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An Abstract of the Thesis of

John Abied Mitri Hatem for Master of Science
Major: Computer Science

Title: Predictive Resource Management using Deep Learning
in Next Generation Passive Optical Networks

Over the last decade, Passive Optical Network (PON) has emerged as the
best solution for the bottleneck problem in the first-mile, making it an ideal
candidate for next-generation broadband access networks. Meanwhile, machine
learning, and more specifically deep learning, has been regarded as a star technol-
ogy for solving complex classification and prediction problems. Recent advances
in hardware and cloud technologies o↵er all the necessary capabilities for employ-
ing deep learning to enhance PON’s performance. In PON systems, to allocate
bandwidth for the end-users, the Optical Line Terminal (OLT) polls the Optical
Network Units (ONU) in a cyclic manner using control messages to enable Dy-
namic Bandwidth Allocation (DBA) in the upstream direction. In this thesis, we
propose a novel DBA approach, thus-called Deep DBA, that employs deep learn-
ing to predict the bandwidth demand of end-users so that the overhead due to the
request-grant mechanism in PON is reduced, thereby increasing the bandwidth
utilization. More specifically, we employ a Long Short-Term Memory recurrent
neural network that predicts the bandwidth demands of ONUs for several future
cycles by peep-holing only a few previous cycles. Consequently, the OLT does not
need to poll the ONUs during the predicted cycles, thereby reducing the overhead
of control messages and idle times in the network. The gain achieved through
Deep-DBA enables to provision more users and/or services on the same network
while ensuring fairness among ONUs and supporting quality of service. Extensive
simulations highlight the merits of the new DBA approach and o↵er insights for
this new line of research. Results show that with Deep-DBA, the control message
overhead and total overhead in the upstream direction are reduced by up to 70%
compared to existing schemes.
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Chapter 1

Introduction

According to Cisco’s Visual Network Index forecast, the global Internet tra�c,

which was 26, 600 Gbps in year 2016, will reach a whopping 105, 800 Gbps by

year 2021 [4]. The ZettaByte era has already begun with dramatically increasing

Internet Protocol (IP) tra�c, which is expected to reach 3.3 ZB per year, by year

2021. Consequently, Information and Communication Technology (ICT), which

has a direct impact on most current and emerging technologies, has been already

one of the fastest growing industries. Accommodating this unparalleled increase

of Internet tra�c demand is one of the biggest challenges that key players in this

technology aim to address.
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1.1 The Bottleneck Problem

The first-mile (also called the last-mile in some references) connects the ser-

vice providers at the Central O�ces (COs) to the di↵erent subscribers (e.g., busi-

nesses, residential, etc.), and is referred to as the “subscriber access network” or

the “local loop”. The network infrastructure at the first-mile mainly consists of

the Digital Subscriber Line (DSL) and Cable Modem (CM) technologies. DSL

uses the conventional twisted pair as medium, and the commonly used Asymmet-

ric DSL (ADSL) technology can only provide few Mbps of bandwidth with a range

of 5.5 km. Even the newer variations of DSL, i.e., very high-speed DSL (VDSL),

provides only up to 50 Mbps for even a shorter range of 1.5 km. CM networks use

coax cables as medium, and can provide only up to 40 Mbps for distances up to

25 km. This widely deployed network infrastructure at the first-mile reached its

bandwidth limits and created what is known as the first-mile bottleneck. This is

the result of the unprecedented growth in Internet tra�c demands caused by the

quick development of electronic devices (e.g., mobile devices, personal comput-

ers, smart TVs, smart homes, smart cities, etc.). These support an ever growing

list of services (e.g., video conferencing, video-on-demand, Voice-over-IP (VoIP),

interactive games, Tactile services, Internet of Things (IoT), etc.) combined with

the advancements in the backbone network where systems with speeds of 1 Tbps

and more, are easily being deployed [3, 5]. Table 1.1 presents the bandwidth

requirements of the mostly used applications.
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Table 1.1: Bandwidth requirements for di↵erent applications [3].

Application Bandwidth Latency
VoIP 64 kbps 200 ms
Video conferencing 2 Mbps 200 ms
File sharing 3 Mbps 1 s
SDTV 4.5 Mbps/ch 10 s
Interactive gaming 5 Mbps 200 ms
Telemedicine 8 Mbps 50 ms
Real-time video 10 Mbps 200 ms
Video on demand 10 Mbps/ch 10 s
HDTV 10 Mbps/ch 10 s
Network-hosted software 25 Mbps 200 ms

1.2 The Solution: Passive Optical Network

Over the last two decades, Passive Optical Networks (PONs) have been taken

as the best solution to the access bottleneck problem in the first-mile and to de-

ploy the FTTx (Fiber-To-The-x, where x stands for home, curb, building, o�ce,

etc.) technology. With PONs, the customer premises can be further apart from

the service provider’s central o�ce with distances up to 100 km using Long-Range

PONs (LR-PONs) [6]. Also, PONs provide much higher bandwidth ensuring the

delivery of more than 1 Gbps speeds. Furthermore, PONs have passive compo-

nents, such as optical fiber and splitters, instead of active ones, thereby relieving

network operators from installing multiplexers and demultiplexers in addition

to maintaining and provide power to them. This reduces the complexity of the

network and is more cost e↵ective. Moreover, PON equipment has low power

consumption and can be easily upgraded to have additional wavelengths and/or
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higher bit-rates [5].

Several variants of PON exist; however, Ethernet PON (EPON) has acquired

considerable attention from the industry and the research community, due to

its cost e↵ectiveness, high bandwidth capacity, and ability to e�ciently support

Quality of Service (QoS) [5].

1.3 Thesis Motivation and Contributions

Compared to other access networks, PONs provide much higher bandwidth

and are far more energy e�cient. However, to embrace this explosive growth

of demands, there is still much room for improvement. Data transmission in

PON is subject to an overhead caused by several factors such as the deployed

Dynamic Bandwidth Allocation (DBA) scheme, and the control messages ex-

changed between the di↵erent components of PON. This overhead limits the

network’s utilization and performance [7, 8].

Next Generation PONs (NG-PONs) are expected to support an increasing

number of users, reach for longer distances (e.g., LR-PONs), provide much higher

data rates, and meet the QoS requirements of various bandwidth-intensive and

delay-stringed application such as mobile fronthaul, Tactile services [9], etc.

Hence, it is expected that NG-PONs would increase in complexity to accommo-

date such various requirements; thus, “e�ciently customized” PONs can become

the new trend. That is, traditional “one-size-fits-all” approaches will not work,
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and a certain setup of patterns which works fine for one network may prove to

be ine�cient for another network of the same kind [10].

To address the aforementioned challenges, we exploit the rapidly progress-

ing field of Artificial Intelligence (AI), and more specifically Machine Learning

(ML) as a promising tool to address some of the PON challenges. With ML,

given a large enough set of training data, using machine learning, systems can

learn from this data, via exploiting hidden and unexpected patterns by lever-

aging complex mathematical and statistical tools. This trained model can then

perform automatized intellectual tasks and infer solutions. In recent years, ML

applications, which proved to be e�cient and successful, are invading numerous

industries (e.g., healthcare, manufacturing, oil and gas, finance, etc.) in an accel-

erated rate. This success is due to the colossal amount of data available, which

is bound to increase with new emerging networks like IoT where billions of de-

vices are connected in smart cities. Furthermore, the recent advances in Graphics

Processing Unit (GPU) technology and Cloud Computing provide the processing

and storing capabilities needed for training the ML models. For inference, the

trained model can be deployed in low capability devices, e.g., smartphones [10].

Even though some research has been done in the past few years focusing on the

application of ML in optical networks in general [11, 12] and PONs in particular

[13, 14, 15, 16, 17], this field is still in its baby stages [11]. For instance, ML

can be used in network failure detection by learning from historical monitored

network component information to detect and identify fault location and infer
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specific failure types. This can be extended to build autonomic networks which

are capable of self-configuring, self-healing, and self-optimizing. Also, using ML,

systems can learn from collected historical Internet tra�c to predict and classify

tra�c flows which helps network service providers to reduce over provisioning and

guarantee best QoS. Furthermore, ML applications in PON can have significant

impact in path computation, topology design, energy saving, and more. [10, 11].

Finally, the applicability of ML is further promoted by important advance-

ments in networking technology. These include software-defined networks and

software-defined optical networks [18], which enable network programmability,

and AI-enabled optical network on chip. These promise to be a huge improve-

ment over legacy electronic network on chip technology in terms of computation

power and energy consumption [12, 10].

In this thesis, we study the causes of transmission overhead in PON, and

propose a deep learning based PON DBA scheme to reduce the PON overhead,

thereby increasing the network bandwidth utilization, while ensuring QoS. Hence,

more users and/or services can be provisioned on the same network. One salient

feature of the proposed DBA, is that it works with any current or future machine

learning models and DBA algorithms.
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1.4 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we present an

overview of EPON and review Internet tra�c prediction and the deep learning

model used in our proposed scheme followed by up-to-date related work. In

Chapter 3, we describe the proposed deep learning based PON system model. In

Chapter 4 we present our simulation results and finally we conclude in Chapter

5 and discuss our future work.
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Chapter 2

Background and Related Work

In this chapter, we provide a detailed overview of EPON, including the trans-

mission overhead, and a review of the di↵erent DBA algorithms. We also discuss

related works in Internet tra�c prediction and predictive scheduling schemes in

PON, and present an overview of Long Short-Term Memory (LSTM) recurrent

neural network architecture, which is the model used for the proposed scheme.

2.1 Ethernet Passive Optical Network

EPON, like any other type of PON, is a point-to-multipoint optical network

with no active elements on the transmission path between the source and desti-

nation. As illustrated in Fig 2.1, the most popular architecture of EPON is the

tree topology, rooted by the Optical Line Terminal (OLT) located at the CO, and

connects via a passive 1:N optical splitter a set of Optical Network Units (ONUs)
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Figure 2.1: EPON architecture [1].

located at the end-users’ premises, representing the leaves of the tree topology.

The number of supported ONUs can be between 2 to 128. PON is connected to

the backbone network, i.e., Metropolitan Area Network or Wide Area Network,

via the OLT. The infrastructure that interconnects the OLT and the ONUs is

defined as the Optical Distribution Network [3, 19].

The transmission in the downstream direction (i.e., from the OLT to the

ONU) is performed by the OLT via broadcasting the data to the ONUs using a

1490 nm wavelength. Consequently, based on the Medium Access Control (MAC)

address, each ONU will be able to identify the data that is destined to it. In the

upstream direction (i.e., from the ONU to the OLT), ONUs can send data to the
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OLT but not to each other due to the directional properties of the passive com-

biner. Hence, this setup is similar to a point-to-point architecture, even though

the ONUs share the upstream transmission medium; thus, they are in the same

collision domain. Consequently, data sent simultaneously by two or more ONUs

will result in a collision, which is hard to detect [5]. Since it is di�cult to im-

plement Carrier Sense Multiple Access with Collision Detection, other solutions

such as Wavelength Division Multiplexing (WDM) and Time Division Multi-

plexing (TDM) are employed. Using WDM, each ONU’s upstream transmission

would be on a di↵erent wavelength, at the expense of high network cost. TDM,

on the other hand, is seen as a more attractive solution since it requires a single

wavelength, which is highly cost-e↵ective, at the expense of limited bandwidth

capacity. With TDM, each ONU is granted a non-overlapping time slot for data

transmission by the OLT. Hence, TDM is implemented on a single wavelength

(1310 nm) for upstream transmission. The EPON standard does not specify a

DBA scheme; instead, the decision is left to the network operator.

Today, 1G-EPON is widely deployed, and the deployment of 10G-EPON,

which was standardized in 2009, has already begun in some countries [20]. Fur-

thermore, in response to the high bandwidth demand, the IEEE P802.3ca task

force has already spent e↵orts to standardize NG-PONs. To be more e↵ective

and to comply with the high deployment rates of legacy PONs, the task group

has been working on standardizing three upcoming generations instead of one,

namely the 25/50/100G-EPON, which are planned to be standardized by year
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2019 [21, 20].

2.1.1 Multi-Point Control Protocol

In all EPON systems, an arbitrating mechanism is employed, so-called the

Multi-Point Control Protocol (MPCP), which represents the signaling protocol

that enables communication between the OLT and the ONUs. MPCP resides

in the MAC control layer and operates in two modes relying on the use of six

control messages which have a fixed size of 64B [3, 5, 22].

1. Auto-discovery mode: using REGISTER, REGISTER REQ, REGISTER ACK,

and discovery GATE control messages, MPCP ensures the discovery of

newly connected ONUs in the network, collects relevant information like

the MAC address and Round Trip Time (RTT), and registers these ONUs.

2. Normal mode: As illustrated in Fig. 2.2 using REPORT and GATE con-

trol messages, MPCP facilitates the medium access control and arbitrates

the transmission of multiple ONUs over the shared upstream media. An

ONU would send a REPORT message to the OLT, informing it about its

bandwidth demands, and then the OLT, using a DBA algorithm, would

respond with a GATE message granting the ONU a time slot that does not

overlap with the transmission time slot of other ONUs. Hence, MPCP is

independent from the used DBA strategies and schemes which are left to

the vendors to specify.
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Subuscriber 
 Data

Queues

Figure 2.2: MPCP Operations [2].

As illustrated in Fig. 2.3, a GATE message can include up to 4 transmission

window grants indicated by a mandatory 1B field. Each grant, indicated by a 6B

field, consists of a grant start time (4B) and a grant length (2B). Furthermore,

in addition to the requested data, the grant time slot should make room to

include the REPORT message that the ONU sends to the OLT. A REPORT

message can include 0 to 13 queue sets indicated in a 1B field. Each queue set

can support 8 ONU upstream queues indicated by a 1B report bitmap, and the

bu↵er occupancies, i.e., the bandwidth requirements, of each queue is reported

in a 2B field. Hence, the number of queue sets depends on the number of queues

reported in each set. Including multiple queue sets in the REPORT message

helps avoid wasting bandwidth and can be used to prioritize tra�c and support

di↵erentiated services [3].
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DA SA 88-0816 OpCode TimeStamp OpCode specific
field/pad FCSMPCP 

Control Message

No. grants
and flags

Grant 1
Start

Grant 1
Length

Grant 4
Start

Grant 4
Length padGATE

6B 6B 2B 2B 4B 40B 4B

1B (4B) (4B) (4B) (4B) 15-39B

No. queue
sets

Report
bitmap

Queue1
report padREPORT

1B (1B) (2B) 0-39B

Queue8
report

(2B)

Queue set #1
(3-17B)

Queue set #k
(3-17B)

Figure 2.3: EPON GATE and REPORT message formats [3].

2.1.2 Polling Strategies

In every transmission cycle, the OLT requires the instantaneous bandwidth

demands of each ONU in order to make allocation decisions. To this end, polling

strategies are introduced to poll multiple ONUs.

Fig. 2.4a illustrates the online scheduling, introduced in [23], also referred

to as “Interleaved Polling”. With online scheduling, the OLT makes grant de-

cisions on-the-fly based on individual ONU REPORT messages and sends the

GATE message before the transmission end of previously polled ONU(s). This

is feasible since the upstream and downstream transmissions are assigned di↵er-

ent wavelengths. Note that, a short guard time between two successive ONU
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Figure 2.4: Polling Strategies: a) Online scheduling, b) O✏ine scheduling.

transmissions is required by the OLT’s receiver. Results in [23] show that online

scheduling significantly increases the bandwidth utilization and decreases the av-

erage delay. However with this strategy, the OLT would lack a holistic view of all

ONU demands while making granting decisions. Hence, ensuring fairness among

ONUs is very di�cult, and supporting QoS is not easily attainable [19, 22, 2].

This problem is resolved by using o✏ine scheduling. As illustrated in Fig.

2.4b, the OLT waits until REPORT messages from all ONUs are received and

then performs bandwidth allocation at the end of the cycle with a complete
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knowledge of the bandwidth demands of all ONUs. This allows the OLT to make

more intelligent granting decisions ensuring fairness among ONUs and supporting

QoS. However, this comes at the expense of upstream bandwidth utilization by

forcing an idle period (also referred to as “walk time”) at the end of the cycle,

T
end. This idle period comprises the propagation delay of the REPORT message

from the last polled ONU to the OLT, the DBA calculation time, and the time

needed for the GATE message to be received by the first polled ONU [19, 22, 2].

2.1.3 Dynamic Bandwidth Allocation

Internet tra�c in the access network is characterized by being bursty in na-

ture. Even on low loads, a network tra�c burst might cause the time slots for a

certain ONU to overflow while the time slots for other ONUs are not fully uti-

lized. Therefore, the bandwidth requirements of an ONU might vary widely even

within short periods of time. This makes static bandwidth allocation a not-so-

e�cient solution [24]. On the other hand, in order to adapt to the instantaneous

bandwidth demands of multiple ONUs, a DBA algorithm can be deployed at the

OLT to provide statistical multiplexing among ONUs, and is shown to be more

e�cient [2]. Fig. 2.5 presents a taxonomy for DBA algorithms. As illustrated,

DBA schemes can be divided into three main categories.
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2.1.3.1 Grant Sizing

In the fixed grant sizing scheme, ONUs are granted a transmission window of

a fixed size for every cycle. This can be represented by the function: Gi = G
max
i ,

where Gi is the grant size of ONU i and G
max
i is the maximum limit of a grant

size. Result show that this scheme degrades network performance increasing

bandwidth waste and average packet delay [23, 24].

DBA

Grant Sizing
Grant (InterONU)

Scheduling

Fixed Dynamic

Gated

Queue (IntraONU)

Scheduling

Limited Exhaustive

Excess

Distribution

Figure 2.5: Dynamic Bandwidth Allocation Taxonomy [2].

In the gated grant sizing scheme, the size of the granted transmission slot for a

given ONU is equal to the queue size reported by that ONU in the previous polling

cycle. The function representing this scheme would be: Gi = Ri, where Ri is the
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requested queue size included in the most recently received REPORT message.

Simulation results show that the Gated scheme lowers the average packet delay

in the network. However, the upstream channel might be monopolized by a

single ONU for a long period of time. Therefore, the gated scheme fails to ensure

fairness among ONUs [25].

In the limited grant sizing scheme, the size of the granted transmission slot

for a given ONU is equal to the reported queue size, but limited by the maximum

grant size for that ONU. Hence, the function for the limited scheme would be:

Gi = min(Ri, G
max
i ). Limiting the grant size to a maximum value Gmax

i prevents

upstream channel monopolization by a single ONU. Results show that the average

packet delay is similar to that of the gated scheme [23]. Note that the network

performance is greatly impacted by the value of the Gmax
i . Setting the Gmax

i to be

very large will increase the delay for all packets; whereas setting G
max
i to be very

small will increase the number of exchanged control overhead, thereby reducing

the upstream channel utilization [22]. Moreover, since an Ethernet frame cannot

be fragmented, the limited scheme might cause bandwidth waste in the case

when G
max
i < Ri and the head-of-line (HOL) Ethernet frame is larger than the

remainder of the granted slot. Hence, the remained portion is wasted and the

HOL frame is transmitted in the next transmission time slot [2].

The limited with excess distribution scheme is a variation of the limited

scheme, in which the “excess” or unallocated bandwidth is exploited to improve

the network performance. In this scheme, ONUs are divided into two groups:
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underloaded and overloaded ONUs. An ONU is considered underloaded if Ri 

G
max
i whereas an ONU is considered overloaded if Ri > G

max
i . In this scheme,

when all REPORT messages are received, the total excess bandwidth is calculated

as Etotal =
P

i2u(G
max
i �Ri), where u is the set of underloaded ONUs. Afterwards,

di↵erent schemes can be used to divide Etotal between all overloaded ONUs.

In the exhaustive grant sizing scheme, prediction techniques are used to

estimate the amount of accumulated bandwidth during the time between sending

of the REPORT message and the start of the granted transmission window.

Predicting the ONU’s queue size at the time of transmission can lower the queuing

delays. However, predictions might not be very accurate due to the bursty nature

of Internet tra�c, which may downgrade the network performance. Prediction

schemes are further explored in Section 2.2.2.

2.1.3.2 Grant (Inter-ONU) Scheduling

Inter-ONU scheduling is concerned with scheduling grants in the upstream

channel to the ONUs and is performed at the OLT. The simplest way to perform

Inter-ONU scheduling is in a round robin manner. However, in order to change

the grant order, the OLT must wait until it receives all the REPORT messages

from all ONUs. This requires using the o✏ine scheduling scheme. Several Inter-

ONU scheduling schemes were proposed in the literature such as the Longest

Queue First (LQF) and the Earliest Packet First (EPF). In LQF, the ONUs

with the largest transmission slots are set to transmit their data first. In EPF,
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the ONUs are ordered to transmit based on the time of the arrival of the HOL

Ethernet frame [2].

2.1.3.3 Queue (Intra-ONU) Scheduling

Scheduling the transmission of the di↵erent queues at an ONU within the

granted transmission window is controlled by Intra-ONU scheduling. Packets ar-

riving from the registered subscribers to the ONU are first classified by means of

a packet-based classifier. Next, before placing packets in the queues, the ONU

decides if a given packet should be admitted depending on the tra�c policing

mechanism. Typically, there are two types of Intra-ONU scheduling: strict and

non-strict priority scheduling. In the first scheme, low-priority queues are sched-

uled only if higher priority queues have no tra�c left for transmission. This causes

starvation for low-priority tra�c. Non-strict priority scheduling algorithms tackle

the starvation problem by allowing all queues in the ONU to have access to the

upstream channel while respecting their priority [2, 26].

2.1.4 EPON E�ciency

Network throughput is the amount of application-level user data the network

carries through within a unit of time. Network throughput e�ciency, which is

also called network utilization, is the ratio of the maximum measured throughput

to the network bit rate [7].

EPON systems su↵er from transmission overhead which lowers the utiliza-
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tion. This overhead has two main components associated with encapsulation and

scheduling [7]. The overhead caused by scheduling consists of control message

overhead, guard time overhead, discovery overhead, etc., and is influenced by

several factors such as the maximum polling cycle time, the number of connected

ONUs, the distance between the OLT and ONUs, and the employed DBA.

For example, assuming there is one GATE message and one REPORT message

between the OLT and each ONU in every cycle, we can calculate the control

messages overhead as follows [7, 8]:

OControl =
S ⇥N

T
. (2.1)

where S is the size of the control message including the Ethernet preamble and

inter-packet gap (84 bytes), T is the maximum cycle length (in seconds), and

N is the number of ONUs. Thus, for an EPON system of 128 ONUs and 1ms

cycle time, in the upstream direction, REPORT messages would cause about 86

Mbps of overhead. Furthermore, as illustrated in Section 2.1.2, there is a trade-o↵

between using online and o✏ine schedulers. O✏ine schedulers support QoS and

enable fairness among ONUs at the expense of decreased channel utilization due

to forcing an idle period at the end of a polling cycle T end. With online schedulers,

T
end is eliminated, but ensuring fairness among ONUs and supporting QoS is not

easily attainable as the OLT would lack a holistic view of all the ONU demands.

Finally, an extra idle time may occur if the GATE message arrival time to
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ONU i is later than the transmission start time of that ONU; in this case, the

transmission start time will be delayed until the GATE message is received by

the ONU. This occurs at light network loads where the ONUs would typically

have negligible bandwidth requests and the guard time between successive trans-

missions is less than the propagation delay of the GATE message.

Our proposed deep learning based PON system model addresses the control

message and idle time overheads and provides a balance between o✏ine and

online scheduling schemes by increasing the bandwidth utilization in the upstream

direction while maintaining the QoS support and fairness among ONUs.

2.2 Internet Tra�c Prediction

Internet tra�c is considered a time series which is a sequence of observations

(x1, x2, ..., xt) recorded at a specific time t [27]. Moreover, Internet tra�c has the

characteristics of self-similarity, long-range dependence, and highly non-linear

nature [28, 29]. To predict Internet tra�c, several linear prediction techniques,

such as AutoRegressive Moving Average, Autoregressive Integrated Moving Av-

erage, AutoRegressive AutoRegressive and HoltWinter algorithm, were proposed

[30, 31, 32]. These methods can only learn the linear correlation structure present

in the time series, but they do not learn the non-linear patterns. For non-linear

prediction, some of the models used were Radial Basis Function and Support

Vector Machine, which had lower error rates [33].
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Recently, based on the non-linearity of Internet tra�c, Neural Networks (NNs)

have been employed for tra�c prediction. NNs are widely used since they can

approximate any linear or non-linear patterns in an accurate manner even though

the underlying data relationships are unknown. In [27], the authors have shown

that by using neural networks, better prediction outcome in terms of accuracy

and response time can be obtained.

In [34], the authors compare two di↵erent NN approaches. The first one is

a simple Multi-Layer Perceptron (MLP) and the second one is a deep learning

Stacked AutoEncoder (SAE). The MLP has one input layer, two hidden layers,

and one output layer with a feed forward flow. Furthermore, the sigmoid activa-

tion function was used. On the other hand, for the SAE model, a deep learning

neural network was constructed with multiple layers of AutoEncoders. Here, the

output of each layer is connected to the input of the next layer. The activation

function used for the SAE model was also the sigmoid function. Furthermore,

for both models, before the training, the data is normalized and the loss func-

tion used is the Root Mean Squared Error (RMSE). The reported results show

that both models are capable of having accurate predictions. However, the MLP

model outperforms the SAE model, even when more layers are added to the SAE

model. In addition, the SAE model is more computationally costly during train-

ing than the MLP model. Hence, the authors conclude that the MLP model is

more advantageous.

In [33], the authors present three architectures using Deep Belief Networks.
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The NN is created with an input layer, four hidden layers, and an output layer of

one neuron representing the prediction Internet tra�c in time t + 1. In the first

model, the four hidden layers are of sizes 300, 200, 100, and 10, respectively. In the

second model, the hidden layers are of sizes 300, 300, 300, and 300, respectively.

In the third model, the hidden layers are of sizes 300, 200, 10, and 3, respectively.

The sigmoid activation function is used, and the performance measure of each

of the three models was calculated in terms of Mean Squared Error (MSE) and

RMSE. Results show that the first model outperforms the other two models by

having more accurate predictions.

Nevertheless, traditional Feed Forward Neural Network (FFNN) are not able

to handle historical data and are only limited to modeling the data within fixed-

size window. In contrast, RNNs take into consideration past-seen input, by

containing cycles that carry the activations from previous time steps back to

the network, to make predictions in the current time step. This makes RNNs

a good candidate for sequence-to-sequence predictions. However, conventional

RNN models su↵er from vanishing and/or exploding gradient problems, which

limits the RNN’s capability to model long-term dependencies starting from 5 dis-

crete time steps between relevant input and output signals [35]. Consequently, an

elegant RNN architecture called LSTM has been designed to address these fore-

going issues [36], and it was demonstrated to outperform the traditional RNN for

many applications [35, 37, 38, 39]. In Section 2.2.1, we review the architecture

of the LSTM recurrent neural network and recent works that used LSTM in In-
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ternet tra�c prediction. In Section 2.2.2, we discuss related work in predictive

scheduling in PON.

2.2.1 Long Short-Term Memory

The architecture of LSTM is composed of memory blocks. As illustrated

in Fig. 2.6, each block contains memory cells with self connections and mul-

tiplicative units called gates. An LSTM network takes as input a sequence

x = {x1, x2, ..., xT}, and outputs a sequence h = {h1, h2, ..., hT} by using the

following equations:

ft = �(Wf · [ht�1, xt] + bf ) (2.2)

it = �(Wi · [ht�1, xt] + bi) (2.3)

C̃t = tanh(WC · [ht�1, xt] + bC) (2.4)

ot = �(Wo · [ht�1, xt] + bo) (2.5)

Ct = ft � Ct�1 + it � C̃t (2.6)

ht = ot � tanh(Ct) (2.7)

where W denotes the weight matrices, b denotes the bias vectors, and the terms

ft, it, and ot are denoted as the forget gate, input gate, output gate at time t

respectively. These gates control the information flow in the block. Finally, ht

represents the hidden state and Ct represents the cell state of the memory cell at
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time t.

k

x

h

Ct1

ht1

Xt

LSTM Block

x x

+

ht

Ct

k

kg

k
g

Pointwise Operation

Gate Activation Function

Input Activation Function

h Output Activation Function

Xt

ht

Ct

Input at Time t

Output at Time t

Cell State at Time t

ft it

Ct~ ot

Figure 2.6: LSTM Memory Block.

Recently, several works have shown the e↵ectiveness of LSTMs in predicting

Internet tra�c. In [37], a deep LSTM architecture was used to learn the network

tra�c and predict the future tra�c matrix of a network. Di↵erent number of

hidden nodes (200, 300, ..., 700) is used, and a di↵erent number of hidden layers

(between 1 and 6) is employed. Here, MSE is used to estimate the prediction ac-

curacy. Results show that the LSTM model significantly outperforms traditional
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linear methods and FFNNs. Furthermore, it was shown that the MSE drops as

the number of hidden layers and the number of hidden nodes increase. A similar

study in conducted in [29] with similar results.

In [38], the authors evaluate the performance of di↵erent Recurrent Neural

Network (RNN) architectures in predicting network tra�c. Experiments are

performed on FFNN, RNN, Gated Recurrent Unit, Identity RNN, and LSTM

with di↵erent number of layers and hidden units. Results show that LSTM has

the best performance compared to other architectures.

2.2.2 Predictive Scheduling in PON

Given the scope of our work, we focus on predictive schemes in PON. For

instance, in [40], Kramer et al. propose a scheme so-called Constant-Bit-Rate

Credit used with the Interleaved Polling with Adaptive Cycle Time (IPACT)

DBA to reduce the queuing delay of low-priority packets in intra-ONU schedul-

ing. Here, given the nature of Constant Bit Rate (CBR) tra�c, prediction with

some accuracy on how many high priority packets will arrive at the ONU, was

performed. However, this method would not be accurate for bursty Internet

tra�c.

In [41], for less delays and less data loss, the authors propose a Limited

Sharing with Tra�c Prediction (LSTP) algorithm. In LSTP, before sending a

REPORT message, the ONU uses the amount of data arrived in previous cycles
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to predict/estimate the amount of data that will arrive during the waiting time

based on the self similarity of Internet tra�c [28]. The prediction is done at the

ONU side, and the predicted amount is then added to the bandwidth request

sent to the OLT.

To improve bandwidth utilization and QoS, the authors in [42] propose an

Early DBA scheme with excessive bandwidth allocation. An unstable degree

list of ONUs is defined based on the variance of historical tra�c of each ONU,

and prediction is done for di↵erent classes of service (i.e., Expedited Forwarding

(EF), Assured Forwarding (AF), Best E↵ort (BE)). Similarly, the authors in [43],

propose a class-based tra�c prediction scheme at the ONU using a simple linear

predictor.

In [44], Hwang et al. proposed a generic QoS-aware interleaved DBA. The cy-

cle is divided into two equally-sized subcycles, each containing half of the ONUs.

Here, one group of ONUs would be sending data in the upstream direction; mean-

while, the OLT would be calculating the grant times for the second group of

ONUs. Furthermore, the excessive bandwidth allocation would be combined

with a prediction method that supports di↵erentiated tra�c characteristics (i.e.,

EF, AF, BE). The predicted EF tra�c is calculated by multiplying the past EF

tra�c request by the waiting time, divided by the cycle time. The AF and BE

tra�c predictions are calculated by comparing the di↵erence between the current

request and the mean value of the requests in the past 10 cycles.

In [45], an adaptive DBA algorithm that supports multi-services over EPON
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is proposed, such that prediction is used only for EF tra�c since it is assumed

to be the most sensitive for delay.

The authors in [46] propose the IPACT with Grant Estimation (IPACT-GE)

scheme. After receiving a GATE message, the ONU calculates the tra�c arrival

rate and uses the obtained value to estimate the amount of packets arriving in

the next polling cycle. This estimation is added to the request size and the total

amount is then sent to the OLT via a REPORT message.

To properly react to real time changes in the Service Level Agreements (SLAs)

in PONs, the authors in [47] presented a SLA Proportional-Integral-Derivative

(SPID) controller to provide better QoS to users. The SPID is enhanced with an

online neural network to tune the parameters of the SPID controller. The input

layer of the NN has three neurons representing the three past error readings of

the SPID. Similarly, the output layer has three neurons representing the three

parameters used to tune the SPID controller. Since the NN is online, it will learn

from previous values in real time and will modify its weights accordingly.

To optimize upstream bandwidth allocation in PONs, the authors in [48] pro-

posed to dynamically (re)allocate SLA parameters, which are represented by the

Committed Information Rate (CIR), which is the guaranteed bandwidth provided

to the user, the Excess Information Rate (EIR), which is an additional bandwidth

that may be provided to the user, and the Peak Information Rate (PIR), which is

the maximum bandwidth that can be assigned to a user, based on the user profile.

Namely, using K-means clustering, users are classified into three di↵erent groups:
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heavy, light, and flexible for specific periods of the day. Subsequently, excess

bandwidth is allocated to the EIR of heavy users to improve their QoS. The limi-

tation of this scheme is that the majority of users were classified as flexible. This

work is then extended in [13], such that user groups are further classified based

on the bandwidth usage during weekdays and weekends. Furthermore, a “Grey

Forecasting Model” is employed to predict the future bandwidth demand trend

of users in the flexible group, that is, whether they will shift or not to the heavy

or light groups to have a more balanced distribution of the excess bandwidth.

To predict the additional packets that may arrive during the polling period,

the authors of [14] proposed a data mining forecasting DBA, so-called DAMA,

which employs an enhanced k-nearest neighbor (k-NN) algorithm. Results show

that predicting the additional bandwidth improves the network performance in

terms of latency and jitter.

In [15], the authors proposed an Artificial Neural Network (ANN) decision-

making model to predict the bandwidth demand of an ONU. The ANN model

is trained to predict uplink latency under di↵erent network scenarios so as to

dynamically allocate bandwidth to meet low latency requirements.

To support Tactile services, the authors of [16] employed a Bayesian estima-

tion to approximate the packet inter-arrival time for Poisson-distributed Tac-

tile tra�c in a WDM-PON. For Pareto-distributed tra�c, the authors used a

maximum-likelihood sequence estimation to approximate the On and O↵ du-

rations. The estimations are performed at the ONU, and are then sent to the
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OLT using a REPORT message. Consequently, the OLT evaluates the average

bandwidth demand of each ONU and maintains the low latency constraint by

dynamically varying the number of active wavelength channels.

Finally, the authors of [17] proposed a ML based Predictive DBA (MLP-

DBA), where an ANN model is deployed at the OLT to identify the On and O↵

periods of bursty Internet tra�c for the next polling cycle of every ONU. Based

on this prediction, the bandwidth demand during the waiting time is evaluated.

Consequently, if the sum of the requested bandwidth plus the predicted band-

width is greater than the maximum bandwidth allowed for each ONU, an extra

cycle is introduced by generating additional GATE messages for these ONUs at

the beginning of the next polling cycle. This would o↵er lower latency and enable

the support of Tactile services.
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Chapter 3

Deep Learning-Based DBA

3.1 System Model

In legacy PON systems, in every polling cycle, each ONU sends to the OLT a

REPORT message depicting its bu↵ering queues’ occupancies, which reflects the

end-users’ bandwidth demands. Consequently, the ONUs are granted time slots

by the OLT in the next cycle using GATE messages; these time slots are sized

depending on the DBA discipline.

As illustrated in Fig. 3.1, to reduce the overhead discussed in Section 2.1.4

(which can be significant depending on the DBA scheme, the polling strategy, i.e.,

online or o✏ine, the number of connected ONUs, the distance between the OLT

and ONUs, and the channel speed), we propose to employ a machine learning

model at the OLT to predict the bandwidth demand of an ONU for the next Q

cycles based on its demands in the past P cycles.
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Figure 3.1: Proposed machine-learning based system model.

Here, bandwidth demands can be collected in three forms: 1) incoming tra�c

flows/streams at the end-user side; 2) REPORT messages in every polling cycle,

which depict the bandwidth demands; and 3) GATE messages issued by the OLT

in every polling cycle, which indirectly reflect the bandwidth demands of the

ONUs. The latter two depend on the employed DBA algorithm and the network

architecture and settings, as these a↵ect the behavior of the network and thus

the bandwidth included in the REPORT and GATE messages. Consequently,

the machine learning model is trained on the collected data, and the obtained

model is saved and embedded as a module in the DBA so as to perform predictive

bandwidth allocation.
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3.2 Bandwidth Demand Prediction using Deep

Learning

Internet tra�c in PON can be seen as time series, which corresponds to the

bandwidth demand in every cycle. Hence, any machine learning model, which

can handle sequence-to-sequence time series predictions can be used to perform

predictive DBA. In this work, based on similar findings in related problems [49,

38, 35, 29] and extensive experimental results on our dataset, we choose to employ

an RNN LSTM model.
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Figure 3.2: Employed LSTM RNN model.
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Fig. 3.2 depicts the general LSTM architecture that we employ to predict

future sequences from previous ones. As illustrated, the LSTM network is fed a

sequence of P cycles as input, such that each cycle p 2 P includes the ONU’s

reported queue size. The output of the model would be the next sequence of Q

cycles, where each cycle q 2 Q includes the predicted total queue size for this

ONU in this cycle. This is an improvement over previous works since not only

we are predicting the tra�c in the next time step t + 1 (next cycle), but we are

also predicting the bandwidth demands for the upcoming t+Q time steps.

3.3 Operation of Deep-DBA

The key principle behind Deep-DBA is to make use of the predictions made

by a machine learning model using the past P REPORTs, so as to allocate

bandwidth for the nextQ cycles without requiring any further REPORTmessages

within those cycles. Thus, a Deep-DBA cycle would typically comprise two sets

of cycles; namely the reporting cycles {p1 , p2 , · · · , pP } and the prediction cycles

{q1 , q2 , · · · , qQ}.

For simplicity and without loss of generality, we illustrate in Fig. 3.3 the

operation of the proposed Deep-DBA for P = 2, and Q = 8. As observed, during

the reporting cycles, every ONU sends a REPORT message requesting bandwidth

based on its queue size (just like with regular DBA approaches). Consequently,

the OLT runs the DBA algorithm (i.e., TDBA) and responds with a GATEmessage

34



O
L
T
 

O
N
U
1
 

O
N
U
2
 

T
x
 

T
x
 

T
x
 

R
x
 

R
x
 

R
x
 

R
1R
1

R
2

G
1
G
2

G
2

R
1

R
2

R
2

R
2

G
1
G
2

G
2

R
1

R
1

R
2

R
2

R
1

G
1

G
1

T 
en
d  

p 1
T 
en
d  

p 2
q 1

q 2
q i

q 8
T 
en
d  

p 1

D
ee
p
D
BA

 C
yc
le

T 
en
d :
 E
n
d
 o
f 
c
y
c
le
 o
v
e
rh
e
a
d

p  :
 R
e
p
o
rt
in
g
 c
y
c
le

q :
 P
re
d
ic
ti
o
n
 c
y
c
le

: 
R
E
P
O
R
T
 m
e
s
s
a
g
e

: 
G
A
T
E
 m
e
s
s
a
g
e
 

G
u
a
rd
 T
im
e

T
D
B
A

T
D
B
A

T
D
e
e
p
D
B
A

G
1
G
2

R
i

G
i

G
i :
 G
A
T
E
 b
a
s
e
d
 o
n
 p
re
d
ic
te
d
 R
E
P
O
R
T

G
1

G
2

G
1

G
1

G
2

F
ig
u
re

3.
3:

O
p
er
at
io
n
of

th
e
p
ro
p
os
ed

D
ee
p
-D

B
A

sc
h
em

e.

35



that includes a grant for the next cycle only, based on the employed scheduling

discipline (i.e., Limited, Gated, etc.). However, the OLT keeps record of the

foregoing request to be used for prediction. As such, during the last reporting

cycle pP , as soon as the OLT receives the P
th REPORT message from an ONU,

it uses the P saved requests of this ONU as input to the deep learning model, so

as to predict its request sizes for the next Q cycles; thereby marking the start of

DBA prediction time TDeep�DBA.

When predictions are obtained by the deep learning model and the OLT

has the predicted request sizes for all ONUs, these predicted request sizes are

considered as if they are REPORT messages received from the ONUs for cycles

{q1 , q2 , · · · , qQ}. After the prediction, the OLT will apply the same DBA scheme

used to grant transmission windows for each ONU for cycles {q2 , · · · , qQ , p1}

without requiring any further REPORT messages. This reduces the e↵ective

cycle time, and increases the network utilization. Subsequently, the OLT informs

the ONUs of their transmission windows for cycles {q2 , · · · , qQ , p1} using GATE

messages sent during the first prediction cycle q1 . This can be accomplished in

three di↵erent ways:

1. The OLT sends Q⇥N GATE messages in a contiguous manner, where N

is the number of ONUs.

2. The OLT incorporates 4 grants in one GATE message (which adheres to

the default GATE message structure), so that Q⇥N
4 GATEs are sent in a
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contiguous manner.

3. The format of the GATE message is modified so that it can include Q

grants, which enables the OLT to send N GATEs in a contiguous manner.

As observed in Fig. 3.3, the GATE message based on the predicted REPORT

for the first ONU to start upstream transmission should arrive before the start of

the second prediction cycle q2 . Hence, there is su�cient time to do the machine

learning prediction which starts in the beginning of the last reporting cycle pP ,

when the REPORT of the 1st ONU arrives, and continues through the first pre-

diction cycle q1 . Therefore, the time from the start of TDeep�DBA until the latest

moment for the first GATE to reach its corresponding ONU is almost equal to

the duration of 2 cycles, which is more than su�cient given the instantaneous

output that is normally produced by a trained deep learning model [10].

In the next Deep-DBA cycle, during the first reporting cycle p1 , the ONUs

start data transmission immediately; however, they also send REPORT messages

at the end of their transmission window marking the start of the reporting cycles.

The total number of cycles in one Deep-DBA cycle K, can be obtained as:

K = P +Q. (3.1)

To highlight the merits of the o✏ine Deep-DBA, we calculate its gain com-

pared to regular o✏ine and online DBA schemes. For the reader’s convenience,
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we summarize the notations used in Table 3.1.

Table 3.1: Summary of Notations.

Notation Description

N The number of ONUs

TGj
i
/ TRj

i
Total delay for GATE / REPORT of ONU j in cycle i

T
proc
G / T

proc
R GATE / REPORT processing time

T
trans
G / T

trans
R GATE / REPORT transmission time

T
prop
j Propagation time of ONU j’s packet

TDBA / TDeep-DBA DBA computation/prediction time

T
end
i End-of-cycle overhead in cycle i

Ri REPORTs overhead in cycle i

ODeep-DBA Total overhead using Deep-DBA

OREG Total overhead using a regular PON

The total delay caused by a GATE message destined for ONU j in cycle i

equals to 2 processing delays, one at the OLT and the other at the ONU, in

addition to the transmission and propagation delays.

TGj
i
= (2⇥ T

proc
G ) + T

trans
G + T

prop
j . (3.2)

Similarly, the total delay caused by a REPORT message from ONU j in cycle

i is computed as follows:

TRj
i
= (2⇥ T

proc
R ) + T

trans
R + T

prop
j . (3.3)

As illustrated in Fig. 3.3, the reporting cycles with Deep-DBA are similar to

the o✏ine cycles of a legacy DBA (that is, an ONU sends a request message in
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cycle i� 1, and receives a grant from the OLT for cycle i). However with Deep-

DBA, two salient overhead periods that occur in these cycles are eliminated in the

prediction cycles, namely the end of the cycle idle time, T end
i , and the REPORT

messages transmission time. The overhead T
end
i comprises the time taken by

the N
th REPORT message to be transmitted and processed, the time taken to

compute the DBA, TDBA, and the time taken by the first GATE message to be

transmitted and processed. Thus, T end
i can be computed as follows:

T
end
i =

8
>><

>>:

TRN
i
+ TDBA + TG1

i
i 2 {p1 , p2 , ..., pP }

0 i 2 {q1 , q2 , ..., qQ}
(3.4)

As such, the total overhead caused by REPORT messages during a Deep-DBA

cycle i, Ri, would be obtained by:

Ri =

8
>><

>>:

(N � 1)⇥ T
trans
R i 2 {p1 , p2 , ..., pP }

0 i 2 {q1 , q2 , ..., qQ}
(3.5)

Here, the transmission delay of the N th ONU is accounted for in (3.4). Thus,

the control overhead would only be incurred in the reporting cycles. Therefore,

the total overhead using Deep-DBA can be computed as follows:

ODeep-DBA =
PX

i=1

(T end
i +Ri). (3.6)

Conversely, in a regular PON model, the total overhead using o✏ine schedul-
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ing would be computed as follows:

OREG =
KX

i=1

(T end
i +Ri). (3.7)

Consequently, the total gain G obtained via Deep-DBA can be estimated as

follows:

G = OREG �ODeep-DBA =
QX

i=1

(T end
i +Ri). (3.8)
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Chapter 4

Performance Evaluation

To validate the e↵ectiveness of the proposed scheme, we generate training

data and conduct extensive simulations using OMNET++ [50]. The simulation

parameters, as in [51], are shown in Table 4.1. The 95% confidence interval of the

simulation results gave ⇡ 2% variation, which is statistically insignificant; hence

it is not shown in the figures.

Table 4.1: Simulation parameters.

Number of ONUs 16

Channel speed 1 Gbps

Link speed between ONU and user 65 Mbps

Distance from OLT to ONU 20 km

Guard time 1 µs

Processing time (T proc
R and T

proc
G ) 10 ns

Maximum cycle time 2 ms

ONU bu↵er size 10 MB

TDBA, TDeep-DBA ⇡ 0 (negligible)
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4.1 Dataset

Without loss of generality, to validate the feasibility of the proposed Deep-

DBA scheme, we generate tra�c for the Gated and Limited scheduling disciplines,

which are the most widely used legacy disciplines for predictive DBA schemes

[2]. Namely, we implement a tra�c generator at each ONU, which generates

Poisson-distributed and Pareto-distributed tra�cs; the latter has 2000 alternating

(i.e., ON/OFF periods) sources to emulate the long-range dependence and self-

similarity of bursty Internet tra�c [28]. Furthermore, di↵erent from previous

works [17], we only make use of the request sizes, which are already included in

the REPORT messages sent from the ONUs to the OLT, and no extra features

are used to train the LSTM model so as not to add additional information in

the REPORT messages. This also experimentally proved to be su�cient for

predicting requested bandwidth without any added value for extra features.

Overall, our dataset consists of 8 million REPORT messages collected at all

network loads, which is large enough to build robust LSTMmodels that generalize

well. For di↵erent P -to-Q values, di↵erent datasets are prepared as shown in

Fig. 4.1 to train, validate and test the corresponding P -to-Q LSTM model. For

example, if a 2-to-2 model is employed, two REPORT messages are used as input,

and the next two REPORT messages are used as output, and so on. As is custom

in such settings, 80% of the dataset is used for training, 10% for validation, and

10% for testing.
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R1
R2
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R6
R7
R8
R9
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RN

2-to-2

R1 R2 R3 R4

R2 R3 R4 R5

Input Output

Ri: Request size for cycle i

2-to-4

R1 R2 R3 R4 R5 R6

R2 R3 R4 R5 R6 R7

Input Output

Figure 4.1: Dataset preparation.

4.2 Training the LSTM Model

To train the LSTM model, the dataset is normalized by dividing each request

value by the maximum queue size. As a loss-function, we use the MSE between

the predicted queue sizes and the actual queue sizes. The optimizer used to

train our models is “AdaGrad” with learning rate 0.01. For di↵erent values of

P and Q, a defined DBA scheme (i.e., Gated, Limited, etc.), PON architecture,

and tra�c distribution, the hyper-parameters of the LSTM network are tuned

accordingly. The LSTM models has 2 to 3 hidden layers and training each model
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took between 10 to 50 epochs. We have also considered both the Pareto and

Poisson tra�c distributions. However, since the results were very similar for both

tra�c types, we only report the ones for the Pareto distribution as it captures

the bursty nature of Internet tra�c [28]. We use the Tensorflow backend to build

and train our LSTM models [52]. The training was performed on a machine with

Intel XEON processor, Nvidia Quadro P2000 GPU card, and 64 GB of RAM.

Training each LSTM model took on average about 4 to 8 hours.

4.3 Setting P -to-Q

To achieve the highest gain using Deep-DBA, P must be set as small as

possible, and Q must be set as large as possible. However, the selection of these

values must not be at the expense of high prediction error and poor network

performance (in terms of packet latency and network throughput). Thus, we built

di↵erent LSTM models for di↵erent P and Q values and compared the obtained

MSE by running the models on the test set. For P = 1 (i.e., the smallest possible

value for P ), the LSTM models had significantly high errors; whereas for P � 2,

the errors were adequate. Consequently, we varied the values of P and Q and

measured the performance of each built model. As shown in Table 4.2a, we first

built LSTM models with equal values of P and Q starting from 2. Results show

that when P and Q are smallest, the lowest MSE is obtained. Next, to check the

impact of increasing P , we built LSTM models with Q = 2 for di↵erent values of
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Table 4.2: Mean Square Error with: a) P = Q, b) P � Q, c) P  Q.

P -to-Q MSE

2-to-2 4.3⇥ 10�6

4-to-4 8.8⇥ 10�6

6-to-6 9.9⇥ 10�6

(a)

P -to-Q MSE

2-to-2 4.3⇥ 10�6

4-to-2 5.7⇥ 10�6

6-to-2 6.9⇥ 10�6

(b)

P -to-Q MSE

2-to-2 4.3⇥ 10�6

2-to-4 4.8⇥ 10�6

2-to-6 8.1⇥ 10�6

2-to-8 8.8⇥ 10�6

2-to-10 1.1⇥ 10�5

2-to-12 1.3⇥ 10�5

2-to-14 1.5⇥ 10�5

2-to-16 1.7⇥ 10�5

2-to-18 1.9⇥ 10�5

2-to-20 2⇥ 10�5

(c)

P . Results in Table 4.2b show that increasing P does not yield lower MSE and

therefore will not have a positive impact on the performance. Finally, as shown

in Table 4.2c, we set P = 2 and increase Q. As expected, the MSE increases as

the value of Q increases.

Given these findings, we set P = 2, since increasing P would not o↵er lower

MSE values. In addition, increasing P would entail increasing Q to even higher

values, which in turn will cause higher prediction errors. For example, setting

P = 2 and Q = 8 means for every K = 10 cycles, 8 cycles are prediction cycles,

which sums up into 80% of all cycles being prediction cycles. Thus, to obtain the

same percentage when P = 4, Q must be set to 16.

To choose the best value of Q, we compare the network performance under

Deep-DBA with the Limited discipline for di↵erent values of Q. As shown in

Fig. 4.2a, the throughput on high loads increases with increasing Q values, since
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(a) (b)

(c) (d)

Figure 4.2: Comparison of di↵erent P -to-Q LSTM models: a) Throughput, b)
Average delay, c) REPORT overhead, d) Total overhead.

increasing the number of prediction cycles will decrease both the REPORT and

T
end
i overheads, leaving the gained bandwidth to be used by the ONUs. Fig.

4.2b shows small di↵erence in delay for di↵erent models. However, the lowest

delay is obtained for Q  6, whereas the delay increases for higher values of Q.

This is caused by the mis-predictions of these models; this behavior is related to

the obtained MSE errors corresponding to each of these models. Fig. 4.2c and

Fig. 4.2d highlight how both the REPORT and total overhead (i.e., T end
i + Ri)

decrease as the value of Q increases. However, for high values of Q, the low

REPORT and total overhead bandwidth are due to the long cycle times caused
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by over-predicting ONU bandwidth demands by the LSTM model. These over-

predictions cause the OLT to grant larger transmission windows compared to

what is actually needed by the ONUs, which results in wasted bandwidth. Thus,

choosing the best Q value would be equivalent to maximizing the throughput,

meanwhile minimizing the average delay and total wasted bandwidth (which

comprises both the total overhead and prediction error wasted bandwidth). This

is equivalent to maximizing the following objective function:

f(P,Q) =
throughput(P,Q)

delay(P,Q)⇥ waste(P,Q)
. (4.1)

Therefore, to choose the best P -to-Q ratio, we normalize the di↵erent param-

eters, which are obtained from simulations, and plot f(P,Q) in Fig. 4.3. Results

show that the best P -to-Q under the Limited discipline is 2-to-6, with an MSE of

8.1⇥ 10�6. In contrast, the best P -to-Q value under the Gated scheme is 2-to-2,

with an MSE of 1.7⇥ 10�4. Yet, it can be observed that the 2-to-4 model could

also achieve a “good-enough” trade-o↵ between an “acceptable” f(P,Q) value

and higher network utilization. We note that the MSE under the Gated scheme

is higher compared to the Limited scheme due to the high fluctuations of queue

sizes, especially at higher loads, making training of such models more di�cult.

We validate the performance of the best P -to-Qmodels under the Limited and

Gated schemes in Fig. 4.4 (i.e., with the 2-to-6, and 2-to-2 models, respectively),

by comparing the predicted Internet tra�c versus the actual Internet tra�c.
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(a) (b)

Figure 4.3: Choosing P -to-Q for: a) Limited scheme, b) Gated scheme.

Here, “Link Load” corresponds to the load on the access link (i.e., between the

user and the ONU). We observe that with the Limited scheme, the predicted

tra�c misses some very short bursts; however, it closely tracks the actual tra�c

overall. On the other hand, as expected, for the Gated scheme, the margin of

mis-predicted queue size and incoming bursts is slightly larger (except at Load

1.0, which makes the system no longer in steady state). Moreover, we deduce

that as Q increases and P decreases, the accuracy of the predictions decreases,

and vice versa. Hence, there is a trade-o↵ between the number of predicted cycles

and the accuracy of predictions.

4.4 Comparison of Deep-DBA with other schemes

Fig. 4.5 compares the performance of the proposed Deep-DBA scheme under

the Limited discipline (i.e., using the 2-to-6 LSTM network) with the prediction-

based IPACT with Grant Estimation (IPACT-GE) scheme that predicts the size
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(a)

(b)

Figure 4.4: Predicted vs. Actual bandwidth demand: a) Limited scheme (with
2-to-6), b) Gated scheme (with 2-to-2).
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(a) (b)

(c)

Gain

(d)

Figure 4.5: Comparison of schemes under the Limited discipline: a) Throughput,
b) Average Delay, c) REPORT Overhead, d) Total Overhead

of incoming requests between two successive cycles [46], the legacy o✏ine Limited

(i.e., Lim-O✏ine) DBA scheme, the legacy online Limited (i.e., Lim-Online), and

the most recent machine learning based predictive DBA (i.e., MLP-DBA) [17].

As shown in Fig. 4.5a, Lim-O✏ine exhibits the lowest throughput due to the

control and T
end
i overheads. Lim-Online, MLP-DBA, and IPACT-GE exhibit

higher throughput since they are online schemes and thus do not incur the T
end
i

overhead. Deep-DBA exhibits increased throughput similar to the online schemes

even though it is an o✏ine scheme. This improvement is due to the reduction of

the control and the T
end
i overheads.
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As shown in Fig. 4.5b, the online schemes exhibit the lowest delay, which

is expected since they have no T
end
i overhead, which reduces the idle and cycle

times. MLP-DBA and IPACT-GE show slightly better results compared to the

legacy Lim-Online since they use bandwidth prediction with the specific aim of

decreasing the packet delay. The Lim-O✏ine scheme exhibits higher delays due

to the overhead TREG calculated in (3.7). On the other hand, even though Deep-

DBA is an o✏ine scheme, its performance is much better that the Lim-O✏ine

scheme and is closer to the online schemes. This is due to the gain achieved

as per (3.8). However, as previously mentioned, lower packet delays could be

attained using Deep-DBA for di↵erent P -to-Q ratios. Nevertheless, these may

either a↵ect the prediction accuracy and/or may not achieve the most optimal

bandwidth utilization.

The control overhead due to REPORT messages can be observed in Fig. 4.5c.

The online schemes have a higher REPORT overhead than the o✏ine scheme.

This is because the online schemes do not have the T
end
i overhead, which results

in a shorter cycle time compared to the o✏ine schemes. Typically, at lower loads,

the cycle time is shorter, which causes more control messages to be exchanged in

short periods of time; as such the control overhead decreases as the load increases.

However, we notice that Deep-DBA achieves the lowest control overhead over all

loads (e.g., around 42 Mbps with Deep-DBA, compared to 60 Mbps for the Lim-

O✏ine scheme, and around 75 Mbps for the online schemes). At higher loads,

the cycle time is equal to the maximum cycle time; hence, the control overhead
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reaches its lowest value for all schemes (e.g., 5.5 Mbps with IPACT-GE, o✏ine

Limited, and o✏ine Limited-GE), whereas it is equal to 1.5 Mbps with Deep-

DBA. This highlights the advantages of Deep-DBA, which enables the OLT and

ONUs to only exchange control messages in reporting cycles every K cycles, as

opposed to every cycle.

Fig. 4.5d shows the total overhead observed in the network (which is the con-

trol messaging overhead plus the cycle idle time) under all schemes. As noticed,

even though online schemes are optimized to reduce the idle time, Deep-DBA is

still able to achieve the lowest total overhead. This bandwidth gain can be used

so that more users can be provisioned in the network, and better QoS support

can be attained. This again highlights the merits of Deep-DBA over existing

approaches.

In Fig. 4.6, we compare the performance of Deep-DBA under the Gated disci-

pline (i.e., using the 2-to-2 and 2-to-4 LSTM models) with the o✏ine Gated DBA

scheme (Gated-O✏ine). Due to their nature, the prediction of IPACT-GE in [46]

and MLP-DBA in [17] cannot be directly applied to an o✏ine Gated scheme. As

shown in Fig. 4.6a, the 2-to-2 Deep-DBA provides the same throughput as the

o✏ine Gated discipline, whereas the 2-to-4 provides lower throughput, which is

captured by f(P,Q) in (4.1).

In Fig. 4.6b, the average delay with Deep-DBA is a bit higher than with

Gated-O✏ine. This is due to the “mis-predictions” of the LSTM model, which

will make the ONU bu↵er more packets (thus, request more bandwidth), thereby
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Figure 4.6: Comparison of schemes under the Gated discipline: a) Throughput,
b) Average Delay, c) REPORT Overhead, d) Total Overhead

making the OLT grant the ONUs larger transmission windows even at low loads.

This e↵ect is caused by the nature of the Gated discipline, which unlike the

Limited discipline, does not bound the bandwidth demand by a maximum value;

thus, the mis-prediction would have a snowballing e↵ect.

Finally, Fig. 4.6c and Fig. 4.6d show how Deep-DBA exhibit lower REPORT

and total overheads than Gated-O✏ine. More importantly, the results here show

how the chosen model (i.e., 2-to-2 or 2-to-4) presents a trade-o↵ between higher

bandwidth utilization (that is, higher bandwidth gain) and downgraded network

performance (i.e., throughput and delay).
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this work we proposed Deep-DBA, a novel DBA scheme for PON, which

employs deep learning to predict the bandwidth demands of ONUs for several

future polling cycles by peep-holing only a few previous cycles, so as to reduce the

overhead due to the request-grant mechanism. Results demonstrate how Deep-

DBA is able to combine the advantages of both the online and o✏ine schemes,

thereby improving the network utilization achieved with online schemes, and

at the same time maintaining the properties of fairness and QoS support that

o✏ine schemes enable, without impairing the network’s performance. The fast

progress in the field of machine learning promises new and better architectures

and techniques that will be able to increase the number of prediction cycles and

decrease the prediction error. The proposed method has the flexibility to employ
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any current or future sequence-to-sequence machine learning model. Moreover,

Deep-DBA can operate with any scheduling scheme.

5.2 Future Work

Our proposed work paves the way to further investigate and solve some inter-

esting and potential issues. We list some of them as follows:

• According to [53], the global energy consumption will increase by 29 per-

cent by year 2040, with ICT accounting for 2 percent of the total CO2

emmissions, which is expected to double in the next 10 years [54]. Several

DBA algorithms were proposed in the literature to reduce the energy con-

sumption of PON. However, with such schemes, the average packet delay in

the network is notably increased to prolong the sleep time of the network

components. Energy-aware PONs will reduce the green house gas emis-

sions as well as the energy cost. Nevertheless, this should not a↵ect the

network performance, and must ensure QoS, especially for delay sensitive

applications like Tactile Internet. Therefore, with the use of deep learning,

an energy-aware version of the proposed Deep-DBA, that reduces power

consumption without a↵ecting network performance in terms of delay and

utilization, can be an interesting extension of this work.

• Machine learning can be employed to perform Internet tra�c prediction

for di↵erent classes of service (i.e., EF, AF, BE). This has the potential of
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providing better QoS for high-priority tra�cs without starving low-priority

tra�cs. In addition, predicting the global demand of all the ONUs in

the network will give a comprehensive view of the tra�c demand of the

whole network. This can better organize and oversee granting procedure

for di↵erent priority queues and delay sensitive flows. Moreover, modify-

ing Deep-DBA to support Intra-ONU and Inter-ONU scheduling requires

further investigation.

• As discussed in Section 3.1, in addition to REPORT messages, the band-

width demands can be predicted as incoming tra�c flows at the end-user

side and/or as GATE messages. Further studies are needed to compare

the e↵ects of these predictions on the network performance, especially that

tra�c flows are independent from the employed DBA algorithm and the

network architecture and settings.

• Improving the long-horizon forecasting of the LSTM model so as to increase

the accuracy and the number of predicted future cycles would increase the

reduced overhead and further increase the network bandwidth utilization.
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Appendix A

Acronyms

ADSL Asymmetric DSL
AF Assured Forwarding
AI Artificial Intelligence
ANN Artificial Neural Network
BE Best E↵ort
CBR Constant Bit Rate
CIR Committed Information Rate
CM Cable Modem
CO Central O�ce
DBA Dynamic Bandwidth Allocation
DSL Digital Subscriber Line
EF Expedited Forwarding
EIR Excess Information Rate
EPF Earliest Packet First
EPON Ethernet PON
FFNN Feed Forward Neural Network
GPU Graphics Processing Unit
HOL head-of-line
ICT Information and Communication Technology
IoT Internet of Things
IP Internet Protocol
IPACT Interleaved Polling with Adaptive Cycle Time
IPACT-GE IPACT with Grant Estimation
LQF Longest Queue First
LR-PON Long-Range PON
LSTM Long Short-Term Memory
LSTP Limited Sharing with Tra�c Prediction
MAC Medium Access Control
ML Machine Learning
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MLP Multi-Layer Perceptron
MLP-DBA ML based Predictive DBA
MPCP Multi-Point Control Protocol
MSE Mean Squared Error
NG-PON Next Generation PON
NN Neural Network
OLT Optical Line Terminal
ONU Optical Network Unit
PIR Peak Information Rate
PON Passive Optical Network
QoS Quality of Service
RMSE Root Mean Squared Error
RNN Recurrent Neural Network
RTT Round Trip Time
SAE Stacked AutoEncoder
SLA Service Level Agreement
SPID SLA Proportional-Integral-Derivative
TDM Time Division Multiplexing
VDSL very high-speed DSL
VoIP Voice-over-IP
WDM Wavelength Division Multiplexing
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