!) (3.9)

Now that the current density acts as a random source term, the Maxwell equa-

tions become stochastic in nature and are referred to as the stochastic Maxwell

equations.

3.3 Fluctuational Electrodynamics formulation

of Thermal Radiation

Adopting the method of potentials for solving Maxwell equations, the magnetic

induction ~B can be written as

~B(~r,!) = r⇥ ~A(~r,!) (3.10)

where ~A is referred as the magnetic vector potential. By Faraday’s Law, the

electric field can be written as

~E(~r,!) = i! ~A(~r,!)�r�e(~r,!) (3.11)

Using Ampere’s Law (3.9),

r⇥r⇥ ~A(~r,!) = µ0
~Jr(~r,!) + i!"µ0r�e(r,!) + !2"µ0

~A(r,!) (3.12)
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using vector identityr⇥r⇥ ~A = r(r· ~A)�r2 ~A and the definition of k2 = !2"µ0,

the above equation can be simplified to

�r(r · ~A(~r,!))+r2 ~A(~r,!)+k2 ~A(~r,!) = �µ0
~Jr(~r,!)� i!"µ0r�e(~r,!) (3.13)

Using the Lorenz gauge by letting r · ~A(~r,!) = i!"µ0�e(~r,!), we obtain the

vector Helmholtz equation [39, 40]

(r2 + k2) ~A(~r,!) = �µ0
~Jr(~r,!) (3.14)

Therefore, the magnetic vector potential can then be expressed as

~A(r,!) = µ0

Z

V

~Jr(r,!)g(~r,~r0,!)dV 0 (3.15)

where g(~r, ~r0,!) is the Green’s function which is the solution of the field at ~r for

a point source at ~r0 described by the Dirac delta function as

(r2 + k2)g(~r, ~r0,!) = ��(|~r � ~r0|) (3.16)

The electric and magnetic fields are then given by using (3.15) in (3.11) and

(3.10) [39, 40]

~E(~r,!) = i!µ0

Z

V

dV 0g(~r, ~r0,!)[I+
1

k2
rr] · ~Jr(~r0,!) (3.17)

~H(~r,!) = r⇥
Z

V

dV 0g(~r, ~r0,!)I · ~Jr(~r0,!) (3.18)
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Where I = x̂x̂ + ŷŷ + ẑẑ is the identity dyad. Furthermore, the electric and

magnetic field can be written in terms of dyadic Green’s function defined as [39]

Ge(~r, ~r0,!) = g(~r, ~r0,!)[I+
1

k2
rr] (3.19)

Gm(~r, ~r0,!) = r⇥ (g(~r, ~r0,!)I) (3.20)

The electric and magnetic dyadic Green’s functions are related by the following

relation:

Gm(~r, ~r0,!) = r⇥Ge (3.21)

The electric and magnetic fields can be written as

~E(~r,!) = i!µ0

Z

V

dV 0Ge · ~Jr(~r0,!) (3.22)

Example of calculating ith component of E(r,!):

(3.23)

Ei = i!µ0

Z

V

dV 0(Ge
ixx̂+Ge

iyŷ +Ge
iz ẑ) · (Jr

xx̂+ Jr
y ŷ + Jr

z ẑ)

= i!µ0

Z

V

dV 0(Ge
ixJ

r
x +Ge

iyJ
r
y +Ge

izJ
r
z ẑ)

= i!µ0

Z

V

dV 0Ge
inJ

r
n

where the subscript n involves the summation over the three orthogonal compo-

nents. Similarly, for the magnetic field can be written as

~H(~r,!) = i!µ0

Z

V

dV 0Gm · ~Jr(~r0,!) (3.24)
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with an ith component

(3.25)

Hi = i!µ0

Z

V

dV 0(Gm
ixx̂+Gm

iy ŷ +Gm
iz ẑ) · (Jr

xx̂+ Jr
y ŷ + Jr

z ẑ)

= i!µ0

Z

V

dV 0(Gm
ixJ

r
x +Gm

iyJ
r
y +Gm

izJ
r
z ẑ)

= i!µ0

Z

V

dV 0Gm
inJ

r
n

The time-averaged Poynting vector, which can be measured, is expressed as [38,

39]

hS(~r,!)i

= 4⇥ 1

2
<{ ~E(~r,!)⇥ ~H⇤(~r,!)}

= 2⇥<
⇢
x̂(EyH

⇤
z � EzH

⇤
y ) + ŷ(EzH

⇤
x � ExH

⇤
z ) + ẑ(ExH

⇤
y � EyH

⇤
x)

�

= 2<
⇢
i!µ0

Z

V

dV 0
Z

V

dV 00

2

66664

x̂(Ge
ynG

m⇤
zj �Ge

znG
m⇤
yj )

+ŷ(Ge
znG

m⇤
xj �Ge

xnG
m⇤
zj )

+ẑ(Ge
xnG

m⇤
yj �Ge

ynG
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(3.26)

The factor of 4 is connected with fact that: the integration is assumed only over

positive values of ! that are considered in the Fourier decomposition of the time-

dependent fields into frequency-dependent quantities thus a factor of 2 is included

[40]; at the same time, the transformation of integration over infinite interval to

semi-infinite interval gives an additional factor of 2 [39].

Since the randomness of the current density is due to the thermal fluctuations,

the spectral density of the fluctuating current h ~Jr
n(~r

0,!) ~Jr⇤
j (~r00,!)i which acts

as a stochastic source term of thermal radiation should be related to the local

temperature of the emitter. The fluctuation-dissipation theorem (FDT) bridges
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the spectral density of the fluctuating current sources with the local temperature

of the emitter. Although the random currents have zero mean, the observables of

interest such as the Poynting vector and the spectral energy density are quadratic

in the field components. The average value of any quadratic observable can

be calculated starting from the correlation of the electric field hEi(~r, t)Ej(~r0, t0)i

whose Fourier transform does not vanish [41].

The general FDT is based on the following assumptions [39]:

1. the body is in thermodynamic equilibrium at an equilibrium temperature

T around which there are fluctuations

2. isotropic medium

3. non-magnetic medium defined by a frequency-dependent dielectric constant

"r(!) investigated in Chapter 2.

4. the dielectric constant is local in space (i.e., the polarization at a given point

in a medium is directly proportional to the electric field at that point, and

does not directly depends on the fields from other points), and consequently

the fluctuations are uncorrelated between neighboring volume elements

Using FDT, the spectral density of the current fluctuations can be determined as

[42]:

hJr
n(~r

0,!)Jr⇤
j (~r00,!)i = !"0

⇡
={"r(!)}⇥(!, T )�nj�(~r

0 � ~r00) (3.27)

where ⇥(!, T ) = h̄!
eh̄!/kBT�1

is the mean energy of a Planck oscillator in thermal

equilibrium at an angular frequency ! and at temperature T . The locality of the

dielectric constant shows up in the spectral density through the Dirac function

while the isotropy of the medium is expressed by the Kronecker delta. Further-

more, the imaginary of the dielectric constant, or the extinction coe�cient, shows
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Figure 3.1: Schematic of the Poynting vector of the electromagnetic fields E and H

generated by the random currents J in the emitter

up as it generally describes the absorption/dissipation of thermal radiation inside

an irradiated body.

The spectral density of the fluctuating currents can then be substituted in

the Poynting vector and the energy density to obtain [43, 44]:

hS(r,!)i

=
2"0µ0!2
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⇢
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77775
={"r(!)}⇥(!, T )�nj�(~r

0 � ~r00)

�

=
2"0µ0!2

⇡
⇥(!, T )<

⇢
i={"r(!)}

Z

V

dV 0Ge
↵n(~r,~r

0,!)Gm⇤
�n (~r,~r

0,!)

�
(3.28)

The subscripts ↵ and � represent the state of polarization of the fields observed at

~r, while n represents the state of polarization of the source at ~r0. The set of indices

↵n implies that a summation is performed over all components (i.e. xx + xy +
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· · ·+ zz). The Poynting vector as expressed in (3.28) form a general relation for

calculating the radiative heat flux accounting for the near-field e↵ects of thermal

radiation. For a specific geometry and boundary conditions, the components of

the dyadic Green’s functions are to be determined.

In the case of thermal equilibrium situations, the spectral density of the cur-

rent is used to calculate quantities such as the energy density and the Poynting

vector. However, in non-equilibrium situation such as the study of heat transfer

between materials held at di↵erent temperatures as studied in the following sec-

tion, these expressions are no longer valid. It is however still possible to use the

fluctuation-dissipation theorem for the currents by assuming local thermal equi-

librium and thus render possible the derivation of the fluxes for non-equilibrium

situations [41].

3.4 Radiative Heat Transfer between two Par-

allel Plates

We consider the near-field radiative heat transfer between for the two semi-infinite

plates configuration. The plates each at thermal equilibrium at T1 and T2 respec-

tively are separated by a vacuum gap of width d. For computing the near-field

radiative transfer between the plates, the green function for the two plates con-

figuration is needed. Starting with the configuration in Figure 3.2, we consider a

monochromatic electromagnetic wave originated from medium 1 to 2, ei
~kj ·~x�i!t.

The complex wave vectors in media 1 and 2 are k1 and k2, respectively, with

k2
1 = "r1k

2
0 and k2

2 = "r2k
2
0 where k0 = !/c is the magnitude of the wave vector

in vacuum. � refers to the parallel component to the interface of the wave vec-

tor while �j refers to the r-component of the wave vectors ~kj = �r̂ + �j ẑ with
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Figure 3.2: Schematic of the two closely spaced parallel plates configuration

j = 0, 1, or 2 referring to the medium. The Green function corresponding to the

two parallel plates configuration is given by [45, 46]

G(~x, ~x0,!) =
i

4⇡

Z 1

0

�d�

�1
(ŝts12ŝ+ p̂2t

p
12p̂1)e

i�2z�i�1z0ei�r̂·(~r�
~r0) (3.29)

where ts12 and tp12 denoting the transmission coe�cients from medium 1 to medium

2, taken to be the Fresnel transmission coe�cients for vacuum separated plates,

for s and p polarizations, respectively, with the unit vectors defined as ŝ = r̂⇥ ẑ,

p̂1 = (�ẑ � �1r̂)/k1 and p̂2 = (�ẑ � �2r̂)/k2.

With the assistance of the dyadic Green’s function, the net spectral flux can

be predicted by subtracting the fluxes using Eq 3.28 as [46]

q(!) =
1

⇡2
[⇥(!, T1)� ⇥(!, T2)]

Z 1

0

s�(!, �)d� (3.30)
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where the coe�cients rs0j and rp0j are the Fresnel reflection coe�cients, for s and

p polarization respectively, at the interface between vacuum and medium j (1 or

2) and ⇢01 = |r01|2

rs0j =
�0 � �j
�0 + �j

(3.32)

rp0j =
"jr�0 � �j
"jr�0 + �j

(3.33)

The spectral heat transfer coe�cient h(!;T ) for this geometry is thus given

by:

h(!;T ) = lim
T1!T2

q(!)

|T1 � T2|
= kB

✓
h̄!

kBT

◆2 eh̄!/kBT

(eh̄!/kBT � 1)2
1

⇡2

Z 1

0

s�(!, �)d�

(3.34)

3.5 Tuning of Near Field Radiative Transfer be-

tween AlN Parallel Plates

In Fig. 3.3, we plot the spectral heat transfer coe�cient spanning gaps of several

orders of magnitude in the near-field limit d = 1, 10, 100, 1000 nm for both

defect states of AlN at room temperature (300K) where in each both plates

are in the same defect state. The slope for the net heat transfer coe�cient

logarithmic plot along with the spectral heat transfer coe�cient plots for each

gap demonstrate as expected the d�2 dependence for net transfer as a function

of gap separation for small gaps. The spectral heat transfer coe�cient for the

L-state, as predicted in Chapter 2, shows a more coherent signal than the H-
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Figure 3.3: Heat Transfer Coe�cient of Near-field Radiation for AlN defect at various

gap separations states
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Figure 3.4: Variation of Heat Transfer Coe�cient with Gap for AlN defect states
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state; this drop is also accompanied with a drop in magnitude allowing for an

appreciable modulation of thermal transfer. The NFRHT is modulated by 36%

for gaps of di↵erent orders of magnitude in the near-field limit. The coherence as

quantified by the FWHM of the spectral heat transfer coe�cient corresponding

to the frequency range corresponding to the reststrahlen band is increased by a

factor of 3.7 for the L-state for the di↵erent gaps investigated.
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Chapter 4

Near-field Radiative Heat

Transfer between two spheres

The Narayanaswamy and Chen model [22] for NFRHT between two spheres is

valid for arbitrary sphere sizes and vacuum gaps and is not limited by the point

dipole approximation valid for very small spheres nor by the proximity force

theorem valid for large spheres separated by a very small gap. Based on this

model, the near-field radiative heat transfer between two spheres is investigated

under the fluctuational electrodynamics framework using the dyadic Green’s func-

tions (DGF) of the vector Helmholtz equation in spherical coordinates. We de-

velop a MATLAB code for computing the NFRHT between two spheres based on

Narayanaswamy and Chen model and predicting NFRHT modulation for oxygen

contaminated AlN spheres.
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Figure 4.1: The two sphere configuration

4.1 Fluctuational Electrodynamics Formulation

for the Two Spheres Problem

4.1.1 The Two Sphere Problem Configuration

We consider two non-overlapping spheres of radii a and b separated by a distance

d as in Figure (4.1). At the center of each sphere is a spherical coordinate

system oriented such that the two spheres lie along the common z axis and the

� coordinate is the same in both systems. Region A(B) refers to the interior of

spheres A(B) while region C refers to the exterior of both spheres (the vacuum

gap).
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4.1.2 The Dyadic Green Functions

Defining ~r1 and ~r2 to be the points on either side of the boundary and n̂ is a

unit normal to the boundary surface at ~r1 and ~r2, the DGF satisfies the following

boundary conditions to ensure the continuity of tangential electric and magnetic

fields [22]:

~n⇥Ge(~r1, ~r0) = n̂⇥Ge(~r2, ~r0) (4.1)

~n⇥r⇥Ge(~r1, ~r0) = n̂⇥r⇥Ge(~r2, ~r0) (4.2)

Unlike typical electromagnetic waves scattering problem, for calculating the power

emitted by a sphere, the DGF has to be determined when the source point is in

the interior of the sphere. The DGF is expanded in terms of vector spherical

waves (VSW), which are solutions of

r⇥r⇥ ~P (~r)� k2 ~P (~r) = 0 (4.3)

Dropping the “incoming” vector solutions, the vector spherical waves needed

include the “radiating” and “regular” wave solutions [47]:

~M (p)
lm (k~r) = z(p)l (kr)~V (2)

lm (✓,�) (4.4)

~N (p)
lm (k~r) = ⇣(p)l (kr)~V (3)

lm (✓,�) +
z(p)l (kr)

kr

p
l(l + 1)~V (1)

lm (✓,�) (4.5)

M (p)
lm and N (p)

lm are VSW of order (l,m), where l can take integer values from 0

to 1, and for each l, |m| l. The superscript p refers to the radial behavior of

the waves. For p = 1, the M and N waves are regular waves and remain finite

at the origin and z(1)l (kr) is the spherical Bessel function of order l. For p = 3,
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the M and N waves are outgoing spherical waves that are singular at the origin

and z(3)l (kr) is the spherical Hankel function of the first kind of order l. The

radial functions are defined as ⇣(p)l (x) = ( 1x
d
dxxz

(p)
l (kr)). The vectors ~V (1)

lm (✓,�),

~V (2)
lm (✓,�), and ~V (3)

lm (✓,�) are vector spherical harmonics of order (l,m), expressed

as:

~V (2)
lm (✓,�) = r̂Ylm (4.6)

~V (1)
lm (✓,�) =

1p
l(l + 1)

⇣
� �̂

@Ylm

@✓
+ ✓̂

im

sin ✓
Ylm

⌘
(4.7)

~V (3)
lm (✓,�) =

1p
l(l + 1)

⇣
✓̂
@Ylm

@✓
+ �̂

im

sin ✓
Ylm

⌘
(4.8)

Any solution to Eq. 4.3 can be expressed as a linear combination of the

VSWs. To satisfy the boundary conditions on the surface of each sphere, the

VSWs of one coordinate system should be expressed in terms of the VSWs of

the other coordinate system using the translation addition theorem for vector

spherical waves. Once the Green’s function satisfying boundary conditions for

the two sphere configuration is determined, the Poynting vector denoting the heat

flux from one sphere to another can be calculated. Finally, the net radiative heat

transfer can be concluded.

The vector translation addition theorem states expressing the VSW in coor-

dinate system B in terms of coordinates system A is expressed as [48, 22]:

~M (p)
lm (k~rb) =

⌫=1
µ=⌫X

µ=�⌫
⌫=1

h
Alm

⌫µ(+kd) ~M (p)
⌫µ (kra) + Blm

⌫µ (+kd) ~N (p)
⌫µ (kra)

i
(4.9)

~N (p)
lm (k~rb) =

⌫=1
µ=⌫X

µ=�⌫
⌫=1

h
Blm

⌫µ (+kd) ~M (p)
⌫µ (kra) + Alm

⌫µ(+kd) ~N (p)
⌫µ (kra)

i
(4.10)
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Figure 4.2: Coordinate Translation

The VSW in coordinate system B need to be expressed in terms of on the

coordinates of system A and vice versa to satisfy boundary conditions. The

coe�cients Blm
⌫µ and Alm

⌫µ as expressed in Ref. [48] depend on the orientation

of translating vector between the two systems as in Fig 4.1.2. The coe�cients

Blm
⌫µ (�kd) and Alm

⌫µ(�kd) are required and can be obtained through symmetry

relations with Blm
⌫µ (+kd) and Alm

⌫µ(+kd). In the case of the two-sphere problem,

with translation along the z axis Eq. 4.9 and Eq. 4.10 simplifies so that the

coe�cients are nonzero for µ = m, thus the needed coe�cients are Blm
⌫m and Alm

⌫m.

4.1.3 Recurrence Relations

Generally, determining the coe�cients of translation theory Blm
⌫µ and Alm

⌫µ is com-

putationally expensive as this requires calculations of Wigner 3j symbols which

involve calculations of large number of factorials. Recurrence relations for com-

puting the coe�cients e�ciently have been proposed for improving computations

[49, 50]. The coe�cients Blm
⌫m and Alm

⌫m for the vector addition theorem can be
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Figure 4.3: A representation of employing recursive relations in calculating the scalar

translation matrix coe�cients

related to the coe�cients �⌫µ,nm of the scalar addition theorem as investigated

in Ref. [50]. Recurrence relations for the calculation the coe�cients �⌫µ,nm have

been derived in Ref. [49]. Thus, the coe�cients Blm
⌫m and Alm

⌫m can be accordingly

e�ciently calculated as [50]:

Alm
⌫m(kfd) = �⌫m,lm + kfd

1

⌫ + 1

s
(⌫ +m+ 1)(⌫ �m+ 1)

(2⌫ + 1)(2⌫ + 3)
�⌫+1,m,lm

+ kfd
1

⌫

s
(⌫ +m)(⌫ �m)

(2⌫ � 1)(2⌫ + 1)
�⌫�1,m,lm (4.11)

Blm
⌫m(kfd) = kfd

im

⌫(⌫ + 1)
�⌫m,lm (4.12)

There are two recursive relations for the calculation of coe�cients for the scalar

addition theorem that can be used for determining the scalar translation coe�-

cients as demonstrated schematically in Fig. 4.3 [49]:

a+nm�⌫µ,n+1,m = �a�nm�⌫µ,n�1,m + a+⌫�1,µ�⌫�1,µ,nm + a�⌫+1,µ�⌫+1,µ,nm (4.13)
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b+nm�⌫µ,n+1,m+1 = �b�nm�⌫µ,n�1,m+1 + b+⌫�1,µ�1�⌫�1,µ�1,nm + b�⌫+1,µ�1�⌫+1,µ�1,nm

(4.14)

The starting point for calculating any �⌫µ,nm is the coe�cient

�⌫0,00 = (�1)⌫
p
2⌫ + 1j⌫(kfd) (4.15)

4.1.4 Scattering Theory in the two Sphere Problem

Based on the scattering theory, the DGF for any configuration can be split into

two parts: one that corresponds to a Dirac-delta source in an infinite medium G0

and one that takes into account the scattering Gsc. The free space dyadic green

function G0 for a sphere is expressed in Ref.[51] . In our case, the source point is

confined to the interior of sphere A, therefore we are interested in the case where

ra > r0a, whereas the boundary of interest is the surface of the sphere.

G0(~ra, ~r0a) =
r̂r̂

ka
�(~ra�~r0a)+ika

l=1
m=lX

m=�l
l=1

n ~M
(1)
l,m(ka~ra) ~M

(3)
l,�m(ka~r0a)+ ~N

(1)
l,m(ka~ra) ~N

(3)
l,�m(ka~r0a) if ra<r0a

~M
(3)
l,m(ka~ra) ~M

(1)
l,�m(ka~r0a)+ ~N

(3)
l,m(ka~ra) ~N

(1)
l,�m(ka~r0a) if ra<r0a

(4.16)

Inside A, the DGF is a combination of G0 and Gsc, whereas outside A, the

DGF is entirely Gsc. Each term, M (3)
l,m(ka~r

0
a) or N (3)

l,m(ka~r
0
a) can be thought of

as an independent vector spherical waves that produces scattered waves. As an

example of the scattered field due to M (3)
l,m(ka~r

0
a) of order (l,m) in the three

regions

1X

⌫=(m,1)

(
ika[AlM

⌫m
~M

(1)
⌫,m(kara)+AlN

⌫m
~N
(1)
⌫,m(kara)]+[BlM

⌫m
~M

(3)
⌫,m(karb)+BlN

⌫m
~N
(3)
⌫,m(karb)] in A

ikf [ClM
⌫m

~M
(3)
⌫,m(kf ra)+ClN

⌫m
~N
(3)
⌫,m(kf ra)]+[DlM

⌫m
~M

(3)
⌫,m(kf rb)+DlN

⌫m
~N
(3)
⌫,m(kf rb)] in C

ikb[ElM
⌫m

~M
(3)
⌫,m(kbra)+ElN

⌫m
~N
(3)
⌫,m(kbra)]+[F lM

⌫m
~M

(1)
⌫,m(kbrb)+F lN

⌫m
~N
(1)
⌫,m(kbrb)] in B

(4.17)
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where the symbol (m,1) refers to the greater of m and 1. In practice, the upper

limit for the summation is restricted to a value Nm where the near-field e↵ects is

shown to converge at max(0.5ekd, a/x) with e as the natural logarithm [22].

Applying the boundary conditions in Eq. 4.1 and Eq. 4.2, we get,

C lM
⌘m + u⌘(a)

NmaxX

⌫=(m,1)

DlM
⌫mA

⌘m
⌘m(�kfd) +DlN

⌘mB
⌫m
⌘m(�kfd) = pM⌘ �⌘l (4.18)

C lN
⌘m + ⌫⌘(a)

NmaxX

⌫=(m,1)

DlM
⌫mB

⌫m
⌘m(�kfd) +DlN

⌫mA
⌫m
⌘m(�kfd) = 0 (4.19)

DlM
⌘m + u⌘(b)

NmaxX

⌫=(m,1)

C lM
⌫mA

⌫m
⌘m(+kfd) + C lN

⌫mB
⌫m
⌘m(+kfd) = 0 (4.20)

DlN
⌘m + ⌫⌘(b)

NmaxX

⌫=(m,1)

C lM
⌫mB

⌫m
⌘m(+kfd) + C lN

⌫mA
⌫m
⌘m(+kfd) = 0 (4.21)

Where ⌘ ranges from (m, 1) to Nm and u⌘ and ⌫⌘ are the Mie Coe�cients defined

by,

u⌘(a) =
ka⇣

(1)
⌘ (kaa)z

(1)
⌘ (kfa)� kf⇣

(1)
⌘ (kfa)z

(1)
⌘ (kaa)

ka⇣
(1)
⌘ (kaa)z

(3)
⌘ (kfa)� kf⇣

(3)
⌘ (kfa)z

(1)
⌘ (kaa)

(4.22)

⌫⌘(a) =
ka⇣

(1)
⌘ (kfa)z

(1)
⌘ (kfa)� kf⇣

(1)
⌘ (kaa)z

(1)
⌘ (kfa)

ka⇣
(1)
⌫ (kfa)z

(3)
⌘ (kfa)� kf⇣

(3)
⌫ (kaa)z

(1)
⌘ (kfa)

(4.23)

For the scattered field due to ~N (3)
l,m(ka~ra), the only di↵erence is that the right hand

side of Eq. 67 becomes 0 and the rhs of Eq. 68 becomes pN⌘ �⌘l

where pM⌘ and pN⌘ are defined as,

pM⌘ =
�i/(kfa)

kaa⇣
(1)
⌘ (kaa)z

(3)
⌘ (kfa)� kfa⇣

(3)
⌘ (kfa)z

(1)
⌘ (kaa)

(4.24)
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pN⌘ =
�i/(kfa)

kaa⇣
(3)
⌘ (kfa)z

(1)
⌘ (kaa)� kfa⇣

(1)
⌘ (kaa)z

(3)
⌘ (kfa)

(4.25)

Once all the coe�cients in Eq. 4.18 - 4.21 and the similar equations for the

scattered field due to ~N (3)
l,m(ka~ra), are obtained, the DGF due to scattering and

its curl in Region C [22]:

Gsc(ra, r
0
a) = ikf

m=Nm
l,⌫=NmX

l,⌫=(1,m)
m=�Nm

(�1)m
("

ClM
⌫m

~M
(3)
⌫m(kf ra)+ClN

⌫m
~N
(3)
⌫m(kf ra)+

DlM
⌫m

~M
(3)
⌫m(kf rb)+DlN

⌫m
~N
(3)
⌫m(kf rb)

#
~M

(1)
l,�m(kar0a)

"
C

0lM
⌫m

~M
(3)
⌫m(kf ra)+C

0lN
⌫m

~N
(3)
⌫m(kf ra)+

D
0lM
⌫m

~M
(3)
⌫m(kf rb)+D

0lN
⌫m

~N
(3)
⌫m(kf rb)

#
~N
(1)
l,�m(kar0a)

)

(4.26)

r⇥Gsc(ra, r
0
a) = ik2

f

m=Nm
l,⌫=NmX

l,⌫=(1,m)
m=�Nm

(�1)m
("

ClM
⌫m

~N
(3)
⌫m(kf ra)+ClN

⌫m
~M

(3)
⌫m(kf ra)+

DlM
⌫m

~N
(3)
⌫m(kf rb)+DlN

⌫m
~M

(3)
⌫m(kf rb)

#
~M

(1)
l,�m(kar0a)

"
C

0lM
⌫m

~N
(3)
⌫m(kf ra)+C

0lN
⌫m

~M
(3)
⌫m(kf ra)+

D
0lM
⌫m

~N
(3)
⌫m(kf rb)+D

0lN
⌫m

~M
(3)
⌫m(kf rb)

#
~N
(1)
l,�m(kar0a)

)

(4.27)

4.1.5 Radiative Heat Transfer

The radiative heat transfer between the two spheres is calculated from the Poynt-

ing vector normal to the surface of sphere B, which in turn depends on the tan-

gential fields on the surface of sphere B. If the green function is determined for

the configuration, the power can be calculated using Eq. 3.28.
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Finally, the net power transferred and the spectral radiative transfer between the

two spheres respectively can be determined as [22]:
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4.2 Near-field Radiative Heat Transfer between

Aluminum Nitride spheres

In the following, we compute the spectral conductance between two identical

Aluminum Nitride spheres of radius a and gap x at 300K spanning a logarithmic

scale over several orders of magnitude [10nm, 10µm] highlighting the distinctive

properties of near-field thermal radiation for the two sphere geometry as investi-

gated by Narayanaswamy and Gang [22]. We, later, expand upon this discussion

with optimizing radiative transfer modulation and coherence tuning. We present

the results for a maximum radius to gap ratio of 17 for 800 frequency points over

the spectrum from 0.0073 to 0.12 eV.

4.2.1 Contribution of Resonant Surface Waves

Conduction in the near-field limit for relatively small radii is dominated by surface

phonon polariton regions showing maximal radiation at resonance frequencies. In

Fig. 4.4 and 4.5, we plot the spectral conductance for various radii and gap com-

binations demonstrating resonance behavior typical of the two sphere geometry

in the near-field limit thermal transfer for both defect states. The shift in the

maximal conductance is in accordance with the resonance frequency regions for

the di↵erent defect states of Aluminum Nitride as discussed in Chapter 2. The

coherence signature of the AlN H-state is broader than that of the L-state as

57



predicted in Chapter 2.

4.2.2 Asymptotic Results for Near-Field Thermal Radia-

tion

Unlike the near-field radiative transfer between two semi-infinite spaces which is

determined by the gap (along the optical properties of the spaces and intervening

medium) and similar to the the two thin film configuration [52], the radiative

transfer for the two sphere configuration is determined by two length parameters

and is a function of both the gap and the radius of the spheres. The near-field

radiative transfer model proposed by Narayanaswamy and Gang is applicable for

spheres of arbitrary radii and gaps and is only restricted by computational limi-

tations. However, the asymptotic expressions for near-field thermal radiation for

the limiting cases portrayed in Fig. 4.6 set a regime map for near-field radiative

heat transfer, and thus NFRHT modulation and coherence tuning, for di↵erent

radii and gaps combinations. We quantify the coherence of the near-field signal

by the full-width at half maximum (FWHM) for the modes contributing to the

near-field radiation in region corresponding to the reststrahlen band.

(i) Proximity Theorem (x ⌧ a < �):

For spheres separated by small gaps compared to the spheres radii, an

asymptotic expression can be derived from the results of radiative transfer

between two semi-infinite objects. Used for calculating Casimir and Van

der Waals forces, this method is known as the proximity force theorem [53].

The proximity theorem is shown to be applicable for near-field thermal

radiation with conductance varying linearly with a/x for spheres smaller

than the radiation wavelength separated by small gaps (x ⌧ a < �) [22].
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Figure 4.4: Spectral Conductance for two Aluminum Nitride spheres of various radii

and gaps in L-state

Figure 4.5: Spectral Conductance for two Aluminum Nitride spheres of various radii

and gaps in H-state
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Figure 4.6: Regime map for the two sphere problem. Radius of spheres is a, the gap

between them is x, and the wavelength of radiation is �

In Fig. 4.7, we plot the spectral conductance between small spheres while

maintaining the radius to gap ratios of a/x = 10 and 5.6 for both defect

state of AlN. As predicted, the conductance of small spheres is identical for

configurations of the same radius to gap ratio maintaining the same total

conductance and coherence signature for configurations of constant radius

to gap ratio.

However, for larger radii, the proximity theory is only approximate in the

regions where electromagnetic waves dominate the heat transfer with in-

creasing contribution from propagating waves where near-field radiative

heat transfer is non-resonant for larger radii [22]. In Fig. 4.8, we plot

the spectral conductance for spheres of large radius with the same radius

to gap ratios for both defect states. We finally plot the spectral conduc-

tance as a function of the gap for both AlN defect states demonstrating

the increase in the slope (with �1 corresponding to the proximity theorem)

due to the increasing propagating modes contribution with increasing ra-

dius. Another feature of near-field transfer for the two sphere configuration
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Figure 4.7: Spectral Conductance of near-field transfer between spheres at radius to

gap ratio of 10 (top) and 5.6 (bottom) for L-state (left) and H-state (right) for small

radii (a < �)
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Figure 4.8: Spectral conductance of near-field transfer between spheres at radius to

gap ratio of 10 (top) and 5.6 (bottom) for L-state (left) and H-state (right) for large

radii (a > �)
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Figure 4.9: Variation of total conductance with gap for L-state (dotted) and H-state

(solid)
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is the increasing contribution of the propagating non-resonant modes that

can potentially swamp the resonant radiative transfer as shown in Fig 4.11.

The similar resonance signatures for configurations of any constant a/x is

a distinctive feature of the two sphere system. In the case of thin films, the

invariance of the near-field heat transfer between two identical thin films

for a certain ratio of the film thickness to the vacuum gap (tf/d) is only

valid for tf/d  1 [54].

In Fig. 4.10, we plot the corresponding FWHM of the simulated near-

field spectra of radius to gap ratios of 10 (black) and 5.6 (red) for both

defect states of AlN. We note that the coherence signature for small radii

maintains the same FWHM for a constant radius to gap ratio in accordance

with proximity theory. However, for larger radii, the FWHM increases with

increasing non-resonant modes contribution.

(ii) Dipole Approximation (a ⌧ � and a ⌧ x ⌧ �):

For very small spheres of radii much smaller than the thermal wavelength,

the spheres can be treated as point dipoles and the conductance between the

spheres is given by the dipole approximation [55] with conductance varying

as 1/x6 [22]. In Fig. 4.12, we plot the total conductance for L-state (the

H-state follows the same trend by an almost fixed o↵set as investigated

later) for spheres of radii with gaps spanning several orders of magnitude

highlighting the transition from the proximity theorem (with a slope of

approximately �1) to the dipole approximation (with a slope of approx-

imately �6). We also note the gradual transition towards the classical

radiative transfer regime with a slope of zero.

64



Figure 4.10: Variation of FWHM with radius for configurations of constant radius to

gap ratio

Figure 4.11: Spectral Conductance of 18 µm AlN spheres in L-state
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Figure 4.12: Variation of total conductance with gap for spheres of radii of several

orders of magnitude
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Figure 4.13: Variation of total conductance with radius for configurations of constant

radius to gap ratio for L-state (dotted) and H-state (solid)

4.3 Tuning of Near-field Radiation

In this section, we investigate near-field conductance modulation by harnessing

the transition between the two defect states of AlN for various radii and gap

combinations. The conductance for the dipole approximation limit as displayed

in Fig. 4.12 is negligible for all radii in comparison with the proximity theorem

limit and drops rapidly with gap. Therefore, we consider the proximity theorem

limit (x ⌧ a) where the conductance is appreciable for near-field modulation and

coherence tuning.
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Figure 4.14: Variation of total conductance with gap for spheres of radii of several

orders of magnitude. Colors correspond to constant radius to gap ratio configurations
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Distinctive to the two sphere geometry, the similarity in resonance signature

for a constant radius to gap ratio for small radii can be harnessed for modulating

near-field radiation with the same on-o↵ ratio for any configuration with the

same radius to gap ratio. In Fig. 4.13, we plot the total conductance for both

defect states of AlN for radii spanning several orders of magnitude [10�9, 10�5]

for di↵erent radius to gap ratios for both defect states of AlN. The conductance

of small radii (a < �) as displayed in Fig. 4.13 and 4.14 is constant for all

configurations of the same radius to gap ratio. For larger radii, the conductance

increases due to the non-resonant modes contribution as displayed in Fig. 4.8.

Accordingly, the ratio of conductance for theH-state to the L-state is constant for

the same radius to gap ratio for small radii as displayed in Fig. 4.15. The highest

ratio attained in the investigated radius gap combinations spanning the orders

[10�9, 10�5] up to the radius to gap ratio of 17 in the small radius limit is 1.64 thus

accordingly a modulation of 39%. In Fig. 4.16, we plot the example of the spectral

conductance for a 100nm sphere separated by gaps for the di↵erent sphere to gap

ratios investigated displaying an increasing modulation of the integrated area with

increasing radius to gap ratio. The ratio further becomes constant at high radius

to gap ratio where the two sphere system is e↵ectively in the limit of the two

parallel plate system where modulation ratio is close to 1.6, thus a modulation

of 37%, for all gaps in the near-field limit as demonstrated in Chapter 3. For

larger radii, the ratio fluctuates and becomes unpredictable with further increase

in radius.

In terms of coherence tuning, we plot in Fig. 4.17 the corresponding FWHM

for the configurations displayed in Fig. 4.14 along with the ratio of FWHM upon

switching defect state in Fig. 4.18. The similarity of the resonance signature

for configurations of the same radius to gap ratio for small radii shows up as a
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Figure 4.15: Variation of total conductance ratio between AlN defect states for con-

figurations of constant radius to gap ratio
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Figure 4.16: Variation of Spectral Conductance with gap to radius ratio (a=100nm)
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Figure 4.17: Variation of FWHM with radius for configurations of constant radius to

gap ratio for AlN defect states

constant FWHM for configurations with constant ratio. Coherence can therefore

be tuned by the same factor for configurations with the same radius to gap ratio

in the small radius limit as displayed in Fig. 4.18. The FHWM ratio increases

with increasing radius to gap ratio until it converges to the parallel plate limit

close to 3.7 as demonstrated in Chapter 3.
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Figure 4.18: Variation of FHWM Ratio between AlN defect states for configurations

of constant radius to gap ratio
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Chapter 5

Conclusion

In this dissertation, we have investigated the change in near-field radiative ther-

mal transfer between parallel plates at di↵erent gaps upon switching between AlN

defect states. A 36% modulation has been predicted for the net thermal transfer

coe�cient between the parallel plates along with a factor of 3.7 in FWHM in

the spectral conductance resonance peak. We further investigated the radiative

thermal transfer in the two spheres geometry. Upon introducing a second length

parameter in the problem, the thermal transfer between the two spheres show

distinct properties including resonance conditions, net thermal transfer depen-

dence on both length parameters along with the associated regime map for net

thermal conductance variation, as well as resonance sweeping features critical for

large spheres. The dimensionless parameters of radius to gap ratio as well as the

radius to thermal wavelength ratio, which determines the far to near-field tran-

sition, are crucial for determining the near-field thermal transfer variation along

with the associated di↵erent asymptotic limits. The variation of the spectral

conductance for the two sphere problem has been computed until a convergence

to the two plate geometry limit has been observed with a 39% modulation along
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with a 3.7 FWHM ratio upon switching between AlN defect states.

The capability of manipulating electric currents is pivotal for the functioning

of diodes, transistors, as well as major building blocks of electronics. Inspired by

the ability of electronic devices to manipulate electrical currents, several attempts

for theorizing an e�cient thermal analogue operating in the near-field have been

employed mostly via harnessing the properties of phase-change materials. For

instance, the asymmetry of the heat flux exchanged between the two terminals

of the diode with reversing temperature di↵erences is possible due to the phase

change properties of PCMs switching between temperatures above and bellow the

critical temperature. Accordingly, a photonic thermal transistor was rendered

possible along with the transistors combinations functioning as memory devices

and logic gates. The capability behind tuning near-field radiative transfer is the

key working principle for the recently proposed thermal devices operating in the

near-field regime.

In this dissertation, we have introduced piezoelectrics as a new class of mate-

rials for near-field radiative transfer by investigating the near-field limit infrared

radiation of AlN. With its fast response and sensitivity to electric field, detecting

a defect state change in the infrared optical properties of AlN renders the pos-

sibility of electrically modulating near-field radiation at any temperature. This

flexibility in tuning near-field radiation is promising for applications for near-

field control essential for the current attempts for realizing thermal alternative

to electronic systems. Typical PCM materials harnessed in applications of near-

field tuning so far operate at cryogenic or room temperatures. Therefore, the

operation of the corresponding thermal devices relies on temperature-dependent

material properties, which limit their operating temperature range. For devices

functioning at higher temperatures, new materials are needed. In fact, the ther-
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mal photonic alternative to electronics is essentially proposed to operate under

harsh environments associated with high temperatures where electronics typically

fail. For instance, electronics degrade at high temperatures and fail in applica-

tions of high temperature environment space exploration (e.g. Venus) and high

geothermal temperature investigations.

Very recent attempts have been concerned with high temperature near-field

thermal transfer modulation. The gap separation sensitivity of near-field thermal

radiation has been lately harnessed by ElZouka in proposing, fabricating, and

testing of a proof-of-concept NanoThermoMechanical device that has shown a

maximum rectification of 10.9% at terminals’ temperatures of 375 and 530K;

the functioning of the device was tested at temperatures as high as 600K [56].

Harnessing the defect state change at high temperature, can render AlN useful

for tuning near-field radiative transfer at high temperatures where other methods

of tuning near-field thermal radiation at constant gap separation fail. Therefore,

we expect that our results will provide a highly needed tool for tailoring near-field

radiative transfer with an external electric field and help to gain insight into the

application of defect engineering in near-field nanophotonics.
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