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AN ABSTRACT OF THE DISSERTATION OF

Amir Safi  for Doctor of Philosophy
Major: Environmental and Water Resources Engineering

Title: Stochastic modeling of saltwater intrusion in highly heterogeneous coastal aguifers

This research presents a novel method for a reliable quantification of uncertainties with the
prediction of saltwater intrusion (SWI) in poorly field-characterized heterogeneous coastal
aquifers. The method uses crude prior information about hydrogeological input parameters,
and simultaneously incorporates parameter uncertainty and imprecision in prior information
to infer the required statistics for a Monte Carlo (MC) simulation into the uncertainty
analysis. Compared with other methods, it is a computationally effective method for
uncertainty analysis in highly heterogeneous coastal aquifers. In this method, the Sequential
Gaussian Simulation (SGS) is used to create random parameter fields while fuzzy set theory
accounts for the imprecision pertaining to prior information. Prediction uncertainties are
evaluated by generating a large number of calibration-constrained models using the Null
Space Monte Carlo (NSMC) method.

This research presents another novel method that is used to design additional hydrogeological
field-investigations towards reducing the prediction uncertainties in a SWI system. The
method provides flexibility concerning model dimensionality, allows for any desired task-
oriented formulation, targets any measurement type, accounts for various sources of
uncertainty while also ensuring that it is cost-effective. It expands on the existing linear data-
worth analysis method through the incorporation of Bayesian model averaging (BMA) and
genetic algorithms (GA) when conducting a three-dimensional location search for sampling
new data in non-linear systems. Both methods can use any model independent tools for
parameter estimation and any variable-density simulation codes.

The efficiencies of these methods in quantifying and reducing prediction uncertainties were
demonstrated using the SEAWAT model and data from an actual heterogeneous coastal
aquifer with limited hydrogeological field-data. Located along the Eastern Mediterranean
(Beirut), the pilot aquifer consists of karstified limestone of Cretaceous age overlain by
Upper Tertiary and Quaternary unconsolidated deposits. The SEAWAT model was used to
predict the displacement of the 3D salt/freshwater interface caused by 50 years of
groundwater abstraction as well as the volume of freshwater remaining in the aquifer after
such abstraction. The simulations results were further used to enhance the understanding of
the response of coastal aquifer systems to local and global stresses as well as the role of
adaptation strategies in alleviating SWI.

The prediction uncertainty was quantified in response to the uncertainty with heterogeneity in
the hydraulic conductivity. The estimated uncertainty of the model prediction was more

Vi



realistic for the proposed method than for the traditional methodologies. The outcome
revealed that a source of freshwater with the volume of 1.3 to 1.5 km3 exists in the deep parts
of the Beirut aquifer. The design method identified the optimal locations of 1 to 5 observation
wells for sampling future head/salinity data in order to reduce uncertainties with the model
prediction. The optimal number of observation wells was found to be depended mostly on the
ratio between the start-up cost of the monitoring project and the cost of drilling the first
observation well, while the implementation cost of additional observational wells was
secondary but also important. The outcome of model simulations suggested that
anthropogenic activities have more noticeable impacts on SWI compared with climate
change. Interestingly, coupling anthropogenic activities and climate change had a synergistic
effect that aggravated the intrusion beyond the sum of the individual impacts. The
effectiveness of adaption strategies in alleviating SWI was found to hinge on proper planning
in terms of timing, duration, capacity and context.

Keywords: Saltwater intrusion, heterogeneous coastal aquifers, anthropogenic
interventions, global climate change, NSMC, SGS, Fuzzy, BMA, GA
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CHAPTER 1

INTRODUCTION

1.1 Background

Groundwater constitutes a main source of drinking water in many coastal urban
areas in arid or semi-arid regions. Aquifer over-pumping, land-use change, and climatic
changes can cause the intrusion of seawater into groundwater, generally known as saltwater
intrusion (SWI) (Sophiya & Syed, 2013). Large hydraulic conductivities (e.g. fracture zones)
along the coast may intensify SWI (Werner et. al., 2013) which is invariably becoming an
increasing threat to urban coastal communities worldwide by contaminating groundwater and
impairing its productive and consumptive value (Selmi, 2013; Park et al., 2012). As such,
decision makers are increasingly under pressure to plan and protect the economic, social, and
environmental security of coastal communities as large populations rely on these reservoirs
(Sanford & Pope, 2010). Adopting a well-founded management strategy to protect
groundwater quality in coastal aquifers requires an understanding of the relative impacts of
drivers forcing the SWI (Safi et al., 2018). While the impacts of climate change and local
pressures have been repeatedly assessed in urbanized coastal aquifers, their synergistic
impacts remain ambiguous (Werner et al., 2013). In this context, mathematical models can be
used to evaluate the impacts of drivers and their synergistic impacts (Cobaner et al., 2012)
and serve as policy planning tools to examine the sustainability of groundwater exploitation
in coastal aquifers. However, model predictions are invariably associated with uncertainties
due to limited field-data to ascertain these predictions thus limiting their value in providing

sustainable management of water resources (Werner et al., 2013).



It is important to determine the uncertainty with model predictions when they are
used for decision support (Keating et. al., 2010). Several Monte Carlo-like methods have
been reported during the past two decades to quantify the uncertainty associated with model
predictions of a hydrogeological system (Harvey & Gorelick, 1995; Beven & Binley, 1992;
Tavakoli et al., 2013; Kitanidis, 1996; Yeh et al., 1996; Woodbury & Ulrych, 2000; Carrera
et al., 2005; Tonkin and Doherty, 2009). They can be used to generate a range of model
predictions obtained by using different parameter sets (multiple realizations) that are
conditioned by calibration dataset (Keating et al. 2010). However, these methods are either
excessively time consuming to apply for SWI modeling in highly parameterized systems due
to long model runtime, and mathematical complexities of inverse methods (e.g. Markov
Chain Monte Carlo) or require a detailed prior probability distribution (e.g. lognormal
distribution) to generated multiple calibration-constraints realizations (e.g. NSMC). In cases
where the expert knowledge or the available calibration dataset provide limited information
about parameters that inform model predictions, the prediction uncertainty can be
underestimated using these methods. This is particularly the case for all SWI systems if the
salt/fresh water interface is located in the deeper parts of an aquifer with limited information
about its deep hydrogeology. If the prediction uncertainty is underestimated, it may lead to
results that can mislead decision makers, and thus cause undesirable management decisions
(Uusitalo et al., 2015).

Prediction uncertainties can be reduced by collecting additional field-data to be used
as a calibration dataset through model inversion (Dausman et al., 2010). In practice, the
locations and type of additional data are often determined based on expert opinion with no
guarantee that sampling locations can contribute to optimal reduction in uncertainties
(Vilhemsen and Ferre, 2017). Given the high cost of data collection, it is imperative to design

a sound monitoring network that could constrain prediction uncertainties. Several methods



have been proposed during the past two decades to guide the design of monitoring networks
(Tiedeman et al. 2003; Herrera et al. 2000; Rizzo et al. 2000; Reed et al. 2000; Cieniawski et
al. 1995; Wagner 1995; Andricevic and Foufoula-Georgiou 1991; Loaiciga 1989; Rouhani
and Hall 1988; Wohling et al. 2016; Dausman et al. 2010). Existing methods however fail to
simultaneously provide the flexibility concerning model dimensionality, allow for a desired
task-oriented formulation targeting any observation type, and account for various sources of
uncertainty (e.g. geologic structure, heterogeneity, boundary condition, and source/sink)
while keeping the cost of data collection at a minimum.

This research aims to fill a gap in the field of SWI modeling and uncertainty analysis
by developing new methods and tools to quantify prediction uncertainties in deep
heterogeneous systems that lack field-data, and design allocation of future field-data towards
reducing prediction uncertainties in such systems. The methods are applied to a karstic
coastal aquifer located along the Eastern Mediterranean (Beirut, Lebanon) for evaluating
their performances. The results are used to better understand the processes that govern SWI
in urban coastal aquifers. The urbanized coastal aquifer of Beirut has been increasingly
reported to be vulnerable to intensive SWI due to over-exploitation of groundwater,
urbanization, climate change, and large hydraulic conductivities (i.e. faulted zones) along the
coast (Rachid el al., 2017, 2015; Safi et al., 2018). Although SWI in the upper parts of the
aquifer have been assessed through field investigations, studies addressing SWI in the deeper
parts of the aquifer as well as simulating SW1 in the entire aquifer through mathematical
modeling are lacking. For this reason, the Beirut aquifer system is not well protected and is
poorly managed. Nevertheless, due to lack of input data about the aquifer’s hydrogeology,
large uncertainties are expected in any modeling effort. Model prediction uncertainties should
be quantified and ideally reduced by collecting more data if the model is used for decision

support.



1.2 Research Objectives

The proposed research targets the following objectives:

(1) Develop a method to quantify uncertainties associated with model predictions of
SWI in a heterogeneous coastal aquifer for which deep hydrogeological characteristics are
not known;

(2) Set-up and calibrate a 3D variable-density groundwater flow and solute transport
model for simulating SWI in the Beirut coastal aquifer; address data challenges in modeling
of SWI; evaluate the role of model inversion in estimating hydraulic conductivities; and
analyze the impact of uncertainty with estimated hydraulic conductivities on the prediction of
SWI in this aquifer;

(3) Evaluate the efficiency of the method to quantify prediction uncertainties by
simulating SW1 variables in the deep parts of the Beirut coastal aquifer for which
hydrogeological data is almost non-existent:

(4) Develop a method to guide collection of future hydrogeological field-data that
can contribute to reducing prediction uncertainties in non-linear 3D groundwater systems;

(5) Evaluate the performance of the method by identifying the best locations for
sampling new (yet to be collected) head and salinity data from the deep parts of the Beirut
coastal aquifer to reduce uncertainties in predicting SWI,

(6) Examine the dynamics of SW1 under anthropogenic interventions and global
climate change, and their synergistic impacts; and evaluate the effectiveness of local
adaptation planning in alleviating SW1 in urbanized coastal aquifers;

(7) Analyze the impacts of uncertainty with input data about aquifer discharge
(water consumption rate and population growth rate) on the seasonal and annul predictions of

SWI in the Beirut aquifer; and assess the effectiveness of local adaptation planning (in line



with the national plans) to provide informed policy and decision making for sustainable

groundwater management in the Beirut aquifer.

1.3 Research innovation

While research on stochastic modeling of groundwater flow and solute transport has
been recurrently carried out for heterogeneous aquifers, studies addressing SWI in highly
heterogeneous coastal aquifer systems with poor hydrogeological characterization in their
deep parts are lacking. The proposed research is innovative because it is the first to develop a
method that quantifies the uncertainty with prediction of SWI in such situations. The
developed method can be applied to any heterogeneous aquifer systems with deficit in any
type of hydrogeological data (e.g. hydraulic conductivity, porosity, groundwater abstraction
rate ...). In addition, while several studies have been proposed for optimal design of
monitoring networks towards reducing uncertainties in model predictions, limited to none
identifies the 3D allocation of additional field-data while considering uncertainty with a
conceptual model. The proposed research is equally innovative because it is the first to
develop a method that optimizes the number and allocation of additional field measurements
with different depths at a single and multiple spatial location by constraining cost to remain at
a minimum and considering model non-linearity. Application of the developed methods in
the field of groundwater modeling can be worldwide. They can be applied to any 3D
hydrogeological system that lacks an adequate amount of field-data required as modeling
input.

The proposed research is also innovative in the use of three-dimensionality for
comprehensively appraising the displacement of the salt/fresh water interface and mass

encroachment of salinity by linking the impacts of anthropogenic interventions, global



climate change and heterogeneity, and their synergistic impacts on the spread of SWI in a
highly heterogeneous coastal aquifer. The outcome of the research is the first detailed
assessment of the impacts of SWI drivers to the propagation of intrusion in the Beirut coastal
aquifer. Concurrently, this study is the first to evaluate the effectiveness of local adaptation
planning (in line with national plans) to provide informed policy and decision making for
sustainable aquifer management in the Beirut aquifer. As a main outcome, this dissertation
attempts to comprise the first comprehensive 3D multi-objective variable-density
groundwater flow and solute transport model for the Beirut coastal aquifer. While the
propagation of SWI has been reported as increasing in the upper part of the Beirut aquifer,
limited to no work focused on the spread of SWI in the entire aquifer as well as the prediction
of the volume of freshwater stored in the deep parts of this aquifer. This is an area worthy of
further investigations because the limited remaining freshwater resources in the upper aquifer
is likely to encourage authorities to start tapping the deeper parts of the system in the near
future. Hence, this research is innovative in its prediction outcome about the future of the

Beirut coastal aquifer.

1.4 Dissertation structure

This dissertation is presented in seven chapters. Figure 1-1 illustrated coupling the
objectives to the chapters.

Chapter 1 is a general introduction on modeling of SWI in heterogeneous coastal
aquifers, the main research objectives, innovations, and Dissertation structure.

Chapter 2 comprises a literature review on SW1 in heterogeneous coastal aquifers,
and a review of the challenges and gaps in the mathematical modeling of SWI.

Chapter 3 presents a method for a reliable quantification of uncertainty with

predictions of SWI in a heterogeneous coastal aquifer system for which the deep
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hydrogeological characteristics are not known. The efficiency of the proposed method in
quantifying the prediction uncertainty is demonstrated using a SEAWAT model and data
from the Beirut coastal aquifer. A 3D variable-density flow and solute transport model
(SEAWAT) was set-up for the Beirut aquifer. The proposed method was used to quantify
uncertainties with predicting two variables in the deep parts of the Beirut aquifer that lacks
hydrogeological field-data: (1) the displacement of the salt/fresh water interface caused by 50
years of groundwater abstraction (from 1969 to 2019), and (2) the volume of freshwater
remaining in the aquifer after groundwater abstraction (in 2019). The results were compared
to uncertainty estimates obtained through the former uncertainty analysis method.

Chapter 4 develops a design methodology to optimize multiple locations of new (yet
to be collected) observation wells that can contribute to reducing uncertainties in predicting
multiple variables in a nonlinear groundwater model. The method optimizes simultaneous
measurements with different depths at a single and multiple observation locations (i.e. three
dimensions) at a minimum cost. The performance of the method was demonstrated by
reducing uncertainties with predicting the two variables simulated in Chapter 2. The target of
the optimization was to identify the best locations for placing 1, 2..., 5 new observation wells
with head and salinity measurements at different depths.

Chapter 5 analyzes the dynamic of SWI in response to anthropogenic activities and
global climate change as well as their synergy by predicting SW1 in the Beirut aquifer for the
near future from 2012 to 2032. The analysis considered scenarios of groundwater abstraction
rates (water consumption and population growth rates) and climate change (sea level rise and
temperature) based on reported rates/values for the Beirut aquifer. In line with national plans,
adaptation strategies were evaluated to inform decision makers about their effectiveness in

alleviating SWI in the Beirut aquifer.



Chapter 6 summarizes the Dissertation and concludes with corresponding challenges

to address in future work.

Chapter 7 lists bibliographic citations for the whole Dissertation.

Chapter 1

A4

- General introduction on modeling of SWI in high heterogeneous coastal aquifers
- Research objectives, research innovations, and dissertation structure

Chapter 2

- Literature review on SWI in high heterogeneous coastal aquifers

"| - Review of the challenges and gaps in the mathematical modeling of SWI

Objective 1: Develop a method to quantify uncertainties associated with model predictions
of SWI in a heterogeneous coastal aquifer for which deep hydrogeological characteristics are
not known.

Chapter 3

Objective 2: Set-up and calibrate a 3D variable-density groundwater flow and solute
transport model for simulating SWT in the Beirut coastal aquifer; address data challenges in
modeling of SWI; evaluate the role of model inversion in estimating hydraulic
conductivities; and analyze the impact of uncertainty with estimated hydraulic conductivities
on the prediction of SWI in this aquifer.

Objective 3: Evaluate the efficiency of the method to quantify prediction uncertainties by
simulating SWI variables in the deep parts of the Beirut coastal aquifer for which
hydrogeological data is almost non-existent.

Objective 4: Develop a method to guide collection of future hydrogeological field-data that

Chapter 4

Chapter 5

e

can contribute to reducing prediction uncertainties in non-linear 3D groundwater systems.

Objective 5: Evaluate the performance of the method by identifying the best locations for
sampling new (yet to be collected) head and salinity data from the deep parts of the Beirut
coastal aquifer to reduce uncertainties in predicting SWIL.

Objective 6: Examine the dynamics of SWI under anthropogenic interventions and global
climate change, and their synergistic impacts; and evaluate the effectiveness of local
adaptation planning in alleviating SWI in urbanized coastal aquifers.

Objective 7: Analyze the impacts of uncertainty with input data about aquifer discharge
(water consumption rate and population growth rate) on the seasonal and annul predictions
of SWI in the Beirut aquifer; and assess the effectiveness of local adaptation planning (in
line with the national plans) to provide informed policy and decision making for sustainable
groundwater management in the Beirut aquifer.

Chapter 6 ———-‘ Summary of thesis
Chapter 7 ——’{ Bibliography

Figure 1-1 Dissertation structure and coupling of research objectives to chapters
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CHAPTER 2

MODELING SALTWATER INTRUSION IN COASTAL
AQUIFERS: A CRITICAL REVIEW AND FRAMEWORK FOR
UNCERTAINTY ANALYSIS

Abstract

Saltwater intrusion (SWI) is recognized as an increasing threat to coastal
communities worldwide by contaminating groundwater and impairing its consumptive value.
The extent of intrusion is primarily driven by anthropogenic activities, human induced
climate change and their synergy. Mathematical models have been developed to understand
the drivers and responses of SWI in order to properly manage water resources in coastal
aquifers. During the past century, considerable modeling efforts have been reported on many
of the hydrological and hydro-chemical characteristics of SWI. Despite much progress,
challenges persist to understand the dynamics of SWI in response to its drivers due to the
uncertainty associated with model predictions of SWI models. This review presents the state
of the knowledge on the mechanisms, types and drivers of SWI, its mathematical modeling
with emphasis on sources of uncertainty in predicting SWI including previously applied
methods to address such uncertainties. We define the main limitations, controlling factors,
computational demands, and required prior information of existing techniques to quantify and
reduce uncertainties. We conclude in outlining research gaps and future needs with a
framework to fill in existing gaps.

Keywords: Saltwater intrusion, prediction uncertainty



2.1 Introduction

Coastal aquifers provide freshwater resources for more than one third of the world’s
population living in coastal regions (Li et al. 2013). Groundwater constitutes a main source of
drinking water in many coastal urban areas particularly in arid or semi-arid regions
(Yakirevich et al. 1998; Hosseinifard and Aminiyan 2015). The use of coastal groundwater
for drinking, agriculture or industry increases the susceptibility of coastal aquifers to the
landward encroachment of saltwater into the aquifer, generally known as saltwater intrusion
(SWI) (Freeze and Cherry 1979; Bear et al. 1999). With increasing groundwater extraction
and climate change impacts, SWI has become a growing threat to urban coastal communities
worldwide by contaminating groundwater and impairing its productive and consumptive
value (Park et al., 2012). As such, decision makers are increasingly under pressure to plan
and protect the economic, social, and environmental welfare of coastal communities relying
on these reservoirs (Sanford and Pope 2010).

The spread of SWI is promoted by many factors that can be divided into two
categories: 1) those that drive the intrusion such as natural processes (climate change, sea
level rise (SLR), increased temperatures and evapotranspiration, and reduced precipitation)
and anthropogenic activities (groundwater over-pumping, decreased aquifer recharge,
pollution, leakage, sewers induced by urban development) (Kumar et al. 2007; IPCC 2014;
Singh 2014); and 2) those that intensify the intrusion such as large hydraulic conductivities
(e.g. fracture zones) and irregular fissures along the coast, and conduits (Werner et. al.,
2013). The combination of these factors and their synergy with different mechanisms (i.e.
lateral and vertical) and various types of SWI (i.e. passive, active, and passive-active) can
produce a complex hydrodynamic system. This complexity makes it difficult for water

resources managers and decision makers to understand the future of SW1I in order to plan a
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management strategy to secure the quantity and quality of groundwater in coastal aquifers
(Tribbia and Moser 2008; Comte et al. 2016).

Considerable efforts have been dedicated to assess the dynamics of SWI in response
to its drivers and influencing factors involving field monitoring and mathematical modeling
that can account for temporal and spatial variations in hydrological (source/sink) and
hydrogeological (geologic structure, boundary conditions, head and salinity distribution,
position of salt/fresh water interface) input parameters through analytical or numerical
solutions (Sophiya and Syed 2013; Cobaner et al. 2012; EI Shinnawy and Abayazid 2011;
Rasmussen et al. 2013). In these studies, model predictions of SW1 are invariably associated
with uncertainties due to limited field-data about input parameters that are vital for accurate
predictions, thus limiting their value in the context of sustainable water resources
management (Werner et al. 2013). It is crucial to reduce these uncertainties when they are
used for supporting decision-makers (Vilhemsen and Ferre 2017). While much efforts
targeted the development, review and application of various techniques to quantify and
reduce prediction uncertainties in groundwater models, limited work was reported about
uncertainties in SWI predictions (Herckenrath et al. 2011). Thus, coastal management
decisions have often been made without considering the failure risk associated with a given
strategy due to model predictions uncertainties (Lecca and Cau 2004).

While several reviews of SWI drivers and analysis of their impacts using
mathematical modeling have been reported in the literature (e.g. Werner et al. 2013; Ketabchi
et al. 2016; White and Kaplan 2017), none targeted knowledge gaps in the uncertainty
analysis of SWI models. Prediction uncertainty analysis is particularly important in
simulating SW1 in coastal aquifer systems because some elements in the conceptual model
(e.g. heterogeneity in hydraulic conductivity of deep layers) that highly affect SWI

predictions can seldom be identified from available data or expert knowledge (Sanz and VVoss
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2006; Werner and Simmons 2009). This study presents the state of knowledge in SWI
mechanisms, type, influencing factors along with the progress in related mathematical
modeling. In particular, we emphasize the gaps in prediction uncertainty analysis in SWI
modeling. We divide the sources of SWI prediction uncertainty into two categories relating to
model structural errors and parameter uncertainties including methods to quantify and reduce
such errors/uncertainties. Finally, we examine methods of uncertainty analysis and suggest

future needs.

2.2 SWI dynamics and drivers

Sustainable management of freshwater along coastal aquifers is imperative to protect
the economic, social, and environmental security of coastal communities as large populations
rely on these reservoirs. Enforcing a well-founded management strategy requires an

understanding of the dynamic of SWI in response to the factors influencing the intrusion.

2.2.1 Dynamics of SWI

In coastal aquifers, a salt/fresh water interface is formed between saltwater and
freshwater by maintaining the hydrostatic pressure between the two fluids near the coast
(Bear et al. 1999) (Figure 2-1a). Prolonged decrease in groundwater levels lowers the
hydrostatic pressure, which increases the landward encroachment of saltwater into the aquifer
(Freeze and Cherry 1979). SWI occurs to some extent in most coastal aquifers owing to a
change in the hydraulic pressure between saltwater and freshwater (Anderson et al. 2005).
The mechanism of intrusion is usually through the lateral encroachment of saltwater from
coastal waters (Figure 2-1a) (e.g. Carneiro et al. 2010; Ferguson and Gleeson 2012) and/or

vertical upward movement of saltwater (so-called upconing) near pumping wells from deeper
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salty zones (Paniconi et al. 2001; Michael et al. 2010; Gaaloul et al. 2012; Kura et al. 2014)
(Figure 2-1Db). As for the latter, over pumping fresh groundwater lowers the water table at the
pumping well and forces the interface to rise and reach a new equilibrium between saltwater

and freshwater (Bear et al. 1999).

(a) (b) Pumping well
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Figure 2-1 Salt/fresh water interface in coastal aquifers: (a) under natural condition; (b) with vertical
movement of saltwater (upconing) in the vicinity of a pumping well

Previous studies have classified the occurrence of SWI into passive and active
depending on the direction of migration/movement of saltwater and freshwater near the coast
(Werner et al., 2012). In passive SWI, groundwater level is higher than sea-level (Figure
2-2a), and thus the direction of freshwater flow is seaward, whereas saltwater moves
landward beneath the freshwater zone (Morgan et al., 2012). The hydraulic gradient with a
slope towards the sea results in discharging the submarine groundwater into the sea
(Mahesha, 1995). During passive SWI, the interface moves slowly, and in some cases, it may
take hundreds of years for the interface to move a significant distance landward (Howard and
Israfilov 2012). In active SWI, the groundwater table is lower than the sea-level near the
coast, and thus the direction of freshwater flow is similar to that of saltwater along the coast
(Morgan et al., 2012) (Figure 2-2b). The submarine groundwater is not discharged to the sea,
and hence a more aggressive intrusion occurs (Fetter 2001; Badaruddin et al. 2017).
Compared with passive SWI, the interface moves more rapidly during active SW1 till it
reaches to the cone of dispersion at the center of pumping (Howard and Israfilov 2012). More
recently, Werner (2017) further recognized a third type of SWI (referred to as passive-active)

that can occur in coastal aquifers receiving distributed recharge (Figure 2-2c). The third type
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of SWI is a combination of active SWI occurring on the landward side of the interface (e.g.

near the toe) and passive SWI occurring closer to the shoreline.

(a) (b (c)
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Figure 2-2 Types of SWI Occurrence in coastal aquifers: (a) passive; (b) active; and (c) passive-active

While the passive type of SWI has been widely recognized and investigated using
hypothetical and real case studies (Abd-Elhamid and Javadi 2011; Post et al. 2018), similar
studies addressing active and passive-active SWI are limited (Yakirevich et al. 1998; Ozler
2001, Fetter 2001; Werner and Gallagher 2006; Kura et al. 2014; Morgan and Werner 2015;

Klassen and Allen. 2017).

2.2.2 Drivers of SWI

SWiI is a naturally occurring process that can be affected by human activity. White
and Kaplan (2017) classified the drivers forcing SWI into natural, anthropogenic, and
synergistic. Natural drivers of SWI include storm surges (Danard et al., 2003; Stoltman et al.,
2007; Debernard et al., 2002; Romanowski, 2010; Klassen and Allen 2017), hurricanes
(Steyer et al. 2007; Williams 2010), climatic change (Sherif and Singh 1999; Carneiro et al.
2010; Oude Essink et al. 2010), drought (Drexler et al. 2001; Angelini et al. 2016), sea-level
rise (SLR) (Chesnaux 2015; Luoma and Okkonen 2014; Michael et al. 2013; Stigter et al.
2014), tidal oscillations (Neubauer et al. 2013; Sutter et al. 2015; Pierfelice et al. 2017; Yuan
and Zhu 2015), and subsidence (Morton et al. 2002). They can act over a long (millennial)
timescale (e.g. geologic uplift and subsidence) or a short time scale (e.g. drought, climate
oscillation, hurricanes, tsunami) (White and Kaplan 2017). They are also different in spatial
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scales. For example, hurricane, tsunami and drought have regional effects on SW1 while
climate oscillation and SLR influence the intrusion globally.

Climate change in particular is reportedly expected to drive SW1 at time and location
with increased temperatures and reduced precipitation (IPCC 2014) (Figure 2-3). Rising
temperatures increase evaporation rates in lakes, rivers and storm waters, and particularly in
shallow subsurface waters, which further leads to less aquifer recharge (Sanford and Pope,
2010; Cobaner et al., 2012). In recent years, melting glaciers induced by global warming
coupled with increased seawater temperature led to SLR that is also expected to further
increase potential SWI (Ketabchi et al. 2016; Loaiciga et al. 2012; Chang et al. 2011; Werner
et al. 2013; Carretero et al. 2013). A few studies assessed the impact of land-surface
inundation (LSI) due to the landward movement of the interface (Ferguson and Gleeson
2012; Carneiro et al. 2010; Oude Essink et al. 2010; Yechieli et al. 2010; Loaiciga et al.
2012; Laattoe et al. 2013; Morgan et al. 2013; Sefelnasr and Sherif 2014; Luoma and
Okkonen 2014; Chesnaux 2015). Reportedly, LSI can induce an order of magnitude more

intense SWI compared with the vertical SLR (Ataie-Ashtiani et al. 2013).
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Figure 2-3 Main drivers forcing SWI in coastal aquifers and their interactions

Similarly, several studies examined the influence of tidal oscillations on SWI
(Robinson et al. 2006; Kuan et al. 2012). Ataie-Ashtiani et al. (1999) and Chen and Hsu
(2004) indicated that tides produce rapid intrusion near the shore and force the intrusion
further inland. In contrast, Werner and Lockington (2006) argued that tides produce a
dispersed mixing zone near the shore but do not extend the intrusion landward. On the other
hand, the findings of Kuan et al. (2012) highlighted the significant impact of tidal oscillation
on both vertical and landward movement of the interface. The inconclusive findings highlight
the potential for future investigations on the impacts of tides on the mechanism of intrusion.

Anthropogenic drivers of SWI or the alteration in the local environment by human
activity mainly occur through aquifer over-exploitation (Zhang et al. 1999; Sherif and Singh
1999; Aliewi et al. 2001; Vandenbohede and Lebbe 2003; Kura et al. 2014; Safi et al. 2018),
land-use change (Dogan and Fares 2008) and urban development (Chang et al. 2016;

Akbarpour and Niksokhan 2018), which in turn reduce fresh water resources stored in coastal
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aquifers (Nicholls and Cazenave 2010; Beck and Bernauer 2011; Goudie 2013; Deng et al.
2017). Compared with all other drivers, the extent of SW1 is driven primarily by groundwater
over-exploitation and land-use change caused by mismanagement or lack of regulatory
enforcement (Singh 2014; Werner et al. 2013; Sophiya & Syed, 2013). Urban development in
particular increases impervious surfaces, which reduces aquifer recharge and lowers
freshwater balance (Ragan et al. 2000; Ranjan et al. 2006; Uddameri et al. 2013; Alameddine
et al. 2018; Jeppesen et al. 2011). As such, increased water demand associated with
population growth and decreased aquifer recharge induced by urban development along
coastal areas, promotes SWI most significantly (Werner et al., 2013; Singh, 2014). Examples
of SWI due to anthropogenic activities are numerous globally (Asia (China (Shi and Jiao
2014; Cheng and Chen 2001; Wang and Chiao 2001; Wu et al. 2008); India (Datta et al.
2009; Bobba 2002; Singaraja et al. 2015); Bangladesh (Mahmuduzzaman et al. 2014),
Indonesia (Nur et al. 2001); Oman (Walther et al. 2012); UAE (Hussain et al., 2016); Iran
(Mahmoodzadeh et al., 2014); Lebanon (Safi et al. 2018; Masciopinto 2013); Turkey

(Demirel 2004); Africa (Egypt (Gemeil et al. 2011); Libya (Alfarrah et al. 2017); Tanzania

(Mtoni et al. 2013); Tunisia (Paniconi et al., 2001); Morroco (Sedki and Ouazar 2011);
Djibouti, Kenya and Somalia on the east coast, Mozambique in the south and Nigeria in the
west (Steyl and Dennis, 2010)), Australia (Morgan and Werner 2015; Werner 2010; Ivkovic
etal., in 2012), Europe (Italy (Cherubini and Pastore 2011; Trotta et al. 2015); Greece
(Kazakis et al. 2016), Netherlands (Oude Essink, 2001), Spain (Martinez Fernandez and

Selma 2004)), and America (Barlow and Reichard, 2009; Sanford and Pope 2010)).

Much of the reported literature on SWI focuses on the impacts of anthropogenic
activities (over-pumping of groundwater and urbanization) and climate change (reduced
precipitation, surface runoff, recharge, and sea-level fluctuations) on the intrusion (Werner et

al. 2013). Anthropogenic activities and natural stressors can also act interactively to create a
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more intense SWI (Safi et al. 2018a) (Figure 2-3). Increased temperature associated with
climate change or drought can increase the demands for groundwater (Alameddine et al.
2018). Anthropogenic activities may alter the timing and magnitude of climatic cycles (SLR)
and extreme events (hurricane) (White and Kaplan 2017). While the interaction between
anthropogenic activities and natural stressors can aggravate the intrusion (EI Shinnawy &
Aba Yazid, 2011; Melloul & Collin, 2006; Conrads et al. 2010; Dausman & Langevin, 2005;
Niang et al. 2010; Oude Essink, 2001; Ranjan et al. 2006), the magnitude of their impacts
remains challenging to quantify (Safi et al. 2018a).

While the spread of SWI is driven by anthropogenic activities and climate change,
geology can control the physical trends of SWI (Werner et al. 2013), large hydraulic
conductivities along the coast may expedite SWI (Bear et al., 1999). In fractured media,
irregular fissures enable saltwater to enter the freshwater using existing flow pathways, which
further exacerbate the landward/upward movement of seawater (Pinault et al., 2004).
Although few studies have characterized the role of geologic structure in controlling the
interface displacement in heterogeneous coastal aquifers (Kerrou and Renard. 2009), the
impacts of large hydraulic conductivities (e.g. faults and fracture zones) and heterogeneity in
Karstic aquifers on the position of the interface in response to transient stresses remain
challenging to quantify (Werner et al. 2013), mainly due to difficulties in charctrizing
heterogeneity as well as lack of enough information about the origin and hydraulic properties

of fractures/conduits.

2.3 Predicting SWI

Understanding the extent of the salt/fresh water interface in response to SWI drivers
has important water management implications because a small change in the position of

interface can increase the amount of salinity in groundwater significantly and impair its
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consumption value (Aberca and Clement 2009). Making an accurate prediction of the
interface is however a significant challenge. Mathematical modeling of the flow and solute
transport in the subsurface environment have been often suggested as a tool to provide
substantial information about the mechanism and extent of intrusion (Sophiya & Syed, 2013;
Cobaner et al., 2012; EI Shinnawy & Abayazid, 2011). Past efforts have resulted in the
development of a large number of analytical and numerical solutions to solve the governing
flow and transport equations and predict the location and movement of the salt/fresh water
interface. Depending on the representation of the salt/fresh water interface, these models are
categorized into sharp-interface and variable-density models (Kooi and Groen 2001). The

sharp-interface models are based on the assumption that the width of the saltwater-freshwater

mixing zone is much smaller than the thickness of the aquifer (Figure 2-4a). Therefore,
freshwater and saltwater are assumed as two immiscible fluids (but without the capillary
pressure that exists between the two fluids), which are separated by a sharp interface (Bear et

al. 1999). The variable-density models consider the saltwater-freshwater interface as a wide

transition zone due to strong saltwater hydrodynamic dispersion, which is a more physically

representative approach for the simulation of SWI (Huyakorn et al., 1987) (Figure 2-4b).
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Figure 2-4 Salt/fresh water interface in coastal aquifers: (a) Sharp interface; (b) Transition zone

2.3.1 Analytical solutions

The application of sharp-interface models for simulating SWI initiated by the

Ghyben and Herzberg formula and followed by analytical solutions that were mainly based
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on simple synthetic cases (Mehdizadeh et al., 2015). Although the solution of the interface is
simplified significantly using analytical models (Werner et al. 2013), analytical solutions are
especially useful for simulating SWI in large-scale problems due to lack of their dependency
on detailed data (Shi et al. 2011). While such solutions are practical for the case where the
transition mixing zone is relatively thin (Bear 1979), the steady-state estimation of the sharp-
interface and transient prediction of the interface at its early times are valid only when the
migration of the salinity is mainly dominated by advection while dispersion can be ignored
(Sakr 1999). Shi et al. (2011) validated the steady-state solution of the sharp-interface models
in homogeneous coastal aquifers and Llopis-Albert and Pulido-Velazquez (2014) found that
the applicability of the sharp-interface approach strongly depends on the placement of the
pumping wells and the hydrodynamic coefficients. The approximation of the toe position is
valid when the values of the layer thickness and longitudinal dispersion coefficients are high
and/or the values of surface recharge, transmissivity and distance of pumping wells to the
shoreline are low. Similarly, Mehdizadeh et al. (2015) found that the sharp-interface model is
valid in a SWI system where the interface is close to the pumping wells. In summary, the use
of analytical solutions for variable-density flow limits a real-world SWI system to a
simplified version through various assumptions (e.g. homogeneity and simple geometries).
Such limitation increased the demand for numerical solutions/codes as tools to get more

insights into the real-world systems (Anderson et al. 2015).

2.3.2 Numerical solutions

Past efforts resulted in a number of numerical solutions to solve the variable density
groundwater flow and solute transport equations for complex systems (Pinder and Cooper
1970; Shamir and Dagan 1971). The physical and computational concepts of the most

frequently used variable-density codes are outlined in Table 2-1 along with their
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corresponding applications in real and hypothetical case studies. Most codes couple the
density-driven flow and advection—dispersion equations for simulating SW1 and all codes are
computationally demanding. The differences between the codes are mainly centered at code
dimensionality, saturated/unsaturated solution of flow, steady-state solution of SWI, and
numerical solution (e.g. Finite Differences, Finite Elements) of the flow and solute transport
equations.

Numerical solutions of variable density flow have been employed by numerous
studies to predict different forecasts of interest. For example, Post et al. (2018) used the
SEAWAT code to determine the sustainable yield of freshwater resources on an Island. The
same code was used to explore the implications of storm-induced barriers to alleviate SWI in
a coastal aquifer by Elsayed and Oumeraci (2018). Change et al. (2018) applied a SEAWAT
2D model to predict SWI and the displacement of the interface due to groundwater over-
pumping. Xiao et al. (2018) used SUTRA to evaluate the impact of SLR on SWI. Kanzari et
al. (2018) applied HYDRUS-1D to simulate salinity migration in a coastal aquifer.
Szymkiewicz et al. (2018) combined HYDRUS and SWI2 packages for modeling recharge in

SWI systems.
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Table 2-1 Physical characteristics of commonly used computer codes for simulating variable density flow and solute transport

Physical characteristics

Application

Flow Transport & reaction Di Reference Real case studies Hypothetical cases
Code mension
MOCDENSE3D St, SF, TF AD, TT 2D, Oude Essink, Oude Essink 2001; Oude Essink et
3D 1998 al. 2010; Giambastiani et al. 2007
FEMFAT SU,SF, TF  AD, Ad,CR, ST, TT 2D, Yehetal. 1996 Cheng et al. (1998); Tsai and
3D Kou (1998); Zhang et al. (2001);
Volker et al. (2002); Asada et al.
(2005)
CODESA-3D SU,SF, TF  AD,Ad, ST, TT 2D, Gambolati et al., Paniconi et al. 2001; Cau et al.
3D 1999 2002; Qahman et al. 2005; Lecca
and Cau (2009)
FAST-C St, SF AD, Ad, ST, TT 2D, Holzbecher, 1998 Kaleris (2006); Holzbecher
3D (2001, 2005a, 2015b)
SEAWAT St,ST,TF  AD, Ad,CR, ST, TT 2D, Guo & Langevin, Lathashri and Maheshab (2015); Bakker et al. (2004); Langevin et
3D 2002 Cherubini and Pastore (2011); al. (2010); Webb and
Vandenbohede and Lebbe (2011); Howard (2011); Mao et al.
El-Bihery (2009); Lin et al. (2009);  (2006a, 2006b); Kourakos and
Abdullah et al. (2010); Safi et al. Mantoglou (2009); Dausman
(2018) et al. (2010)
FEMWATER SU,SF, TF  AD, Ad, ST, TT 2D, Linet. al., 1996 Datta et al. (2009), Carneiro et al. Kim et al. 2012
3D (2010), Insigne and Kim (2010);
Tularam and Singh (2009)
FEFLOW SU,SF, TF  AD,Ad,CR, ST, TT 2D, Diersch 1996 Gossel et al. (2010); Yechieli etal. ~ Watson et al. (2010);
3D (2010); Soupios (2015)
SUTRA SU, SF, TF AD, Ad,CR, ST, TT 2D, Voss 1984 Narayan et al. (2007); Kumar Sanz and Voss (2006); Pool and
3D (2001); Nishikawa et al. (2009); Carrera (2010)

St: Saturated, SU: Saturated/Unsaturated, SF: Steady state flow, TF: Transient flow, AD: Advection-dispersion equation,
Ad: Adsorption, CR: Chemical reaction, ST: Steady state transport, TT: Transient transport
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2.4 Uncertainty in predicting SWI

Effective management of groundwater resources in coastal aquifers often requires
a reasonably well-characterized variable-density model to accurately evaluate and predict
the dynamics of SWI in response to changes made through a management strategy (Werner
et al. 2013). Accurate and reliable model predictions are hence essential for sound
groundwater management practices. A basic framework generally used consists of
constructing a groundwater model for water resources management purposes. Vilhemsen
and Ferre (2017) stripped down this framework into four steps: collection of existing data
to derive an initial baseline model, collection of additional data (e.g., through boreholes or
geophysical logs) to build required structural information about the subsurface
environment, spatial and temporal refinement of the numerical model, and finally applying
the modeling results in a decision/management framework. The complexities with
conceptualizing groundwater systems, and common limitations in collecting
hydrogeological data, can prohibit attaining the first two steps indicating that uncertainty is
an inherent characteristic of a groundwater model (Bakalowicz 2005).

Sources of prediction uncertainty in groundwater modeling are manifold including
model input parameters, boundary and initial conditions, representations of physical
processes, numerical solution, and observation error/noise (Gourley and Vieux 2006).
JiChun and XianKui (2013) classified the modeling uncertainties into the uncertainty of
model input parameters, conceptual model uncertainty, and the uncertainty derived from
observation error/noise. The sources of uncertainty associated with SWI modeling have

rarely been reviewed. In what follows, we classified the main sources of uncertainty with a
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SWI model into uncertainty in the conceptualization of physical processes (referred to as

structural error), and uncertainty of input parameters due to lack of data. Figure 2-5 depicts

this classification with corresponding potential solutions.
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Figure 2-5 Main sources of prediction uncertainty in a SWI model along with methods to

2.4.1 Structural error

quantify/reduce prediction uncertainty

Ignoring conceptual uncertainty or structural errors can lead to overconfidence in

the predictive performance of a groundwater model (Rojas et al., 2008). Structural error is

not random and hence cannot be quantified (Anderson et al., 2015). Its magnitude depends

on the degree of model simplification (Beven, 2005) and/or incorrect conceptualization of

the real-world system e.g. boundary and initial conditions, stratigraphy and geology, model

borders, spatial and temporal refinement of the model, and aquifer geometry (Xu et al.,

2017). One concern is that structural errors can increase the total error variance of a model

prediction that depends on parameters omitted from the conceptual model due to

simplification (Cushman & Tartakovsky, 2016). Another concern is that structural errors
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can force the adjustment of input parameters to compensate for structural errors during
model calibration, further resulting in biased model predictions (Xu et al., 2017).

Structural errors associated with a SW1 model have not received enough attention.
Limited studies examined a few types of errors that are mainly associated with boundary
and initial conditions, aquifer geometry, and geologic simplifications with recent interest in
exploring the impact of inland boundary conditions on SWI due to SLR (Werner &
Simmons, 2009; Carretero et al., 2013; Morgan et al., 2015). Rasmussen et al. (2013)
demonstrated that the assessment of climate change impacts on SWI is highly sensitive to
the boundary conditions of a model. Under the influence of SLR, the seaside boundary of a
SWI domain has been frequently defined as a head-controlled boundary condition (Sherif
& Singh, 1999; Feseker, 2007; Watson et al., 2010; Chang et al., 2011; Michael et al.,
2013; Luoma & Okkonen, 2014; Chesnaux, 2015; Stigter et al., 2014; Sefelnasr & Sherif,
2014; Lu & Werner, 2013; Webb & Howard, 2011; Oude Essink et al., 2010; Giambastiani
et al., 2007), a flow-controlled boundary condition (Chesnaux, 2015; Luoma & Okkonen,
2014; Michael et al., 2013; Morgan et al., 2013; Koussis et al., 2012; Werner et al., 2012;
Chang & Clement, 2012; Chang et al., 2011; Yechieli et al., 2010; Watson et al., 2010;
Feseker, 2007) or a general head boundary condition (Giambastiani et al., 2007; Lu &
Werner, 2013; Green & MacQuarrie, 2014). Werner and Simmons (2009) and Werner et al.
(2012) showed that the extent of SW1 is in the order of tens of meters for flux-controlled
boundary conditions, and up to several kilometers for head-controlled boundary conditions.
Sun et al. (2017) evaluated the impacts of three inland (head-controlled, flux-controlled and
general head) boundary conditions on modeling SWI due to SLR in coastal aquifers. They

concluded that the characterization of the hydraulic response of fresh groundwater to the
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sea-level fluctuation is more realistic by applying the general head boundary condition than
the other types.

The initial position of the mixing zone can also highly affect the predicted state of
SWI in transient models, hence it should be well-characterized at the beginning of the
simulation period (Werner et al., 2013). Common strategies for collecting information
about the position of the mixing zone is to drill wells near the coast and monitor salinity
concentration or to use geophysical investigation through Electrical resistivity tomography
(ERT) or Electromagnetic (EM) methods (Beaujean et al., 2014). In cases where the initial
position of the mixing zone is not known, a steady-state simulation is typically used to
adjust the salinity distribution with the hydraulic head to estimate the initial saltwater
wedge profile that would exist in the system prior to stressors (Safi, Rachid, et al., 2018). In
this approach, the solute transport model is run under transient conditions with a steady-
state hydraulic head until a steady-state concentration distribution is achieved (Guo &
Langevin, 2002). The starting salinity distribution for the solute transport model is usually
set to an entirely saline or freshwater aquifer (Werner et al., 2013). It is expected that the
initial position of the mixing zone can be approximated using this approach. In general, the
initial salinity concentration prior to stressors can alter the density of water and
subsequently the flow velocity during the transient simulation in a SWI model. Limited to
no work targeted the prediction uncertainty arising from the approximated mixing zone at
the beginning of the simulation in a SWI system.

Perhaps, the main structural error is related to geologic simplification and
inadequate characterization of aquifer geometry. Chitsazan et al., (2015) showed that the

improper definition of stratigraphy structures can lead to large uncertainties with model
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predictions of SWI. Additional parameters representing sea side slope, bed slope toward the
land and the sea are required for accurately introducing aquifer geometry in the conceptual
model of SWI (Abd-Elhamid et al., 2016). Equivalent hydraulic conductivity has been
repeatedly reported to be the most important input geologic parameter in SWI modeling
because it controls the position of the toe of interface (Kerrou & Renard, 2010). In recent
years, much efforts were devoted to evaluating the impact of geologic simplification on
SWI predictions in complex (heterogeneous) subsurface environments with a first attempt
by Dagan and Zeitoun (1998) who showed that neglecting the layered heterogeneity in SWI
modeling can increase the uncertainty associated with estimating the interface toe.
Similarly, Lu et al (2009) found that neglecting layered heterogeneity leads to
overestimation of the toe penetration length. In contrast, heterogeneity was reported to have
a negligible impact on the upward movement of flow within the interface but produces a
significant concentration plume (Rahman et al., 2005). Interestingly, the impacts of
heterogeneity on SWI can differ significantly in 2D and 3D simulations, confirming the
major influence of the third dimension of heterogeneity on the prediction of intrusion
(Kerrou & Renard, 2010). Thus, neglecting heterogeneity and three-dimensionality can
result in large uncertainties in model predictions (Werner et al., 2013).

Depending on the complexity of a geologic structure, a conceptual model may
require additional parameters to explain the real-world system. For example, in a highly
heterogeneous Karstic system, a conceptual model requires additional parameters
representing conduit/fracture networks, fault orientation and friction factor for accurately
simulating SW1 (Bakalowicz, 2005). Fleury et al. (2007) recognized conduits and fractures

as the primary elements of a Karst conceptual model influencing SWI. Parameters
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representing conduit diameter, friction factor, matrix hydraulic conductivity, and effective
medium porosity should be included in a SWI model for Karst (Xu & Hu, 2017). In
addition, orientation of fractures affects the shape of the salt/fresh water interface (Dokou
& Karatzes, 2012). Spechler (2001) explained the upward movement of saline water in
northeastern Florida due to the geologic structural irregularities such as fractures, collapse
features, and faults, and suggested that Karst should be characterized properly for SWI
simulations.

Structural errors in Karst models typically arise from the lack of a robust method
to characterize Karst hydrogeology (i.e. conduits and fractures). Methods used for
characterizing the latter in the context of dual continuum (DC) (discrete pipe network
coupled to a matrix continuum with turbulent flow) and discrete fracture (DF)
(conduit/fractured flow; applied with porous medium) have reportedly been demonstrated
successfully (Berkowitz et al., 1988). In the same context, Xu and Hu (2017) developed a
hybrid discrete-continuum numerical model that couples a discrete pipe network (DC) with
Darcian flow in porous medium. Dokou and Karatzes (2012) characterized the main
fractures/faults of a karst system using discrete fractures (DF). Scanlon et al. (2003)
however conditioned the applicability of the DC and DF methods for characterizing Karst
to various factors such as the modeling objective, the karstification degree, the model scale,
and most importantly the availability of geologic field data (e.g. conduits and fractures
properties, and heterogeneity in hydraulic conductivity). Bakalowicz (2005) argued that it
is difficult to use the DC and DF methods to characterize Karst in many aquifer systems

because of the limitations in detailed data about conduits/fractures.
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Other studies examined the structural error associated with the use of the
equivalent porous medium (EPM) approach (that requires less field-data) in parameterizing
Karst and simulating SWI. For example, Ghasemizadeh et al., (2015) used the EPM method
to simulate groundwater flow and solute transport in a Karstic aquifer located in Puerto
Rico. They demonstrated that the structural error encountered in the EPM is limited in the
model prediction of SWI in an intermediate scale Karstic system. Khadra and Stuyfzand
(2018) compared the predicted results of SWI obtained from the EPM with the DC. They
found that both approaches predicted similar results although the DC reproduced some
local irregularities for chloride concentration. In cases where the local distribution of
salinity is of interest, the structural error associated with using EPM should be accounted
for in a prediction uncertainty analysis. When applying the EPM, the geology of Karst is
represented by a geologic system with a high degree of heterogeneity in hydraulic
conductivity. Therefore, conduits/fractures are modeled as high conductivity zones with no
turbulence. The frequency distribution of the hydraulic conductivity is assumed to follow a
log-normal distribution that can be positively or negatively skewed depending on the

presence of major conduits with very high hydraulic conductivity (Halihan et al., 2000).

2.4.1.1 Multi-model methods

In recent years, several studies used multi-model methods to account for structural
errors in groundwater models (Neuman, 2003; Neuman and Wierenga, 2003; Bredehoeft,
2003; Carrera et al., 2005; Poeter and Anderson, 2005; Refsgaard et al., 2006). Using

multi-models, a range of prediction can be obtained using the average predictions from a
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set of plausible models (Bredehoeft 2005; Ye et al. 2004, 2008, 2010). This is
accomplished by assigning weights or applying statistical criteria to each model and then
combining individual model predictions (Poeter and Anderson 2005; Rojas et al. 2008).
While multi-model methods have been frequently used to account for conceptual
uncertainty in a groundwater model (Bredehoeft, 2005; Rojas et al. 2008), their applications
in SWI modeling is limited. Chitsazan et al. (2015) used this approach to account for errors
in conceptualizing hydro-stratigraphy structure using chance-constrained programming
coupled with Bayesian model averaging. Their work was however limited to only three
conceptual models. Chitsazan and Tsai (2015) further used a hierarchical Bayesian model
averaging (HBMA) method to prioritize sources of uncertainty in predicting Chloride
concentration in a faulted aquifer. They evaluated the variance of model prediction from
individual sources of uncertainty including model parameters, fault permeability
architecture, variogram model, grain-size method, and boundary head value. Their findings
showed that prediction uncertainties are more affected by structural errors than by uncertain

model parameters.

2.4.2 Uncertainty in model parameters

Understanding a SWI system depends fundamentally on the input data coupled
with an adequate knowledge of hydrology and hydrogeology of the system to create a
representative conceptual model including SWI processes. The conceptual model of SWI
requires detailed data about aquifer characteristics, such as hydraulic properties, geological

borders, boundary conditions, dispersivity (dispersion and molecular diffusion), and
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sources and sinks, that will aid in understanding groundwater dynamics (Bakalowicz 2005).
Cases studies of SWI with detailed data are rare. One of the few exceptions is the study of
Post et al. (2018) that reported SW1 with exceptionally detailed hydrogeological data. In
most aquifers, the complexity of subsurface conditions often leads to scarcity in field-data
describing the hydrogeological system, which will result in uncertainties with model
predictions (El-Fiky 2010). Simmons (2005) listed a few challenges that can mislead
modelers in understanding variable-density systems, stressing at high dependency of SWI
models to field-data about heterogeneity, hydrodynamic coefficients and sources/sinks. As
such, modeling efforts should be invariably dedicated to exploring and reducing
uncertainties around their predictions if they are used for decision support (Keating et al.,
2010).

A number of modeling efforts has been dedicated to reducing (or quantifying) SWI
prediction uncertainties through: (1) inverse modeling, or parameter estimation, that can be
used to estimate (calibrate) the properties of an aquifer system that are important to model
predictions (Doherty et al. 2010); (2) stochastic modeling that can be used to quantify the
prediction uncertainties by the forward propagation of the remaining uncertainties
associated with parameters after model inversion (Tonkin and Doherty 2009); and (3)
collecting additional field-data to be used as calibration dataset for increasing reliability of

model prediction (Moore and Doherty 2005).
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2.4.2.1 Inverse modeling

In an inverse groundwater model, parameter estimates (e.g. hydraulic
conductivity) constitute the inverse solution of the groundwater flow and/or solute transport
equations best consortiums with the available observed dependent variable value (e.g.
hydraulic head, flow or concentration) (Alcolea et al., 2006). Carrera et al. (2005) provided
a review of various techniques to solve the inverse problem of parameter identification in
groundwater modeling. While model inversion techniques have been applied regularly to
groundwater models (Werner et al., 2013), the use of inverse modeling for variable-density
flow and solute transport is rare (Sanz & Voss, 2006) (Table 2). One of the main reasons is
that the governing flow and solute transport equations should be coupled through the
dependence of water density on salinity concentration in order to model a variable-density
SWI system (Guo & Langevin, 2002). This severely increases the computational burden of
a SWI inversion, which often limits the estimation of parameters to the inverse solution of
constant-density groundwater flow equation. In addition, the parameter estimation requires
information about salinity concentration, aquifer bottom topography, and initial conditions
(Carrera et al., 2010), which are not usually available for most costal aquifers. Another
challenge in the SWI model inversion is the lack of knowledge about the input parameters
that highly affect the predictive performance of a SWI model and the optimal types of
observed dependent variables that should be used to estimate such parameters (Sanz &
Voss, 2006; Shoemaker 2004; Carrera et al., 2010). In the following, we introduce these

parameters and their required observation data for model calibration.
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A fundamental understanding of dispersion mechanisms (longitudinal and
transverse dispersivity) and molecular diffusion is critical for evaluating the width of the
steady-state transition zone in homogeneous coastal aquifers (Shoemaker 2004; Paster &
Dagan, 2006). While the dispersivity parameters have similar impact on the width of the
transition zone (Abarca & Clement, 2009), the transverse dispersion is also a controlling
factor to determine the amount of seawater entering an aquifer (Abarca et al., 2007).
Dispersivity parameters are ideally determined from laboratory or field experiments.
Werner et al. (2013) argued that dispersion coefficients obtained from laboratory or field
experiments cannot reproduce thick mixing zones that are found in the field. In most cases,
the values of longitudinal and transverse dispersivity coefficients are determined by
calibrating a model rather than actual measurements. Abarca and Clement (2009) estimated
the values of dispersion coefficients using the width of a (laboratory-based) mixing zone as
an observed data during model calibration. Similarly, Shoemaker (2004) indicated that
salinity observations at depths is more important than head observations when estimating
dispersivity. Interestingly, the molecular diffusion can be estimated using the salinity log
concentration (Sanz & Voss, 2006). The logarithm of salinity concentration can also be
used as an observed data for calculating porosity (Sanz & Voss, 2006) that is a factor
influencing the spread of intrusion.

The extent of the intrusion is mainly controlled by freshwater inflow as well as the
horizontal hydraulic conductivity. The freshwater inflow rate highly affects the calculation
of submarine groundwater discharge. The horizontal hydraulic conductivity mainly controls
the penetration length of the interface and the amount of seawater entering an aquifer

(Abarca et al., 2007). Both the freshwater inflow and the horizontal hydraulic conductivity
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can be estimated using head and salinity observation data (Sanz & Voss, 2006). However,
concurrently calibrating hydraulic conductivity and freshwater inflow using only head and
salinity observations leads to high correlation between these parameters, which prohibit
unique estimates of their values. Using flow observations perpendicular to the shoreline can
reduce this correlation, further resulting in unique estimation of the hydraulic conductivity
and freshwater inflow parameters (Shoemaker, 2004).

Compared with other model parameters, the hydraulic conductivity can vary
considerably over small distances in highly heterogeneous geologic systems (e.g. Karst)
and thus its spatial heterogeneity can control the flow pattern and salinity migration. A
review of various inversion techniques (pilot points parameterization, Monte Carlo variant
of the representor, sequential self-calibration, moment equations, zonal calibration and non-
iterative semi-analytical) to estimate the hydraulic conductivity in highly heterogeneous
systems has been provided by Hendricks Franssen et al. (2009). The geostatistical method
of pilot point parameterization was recognized as a more physically representative
approach for characterizing geologic heterogeneity compared with other methods. In the
pilot points parameterization, the geology is represented using a set of discrete-locations
(pilot points) by enforcing a spatial interpolation from the pilot points to the model grids
(Alcolea et. al., 2006). Model calibration is then used to adjust the values of pilot points
through an iterative process by minimizing an objective function measuring the misfit
between computed results and observed data (e.g. head, flow and salinity concentration)
(Doherty et al., 2010; Sanz & Voss, 2006).

Several SWI studies have determined the spatial heterogeneities in the hydraulic

conductivity of a coastal aquifer using the pilot points parameterization approach (Langevin
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& Zygnerski, 2013; Baalousha, 2016). In these studies, the number of pilot points needed
for a representative heterogeneous system was defined much larger than the number of
available observations. After the calibration, the model outcomes fitted reasonably well to
field measurements. Moore and Doherty (2005) argued that even a perfectly calibrated
pilot-point model may still exhibit high levels of parameter uncertainty after model
inversion in a highly heterogeneous aquifer. This is because, in field practice of
heterogeneous aquifers, observation data (e.g. hydraulic head) are usually sparsely
distributed over a geologic domain in an arbitrary fashion whereas the spatial geologic
domain (hydraulic conductivity) is continuous and should be parameterized by introducing
many model parameters (large parameter dimensionality) (Nilsson et al., 2007; Yeh et. al.,
2015). Estimating more parameters of interest than the number of observations is not
reasonable resulting in data being “spread too thin” (Uusitalo et. al., 2015). In such cases,
the solution of the estimation problem is non-unique (Doherty, 2015). Such models that
almost always suffer from the lack of a unique solution for parameter estimation are
commonly referred to as “ill posed” models (Doherty et al., 2010). This non-uniqueness
requires a different approach in model calibration than those used with well-posed models.
Regularization mechanisms have been repeatedly used to stabilize a parameter
estimation process when the solution of the estimation problem is non-unique (Doherty,
2015). For example, the Tikhonov regularization can be used to minimize the deviation of
parameters from the user specified preferred condition that is often determined based on
expert knowledge about the hydrogeological variability (i.e. heterogeneity) in the system
(Doherty et al., 2010). This variability is often expressed by an expected value and a

covariance function (or a variogram). White et al. (2010) showed that the use of Tikhonov
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regularization highly affects the predictive ability of a calibrated SWI1 model for a
heterogeneous coastal aquifer. Although the use of Tikhonov regularization often results in
parameter fields that are geologically realistic, the calibration process requires the
estimation of the pilot points that are inestimable on the basis of the calibration dataset.
This may induce numerical instability when model outcomes are fitted to field
measurements (Doherty et al., 2010). Recently, several studies used subspace methods to
attain more numerical stability by subtracting inestimable parameters and/or inestimable
parameter combinations from the calibration process (Tonkin & Doherty, 2005; Aster et al.,
2013). This is achieved through singular value decomposition (SVD) of the weighted
Jacobian matrix that represents the sensitivity of model results in response to variations in
model parameters (for details see e.g. Doherty at al., 2010). Model parameter combinations
that correspond to singular values larger than a user-defined truncation value are deemed to
be estimable on the basis of a calibration dataset. These parameter combinations span the
calibration solution space. In contrast, the inestimable parameter combinations span the
calibration null space and retain their initial values during the calibration process. Few
studies calibrated a SWI model by concurrently using Tikhonov regularization and SVD
through model inversion. Meyer et al. (2018) combined SVD and Tikhonov regularization
to increase the reliability of data fit in a SWI model applied to understand the impact of
regional flow. Similarly, Herckenrath et al. (2011) used both SVD and Tikhonov
regularization to increase the stability of parameter estimation in a highly parameterized
synthetic model. Although the numerical stability increased significantly during the model

inversion and the calibration results were generally satisfactory in these studies, a level of

36



uncertainty remained in the calibrated results, leaving predictions of salinity migration
uncertain.

The uncertainty of a calibrated model leads to uncertainty in model predictions
(Werner et al., 2013). The predictive performance of a calibrated model can be assessed by
evaluating the sensitivity of the calibration dataset and model predictions to estimated
parameters (Hill & Tiedeman, 2007). If model predictions are sensitive to the parameters
that are poorly informed by the calibration dataset, there will be large uncertainties in
model predictions. Uncertain predictions can be still useful for management purposes since
they provide reasonable approximations of the real-world systems (Safi, Vilhelmsen, et al.,
2018). However, it is imperative to analyze the uncertainties with model predictions when

they are used for decision support (Vilhelmsen & Ferre, 2017).
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Table 2-2 Reported studies related to inverse modeling of SWI

Reference Uncertain parameter Observation type Note
Post et al. Horizontal and vertical hydraulic Head Parameters were estimated using zonal calibration with extensive observation data
(2018) conductivities, porosity, horizontal points.
longitudinal, vertical longitudinal, and
transverse
Baalousha Hydraulic conductivity Head Spatial heterogeneities in hydraulic conductivity was parameterized using 1,500 pilot
(2016) points representing hydraulic conductivity ranging from 0.1 to 200 m/days in the
regional-scale coastal aquifer of Qatar.
Nofal et al. hydraulic conductivity, recharge and Head and salinity Parameters were estimated using zonal calibration manual calibration.
2015 dispersivity values
Langevin and Hydraulic conductivity Head Spatial heterogeneities in hydraulic conductivity was parameterized using an irregular
Zygnerski distribution of pilot points with a high density of points near the pumping wells and
(2013) an ordinary kriging with an isotropic exponential variogram.
Lu et al. 2013 hydraulic conductivities, specific and Flow, head and chloride Flow observations were used to calibrate the transport parameters while head and
yield storage, diffusion coefficients, concentrations concentration observations were used to estimate hydraulic properties of aquifer.
Parameters were estimated using zonal calibration. During calibration vertical
hydraulic conductivity was estimated as 10% of the horizontal hydraulic conductivity
and the horizontal longitudinal dispersivity was set as 10% of the transverse hydraulic
conductivity.
Walther et al. Hydraulic conductivity, upstream Steady-state head PEST was used for parameter estimation. The ranges of hydraulic conductivity
2012 inflow, and aquifer extraction upstream inflow, and aquifer extraction were set 1.1%-1000%, 5%-500%, and 0%—
400%, respectively.
Sherif et al. Hydraulic conductivity and specific Transient head Limited available data about the chloride concentration collected at a distance of
2012 yield about 5km from the shoreline was used to validate the calibrated results.
Rasmussen et Vertical hydraulic conductivity of the Transient head The calibrated model was validated against geochemical and geophysical data from
al. 2012 clayey till, horizontal hydraulic borehole logs and an airborne transient electromagnetic survey. They found that the

Sulzbacher et
al. 2012

Herckenrath et
al. (2011)
Sanz and Voss
(2006)

conductivity of the sand and the upper
chalk layer, and hydraulic conductivity
near the drains.

Hydraulic conductivity

Hydraulic conductivity

Hydraulic conductivity, freshwater
inflow, molecular diffusivity, and
porosity

hydraulic, hydrological
and geophysical data,
spatial HEM, local
monitoring data

Head

Head, salinity and flow

calibrated results cannot be improved significantly by further calibration due to the
lack of enough transient head data, groundwater abstraction at the level of
waterworks, and homogeneity assumption.

A good agreement was observed between measured and computed hydraulic heads,
total dissolved solids data for both the entire freshwater lens on a large scale and in
the area of the well fields on a small scale.

Spatial heterogeneities in hydraulic conductivity was parameterized in a synthetic
model of Henry’s problem.

Hydraulic conductivity and freshwater inflow were estimated from only pressure or
concentration observations. Hydraulic conductivity, freshwater inflow, solute
molecular diffusivity, and porosity were estimated using observations of only the
logarithm of concentration.
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2.4.2.2 Stochastic modeling

Past efforts in the uncertainty analysis of SWI predictions revealed that uncertainties
with input parameters can highly affect the knowledge gained from modeling of the current and
future states of salt/fresh water interface (Herckenrath et al., 2011). Prediction uncertainties were
mainly evaluated in response to uncertainties with hydraulic conductivity, groundwater pumping
rates, recharge rate, SLR, and temperature (Table 3). Several studies showed that the prediction
of SWI is affected more by groundwater abstraction rate than by any other source/sink
parameters (Loaiciga et al., 2012; Felisa et al., 2013; Stratis et al., 2016). Moreover, the
uncertainties with climate change processes (e.g. SLR) have negligible impact on SWI
predictions compared with the impact of uncertain groundwater abstraction rates (Zhao et al.,
2013). Others reported that the uncertainties with the hydraulic conductivity can produce large
uncertainties in SWI predictions (Lecca & Cau, 2009; Herckenrath et al., 2011; Pramada &
Mohan, 2015). Interestingly, the uncertainties with both the hydraulic conductivity and pumping
rates have similar impacts on SWI (Kerrou et al., 2013). The uncertainty with the spatial
distribution of hydraulic conductivity however has more impact than that of pumping rates
(Kerrou et al., 2013).

The main challenge with a groundwater model is hence to quantify prediction
uncertainty while maintaining a good fit with observed field-data (Keating et. al., 2010).
Guillaume et al. (2016) argued that the model prediction should involve exploration of
alternative systems in the hope that one may represent the real-world system sufficiently. Moore
and Doherty (2005) indicated that the model predictions of a groundwater system always contain
errors particularly those that depend on the hydraulic conductivity. Extensive efforts were

dedicated to provideg estimates of prediction uncertainty in a groundwater model by evaluating
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the uncertainties with the spatial heterogeneity in hydraulic conductivity (e.g. Liu et al., 2007,
Sidiropoulos & Mylopoulos, 2015; Pefia-Haroa et al., 2011). Sanchez-Vila et al. (2006) provided
a review of methods to estimate the spatial distribution of hydraulic conductivity in
heterogeneous aquifers. They indicated that many possible solutions for hydraulic conductivity
should be suggested to obtain a solution that can represent the geology of an aquifer reasonably
well. These solutions are used to produce a range of predicted values. Herckenrath et al. (2011)
represented the variability of the predicted values of SW1I in response to spatial variabilities of
hydraulic conductivity by a probability distribution function with a mean that provides an
approximation to the prediction of minimum error variance, and a standard deviation that
characterizes the uncertainty of the model prediction.

The methods for stochastic modeling of groundwater systems have been reviewed
(Dagan, 2002; Li et al., 2003). At present, the most popular and feasible uncertainty analysis
techniques in groundwater modeling are based on Monte Carlo (MC) simulation (JiChun &
XianKui, 2013) that allows evaluating and quantifying prediction uncertainty in highly
heterogeneous systems (Dagan, 2002). Examples of such MC-like techniques include the
Markov Chain Monte Carlo (MCMC) methods (Harvey & Gorelick, 1995), the generalized
likelihood uncertainty estimation (GLUE) (Beven & Binley, 1992), calibration-constrained
Monte Carlo methods (Tavakoli et al., 2013; Kitanidis, 1996; Woodbury & Ulrych, 2000;
Carrera et al., 2005), and the null-space Monte Carlo (NSMC) method (Tonkin & Doherty,
2009). Using these techniques leads to generating a range of predictions obtained using random
realizations that each allows the model outcomes fit reasonably well to field measurements.
Random realizations are generated from a prior probability distribution that is ideally determined

from expert knowledge of the system state. by generating a range of predicted values obtained
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using different parameter sets that each allow the model to match the observation data
sufficiently well (multiple calibrated fields).

The applications of MC-like techniques are limited in SWI modeling, and hence their
limitations, controlling factors, computational demands, and required prior information are not
fully known. Zeng et al. (2016) evaluated the pollution risk of a groundwater source field in a
shallow coastal aquifer (thickness of <20m). They used MCMC to quantify uncertainties with the
prediction of Chloride concentration obtained from a SEAWAT model, and DREAM(ZS) as a
sampling algorithm. Although their findings demonstrated the applicability of MCMC in SWI
systems, the small range of parameters used for uncertainty analysis (e.g. hydraulic conductivity
of 0.1 to 20m/day) and assumption of aquifer homogeneity seem to severely reduce the model
run-time. Lacca and Cau (2009) used MC simulation to quantify the impact of the heterogeneity
on the salinity dispersion process in a confined aquifer. They used a Gaussian distribution to
create random fields of log hydraulic conductivity using HYDRO_GEN code (Bellin & Rubin,
1996). Similarly, Pramada and Mohan (2015) used MC simulations to evaluate the uncertainties
with the prediction of the penetration length of the interface due to uncertainties with
heterogeneity in the hydraulic conductivity. They created random fields of the log hydraulic
conductivity using a Gaussian distribution with the mean and standard deviation obtained based
on the calibration results. The range of hydraulic conductivity (i.e. heterogeneity) was however
very small (~53 to 65m/day), which resulted in a fast model convergence. Rajabi and Ataie-
Ashtiani (2014) attempted to decrease the simulation time of MC simulation for a SW1 system
by changing the sampling strategy. They illustrated that the use of optimized Latin hypercube
sampling strategies instead of the simple random sampling and Latin hypercube sampling

strategies can significantly reduce the computational demand of a MC simulation in a SWI
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system. However, their work was limited to the application of the Henry problem. In actual
applications, the large run-times of (particularly transient) SWI simulations make additional
computational burden to the MC simulation. Rajabi et al. (2015) further proposed the use of non-
intrusive polynomial chaos expansions as a means to accelerate MC uncertainty analysis in SWI
predictions in highly non-linear systems.

Previous studies indicate that the use of MC-like techniques for uncertainty analysis of
SWI prediction is prohibitively time consuming in highly parameterized systems due to long
model runtime, large number of required model-runs, and the mathematical complexities of
inverse methods (Herckenrath et al., 2011). Compared with other MC-like techniques, the
NSMC method is less demanding computationally (Tonkin & Doherty, 2009). In this method, a
set of random parameter fields is generated from a prior probability distribution using e.g.,
Sequential Gaussian Simulation (SGS) method. The expected value and the spatial covariance
function (or semivariogram) of the distribution are determined from prior information or from
the calibrated results of a pilot-point model. The random fields are projected onto the null-space
and adjusted through model re-calibration. The calibration-constrained fields are then used to
compute model predictions (for details see Tonkin & Doherty, 2009). Among the limited
applications of NSMC in SWI modeling, Herckenrath et al. (2011) used this methodology to
generate calibration-constrained fields of the hydraulic conductivity for quantifying uncertainties
with the prediction of the penetration length of the interface in a synthetic case (Henry problem).
They found that the estimated uncertainty of the model prediction using the NSMC was slightly
smaller than that calculated using the linearized method. In their study, the random fields were
generated from a known lognormal distribution (i.e. detailed prior information) using SGS. Such

detailed prior information is not usually available in a real aquifer system. Moreover, although
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NSMC has computational advantages over other MC-like techniques, it also requires a detailed
prior probability distribution, and does not account for impression pertaining to prior information
during the randomization process.

Our review of the existing MC-like techniques reveals that all the techniques require a
geologic prior information to infer the required statistics for MC simulations. Such detailed prior
information involves the specification of an expected field value (i.e. mean values of starting
points) and a covariance function (or semivariogram) of the parameter distribution. The choice of
the expected field value, and/or the variogram type (spherical, exponential, or Gaussian) and
parameters (nugget effect, sill, and range) can influence strongly the estimated range of the
prediction uncertainty (Bardossy et al., 1990). Such prior information is typically prone to
uncertainty in many coastal aquifers. Fuzzy set theory can provide an intuitive approach to the
quantification of imprecision pertaining to prior information (Zadeh, 1965). In this theory, a real
scalar value corresponding to an imprecise parameter changes into a set of fuzzy values using a
fuzzifier (or membership function) that can be defined based on the limited (rough) knowledge
of the system (for details see e.g. Bardossy et al., 1990). Although the application of fuzzy set
theory has been demonstrated in various fields of science (Sunitha & Mathew, 2013), it has not
received enough attention in SWI modeling. Rajabi and Atae-Ashtiani (2016) used a fuzzy
(MCMC) Bayesian inference to incorporate imprecise prior information into the prediction
uncertainty analysis. Zhao et al. (2013) evaluated the prediction uncertainty of a SWI system by
introducing longitudinal and transverse dispersivity coefficients as two fuzzy numbers and
hydraulic conductivity as a randomly generated parameter.

While few studies were reported to analyze and reduce SWI prediction uncertainties in

actual case studies, a large level of uncertainty has often been common (e.g. Zhao et al., 2013;
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Rajabi & Atae-Ashtiani, 2014; Zeng et al., 2016). Large uncertainties in model prediction may
cause undesirable management decisions (Werner et al., 2013). To avoid such situations, it is
imperative to constrain prediction uncertainty when a model is used for decision support. This
can be done by additional monitoring in order to increase the reliability of conceptual models

(Safi et al., 2018b).
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Table 2-3 Reported studies related to stochastic modeling of SWI and methods applied to quantify prediction uncertainties

Reference

Uncertain parameter

Note

Stratis et al. (2016)

Zeng et al. 2016
Pramada and Mohan

(2015)
Rajabi and Atae-

Ashtiani 2014
Felisa et al. 2013
Zhao et al. 2013
Kerrou et al. (2013)
Loaiciga et al. 2012
Herckenrath et al.
(2011)

Naji et al. 1999
Lecca, P. Cau. 2004

Lecca and Cau 2009

Pumping rate

Hydraulic conductivity
Hydraulic conductivity
Hydraulic conductivity
Pumping rate, wells distances for the coastline, and

the distance between wells
SLR, different amplitudes of tide, seasonal variance

of influx, annual variance of the pumping rate
Pumping rate and hydraulic conductivity
Groundwater abstraction and SLR

Hydraulic conductivity

Geometry

Aquitard conductivity

Hydraulic conductivity

Impact of parameter uncertainty on the model prediction was analyzed using the ALOPEX
stochastic optimization algorithm (Harth and Tzanakou 1974) coupled with Gyben-Herzberg
equation.

MCMC was used to quantify uncertainty with the prediction of Chloride concentration in
monitoring wells.

Uncertainty with the prediction of the penetration length of interface was analyzed using Monte
Carlo method in a two-dimensional SWI case study

Several strategies were evaluated to reduce the computational time of MCMC in SWI
uncertainty analysis.

The impacts of uncertainties with parameters on the prediction of salinity were analyzed in the
vegetation capture zone.

The impacts of uncertainties with drivers of SWI, and combinations of different parameters were
analyzed.

Impacts of uncertainties with pumping rate and hydraulic conductivity on the model prediction
were analyzed separately and jointly.

A linear uncertainty analysis was used to evaluate the impacts of drivers for SWI on the
intrusion.

Uncertainty with the prediction of the penetration length of interface was analyzed using NSMC
in a synthetic case (Henry problem).

Prediction uncertainty was analyzed using a combination of several uncertainty analysis
techniques.

Uncertainty with the prediction of salinity was analyzed using MC simulation in a multi-layered
coastal aquifer.

Uncertainty with the prediction of the penetration length of interface was analyzed using Monte
Carlo method.
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2.4.2.3 Data acquision strategy

Monitoring involves designing a strategy and methods for the most effective field
surveys towards obtaining the most reliable data for improving conceptual models. Data
should be ideally collected in all spatial directions for creating or improving a 3D SWI
model. In reality, financial constraints and/or spatial limitations often reduce the ability to
directly measure/collect data (Hartmann, et. al. 2014). Using inverse modeling, the value of a
parameter can be estimated using the value of an indirect observation data, e.g. measurements
of hydraulic head, flow and/or salinity concentration (Hoeksema & Kitanidis, 1984).
Dausman et al. (2010) argued that measuring salinity concentration at depths is important to
understand the movement of interface. Salinity should be collected close to interface, and
mainly from the deep parts of an aquifer. Hemond and Fechner (2013) recognized the
hydraulic head as the most common type of observation data that is used to estimate
hydraulic properties. Both head and salinity concentration data can be monitored using
observation wells or nearby existing supply wells (Sen, 2015). In practice, the sampling
locations and type of additional data are often determined based on expert opinion
(Vilhelmsen & Ferre, 2017). However, there is no guarantee that sampling locations can
contribute to optimal reduction in uncertainties, particularly over a 3D heterogeneous
domain. Given the high cost of data collection, it is imperative to identify the precise
locations for monitoring data using an optimal design (OD).

In this context, several OD methods have been reported to guide the hydrogeological
field-investigation (Tiedeman et al., 2003; Reed et al., 2000; Cieniawski et al., 1995; Wagner,
1999; Andricevic & Foufoula-Georgiou, 1991; Loaiciga 1989; Rouhani & Hall, 1988).
Wagner (1999) developed an optimization method to minimize uncertainties in model
predictions for designing a sampling network within the context of groundwater

management. A cost design algorithm to guide data collection to reduce uncertainties in
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model predictions was developed using Kalman filters by Rizzo et al. (2000) and Kollat et al.
(2011). Tiedeman et al. (2003) presented a statistical approach (value of improved
information statistic) to identify parameters most important to model predictions and
Tiedeman et al. (2004) developed another statistical approach (observation-prediction
statistic) to assess the impact on model predictions by adding or removing observations.
Moore and Doherty (2005) and Christensen and Doherty (2008) developed a method that can
be used to evaluate the influence of adding a new observation well to an existing calibration
dataset on the predictive performance by calculating the variance of prediction
uncertainty/error. The main advantage of this method is that the actual values of observations
are not used in the OD; hence, observations can be existing or future observations (Wohling
et al., 2016). In this method, the “worth” of adding a new observation (subsequently referred
to as data worth (DW)) to the existing calibration dataset is determined by either (1) starting
with no observation and then adding an observation one at a time (Wohling et al., 2016), or
(2) beginning with a large set of (synthetic) observations and then removing observations one
at a time (Vilhemson & Ferre, 2017). Further extensions of the DW-based OD include the
selection of multiple observations (Walis et al., 2014) with different types (Wéhling et al.,
2016) targeting uncertainty reduction in multiple prediction variables (Vilhemson & Ferre,
2017). Recently, Safi et al. (2018b) carried out yet another extension to optimize the
allocation of observation wells that effectively measure multiple hydrogeological data at
different depths. They used Bayesian model averaging to account for non-linearity and
genetic algorithms to conduct a location search for new sampling locations in 3D systems.
Past efforts have resulted in designing monitoring networks to sample groundwater quality
for different objectives such as minimizing the variance of model prediction (Asefa et al.,
2004; Nunes et al., 2004a, 2004b; Herrera & Pinder, 2005; Ammar et al., 2008; Chadalavada

& Datta, 2008; Dokou & Pinder, 2009; Chadalavada et al., 2011), detecting contaminant
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concentration (Montas et al., 2000; Reed et al., 2000, 2003; Reed & Minsker, 2004; Kollat &
Reed, 2007; Kollat et al., 2008), and minimizing mass of contamination (Montas et al., 2000;
Reed & Minsker, 2004; Wu, 2004; Wu et al., 2006; Kollat & Reed, 2007).

Despite numerous OD studies in groundwater modeling, the OD has rarely been
examined in the context of SWI systems. Dhar and Datta (2009) developed a methodology
for monitoring of SWI based on the minimization of the sum of normalized absolute
deviations between the computed concentration and a targeted concentration corresponding to
a management strategy. This is realized by constraining the computed concentration using the
inverse distance weighted (IDW) interpolation method. Shoemaker (2004) demonstrated that
head and salinity observations should be located close to the toe of the interface. Flow
observations are effective in areas near the coastline where ground water is discharged to Sea.
Dausman et al. (2010) applied the DW-based OD on the Henry problem to define the optimal
locations of salinity concentration and temperature that would reduce uncertainty with the
prediction of the displacement of salt/fresh water interface. Their work was however limited
to a two-dimensional case, and a single observation well. The findings of Safi et al. (2018b)
highlighted the importance of considering three-dimensionality in the design of a monitoring
network for SWI systems. They concluded that the worth of collecting head and salinity
measurements to reduce uncertainty of interface prediction depends mainly on their spatial

distance from the shoreline although the depth of measurement is important.

2.5 Existing gaps and future needs

Despite more than a century of research in the modeling of SWI, much remains in
terms of improving the predictive performance of SWI models that are used as decision
support tools for management purposes. The literature indicates that the greatest shortfall in

research on SWI modeling is the lack of uncertainty analysis studies. We provide below a
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framework towards increasing the reliability of SWI models and enhancing their predictive

performance (Figure 2-6).

To reduce prediction
uncertainty by
identifying additional
observation data for
model calibration

Step 1: To quantify uncertainty
Conceptual model with improper
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Step 5: Step 2:
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To evaluate the risk To increase reliability of
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of failure associa ed Step 4: Step 3: p y
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strategy Predlct'lon Paramefer uncertainty
uncertainty uncertainty
analysis analysis

Figure 2-6 Proposed framework for enhancing the performance of SWI models for management purposes

We relate the main scientific challenge in SW1I research to the application of
knowledge gained from SWI models into management practices (Figure 2-7a to Figure 2-7e
and Table 2-4). The number of research papers that use SWI1 models as decision support tools
is growing at an ever-increasing rate. The main issue concerning the proposed conceptual
models in these papers is the overconfidence of modelers to consider a single conceptual
model for a SWI system. While multi-model methods have been frequently used to account
for structural errors in the conceptual models of groundwater systems, their applications in
SWI modeling is limited to a few studies (e.g. Chitsazan et al. 2015) (Figure 2-7a). More
research is needed to recognize and combine multiple competing models representing
different types of seaside boundary condition, number of geologic layers, bottom elevation of
aquifer, aquifer geometry, fracture and fault orientation, conduit characterization methods,

and initial salinity profile in the system. The impacts of different statistical criteria for
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weighting alternative conceptual models on the predictive performance of a SWI model

should be also investigated.
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Figure 2-7 Proposed modeling/management framework for improving and applying the knowledge
gained from modeling into management practice

Our review of literature showed that a concern regarding the structural error is
related to its impact on the calibration results and prediction (Figure 2-7b and Figure 2-7c). In
this context, perhaps the main research gap is to evaluate the impacts of geologic
simplification and vertical mesh refinement on the calibration and prediction of the mixing
zone (Figure 2-7b). For example, the predicted results gained by using a zonal calibrated
model can be compared with those obtained using a pilot point parameterized model with
coarse/fine and/or regular/irregular pilot points distribution over a geologic domain. The
impact of vertical discretization or grid refinement along the coast on the resolution of the

computed mixing zone should be further explored through a sensitivity analysis.
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Table 2-4 Future needs for prediction uncertainty analysis and decision making in SWI modeling

Element Future need

Structural error —  Use of multi-model methods for analyzing errors in conceptualizing boundary and initial
conditions, aquifer geometry, and geologic structure
—  Impact of structural error on the calibration results and model predictions
—  Impact of grid refinement on the model predictions
Inverse modeling — Required type of observation data for model calibration
— Evaluating possible correlations among calibration parameters that are estimated using the
same type of observation
—  Variable-density model inversion
—  Computational demand of SWI model inversion in highly heterogeneous coastal aquifers
— Application of regularization mechanism on the calibration results in highly heterogeneous
coastal aquifers
Incorporating parameter uncertainty and imprecision in its prior information simultaneously
into the prediction uncertainty analysis
—  Computational demand of SWI prediction uncertainty analysis due to including many
uncertain parameters
— Application of NSMC to real-world highly heterogeneous case studies
—  Application of MC-like techniques to deep coastal aquifers
—  Impact of large prediction uncertainties on decision making

Stochastic modeling

Data acquisition — A cost-effective methodology to guide field-data collection in coastal aquifers
—  Considering three-dimensionality and model non-linearity during the network monitoring
design
—  Design a monitoring network for multi observation types and multi prediction variables
SWI predictions —  Understanding the dynamics of SWI in response to the synergy of its drivers

—  Understanding the mechanisms and type of SWI in real-world case studies
—  Examining opportunities for adaptation plans in SWI systems
—  Evaluating the effectiveness of management plans in alleviating SWI

Comprehensive modeling efforts to analyze and reduce parameter uncertainties are a
key factor for future research in modeling of SWI (Figure 2-7b). A comprehensive research is
lacking to determine the impact of each type of common observed data (e.g. temporal and
steady state head and salinity concentration, flow, width of interface, etc.) on the estimation
of parameters in a SWI model during model inversion. While a few studies have been
dedicated to assess the impacts of various types of observation data on the estimation of SWI
parameters, much remains to evaluate the correlations that are incurred between the
calibration parameters (e.g. diffusion, storativity, hydraulic conductivity, recharge, etc.) due
to the use of a specific observation type (e.g. head, salinity or flow) as well as the impact of
these correlations on the predictive performance. Such knowledge will aid in effectively
optimizing model parameters using an available calibration dataset.

Limited attempts have been dedicated to the parameter estimation of highly

heterogeneous coastal aquifers through the application of pilot point parameterization
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approach (Figure 2-7c). In this context, the impact of increasing/decreasing the density of
pilot points within the mixing zone or near pumping wells on the model prediction has not
yet been evaluated. The main reason for lacking such studies is the high computational
demand of SWI model inversion in highly parameterized systems. Much effort is needed to
improve the computational burden of SWI inversion, for example, through code
parallelization. Moreover, the application of regularization mechanisms is very limited in
SWI model inversion, and thus their impact on the reduction of prediction uncertainty is not
fully known. When using SVD, the computed model prediction is reliable only if the starting
values of the null-space located pilot points that are critical to prediction reflect reasonable
estimate of the real-world geologic system. Initial values are typically assigned based on prior
information (Doherty et al., 2010). In cases where the prior information is imprecise, the
computed model prediction may not encompass the truth. Research is needed to evaluate the
impact of improper initializing the pilot points on the uncertainties with the prediction of
SWI,

A large body of knowledge has been accumulated by developing, reviewing and
applying methods for analyzing groundwater prediction uncertainty in the past thirty years.
Prediction uncertainty associated with a SWI model has been rarely quantified (Figure 2-7c),
and thus management decisions are often made without consideration of the failure risks
associated with a management strategy that is evaluated using the uncertain modeling results
(Figure 2-7d). More and more case studies are needed to understand the impacts of parameter
uncertainties induced by field-data deficit on the predictive performance of a SWI model in
different geological settings using the existing techniques (i.e. MC-like techniques). The
uncertainty analysis of SWI prediction meets significant challenges including higher
requirements for convergence tolerance, mesh refinement to increase vertical resolution of

the transition zone, high computational demand for simulating SWI especially in large scale
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coastal aquifers, and lack of prior information to infer the required statistics (Kerrou et al.
2013; Zhao et al. 2013). Moreover, combining all sources of parameter uncertainties such as
abstraction rates, hydraulic conductivity, boundary condition, etc., requires additional
computational loads, which makes it impossible to perform a prediction uncertainty analysis
(Kerrou et al. 2013).

Our review of existing prediction uncertainty analysis methods (e.g. NSMC)
revealed that there is still room for criticism and improvement of these techniques for their
application to SWI modeling in the real-world systems (Figure 2-7b). Existing methods fall
short of simultaneously incorporating parameter uncertainty and imprecision in its prior
information into the prediction uncertainty analysis (Figure 2-7¢). There is a host of future
opportunities to develop further methodologies that provide flexibility concerning required
prior information, computational demand, and degree of aquifer heterogeneity. Such
methodologies can be particularly useful to quantify prediction uncertainty in deep coastal
aquifers because the estimated prediction uncertainty can be highly dependent on prior
information from the deep geologic layers, for example prior information about an expected
field value and/or covariance function. Such prior information is typically imprecise in many
heterogeneous aquifers. Limited to no attempt has been made to analyze the impact of the
imprecision pertaining to geologic prior information on the estimated range of uncertainty
with the predictions of SWI (Figure 2-7¢). This is an area of worthy further investigation
because many coastal aquifers worldwide lack hydrogeological data about their deep layers
where the interface is often located.

Mathematical modeling has been rarely used to design field-investigation in SWI
studies (Figure 2-7-d). Limited previous OD studies for a SWI system are based on two-
dimensional examples such as the Henry problem or linear models. An exception is the study

by Safi et al. (2018b). Although those investigations provide insights into the development of

43



mixing-zone, the application to field conditions requires further consideration of three-
dimensionality in future field measurements and field-scale heterogeneity. Moreover, there
are potentially significant improvements to be made from evaluating the influence of various
types of measurements (e.g. hydraulic conductivity, hydraulic head, and salinity
concentration) on the uncertainty reduction of SWI predictions. In addition, the applications
of the existing design methods (e.g. DW-based OD) are largely restricted to steady-state
field-measurements due to the short model runtime required to simulate steady-state
simulations. Research is needed to identify the locations of observation wells with transient
measurement in SW1I systems.

Further research is needed to evaluate the impacts of prediction uncertainties on
management decisions that are made based on modeling predictions (i.e. risk assessment)
(Figure 2-7d). For example, input model parameters corresponding to the anthropogenic
activities (water consumption, population growth rates, land-use change and urbanization)
and climate change (precipitation, temperature and SLR) are typically prone to uncertainty
(Werner et al. 2013). Their impacts on SWI should be examined by analyzing the dynamic of
SWI in response to uncertainties with these input parameters (Safi et al. 2018a). While
coupling anthropogenic activities and natural stressors has a synergistic effect that aggravates
the intrusion beyond the sum of the individual impacts (Safi et al. 2018a), the magnitude of
their synergistic impacts has been rarely evaluated in SWI studies (Figure 2-7f). The impacts
of anthropogenic activities on the timing and magnitude of climatic cycles and events should
be further explored. Equally important is to assess the impact of climate change on increasing
the impact of anthropogenic activities e.g., increasing the freshwater demands due to
increased temperature.

A general understanding of SWI mechanism has been attained primarily by

numerous applications of the Henry problem (e.g. Abarca et al., 2007). Well-documented
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studies addressing the impacts of SW1 drivers on the mechanism of SWI are however lacking
for real case studies (Figure 2-7f). The occurrence of passive SWI in coastal aquifers has
been widely documented in many research papers. However, the mechanisms of active and
passive-active SW1I are not fully understood and recognized using case studies (Werner
2016). Moreover, much of the reported literature in transient modeling of SWI focuses on the
lateral displacement of salt/fresh water interface owing to a change in the inflow rate or
groundwater abstraction. The controlling factors influencing the vertical mechanism of
intrusion are not fully known.

The effectiveness of adaptation plans in alleviating SW1 are limited to a few studies
(Ergil, 2001; Fatoric & Chelleri, 2012; Georgpoulou et al.2001; Kaleris & Ziogas, 2013).
More studies that critically evaluate the effectiveness of management plans in alleviating
SWI are needed to reduce the gaps between SWI knowledge and management practice
(Figure 2-7f). The potential role of planned adaptation strategies in alleviating saltwater
intrusion should be further explored to inform policy making on sustainable management of

urban coastal aquifers.
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CHAPTER 3

STOCHASTIC MODELING OF SALTWATER INTRUSION IN
HETEROGENEOUS COASTAL AQUIFERS UNDER FIELD-
DATA DEFICIT: COUPLING NSMC WITH SGS AND FUZZY
PARAMETER SETS

Abstract

This paper demonstrates an approach for a reliable quantification of the uncertainties
associated with model predictions of saltwater intrusion in heterogeneous coastal aquifers for
which the deep hydrogeological characteristics are poorly known. In this approach, a pilot
point calibrated model is used to assess the sensitivities of calibration dataset and model
predictions to model parameters. Based on the sensitivity analysis, the model parameters are
subdivided into Subset (i) that is informed by the calibration dataset, subset (ii) that is poorly
informed but to which the predictions are sensitive, and Subset (iii) to which both the
calibration data and the predictions are insensitive. Subsequently, the Sequential Gaussian
Simulation (SGS) is used to generate random realizations for subset (i), while Fuzzy SGS is
used to generate realizations of subset (ii); subset (iii) parameters are not randomized but kept
at their initial values. Fuzzy SGS is conducted using a wide range of fuzzy expected field
values as well as a range of “sensible” fuzzy kriging variograms. The prediction uncertainty
is finally assessed using the null-space Monte Carlo (NSMC) method that is used to
recalibrate the generated random fields. The performance of the proposed method was
examined using the SEAWAT model and data from a heterogeneous coastal aquifer with
limited field-data. The estimated range of the prediction uncertainty was compared with the

prediction uncertainty obtained using the traditional NSMC methodology with the SGS and a
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single calibrated model. The estimated prediction uncertainty was more realistic for the
proposed method than for the traditional methodology.

Keywords: Prediction uncertainty, Saltwater intrusion, SGS, Fuzzy set theory, NSMC

3.1 Introduction

Groundwater constitutes a main source of drinking water in many coastal urban
areas in arid or semi-arid regions. In coastal aquifers, a transition mixing zone is formed at
the saltwater and freshwater interface by maintaining the hydrostatic pressure between the
two fluids near the coast (Paniconi et al., 2001). Prolonged decrease of the groundwater level
will increase the landward encroachment of saltwater into the aquifer; this process is
generally known as saltwater intrusion (SWI) (Bear et al., 1999). The extent of SWI is often
driven primarily by an imbalance between groundwater abstraction and aquifer recharge
caused by mismanagement or lack of regulatory enforcement (Sophiya & Syed, 2013). While
anthropogenic activities, particularly groundwater abstraction, often play the major role in the
encroachment of salinity, zones of high hydraulic conductivity (e.g. fissure zones) along the
coast may intensify and expedite this process (Werner et. al., 2013), widen the saltwater-
freshwater mixing zone, decrease the transition depth, and increase the potential for upward
leakage of saltwater in groundwater wells near the coastline (Bear et al., 1999).

Enforcing a firm strategy that aims towards the protection of groundwater resources
requires an adequate understanding and control of the SWI dynamics in response to drivers
forcing the intrusion (Quevauviller et al., 2016). For this purpose, mathematical modeling of
flow and solute transport in the subsurface environment can provide substantial information
about the impacts of these drivers on the intrusion (Cobaner et al., 2012). Modeling requires
the characterization of the subsurface environment and the definition of its hydrogeological

properties by relying on considerable field data (Bakalowicz, 2005). If such data are not
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available, inverse modeling can be used to estimate (calibrate) these properties and thereby
improve the reliability of model predictions (Alcolea et al., 2006). For an effective SWI
model inversion, it is important to identify parameters that affect the predictive performance
of SWI as well as the type, number, and location of observed data (e.g. temporal and steady-
state head, salinity concentration, flow, etc.) that can be used to estimate those parameters
(Safi et al. 2018b). The hydraulic conductivity has been widely recognized as the main factor
controlling the amount of saltwater entering an aquifer (Abarca et al., 2007). Often, it is
estimated using observations of head, flow and/or salinity concentration in SWI systems
(Rasmussen et al. 2012; Nofal et al. 2016; Post et al. 2018). The logarithm of salinity
concentration can be used as an observed data for calculating porosity (Sanz and VVoss 2006),
while storage can be estimated using the observations of the transient head (Rasmussen et al.
2012). Freshwater inflow affects submarine groundwater discharge and similar to the
hydraulic conductivity, it can be estimated using observations of head and salinity
concentration (Sanz and VVoss 2006). Dispersivity parameters are critical for evaluating the
width of the mixing zone (Abarca and Clement 2010) and can be estimated using
observations of salinity concentration along the depth and within the mixing zone
(Shoemaker 2004; Dausman et al. 2010).

The performance of a calibrated SWI model is highly dependent on the quality and
quantity of available observation data and how these data correlate to model forecasts (Safi et
al. 2018b). One concern regarding available observed data is that they often contain
measurement errors/noise, particularly for models representing pre-development conditions
in a coastal aquifer (Walther et al. 2012). Ignoring large measurement errors force the input
parameters to be adjusted to compensate for structural error during model calibration,
potentially resulting in biased model predictions (Doherty et al. 2010). Another concern is

that observation data are usually sparse in many coastal aquifers due to financial constraints,
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spatial limitation and/or scale of the study area, for example in large-scale urbanized coastal
aquifers (Baalousha 2016). The use of sparse observation data often results in model
simplification (e.g., homogeneity assumption) during the calibration process. Case studies of
SWI with extensive observation data are rare. One of the few exceptions is the study of Post
et al. (2018) who estimated homogeneous hydraulic conductivity fields in a SWI model for
an island with detailed salinity concentration data. Similarly, Huizer et al. (2016) estimated
the homogenous hydraulic conductivity in a regional model for a Dutch coastal aquifer using
a large number of head and TDS concentration data. In these studies, heterogeneity in the
hydraulic conductivity was excluded from the calibration process. Kerrou and Renard (2010)
argued that heterogeneity in the hydraulic conductivity affects the penetration length of
interface in 3D systems, and thus its estimation is crucial for predicting the interface
displacement in heterogeneous coastal aquifers (Houben et al. 2017; Yang et al. 2018).

A review of various inversion techniques indicated that the pilot point
parameterization is a more physically representative approach for characterizing geologic
heterogeneity compared to the other methods (for details see Hendricks Franssen et al. 2009).
Several SWI studies have determined the spatial heterogeneity of hydraulic conductivity in
large-scale coastal aquifers using the pilot points parameterization approach (Sanford and
Pope 2010; Langevin and Zygnerski 2013; Baalousha 2016). In these studies, the number of
pilot points needed for a representative heterogeneous system was invariably much larger
than the number of available observations. After the calibration, the model outcomes fitted
reasonably well to field measurements. Moore and Doherty (2005) argued that even a
calibrated pilot point model with perfect correspondence between measurements and model
outputs can still exhibit a high level of parameter uncertainty when modeling a heterogeneous
aquifer. In this case, model calibration provides multiple plausible outcomes, indicating that

there will be uncertainty in model predictions (Ye et al., 1997). Large uncertainties in a
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model prediction will limit its value towards the sustainable protection and management of
water resources (Post, 2005).

Groundwater modeling efforts aim to explore and quantify the uncertainties of their
predictions, while maintaining a good model fit to the observed field-data (Keating et al.,
2010). Several Monte Carlo (MC)-like techniques have been developed for this purpose by
generating a range of predicted values obtained using different parameter sets that each allow
the model to match the observation data sufficiently well (multiple calibrated fields).
Examples of such methods include the Markov Chain Monte Carlo (MCMC) methods

(Harvey & Gorelick, 1995), the generalized likelihood uncertainty estimation (GLUE)

(Beven & Binley, 1992), and calibration - constrained Monte Carlo methods (Tavakoli et al.,

2013; Kitanidis, 1996; Yeh et al., 1996; Woodbury & Ulrych, 2000; and Carrera et al., 2005).
However, these methods can be prohibitively time consuming to apply for SWI modeling in
highly parameterized systems due to long model runtime, large number of required model
runs, and the mathematical complexities of inverse methods (Herckenrath et al., 2011).
Compared with the above methods, the null-space Monte Carlo (NSMC) method
(Tonkin & Doherty, 2009) is less demanding computationally. In this method, a set of
random parameter realizations is first generated from a probability distribution defined on the
basis of prior information; for hydraulic conductivity the lognormal distribution is often used.
The expected value and the spatial covariance function (or semivariogram) of the distribution
are either determined from a-priori information or can be estimated from independent data
through model calibration. The Sequential Gaussian Simulation (SGS) method can be then
used to generate random fields (Tonkin & Doherty, 2009). The generated random parameter
realizations are subsequently projected onto the null-space and adjusted through inexpensive

re-calibration resulting in a set of stochastic realizations that respect the calibration
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constraints. Finally, these realizations are used to produce model predictions (for details see
Tonkin & Doherty, 2009).

The application of the NSMC for quantifying uncertainties with groundwater model
predictions is limited. Keating et al. (2010) used a highly nonlinear groundwater model to
compare the performance of the NSMC with the MCMC and reported that the two methods
gave similar results. The NSMC has been rarely used in SWI modeling, and hence its
limitations, controlling factors, and required prior information are not fully known.
Herckenrath et al. (2011) made the only formal uncertainty analysis using the NSMC in SWI
systems. They used SEAWAT on a synthetic case and generated stochastic realizations using
the NSMC to represent the spatial variability of the hydraulic conductivity. The uncertainty
of model predictions was estimated based on the stochastic realizations, and then compared
with the prediction uncertainty calculated using linearized analysis. The estimated uncertainty
of the model prediction was slightly smaller for NSMC than for the linearized method. In
their study, the SGS was used to generate random fields from a known lognormal distribution
for the hydraulic conductivity. In practice, expert knowledge does not usually derive precise
prior probability distributions because the expected value and/or covariance function are
usually poorly known from field measurements (Rajabi and Atae-Ashtiani 2016). In such
cases, both uncertainty and imprecision exist simultaneously. In the present context,
imprecision refers to the vagueness (or ignorance) in the prior information about an uncertain
parameter. In the NSMC method, if the prior information is imprecise, the random fields can
be generated as Fuzzy parameter realizations (Bardossy et al., 1990) that can be used in
combination with the SGS to generate random fields, which is referred to as Fuzzy SGS in
this study. To our knowledge, limited to no attempt has been made to combine Fuzzy

parameter realizations with SGS for the NSMC analysis in groundwater modeling.
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Despite the relatively early theoretical development of the Fuzzy set theory (Zadeh
1965) to cope with imprecise prior information, this theory has been rarely used in the
prediction uncertainty analysis of SWI systems, and thus the imprecisions often omitted
entirely from the analysis (e.g., Pramada and Mohan 2015; Kerrou et al. 2013; Lecca and
Cau. 2004, 2009; Pool et al. 2015; Zeng et al. 2016; Michael et al. 2016). One of the few
exceptions is the study of Rajabi and Atae-Ashtiani (2016) who proposed the use of fuzzy
Bayesian inference based on MCMC for incorporating imprecision into the prediction
uncertainty analysis. However, the application of their method was limited to homogeneous
aquifer systems. The magnitude of the impact of the imprecision on the estimated range of
uncertainty with predicting the interface is not known in heterogeneous SWI systems. In the
coastal aquifers, the interface can be located in the deep geologic layers and thus its
prediction is dependent on prior information from those layers. Compared with other
hydraulic properties, the heterogeneity in hydraulic conductivity has been recognized as the
main factor controlling the development of the interface in highly heterogeneous coastal
aquifers because it can enhance the dispersion significantly (Abarca et al. 2007; Kerrou et al.
2013; Herckenrath et al. 2011). Therefore, its uncertainties can highly affect the prediction of
the interface. Quantifying prediction uncertainties is important for modeling SWI in deep
heterogeneous coastal aquifer systems, because their subsurface environment can be very
complex to characterize, e.g. the presence of fracture zones. Such heterogeneity can seldom
be identified from the available data, which usually calls for model simplifications during the
calibration process, further influencing the quantification of uncertainties associated with the
predictions of the interface movement.

To our knowledge, a formal analysis for estimating uncertainties in model
predictions of SWI in deep heterogeneous groundwater systems has not yet been reported. As

such, this study aims at providing an approach for quantification of uncertainties around SWI
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model predictions in heterogeneous aquifer systems with limited hydrogeologic data and
imprecise prior information. It combines the NSMC method with SGS and fuzzy SGS for
uncertainty quantification. In what follows, we first explain the theory underpinning the
proposed approach. Then, we define the SWI problem in deep heterogeneous coastal aquifer
systems by presenting an actual SW1 field example. Following that, the proposed approach is
applied to the SW1 example. Finally, we evaluate and discuss the performance of the
proposed approach to quantify prediction uncertainties associated with the actual SWI

example.

3.2 Methodology

The methodological framework (Figure 3-1) consists of sequential steps related to
the modeling of flow and solute transport. The first step includes parameterization and
subsequent parameter estimation. In the second step, a sensitivity analysis is performed to
subdivide the parameter set into the three subsets depending on the parameter’s influence on
the simulations corresponding to either the calibration data or the predictions. Next, we
generate a large set of calibration-constrained parameter realizations using an NSMC by
combining unconstrained parameter subset realizations into a full parameter set realization
(Tonkin & Doherty, 2009). Then the combined realization is projected onto the solution null
space and the projected realization is recalibrated to fit the data. Finally, we quantify model
prediction uncertainties by estimating predictions based on calibration-constrained

realizations. The following explains each step in more detail.
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3.2.1 Flow and solute transport model

Past efforts resulted in the development of several codes providing numerical
solutions for the flow and solute transport in porous media. Such codes are commonly used to
predict SWI from sea/ocean into fresh groundwater in response to a change in recharge or
groundwater abstraction. SWI models are generally categorized into either variable-density
(e.q., Essaid, 1990; Oldenburg & Pruess, 1995; Guo & Langevin, 2002; Ye et al., 2016) or
sharp-interface models (Mehdizadeh et al., 2014). The latter are based on the assumption that

the width of the saltwater-freshwater mixing zone is much smaller than the thickness of the
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aquifer. Therefore, freshwater and saltwater are assumed to be immiscible fluids separated by
a sharp interface (Bakker et al., 2013). The variable-density approach considers the saltwater-
freshwater interface as a wide transition zone due to strong hydrodynamic dispersion, which
provides a physically better representation of SW1 than the sharp interface approach
(Huyakorn et al., 1987; Lu et al., 2009). The variable-density modeling approach is preferable
when concentration data are to be used for calibration, and it is required if the model
predictions are concentration dependent. The proposed methodology requires a SWI code that
can simulate variable density flow and solute transport in a coastal aquifer. The most
frequently used variable-density codes include SEAWAT (Guo & Langevin, 2002), SUTRA
(\Voss 1984), FEFLOW (Diersch 1996), FEMWATER (Lin et. al., 1996), MOCDENSE3D
(Oude Essink, 1998), SWI (Bakker et al. 2013), FAST-C (Holzbecher, 1998), FEMFAT (Yeh

et al. 1996), and CODESA-3D (Gambolati et al., 1999).

3.2.2 Parameterization of heterogeneous hydraulic conductivity field

In heterogeneous aquifers, the hydraulic conductivity can vary considerably over
small distances and it often controls the flow pattern, velocity, and salinity migration
(Boulding 1996; Murphy and Morrison 2002; Houben et al. 2017). Hence, the use of only a
few zones to represent the hydraulic conductivity field may not represent the flow conditions
adequately (Murphy & Morrison, 2002). The use of a highly parameterized model is
therefore preferred to reduce the structural noise incurred by lumping real-world parameters
(Doherty & Welter, 2010). As such, instead of using zones of constant value, the hydraulic
conductivity field is controlled and estimated at a number of discrete-locations (so-called

pilot points) distributed throughout each geologic zone by undertaking a spatial interpolation
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from the pilot points to the model grid for a cell-by-cell parameterization (Doherty et al.,

2010).

3.2.3 Parameter estimation

In highly parameterized models, the number of pilot points needed for a
representative heterogeneous system is usually much larger than the number of available
observations. In such cases, the solution of the estimation problem is non-unique. As such,
parameter estimation must be stabilized by including one or more regularization mechanisms.
For example, the Tikhonov Regularization can be used to minimize the parameters’ deviation
from the user specified preferred condition that is often defined from expert knowledge about
the hydrogeological variability in the system (Doherty et al., 2010). Such variability is often
expressed by an expected value and a covariance function (or a variogram). With the
Tikhonov regularization, the pilot point values are estimated by minimizing an objective
function representing both the misfit between computed and observed data (called model-to-
measurement misfit) and the deviation from the preferred condition (Doherty, 1998).

Further constraints can be added to the inversion through truncated singular value
decomposition (TSVD) of the normal matrix (for details see e.g. Doherty at al., 2010). Model
parameter combinations that correspond to singular values larger than a user-defined
truncation value are deemed to be estimable on the basis of a calibration dataset. These
parameter combinations span the calibration solution space. In contrast, the inestimable
parameter combinations span the calibration null space and retain their initial values during
the calibration process. Hence, it is important that the initial values of such pilot points reflect
physically reasonable values of the geologic system. Initial values are typically assigned

either on the basis of expert knowledge of geology or through estimation of lumped

56



parameters on a global basis (i.e. zonal calibration) (Doherty et al., 2010). The latter is used

in the following demonstration.

3.2.4 Sensitivity analysis - Definition of parameter subsets

The calibration results are subsequently assessed by computing the Composite
Sensitivity (CS) of each pilot point parameter from the Jacobian matrix. Columns of the
Jacobian matrix represent the model parameters, while the observations and predictions are
identified by rows. The CS value quantifies the cumulative sensitivity with respect to a
parameter of all simulated values corresponding to the calibration data (Doherty, 1998). A
high or low CS value indicates that the calibration data inform well or poorly about the
corresponding parameter value respectively. Similarly, the sensitivity of each model
prediction is calculated with respect to each pilot point parameter. A high sensitivity indicates
that the pilot point parameter is important to the prediction. The sensitivity results are then
used together to subdivide the pilot point parameters into three subsets: subset (i) includes the
parameters that are informed by the calibration data set, subset (ii) has the parameters that are
poorly informed but to which a prediction is sensitive, and subset (iii) to which both the
calibration data and the predictions are insensitive. This subdivision is used in the section

3.2.5.

3.2.4.1 Parameters correlation

The correlation among parameters from different subsets makes it difficult to
include or exclude a specific parameter from a subset. This is because changes in one
parameter (e.g., from subset (i)) can be offset by changes in other parameters (e.g., from

subset (iii)). Although the CS provides information about the impact of calibration dataset on
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the parameters, it does not account for the parameter correlation and the level of structural
noise within a calibration dataset (Hunt et al., 2006). A statistic that incorporates parameter
correlation (particularly helpful for use in highly-parameterized models) is parameter
identifiability (Doherty and Hunt 2009). Parameter identifiability varies between 0 and 1 and
is defined as the square of the cosine of the angle between a parameter and its projection onto
the calibration solution space (Doherty 2015). A value of 1 indicates that a parameter is
completely informed by the calibration dataset and the measurement noise is the only
responsible term for any possible uncertainty with the estimation of that parameter (ideally
subset (i)). Therefore, the deficit in the number of observations in the calibration dataset does
not have an impact on the uncertainty of that parameter. An identifiability of O indicates that
a parameter cannot be informed by the available observations due to the information deficit in
the calibration dataset (e.g., subset (iii)). A parameter that has an identifiability between 0 and
1 is not unique. The information provided for that parameter by the calibration dataset is
shared with other parameters (Doherty 2015). In this study, we calculated the identifiability
of parameters using the IDENTPAR utility of PEST while setting the truncation value at

5.0E-6 (Doherty et al. 2010). The identifiability of parameters is used in following.

3.2.5 Calibration-constrained realizations using NSMC

A random realization of hydraulic conductivity is generated for each subset of pilot
point parameters (Tonkin & Doherty, 2009). The generated realization for all subsets is then
combined into a realization containing the full set of parameters. The combined realization is
subsequently projected onto the solution null-space, and the projection is added to the set of

calibrated parameter values. This parameter set is finally adjusted through model re-
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calibration to respect calibration constraints and the process is repeated for a large number of
combined realizations.

Subset (i) uses SGS to generate the corresponding parameter values. For SGS, the
previously calibrated pilot point values are used to determine the mean hydraulic conductivity
value, while a pre-defined (from expert knowledge) covariance function is used to generate
correlated random noise that is added to the mean value to obtain the (unconstrained) subset
realization values of subset (i). An alternative option for generating random fields is using the
posterior covariance from the calibration based on the Schur Complement which is a
linearized form of Bayes rule (e.g. the PREDUNC utilities in PEST) (see e.g., Fienen et al.
2010). Subset (ii) is generated similarly, except it uses fuzzy SGS to generate the parameter
realization whereby 1) the mean is generated from a probability distribution that can for
example be triangular, trapezoidal, or uniform; and 2) the noise is generated by using a fuzzy
covariance function (e.g. from an exponential variogram) for which the range are generated
from a distribution that can for example be Gaussian, triangular, trapezoidal, or uniform. In
subset (iii), the parameter values are kept fixed at the initial values if they have low
identifiability. Note that holding the parameter subset (iii) at starting values does not mean
that they are known perfectly. They retain their initial values because they do not influence
the model prediction and parameters of subset (i). If subset (iii) parameters have high

identifiability, the parameter values are randomized using SGS (similar to subset (i)).

3.2.6 Prediction uncertainty analysis

The uncertainty of a prediction is finally quantified from the range of model-
predicted (simulated) values obtained using the generated calibration-constrained

realizations.
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3.3 Problem statement: an example

3.3.1 Description of study site

The study site consists of a heterogeneous geologic structure underlying Beirut city
and its suburbs (Lebanon), a highly urbanized metropolitan area recognized for water

shortage challenges and high dependency on groundwater resources (
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Figure 3-2). The coastal aquifer stretches midway along the Eastern Mediterranean
with 16.5 km of diverse shorelines including rocky beaches, sandy shores and cliffs, covering
an area of ~48km?. It is bounded by the Mediterranean Sea to the west and north, by two

faults and an aquitard to the east, and by a fault and a river to the south.
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Figure 3-2 Location and surface geology of the pilot aquifer

The exposed rocks in the area are of Cretaceous and Quaternary ages with pockets of
Tertiary deposits (Peltekian, 1980). The Cenomanian-Quaternary (carbonates-unconsolidated
alluvial plain deposits) formations constitute a ~700m thick aquifer/aquitard system,
consisting mainly of hard and compact limestone and dolomite with chert and marl
intercalations (Khair, 1992). The aquifers are characterized by a relatively high transmissivity
but low storativity, particularly in the Cenomanian formations. The infiltration rates can be
high due to the presence of weak or partial cementation between grains of sand and poorly
consolidated conglomerates in the quaternary deposits allowing for moderate permeability
(Khair, 1992). It is likely that recharge has gradually decreased from 30% in 1969 (Ukayli,
1971) to near nil in 2018 due to urban sprawl (Safi et al., 2018a). The rock sequence of the

Cenomanian-Turonian age (Walley, 1997) is divided into 3 subunits, each exhibiting a
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different lithology and thickness (
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Figure 3-3) referred to in ascending stratigraphic order (Ja’ouni, 1971) as 1) Afga
Dolomite member, 2) Aagoura member, and 3) Mnaitra member. These same members are
also known from oldest to youngest as C4a, C4b and C4c respectively (Saint Marc, 1974;
Walley, 1997; Khadra, 2003). The C4a is 200 m thick and consists of crystalline, dolomitic,
marly dolomitic and reefal limestone (Ja'ouni, 1971; Khadra, 2003; Nader, 2000). The C4b is
a ~125 m thick a sequence of thinly bedded limestone, marly limestone, dolomite and marly
dolomite strata, whereas the C4c has an average thickness of ~180 m, and is composed of
thick and compact limestone and fossiliferous strata with several chert bands and nodules

across different horizons.
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Figure 3-3 Geologic cross-section CC’ and EE’

3.3.2  Need for mathematical modeling

Nearly 4,500 small-scale wells are reportedly tapping the upper aquifer (i.e.
Quaternary and a part of Cenomanian), complementing the limited supply provided through
the municipal network water supply to nearly 1 million individuals (Safi et al., 2018a). The
upper aquifer has been reported as increasingly vulnerable to SWI (Safi et al., 2018a).
Moreover, the increasing trend of salinity over time (Rachid el al., 2017, 2015) is expected to
limit the accessibility of the shallow freshwater resources in the near future (Safi et al.,
2018b). The limited remaining freshwater resources in the upper aquifer is likely to

encourage authorities to start tapping the deeper part of the system. Therefore, it is imperative
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for decision makers to determine the volume of freshwater resources at depths using a
combination of field monitoring and mathematical modeling. In this context, information and
data about hydraulic conductivity, heterogeneity, fractured networks, hydraulic head and the
current position of the interface are almost non-existent for the deep parts of the system. As
such, large uncertainties are expected in any modeling effort limiting the value of the model
to serve as a planning tool for decision makers to assess the risk of failure associated with a
given management strategy. Under the existing conditions, where the shallow data is scarce
while the deep data is almost non-existent, the risk assessment is dependent on quantifying

the prediction uncertainty.

3.4 Model set up and details of uncertainty analysis

3.4.1 Set-up of flow model

In this study, we set up the model using SEAWAT (Guo & Langevin, 2002) to solve
the variable-density groundwater flow problem. We considered a set of criteria in the code
selection process centered on the ability of code to: 1) simulate the 3D nature of the vertical
and lateral encroachment of salinity in confined and unconfined aquifers, 2) characterize
various types of time-dependent boundary conditions, 3) simulate steady-state and long-term
transient flow and solute transport with the least numerical instability, 4) link to an inversion
code to quantify uncertainties, and 5) contain reasonable computational resources. The model
domain (~42km?) is bounded to the west and to the north by a Dirichlet boundary along the

shores; to the east by a no-flow boundary (faults 1 and 3); and to the south, partially by a no-

64



flow boundary (fault 2), partially by a local river (Ghadir) (
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Figure 3-4). The river is simulated as a drain channel (
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Figure 3-2) because it is mostly dry but with occasional flow from groundwater
influx e.g. during winter rainfall events. Due to lack of data, the drain conductance is
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assumed to be 1,000 (m2/day/m) (Yager, 1993). The model was discretized horizontally into
4,251 active cells of 100 by 100 meters designed in 115 rows and 75 columns.

The model comprises a transient period of 50 years subdivided into 50 stress periods
of one-year duration (from March 1969 to March 2019). The first stress period (1969) is
specified as steady state with the aim of providing a stable hydraulic head and salinity
distribution at the beginning of the transient period as described below. The recharge rate of
the system is set to 30% of average annual precipitation in 1969 (Ukayli, 1971), which
gradually decreases to nil in 2019 (Safi et al., 2018a). At a 1.75% population growth and a
domestic consumption rate of 180 liter per capita per day (MoEW, 2010), groundwater
abstraction i